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Abstract 

Information about a person’s position is a valuable piece of context information on which many 

application and location services are based upon. In outdoor environments the Global Positioning 

System (GPS) and Assisted GPS (A-GPS) are widely used and they perform reasonably well, but 

they underperform when there is no clear access to the sky, i.e. in indoor environments.  Most of 

the research conducted and solutions developed aim for real-time indoor positioning or personal 

tracking, but to the author’s knowledge there are not many studies on the subject of post-

processing. Post-processing has many benefits over real-time solutions, like preserving battery 

life of a mobile device, leveraging bigger processing power, using more complex algorithms that 

cannot run on mobile devices, and ultimately getting better accuracy on a person’s movements 

tracks. In this thesis, an Indoor Positioning System (IPS) using WLAN fingerprinting with post-

processing scheme is proposed. The system uses a large set of fingerprinted Received Signal 

Strength (RSS) collections obtained in the offline phase and references them in post-processing 

against data collected in the online phase. A series of field experiments have been conducted in 

University of Tartu’s Faculty of Mathematics and Computer Science building. The results show 

that with a post-processing scheme more computationally extensive algorithms can be used and 

better accuracy achieved than in real-time.  
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1 Introduction 

In the period of July 2009 until January 2011, a private company Positium LBS [1] and the 

author were involved in a research project called MetaPos [2], which studied the quality and 

integrity of position-determining technologies used in mobile devices. The aim of the project was 

to determine different mobile positioning techniques that could improve the quality of personal 

positioning. When only Global Positioning System (GPS) was used to get persons position, it 

revealed that 80-90% of the times, test subjects’ GPS could not get a fix on the position. This 

most probably means that test subjects were in tense urban areas or indoor environments, where 

GPS signals cannot penetrate. This pushed the researchers to collect data from additional 

sources. Data from many different sources - including GPS, wireless local area network 

(WLAN) and Cell Global Identity (CGI) - was collected that could potentially help develop a 

ubiquitous positioning and tracking solution. Promising initial results for the first test application 

and data provided a good push to conduct further research in the field.   

In 2012, a spin-off company emerged from Positium called Innavium, which concentrates on 

indoor positioning and movement analysis to provide interactive indoor maps and indoor 

positioning for shopping centers and fairs. The presented work in this thesis is a direct input for 

the company to build better solutions. 

 

1.1 Motivation 
As people spend the majority of their time indoors [3], where GPS satellites cannot penetrate, 

there is a need for alternative ways that to not relay on satellites to provide positioning. Also 

many of location based services (LBS) and other applications that use people’s position obtained 

using GPS satellites outdoors, want to do the same in indoor areas. Thus indoor positioning 

has recently become subject to an increased interest [4]. The industry is already seeing growth in 

the indoor location market, where new entrants include individual players like Google and 

groups of players like In-Location Alliance [5]. 

GPS positioning provides an accuracy approximately 5 m [6] in an outdoor environment which is 

quite good result for large area navigation. But in buildings, which are smaller and more 
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complex, this level of accuracy is not sufficient enough. However, indoor positioning at the 

moment does not provide accuracy good enough for use in buildings or is not yet so stabilized. 

Also there is no standardized positioning method for indoors environments like the GPS in 

outdoors and that is why different approaches exist for positioning indoors.   

Navigation and positioning have become an intrinsic part of the individuals. A lot of people use 

navigational services like Tom-tom, Google Maps etc., when they are outdoors and travelling. So 

it could be assumed that people want to use the same services and opportunities indoors, to get 

seamless positioning in all environments. According to Strategy Analytics 80% of mobile data 

consumption originates from indoors and people actually spend 80-90% of time indoors, so 

having a cost effective and feasible solution will lead to several interesting scenarios [7]. 

Generally, indoor positioning is used in scenarios like: 

• Indoor navigation - Outdoor navigation is widespread in different industrial fields like 

truck/cargo navigation, marine and aviation navigation, precision farming, tourism 

navigation etc. [8]. Following heavy urbanization people spend more and more time in 

indoor environments. So there is an increasing need to solve the fundamental problem of 

indoor positioning to open up indoor navigation for different industries. Obvious 

examples are navigation in airports, warehouses, shopping malls, and hospitals. 

• Indoor tours - Mainly in the tourism market there are plenty of applications for outdoor 

tours based on GPS technology. There is a similar need for indoor environments like 

museum tour guides [9]. 

• Proximity search - One of the biggest market potential for indoor positioning lies in 

proximity search services like finding the closest toilet to you or listing shoe shops 

ordered by relative distance to mobile device users. 

• Social networks and location based services (LBS) - Even without good indoor 

positioning solutions already some highly popular social network services exist who rely 

on indoor localization. One example is Foursquare [10], where people can show to their 

friends where they are also indoors by checking into venues. If indoor positioning 
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problem will be solved then there will be a lot more social network services based on user 

locations in indoors. 

• Augmented Reality - In the near future, much of the interaction between electronic 

devices and the real world will be done using augmented reality. In real time object 

recognizing, it is very important to get the precise information about the surroundings, 

including objects’ position [11].   

• Location-based services for elderly and disabled people - People with reduced 

mobility could benefit from precise indoor positioning services to help ease their 

everyday life [12]. 

• Disaster management in indoor environments - Many lives could be saved if there 

would be precise and people localization possibilities in indoor environments when there 

is any kind of emergency situation in buildings, tunnels or other closed areas.  

Another reason why indoor positioning is becoming an important research subject is that 

commercially available indoor positioning and tracking solutions such as Ekahau [13], require 

complex or expensive hardware setup and because of that, they are not an ideal solution for 

public buildings and large scale implementations. For those purposes people’s personal mobile 

devices (e.g. smart phones) are good tools with capabilities that can be used for continuous 

positioning detection.  

In addition to real-time positioning and tracking solutions, there is post-positioning, which opens 

up a new field of research. Also the main issue with real-time personal tracking solutions is that 

most of the mobile units lack strong processing power and have limited battery life. Due to that, 

the algorithms in real-time solutions need to have low complexity. One solution is of course to 

offload the positioning part to a server and then request the location update. But this only 

removes the algorithm part – it still takes a heavy hit on battery life because the device has to 

constantly transmit data to and from the server to get location updates, using large amounts of 

bandwidth. With post-positioning, algorithms can run on a powerful server or even a cluster of 

servers to leverage parallel computing. As there is no need for real-time location updates the 

complexity of algorithms can be very high and there is the possibility to correct previous 
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locations. This can reduce and remove positioning errors and ultimately produce more accurate 

tracks of movements.  

As there are a lot of scenarios for real-time positioning, there are different scenarios where post-

positioning can add value as well: 

• Office and workforce management - The business culture is changing and people are 

not working in the same place all the time. Moreover, virtual collaboration among 

workers is rising rapidly [14]. In a large building employees could be working anywhere. 

In this case indoor positioning could be a solution to keep everything running smoothly. 

Movements of the workers could be monitored and collected by a central system where 

after processing, people could find colleagues workstations and empty rooms and spaces. 

• LBA (location based advertising) – The marketing industry is looking for ways how to 

precisely target advertisements based on user profiles and their movements in indoor 

environments. User profiles can be created, studying people’s indoor tracks in post-

processing.  Also analyzing trajectories of people in e.g. malls and supermarkets can led 

to better product placements. 

• Room/warehouse/environment planning – If real-time solutions help mobile users 

navigate and find objects indoors, then in post-processing the movements can be studied 

to improve indoor environments and workflow. This is very useful in large warehouses 

where workers have to get goods from large buildings and load them to trucks. Placement 

of goods can be organized in a more efficient way by indoor moment processing and 

analyzing. 

• Event planning - Analyzing trajectories of people in big festivals, concerts, fairs and 

conferences for better organizing these events. 

• Security services - In airport facilities, customers could benefit from real-time 

positioning to navigate in the airport and get notices of their flights but airports could also 

monitor the movement of people and decide where to direct more staff to prevent delays 

and keep everything running smoothly. Also they could look for any suspicions behaviors 

and tighten the overall security.   
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A good example for post-processing is what Google is doing with Location History and Location 

Reporting. They are collecting geospatial and sensor data from Android based mobile devices to 

offer better user experience with services like Google Now, but they also use this information in 

post-positioning to develop their positioning and tracking algorithms [15]. 

There are number of parameters or constraints which can affect the accuracy of indoor 

positioning. The examples of constraints are: taking into account different radio maps while 

applying algorithms, considering the impact of the human body to the Wi-Fi signal, taking 

account of the heading from the magnetic compass etc. This thesis studies what are the 

parameters influencing indoor positioning in a non-laboratory setting and is the accuracy of 

positioning estimations improved by setting different constraints to common matching 

algorithms. The work tries to prove the following hypotheses: 

• H0 – Changing the traditional fingerprint matching algorithms by adding more 

constraints improves positioning accuracy; 

• H1 – Mobile devices cannot handle complex algorithms with larger set of collected 

fingerprint database; 

• H2 – Post-processing provides sufficient processing power for using more complex 

algorithms to get better positioning accuracy; 

The purpose of this thesis is to designs an indoor positioning solution using WLAN 

fingerprinting method and post-processing schema. The goal is to show that using post-

processing schema and adding computational complexity and scale to algorithms can be 

beneficial in the terms of accuracy and saving the resources of personal mobile devices. 

The contributions of the thesis are as follows: 

• Studying how can different mobile sensors be used in indoor positioning; 

• Developing software onto mobile devices to map environment and evaluate proposed 

positioning techniques; 

• Studying different parameters that influence fingerprint positioning accuracy; 

• Implementing a sufficient collecting scheme using Shake Detection to save battery and 

storage space of a mobile device; 
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2 Outline 

The outline of the thesis is as follows: 

Chapter 3 gives an introduction to the current state of indoor positioning and describes different 

approaches and techniques in the field. Also more in-depth analysis is done on WLAN 

positioning and different mobile device sensors that can be used in indoor positioning. 

Chapter 4 presents a post-processing scheme for indoor positioning and describes different parts 

of the proposed solution. 

Chapter 5 describes the experimentations done in University of Tartu’s Faculty of Mathematics 

and Computer Science building to evaluate the proposed hypotheses. 

Chapter 6 presents the results of the proposed solution and analyses them using average mean 

root square error (AMRSE). 

Chapter 7 sums up the results and presents ideas for future developments. 
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3 Indoor positioning theory 

As mentioned before, there is no de facto standard positioning for indoor environments like the 

GPS or Global Navigation Satellite System (GNSS) in outdoors. Implementations in indoor 

environments are usually referred as Indoor positioning systems (IPS), which is a network of 

devices used to wirelessly locate objects or people inside building. Unlike GNSS, IPS usually 

needs some pre-calibration or mapping to provide location estimates.  

Man-made environments and buildings are all unique and need different approaches and 

technologies to provide positioning. Lot of research and work have been conducted 

[16][17][18][19] by academia and industrial sectors in order to address the issues of indoor 

positioning. Consequently, multiple location sensing techniques, conceptual positioning systems, 

commercial indoor frameworks and indoor navigation applications have been developed. These 

different indoor positioning technologies can be roughly divided into three major categories 

depending on how the main data is obtained: inertial sensor navigation using accelerometers 

and/or gyroscopes; navigation via mechanical waves, e.g. using sound waves; and navigation 

using electromagnetic waves [20].  

Many indoor positioning technologies require complex setup and additional hardware  to work 

[22][21], which leads to extensive costs and additional work due to the differences in the 

environments of buildings. That is why wireless local area network (WLAN) technologies are 

most widely used in indoor positioning. The IEEE 802.11 [24] has become the industry standard 

in data communication and it is most widely used and deployed. That means that the 

infrastructure already exists in buildings and there is no cost for additional hardware. Also, all 

the devices like tablet computers, personal computers, personal digital assistants (PDA) and 

mobile phones, which people use in their everyday life, have WLAN capabilities built in.  

 

3.1 Related work 
There have been many developments in the field of indoor positioning over the past years, but 

this paper only gives a brief overview of similar approaches to the solution proposed in the paper 
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itself. Chapter analyzes what are some of the good ideas and which techniques lack of robustness 

and generality in these approaches.  

It is relatively common to use Radio Frequencies (RF) Received Signal Strength Indicator 

(RSSI) measurements in indoor positioning solutions. They mostly use one or a combination of 

following approaches - Trilateration, Triangulation, Scene Analysis, Physical Contact, Range 

Measurement or Proximity – to pinpoint and track a position of a mobile user.  

One of the early developments of indoor positioning systems is called RADAR [25] where they 

combined scene analysis with range measurement to locate a mobile device in indoor 

environment. They used RF signal strength information to triangulate user location using 

empirical fingerprinting to get k-nearest neighbors (KNN) and building a Wall Attenuation 

Factor (WAF) propagation model. While taking RSSI readings they also factored in the user’s 

body orientation in the calibration phase of the solution. The median resolution of the 

deployment was in the range of 2 to 3 meters. The problem with their solution was that it was not 

suitable for dynamically changing environments and the propagation model did not take into 

account the changes in environment (e.g. change in the number of people besides the user and 

obstructions in the building, change in temperature, etc. [26]). In the second solution of RADAR 

User Location and Tracking System [27] they tried to eliminate the shortcomings of the first 

solution to make it deployable in a ‘real-world’ setting. They made different sets of radio maps at 

different times of the day and used beacon packets from neighboring APs to estimate target AP 

location. The radio map, which got the closest estimation of the target AP’s actual location, was 

used in the positioning system at that period. This improved the accuracy by over a factor of 3. 

But this added more complexity, like synchronizing APs beacon packets with mobile device and 

installing additional Aps so that every physical location can hear beacons from at least three APs. 

The idea of using different radio maps recorded at different times of the day can be very useful to 

get rid of errors produced by mobile objects and people moving around.  

Teuber and Eissfeller et al. [28] used fingerprinting and the Euclidian distance method together 

with Fuzzy Logic in post-processing to build topology. By using weighted Euclidian distance 

they could reduce the number of calibration points needed. They tested the solution in an empty 

airport hangar and the accuracy of relying only on Euclidian distance was 4.47 m. When they 

combined the information obtained from Fuzzy Logic they achieved an accuracy of roughly 3m. 
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After they moved to a similar-sized office space they saw that they needed to make a new Fuzzy 

Logic topology system. This is a good example of post-processing like schema but the solution 

suffers generality due to the different structures of buildings. 

The work that Gansemer et al. [29][30] did also involved fingerprinting and calculating the 

position with an Euclidian distance algorithm (EDA). Their goal was to apply the modified EDA 

for large and dynamic WLAN environments. This means that they had to tackle with handling 

different sets of base stations measured at one calibration point during calibration phase and 

positioning phase, handling varying sets of base stations between calibration points measured in 

calibration phase, problems caused by ‘unreliable’ RSSI-values, and how to detect outliers in 

position estimation. As the calibration phase takes a lot of effort they also investigated how this 

can be reduced. Their proposed methods were choosing the minimal number of AP (NAPmin) 

used for positioning calculation, using normalized AP and heading-orientated versions of EDA 

and setting thresholds to signal strengths. These approaches proved to be effective for large and 

dynamically changing environments and the median location estimation error (MLEE) of the 

solution was 2.12m. The problem with setting a fixed minimal number of base stations to the 

algorithm is that it only applies to that certain location. This parameter has to be changed when 

the scene changes. As this thesis studies a non-controlled environment, which is constantly 

changing, then similar techniques will be applied. Also, post-processing is very useful when 

trying to find the optimal threshold parameters for signal strengths. 

Another interesting study, in a master thesis made in University of Nebraska by Landu Jiang 

[31], developed a fingerprinting positioning algorithm, which used previous RSS observations to 

locate the mobile user. Algorithms were based on K Most Likely Neighbor (KMLN) technique 

with a Bayesian rule. The approach is relatively similar to commercial Ekahau Positioning 

Engine (EPE) [13] but the study also introduced Shortest-Path-Based tracking, which uses 

previous positions for tracking moving user. Also, by keeping the previous location history 

estimate the cumulative error can be avoided when comparing the distances between past and 

new location. In positioning mode they used median values of RSSI, which can reduce individual 

errors form the signal interference. Their test setup was similar to our approach, where they did 

not know the physical locations of the APs. Problem with the solution was that the number of 

APs used was small and their missing data handling technique was relatively simple: they 
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ignored the RSS on unknown APs. This can be effective with a small number of APs, but over 

bigger areas there is a need to take into account the APs that are missing from the fingerprint 

database.  

There have also been attempts to use other sensors to tackle the task of indoor positioning [32], 

but the combination of RSSI measurements and moving dynamics from the sensors, seem to be a 

much better solution [33][34]. Karlsson et al. [35] added an accelerometer and a gyroscope to the 

particle filter (PF) Wi-Fi trilateration algorithm to improve the accuracy of the estimation. They 

developed a step counter with the accelerometer and heading estimator with the gyroscope. The 

mean error of estimates for their algorithm was less than two meters for a specific use case and 

they saw that sensor data improved the positioning significantly. The problem with this solution 

was that it did not handle the device orientation changes which produce “false” turns and in 

addition the initial orientation of the device needed to be known. Information on how to 

overcome these limitations and usage of different sensors from personal mobile devices is 

explained in more detail in Chapter 3.4.  

What all these solutions have in common is that they try to implement the positioning on mobile 

devices in a real-time scenario. This means that their solutions are constrained to low 

computation and need to simplify their algorithms and reduce mapped locations via some form 

of clustering [36][37][38] or use of prediction/propagation models [39][40]. Also, a lot of the 

solutions have only been tested in controlled conditions and will not work in a ‘real-life’ scenario 

because of their lack of durability against environmental changes. 

 

3.2 Overview of different measuring techniques 
This chapter describes the most commonly used measurement principles for getting range and/or 

direction from/to fixed reference points. 

3.2.1 Time of Arrival (ToA) 
The ToA is a measurement technique where the time is tracked when the signal travels for the 

transmitter from the receiver. The distance between the transmitter and the receiver can be 

obtained by multiplying the signal travel time with the wave speed. Also, it is important to know 
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which kind of medium the wave is penetrating. For example, when dealing with electromagnetic 

waves, the propagation speed depends on the square root of the dielectric constant k. Most 

importantly, with this kind of measurement the clocks between two parties need to be precisely 

synchronized and this is often impossible to achieve. In the Line-of-Sight (LoS) scenario where 

there is a direct path from the transmitter to the receiver, this method could work relatively well 

if the clocks are in sync and the propagation effect of the medium is known. But in indoor 

environments it is usually a Non Line-of-Sight (NLoS) scenario and multi-path conditions are a 

common effect due to signal interference from walls, furniture, people, etc. [41]. 

3.2.2 Time Difference of Arrival (TDoA) 
This is an improved solution of the ToA where there is no need for the clock synchronization 

between the transmitter and receiver. Two equivalent signals are sent from different transmitters 

at the same time and registered by the receiver. Then the time difference of arrival from 

synchronized transmitters is calculated and a receiver can be located onto a hyperboloid [16]. 

There are two distinctions in this method – uplink and downlink. In the uplink mode, the 

positioned object produces a signal, which is received at two different beacons and the position 

calculation is made in the network. In the downlink mode, which is more scalable, the beacons 

emit signal to the mobile station and the calculations are made there. Whatever the mode, the 

condition that has to be satisfied is that the emitters at known locations have to be synchronized.  

3.2.3 Round Trip Time (RTT) 
RTT technique is used to eliminate the synchronization constraints between APs and the mobile 

device. It measures the time it takes for a message to travel to from the mobile device to the AP 

and back again. As only one device performs the round trip time measurement there is no need 

for the synchronization, only the time from when an AP receives a message until it sends the 

response has to be known. 

3.2.4 Angle of Arrival (AoA) 
AoA makes use of directional antennas and measures the angle from which the signal arrives to 

the receiver. The position calculation in AoA is made using intersections of virtual lines from 

different fixed transmitters. This technique is not favorable for indoor positioning and large-scale 

deployments because the directional antennas add cost and complexity to the system. 
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3.2.5 Received Signal Strength Indicator (RSSI) 
Signal attenuation is the most exploited technique in indoor positioning, where the RSSI values 

are measured to estimate the distance from the transmitter. In free-space propagation model the 

average received signal strength at any point decays as a power law of the distance of separation 

between a transmitter and receiver [42]. RSSI is measured in Received Signal Strength (RSS) 

and described as received power 𝑃! in dBm. Signal strength values are used in constructing a 

path loss propagation model and in fingerprinting. Both methods are discussed in Chapter 3.3. 

 

3.3 Overview of different positioning methods 

3.3.1 Strongest Base Station – Cell of Origin (CoO) 
This is the simplest method for indoor positioning. The position of a mobile device is obtained 

merely by access point generating the highest RSSI value to the mobile device. The user position 

is assumed to have the same coordinate position as that access point. CoO is used when the 

requirements for accuracy are low.  

3.3.2 Lateration 
Lateration is referred to as position determination from distance. When there are three distances 

available from the reference point then it is usually referred as trilateration. Popular distance 

estimation methods used in lateration are ToA (Chapter 3.2.1), TDoA (Chapter 3.2.2), RTT 

(Chapter 3.2.3), RSSI (Chapter 3.2.5), but it can be applied to any set of distances no matter the 

measuring method. In WLAN the lateration technique is often referred to as Footprinting. 

3.3.3 Propagation models 
Propagation models are used to analytically predict RSSI values in different locations. When 

constructing a propagation model it is crucial to know the environment, because the RSSI values 

highly depend on it. In a LoS scenario the free-space path loss model can be used to construct 

propagation model. The free-space power 𝑃! received by an antenna that is separated from a 

radiating antenna by a distance is given by Friis free space equation : 
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𝑃!(𝑑) = 𝑃!𝐺!𝐺!
𝜆!

(4𝜋)!𝑑! 

Equation 3.1: Friis free space formula [43] 

where 𝑃! is the transmitter power, 𝑑 is distance between transmitter and receiver, 𝜆 is wavelength 

and 𝐺! and 𝐺! are transmitter and receiver antenna gains. But when 𝑑 = 0 Equation 2.1 does not 

hold and in this case propagation is expressed in relation to a reference point. Receiver power 

𝑃! 𝑑  is then calculated as : 

𝑃! 𝑑 = 𝑃! + 𝐾 − 10𝛾 log!"
𝑑
𝑑!

 

Equation 3.2: Path loss with reference point [42] 

where 𝑃! is power of signal measured in reference point 𝑑!, K is a unit less constant that depends 

on the antenna characteristics and free-space path loss up to distance 𝑑!, 𝛾 is path loss exponent 

(typical values shown in Table 3.1) and 𝑑 is distance between transmitter and receiver. The 

common value for distance 𝑑! is 100m in outdoors and 1m in indoor environments. The free 

space model is really hard to apply to indoor environments due to NLoS conditions, shadowing, 

reflection, refraction and absorption by the building structures. It is really difficult to find a 

general path loss model for indoor environments because they are all different and the path loss 

exponent 𝛾 can even vary in different parts of the building [44]. Figure 3.1 demonstrates signal 

path loss in a line of sight scenario when walking away from the transmitter. 
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Figure 3.1: Path loss in line of site 

The algorithm can be modified by taking into account wall-loss [45] or random effect of 

shadowing as zero-mean Gaussian-distributed random variable with standard deviation [42][19] . 

Although there have been tries to construct a radio map using propagation models [39] [46] , 

empirical fingerprinting is still the preferred method for RSSI based positioning [20].  

Table 3.1: Typical path loss exponents [44]  

Environment Path loss exponent,  𝛾 

Free Space 2 

Urban Area 2.7 to 3.5 

Suburban Area 3 to 5 

Indoor (LoS) 1.6 to 1.8 
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3.3.4 Fingerprinting (FP) 
Fingerprinting is the most used method in indoor positioning. This is due to the fact that there is 

no need for additional costs on infrastructure and no prior knowledge of the environment is 

needed. Usually FP is done using RSSI values but this technique can be applied to magnetic flux 

measurements and also to audio and image processing. Fingerprinting is typically done in two 

phases – offline calibration or mapping phase and online or operational phase. In the mapping 

phase, signal strength measurements of known and fixed stations are taken and values are 

inserted to the reference database. When the mobile device is in operational phase the current 

location signal strength values are measured and compared to the ones in the reference database. 

A simple algorithm is used to find the best possible match compared to the current location’s 

signal strength measurements. Different algorithms used in WLAN fingerprinting can be found 

in Chapter 3.7. Also, an analytical model coupled with FP measurements can be used to create a 

propagation model for predicting signal strength reference values in different locations [25] This 

helps to reduce the number of calibration points needed to collect in the mapping phase of 

fingerprinting.   

3.3.5 Proximity sensing 
This location-sensing technique examines the location of a target object like mobile device with 

respect to a known position or an area like stationary tag. In proximity sensing fixed-location 

RFID or NFC (Chapter 3.4.8) tags and QR codes (Chapter 3.4.6) can be used.  

3.3.6 Dead Reckoning (DR) 
This method relies on previously determined positions and known or estimated speed over time. 

Usually, inertial sensors are used for getting this information. The biggest problem with DR is 

the inaccuracy of the process, which is cumulative, so the deviation in the position fix grows 

with time. To fix this problem, stationary tags and error correction techniques are usually used. 

In indoor positioning the term Pedestrian Dead Reckoning (PDR) is used as an indication that 

accelerometers have been attached to the body of a person or they are carrying them in some way 

[47]. 
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3.4 Indoor positioning through sensor data  
As mentioned before, typically the estimation of an indoor location involves relying on 

information sources that exist in the environment, such as electro-magnetic signals (e.g. WLAN, 

RFID, Bluetooth), digital object representations or fixed static points (e.g. bacons, fingerprints). 

More sophisticated approaches foster the combination of these different techniques in order to 

increase accuracy in the estimation, to eliminate errors caused by dynamic emerging factors such 

as interference and others, and to provide a fault-tolerant and reliable design.  

On the other hand, the integration of micromechanical embedded technologies such as 

accelerometer, gyroscope and air pressure meters within the handset enable to enrich the 

usability experience of mobile software, in terms of interaction, perception and visualization. For 

example, the accelerometer, simultaneously outputting tilt, is the most common sensor that is 

included within a modern mobile devices built by LG, HTC, Samsung, Apple, etc., and it allows 

tracking information that can be used for inferring multiple human activities with more than 90% 

accuracy for basic movements (e.g. walking) [48]. This information can be used within 

applications like games, maps and it can also be useful for improving the accuracy and removing 

errors in indoor positioning.  

However, the inclusion of sensor data for the classification of physical locations is a complex 

task for the handset as it involves collecting and processing sensor information in real-time over 

the constrained mobile resources. Thus, impacting the mobile device in terms of battery and 

performance. This is where post-processing justifies its purpose. Mobile devices can delegate 

computationally expensive tasks to remote locations [49][50][51] in order to aid the mobile 

resources with more storage and processing capabilities while saving energy. Do research sensor 

data analysis on the cloud, a joint project between Mobile & Cloud Computing Laboratory and 

the author will be contacted after the input results of this thesis are presented and analyzed. 

This chapter points out different sensors that are available in personal mobile devices and how 

can they be applied to indoor navigation systems. The study concentrates rather on how different 

sensors are leveraged, than on how they are built and operating. 
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3.4.1 Accelerometer 
This is the most common sensor in today’s modern mobile devices and PDAs. The accelerometer 

sensor provides information across time related with acceleration force along x, y and z-axes in 

m/s2. Therefore, acceleration can be sensed in three directions, forward/backward, left/right and 

up/down. Theoretically, the direction and acceleration can be used to calculate the speed and 

distance of the mobile device. But in practice when a person is walking with the device the 

acceleration force is not constantly in one linear direction and the device may be held in a 

different way so it produces a false-positive result.  

One essentially useful piece of information that can be obtained from the accelerometer is 

whether the person standing or moving. This can be used to initiate location update requests 

when movement is detected or reduce sampling count when there is no moment. This can save 

battery life and storage for the device. Also, accelerometers can be used to develop a step counter 

from which the number of steps and moving distance can be estimated [52]. The problem with 

this solution is that it needs training data and accelerator patters to work and it is really hard to 

develop a general step event model. For this sensor and all the other sensors that use standard 3-

axis coordinate system to express data values, it is essential to know that the coordinate system is 

defined. Figure 3.2 illustrates the coordinate system that is used by the Sensor API of the 

Android operating system. It is important to know that if the device’s screen orientation changes 

then the axes are not swapped and the sensor coordinate system never changes.  

 

 

 

 

 

 

Figure 3.2: Coordinate system used by Android’s Sensor API [53] 
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3.4.2 Gyroscope 
Gyroscope is a device, which measures the angular rate (rad/s) around a fixed axis with respect 

to an inertial space. By using gyroscope reading over time it is possible to describe the change of 

orientation of an object. In indoor positioning it is useful for maintaining the heading information 

of the device. One major drawback is that you must know the initial orientation to calculate the 

heading changes.  

3.4.3 Magnetic field 
Every position in the building has its own unique signature of its magnetic flux density. These 

fluctuations in space come from natural and also man made sources like metal building 

constructions, electrical systems and industrial devices. These differences in magnetic fields are 

sufficiently large to be detected by a smartphone equipped with a magnetometer. If the magnetic 

field is assumed to be approximately static in the building, then by measuring it in different fixed 

locations and by using fingerprint logic it is possible to use this data for positioning [54]. The 

problem with magnetic fields is that it is influenced by many objects like power cables and large 

metal objects, so it is often problematic to get a correct reading from the device. 

3.4.4 Orientation sensor (Accelerometer + Magnetometer)  
Orientation sensor is a sensor that will determine the azimuth, pitch and roll of a phone. It 

basically means that you can monitor the position of a device relative to the earth. Orientation 

sensor derives its data from using device's geomagnetic field (magnetic field) sensor in 

combination with accelerometer. 

3.4.5 Orientation sensor improved (Accelerometer + Magnetometer and 

Gyroscope)  
The heading can be determined in various methods. One possibility is to use the azimuth reading 

- rotation around Z-axis from orientation sensor - which combines magnetometer (compass) and 

accelerometer data to compute orientation relative to Earth. The compass readings are highly 

influenced by the magnetic interferences from the surrounding environment and can sometimes 

give misleading results. Using gyroscope and getting the rotation vector changes can obtain more 

accurate results. This is an ideal sensor for games and augmented reality. The problem with 

using rotation from gyroscope to get the heading in indoor positioning scenario is that there is a 
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need to know the initial orientation of the device. In this scenario, using compass values is a 

better choice because it always gives you the orientation relative to the earth. Even better is to 

get the initial heading using orientation sensor and then fall back to gyroscope. Also when device 

orientation is changed, then the initial orientation could be again obtained using orientation 

sensor and after fall back to gyroscope readings [55] . 

3.4.6 QR codes 
Quick Response (QR) Codes are two-dimensional barcodes, which were standardized by ISO in 

the year 2000 (ISO/IEC 18004) [56]. QR reading software is available for almost all 

smartphones. The QR images contain real world hyperlinks. User can scan them with a 

smartphone camera and get a link to a programmed text or URL. When QR codes are used as a 

location source the precise location codes are programmed into the QR images. These code 

images can be used to correct errors in positioning phase by placing them into known locations 

and scanning them with mobile devices. This is a very effective method for error correction, but 

the drawback is the additional effort of scanning the codes. 

3.4.7 Low pulses 
This is a technique where some form of sound is used. Positioning of the moving object can be 

obtained by receiving the location information from stationary objects mounted on the walls or 

sealing, which are emitting sound pulses. Usually, this kind of positioning is made using 

ultrasound waves [57], but there have also been tries to implement indoor positioning using 

audible spectrum [58]. 

3.4.8 NFC 
Near field communication (NFC) is a standard that electronic devices like smartphones use to 

establish radio communication with each other. The data is exchanged when the two devices are 

touched or brought into close proximity. NFC can be used in positioning by making error 

corrections that stationary unpowered NFC tags provide. 

3.4.9 CGI signal strength 
The main signal strength measurement used in indoor positioning ordinates from WLAN 

devices, but personal mobile phones are also connected to base transceiver stations (BTS). In cell 

based positioning the information about Cell Global Identity (CGI) can be subtracted, which is a 
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standard identifier for mobile phones’ cells. With the help of CGI it is possible to geographically 

locate connected mobile phones. In larger indoor environments BTS’s RSSI values can also be 

used in fingerprinting maps in addition to WLAN signal strengths. 

 

3.5 Wi-Fi/WLAN positioning 
Indoor positioning is much more complicated of a task to achieve compared with well-

established open sky positioning. As the positioning information cannot be optioned from the 

satellites circulating the earth a lot of different technologies (described in the beginning of 

Chapter 3) are used. This thesis mainly focuses on positioning technologies using radio waves. 

The most widely used RF technology is the industry standard IEEE 802.11, which implements 

WLAN. This technology helps an electronic device exchange information over the air using 

radio waves. Usually, Wi-Fi devices commutate over 2.4 GHz, which is split into 14 channels 

with 5 MHz spacing, but in recent years 5 GHz devices are becoming more widely used. The 

benefits of 5 GHz connections are less noise, less interference, better speeds, a more stable 

connection, and possibly even better battery life [59].  

 

Different methods for measuring are used to obtain users’ position from WLAN information.  

ToA (Chapter 3.2.1), TDoA (Chapter 3.2.2), RTT (Chapter 3.2.3), RSSI (Chapter 3.2.5) or AoA 

(Chapter 3.2.4) methods are less common in WLAN due to the complexity of propagation delay 

and angular measurements. Most popular and widely used method in WLAN positioning is the 

use of RSSI (Chapter 3.2.5). By measuring signal strengths from different Wi-Fi transmitters, it 

is possible to position an object using different positioning algorithms and techniques (Chapter 

3.3).  

 

There are many obstacles in close range that can cause propagation behaviors of radio waves 

such as absorption, reflection, scattering, refraction, diffraction (Figure 3.3), free space path loss, 

multipath, attenuation, and gain [59]. Also, RF is highly influenced by different materials like 

wood, transformers, cardboard, firewalls, fluorescent lights, microwaves and other devices [61].  
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Figure 3.3: Propagation effects of radio waves 

An even bigger problem is that 2.4GHz is the resonance frequency of water and human bodies, 

which contain over 50% of water, can absorb the RF signal [62]. Because of the radio wave 

propagation, WLAN Footprinting or trilateration (Chapter 3.3.2) [63] positioning technology 

does not work so well for indoor environments although it is very similar to Global Navigation 

Satellite System (GNSS). In case of WLAN Footprinting we need to know the position of Wi-Fi 

access points and then we could triangulate handset position from locations of access points 

using received signal strength indicator (RSSI). Much better accuracy is achieved with WLAN 

fingerprinting technology, where the whole indoor environment is mapped with fingerprints of 

fixed Wi-Fi access points RSS measurements. Values in every reference point (RP) are 

combined as a vector of RSSI values with the respective point coordinates. Later in online 

positioning mode readings of RSSI values are taken in an unknown location and then referenced 

against the fingerprint database using matching algorithm to get the closest estimate position. 

The process described is shown on Figure 3.4. 
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Figure 3.4: Basic fingerprinting scheme 

Generating a WLAN fingerprint map is time-consuming and accuracy of the deployment is 

highly dependent on the number of calibration points. So the number of calibration points should 

be as maintainable as possible and should not impact the accuracy of the system. To get a good 

radio map of a facility, long term RSSI sampling is needed [64]. For example, if there is 

something blocking or interfering with the signal during calibration, but is not present in the 

positioning phase, the readings of RSSI are completely different. This adds a new requirement 

for the database of AP locations to be dynamically monitored and continuously improved. If 

there are any Wi-Fi access points added or taken away, the fingerprint map may have to be 

renewed. Also, in indoor environments we need to consider the effect of human body while 

taking calibration points in fingerprinting and when positioning is in operational mode. A study 

by Kaemarungsi et al. [65] shows that different WLAN enabled devices get different RSS 

readings. This may lead to the conclusion that fingerprint radio maps made with one device 
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would not work on some other manufactures’ device with a different WLAN chip. Despite these 

limitations, WLAN fingerprinting is still the preferred indoor positioning method because of its’ 

simplistic design and cost-efficiency. 

 

But what really makes indoor positioning more complex than outdoor positioning is how quickly 

the indoor environment changes. Some examples of these changes are caused by radio 

propagation from moving objects, closed and opened doors, number of people in the room, radio 

frequency interference, indoor climate changes etc. Most of the current indoor positioning 

systems are tested in laboratory conditions and their algorithms are not taking into account these 

changes and this is why their positioning results are not stable over time. There is need to 

develop cognitive indoor positioning system which could dynamically detect changes in the 

radio environment and adapt to these changes. With constant post-processing and data collection 

an automatic fingerprinting solution can be developed [66]. 

 

3.6 Wi-Fi fingerprint positioning schemes 
Indoor positioning using fingerprinting can be performed in three ways, as demonstrated in 

Figure 3.5. All these methods need calibration points recorded in fixed locations. In the first 

scheme the positioning calculation is performed in the mobile device after the calibration points 

are collected in offline phase. In many cases a training database is also used to clean up and/or 

aggregate the measurements. In the second scheme, the position calculation is delegated to the 

server with the current measurements of AP values. Server then calculates the user’s position 

using calibration points obtained in the offline phase and sends the current position estimate back 

to the mobile device.  
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Third scheme also requires an offline calibration phase, but when online, information is only 

collected and periodically sent to the server. Server processing power is then leveraged to 

calculate mobile user movements based on different information from the device. The different 

between the last two is that position updates are not sent back to the users – they are studied in 

post-processing.  

Figure 3.5: Different position calculation schemes 

 

3.7  Wi-Fi fingerprint matching algorithms 
This chapter gives an overview of typical fingerprint-based matching algorithms to determine 

users’ location in indoor environment. All algorithms rely on RSSI information measured by 

personal mobile devices, from which the user location can be calculated.  

3.7.1 Manhattan distance 
Manhattan distance function computes the distance between to points in a grid-like manner. This 

is the simplest way to get distance metrics between two points. In operational mode, a scan of 

seen AP’s with their basic service set identification (BSSID) is made and referenced against pre-

mapped locations. Then the signal strength value is subtracted from reference point signal 

strength of the corresponding Wi-Fi access point (AP) to get distance 𝑑. The formula is defined 

as: 
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𝑑 = 𝑅𝑆𝑆!" − 𝑅𝑆𝑆!"

!

!!!

 

Equation 3.3: Manhattan distance 

where 𝑅𝑆𝑆!" is RSS value of AP 𝑖 in mapping mode, 𝑅𝑆𝑆!" is RSS value of AP 𝑖 in positioning  

mode and 𝑘 the number of APs. After that, the absolute values of subtractions are summarized in 

each reference point. The estimated device position is the reference point, which has the lowest 

sum. For dynamically changing environments and larger areas there is a need to add the number 

𝑘 of matching APs to the distance calculation: 

𝑑 =
1
𝑘 𝑅𝑆𝑆!" − 𝑅𝑆𝑆!"

!

!!!

 

Equation 3.4: Equation 7.2: AP orientated Manhattan distance 

As mentioned before, human body has a major influence on RF signal and therefor RSSI values 

need to be measured in different headings. Usually, four headings are used – north (0°), east 

(90°), south (180°), and west (270°). All previous algorithms can then be used to get the 

minimum distance 𝑑, regardless on heading of the measurement point. Another possibility is to 

include heading into calculation of distance vector: 

𝑑 =
1
𝑛𝑓 𝑅𝑆𝑆!" − 𝑅𝑆𝑆!"

!!

!!!

!

!!!

 

Equation 3.5a: Heading orientated Manhattan distance 

𝑛𝑓 = 𝑛!

!

!!!

 

Equation 3.5b: Normalization factor 

where 𝑅𝑆𝑆!"! is RSS value of AP 𝑖 in heading ℎ in mapping mode, 𝑅𝑆𝑆!" is RSS value of AP 𝑖 

in positioning  mode and 𝑛! the number of heading measurements, 𝑘 is the number of matching 

APs and 𝑛𝑓 is the normalization factor.  
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3.7.2 Euclidean distance 
This algorithm also references detected AP-s against collected records from the database to find 

RSS differences. The computed RSS differences are expressed in a signal strength difference 

vector in which the number of elements represents the number of matched AP-s between current 

scan and database values. The norm of this vector is known as the Euclidean distance: 

𝑑 = (𝑅𝑆𝑆!" − 𝑅𝑆𝑆!")!
!

!!!

 

Equation 3.6: Basic Euclidean distance 

where 𝑅𝑆𝑆!" is RSS value of AP 𝑖 in mapping mode, 𝑅𝑆𝑆!" is RSS value of AP 𝑖 in positioning  

mode and 𝑘 the number of APs. The minimum distance 𝑑!"# is the closest calibration point of 

the device’s actual position and its coordinates are taken as the current location. As similarly to 

Manhattan distance in dynamically changing environments and larger areas it is necessary to add 

the number 𝑘 of matching APs to the distance calculation: 

𝑑 =
1
𝑘 (𝑅𝑆𝑆!" − 𝑅𝑆𝑆!")!

!

!!!

 

Equation 3.7: AP orientated Euclidean distance [29] 

It is very important to take into account the number of AP, because in larger areas for example 

different reference points have different sets of APs. In this case a single AP match between 

calibration point and online measurement can be obtained, which gives a false-positive minimal 

distance value with the basic Manhattan algorithm in Equation 7.1 and basic Euclidean algorithm 

in Equation 7.4. For calculating the heading-orientated Euclidean distance the following equation 

is used: 

 



32 
 

𝑑 =
1
𝑛𝑓 𝑅𝑆𝑆!"! − 𝑅𝑆𝑆!"

!
!!

!!!

!

!!!

 

Equation 3.8: Heading-orientated Euclidian distance [29] 

where 𝑅𝑆𝑆!"! is RSS value of AP 𝑖 in heading ℎ in mapping mode, 𝑅𝑆𝑆!" is RSS value of AP 𝑖 

in positioning mode and 𝑛! the number of heading measurements, 𝑘 is the number of matching 

APs and 𝑛𝑓 normalization factor.  

3.7.3 Weighted Mean 
The accuracy of Euclidean and Manhattan matching algorithms are highly influenced by the 

density of the constructed radio-map. As the mapping process is time consuming then collected 

reference points are kept relatively low. To get satisfactory position coordinates (𝑥,𝑦) on a 

smaller set of calibration points we can compute it from a weighted mean of a number of 

calibration points with lowest distances. This method is referred to as weighted k-nearest 

neighbor (KNN) and defined as 

𝑥 =
1
𝑑!

!

!!!

!!

∗
𝑥!
𝑑!

!

!!!

 

Equation 3.9a: Mean X coordinate [28] 

𝑦 =
1
𝑑!

!

!!!

!!

∗
𝑦!
𝑑!

!

!!!

 

Equation 3.9b: Mean X coordinate [28] 

where 𝑑! is calculated distance value of location 𝑖 and 𝑥! ,𝑦! are the coordinate values of location 

𝑖 and 𝑘 the number of calibration points with lowest distance.  
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4 Research methods  

As the RF signal is highly influenced by the external environment, then construction of a 

propagation model or predicted radio map described in Chapter 3.3.3 can be really challenging. 

Instead fingerprinting based solutions (Chapter 3.3.4), where RSSI values from multiple Wi-Fi 

APs are measured in different known positions, are more widely adapted. Although the radio 

map construction requires more effort to collect enough measurements of RSSI, the final 

positioning estimation is more accurate then with other solutions. The approach described in this 

thesis also uses Wi-Fi fingerprinting technique, but compared to traditional fingerprinting 

methods the position calculation is done in post-processing, which saves the resources of a 

mobile device, allows to perform more compute-extensive calculations and approve positioning 

estimation accuracy.  

 

4.1 System overview 
If traditional fingerprinting shown in Figure 3.4 consists of two phases, then the approach 

described in this thesis consists of three phases. 

1. Mapping phase, where RSSI values of fixed Wi-Fi access points are collected in known 

calibration points for constructing radio map. 

2. Operational phase, where mobile device’s current locations RSSI values and additional 

data from sensors are measured and stored into local database. 

3. Post-processing phase, where all the information obtained in operational phase are 

processed in the server to calculate users’ moment tracks. 

 

4.2 Mapping phase 

4.2.1 Environment mapping 
The mapping procedure is basically the same as with traditional fingerprinting described in 

Chapter 3.5 with some additional properties, as described in Chapter 5.2. 
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4.2.2 Mapping data processing  
After the calibration data is collected as part of the fingerprinting described in Chapter 3.5, all 

the vectors are transported to the database server in order to make a radio map of the 

environment. Before constructing a radio map the mapped RSSI values need to be checked for 

non-stationary APs or popup APs. These need to be removed from the calibration points. This 

can be done with long-term sampling in different areas or taking calibration point measurements 

at different times of day and then comparing these datasets. The last approach is used in this 

thesis. By taking the multiple fingerprinting points recorded at different times and merging them 

or taking the mean for each measurement point and the direction of measurement, a general 

fingerprinting map can be made, which copes better with the changing nature of indoor 

environment. Another thing to consider is when some AP’s RSSI value is too low – then this 

value should be ignored while constructing a radio map.  

 

4.3 Operational phase 
In the operational phase, a mobile device carried by the user collects periodical RSS readings 

from APs that are visible on scan time with the sample interval of ∆𝑡. This interval is limited by 

the device’s WLAN chip and overall performance capabilities. Every measurement sample 

consists of a set of basic service set identification (BSSID) numbers, which are the MAC 

addresses of the wireless access points (WAP) generated by combining the 24-bit Organization 

Unique Identifier (the manufacturer's identity) and the manufacturer's assigned 24-bit identifier 

for the radio chipset in the WAP [24], and their current received signal strength values measured 

as power ratio in decibels (dB) of the measured power referenced to one Milliwatt (𝑚𝑊).  

First, the device collects online RSS readings from available APs periodically at a time interval 

∆t, which is limited by the device’s network card and hardware performances. The reading can 

be represented with a sample vector as 

𝑠 𝑡 𝑎 ! = 𝑠!
! 𝑡 𝑎 , 𝑠!

! 𝑡 𝑎 ,… , 𝑠!
! 𝑡 𝑎  

Equation 4.1: Vector of RSSI readings in operational phase 
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where 𝑡 = 0,1,2…, 𝑎 is acceleration, ℎ is heading and 𝑠!
! 𝑡 (𝑎) refers to the collected RSSI 

value from AP 𝑘 at sample time 𝑡. Acceleration and heading information are the additional 

parameters that are saved touring operational phase. Details of how these parameters are 

acquired and represented are described in the following two sections.  

4.3.1 Heading information 
Traditional fingerprinting architecture takes online samples in a random direction, which cannot 

later be detected by the system. The approach used in this thesis is such that the orientation 

sensor on the Android mobile device, described in Chapter 3.4.4, is leveraged to get the 

orientation of the device on scan time 𝑡. Orientation is then added as a heading parameter to the 

sample vector as an initial of cardinal on ordinal direction. Mathematical representation 𝜃 of 

compass initials are shown in Table 4.1. 

Table 4.1: Mathematical representation of cardinal directions 

Initials Mathematical value 

N (360° ≥ 𝜃   ≥ 337.5°)  OR  (0° ≤ 𝜃 ≤ 22.5°) 

NE 22.5° > 𝜃 < 67.5° 

E 67.5° ≥ 𝜃 ≤ 112.5° 

SE 112.5° > 𝜃 < 157.5° 

S 157.5° ≥ 𝜃 ≤ 202.5° 

SW 202.5° > 𝜃 < 247.5 

W 247.5° ≥ 𝜃 ≤ 292.5° 

NW 292.5° > 𝜃 < 337.5 

? NaN OR error OR unknown 
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The last ‘?’ in Table 4.1 is introduced because of the magnetic interferences to the mobile 

compass and there are cases where the device cannot get a correct read. The reason why the 

solution in question used magnetometer and accelerometer to calculate orientation rather than 

using information provided by the gyroscope is to remove the constraint of having to know the 

initial position of the mobile device. Also, the gyroscope needs the device to stay in one 

orientation. This can be satisfied when the user is knowingly carrying the device in hand and in a 

fixed orientation, but in a ‘real-world’ scenario, when the device could be carried in the pocket or 

backpack, this cannot be counted on.  

4.3.2 Shake Detection 
To detect movement, a Shake Detection system is developed using Android device’s 

accelerometer to detect acceleration applied to the device. More info about the usage of 

accelerometer in indoor position detection can be found in Chapter 3.4.1.  

Instead of only getting the linear acceleration of the device, the solution monitors the change in 

length of the acceleration event vector including all the axes. The event vector length can be 

represented as 

𝑒 𝑡 = 𝑥(𝑡)! + 𝑦(𝑡)! + 𝑧(𝑡)! 

Equation 4.2: Accelerometer sensor event vector length 

where 𝑡 = 0,1,2…  and 𝑥 𝑡 ,   𝑦 𝑡 ,   𝑧 𝑡  are acceleration forces (𝑚/𝑠! ) along different axes. 

These values also include gravity 0, but to avoid the effect of device “freefalling” to the ground 0 

on program startup, the initial value of last event vector length has to be set to Earths gravity 

𝑔 = 9.81  𝑚/𝑠!. After that a low-cut filter can be used to filter out the gravitation effects. The 

filter is defined as: 

𝑎𝑐 𝑡 = 𝑎𝑐 𝑡 − 1 ∗ 𝛼 +   𝑒 𝑡 − 𝑒 𝑡 − 1  

Equation 4.3: Low cut filter 

where  𝑎𝑐 𝑡 − 1  is the previous acceleration value 𝑎 is the alpha value of delivery rate, 𝑒(𝑡) and 

𝑒 𝑡 − 1  are current and previous accelerometer event vector lengths. After that the last 
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acceleration value 𝑎𝑐 is obtained, which is axis-independent and cleaned from static acceleration, 

such as gravity.  

By setting different thresholds to that parameter, the movement of the mobile device can be 

detected. The shake detection with accelerometer is used to reduce the number of samples when 

the user is stationary or moving slowly. Then the sampling can be stopped or the sampling 

interval can be increased and when accelerometer threshold is exceeded, then more extensive 

sampling should start again. But before actually stopping the sampling 𝑛 number of samples is 

recorded stationary. This helps us to get the fine location of a stationary user and remove errors 

in post-processing described in the next chapter. The described system is shown on Figure 4.1.  

 

Figure 4.1: Shake Detection System Activity Diagram 



38 
 

4.4 Post-processing 
When data is collected in operational phase it is extracted and moved to database server for post-

processing. The extraction can be done via built-in scheduled operation to the application or 

using a computer and USB cable. Initial evaluation of algorithms is done inside PostgreSQL 

database. The PostgreSQL database engine was chosen because it is one of the best free 

databases with commercial quality [68] and also because of the geospatial additions that PostGIS 

provides for it. In the post-processing scheme, a combined fingerprint database of different 

measuring times is used to estimate users’ position. Fingerprint database has no size limitation 

neither is there a need to cluster, because the positioning algorithms are run on servers that have 

enough processing power to handle the computation. In post-processing, different matching 

algorithms, described in Chapter 3.7, are implemented to produce the estimated movement track 

of mobile users in indoor environments. 

4.4.1 Missing AP handling 
For large and changing areas the set of APs vary between mapped reference points. This is due to 

signal transmission range limitations of WIFI APs or obstructions influencing the radio signal 

propagation. So an additional constraint system has to be applied for missing AP handling rather 

than ignoring the AP from the distance calculation [31]. Even when adding normalization factor 

of matched APs to the equations, the false-positive location estimation will still be present in 

larger areas with bigger set of fixed APs There have been attempts at setting a minimal number 

of APs that is sufficient for distance calculation [30], but this parameter varies depending on the 

environment and number of overall APs.  

An additional Fine System can be applied to further improve the accuracy of common matching 

algorithms. If the reference point has more APs than current location, we will add value 100 to 

the signal strength sum for each additional AP. This way we can exclude some points that have 

APs not present in the positioning scan and are further away from actual location. This is a more 

ubiquitous system than finding the minimal number of APs. Fine System can be combined with 

different matching algorithms to get better estimates and remove positioning errors. 
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4.4.2 RSS thresholds 
To handle the sudden changes in signal propagation, which lead to unreliable AP reading, a set 

of RSS thresholds is set based on the statistical values obtained in mapping data processing 

described in Chapter 4.2.2. This will also reduce the number of matching APs to be considered in 

the algorithm. 

4.4.3 Moving median filter 
In order to deal with sudden positioning changes caused by momentary fluctuations of RSSI 

values, a moving median filter can be applied. The filter calculates the median values of 𝑥 and 𝑦 

for the last 𝑛 position estimate. In a ‘real-time’ scenario the value of 𝑛 should be sufficient 

enough to remove incorrect location estimates but not so large that it would affect the position 

updates. However with post-processing we are not constrained with these limitations because 

position calculation is done later using all the collected information.  

 

4.5 Platform 
Data collection and fingerprinting solution is developed for smartphones and tablets running the 

Android operating system, which is the most popular mobile phone operating system currently 

out there [69]. The reason why developing for Android was an obvious choice is the free 

developer account and a huge community of developers.  

Software is written in Java using Android Studio IDE. The code is developed following Android 

API guidelines and example codes provided by Google [70]. 

 

4.6 Hardware 
First implementation and testing is done with LG’s Nexus 5 running core Android version 4.4.2 

(codename KitKat). All relevant capabilities of the phone are shown in the Table 4.2.  
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Table 4.2: LG’s Nexus 5 Specification [71] 

CPU Quad-core 2.3 GHz Krait 400 

Memory 
Card slot No 

Internal 32 GB, 2 GB RAM 

GPU Adreno 330 

OS Android OS, v4.4.2 (KitKat) 

Networks 

2G Network GSM 850 / 900 / 1800 / 1900 

3G Network HSDPA 800 / 850 / 1700 / 1900 
/ 2100 / 900 

4G Network LTE 700 / 800 / 850 / 1700 / 
1900 / 2100 / 2600 

WLAN Wi-Fi 802.11 a/b/g/n/ac, dual-band, DLNA, 
Wi-Fi Direct, Wi-Fi hotspot 

Sensors Accelerometer, gyroscope, proximity sensor, 
compass, barometer 

GPS Yes, with A-GPS support and GLONASS 

Camera 8 MP, 3264 x 2448 pixels, autofocus, optical 
image stabilization, LED flash, check quality 

Battery 

Non-removable Li-Po 2300 mAh battery 

Stand-by  (2G) / Up to 300 h (3G) 

Talk time  (2G) / Up to 17 h (3G) 

 

Most devices running Android have at least two hardware-based sensors for monitoring motion 

[55]. Nexus on the other hand has even three of them - accelerometer, gyroscope and 

magnetometer (compass). That is why this device is a good choice for experimenting with indoor 

positioning and navigation. The device proved to be capable of simultaneously handling Wi-Fi 

scanning, up to 500 millisecond intervals, reading magnetometer data from sensors.  
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4.7 Software design 
In order to carry out the measurements in indoor environment and evaluate the proposed 

hypotheses, an Android Java application was developed by the author running on a device 

described in Chapter 4.6. The following two subsections describe the different parts of software 

as functionalities and their characteristics as features. 

4.7.1 Software functionalities 
The software functionalities of the Java application are as follows: 

• Record Mode – lets user to fingerprint AP signal strengths in fixed locations; 

• Position Mode – starts real-time positioning in indoor environment based on saved radio 

map and using currently selected algorithm; 

• AP List – shows user the list of collected fingerprints with AP information and signal 

strength values; 

• Data Handler – is used to handle data transactions between Android’s SQLite database 

and the application. Holds fingerprint database and positioning and scanning log data; 

4.7.2 Software features 
The application consists of two main views – Map View and AP List View.  

1) In Map View there are two modes - Record Mode and Position Mode. View displays the 

plan for the indoor environment, which can be zoomed, moved and rotated according to 

user needs. Also a compass arrow is displayed in the top left corner of the screen and 

points to the north. The implementation of heading information is described in Chapter 

4.3.1. To help a user get movement updates a notification message is created, which 

shows the acceleration value when movement is detected. A more detailed description of 

Shake Detection can be found in Chapter 4.3.2. When the Record Mode is selected form 

the dropdown menu a lock button and record button appear. Lock button is for locking 

the marker pin in place when taking fingerprint measurements. Then user can move the 

plan and the marker stays in place on screen. The record button opens a popup dialog 

where fixed coordinates and measurement direction can be changed and saved to the 

fingerprint database along with scanned AP data. The overall layout of the Map View in 
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Record Mode is shown in Appendix 2 and the detailed usage of the Record mode is 

described in Chapter 5.2.1. In Position mode all the sensor data and signal strengths 

measurements are logged into SQLite database using Data Handler. There are two 

positioning mode options – one is passive, where the screen can be turned off and 

application will run in background, and the other one uses the same plan as in Record 

Mode and also shows the user’s location with marker pin on a map (Appendix 3) 

2) AP List View consists of a list of fingerprinted values obtained in the offline phase in a 

simple table (Appendix 4). List View allows the user to scroll through the data and delete 

individual records.  
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5 Experimental evaluation 

In this chapter the proposed method is evaluated using device and methods described in previous 

chapter.  

5.1 Testing environment 
To evaluate positioning accuracy and test different proposed methods, a series of field 

experiments has been carried out in the University of Tartu’s Faculty of Mathematics and 

Computer Science building. The Wi-Fi infrastructure is already installed in the building for 

Internet connectivity and data transferring. This way we the test is running the solution in non-

laboratory conditions. 

Measurements were taken on the third floor of the building, which have two sides (section 1 and 

2) divided via stairway (section 3) as shown in Figure 5.1.  Both sides have a main corridor and 

the first side also has two small additional parts (section 1.1 and 1.2). Approximate sizes of the 

area is shown in Table 5.1. The area was mapped with 112 points using a grid of 1m x 1m. All 

the points were pre-measured and masked onto the floor with masking tape before taking RSSI 

measurements (Appendix 1). The Radio Map points are shown on Figure 5.2.  

Table 5.1: Approximate sizes of positioning areas 

Section number Approximate size of positioning area (m2) 

1 90.29 

2 52.71 

3 6.62 
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Figure 5.1: Plan of the test environment  

Figure 5.2: Plan of test environment with 112 fingerprint reference points 
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5.2 Data collection 

5.2.1 Fingerprint collection  
In order to construct a radio map for the positioning estimation later on, RSSI fingerprint values 

of different APs need to be collected in actual locations. RSSI information from all 112 points 

shown in Figure 5.2 was collected using the Android application’s Record Mode described in 

Chapter 4.7. The user could click on the map and place the marker to the location where the 

fingerprint measurements were taken. Marked reference point (RP) locations were already drawn 

to the map, to help the user pinpoint the actual location. When the user hits the Record Button 

the program starts scanning the location for AP signal strengths. To better cope with the changes 

of indoor environment, four fingerprint collections were carried out through the week on 

different days and times of the day, to be merged afterwards for a more general radio map. Also, 

to reduce the effect of the user’s body on the signal strength values, four measurements were 

taken at every calibration point. Respectively, four different directions – north, east, south, and 

west – were measured with 5 readings in 2-second intervals and the mean value of signal 

strength for every seen AP was calculated. This way errors could be reduced - errors caused by 

momentary fluctuations in signal strength due to the radio wave propagation described in 

Chapter 3.5. One fingerprinting collection took approximately 2 hours to complete.  

Also, additional signal strength values from connected BTS and neighboring BTSs were 

collected to improve the radio map. The application recorded a total of 9 different cells. This 

information can vary depending on the network type and mobile service provider and for these 

reason the values have to be ignored when using another device. 

5.2.2 Stationary data collection 
A set of RSSI values was collected to evaluate the system performance when user is stationary. 

In this case the stationary user orientated at an arbitrary orientation would stand on masking tape 

marked on the floor and started the Wi-Fi scanning process. In every observation point 20 

different sets of RSSI samples were taken with a 2-second interval. A total of 83 marked 

observation points were randomly chosen for the stationary data collection set. 
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5.2.3 Tracking data collection 
To evaluate the performance of the proposed post-processing tracking system described in 

Chapter 4.4, multiple tracks were recorded with the mobile device. The user carried the 

smartphone in Positioning Mode described in 4.7, which took RSSI values at every second, 

while walking at a constant speed along three paths. The overview of different path parameters is 

shown in  

Table 5.2. In order to get accurate actual locations for each step a stopwatch was used – on in 

which the user could record lap times in checkpoints. When combined with the elapsed time the 

actual locations for every timestamp can be calculated as a fraction of the path.  

Table 5.2: Path statistics 

Path number Repetitions Average Duration (s) Path Distance (m) 

1 5 123 63.51 

2 4 114 44.43 

3 3 96 27.30 

 

5.3 Error estimation 
Positioning error is used to evaluate the performance and accuracy of the positioning. Error of 

positioning is defined by Euclidean distance in meters between the actual recorded location 

and/or time and estimated location. To average the error over a set of samples an Average Root 

Mean Square Error (ARMSE) is used. ARMSE is defined as: 

𝐴𝑅𝑀𝑆𝐸 =
1
𝑁!

1
𝑆!

Ρ! − Ρ!! 𝑠
!

!!

!!!

!!

!!!

 

Equation 5.1: Average root mean square error for stationary points 
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where  Ρ! is the actual location for this sample point 𝑖 and Ρ!!(𝑠) is the estimated location using 

sample measurements s. 𝑆! is the total number of test samples taken in certain point 𝑖 and 𝑁! is 

the total number of points in testing set. For getting the ARMSE for paths the following equation 

is used: 

𝐴𝑅𝑀𝑆𝐸 =
1

𝑁!!"!
1
𝑁!

(Ρ!(𝑠)− Ρ!!(𝑠))!
!!

!!!

!!"#!

!!!

 

Equation 5.2: Average root square error for paths 

where  Ρ!(𝑠)  is the actual location and Ρ!!(𝑠)  is the estimated location for path 𝑖  sample 

measurement s, 𝑁!"#! is the total number of walked paths and 𝑁! is certain path 𝑖. 

5.4 Experimentation results 

5.4.1 RSSI values of APs 
After all the fingerprint collections were carried out the data was exported to database server for 

radio map construction. The total number of samples recorded in offline fingerprinting was 48 

285. An example of the raw WLAN fingerprint database is shown in Table 5.3. The reference 

point can be constructed from the (𝑥;𝑦) pairs in the database. Heading information shows the 

real orientation in accordance with the map while taking the measurement. Also, frequencies of 

different AP where recorded which can help analyze the differences in signal strength 

fluctuations between 2.4 GHz and 5 GHz nodes. 

Table 5.3: Part of the raw fingerprints database 

Id Heading SSID BSSID 
ST 

(dBm) 
X Y 

Frequency 

(Hz) 
Time (m) 

… … … … … … … … … 

17 N ut-public 6c:9c:ed:eb:cc:20 -64 256.86 356.97 2412 1398689318 

18 N ut-public 6c:9c:ed:eb:cc:2f -47 256.86 356.97 5200 1398689318 
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19 N eduroam 64:ae:0c:bf:21:ee -86 256.86 356.97 5240 1398689318 

… … … … … … … … … 

 

There were 98 different APs detected during four different fingerprinting times, from which 80 

showed up in every fingerprint database. This means that these were stationary APs and will be 

used in the online phase as reference. Others were so called popup APs or mobile APs and will 

be ignored. Adding this constraint to the database removed 3728 samples from the whole set on 

fingerprints. After the cleanup the average sample vector signal strength value for the whole 

database was -77dBm, highest -30dBm and lowest -97dBm. Overall frequency distribution of 

signal strengths is shown on Figure 5.3. Average count of different AP for sample vector was 27, 

maximum 44 and minimum 10.  Additional constraints can be added to the algorithms using 

these values. 

Figure 5.3: Overall frequency distribution of signal strengths 
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Figure 5.4: Signal strengths of single AP in a stationary position and with fixed heading 

Figure 5.4 shows signal strengths one randomly chosen access point samples over long period of 

time, while mobile device is stationary and in one direction. For this particular AP the mean 

value is -70dBm and variance in 14dBm. Figure 5.5 shows the frequency of signal strengths for 

the same period. 
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 Figure 5.5: Frequency distribution histogram of signal strength of single AP in a stationary 
position and with fixed heading 

5.4.2 Effect of a human body to RSSI values 
Contrary to what Jiang et al. [31] found, the data collected shows that the human body 

orientation has influential impact on signal strength values. There are cases where some APs 

show up only in one heading. This has to be taken into account when applying different 

matching algorithms. Table 5.4 shows four randomly chosen (different) APs in four locations 

and their RSSI signal strength values for four different headings.  
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Table 5.4: Human body effect to signal strengths (dBm) 

Orientation North East South West 

Location 1 AP 01 -91 -91 -87 -87 

Location 1 AP 02 -70 0 -73 -73 

Location 1 AP 03 -89d -89 -83 -83 

Location 1 AP 04 -81 -74 -71 -64 

Location 2 AP 01 0 0 0 -85 

Location 2 AP 02 0 0 0 0 

Location 2 AP 03 0 0 -82 -87 

Location 2 AP 04 -75 -75 -66 -66 

Location 3 AP 03 -75 -75 0 -76 

Location 3 AP 04 -32 -38 -33 -39 

Location 3 AP 05 -77 -78 -80 -74 

Location 3 AP 06 -39 -42 -32 -41 

Location 4 AP 01 -73 -73 0 -36 

Location 4 AP 02 -44 -34 -35 -36 

Location 4 AP 03 -73 -80 -66 -76 

Location 4 AP 04 -46 -35 -38 -77 
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6 Experimentation analysis and conclusions 

6.1 Constraints 
Over the course of this thesis a set of constraints and parameters were identified that give the 

best accuracy for the system in question. As mentioned before, this solution was tested in non-

laboratory conditions and therefore these constraints are essential do the development. The first 

constraints were set to the overall fingerprint database where all the different sets of 

fingerprinting databases were combined. Two different schemes of combining the datasets were 

tried: 

• Taking the mean value of different signal strengths measurements in their respective 

points and directions; 

• Simply adding all the samples together to form an overall fingerprint database. 

The second scheme proved to give better results because, with the first scenario, the sudden 

fluctuations of signal strengths corrupted the overall mean value of signal strength at certain 

points and directions. This is due to the sudden changes in environment, which affect the signal 

propagation. The second constraint to database is that every AP has to show up at least once in 

every fingerprinting run. Otherwise the AP is not stationary and cannot be used to estimate 

locations.  

The most important constraint in large and dynamically changing indoor environment is the 

handling of missing APs. In this thesis a Fine System is used, as described in Chapter 4.4.1. 

Experimentations with setting the minimal value of matching APs [30] was also considered, but 

this limits the algorithm to be used in only on particular scene. Number of APs is different in 

every building and the minimum APs parameter has to be set for every scenario separately.  That 

is why the more general Fine System was used. Also, it produced better overall accuracy than the 

minimal AP scheme. Experimentations of setting minimal RSS thresholds were based on the 

statistical values of the overall fingerprint database presented in Chapter 5.2.1. Experimentation 

showed that this only had minimal effect on accuracy. This may be due to the large set of 

fingerprint samples, which minimizes the weights of unreliable APs. 
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While testing the weighted mean 𝑘-nearest neighbor scheme the optimal parameter for the 𝑘 was 

found to be 10 for the particular data set. If 𝑘 value is 5-12 then the ARMSE varies from 5 cm. 

Mobile device could with ease estimate the users’ position when matched against a small set of 

fingerprint data, but attempts to estimate the position in a mobile device against large set of 

fingerprint data was not fruitful. Complex variations of matching algorithms waded heavily on 

device resources and when it also had to handle on-screen position updates it crashed constantly 

as it could not handle the load. In post-processing servers the algorithms run with minimal 

impact on the server load. This proves hypotheses H1 and H2, set in end of Introduction, to be 

true. Figure 6.1 also demonstrates the impact on battery. Two different positioning schemes on 

identical phones are used – the second one was calculating position updates and just logging 

sampling data. 

An accelerometer-based Shake Detection described in Chapter 4.3.2 was developed to save 

battery life in operational mode. While experimenting with different thresholds for the 

accelerometer the most optimal threshold for detecting movement was when acceleration 𝑎𝑐 >

3. By experimenting with a different number of fine location samples a number of 𝑛 = 10 

additional samples seemed to give good results. All the constraint parameters obtained from the 

experiments are shown in Table 5.1 and the impact to the accuracy is described in the next 

chapter. 

Table 6.1: Table of parameters for testing solution 

Database merging scheme Simple combining 

Missing AP Handling Fine System 

RSS thresholds Not set 

Acceleration threshold 3 

Number of fine location samples 𝑛 10 

KNN 10 
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Figure 6.1: Impact to mobile device battery in different positing schemes. 

 

6.2 Positioning performance analyses 
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change much. By introducing the weighted mean of KNN to the algorithm the ARMSE of 

heading-orientated Euclidean improves by 0.10m (7%) and Manhattan by 0.13m (9%), which is 

not a significant improvement but the KNN scheme helps to reduce variance (36% for Manhattan 

and 33% for Euclidean) and the maximum (23% for Manhattan and 29% for Euclidean). The 

difference in ARMSE is not significant when running the last algorithm against one single set of 

mapping data (8% for Manhattan and 10% for Euclidean) but the decrease in variance and the 

maximum in Euclidean algorithm shows that using multiple sets of fingerprints can reduce the 

error that comes from sudden signal strength changes while constructing a fingerprint map. The 

results show that by adding additional constraints and using a bigger fingerprint database the 

positioning accuracy can be improved, which confirms the hypothesis H0 set at the end of 

Introduction. Also, the estimation error for this solution is better than most other similar 

developments. 

An interesting finding in the results, some variations of Manhattan distance algorithms were 

slightly better in terms of ARMSE compared to Euclidean for the test set. This may be due to the 

different nature of Manhattan and Euclidean distance calculations. If there is a specific 

combination of signal strength differences between reference point measurements and online 

phase measurements then Manhattan and Euclidean algorithms produce a different estimated 

location. In many cases Manhattan estimates the position more accurately than the Euclidean 

algorithm. Most of the work done with FP matching algorithms use Euclidean distance for 

getting the location estimation from the set of fingerprints. Results presented in this thesis show 

that if a similar grid-like setup is used for fingerprinting, then it is sufficient to use Manhattan 

distance for matching algorithms, which is less computing-intensive and gives similar or 

sometimes even slightly better results. 
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(a) 

 

(b) 

Figure 6.2: Cumulative error distributions of different approaches with a stationary user 
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Table 6.2: Positioning error statistics with different approaches while stationary 

Approach 

ARM

SE 

(m) 

Median 

(m) 
Mean (m) 

95th 

Percentile 

(m) 

Variance 

(m2) 
Max (m) 

Basic 

Manhattan 

(without fines) 

5.10 24.62 24.53 48.94 147.82 52.72 

AP Orientated 

Manhattan 
1.68 1.96 2.38 6.09 4.26 17.90 

Heading 

Orientated 

Manhattan 

1.45 1.38 1.82 4.84 2.99 17.88 

Heading 

Orientated 

Manhattan  + 

KNN Weighted 

Mean 1FP map 

1.43 1.61 1.86 4.39 1.94 14.37 

Heading 

Orientated 

Manhattan + 

KNN Weighted 

Mean 

1.32 1.32 1.56 4.09 1.91 14.55 



58 
 

Basic Euclidean 

(without fines) 
4.85 22.71 21.58 48.10 161.22 52.72 

AP Orientated 

Euclidean 
1.51 1.43 1.93 6.69 3.31 17.09 

Heading 

Orientated 

Euclidean  

1.48 1.39 1.90 5.55 3.33 17.88 

Heading 

Orientated 

Euclidean + 

KNN Weighted 

Mean 1FP map 

1.52 1.65 2.04 5.41 3.52 18.96 

Heading 

Orientated 

Euclidean + 

KNN Weighted 

Mean 

1.38 1.34 1.71 4.97 2.22 13.86 

 

6.2.2 Moving user positioning error 
Figure 5.3 illustrates the cumulative error distribution of overall test walks. Results show that the 

Euclidean distance ARMSE is better for the overall set of tracks, but when each track is studied 

individually, most of the tracks show better results for the Manhattan-based matching algorithm, 

giving an ARMSE similar to the stationary position presented in the previous chapter. The 
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overall number of ARMSE for the Manhattan approach is highly influenced by one particular 

walk, in which ARMSE is over 1m worse than others. This may be due to the sudden changes in 

the environment, which influence signal propagation. To better cope with these fluctuations, a 

moving median can be added to the solution. 

 

Figure 6.3: Cumulative error distribution of different approaches with a moving user 
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(a) 

 

(b) 
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(c) 

Figure 6.4: Sample traces in a test environment on third floor of University of Tartu’s Faculty of 
Mathematics and Computer Science.  

Figure 5.4 also shows one randomly chosen walk form the each test path. Tracks show good 

estimation on straight lines but in corners the updates are a little slower and corners are often cut. 

To improve the accuracy of track and remove errors – filters and tracking algorithms can be 

applied e.g. Kalman filters [38][72] or hidden Markov models [33][52]. 

The solution presented in this thesis also collected heading data. Through manual analysis the 

collected tracks showed the correct heading towards the moving direction with 75% accuracy. 

This information can be used to improve tracking. To get even better accuracy, a gyroscope and 

compass can be merged like described in advance orientation monitoring in Chapter 3.4.5. 
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7 Summary and future research  

This thesis studied different parameters that influence fingerprint based indoor positioning and 

how positioning accuracy can be improved. An indoor positioning scheme was proposed, which 

consists of offline mapping phase, online data collection phase and post-processing phase. In 

order to evaluate the proposed positioning system, software was developed for Android mobile 

devices. A series of field experiments were conducted on the third floor of University of Tartu’s 

Faculty of Mathematics and Computer Science building to collect data. Data was then analyzed 

through post-processing. Results showed that by modifying common matching algorithms with 

adding additional constraints, the position estimate can be greatly improve. Stationary estimation 

error of the solution showed better results compared to other real-time fingerprint solutions. For 

the moving user position estimates the developed software showed promising results as well, but 

they can be further improved by applying different filters and tracking algorithms. Also, attempts 

at implementing the same algorithms and amount of data on mobile phones did not produce 

positive results, as the resources of personal mobile devices are not sufficient. All the hypotheses 

set in this thesis were therefore proven to be true. Additional developments were made using 

mobile phone sensors to build an optimal sampling scheme that aids the limited resources of 

personal mobile devices even more. Initial testing showed that this scheme could be used to 

collect WLAN signal strength data without having a major impact on the battery life of the 

device. 

This thesis revealed several aspects for future research, which can greatly improve the proposed 

solution of indoor positioning using post-processing. Future research topics are as follows: 

Fingerprint-based indoor positioning has an offline mapping part, which requires much 

time and effort. To reduce this effort, a robot can be developed, whose input is the 

environment map with calibration points marked on it and who performs an automatic 

mapping based on that. Research has to be conducted if the automatically collected 

fingerprints are usable in an online phase of positioning when there is a moving user 

carrying the phone. One possibility is to monitor the logs in the post-processing server 
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and locate old stationary APs and discover new ones to be added to the fingerprint 

database.  

An additional value that the post-processing scheme also adds to the plate is the constant 

signal strength distribution information from indoor environments.  This information can 

be analyzed and the results can be used to improve the Wi-Fi infrastructure inside 

buildings. 

The current solution was tested on two identical Android devices and it performed 

similarly on both ones. The plan for the future is to test the solution on different devices 

form different manufactures and to see if the initial fingerprint database can be used to 

compare with the measurements from other devices to get the location estimate. There is 

the possibility that a new radio map of the environment is needed because of the different 

capabilities of WLAN chips planted into different phones.  
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9 Kokkuvõte 

Info inimese asukoha kohta on väärtuslik teadmine, mille abil on võimalik pakkuda erinevaid 

asukohapõhiseid teenuseid. Tänapäeval laialt kasutusel olev Globaalne Positsioneerimise 

Süsteem (GPS) pakub head täpsust välitingimustes ning on küllalt hästi kättesaadav, kuid 

siseruumides see lahendus ei tööta, kuna kasutusel olevad sateliidid ei suuda tungida läbi ehitiste. 

Selle tulemusena on sisepositsioneerimises palju erinevaid suundi ja lahendusi, kuna ei ole ühtset 

standardit. Suurem enamus olemasolevatest süsteemidest ja teadustöödest sisepositsioneerimise 

vallas püüab pakkuda reaalajalisi lahendusi, kuid autorile teadaolevalt ei ole tehtud piisavalt 

uurimistööd järelprotsessimise vallas. Järelprotsessimisel on palju eeliseid reaalajasüsteemide 

ees: kasutajate mobiiliaku säästmine, suuremate ressursside kasutamine asukoha tuvastamisel, 

keerukamate algoritmide rakendamine ning ka parema täpsuse saavutamine.  

Antud töö esitleb traadita kohtvõrgu kaardistamise meetodit ja järelprotsessimise skeemi, et 

tuvastada kasutaja asukoht siseruumis. Meetod kasutab suurt kaardistatud traadita kohtvõrgu 

singnaalitugevuste andmebaasi - kogutud protsessi kaardistusfaasis - ning võrdleb seda 

järelprotsessimise faasis reeaalajas korjatud mõõtmistega. Töös esimene pool tutvustab erinevaid 

sisepositsioneerimise meetodeid ja tehnikaid, keskendudes rohkem traadita kohtvõrgu põhistele 

lahendustele. Teises pooles analüüsitakse erinevaid faktoreid, mis võivad mõjutada traadita 

kohtvõrgu põhist positsioneerimist ning antakse ülevaate erinevate sensorite kasulikkusest 

siseruumides asukoha määramisel. 

Magistritöö käigus valmistati prototüüp lahendus mille abil tehti rida katseid, et tõestada 

sisepositsioneerimise järelprotsessimise kasulikkust. Testid näitasid, et järeltöötlemise skeemiga 

on võimalik kasutada rohkem ressurssi nõudvamaid algoritme ning töötada suuremate 

andmehulkadega, mida ei ole võimalik mobiiltelefonides teha. Samuti selgus, et kui arvestada 

algoritmide juures erinevate faktoritega nagu inimeha mõju signaalile, kasutaja liikumissuund, 

traadita kohtvõrgu pöörduspuktide jaotumine keskonnas on võimalik asukoha hindamise täpsust 

parandada. Lisaks sellele, esitati ka antud töös kasutajate mobiiliaku kokkuhoidmiseks efektiivne 

andmekogumise skeem, mille esimesed testid näitasid häid tulemusi, avaldades vähest mõju 

mobiiliaku tühjenemisele. 
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10 Appendix 

Appendix  1:  Photo of the hallway in University of Tartu’s Faculty of Mathematics and 
Computer Science building with the grid marked. 
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Appendix  2: Record Mode of prototype application 

 



74 
 

 

Appendix  3: Position Mode 2 of prototype application 
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Appendix  4: List View of prototype application 



76 
 

Non-exclusive licence to reproduce thesis and make 

thesis public 
I, Aare Puussaar (Date of birth: 16.07.1988),  

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to: 

1.1. reproduce, for the purpose of preservation and making available to the public, including for 

addition to the DSpace digital archives until expiry of the term of validity of the copyright, 

and 

1.2. make available to the public via the web environment of the University of Tartu, including 

via the DSpace digital archives until expiry of the term of validity of the copyright, 

 

Indoor Positioning Using WLAN Fingerprinting with Post-Processing Scheme, supervised by 

Satish Narayana Srirama and Erki Saluveer, 

2. I am aware of the fact that the author retains these rights. 

3. I certify that granting the non-exclusive licence does not infringe the intellectual property 

rights or rights arising from the Personal Data Protection Act.  

 

 

 

 

Tartu, 28.05.2014 

 


