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2. A. Mölder, The topologization of sequence spaces defined by a matrix
of moduli, Proc. Estonian Acad. Sci. Phys. Math. 53 (2004), no. 4,
218–225.
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4. A. Mölder, Boundedness of superposition operators on some sequence
spaces defined by moduli, Demonstratio Math. (accepted).

5. A. Mölder, Boundedness of superposition operators on sequence space
(w0)p(Φ), Acta Comment. Univ. Tartuensis Math. (submitted).

8



Introduction

The theory of sequence spaces deals with different spaces of se-
quences including sequence spaces defined by Orlicz functions and by
moduli. For an Orlicz function ϕ the Orlicz sequence space is deter-
mined by

`∃(ϕ) =

{
x = (xk) :

∑
k

ϕ

(
|xk|
%

)
<∞ for some % > 0

}
=

=

{
x = (xk) :

(
ϕ

(
|xk|
%

))
∈ ` for some % > 0

}
.

For a certain solid sequence space λ and for a modulus ϕ Ruckle [48]
and Maddox [30] considered a new sequence space

λ(ϕ) = {x = (xk) : (ϕ(|xk|)) ∈ λ}.

The extension of this definition was given by Kolk [21]. For a sequence
space λ and a sequence of moduli Φ = (ϕk) he defined

λ(Φ) = {x = (xk) : (ϕk(|xk|)) ∈ λ}.

In the special case from the definition of λ(Φ) we get the sequence spaces
of Maddox type (see, for example, [16] and [28]), which generalize the
corresponding classical sequence spaces.

To investigate all such spaces from a more general point of view, we
introduce the notion of ϕ-function and generalize the results of [16, 21]
to the case of ϕ-functions.

An essential problem in the theory of sequence spaces is the topolo-
gization of various vector spaces of sequences. For example, if Φ = (ϕk)
is a sequence of moduli and λ is a normed (or an F-seminormed) solid
sequence space, then the linear space λ(Φ) can be topologized by an
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F-seminorm (see [22, 23]) or by a paranorm (see [50]). We characterize
the F-seminormability of the sequence space

Λ(F) = {x = (xk) : (fki(|xk|)) ∈ Λ},

where F = (fki) is a matrix of moduli and Λ is a solid space of double
sequences.

The topologization of the spaces λ(Φ) allows us to study different
topological properties, as continuity, boundedness and so on, of opera-
tors on there sequence spaces. We are interested of the superposition
operators, which form a subclass of all (linear and nonlinear) operators.

Superposition operators on sequence spaces are not studied so in-
tensiv as on spaces of functions (see, for example, [1]). A superposition
operator (sometimes called also outer superposition operator, composi-
tion operator, substitution operator, or Nemytskij operator) Pf : λ→ µ
is defined by

Pf (x) = (f(k, xk)) ∈ µ (x = (xk) ∈ λ),

where λ and µ are two sequence spaces and f : N×R → R is a function
with f(k, 0) = 0 (k ∈ N). In general the superposition operator Pf is
nonlinear. Some properties of this operator can be found in [1].

Characterization of Pf on Orlicz sequence spaces was given by Ro-
bert [47] and Šragin [51]. Superpositsion operators on sequence spaces
`∞, c0 and `p for 1 ≤ p <∞ have been completely studied by Dedagich
and Zabrĕıko [10] (see also [8, 44]). P luciennik [45, 46] considered the
superposition operators on w0. Some authors [9, 44, 49, 52, 53] have
been studied continuity and boundedness of superposition operators in
various sequence spaces. Our purpose is give necessary and sufficent
conditions for the continuity, local boundedness and boundedness of
superposition operators on sequence spaces defined by a sequence of
moduli. Main theorems generalize the results of Dedagich and Zabrĕıko
[10], P luciennik [45, 46] and Kolk [21, 22].

The thesis is organized as follows.

In Chapter 1 we give necessary and sufficent conditions for some
inclusions of type λ ⊂ µ(Φ) and λ(Φ) ⊂ µ, where Φ = (ϕk) is a
sequence of ϕ-functions and λ, µ ∈ {`∞, c0, `p} (0 < p < ∞). The
inclusions λ ⊂ µ∀(Φ) and λ∃(Φ) ⊂ µ are also considered. We apply our
theorems to the Maddox sequence spaces.
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In Chapter 2 we study the topologization of sequence space Λ(F)
under some restrictions to the matrix of moduli F = (fki) or on the
space (Λ, g). Our results give known theorems about the topologization
of λ(Φ). As the concrete examples we consider the spaces of strongly
summable sequences.

In Chapter 3 we characterize the continuity, the local boundedness
and the boundedness of superpostion operators on sequence spaces de-
fined by a sequence of moduli. As an application we consider superpo-
sition operators on multiplier spaces of Maddox type.

Chapters 1 and 2 are based on [25] and [35], respectively. Chapter
3 develop results from [26, 36, 37].
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Chapter 1

Sequence spaces defined by
moduli and ϕϕϕ-functions

Main results of this chapter (see Section 1.3) are published in [25].

1.1 Sequence spaces, moduli and ϕϕϕ-func-

tions

We use the symbol N to denote the set of all positive integers, and K
to denote the set of all complex numbers C or the set of all real numbers
R. We write infk, supk,

∑
k and limk instead of infk∈N, supk∈N,

∑
k∈N

and limk→∞, respectively.

Let ω be the vector space of all number sequences, i.e.,

ω = {x = (xk) = (xk)k∈N : xk ∈ K (k ∈ N)} ,

where vector space operations are defined coordinatewise, i.e.,

x+ y = (xk + yk), αx = (αxk) (x = (xk), y = (yk) ∈ ω, α ∈ K).

By the term sequence space we shall mean any linear subspace of ω.

The sequence space λ is called solid if (yk) ∈ λ whenever (xk) ∈ λ
and |yk| ≤ |xk| (k ∈ N). Well-known solid sequence spaces are the
space `∞ of all bounded sequences, the space c0 of all convergent to
zero sequences, the spaces

`p =

{
x = (xk) ∈ ω :

∑
k

|xk|p <∞

}
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and

(w0)p =

{
x = (xk) ∈ ω : lim

n

1

n

n∑
k=1

|xk|p = 0

}
for 0 ≤ p <∞. Moreover (see [31], p. 523),

lim
n

1

n

n∑
k=1

|xk|p = 0 ⇐⇒ lim
i→∞

1

2i

2i+1−1∑
k=2i

|xk|p = 0. (1.1.1)

The sequences from (w0)p are called strongly convergent (with index p)
to zero. We write ` and w0 instead of `1 and (w0)1, respectively.

For example, the space c of all convergent sequences is non-solid.

The idea of a modulus function was structured in 1953 by Nakano
[38]. Following Ruckle [48] we formulate

Definition 1.1.1. A function ϕ : [0,∞) → [0,∞) is called a modu-
lus function (or simply a modulus), if

(i) ϕ(t) = 0 ⇔ t = 0,

(ii) ϕ(t+ u) ≤ ϕ(t) + ϕ(u) (t, u ≥ 0),

(iii) ϕ is nondecreasing,

(iv) ϕ is continuous from the right at 0.

It follows from (i) – (iv) that ϕ is continuous everywhere on [0,∞).

Lemma 1.1.2 ([22], Lemma 1; [33], p. 221). Any modulus ϕ satis-
fies the conditions

|ϕ(t)− ϕ(u)| ≤ ϕ(|t− u|) (t, u ≥ 0), (1.1.2)

1

n
ϕ(t) ≤ ϕ

(
t

n

)
(n ∈ N). (1.1.3)

Proof. If t ≥ u, then t− u ≥ 0 and by (ii) we have

ϕ(t) = ϕ((t− u) + u) ≤ ϕ(|t− u|) + ϕ(u)

which gives
ϕ(t)− ϕ(u) ≤ ϕ(|t− u|).
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Further, by (iii), ϕ(t) ≥ ϕ(u) and so ϕ(u) ≤ ϕ(t) ≤ ϕ(t) + ϕ(|t − u|),
i.e.,

−ϕ(|t− u|) ≤ ϕ(t)− ϕ(u).

Consequently, (1.1.2) holds for t ≥ u.
If t < u, then u− t > 0 and by above-proved we get

|ϕ(u)− ϕ(t)| ≤ ϕ(|u− t|)

which is equivalent to (1.1.2).
Further, we have ϕ(nt) ≤ nϕ(t) for all n ∈ N by condition (ii). So

ϕ(t) = ϕ

(
nt

1

n

)
≤ n ϕ

(
t

n

)
which clearly gives (1.1.3).

A modulus may be bounded or unbounded. For example, ϕ(t) = tp

is an unbounded modulus for 0 < p ≤ 1 and ϕ(t) = t/(1 + t) is a
bounded modulus.

It is interesting to remark that the moduli are the same as the
moduli of continuity: a function ϕ : [0,∞) → [0,∞) is a modulus of
continuity of a continuous function if and only if the conditions (i) –
(iv) are satisfied (see [11], p. 866).

If in the definition of a modulus the condition (iii) is replaced by
the condition of convexity

(v) ϕ(αt+ (1− α)u) ≤ αϕ(t) + (1− α)ϕ(u) (t, u ≥ 0, 0 ≤ α ≤ 1),

then ϕ is called an Orlicz function.

Provided a modulus ϕ, Ruckle [48] defined and studied the space

`(ϕ) =

{
x = (xk) :

∑
k

ϕ(|xk|) <∞

}
= {x = (xk) : (ϕ(|xk|)) ∈ `} .

For an Orlicz function ϕ, the Orlicz sequence space is determined
by (see, [27], p. 137)

`∃(ϕ) =

{
x = (xk) : ∃ % > 0

∑
k

ϕ

(
|xk|
%

)
<∞

}
.
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If Φ = (ϕk) is a sequence of Orlicz functions, then the space

`∃(Φ) =

{
x = (xk) : ∃ % > 0

∑
k

ϕk

(
|xk|
%

)
<∞

}

is called a modular space or Musielak–Orlicz sequence space (see [34],
p. 173). Together with `∃(ϕ) and `∃(Φ) there are examined also the
sets

`∀(ϕ) =

{
x = (xk) :

∑
k

ϕ

(
|xk|
%

)
<∞ (∀ % > 0)

}
,

`∀(Φ) =

{
x = (xk) :

∑
k

ϕk

(
|xk|
%

)
<∞ (∀ % > 0)

}
.

In the mathematical literature there exist various modifications of
these definitions, where ` is replaced by another solid sequence space
(see, for example, [5], [6], [12]–[15], [19]–[25], [30], [41]–[43], [50]). To
investigate all such spaces from a more general point of view, we use
the following notation.

Definition 1.1.3. A function ϕ : [0,∞) → [0,∞) is called a ϕ-
function if the conditions (i) and (iii) are satisfied.

It should be noted that by our definition, a ϕ-function is not nec-
essarily continuous and unbounded (cf. [34], p. 4).

1.2 Sets of sequences defined by ϕϕϕ-func-

tions

Let Φ = (ϕk) be a sequence of ϕ-functions and let Φ(x) = (ϕk(|xk|)).
For a sequence space λ we define the sets

λ%(Φ) = {x = (xk) ∈ ω : Φ(x/%) ∈ λ} (% > 0),

λ∃(Φ) = {x = (xk) ∈ ω : (∃% > 0) (Φ(x/%) ∈ λ)} =
⋃
%>0

λ%(Φ),

λ∀(Φ) = {x = (xk) ∈ ω : (∀% > 0) (Φ(x/%) ∈ λ)} =
⋂
%>0

λ%(Φ).
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We write λ(Φ) instead of λ1(Φ). If ϕ is a ϕ-function and ϕk = ϕ (k ∈
N), we write λ%(ϕ), λ∃(ϕ) and λ∀(ϕ) instead of λ%(Φ), λ∃(Φ) and λ∀(Φ),
respectively.

By definitions of λ%(Φ), λ∃(Φ) and λ∀(Φ) it is immediately clear
that

λ∀(Φ) ⊂ λ%(Φ) ⊂ λ∃(Φ). (1.2.1)

The following examples show that these three sets are different in ge-
neral.

Example 1.2.1. Let λ = `∞. We define the sequence of ϕ-functions
Φ = (ϕk) by ϕk(t) = tk (k ∈ N) and consider the sequence e = (εk) =
(1, 1, 1, . . .). Since

sup
k
ϕk(|εk|) = sup

k
|εk|k = sup

k
1 = 1 <∞,

then e ∈ `∞(Φ). But for % ∈ (0, 1) we have

sup
k
ϕk

(
|εk|
%

)
= sup

k
ϕk

(
1

%

)
= sup

k

(
1

%

)k

= ∞,

i.e., e 6∈ `∀∞(Φ). Therefore, `∀∞(Φ) $ `∞(Φ).

Example 1.2.2. Let λ = `∞. For fixed % > 1 we define the sequence
of ϕ-functions Φ = (ϕk) by

ϕk(t) =

{
t if t ∈ [0, 1),

k if t ≥ 1

and consider the sequence e = (εk) = (1, 1, 1, . . .). While

sup
k
ϕk(|εk|) = sup

k
ϕk(1) = sup

k
k = ∞,

then e 6∈ `∞(Φ). On the other hand, since

sup
k
ϕk

(
|εk|
%

)
= sup

k
ϕk

(
1

%

)
=

1

%
<∞,

then e ∈ `∃∞(Φ). So, `∞(Φ) $ `∃∞(Φ).
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The sequence of ϕ-functions Φ = (ϕk) is said to have uniform
∆2-condition if there exists a constant K > 0 such that ϕk(2t) ≤
Kϕk(t) (k ∈ N, t > 0) (cf. [27, p. 167]).

The following proposition shows that if Φ satisfies uniform ∆2-
condition, then (1.2.1) takes the form

λ∀(Φ) = λ%(Φ) = λ∃(Φ). (1.2.2)

Proposition 1.2.3. Let λ be a solid sequence space. If the sequence
of ϕ-functions Φ = (ϕk) satisfies uniform ∆2-condition, then (1.2.2)
holds.

Proof. By (1.2.1) it is sufficient to prove the inclusion

λ∃(Φ) ⊂ λ∀(Φ). (1.2.3)

Let x = (xk) ∈ λ∃(Φ). Then, there exists % > 0 such that Φ(|x/%|) =
(ϕk(|xk|/%)) ∈ λ.

Let µ > 0. If µ ≥ %, then

|xk|
µ

≤ |xk|
%

(k ∈ N).

Since all ϕ-functions are nondecreasing,

ϕk

(
|xk|
µ

)
≤ ϕk

(
|xk|
%

)
(k ∈ N).

Because of the solidity of λ we have Φ(|x/µ|) ∈ λ.
If µ < %, then 1/µ > 1/%. We choose a number r > 0 such that

1

µ
≤ 2r 1

%
.

Using the inequalities

|xk|
µ

≤ 2r |xk|
%

(k ∈ N),

by (iii) and uniform ∆2-condition, we get

ϕk

(
|xk|
µ

)
≤ ϕk

(
2r |xk|

%

)
≤ Krϕk

(
|xk|
%

)
(k ∈ N).

While λ is a solid vector space, then Φ(|x/µ|) ∈ λ.
Consequently, Φ(|x/µ|) ∈ λ for any µ > 0, i.e., x ∈ λ∀(Φ). The

inclusion (1.2.3) is proved.
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The following example shows that the sets λ%(Φ) (% > 0) may not
be linear, i.e., they may not be sequence spaces.

Example 1.2.4. Let λ = `∞ and % > 0. We show that `%∞(Φ) is
not a sequence space if the sequence of ϕ-functions Φ = (ϕk) is defined
by

ϕk(t) =

{
t
2

if t ∈
[
0, 1

%

]
,

kt
2

if t > 1
%
.

We consider the sequence e = (εk) = (1, 1, . . .). Since

sup
k
ϕk

(
|εk|
%

)
= sup

k
ϕk

(
1

%

)
=

1

2%
<∞,

then e ∈ `%∞(Φ). But 2e 6∈ `%∞(Φ), because

sup
k
ϕk

(
|2εk|
%

)
= sup

k
ϕk

(
2

%

)
= sup

k

2k

2%
= sup

k

k

%
= ∞.

Therefore, `%∞(Φ) is not a linear space.

At the end of this subsection we prove, that λ%(Φ), λ∃(Φ) and λ∀(Φ)
are sequence spaces under some restrictions on Φ.

Proposition 1.2.5. Let λ be a solid sequence space and % > 0. If
the sequence of ϕ-functions Φ = (ϕk) satisfies either (ii) or (v), then
the sets λ%(Φ), λ∃(Φ) and λ∀(Φ) are solid sequence spaces.

Proof. Let Φ = (ϕk) be a sequence of ϕ-functions.

First we show, that the sets λ%(Φ), λ∃(Φ) and λ∀(Φ) are solid
whenever λ is solid. Indeed, let x = (xk) and % > 0 be such that
Φ(|x/%|) = (ϕk(|xk|/%)) ∈ λ. If |yk| ≤ |xk| (k ∈ N), then also

ϕk

(
|yk|
%

)
≤ ϕk

(
|xk|
%

)
(k ∈ N)

and by solidity of λ we get Φ(|y/%|) = (ϕk(|yk|/%)) ∈ λ.

Next we prove, that λ%(Φ), λ∃(Φ) and λ∀(Φ) are vector spaces.

1) Let Φ = (ϕk) satisfies the condition (ii) and let x = (xk) and
y = (yk) be from λ∃(Φ). So, there exist %1, %2 > 0 such that Φ(|x/%1|) =
(ϕk(|xk|/%1)) ∈ λ and Φ(|y/%2|) = (ϕk(|yk|/%2)) ∈ λ. Let %3 =:

18



max{%1, %2} and let α, β ∈ K be arbitrarily choosen. Using (ii), (iii)
and the inequality |γ| ≤ 1+[|γ|] (γ ∈ K), where [|γ|] denotes the integer
part of |γ|, for all k ∈ N we have

ϕk

(
|αxk + βyk|

%3

)
≤ ϕk

(
|αxk|
%3

+
|βyk|
%3

)
≤ ϕk

(
|α||xk|%1

%3%1

)
+ ϕk

(
|β||yk|%2

%3%2

)
≤ ϕk

(
|α||xk|
%1

)
+ ϕk

(
|β||yk|
%2

)
≤ (1 + [|α|])ϕk

(
|xk|
%1

)
+ (1 + [|β|])ϕk

(
|yk|
%2

)
.

While λ is vector space, then

(1 + [|α|])Φ(|x/%1|) + (1 + [|β|])Φ(|y/%2|) ∈ λ

and by solidity of λ we get Φ(|(αx + βy)/%3|) ∈ λ. Hence, αx + βy ∈
λ∃(Φ).

The same discussion with %1 = %2 = % proves also the linearity of
λ%(Φ) and λ∀(Φ).

2) Let Φ = (ϕk) satisfies the condition (v) and let x = (xk) and
y = (yk) belongs to λ∃(Φ). Then we can find %1, %2 > 0 such that
Φ(|x/%1|) = (ϕk(|xk|/%1)) ∈ λ and Φ(|y/%2|) = (ϕk(|yk|/%2)) ∈ λ. Let
%3 := max{2|α|%1, 2|β|%2} and α, β ∈ K. By (iii) and (v) we have

ϕk

(
|αxk + βyk|

%3

)
≤ ϕk

(
|αxk|
%3

+
|βyk|
%3

)
≤ ϕk

(
|α||xk|
%3

+
|β||yk|
%3

)
≤ ϕk

(
|xk|
2%1

+
|yk|
2%2

)
≤ 1

2
ϕk

(
|xk|
%1

)
+

1

2
ϕk

(
|yk|
%2

)
for all k ∈ N. Since 1/2 · Φ(|x/%1|) + 1/2 · Φ(|y/%2|) ∈ λ and λ is a
solid sequence space, then Φ(|(αx+βy)/%3|) ∈ λ, i.e., αx+βy ∈ λ∃(Φ).
Consequently, λ∃(Φ) is a sequence space.

To prove the linearity of λ%(Φ) (% > 0) and λ∀(Φ), it suffices to take
%1 = %2 = % in our argument.

Remark 1.2.6. Proposition 1.2.5 shows that, for a solid sequence
space λ, the sets λ%(Φ), λ∃(Φ) and λ∀(Φ) are sequence spaces whenever
ϕk (k ∈ N) are either moduli or Orlicz functions. Since uniform ∆2-
condition holds (with K = 2) for every sequence of moduli Φ = (ϕk),
we also conclude that (1.2.2) is true whenever all ϕk are either moduli
or Orlicz functions such that Φ satisfies uniform ∆2-condition.
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1.3 Inclusion theorems

In this section we generalize the results of [21], where the inclusions
λ ⊂ µ(Φ) and λ(Φ) ⊂ µ have been characterized for a sequence of
moduli Φ = (ϕk) and λ, µ ∈ {`∞, c0}. Our investigations are also
motivated by the work of Grinnell [16] which is devoted to the study
of the inclusions λ ⊂ µϕ for various sequence spaces λ and µ, by the
assumptions that ϕ : R → R and µϕ = {x = (xk) : (ϕ(xk)) ∈ µ}.

Throughout this work, by an index sequence, we mean any strictly
increasing sequence of natural numbers and for a sequence space λ we
use the notation

λ+ = {(xk) ∈ λ : xk ≥ 0 (k ∈ N)}.

Recall that the function f : N × R → R defines a superposition
operator Pf : λ→ µ by

Pf (x) = (f(k, xk)) ∈ µ (x = (xk) ∈ λ).

The characterizations of superposition operators on `∞, c0 and `p
(0 < p < ∞) are contained in results of Dedagich and Zabrĕıko [10],
Petranuarat and Kemprasit [44] and Kolk [24].

Proposition 1.3.1. (1) Let 0 < p, q < ∞. Then Pf : `p → `q if
and only if there exist a sequence (ak) ∈ `+ and numbers γ ≥ 0, δ > 0,
k0 ∈ N such that

|f(k, t)|q ≤ ak + γ|t|p (|t| ≤ δ, k ≥ k0).

(2) Let 0 < p < ∞ and 1 ≤ q < ∞. Then Pf : `p → `q if and only
if there exist a sequence (bk) ∈ `+q and numbers γ ≥ 0, δ > 0, k0 ∈ N
such that

|f(k, t)| ≤ bk + γ|t|p/q (|t| ≤ δ, k ≥ k0).

Proposition 1.3.2. Let 0 < p <∞. The following statements are
equivalent:

(a) Pf : c0 → `∞;

(b) Pf : `p → `∞;
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(c) ∃(ak) ∈ `+∞ ∃δ > 0 ∃k0 ∈ N |f(k, t)| ≤ ak (|t| ≤ δ, k ≥ k0);

(d) ∃δ > 0 ∃k0 ∈ N sup|t|≤δ,k≥k0
|f(k, t)| <∞.

Proposition 1.3.3. Let 0 < p <∞. The following statements are
equivalent:

(a) Pf : c0 → c0;

(b) Pf : `p → c0;

(c) limk→∞,t→0 |f(k, t)| = 0;

(d) ∃(ak) ∈ c+0 ∃δ > 0 ∃k0 ∈ N |f(k, t)| ≤ ak (|t| ≤ δ, k ≥ k0);

(e) ∃k0 ∈ N limt→0 supk≥k0
|f(k, t)| = 0.

Proposition 1.3.4. Let 0 < p <∞. Then Pf : c0 → `p if and only
if

∃δ > 0 ∃k0 ∈ N
∑
k≥k0

sup
|t|≤δ

|f(k, t)|p <∞.

Proposition 1.3.5. Let 0 < p <∞. Then Pf : `∞ → `p if and only
if ∑

k

sup
|t|≤η

|f(k, t)|p <∞ (η > 0).

Proposition 1.3.6. Pf : `∞ → c0 if and only if

lim
k

sup
|t|≤η

|f(k, t)| = 0 (η > 0).

1.3.1 Inclusions λ ⊂ µ(Φ)

Let Φ = (ϕk) be a sequence of ϕ-functions and 0 < p, q < ∞.
Necessary and sufficient conditions for the inclusions λ ⊂ µ(Φ) in the
case λ, µ ∈ {`∞, c0, `p} we derive from Propositions 1.3.1–1.3.6.

It is clear that Pf : λ → µ if and only if λ ⊂ µf , where µf = {x =
(xk) : (f(k, xk)) ∈ µ}.

Now, if ϕ̄k (k ∈ N) are even extensions of our ϕ-functions ϕk, i.e.,

ϕ̄k(t) = ϕk(|t|) (t ∈ R),
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and Φ̄ = (ϕ̄k), then we have

λ ⊂ µ(Φ) ⇐⇒ PΦ̄ : λ→ µ

because of µΦ̄ = µ(Φ). So by Propositions 1.3.1–1.3.6 with 0 < p, q <
∞ we may characterize the inclusions `q ⊂ `p(Φ), `p ⊂ c0(Φ), c0 ⊂
`p(Φ), c0 ⊂ c0(Φ), `∞ ⊂ `p(Φ), `∞ ⊂ c0(Φ) and `∞ ⊂ `∞(Φ), using the
following classes of ϕ-function sequences:

C0 =
{

Φ = (ϕk) : ∃ (ak) ∈ `+ ∃ γ ≥ 0 ∃ k0 ∈ N ∃ δ > 0

(ϕk(t))p ≤ ak + γtq (k ≥ k0, t ∈ [0, δ])} ,

C1 =

{
Φ = (ϕk) : ∃ t0 > 0

∑
k

(ϕk(t0))
p <∞

}
,

C2 =

{
Φ = (ϕk) :

∑
k

(ϕk(t))p <∞ (t > 0)

}
,

C3 =

{
Φ = (ϕk) : ∃ k0 ∈ N lim

t→0+
sup
k≥k0

ϕk(t) = 0

}
,

C4 =
{

Φ = (ϕk) : lim
k
ϕk(t) = 0 (t > 0)

}
,

C5 =

{
Φ = (ϕk) : sup

k
ϕk(t) <∞ (t > 0)

}
,

C6 =

{
Φ = (ϕk) : ∃ t0 > 0 sup

k
ϕk(t0) <∞

}
.

Theorem 1.3.7. Let 0 < p, q <∞. The following equivalences are
true:

(1) `q ⊂ `p(Φ) ⇐⇒ Φ ∈ C0;

(2) c0 ⊂ `p(Φ) ⇐⇒ Φ ∈ C1;

(3) `∞ ⊂ `p(Φ) ⇐⇒ Φ ∈ C2;

(4) c0 ⊂ c0(Φ) ⇐⇒ `p ⊂ c0(Φ) ⇐⇒ Φ ∈ C3;

(5) `∞ ⊂ c0(Φ) ⇐⇒ Φ ∈ C4;

(6) `∞ ⊂ `∞(Φ) ⇐⇒ Φ ∈ C5;
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(7) c0 ⊂ `∞(Φ) ⇐⇒ `p ⊂ `∞(Φ) ⇐⇒ Φ ∈ C6.

Remark 1.3.8. Proposition 1.3.1 (2) shows that if 1 ≤ p <∞ and
0 < q <∞, then `q ⊂ `p(Φ) if and only if Φ ∈ C ′

0, where

C ′
0 =

{
Φ = (ϕk) : ∃ (ak) ∈ `+p ∃ γ ≥ 0 ∃ k0 ∈ N ∃ δ > 0

ϕk(t) ≤ ak + γtq/p (k ≥ k0, t ∈ [0, δ])
}
.

1.3.2 Inclusions λ(Φ) ⊂ µ

Let Φ = (ϕk) be a sequence of ϕ-functions and 1 ≤ p <∞. In this
section we study the inclusions λ(Φ) ⊂ µ, where λ ∈ {`∞, c0, `p} and
µ ∈ {`∞, c0}. At it the following classes of ϕ-function sequences are
important:

C7 =

{
Φ = (ϕk) : ∃k0 ∈ N lim

t→∞
sup
n≥k0

inf
k≥n

ϕk(t) = ∞
}
,

C8 =
{

Φ = (ϕk) : ∃t0 > 0 inf
k
ϕk(t0) > 0

}
,

C9 =
{

Φ = (ϕk) : lim
k
ϕk(t) = ∞ (t > 0)

}
,

C10 =
{

Φ = (ϕk) : inf
k
ϕk(t) > 0 (t > 0)

}
.

Theorem 1.3.9. The inclusion `∞(Φ) ⊂ `∞ holds if and only if
Φ ∈ C7.

Proof. Necessity. Let `∞(Φ) ⊂ `∞. Suppose that Φ 6∈ C7. Since the
functions

ψ(t) = sup
n≥k0

inf
k≥n

ϕk(t)

are non-decreasing for every k0 ∈ N, there exists a number H > 0 such
that infk ϕk(t) ≤ H for all t > 0. Thus, given ε > 0, we can choose an
index sequence (ki) such that

ϕki
(i) ≤ H + ε (i ∈ N).

So, taking

xk =

{
i if k = ki (i ∈ N),

0 otherwise,
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we get (xk) ∈ `∞(Φ). But (xk) 6∈ `∞, contrary to `∞(Φ) ⊂ `∞. There-
fore Φ must be in C7.

Sufficiency. Let x ∈ `∞(Φ), i.e., ϕk(|xk|) ≤ M (k ∈ N) for some
M > 0. If Φ ∈ C7, then there exists a number T > 0 such that t ≥ T
implies

inf
k≥n

ϕk(t) ≥M (n ≥ k0).

This yields
ϕn(t) ≥M (n ≥ k0, t ≥ T ). (1.3.1)

Assuming x 6∈ `∞, we can choose indices ki ≥ k0 (i ∈ N) such that
|xki

| ≥ T , but
ϕki

(|xki
|) ≤M (i ∈ N),

contrary to (1.3.1). Hence x ∈ `∞ and, consequently, `∞(Φ) ⊂ `∞.

Theorem 1.3.10. The following statements are equivalent:

(a) c0(Φ) ⊂ `∞;

(b) `p(Φ) ⊂ `∞;

(c) Φ ∈ C8.

Proof. (a) ⇒ (b) follows immediately.

(b) ⇒ (c). Let `p(Φ) ⊂ `∞. If Φ 6∈ C8, then infk ϕk(t) = 0 for all
t > 0. Thus we can choose an index sequence (ki) with

ϕki
(i) ≤ 2−i/p (i ∈ N).

So, if

xk =

{
i for k = ki (i ∈ N),

0 otherwise,

we have x ∈ `p(Φ). But x 6∈ `∞, contrary to `p(Φ) ⊂ `∞. Hence Φ ∈ C8.

(c) ⇒ (a). Suppose that Φ ∈ C8 and x = (xk) belongs to c0(Φ).
If we assume x 6∈ `∞, there exists an index sequence (ki) with |xki

| ≥
t0 (i ∈ N). This gives

ϕki
(t0) ≤ ϕki

(|xki
|) (i ∈ N)

which by x ∈ c0(Φ) shows that limi ϕki
(t0) = 0, contrary to Φ ∈ C8.

Consequently, x ∈ `∞ and the inclusion c0(Φ) ⊂ `∞ holds.
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Theorem 1.3.11. The inclusion `∞(Φ) ⊂ c0 holds if and only if
Φ ∈ C9.

Proof. Necessity. Let `∞(Φ) ⊂ c0. Assuming that Φ 6∈ C9, we can
find numbers t0 > 0 , M > 0 and an index sequence (ki) such that
ϕki

(t0) ≤M (i ∈ N). So the sequence x = (xk), where

xk =

{
t0 for k = ki (i ∈ N),

0 otherwise,

belongs to `∞(Φ). But x 6∈ c0. Consequently, Φ ∈ C9 is necessary for
`∞(Φ) ⊂ c0.

Sufficiency. Let Φ ∈ C9 and let x = (xk) belongs to `∞(Φ). If
x 6∈ c0, there exist a number ε0 > 0 and an index sequence (ki) such
that |xki

| ≥ ε0 (i ∈ N). Now, since the ϕ-functions are non-decreasing,
by x ∈ `∞(Φ) we have, for some M > 0,

ϕki
(ε0) ≤ ϕki

(|xki
|) ≤M (i ∈ N),

contrary to Φ ∈ C9 . Hence x ∈ c0, proving `∞(Φ) ⊂ c0.

Theorem 1.3.12. The following statements are equivalent:

(a) c0(Φ) ⊂ c0;

(b) `p(Φ) ⊂ c0;

(c) Φ ∈ C10.

Proof. (a) ⇒ (b) is clear.

(b) ⇒ (c). Let `p(Φ) ⊂ c0. If Φ 6∈ C10, there exists a number t0 > 0
such that infk ϕk(t) = 0 for all t ≤ t0. Thus, letting ti = t0i/(i+ 1), by
induction we can choose an index sequence (ki) such that

ϕki
(ti) ≤ 2−i/p (i ∈ N).

Now, if x = (xk), where

xk =

{
ti for k = ki (i ∈ N),

0 otherwise,
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then x ∈ `p(Φ). But by limi xki
= limi ti = t0 > 0 we have x 6∈ c0 which

contradicts `p(Φ) ⊂ c0. So Φ must be in C10.

(c) ⇒ (a). Let Φ ∈ C10 and let x = (xk) belongs to c0(Φ). If we
suppose, that x 6∈ c0, then there exist a number ε0 > 0 and an index
sequence (ki) such that |xki

| ≥ ε0 (i ∈ N). This yields

0 < ϕki
(ε0) ≤ ϕki

(|xki
|) (i ∈ N),

and by x ∈ c0(Φ) we have limi ϕki
(ε0) = 0, contrary to Φ ∈ C10. Hence

x must belong to c0. Consequently, c0(Φ) ⊂ c0.

1.3.3 The sets λ%(Φ), λ∃(Φ) and λ∀(Φ)

Let Φ = (ϕk) be a sequence of ϕ-functions and λ, µ ∈ {`∞, c0, `p}.
For a fixed number % > 0 we consider a new sequence of ϕ-functions
Φρ = (ϕ%

k), where
ϕ%

k(t) = ϕk(t/%) (k ∈ N).

It is not difficult to see that λ%(Φ) = λ(Φ%), µ%(Φ) = µ(Φ%) and

Φ% ∈ Ci ⇐⇒ Φ ∈ Ci (i = 0, 1, 2, . . . , 10).

Thus

λ ⊂ µ(Φ) ⇐⇒ λ ⊂ µ%(Φ), λ(Φ) ⊂ µ ⇐⇒ λ%(Φ) ⊂ µ (1.3.2)

and, therefore, all our Theorems 1.3.7 and 1.3.9–1.3.12 remain true if
there λ(Φ) and µ(Φ) are replaced by λ%(Φ) and µ%(Φ), respectively.

Further, because of (1.2.1) it is clear that for a sequence of ϕ-
functions Φ = (ϕk) we have

λ ⊂ µ∀(Φ) =⇒ λ ⊂ µ(Φ), λ∃(Φ) ⊂ µ =⇒ λ(Φ) ⊂ µ.

It turns out that these implications are reversible.

Theorem 1.3.13. For a sequence of ϕ-functions Φ = (ϕk) and a
pair of sequence spaces λ, µ we have

λ ⊂ µ∀(Φ) ⇐⇒ λ ⊂ µ(Φ), λ∃(Φ) ⊂ µ ⇐⇒ λ(Φ) ⊂ µ.

26



Proof. It suffices to prove that

λ ⊂ µ(Φ) =⇒ λ ⊂ µ∀(Φ), λ(Φ) ⊂ µ =⇒ λ∃(Φ) ⊂ µ.

But these implications follow immediately from the equalities µ∀(Φ) =
∩%>0µ

%(Φ), λ∃(Φ) = ∪%>0λ
%(Φ) because of the fact that λ and µ as

vector spaces contain together with an element x also the element x/%,
and conversely.

The equivalences (1.3.2) and Theorem 1.3.13 show that we can give
extended versions of all Theorems 1.3.7, 1.3.9 – 1.3.12, replacing there
λ(Φ) by λ%(Φ), µ(Φ) by µ%(Φ) and adding to each statement of the
type λ ⊂ µ%(Φ) or λ%(Φ) ⊂ µ the equivalent statement λ ⊂ µ∀(Φ)
or λ∃(Φ) ⊂ µ, respectively. Here we formulate extended versions of
Theorems 1.3.7 (7) and 1.3.12 only.

Theorem 1.3.14. Let 0 < p < ∞ and % > 0. The following
statements are equivalent:

(a) c0 ⊂ `%∞(Φ);

(b) c0 ⊂ `∀∞(Φ);

(c) `p ⊂ `%∞(Φ);

(d) `p ⊂ `∀∞(Φ);

(e) Φ ∈ C6.

Theorem 1.3.15. Let 1 ≤ p < ∞ and % > 0. The following
statements are equivalent:

(a) c∃0(Φ) ⊂ c0;

(b) c%0(Φ) ⊂ c0;

(c) `∃p(Φ) ⊂ c0;

(d) `%p(Φ) ⊂ c0;

(e) Φ ∈ C10.
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1.3.4 Inclusion theorems for some sets of sequ-
ences defined by a matrix of ϕ-functions

Let F = (fki) be a matrix of ϕ-functions such that

f̃k(t) := sup
i
fki(t) <∞ (k ∈ N, t ≥ 0). (1.3.3)

By (1.3.3) it is clear that the functions f̃k (k ∈ N) map [0,∞) into
[0,∞). We claim, that f̃k (k ∈ N) are ϕ-functions, i.e. they satisfy
conditions (i) and (iii) of Definition 1.1.3.

Indeed, if f̃k(t) = 0 (k ∈ N), then fki(t) = 0 for all i ∈ N and since
the functions fki (k, i ∈ N) are ϕ-functions, so t = 0. On the other
hand, if t = 0, then

f̃k(0) = sup
i
fki(0) = sup

i
0 = 0 (k ∈ N).

Thus, the functions f̃k satisfy the condition (i).

Futher, let 0 ≤ u ≤ t. While the functions fki (k, i ∈ N) are non-
decreasing, we have

fki(u) ≤ fki(t) (k, i ∈ N).

Consequently, for all k ∈ N we get

f̃k(u) = sup
i
fki(u) ≤ sup

i
fki(t) = f̃k(t).

Therefore, the functions f̃k satisfy also the condition (iii).

Using a matrix of moduli F = (fki), we define the sets

`∞(F) =

{
x = (xk) ∈ ω : sup

k,i
fki

(
|xk|
)
<∞

}
,

c0(F) =

{
x = (xk) ∈ ω : lim

k
sup

i
fki

(
|xk|
)

= 0

}
,

`p(F) =

{
x = (xk) ∈ ω :

∑
k

∣∣∣∣sup
i
fki

(
|xk|
)∣∣∣∣p <∞

}
(0 < p <∞).

Since F satisfies (1.3.3), the sets `∞(F), c0(F) and `p(F) we may

consider as the sets `∞(F̃ ), c0(F̃ ) and `p(F̃ ), where F̃ = (f̃k) is the
sequence of ϕ-functions f̃k(t) = supi fki(t).
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Applying Theorems 1.3.7 and 1.3.9–1.3.12 for Φ = F̃ , we get neces-
sary and sufficent conditions for the inclusions λ ⊂ µ(F) and λ(F) ⊂ µ
in the case λ, µ ∈ {`∞, c0, `p} and 1 ≤ p, q < ∞ (see Theorems 1.3.16
and 1.3.17). Thereby, every class Ci (i = 0, . . . , 10) alters to the corre-

sponding class C̃i as follows:

C̃0 =
{
F = (fki) : ∃ (ak) ∈ `+ ∃ γ ≥ 0 ∃ k0 ∈ N ∃ δ > 0

sup
i

(fki(t))
p ≤ ak + γtq (k ≥ k0, t ∈ [0, δ])

}
,

C̃1 =

{
F = (fki) : ∃ t0 > 0

∑
k

∣∣∣∣sup
i
fki(t0)

∣∣∣∣p <∞
}
,

C̃2 =

{
F = (fki) :

∑
k

∣∣∣∣sup
i
fki(t)

∣∣∣∣p <∞ (t > 0)

}
,

C̃3 =

{
F = (fki) : ∃ k0 ∈ N lim

t→0+
sup
k≥k0

sup
i
fki(t) = 0

}
,

C̃4 =

{
F = (fki) : lim

k
sup

i
fki(t) = 0 (t > 0)

}
,

C̃5 =

{
F = (fki) : sup

k,i
fki(t) <∞ (t > 0)

}
,

C̃6 =

{
F = (fki) : ∃ t0 > 0 sup

k,i
fki(t0) <∞

}
,

C̃7 =

{
F = (fki) : ∃k0 ∈ N lim

t→∞
sup
n≥k0

inf
k≥n

sup
i
fki(t) = ∞

}
,

C̃8 =

{
F = (fki) : ∃t0 > 0 inf

k
sup

i
fki(t0) > 0

}
,

C̃9 =

{
F = (fki) : lim

k
sup

i
fki(t) = ∞ (t > 0)

}
,

C̃10 =

{
F = (fki) : inf

k
sup

i
fki(t) > 0 (t > 0)

}
.

Theorem 1.3.16. Let 0 < p, q < ∞. The following equivalences
are true:

(1) `q ⊂ `p(F) ⇐⇒ F ∈ C̃0;
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(2) c0 ⊂ `p(F) ⇐⇒ F ∈ C̃1;

(3) `∞ ⊂ `p(F) ⇐⇒ F ∈ C̃2;

(4) c0 ⊂ c0(F) ⇐⇒ `p ⊂ c0(F) ⇐⇒ F ∈ C̃3;

(5) `∞ ⊂ c0(F) ⇐⇒ F ∈ C̃4;

(6) `∞ ⊂ `∞(F) ⇐⇒ F ∈ C̃5;

(7) c0 ⊂ `∞(F) ⇐⇒ `p ⊂ `∞(F) ⇐⇒ F ∈ C̃6.

Theorem 1.3.17. Let 0 < p, q < ∞. The following equivalences
are true:

(1) `∞(F) ⊂ `∞ ⇐⇒ F ∈ C̃7;

(2) c0(F) ⊂ `∞ ⇐⇒ `p(F) ⊂ `∞ ⇐⇒ F ∈ C̃8;

(3) `∞(F) ⊂ c0 ⇐⇒ F ∈ C̃9;

(4) c0(F) ⊂ c0 ⇐⇒ `p(F) ⊂ c0 ⇐⇒ F ∈ C̃10.

1.3.5 Applications to Maddox sequence spaces

First let Φ = (ϕk) be a constant sequence of ϕ-functions, i.e., ϕk =
ϕ (k ∈ N). In this case we write λ(ϕ) instead of λ(Φ), and ϕ ∈ Ci

instead of Φ ∈ Ci for i = 0, 1, 2, . . . , 10. It is clear that for an arbitrary
ϕ-function ϕ we have

ϕ 6∈ Ci (i = 1, 2, 4, 9) and ϕ ∈ Ci (i = 5, 6, 8, 10).

Moreover,

ϕ ∈ C0 ⇐⇒ ∃α > 0 ∃δ > 0 (ϕ(t))p ≤ αtq (t ∈ [0, δ]),

ϕ ∈ C3 ⇐⇒ lim
t→0+

ϕ(t) = 0,

ϕ ∈ C7 ⇐⇒ lim
t→∞

ϕ(t) = ∞.

Thus our results permit to formulate:

Corollary 1.3.18. Let ϕ be a ϕ-function, 0 < p, q <∞ and % > 0.
The following statements are true:

30



(1) `q ⊂ `∀p(ϕ) ⇐⇒ `q ⊂ `%p(ϕ)
⇐⇒ ∃α > 0 ∃δ > 0 (ϕ(t))p ≤ αtq (t ∈ [0, δ]);

(2) c∃0(ϕ) ⊂ c0;

(3) c0 ⊂ c∀0(ϕ) ⇐⇒ c0 = c∀0(ϕ) = c%0(ϕ) = c∃0(ϕ)
⇐⇒ lim

t→0+
ϕ(t) = 0;

(4) `∞ ⊂ `∀∞(ϕ);

(5) `∃∞(ϕ) ⊂ `∞ ⇐⇒ `∀∞(ϕ) = `%∞(ϕ) = `∃∞(ϕ) = `∞
⇐⇒ lim

t→∞
ϕ(t) = ∞.

It should be noted that the inclusion `∞ ⊂ `∞(ϕ) and the equiva-
lences

`q ⊂ `p(ϕ) ⇐⇒ ∃α > 0 ∃δ > 0 (ϕ(t))p ≤ αtq (t ∈ [0, δ]),

c0 ⊂ c0(ϕ) ⇐⇒ lim
t→0+

ϕ(t) = 0

follow also from the corresponding results of Grinnell [16] because of
µ(ϕ) = µϕ̄.

As an example of non-constant sequence of ϕ-functions we consider
the sequence Φ(ppp) = (ϕ

(ppp)
k ) of ϕ-functions ϕ

(ppp)
k (t) = tpk , where ppp = (pk)

is a bounded sequence of positive numbers, i.e.,

0 < pk ≤ sup
k
pk = P <∞.

For Φ = Φ(ppp) the sequence spaces `∞(Φ), c0(Φ) and `(Φ) are called as
the sequence spaces of Maddox (see, for example, [17])

`∞(ppp) = {x = (xk) ∈ ω : sup
k
|xk|pk <∞},

c0(ppp) = {x = (xk) ∈ ω : lim
k
|xk|pk = 0},

`(ppp) = {x = (xk) ∈ ω :
∑

k

|xk|pk <∞},

respectively. Since the functions ϕ
(ppp/r)
k (t) = tpk/r (k ∈ N) with r =

max{1, P} are moduli, and for % > 0 we have

`%∞(Φ(ppp)) = `%∞(Φ(ppp/r)), c%0(Φ(ppp)) = c%0(Φ(ppp/r)), `(Φ(ppp)) = `%r(Φ(ppp/r)),
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the equalities (1.2.2) hold if Φ = Φ(ppp) and λ ∈ {`∞, c0, `}.

To apply our theorems for sequence spaces of Maddox we must
describe the classes of sequences ppp = (pk) with Φ(ppp/r) ∈ C0 (for ppp = r)
and Φ(ppp) ∈ Ci for i = 1, 2, . . . , 10. By

min{1, tP} ≤ tpk ≤ max{1, tP}

it is easy to see that for any ppp = (pk) we have

Φ(ppp) ∈ Ci (i = 5, 6, 8, 10) and Φ(ppp) 6∈ Ci (i = 1, 2, 4, 9).

Further, from the definitions of the sets C0 and C3 it follows that

Φ(ppp/r) ∈ C0 ⇐⇒ ppp ∈ Pq
0 and Φ(ppp) ∈ C3 ⇐⇒ ppp ∈ P1,

where

Pq
0 =

{
ppp = (pk) : ∃(ak) ∈ `+ ∃k0 ∈ N ∃γ ≥ 0 ∃δ > 0

tpk ≤ ak + γtq (∀k ≥ k0, t ∈ [0, δ])} ,
P1 = {ppp = (pk) : inf

k
pk > 0}.

We claim that the ϕ-function sequence Φ(ppp) from C7 are also characte-
rized by ppp ∈ P1. Indeed, for t ≥ 1 and k0 ∈ N we have

sup
n≥k0

inf
k≥n

tpk = t
sup

n≥k0

inf
k≥n

pk

,

which gives that Φ(ppp) ∈ C7 if and only if

∃k0 ∈ N sup
n≥k0

inf
k≥n

pk > 0. (1.3.4)

It is clear that infk pk > 0 yields (1.3.4). Indeed,

0 < inf
k
pk ≤ sup

n≥k0

inf
k≥n

pk.

Conversely, let (1.3.4) be true. If ppp 6∈ P1, then for some index sequence
(ki) we have limi pki

= 0, contrary to (1.3.4).

Consequently, from Theorems 1.3.7, 1.3.9 and 1.3.12 we get
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Corollary 1.3.19. Let 0 < q ≤ ∞ and let ppp = (pk) be a bounded
sequence of positive numbers. Then

(1) `q ⊂ `(ppp) ⇐⇒ ppp ∈ Pq
0 ;

(2) `q ⊂ c0(ppp) ⇐⇒ ppp ∈ P1;

(3) c0(ppp) ⊂ c0 and `∞ ⊂ `∞(ppp);

(4) c0(ppp) = c0 ⇐⇒ `∞(r) = `∞ ⇐⇒ ppp ∈ P1.

Corollary 1.3.19 shows that ` ⊂ `(ppp) if and only if ppp ∈ P1
0 . A

different necessary and sufficient condition for the inclusion ` ⊂ `(ppp) is
contained in a (more general) result of Maddox (see [32], Theorem 1).

Let Φ = (ϕk) be a sequence of moduli. Kolk [21] considered the
classes C4, C5, C9 and C10. It is clear by Lemmas 1 and 2 of [20], that
the classes C5 and C8 coincide with the classes C6 and C10, respectively.
The class C3 can be formulated as follows{

Φ = (ϕk) : lim
t→0+

sup
k
ϕk(t) = 0

}
.

So, from our Theorems 1.3.7 (4)–(7) and 1.3.10–1.3.12 it follows known
Theorems 1, 2, 4, 5 and B of [21].
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Chapter 2

Topologization of sequence
spaces defined by moduli

Main results of this chapter (see Sections 2.3.1 and 2.4) are published
in [35].

2.1 Topological sequence spaces

It is known that the classical sequence spaces `∞, c0 and `p (1 ≤
p <∞) are topologized by norms

‖x‖`∞ = ‖x‖c0 = sup
k
|xk|

and

‖x‖`p =

(∑
k

|xk|p
)1/p

,

respectively. By the topologization of sequence spaces defined by mo-
duli there appear F-seminorms (or paranorms) instead of norms.

Recall that an F-seminorm g on a vector space V is a functional
g : V → R satisfying, for all x, y ∈ V , the axioms

(N1) g(0) = 0,

(N2) g(x+ y) ≤ g(x) + g(y),
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(N3) g(αx) ≤ g(x) for all scalars α with |α| ≤ 1,

(N4) limn g(αnx) = 0 for every scalar sequence (αn) with limn αn = 0.

A paranorm on V is a functional g : V → R satisfying (N1), (N2) and

(N5) g(−x) = g(x),

(N6) limn g(αnxn − αx) = 0 for every scalar sequence (αn) with
limn αn = α and every sequence (xn) with limn g(xn − x) =
0 (xn, x ∈ V ).

An Frechet norm (or F-norm) is an F-seminorm with the condition

(N5) g(x) = 0 ⇒ x = 0.

A Banach space (or B-space) is a complete normed space. The topo-
logical sequence space in which all coordinate functionals πk, πk(x) =
xk, are continuous, is called a K-space. A BK-space is defined as a
K-space which is also a B-space.

An F-seminorm g on a sequence space λ is said to be absolutely
monotone if g(y) ≤ g(x) for all x = (xk), y = (yk) from λ with
|yk| ≤ |xk| (k ∈ N).

An F-seminormed sequence space (λ, g) is called an AK-space if
ek ∈ λ (k ∈ N) and for any x = (xk) ∈ λ,

lim
m

m∑
k=1

xke
k = x,

where ek = (δki)i∈N (k ∈ N) with δki = 1 if k = i and δki = 0 otherwise.

2.2 Spaces of double sequences

Let S be the vector space of all real or complex double sequences
with the vector space operations defined coordinatewise. Vector sub-
spaces of S are called double sequence spaces. Some examples of such
spaces can be found in [4].

A double sequence space Λ is called solid if (xki) ∈ Λ and |yki| ≤
|xki| (k, i ∈ N) yield (yki) ∈ Λ. For example, the sets
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Mb =

{
X = (xki) ∈ S : sup

i
|xki| <∞ (k ∈ N)

}
,

Mu =

{
X = (xki) ∈ S : sup

k,i
|xki| <∞

}
,

W p
∞[B] =

{
X = (xki) ∈ S : sup

n,i
|σni(X)| <∞

}
,

W p
0 [B] =

{
X = (xki) ∈ W p

∞[B] : lim
n
σni(X) = 0 uniformly in i

}
are solid double sequence spaces, where B = (Bi) is the sequence of
infinite scalar matrices Bi = (bnk(i)) with bnk(i) ≥ 0 (n, k, i ∈ N),
p > 0 and

σni(X) =
∑

k

bnk(i)|xki|p.

Let F = (fki) be a matrix of ϕ-functions and let F(|x|) =
(fki(|xk|)) = (fki(|xk|))k,i∈N. For a double sequence space Λ we define
the sets

Λ%(F) = {x = (xk) ∈ ω : F(x/%) ∈ Λ} (% > 0),

Λ∃(F) = {x = (xk) ∈ ω : ∃ % > 0 F(x/%) ∈ Λ} ,
Λ∀(F) = {x = (xk) ∈ ω : F(x/%) ∈ Λ (∀ % > 0)} .

We write Λ(F) instead of Λ1(F). It is clear that (cf. (1.2.1))

Λ∀(F) ⊂ Λ%(F) ⊂ Λ∃(F).

Definition 2.2.1. A matrix of ϕ-functions F = (fki) is said to
satisfy uniform ∆2-condition if there exists a constant K > 0 such that

fki(2t) ≤ Kfki(t) (k, i ∈ N, t > 0).

Analogously to Proposition 1.2.3 we can prove

Proposition 2.2.2. Let Λ be a solid double sequence space and
% > 0. If the matrix of ϕ-functions F = (fki) satisfies uniform ∆2-
condition, then

Λ∀(F) = Λ%(F) = Λ∃(F).
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Since the uniform ∆2-condition holds (with K = 2) for every matrix
of moduli F = (fki), by Proposition 2.2.2, in this case it is sufficient to
consider only the set Λ(F).

It is not difficult to see (cf. Proposition 1.2.5) that Λ(F) is a solid
sequence space whenever the double sequence space Λ is solid.

2.3 The topologization of sequence spaces

defined by a matrix of moduli

An essential problem in the theory of sequence spaces is the topolo-
gization of various vector spaces of sequences. For example, if Φ = (ϕk)
is a sequence of moduli and λ is an F-seminormed (paranormed) solid
sequence space, then the linear space λ(Φ) may be topologized by an F-
seminorm (paranorm) under some restrictions on the sequence Φ = (ϕk)
or on the space (λ, g) (see [22, 23, 50]).

Let Λ be a double sequence space and F = (fki) be a matrix of
moduli. We consider the set

Λ(F) = {x = (xk) ∈ ω : F(x) = (fki(|xk|)) ∈ Λ}.

Our purpose is to describe the topology of the sequence space Λ(F).

2.3.1 Topologization of Λ(F)

Let Λ be a double sequence space and let g be an F-seminorm on
Λ.

Definition 2.3.1. An F-seminorm g on a double sequence space Λ
is said to be absolutely monotone if for all X = (xki) and Y = (yki)
from Λ with |yki| ≤ |xki| (k, i ∈ N) we have g(Y ) ≤ g(X).

Now we can describe the topology of the sequence space Λ(F) de-
fined by a matrix of moduli F = (fki).

Theorem 2.3.2. Let (Λ, g) be an F-seminormed solid double se-
quence space. If g is absolutely monotone and the matrix of moduli
F = (fki) satisfies the condition
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(M1) lim
u→0+

sup
t>0

sup
k,i

fki(ut)

fki(t)
= 0,

then the functional gF defined by

gF(x) = g(F(x)) (x ∈ Λ(F))

is an absolutely monotone F-seminorm on Λ(F).

Proof. Let g be an absolutely monotone F-seminorm on Λ and let
F = (fki) satisfy (M1).

First we prove that gF is an F-seminorm, i.e., gF satisfies the axioms
(N1)–(N4). Since g is an F-seminorm, (N1) holds by (i). The axiom
(N2) follows immediately from the subadditivity of g and fki (k, i ∈ N)
because g is an absolutely monotone F-seminorm and the functions fki

(k, i ∈ N) satisfy the property (iii).
If |α| ≤ 1 (α ∈ K), then |αxk| ≤ |xk| (k ∈ N) and by (iii) we may

write
fki (|αxk|) ≤ fki (|xk|) (k, i ∈ N).

So, since g is absolutely monotone, we get

gF(αx) = g ((fki (|αxk|))) ≤ g ((fki (|xk|))) = gF(x),

i.e., (N3) is valid.
To prove (N4), let limn αn = 0 (αn ∈ K) and x = (xk) ∈ Λ(F).

Since fki(t) > 0 (k, i ∈ N) for t > 0 and fki(|αnxk|) = 0 for k ∈ K0 =
{k ∈ N : xk = 0}, i ∈ N, we have

fki (|αnxk|) ≤ hnfki (|xk|) (k, i, n ∈ N), (2.3.1)

where

hn = sup
k 6∈K0

sup
i

fki (|αnxk|)
fki (|xk|)

.

While

hn ≤ sup
t>0

sup
k 6∈K0

sup
i

fki (|αn| t)
fki (t)

,

by condition (M1) we see that hn −→ 0, as n→∞. Since g is absolutely
monotone, we get

g(F(αnx)) = g ((fki (|αnxk|))) ≤ g (hn (fki (|xk|))) = g(hnF(x))
(2.3.2)
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by (2.3.1). Now, using that g satisfies (N4), we have

lim
n

g(hnF(x)) = 0,

which, together with (2.3.2), gives

lim
n

gF(αnx) = lim
n

g(F(αnx)) = 0.

Thus gF is an F-seminorm on Λ(F).
Finally, let x = (xk), y = (yk) be in Λ(F) and |yk| ≤ |xk| (k ∈ N).

Then
fki (|yk|) ≤ fki (|xk|) (k, i ∈ N)

and since g is absolutely monotone,

gF(y) = g ((fki (|yk|))) ≤ g ((fki (|xk|))) = gF(x).

Hence gF is absolutely monotone F-seminorm and the proof is com-
pleted.

In the following we apply Theorem 2.3.2 for the topologization of
the sequence space

λ(Φ) = {x = (xk) ∈ ω : Φ(x) = (ϕk(|xk|)) ∈ λ} ,

where (λ, g) is an F-seminormed space and Φ = (ϕk) is a sequence of
moduli. For this reason we consider the space Λλ(FΦ), where FΦ = (fΦ

ki)
is the matrix with the elements

fΦ
ki(t) = ϕk(t) (i ∈ N)

and Λλ is the space of double sequences Xx = (xx
ki) with xx

ki = xk

(i ∈ N, x = (xk) ∈ λ). If now λ is solid and g is absolutely monotone,
then Λλ is also solid and gλ,

gλ(Xx) = g(x) (x ∈ λ),

clearly defines an absolutely monotone F-seminorm on Λλ. So from
Theorem 2.3.2 we immediately get

Proposition 2.3.3 ([50], Theorem 3; [22], Theorem 1). Let (λ, g) be
an F-seminormed space. If g is absolutely monotone and the sequence
of moduli Φ = (ϕk) satisfies one of equivalent conditions (M) and (M′),
where

39



(M) there exists a function ν such that ϕk(ut) ≤ ν(u)ϕk(t) (0 ≤ u <
1, t ≥ 0) and lim

u→0+
ν(u) = 0,

(M′) lim
u→0+

sup
t>0

sup
k

ϕk(ut)

ϕk(t)
= 0,

then gΦ is an absolutely monotone F-seminorm on λ(Φ).

Remark 2.3.4. The equivalence of (M) and (M′) is proved in [22].

2.3.2 Topologization of Λ(F) for AK-space Λ

Let Λ be a double sequence space and F = (fki) be a matrix of
moduli. In Section 1.3.4 it was proved, that the functsions f̃k, where

f̃k(t) = sup
i
fki(t) <∞ (k ∈ N, t > 0),

satisfy conditions (i) and (iii). Besides this we assume that

(vi) f̃k (k ∈ N) is continuous from the right at zero.

It is not difficult to see that f̃k satisfies also the condition (ii). Indeed,
since the functions fki are moduli, for all t, u ≥ 0 we get

f̃k(t+ u) ≤ sup
i
fki(t+ u) ≤ sup

i
fki(t) + sup

i
fki(u) = f̃k(t) + f̃k(u).

Thus f̃k satisfy condition (ii). Hence f̃k (k ∈ N) are moduli.

Let Ek = (ek
ji) (k ∈ N) be a double sequence with the elements

ek
ji =

{
1 if j = k

0 if j 6= k
(i ∈ N).

For a double sequence X = (xki) we define its sections by

X [n] =
n∑

k=1

(xki)i Ek (n ∈ N),

where (xki)i Ek = (xki e
k
ij)i,j∈N.
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Definition 2.3.5. An F-seminormed double sequence space Λ is
called an AK-space if Ek ∈ Λ and for all X = (xki) ∈ Λ,

lim
n
X [n] = X.

Theorem 2.3.6. Let (Λ, g) be a solid F-seminormed AK-space. If g
is absolutely monotone, then gF is an absolutely monotone F-seminorm
on Λ(F) for every matrix of moduli F = (fki) satisfying (1.3.3) and
(vi). If (Λ, g) is an AK-space, then (Λ(F), gF) is also an AK-space.

Proof. The functional gF satisfies the axioms (N1)–(N3) by Theo-
rem 2.3.2. To prove (N4), let limn αn = 0 (αn ∈ K) and x = (xk) ∈
Λ(F). Since F(x) ∈ Λ and (Λ, g) is an AK-space, then

lim
n
F(x)[n] = F(x) (2.3.3)

in Λ by Definition 2.3.5, where

F(x)[n] =
∑

k

(fki(|xk|))i Ek (n ∈ N).

Let x[n] = (x
[n]
k ) ∈ Λ(F) (n ∈ N). Using the equality

F(x− x[n]) = F(x)−F(x)[n], (2.3.4)

for given ε > 0 we can find an index m ∈ N such that

gF(x− x[m]) = g(F(x− x[m])) <
ε

2
. (2.3.5)

For all i ∈ N, by (1.3.3) we have

fki(|αnxk|) ≤ f̃k(|αnxk|).

While limn αn = 0, the moduli f̃k (k ∈ N) are continuous and (1.3.3) is
true, we get

lim
n
f̃k(|αnxk|) = 0.

Therefore, since g satisfies (N4),

lim
n
g(f̃k(|αnxk|) Ek) = 0 (2.3.6)
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for all k ∈ N. Moreover, since g is absolutely monotone, then

g((fki(|αnxk|))iEk) ≤ g(f̃k(|αnxk|) Ek). (2.3.7)

By (N2), (2.3.7) and F(x[m]) = F(x)[m] we conclude

0 ≤ gF(αnx
[m]) = g

(
F(αnx

[m])
)

= g
(
F(αnx)[m]

)
= g

(
m∑

k=1

(fki(|αnxk|))i Ek

)
≤

m∑
k=1

g
(
(fki(|αnxk|))i Ek

)
≤

m∑
k=1

g(f̃k(|αnxk|)Ek).

From (2.3.6) it follows that

lim
n
gF(αnx

[m]) = 0.

So, there exists an index n0 such that, for n ≥ n0, we have

gF(αnx
[m]) <

ε

2
(2.3.8)

and |αn| ≤ 1 (n ≥ n0) because limn αn = 0. Now, since gF satisfies
(N3), we get

gF(αnx− αnx
[m]) = gF(αn(x− x[m])) ≤ gF(x− x[m]) (2.3.9)

for n ≥ n0. From (2.3.5), (2.3.8) and (2.3.9) by (F2) we deduce

gF(αnx) = gF(αnx− αnx
[m] + αnx

[m])

≤ gF(αnx− αnx
[m]) + gF(αnx

[m])

≤ gF(x− x[m]) + gF(αnx
[m]) <

ε

2
+
ε

2
= ε

for n ≥ n0. This implies

lim
n
gF(αnx) = 0.

So, (F4) is true for gF .

In Theorem 2.3.2 it was already proved that gF is absolutely mono-
tone.
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Finally, using (2.3.3), by (2.3.4) we have

lim
n

gF(x− x[n]) = lim
n

g(F(x− x[n])) = lim
n

g(F(x)−F(x[n]))

= lim
n

g(F(x)−F(x)[n]) = 0

for all x ∈ Λ(F). Thus Λ(F) is an AK-space and the proof is completed.

If λ is a solid AK-space and g is an absolutely monotone F-seminorm
on λ, then by definition of Λλ it is clear that gλ is an absolutely mono-
tone F-seminorm on Λλ and Λλ is a solid AK-space. Since FΦ = (fΦ

ki)
is a matrix of moduli with

sup
i
fΦ

ki(t) = sup
i
ϕk(t) = ϕk(t) <∞ (k ∈ N, t > 0),

condition (1.3.3) is satisfied. The condition (vi) also holds, because the
moduli ϕk (k ∈ N) are continuous from the right at zero.

Now, from Theorem 2.3.6 we get

Proposition 2.3.7 ([22], Theorem 2). Let (λ, g) be an F-seminor-
med AK-space. If g is absolutely monotone, then gΦ is an absolutely
monotone F-seminorm on λ(Φ) for an arbitrary sequence of moduli
Φ = (ϕk). Moreover, (λ(Φ), gΦ) is an AK-space.

2.4 Spaces of strongly summable

sequences

For a sequence B = (Bi) of infinite scalar matrices Bi = (bnk(i))
with bnk(i) ≥ 0 (n, k, i ∈ N) we consider the spaces W p

∞[B] and W p
0 [B]

of strongly B-bounded and strongly B-summable to zero double se-
quences, respectively, which were defined in Section 2.2.

It is easy to prove that for p ≥ 1 the functional gp

B
, where

gp

B
(X) = sup

n,i
(σni(X))1/p ,

is an absolutely monotone seminorm on W p
∞[B] and W p

0 [B].
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Let F = (fki) be a matrix of moduli and p ≥ 1. We define the
sequence spaces

wp
∞[B,F ] = {x = (xk) : F(x) ∈ W p

∞[B]} ,
wp

0[B,F ] = {x = (xk) ∈ wp
∞[B,F ] : F(x) ∈ W p

0 [B]} .

A sequence x = (xk) from wp
∞[B,F ] (wp

0[B,F ]) is called strongly B-
bounded (strongly B-summable to zero) with respect to the matrix of
moduli F .

Our purpose is to characterize the F-seminormability of wp
∞[B,F ]

and wp
0[B,F ].

For the topologization of wp
∞[B,F ], wp

0[B,F ] we introduce the func-
tional gp

B,F defined by

gp

B,F(x) = sup
n,i

(∑
k

bnk(i)(fki(|xk|))p

)1/p

.

The sequence spaces wp
∞[B,F ] and wp

0[B,F ] are the spaces of type
Λ(F) with Λ = W p

∞[B] and Λ = W p
0 [B], respectively. In addition,

gp

B,F = (gp

B
)F . Since every seminorm is also an F-seminorm, from

Theorem 2.3.2 we immediately get

Corollary 2.4.1. Let p ≥ 1. If the matrix of moduli F = (fki)
satisfies the condition (M1), then gp

B,F is an absolutely monotone F-

seminorm on wp
∞[B,F ] and wp

0[B,F ].

Remark 2.4.2. It should be noted that W p
0 [B1] is not an AK-space

in general. Indeed, let B1 = (B1
i ) be the sequence of infinite scalar

matrices B1
i = (b1nk(i)) with the elements

b1nk(i) =

{
n−1 if i ≤ k < i+ n,

0 otherwise.

Then (W p
0 [B1], g

p

B1
) is not an AK-space (cf. [23], p. 68).

For any constant sequence B = (A), where A = (ank) is a non-
negative matrix, and for a sequence of moduli Φ = (ϕk) we consider
the space

wp
0[A,Φ] =

{
x = (xk) : lim

n

∑
k

ank(ϕk(|xk|))p = 0

}
(p ≥ 1),
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which is an one-dimensional analog of W p
0 [B] and which can be topo-

logized by the F-seminorm

gp
A,Φ(x) = sup

n

(∑
k

ank(ϕk(|xk|))p

)1/p

.

Indeed, since

wp
0[A] =

{
x = (xk) : lim

n

∑
k

ank|xk|p = 0

}

is an solid AK-space with respect to absolutely monotone seminorm

gp
A(x) = sup

n

∑
k

ank|xk|p

and gp
A,Φ = (gp

A)Φ, from Proposition 2.3.7 we get

Corollary 2.4.3 ([23], Corollary 3). Let p ≥ 1, A = (ank) be a non-
negative matrix, and Φ = (ϕk) be a sequence of moduli. Then the space
wp

0[A,Φ] is an F-seminormed AK-space with respect to the absolutely
monotone F-seminorm gp

A,Φ.

Corollary 2.4.3 extends Theorem 1 of Bilgin [3].

Let A = (ank) be an infinite matrix of non-negative numbers, ppp =
(pk) a bounded sequence of positive numbers and r = max {1, supk pk}.
For a sequence of moduli Φ = (ϕk), following Esi [12], we consider the
sequence spaces

w∞[A,ppp,Φ] =

{
x = (xk) : sup

n,i
sni(x) <∞

}
and

w0[A,ppp,Φ] =
{
x ∈ w∞[A,ppp,Φ] : lim

n
sni(x) = 0 uniformly in i

}
,

where

sni(x) =
∑

k

ank (ϕk(|xk+i−1|))pk =
∞∑

k=i

an,k−i+1 (ϕk−i+1(|xk|))pk−i+1 .
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Nanda [39] examined similar to w∞[A,ppp,Φ] and w0[A,ppp,Φ] sequence
spaces. Theorem 3 of Esi [12] asserts that the functional gA,ppp,Φ, where

gA,ppp,Φ(x) = sup
n,i

(sni(x))1/r,

is a paranorm on w0[A,ppp,Φ] for an arbitrary sequence of moduli Φ =
(ϕk). But it seems that this is not true in general. In fact, if A = C1,
the matrix of arithmetical means, Φ = (ϕk) is a constant sequence of
moduli, i.e., ϕk = ϕ (k ∈ N) and pk = 1 (k ∈ N), then Corollary 2 of
[23] shows that the functional gA,ppp,Φ is not a paranorm on w0[A,ppp,Φ]
whenever ϕ is bounded. Consequently, theorem of Esi can’t be true
without restrictions on the sequence of moduli Φ = (ϕk).

The sequence space w0[A,ppp,Φ] can be considered as a space of type
Λ(F). Indeed, defining the matrix of moduli Fppp = (fppp

ki) by

fppp
ki(t) =

{
(ϕk−i+1(t))

(pk−i+1)/r if k ≥ i,

t if k < i,
(2.4.1)

we can write
w0[A,ppp,Φ] = (W r

0 [B]) (Fppp),

where Bi are matrices with the elements

bnk(i) =

{
an,k−i+1 if k ≥ i,

0 if k < i.

Since, moreover, gA,ppp,Φ = (gr
A)Fppp , from Theorem 2.3.2 we get

Corollary 2.4.4. If the sequence of moduli Φ = (ϕk) satisfies the
condition

(M2) lim
u→0+

sup
t>0

sup
k

(
ϕk(ut)

ϕk(t)

)pk

= 0,

then gA,ppp,Φ is an absolutely monotone F-seminorm on w0[A,ppp,Φ].

Our Corollary 2.4.4 shows that w0[A,ppp,Φ] can be topologized by
the F-seminorm gA,ppp,Φ if the sequence of moduli Φ = (ϕk) satisfies the
restriction (M2). Since, every F-seminorm is also a paranorm, Corollary
2.4.4 can be considered as a correction of Theorem 3 of Esi [12].
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Example 2.4.5. Let (Λ, g) be a solid F-seminormed double se-
quence space. Defining pk = 1

3

(
1 + 1

k

)
and ϕk(t) = t (k ∈ N), we get

r = max {1, supk pk} = 1. By (2.4.1) we have the matrix of moduli
Fppp = (fppp

ki) with the elements

fppp
ki(t) =

{
t1/3(1+1/(k−i+1)) if k ≥ i,

t if k < i.

Since

sup
t>0

sup
k,i

fppp
ki(ut)

fppp
ki(t)

= max{u2/3, u},

the condition (M1) is fulfilled. Therefore, the functional gFppp is an abso-
lutely monotone F-seminorm on the sequence space Λ(Fppp) by Theorem
2.3.2.
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Chapter 3

Superposition operators on
sequence spaces defined by
moduli

3.1 Superposition operators

In an implicit form, the superposition operator can be found in
any calculus textbook (in the old terminology, as “composite opera-
tor”, “function of a function”, etc.), where some of its properties are
described. Typical examples are the continuity of the superposition of
continuous functions, the differentiability of the superposition of dif-
ferentiable functions, and so on. The superposition operator occurs
everywhere: in mathematical analysis, functional analysis, differential
and integral equations, probability theory and statistics, variational
calculus, and other fields of mathematics.

Let λ and µ be two sequence spaces and let f : N × R → R be a
function with f(k, 0) = 0 (k ∈ N). A superposition operator (sometimes
called also outer superposition operator, composition operator, substitu-
tion operator, or Nemytskij operator) Pf : λ→ µ is defined by

Pf (x) = (f(k, xk)) ∈ µ (x = (xk) ∈ λ).

In general the superposition operator Pf is nonlinear. Some properties
of this operator can be found in [1].

Superposition operators on sequence spaces are not studied so in-
tensiv as on spaces of functions (see, for example, [1]). Characterization
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of Pf on Orlicz sequence spaces was given by Robert [47] and Šragin
[51]. The complete investigation of superpositsion operators on se-
quence spaces `∞, c0 and `p for 1 ≤ p <∞ was given by Dedagich and
Zabrĕıko [10] (see also [8, 44]). The acting conditions for Pf : w0 → `
are proved in [7] by the assumption that the functions f(k, ·) are con-
tinuous. The results of Šragin [51] contain characterizations of super-
position operators on `%(Φ) and `∃(Φ), where Φ = (ϕk) is a sequence
of ϕ-functions. Some authors [9, 10, 44, 45, 46, 49, 52, 53] have been
studied continuity and boundedness of superposition operators in va-
rious sequence spaces. Recently, the gilding hump property has been
used in the study of the continuity and boundedness of superposition
operators by Lee [28], and by Unoningsih, P luciennik and Yee [53].

Basing on results of Dedagich and Zabrĕıko [10], and P luciennik
[45, 46] we can give necessary and sufficient conditions for the continuity
and boundedness of superposition operators on sequence spaces defined
by a sequence of moduli. Main results (see Sections 3.3 and 3.4) are
published in [26, 36, 37].

3.2 Auxiliary results

In this section we formulate some definitions and known propo-
sitions, and prove a few lemmas which are needed in the proofs of main
results.

Let Φ = (ϕk) and Ψ = (ψk) be two sequences of moduli. In addition,
we assume that the moduli ϕk (k ∈ N) are unbounded.

In some results we need the following conditions:

(B) the functions f(k, ·) (k ∈ N) are bounded on every bounded sub-
set of real numbers;

(C) the functions f(k, ·) (k ∈ N) are continuous.

We start with the following known acting conditions for superpo-
sition operators Pf .

Proposition 3.2.1 ([24], Theorems 3 and 4(C)). Let 0 < p, q <∞
and λ ∈ {c0, `p}. A superposition operator Pf maps λ(Φ) into `q(Ψ) if
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and only if there exist (ak) ∈ `+, numbers γ ≥ 0, δ > 0 and k0 ∈ N
such that

(ψk(|f(k, t)|))q ≤ ak + γ(ϕk(|t|))p (ϕk(|t|) ≤ δ, k ≥ k0). (3.2.1)

Here γ = 0 if λ = c0.

Proposition 3.2.2 ([24], Theorem 4(B)). Let 0 < p < ∞ and
λ ∈ {c0, `p}. Then Pf : λ(Φ) → `q(Ψ) if and only if there exist a
sequence (ak) ∈ c+0 and numbers δ > 0, k0 ∈ N such that

(ψk(|f(k, t)|))q ≤ ak (ϕk(|t|) ≤ δ, k ≥ k0). (3.2.2)

Proposition 3.2.3 ([24], Theorem 5). Let 0 < p <∞.

(1) Pf : `∞(Φ) → `q(Ψ) if and only if for any % > 0 there exists a
sequence (ak) ∈ `+ such that for all k ∈ N

(ψk(|f(k, t)|))q ≤ ak (ϕk(|t|) ≤ %). (3.2.3)

(2) Pf : `∞(Φ) → c0(Ψ) if and only if for any % > 0 there exist a
sequence (ak) ∈ c+0 and number k0 ∈ N such that

ψk(|f(k, t)|) ≤ ak (ϕk(|t|) ≤ %, k ≥ k0). (3.2.4)

(3) Pf : `∞(Φ) → `∞(Ψ) if and only if for any % > 0 there exists a
sequence (ak) ∈ `+∞ such that for all k ∈ N

ψk(|f(k, t)|) ≤ ak (ϕk(|t|) ≤ %). (3.2.5)

Basing on Proposition 1 of [24], Propositions 3.2.1 and 3.2.2 we can
reformulate in the following way.

Proposition 3.2.4. Let 1 ≤ p, q < ∞, λ ∈ {c0, `p} and µ ∈
{c0, `q, `∞}. A superposition operator Pf maps λ(Φ) into µ(Ψ) if and
only if there exist a sequence (ak) ∈ µ+, numbers γ ≥ 0, δ > 0 and
k0 ∈ N such that

ψk(|f(k, t)|) ≤ ak + γ(ϕk(|t|))p/q (ϕk(|t|) ≤ δ, k ≥ k0). (3.2.6)

Here γ = 0 for all pairs λ, µ with λ ∈ {c0, `p} and µ ∈ {c0, `∞} or
λ = c0 and µ = `q.
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Kolk [24] characterized the superposition operators Pf : (w0)p(Φ) →
`q(Ψ) if 0 < p, q <∞ and (C) holds.

Using, in addition, the remarks of P luciennik ([45], Remark 1; [46],
Remark 1) we may formulate

Proposition 3.2.5. Let 1 ≤ p, q < ∞, Φ = (ϕk) be a sequence of
strictly increasing moduli and Ψ = (ψk) a sequence of moduli. If there
exist a number δ > 0 and sequences (ak) ∈ `+ and (ci)

∞
i=0 ∈ `+ such

that
(ψk(|f(k, t)|))q ≤ ak + ci2

−i(ϕk(|t|))p, (3.2.7)

whenever (ϕk(|t|))p ≤ 2iδ, 2i ≤ k < 2i+1, i ∈ N0 = {0, 1, . . .}, then
Pf acts (w0)p(Φ) into `q(Ψ). Condition (3.2.7) is necessary for Pf :
(w0)p(Φ) → `q(Ψ) whenever (B) is satisfied.

Proposition 3.2.5 may be modified as follows.

Proposition 3.2.6. Let 1 ≤ p, q < ∞, Φ = (ϕk) be a sequence of
strictly increasing moduli and Ψ = (ψk) a sequence of moduli. If there
exist a number δ > 0 and sequences (bk) ∈ `+q and (di)

∞
i=0 ∈ `+q such

that
ψk(|f(k, t)|) ≤ bk + di2

−i/q(ϕk(|t|))p/q, (3.2.8)

whenever ϕk(|t|) ≤ 2i/pδ, 2i ≤ k < 2i+1, i ∈ N0, then Pf acts (w0)p(Φ)
into `q(Ψ). Condition (3.2.8) is necessary for Pf : (w0)p(Φ) → `q(Ψ)
whenever (B) is satisfied.

Proof. Let ak = bqk and ci = dq
i . If 1 ≤ q <∞, then (3.2.7) gives

ψk(|f(k, t)|) ≤ a
1/q
k + c

1/q
i 2−i/q(ϕk(|t|))p/q, (3.2.9)

whenever ϕk(|t|) ≤ 2i/pδ, 2i ≤ k < 2i+1, i ∈ N0. So, we get (3.2.8).
Conversely, by (1.1.1) it is not difficult to see that (3.2.8) yields

Pf : (w0)p(Φ) → `q(Ψ).

To investigate the continuity and boundedness of superposition ope-
rators we introduce certain F-seminorm topologies on the sequence
spaces defined by moduli. If (λ, g) is an F-seminormed space, then
for the topologization of λ(Φ) it is natural to consider the functional
gΦ defined by

gΦ(x) = g(Φ(x)).
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Then the topology on λ(Φ) can be given by the F-seminorm gΦ in view
of Propositions 2.3.3 and 2.3.7 if λ is solid and g is absolutely monotone.

It is known that the spaces c0, `p and (w0)p (1 ≤ p < ∞) are BK-
AK-spaces with absolutely monotone norms ‖ · ‖c0 , ‖ · ‖`p (defined in
Section 2.1), and

‖x‖(w0)p = sup
i≥0

 1

2i

2i+1−1∑
k=2i

|xk|p
1/p

,

respectively. We remark that on the space (w0)p is determined also the
norm ‖x‖ = supn(1/n

∑n
k=1 |xk|p)1/p which is equivalent to ‖ · ‖(w0)p

(see, for example, [29], p. 39).

By Proposition 2.3.7, the topology on the sequence space λ(Φ) with
λ ∈ {c0, `p, (w0)p} is given by F-norm

gΦ(x) = ‖Φ(x)‖λ.

Since (`∞, ‖.‖`∞) is not an AK-space, on `∞(Φ) the same F-norm topol-
ogy can be given by Proposition 2.3.3 whenever Φ satisfies (M) or (M′).

Let (λ, g) and (µ, h) be two F-seminormed spaces. Recall that the
superposition operator Pf : λ → µ is said to be locally bounded if for
any z ∈ λ there exist numbers α > 0 and β > 0 such that for all x ∈ λ
with g(x − z) ≤ α we have h(Pf (x) − Pf (z)) ≤ β. The superposition
operator Pf is called bounded if sup{h(Pf (x)) : g(x) ≤ %} <∞ for every
% > 0.

For the proof of main theorems we need the following lemmas.

Lemma 3.2.7. Let ϕ be an unbounded modulus. The function ϕ−1,
defined by

ϕ−1(t) = sup{u : ϕ(u) = t},

is continuous from the right at 0. Moreover, ϕ(ϕ−1(t)) = t and t ≤
ϕ−1(ϕ(t)).

Proof. The continuity of ϕ−1 from the right at 0 follows from the
fact that ϕ(u) → 0 if and only if u→ 0+. The assertions ϕ(ϕ−1(t)) = t
and t ≤ ϕ−1(ϕ(t)) are clear by definition of ϕ−1.
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Lemma 3.2.8. Let λ, µ be two solid Banach sequence space and
Φ = (ϕk), Ψ = (ψk) be two sequences of unbounded moduli such that
λ(Φ) and µ(Ψ) are topologized by Propositions 2.3.3 or 2.3.7. Assume
that ek ∈ λ (k ∈ N) and Pf maps λ(Φ) into µ(Ψ).

(1) If the superposition operator Pf is continuous, then the condition
(C) holds, i.e., the functions f(k, ·) (k ∈ N) are continuous.

(2) Let ϕk and ψ−1
k be uniformly continuous in k ∈ N at the point 0.

If Pf is continuous, ek ∈ µ (k ∈ N), infk ‖ek‖λ > 0 and infk ‖ek‖µ > 0,
then the function f(k, ·) is uniformly continuous in k ∈ N.

Proof. Let ik : R → λ(Φ) be the embedding defined for every u ∈ R
by the formula ik(u) = uek ∈ λ(Φ). Then for every k ∈ N the function
f(k, ·) factors as follows

R f(k,·)−−−→ R

ik

y xπk

λ(Φ) −−−→
Pf

µ(Ψ) .

Let ε > 0 and u0 ∈ R.

(1) Suppose that the superposition operator Pf : λ(Φ) → µ(Ψ) is
continuous. The coordinate functionals πk are continuous for every
k ∈ N, since by Proposition 3 from [22] the space µ(Ψ) is a K-space.

While the moduli ϕk are continuous from the right at 0, there exists
δ > 0 such that 0 < t ≤ δ implies |ϕk(t)| < ε(‖ek‖λ)−1. If now
|u − u0| < δ then by (iii) we have ϕk(|u − u0|) ≤ ϕk(δ) < ε(‖ek‖λ)−1.
Thus

gΦ(ik(u)− ik(u0)) = ‖Φ(ik(u)− ik(u0))‖λ

= ϕk(|u− u0|)‖ek‖λ < ε.
(3.2.10)

Hence ik is continuous.
Consequently, all functions f(k, ·) (k ∈ N) are continuous as com-

positions of continuous functions πk, Pf and ik.

(2) Suppose that the superposition operator Pf : λ(Φ) → µ(Ψ) is
continuous and ‖ek‖λ ≥ m > 0 (k ∈ N).

While the moduli ϕk are uniformly continuous in k from the right
at 0, there exists δ > 0 such that 0 < t ≤ δ implies ϕk(t) < ε(‖ek‖λ)−1
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for all k ∈ N. If |u − u0| < δ then by (iii) we have ϕk(|u − u0|) ≤
ϕk(δ) < ε(‖ek‖λ)−1 ≤ εm−1 (k ∈ N). Hence ik is uniformly continuous
in k.

By our assumption the functions ψ−1
k are uniformly continuous in

k at 0. So, there exists δ > 0 such that if 0 < ψk(t) ≤ δ (k ∈ N),
then t < ε. Let z0 = (z0

k) ∈ µ(Ψ) be fixed, z = (zk) ∈ µ(Ψ) and
‖ek‖µ ≥ r > 0 (k ∈ N). If now ‖Ψ(z − z0)‖µ ≤ rδ, then

ψk(|zk− z0
k|) ≤ r−1‖ψk(|zk− z0

k|)ek‖µ ≤ r−1‖Ψ(z− z0)‖µ ≤ δ (k ∈ N).

Consequently, |zk − z0
k| < ε for all k ∈ N. Thereby, πk is uniformly

continuous in k.
Finally, f(k, ·) (k ∈ N) is uniformly continuous in k ∈ N as compo-

sition of πk, Pf and ik.

Lemma 3.2.9. Let λ, µ be two solid BK-spaces and let Φ = (ϕk),
Ψ = (ψk) be two sequences of unbounded moduli such that λ(Φ) and
µ(Ψ) are topologized by Propositions 2.3.3 or 2.3.7. Assume that ek ∈ λ
(k ∈ N) and Pf maps λ(Φ) into µ(Ψ). If Pf is locally bounded, then f
satisfies (B).

Proof. Suppose that the superposition operator Pf : λ(Φ) → µ(Ψ)
is locally bounded. Let ik : R → λ(Φ) be the embedding defined for
every u ∈ R by the formula ik(u) = uek ∈ λ(Φ).

Since the map ik is continuous (see the proof of Lemma 3.2.8 (1))
and the operator Pf is locally bounded, then for any z ∈ R there exists
α, β > 0 so that, for any x ∈ R with |z − x| < α we have

‖ψk(|f(k, z)− f(k, x)|)ek‖µ < β,

hence

ψk(|f(k, z)− f(k, x)|) < β

‖ek‖µ

.

Now, since the moduli ψk (k ∈ N) are unbounded, for some M > 0 we
get

|f(k, z)− f(k, x)| ≤M.

Thus the functions f(k, ·) are locally bounded. Finally, it is enough to
notice that local boundedness and boundedness for scalar functions of
a scalar variable are equivalent.
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Lemma 3.2.10. Let Φ = (ϕk) be a sequence of moduli and let
(λ, ‖.‖λ) be a solid Banach sequence space such that λ ⊆ c0 and |yk| ≤
‖y‖λ (k ∈ N) for all y = (yk) ∈ λ. For every fixed sequence z = (zk) ∈
λ(Φ) and for a number δ > 0 there exists m ∈ N such that

max {ϕk (|zk|) , ϕk (|xk|)} < δ (k > m). (3.2.11)

for all x ∈ λ(Φ) with ‖Φ(x− z)‖λ < δ/2.

Proof. Let z = (zk) ∈ λ(Φ) and let δ > 0. Since Φ(z) = (ϕk(|zk|)) ∈
λ ⊆ c0, so there exists m ∈ N with

ϕk (|zk|) <
δ

2
(k > m). (3.2.12)

If x = (xk) ∈ λ(Φ) satisfies ‖Φ(x− z)‖λ < δ/2, then

ϕk (|xk|) ≤ ϕk (|xk + zk|) + ϕk (|zk|)

< ‖Φ(x− z)‖λ +
δ

2
<
δ

2
+
δ

2
= δ

(3.2.13)

for k ≥ m. By (3.2.12) and (3.2.13) we get (3.2.11).

Lemma 3.2.11. Let Ψ = (ψk) be the sequence of moduli. Let z =
(zk) be a given sequence and 1 ≤ q < ∞. If the functions f(k, ·)
(k = 1, . . . ,m) are continuous, then for an arbitrary ε > 0 there exists
a number δ′ > 0 such that

max
k≤m

ψk(|f(k, t)− f(k, zk)|) < εm−1/q (3.2.14)

whenever
ϕk(|t− zk|) < δ′ (k = 1, . . . ,m).

Proof. Let ε > 0. Since the moduli ψk (k = 1, . . . ,m) are continu-
ous from the right at 0, there exists α > 0 such that

ψk(α) < εm−1/q (3.2.15)

for all k = 1, . . . ,m. By the continuity of functions f(k, ·) (k =
1, . . . ,m) there exists β > 0 such that

|t− zk| < β

55



implies
|f(k, t)− f(k, zk)| < α. (3.2.16)

Further, using Lemma 3.2.7, we can find δ′ > 0 such that

ϕ−1
k (δ′) < β (k = 1, . . . ,m).

If now ϕk(|t− zk|) < δ′ (k = 1, . . . ,m), then for k = 1, . . . ,m,

|t− zk| ≤ ϕ−1
k (ϕk(|t− zk|)) ≤ ϕ−1

k (δ′) < β.

Since the moduli ψk (k = 1, . . . ,m) are nondecreasing, from (3.2.16)
we deduce

ψk (|f(k, t)− f(k, zk)|) ≤ ψk(α),

which together with (3.2.15) gives (3.2.14).

Lemma 3.2.12. Let Ψ = (ψk) be the sequence of moduli, r ∈ N and
µ ∈ {c0, `q, `∞} with 1 ≤ q <∞. If the functions f(k, ·) (k = 1, . . . , r)
are bounded on every bounded subset of real numbers T ⊂ R, then there
exists a number M > 0 such that

sup
t1,...,tr∈T

∥∥∥∥∥
r∑

k=1

ψk(|f(k, tk)|)ek

∥∥∥∥∥
µ

≤M. (3.2.17)

Proof. While the functions f(k, ·) (k = 1, . . . , r) are bounded on
every bounded subset of real numbers T ⊂ R, there exist

mk = sup
t∈T

|f(k, t)| (k = 1, . . . , r). (3.2.18)

Since the moduli ψk are nondecreasing, because of (3.2.18) we deduce

sup
t1,...,tr∈T

∥∥∥∥∥
r∑

k=1

ψk(|f(k, tk)|)ek

∥∥∥∥∥
µ

≤ sup
t1,...,tr∈T

r∑
k=1

ψk(|f(k, tk)|)‖ek‖µ

≤
r∑

k=1

ψk(mk)‖ek‖µ.

Putting M =
∑r

k=1 ψk(mk)‖ek‖µ, we have (3.2.17).

By a finite sequence we mean a sequence x = (xk) for which there
exists k0 ∈ N such that xk = 0 if k ≥ k0.
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Lemma 3.2.13. Let 1 ≤ p, q < ∞. Assume that f satisfies (B)
and the moduli ϕk (k ∈ N) are unbounded. If for every β > 0 there is a
number ϑ(β) > 0 such that for every finite sequence x = (xk) we have

‖Ψ(Pf (x))‖`q ≤ ϑ(β), (3.2.19)

provided
∞∑

k=1

(ϕk(|xk|))p ≤ βp, (3.2.20)

then there exists a sequence a(β) = (ak(β)) ∈ `+q with ‖a(β)‖`q ≤ ϑ(β)
such that for each k ∈ N,

ψk(|f(k, t)|) ≤ ak(β) + 21/qβ−p/qϑ(β)(ϕk(|t|))p/q (3.2.21)

whenever ϕk(|t|) ≤ β.

Proof. Let β > 0. By the assumption, there exists ϑ(β) > 0 such
that for any finite sequence x = (xk) the inequality (3.2.19) holds when-
ever (3.2.20) is satisfied. For every k ∈ N we define

hβ(k, t) = max
{

0, ψk(|f(k, t)|)− 21/qβ−p/qϑ(β)(ϕk(|t|))p/q
}
, (3.2.22)

ak(β) = sup {hβ(k, t) : ϕk(|t|) ≤ β} .

Since all sets {t : ϕk(|t|) ≤ β} (k ∈ N) are bounded subsets of R, by
(B) we clearly have ak(β) <∞ (k ∈ N).

If hβ(k, t) = 0, then

ψk(|f(k, t)|) ≤ 21/qβ−p/qϑ(β)(ϕk(|t|))p/q

≤ ak(β) + 21/qβ−p/qϑ(β)(ϕk(|t|))p/q.

Now, if hβ(k, t) 6= 0, then

ψk(|f(k, t)|) = hβ(k, t) + 21/qβ−p/qϑ(β)(ϕk(|t|))p/q

≤ ak(β) + 21/qβ−p/qϑ(β)(ϕk(|t|))p/q.

Therefore, the inequality (3.2.21) holds for every k ∈ N if ϕk(|t|) ≤ β.

Next we show that a(β) ∈ `+q and ‖a(β)‖`q ≤ ϑ(β). By the definition
of ak(β), for each ε > 0 there is a sequence y(β, ε) = (yk(β, ε)) such
that

ϕk(|yk(β, ε)|) ≤ β (k ∈ N)
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and
ak(β) ≤ hβ(k, yk(β, ε))) +

ε

2k
(k ∈ N). (3.2.23)

Let ỹ(β, ε) = (ỹk(β, ε)) be the sequence with

ỹk(β, ε) =

{
yk(β, ε) if hβ(k, yk(β, ε)) 6= 0,

0 if hβ(k, yk(β, ε)) = 0.

Then by (3.2.22), for every k ∈ N, we conclude

hβ(k, ỹk(β, ε)) = ψk(|f(k, ỹk(β, ε))|)− 21/qβ−p/qϑ(β)(ϕk(|ỹk(β, ε)|))p/q.
(3.2.24)

Since hβ(k, ỹk(β, ε)) ≥ 0, using also (3.2.19), we get

(ϕk(|ỹk(β, ε)|))p ≤ 1

2
βp

(
ψk(|f(k, ỹk(β, ε))|)

ϑ(β)

)q

≤ βp

2
.

Thus, for each m ∈ N, we can choose the indices m1 = 1 < m2 < . . . <
ml = m such that

m∑
k=1

(ϕk(|ỹk(β, ε)|))p =

m2−1∑
k=1

(ϕk(|ỹk(β, ε)|))p +

m3−1∑
k=m2

(ϕk(|ỹk(β, ε)|))p

+ . . .+
m∑

k=ml−1

(ϕk(|ỹk(β, ε)|))p

and

βp

2
≤

mi+1−1∑
k=mi

(ϕk(|ỹk(β, ε)|))p ≤ βp (i = 1, 2, . . . , l − 2),

0 ≤
m∑

k=ml−1

(ϕk(|ỹk(β, ε)|))p ≤ βp.

(3.2.25)

By (3.2.19) we have(
mi+1−1∑
k=mi

(ψk(|f(k, ỹk(β, ε))|))q

)1/q

≤ ϑ(β) (i = 1, 2, . . . , l − 2),

 m∑
k=ml−1

(ψk(|f(k, ỹk(β, ε))|))q

1/q

≤ ϑ(β).

(3.2.26)
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Using Minkowski’s inequality and (3.2.23) we get(
m∑

k=1

(ak(β))q

)1/q

≤

(
m∑

k=1

(
hβ(k, ỹk(β, ε)) +

ε

2k

)q
)1/q

≤

(
m∑

k=1

(hβ(k, ỹk(β, ε))q

)1/q

+

(
m∑

k=1

( ε
2k

)q
)1/q

.

Now we use the inequality (a − b)q ≤ aq − bq for a ≥ b ≥ 0 which
we can deduce from the inequality (c + d)q ≥ cq + dq (c, d ≥ 0). By
(3.2.24) this gives, for m ∈ N,

m∑
k=1

(hβ(k, ỹk(β, ε))q ≤
m∑

k=1

(ψk(|f(k, ỹk(β, ε))|))q

− 2β−pϑ(β)q

m∑
k=1

(ϕk(|f(k, ỹk(β, ε))|))p

≤
m2−1∑
k=1

(ψk(|f(k, ỹk(β, ε))|))q +

m3−1∑
k=m2

(ψk(|f(k, ỹk(β, ε))|))q + . . .

+
m∑

k=ml−1

(ψk(|f(k, ỹk(β, ε))|)q − 2β−pϑ(β)q

(
m2−1∑
k=1

(ϕk(|ỹk(β, ε)|)p

+

m3−1∑
k=m2

(ϕk(|ỹk(β, ε)|)p + . . .+
m∑

k=ml−1

(ϕk(|ỹk(β, ε)|)p

 .

Applying now (3.2.25) and (3.2.26) we have

m∑
k=1

(hβ(k, ỹk(β, ε))q ≤ (l − 1)ϑ(β)q − 2β−pϑ(β)q(l − 2)βp2−1 = ϑ(β)q

for all m ∈ N. Therefore(
m∑

k=1

(ak(β))q

)1/q

≤ ϑ(β) + ε (m ∈ N).

Thus

‖a(β)‖`q =

(
∞∑

k=1

(ak(β))q

)1/q

= lim
m→∞

(
m∑

k=1

(ak(β))q

)1/q

≤ ϑ(β) + ε
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which shows that a(β) ∈ `+q with ‖a(β)‖`q ≤ ϑ(β) because ε > 0 is
arbitrary.

Lemma 3.2.14. Let f satisfy (B), 1 ≤ p <∞, λ ∈ {c0, `p, `∞} and
µ ∈ {c0, `∞}. If for every β > 0 there is an ϑ(β) > 0 such that for
every finite sequence x = (xk) one has

‖Ψ(Pf (x))‖µ ≤ ϑ(β), (3.2.27)

provided
‖Φ(x)‖λ ≤ β,

then there exists a sequence a(β) = (ak(β)) ∈ `+∞ with ‖a(β)‖`∞ ≤ ϑ(β)
such that for each k ∈ N,

ψk(|f(k, t)|) ≤ ak(β) (3.2.28)

whenever ϕk(|t|) ≤ β.

Proof. Let β > 0. By the assumption, there exists ϑ(β) > 0 such
that the inequality (3.2.27) holds whenever ‖Φ(x)‖λ ≤ β. For every
k ∈ N, we define

ak(β) = sup {ψk(|f(k, t)|) : ϕk(|t|) ≤ β} . (3.2.29)

Since f satisfies (B), we have ak(β) <∞ (k ∈ N).
The inequality (3.2.28) is clear by (3.2.29).
Next we show that a(β) ∈ `+∞ and ‖a(β)‖`∞ ≤ ϑ(β). By (3.2.29),

for each ε > 0 there is a sequence y(β, ε) = (yk(β, ε)) such that

ϕk(|yk(β, ε)|) ≤ β (k ∈ N) (3.2.30)

and
ak(β) ≤ ψk(|f(k, yk(β, ε))|) + ε (k ∈ N). (3.2.31)

Let ỹ(β, ε) = yk(β, ε) ek = (yk(β, ε) δki)
∞
i=1 for every fixed k ∈ N. So,

by (3.2.30),

‖Φ(ỹ(β, ε))‖λ = ‖Φ(yk(β, ε) ek)‖λ = ϕk(|yk(β, ε)|) ≤ β

which yields

‖a(β)‖`∞ = sup
k
ak(β) ≤ ϑ(β) + ε <∞

in view of (3.2.27) and (3.2.31). Thus a(β) ∈ `+∞, and since ε > 0 is
arbitrary, we also get ‖a(β)‖`∞ ≤ ϑ(β).
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For λ ∈ {c0, `p, `∞} and µ ∈ {c0, `q, `∞} (1 ≤ p, q <∞) we use the
notation

ηf,µ(%) = sup {‖Ψ(Pf (x))‖µ : ‖Φ(x)‖λ ≤ %}

for every % > 0.

Lemma 3.2.15. Let 1 ≤ p < ∞, λ ∈ {c0, `p, `∞}, µ ∈ {c0, `∞}
and Pf : λ(Φ) → µ(Ψ), where Φ = (ϕk), Ψ = (ψk) are two sequence
of unbounded moduli. Assume that for λ = `∞ (µ = `∞) the sequence
of moduli Φ (Ψ) satisfies one of conditions (M) and (M′). If for every
% > 0 there exists a sequence a(%) = (ak(%)) ∈ `+∞ such that

ψk(|f(k, t)|) ≤ ak(%) (ϕk(|t|) ≤ %, k ∈ N), (3.2.32)

then Pf is bounded. Moreover,

ηf,µ(%) ≤ νf,∞(%)

for every % > 0, where

νf,∞(%) = inf {‖a(%)‖`∞ : (3.2.32) holds} .

Proof. Let % > 0 and x = (xk) ∈ λ(Φ) be such that ‖Φ(x)‖λ ≤ %.
From (3.2.32), by

ϕk(|xk|) ≤ ‖Φ(x)‖λ ≤ % (k ∈ N),

it follows that
ψk(|f(k, xk)|) ≤ ak(%)

for all k ∈ N. Therefore,

‖Ψ(Pf (x))‖µ ≤ ‖a(%)‖`∞ <∞ (3.2.33)

provided ‖Φ(x)‖λ ≤ %. Consequently, the superposition operator Pf is
bounded.

The inequality ηf,µ(%) ≤ νf,∞(%) is true because of (3.2.33) and
‖Φ(x)‖λ ≤ %.

61



3.3 Continuity of superposition operators

In the following let Φ = (ϕk) be a sequence of unbounded moduli
and Ψ = (ψk) an arbitrary sequence of moduli.

First we characterize the continuity of superposition operators from
`p(Φ) and c0(Φ) into `q(Ψ).

Theorem 3.3.1. Let 1 ≤ p, q < ∞. A superposition operator
Pf : `p(Φ) → `q(Ψ) is continuous if and only if all functions f(k, ·)
(k ∈ N) are continuous.

Proof. If Pf is continuous, then all functions f(k, ·) (k ∈ N) are
continuous by Lemma 3.2.8 (1).

Conversely, suppose that Pf maps `p(Φ) into `q(Ψ) and all functions
f(k, ·) (k ∈ N) are continuous. Let z = (zk) ∈ `p(Φ) and ε > 0. If
the numbers δ > 0, γ ≥ 0, k0 ∈ N and the sequence (ak) ∈ `+ are
determined by Proposition 3.2.1, then, basing also on Lemma 3.2.10,
we may choose a number m ∈ N such that m ≥ k0,

∞∑
k=m+1

ak < εq, (3.3.1)

∞∑
k=m+1

(ϕk (|zk|))p <
1

2

(
εq

γ + 1

)1/p

(3.3.2)

and condition (3.2.11) is satisfied whenever

‖Φ(x− z)‖`p < % = min

{
δ

2
,
1

2

(
εq

γ + 1

)1/p
}
.

Thus we get(
∞∑

k=m+1

(ϕk(|xk|))p

)1/p

≤

(
∞∑

k=m+1

(ϕk(|xk − zk|))p

)1/p

+

(
∞∑

k=m+1

(ϕk(|zk|))p

)1/p

≤ %+
1

2

(
εq

γ + 1

)1/p

<

(
εq

γ + 1

)1/p

.

(3.3.3)
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Moreover, by inequality (3.2.1), because of (3.2.11), for all k > m we
have

(ψk(|f(k, xk)|))q ≤ ak + γ(ϕk(|xk|))p,

(ψk(|f(k, zk)|))q ≤ ak + γ(ϕk(|zk|))p.
(3.3.4)

Further, since the functions f(k, ·) are continuous, by Lemma 3.2.11
there exists δ′ > 0 with δ′ ≤ % such that ‖Φ(x− z)‖`p < δ′ implies

ψk(|f(k, xk)− f(k, zk)|) < εm−1/q (k = 1, 2, . . . ,m). (3.3.5)

Now, by (3.3.1)–(3.3.5) we get

‖Ψ(Pf (x)− Pf (z))‖`q ≤

(
m∑

k=1

(ψk (|f(k, xk)− f(k, zk)|))q

)1/q

+

(
∞∑

k=m+1

(ψk (|f(k, xk)|))q

)1/q

+

(
∞∑

k=m+1

(ψk (|f(k, zk)|))q

)1/q

≤

(
m∑

k=1

(
ε(m+ 1)−1/q

)q)1/q

+ 2

(
∞∑

k=m+1

ak

)1/q

+

(
∞∑

k=m+1

γ(ϕk(|xk|))p

)1/q

+

(
∞∑

k=m+1

γ(ϕk(|zk|))p

)1/q

< ε+ 2ε+ ε+ ε = 5ε.

Consequently, ‖Ψ(Pf (x) − Pf (z))‖`q < 5ε whenever ‖Φ(x − z)‖`p <
δ′.

Theorem 3.3.2. Let 1 ≤ q < ∞. A superposition operator Pf :
c0(Φ) → `q(Ψ) is continuous if and only if all functions f(k, ·) (k ∈ N)
are continuous.

Proof. If Pf is continuous, then the continuity of functions f(k, ·)
(k ∈ N) is clear by Lemma 3.2.8 (1).

Conversely, if all functions f(k, ·) (k ∈ N) are continuous, z = (zk) ∈
c0(Φ) and ε > 0 is arbitrarily given, then, basing on Proposition 3.2.1
with γ = 0 and Lemmas 3.2.10 and 3.2.11, similarly to the proof of
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Theorem 3.3.1 we may find a sequence (ak) ∈ `+ and numbers m ∈ N,
δ′ > 0 such that (3.3.1) holds and ‖Φ(x− z)‖c0 < δ′ yields (3.3.5) and

(ψk(|f(k, xk)|))q ≤ ak, (ψk(|f(k, zk)|))q ≤ ak (k > m). (3.3.6)

Consequently, by (3.3.1), (3.3.5) and (3.3.6) we get

‖Ψ(Pf (x)− Pf (z))‖`q ≤

(∑
k≤m

(ψk (|f(k, xk)− f(k, zk)|))q

)1/q

+

(∑
k>m

(ψk (|f(k, xk)|))q

)1/q

+

(∑
k>m

(ψk (|f(k, zk)|))q

)1/q

≤

(∑
k≤m

(
εm−1/q

)q)1/q

+ 2

(∑
k>m

ak

)1/q

< ε+ 2ε = 3ε

whenever ‖Φ(x− z)‖c0 < δ′.

The continuity of superposition operators from `p(Φ) (1 ≤ p < ∞)
and c0(Φ) into c0(Ψ) describes

Theorem 3.3.3. Let 1 ≤ p <∞ and λ ∈ {c0, `p}. A superposition
operator Pf : λ(Φ) → c0(Ψ) is continuous if and only if all functions
f(k, ·) (k ∈ N) are continuous.

Proof. Lemma 3.2.8 (1) shows that the continuity of functions
f(k, ·) (k ∈ N) is necessary for the continuity of Pf .

Conversely, suppose that all functions f(k, ·) (k ∈ N) are continuous
and let z = (zk) be an element from `p(Φ) or c0(Φ). By Proposition
3.2.2 there exist numbers δ > 0, k0 ∈ N and a sequence (ak) ∈ c+0
such that (3.2.2) holds. Now, in view of Lemma 3.2.10, for an arbitrary
number ε > 0 we may choose an index m ∈ N, m ≥ k0, such that

ak <
ε

2
(k > m)

and (3.2.11) is true whenever ‖Φ(x−z)‖λ < δ/2. So by (3.2.2) we have,
for all k > m,

ψk (|f(k, xk)− f(k, zk)|) ≤ ψk (|f(k, xk)|) + ψk (|f(k, zk)|)

≤ ak + ak < 2 · ε
2

= ε.
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Hence ‖Φ(x− z)‖λ < δ/2 yields

sup
k> m

ψk (|f(k, xk)− f(k, zk)|) < ε. (3.3.7)

Further, using Lemma 3.2.11, we fix a number δ′ ≤ δ/2 such that (3.3.5)
holds for ‖Φ(x− z)‖λ < δ′. But (3.3.5) immediately gives

sup
k≤m

ψk (|f(k, xk)− f(k, zk)|) < ε. (3.3.8)

Finally, by (3.3.7) and (3.3.8) we obtain

‖Ψ(Pf (x)− Pf (z))‖c0 = max

{
sup
k≤m

ψk (|f(k, xk)− f(k, zk)|) ,

sup
k> m

ψk (|f(k, xk)− f(k, zk)|)
}
< ε

whenever ‖Φ(x− z)‖λ < δ′.

Theorem 3.3.4. Let 1 ≤ q < ∞. If the sequence of moduli Φ =
(ϕk) satisfies one of conditions (M) and (M′), then Pf : `∞(Φ) → `q(Ψ)
is continuous if and only if all functions f(k, ·) (k ∈ N) are continuous.

Proof. If Pf is continuous, then functions f(k, ·) (k ∈ N) are con-
tinuous by Lemma 3.2.8 (1).

Conversely, suppose that all functions f(k, ·) (k ∈ N) are continu-
ous. If z = (zk) ∈ `∞(Φ), then for some η > 0 we have

ϕk(|zk| ) ≤
η

2
. (3.3.9)

By Proposition 3.2.3 (1), for this number η > 0 we can find a sequence
(ak) ∈ `+ such that the condition (3.2.3) is valid for every k ∈ N. Since
(ak) ∈ `+, for a given ε > 0 we may choose m ∈ N such that (3.3.1)
holds. On the other hand, (3.3.9) together with (3.2.13) (for δ = η)
gives

ϕk(|xk| ) ≤ η

if ‖Φ(x−z)‖`∞ < η/2. So (3.2.3) yields (3.3.6) whenever ‖Φ(x−z)‖`∞ <
η/2.
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Further, using the continuity of functions f(k, ·) (k = 1, . . . ,m),
by Lemma 3.2.11 there exists δ′ > 0 with δ′ ≤ η/2 such that (3.3.5)
is true if

ϕk(|xk − zk|) < δ′.

Now, as in Theorem 3.3.2, from (3.3.1), (3.3.5) and (3.3.6) we deduce
the continuity of Pf at z.

Theorem 3.3.5. If the sequence of moduli Φ = (ϕk) satisfies one
of the conditions (M) and (M′), then Pf : `∞(Φ) → c0(Ψ) is continuous
if and only if all functions f(k, ·) (k ∈ N) are continuous.

Proof. The continuity of functions f(k, ·) (k ∈ N) is necessary for
the continuity of Pf by Lemma 3.2.8 (1).

If all functions f(k, ·) (k ∈ N) are continuous and Pf : `∞(Φ) →
c0(Ψ), then by Proposition 3.2.3 (2) we can find, for η = 1, a sequence
(ak) ∈ c+0 and a number k0 ∈ N such that (3.2.4) is satisfied. Now,
putting δ = 1, continuity of Pf follows in the same way as in Theorem
3.3.3.

Now we characterize the continuity of superposition operators into
the space `∞(Ψ).

Theorem 3.3.6. Let the moduli ϕk, ψk and the functions ϕ−1
k , ψ−1

k

be uniformly continuous in k ∈ N at the point 0, 1 ≤ p < ∞ and
λ ∈ {`∞, c0, `p}. Assume that the sequence of moduli Ψ = (ψk) and for
λ = `∞ the sequence of moduli Φ = (ϕk) satisfies one of conditions (M)
and (M′). Then Pf : λ(Φ) → `∞(Ψ) is continuous if and only if the
function f(k, ·) is uniformly continuous in k ∈ N.

Proof. The proof of necessity follows from Lemma 3.2.8 (2).

Sufficiency. Let the function f(k, ·) be uniformly continuous in
k ∈ N, ε > 0 and z = (zk) ∈ λ(Φ). Since the moduli ψk are uniformly
continuous in k at the point 0, then there exist α > 0 such that for all
k ∈ N

ψk(t) < ε (3.3.10)

whenever 0 ≤ t ≤ α. Because the function f(k, ·) is uniformly continu-
ous in k ∈ N, so there exists β > 0 such that

|xk − zk| < β (3.3.11)
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implies
|f(k, xk)− f(k, zk)| < α (3.3.12)

for all k ∈ N. While ϕ−1
k is uniformly continuous in k ∈ N at the

point 0, then there exist δ > 0 such that (3.3.11) is satisfied whenever
0 < ϕk(|xk − zk|) ≤ δ for all k ∈ N. Let ‖Φ(x− z)‖λ ≤ δ, then

ϕk(|xk − zk|) ≤ ‖Φ(x− z)‖λ ≤ δ (k ∈ N).

Therefore, (3.3.11) holds. By (3.3.10) and (iii) from (3.3.12) we deduce

ψk(|f(k, xk)− f(k, zk)|) < ψk(α) < ε (k ∈ N).

Consequently, we get

‖Ψ(Pf (x)− Pf (z))‖`∞ = sup
k
ψk(|f(k, xk)− f(k, zk)|) < ε.

Our last theorem describes the continuity of superposition operators
on the space (w0)p(Φ).

Theorem 3.3.7. Let 1 ≤ p, q < ∞. If the moduli ϕk (k ∈ N) are
strictly increasing, then a superposition operator Pf : (w0)p(Φ) → `q(Ψ)
is continuous if and only if all functions f(k, ·) (k ∈ N) are continuous.

Proof. If Pf is continuous, then the continuity of functions f(k, ·)
(k ∈ N) follows by Lemma 3.2.8 (1).

Conversely, suppose that all functions f(k, ·) (k ∈ N) are continu-
ous, Pf maps (w0)p(Φ) into `q(Ψ) and z = (zk) ∈ (w0)p(Φ). By Propo-
sition 3.2.5 there exist a number δ > 0 and sequences (ck)∞k=0 ∈ `+ and
(dk) ∈ `+ such that condition (3.2.7) holds whenever ϕk(|t|)p ≤ 2iδ,
2i ≤ k < 2i+1 (i = 0, 1, . . .). By (1.1.1) z = (zk) ∈ (w0)p(Φ) if and only
if

lim
i→∞

2−i

2i+1−1∑
k=2i

(ϕk (|zk|))p = 0.

For a fixed ε > 0 we denote by iε the least of all numbers s such that

sup
i≥s

2−i

2i+1−1∑
k=2i

(ϕk (|zk|))p <
δ

2p
,

∞∑
k=2s

dk <
(ε

2

)q

and
∞∑
i=s

ci <
εq

δ
.
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Let x ∈ (w0)p(Φ) be such that

‖Φ(x− z)‖(w0)p <
1

2
(2iδ)1/p. (3.3.13)

Since in the case i ≥ iε we have

(ϕk (|zk|))p < 2−p2iδ (2i ≤ k < 2i+1), (3.3.14)

by (ii), Minkowski’s inequality, (3.3.13) and (3.3.14), for i ≥ iε, we get2−i

2i+1−1∑
k=2i

(ϕk (|xk|))p

1/p

≤

2−i

2i+1−1∑
k=2i

(ϕk (|xk − zk|))p

1/p

+

2−i

2i+1−1∑
k=2i

(ϕk (|zk|))p

1/p

≤ ‖Φ(x− z)‖(w0)p

+

2−i

2i+1−1∑
k=2i

(ϕk (|zk|))p

1/p

≤ 2−1δ1/p + 2−1δ1/p = δ1/p.

(3.3.15)

Thus, if i ≥ iε, then

2i+1−1∑
k=2i

(ϕk (|xk|))p ≤ 2iδ,

so (ϕk(|xk|))p ≤ 2iδ (2i ≤ k < 2i+1). Therefore, (3.2.7) implies

(ψk(|f(k, zk)|))q ≤ dk + ci2
−i(ϕk(|zk|))p,

(ψk(|f(k, xk)|))q ≤ dk + ci2
−i(ϕk(|xk|))p (i ≥ iε).

(3.3.16)

Further, using the continuity of functions f(k, ·), by Lemma 3.2.11 (for

m = 2iε) we may choose δ′ > 0 with δ′ ≤ 1/2 (2iεδ)
1/p

such that

max
k< 2iε

ψk (|f(k, xk)− f(k, zk)|) < ε2−iε/q (3.3.17)
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if ‖Φ(x− z)‖(w0)p < δ′. Now, by (3.10) and (3.11) we conclude

‖Ψ(Pf (x)− Pf (z))‖`q ≤

2iε−1∑
k=1

(ψk (|f(k, xk)− f(k, zk)|))q

1/q

+

(
∞∑

k=2iε

(ψk (|f(k, xk)|))q

)1/q

+

(
∞∑

k=2iε

(ψk |f(k, zk)|)q

)1/q

≤

2iε−1∑
k=1

(
ε2−iε/q

)q1/q

+

 ∞∑
i=iε

2i+1−1∑
k=2i

(ψk(|f(k, xk)|))q

1/q

+

 ∞∑
i=iε

2i+1−1∑
k=2i

(ψk(|f(k, zk)|))q

1/q

< ε2iε2−iε + 2

(
∞∑

k=2iε

dk

)1/q

+

 ∞∑
i=iε

ci2
−i

2i+1−1∑
k=2i

(ϕk(|xk|))p

1/q

+

 ∞∑
i=iε

ci2
−i

2i+1−1∑
k=2i

(ϕk(|zk|))p

1/q

< ε+ 2
ε

2
+ 2

(
εq

δ
δ

)1/q

= 4ε.

Consequently, ‖Ψ(Pf (x) − Pf (z))‖`q < 4ε whenever ‖Φ(x − z)‖(w0)p <
δ′.
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3.4 Boundedness of superposition opera-

tors

In this section we give necessary and sufficent conditions for local
boundedness and boundedness of superposition operators on some se-
quence spaces defined by a sequence of modulus functions.

3.4.1 Local boundedness of Pf

In the following let Φ = (ϕk) and Ψ = (ψk) be two sequences of
unbounded moduli. By the definition of a modulus it is not difficult to
see that, for a fixed sequence z = (zk), the set of real numbers

Tm(κ) = {t ∈ R : max
1≤k≤m

ϕk(|t− zk|) ≤ κ}

is bounded for every m ∈ N and κ > 0.

Because of Theorems 3.3.1–3.3.7 a superposition operator Pf : λ(Φ)
→ µ(Ψ) is continuous for some sequence spaces λ and µ if and only if
all functions f(k, ·) (k ∈ N) are continuous, i.e., f satisfies (C). By the
investigation of local boundeness of Pf the condition (B) is important.

Now we are able to describe the local boundedness of superposition
operator Pf .

Theorem 3.4.1. Let 1 ≤ p, q < ∞, λ ∈ {c0, `p} and µ ∈ {c0, `q,
`∞}. Assume that for µ = `∞ the sequence Ψ = (ψk) satisfies one of
conditions (M) and (M′). A superposition operator Pf : λ(Φ) → µ(Ψ)
is locally bounded if and only if f satisfies (B).

Proof. If Pf is locally bounded, then f satisfies (B) by Lemma 3.2.9.

Conversely, suppose that Pf maps λ(Φ) into µ(Ψ) and f satisfies
(B). Let z = (zk) ∈ λ(Φ). By Proposition 3.2.4 we determine the
numbers δ > 0, γ ≥ 0, k0 ∈ N and the sequence (ak) ∈ µ+ such that
(3.2.6) holds. Let x = (xk) ∈ λ(Φ) with

‖Φ(x− z)‖λ <
δ

2
. (3.4.1)
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We may choose a number m ∈ N, m > k0, such that

‖RmΦ(z)‖λ ≤
δ

2
, (3.4.2)

where RmΦ(z) = (ϕk(|zk|))∞k=m. Hence, for k ≥ m we get ϕk (|zk|) ≤
2−1δ.
Now, by (3.4.1) and (3.4.2), we have

‖RmΦ(x)‖λ ≤ ‖RmΦ(x− z)‖λ + ‖RmΦ(z)‖λ

≤ ‖Φ(x− z)‖λ + ‖RmΦ(z)‖λ ≤
δ

2
+
δ

2
= δ. (3.4.3)

Therefore, ϕk(|xk|) ≤ δ for all k ≥ m. From (3.2.6) we deduce that

ψk(|f(k, xk)|) ≤ ak + γ(ϕk(|xk|))p/q (k ≥ m). (3.4.4)

Further, since the functions f(k, ·) (k = 1, . . . ,m) are bounded on
every bounded subset of real numbers Tm(κ) with κ = 2−1δ, by Lemma
3.2.12 there exists M > 0 such that∥∥∥∥∥

m−1∑
k=1

ψk(|f(k, xk)|)ek

∥∥∥∥∥
µ

≤M. (3.4.5)

If µ = `q, then by Minkowski’s inequality and (3.4.3)–(3.4.5) we get

‖Ψ(Pf (x)− Pf (z))‖µ ≤ L+ ‖Ψ(Pf (z))‖µ, (3.4.6)

where L = M + γδp/q + ‖(ak)‖`q . Otherwise, using (3.4.4) and (3.4.5),
because of γ = 0 we obtain (3.4.6) with L = max{M, ‖(ak)‖µ}.

Putting β = L + ‖Ψ(Pf (z))‖µ, we have ‖Ψ(Pf (x) − Pf (z))‖µ ≤ β
whenever ‖Φ(x− z)‖λ ≤ 2−1δ.

Our last theorem in this subsection describes the local boundedness
of superposition operators on the space (w0)p(Φ).

Theorem 3.4.2. Let 1 ≤ p, q < ∞. If the moduli ϕk (k ∈ N) are
strictly increasing, then a superposition operator Pf : (w0)p(Φ) → `q(Ψ)
is locally bounded if and only if f satisfies (B).
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Proof. The necessity of condition (B) follows from Lemma 3.2.9.

Conversely, suppose that f satisfies (B), Pf maps (w0)p(Φ) into
`q(Ψ) and z = (zk) ∈ (w0)p(Φ). By Proposition 3.2.5, there exist a
number δ > 0 and sequences (ak) ∈ `+ and (ci)

∞
i=0 ∈ `+ such that

(3.2.7) is satisfied whenever (ϕk(|t|))p ≤ 2iδ, 2i ≤ k < 2i+1, i ∈ N0.
Since by (1.1.1),

lim
i→∞

2−i

2i+1−1∑
k=2i

(ϕk (|zk|))p = 0,

there exists r̃ ∈ N with

2−i

2i+1−1∑
k=2i

(ϕk (|zk|))p < 2−pδ (i ≥ r̃). (3.4.7)

Let x = (xk) ∈ (w0)p(Φ) be such that

‖Φ(x− z)‖(w0)p ≤ 2−1δ1/p. (3.4.8)

Then by (ii), Minkowski’s inequality, (3.4.7) and (3.4.8), for i ≥ r̃, we
have2−i

2i+1−1∑
k=2i

(ϕk (|xk|))p

1/p

≤

2−i

2i+1−1∑
k=2i

(ϕk (|xk − zk|))p

1/p

+

2−i

2i+1−1∑
k=2i

(ϕk (|zk|))p

1/p

≤ ‖Φ(x− z)‖(w0)p

+

2−i

2i+1−1∑
k=2i

(ϕk (|zk|))p

1/p

≤ 2−1δ1/p + 2−1δ1/p = δ1/p.

(3.4.9)

Consequently, if i ≥ r̃, then

2i+1−1∑
k=2i

(ϕk (|xk|))p ≤ 2iδ
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and so (ϕk(|xk|))p ≤ 2iδ (2i ≤ k < 2i+1). Further, by (3.2.7) we get

(ψk(|f(k, xk)|))q ≤ ak + ci2
−i(ϕk(|xk|))p (3.4.10)

Since the functions f(k, ·) (i < r̃, 2i ≤ k < 2i+1) are bounded on every
bounded subset of real numbers Tm(κ) with κ = 2−1δ1/p, by Lemma
3.2.12 there exists M > 0 such that

2r̃−1∑
k=1

(ψk(|f(k, xk)|))q =
r̃−1∑
i=0

2i+1−1∑
k=2i

(ψk(|f(k, xk)|))q ≤M. (3.4.11)

Consequently, by (ii), Minkowski’s inequality and (3.4.9)–(3.4.11) we
conclude

‖Ψ(Pf (x)− Pf (z))‖`q ≤

2r̃−1∑
k=1

(ψk(|f(k, xk)|))q

1/q

+

(
∞∑

k=2r̃

(ψk(|f(k, xk)|))q

)1/q

+

(
∞∑

k=1

(ψk(|f(k, zk)|))q

)1/q

≤M1/q +

 ∞∑
i=r̃

2i+1−1∑
k=2i

(ψk(|f(k, xk)|))q

1/q

+ ‖Ψ(Pf (z))‖`q

≤M1/q +

 ∞∑
i=r̃

2i+1−1∑
k=2i

ak

1/q

+

 ∞∑
i=r̃

ci2
−i

2i+1−1∑
k=2i

(ϕk(|xk)|))p

1/q

+ ‖Ψ(Pf (z))‖`q ≤M1/q + ‖(ak)‖1/q
` +

(
δ

∞∑
i=r̃

ci

)1/q

+ ‖Ψ(Pf (z))‖`q

≤M1/q + ‖(ak)‖1/q
` + (δ ‖(ci)∞i=0‖`)

1/q + ‖Ψ(Pf (z))‖`q .

So, putting β = M1/q + ‖(ak)‖1/q
` + (δ ‖(ci)∞i=0‖`)

1/q + ‖Ψ(Pf (z))‖`q , we
have ‖Φ(Pf (x)−Pf (z))‖`p ≤ β whenever ‖Φ(x−z)‖(w0)p ≤ 2−1δ1/p.

Local boundedness of superposition operators on `∞(Ψ) is treated
in Corollary 3.4.5.
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3.4.2 Boundedness of Pf

Let λ be a solid sequence space with ek ∈ λ (k ∈ N) and µ be a
solid BK-space. It is easy to verify that if Pf : λ(Φ) → µ(Ψ) is bounded
then it is also locally bounded. So, Lemma 3.2.9 shows that f satisfies
the condition (B) if Pf is bounded.

The boundedness of superposition operators into `q(Ψ) can be des-
cribed as follows.

Theorem 3.4.3. Let 1 ≤ p, q < ∞ and λ ∈ {c0, `p, `∞}. For
λ = `∞ we assume that the sequence of moduli Φ = (ϕk) satisfies one
of conditions (M) and (M′). Then a superposition operator Pf : λ(Φ) →
`q(Ψ) is bounded if and only if for every % > 0 there exist a sequence
a(%) = (ak(%)) ∈ `+q and a number γ(%) ≥ 0 such that

ψk(|f(k, t)|) ≤ ak(%) + γ(%)(ϕk(|t|))p/q (ϕk(|t|) ≤ %, k ∈ N).
(3.4.12)

Here γ(%) = 0, if λ ∈ {c0, `∞}. Furthermore,

ηf,µ(%) ≤ νf,q(%) ≤ (1 + 21/q) ηf,µ(%) (3.4.13)

for every % > 0, where

νf,q(%) = inf
{
‖a(%)‖`q + γ(%)%p/q : (3.4.12) holds

}
.

In the case γ(%) = 0 we have

ηf,µ(%) = νf,q(%).

Proof. Sufficiency. Suppose that for every % > 0 there exist a se-
quence a(%) ∈ `+q and a number γ(%) ≥ 0 such that for each k ∈ N
the inequality (3.4.12) is true whenever ϕk(|t|) ≤ %. Let % > 0 and
x = (xk) ∈ λ(Φ) be such that

‖Φ(x)‖λ ≤ %. (3.4.14)

Since
ϕk(|xk|) ≤ ‖Φ(x)‖λ ≤ % (k ∈ N),

by (3.4.12) we deduce

ψk(|f(k, xk)|) ≤ ak(%) + γ(%)(ϕk(|xk|))p/q (k ∈ N)
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which gives, in the case λ = `p,

‖Ψ(Pf (x))‖`q =

(
∞∑

k=1

(ψk(|f(k, xk)|))q

)1/q

≤

(
∞∑

k=1

(ak(%))q

)1/q

+ γ(%)

(
∞∑

k=1

(ϕk(|xk|))p

)1/q

≤ ‖a(%)‖`q + γ(%)
(
‖Φ(x)‖p

`p

)1/q

≤ ‖a(%)‖`q + γ(%) %p/q <∞.

(3.4.15)

If λ ∈ {c0, `∞}, then we have

‖Ψ(Pf (x))‖`q ≤

(
∞∑

k=1

(ak(%))q

)1/q

= ‖a(%)‖`q <∞. (3.4.16)

The inequality ηf,µ(%) ≤ νf,q(%) holds because of (3.4.14) and (3.4.15)
or (3.4.14) and (3.4.16).

Necessity. Let Pf be a bounded superposition operator acting from
λ(Φ) into `q(Ψ) and x = (xk) ∈ λ(Φ). By Lemma 3.2.9 f satisfies (B).
For a fixed % > 0, we have

‖Ψ(Pf (x))‖`q ≤ ηf,µ(%)

whenever ‖Φ(x)‖λ ≤ %.
If λ = `p, then by Lemma 3.2.13 there exist a sequence a(%) =

(ak(%)) ∈ `+q with ‖a(%)‖`q ≤ ηf,µ(%) such that for every k ∈ N,

ψk(|f(k, t)|) ≤ ak(%) + 21/q%−p/qηf,µ(%)(ϕk(|t|))p/q

provided ϕk(|t|) ≤ %. Putting γ(%) = 21/q%−p/qµf,µ(%), we have (3.4.12).

From Lemma 3.2.13 we also get ‖a(%)‖`q ≤ ηf,µ(%), so

‖a(%)‖`q + γ(%)%p/q ≤ ηf,µ(%) + γ(%)%p/q

≤ ηf,µ(%) + 21/q%−p/qηf,µ(%)%p/q

≤ (1 + 21/q)ηf,µ(%).

Hence we have νf,q(%) ≤ (1 + 21/q)ηf,µ(%).
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Otherwise, i.e., for λ ∈ {c0, `∞}, we define

ak(%) = sup {ψk(|f(k, t)|) : ϕk(|t|) ≤ %} (k ∈ N). (3.4.17)

Since f satisfies (B), then ak(%) < ∞ for every k ∈ N. The inequality
(3.4.12) (with γ(%) = 0) is immediately clear.

To prove that a(%) = (ak(%)) ∈ `+q , let ε > 0. By (3.4.17) there
exists a sequence y(%, ε) = (yk(%, ε)) such that

ϕk(|yk(%, ε)|) ≤ % (k ∈ N) (3.4.18)

and
ak(%) ≤ ψk(|f(k, yk(%, ε))|) +

ε

2k
(3.4.19)

for every k ∈ N. From (3.4.18) we get

‖y(%, ε)‖λ(Φ) = sup
k
ϕk(|yk(%, ε)|) ≤ %.

Using (3.4.19), we have(
∞∑

k=1

(ak(%))q

)1/q

≤

(
∞∑

k=1

(ψk(|f(k, yk(%, ε))|))q

)1/q

+

(
∞∑

k=1

( ε
2k

)q
)1/q

= ‖Ψ(Pf (y(%, ε)))‖`q + ε

≤ ηf,µ(%) + ε.

Hence, by the arbitrariness of ε, we conclude that a(%) ∈ `+q with
‖a(%)‖`q ≤ ηf,µ(%). This also shows that νf,q(%) ≤ ηf,µ(%).

Next we characterize the boundedness of superposition operator act-
ing from c0(Φ), `p(Φ) (1 ≤ p <∞) and `∞(Φ) into c0(Ψ) and `∞(Φ).

Theorem 3.4.4. Let 1 ≤ p <∞, λ ∈ {c0, `p, `∞} and µ ∈ {c0, `∞}.
Assume that for λ = `∞ (µ = `∞) the sequence of moduli Φ = (ϕk) (Ψ =
(ψk)) satisfies one of conditions (M) and (M′). Then a superposition
operator Pf : λ(Φ) → µ(Ψ) is bounded if and only if for every % > 0
there exists a sequence a(%) = (ak(%)) ∈ `+∞ such that (3.2.32) holds.
Furthermore, for every % > 0,

ηf,µ(%) = νf,∞(%).
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Proof. The sufficiency follows from Lemma 3.2.15. Moreover, we
get ηf,µ(%) ≤ νf,∞(%).

Necessity. Let Pf : λ(Φ) → µ(Ψ) be bounded and x = (xk) ∈ λ(Φ).
By Lemma 3.2.9 f satisfies (B). For any fixed % > 0 we have

‖Ψ(Pf (x))‖µ ≤ ηf,µ(%)

provided ‖Φ(x)‖λ ≤ %. Applying Lemma 3.2.14 with ϑ(β) = ηf,µ(%)
and β = %, we can find a sequence a(%) ∈ `+∞ with ‖a(%)‖`∞ ≤ ηf,µ(%)
such that for every k ∈ N,

ψk(|f(k, t)|) ≤ ak(%)

whenever ϕk(|t|) ≤ %. Therefore, (3.2.32) is true. From the inequality

‖a(%)‖`∞ = sup
k
ak(%) ≤ ηf,µ(%)

it follows that νf,∞(%) ≤ ηf,µ(%).

Corollary 3.4.5. Let 1 ≤ q < ∞ and µ ∈ {c0, `q, `∞}. Assume
that the sequence of moduli Φ = (ϕk) and for µ = `∞ the sequence of
moduli Ψ = (ψk) satisfies one of conditions (M) and (M′).Superposition
operators Pf from `∞(Φ) into µ(Ψ) are always bounded and hence locally
bounded.

Proof. By Proposition 3.2.3 operator Pf acts `∞(Φ) into µ(Ψ) if and
only if for every % > 0 there exists a sequence a(%) = (ak(%)) ∈ µ+ such
that

ψk(|f(k, t)|) ≤ ak(%) (ϕk(|t|) ≤ %, k ∈ N).

Since µ+ ⊆ `+∞, it remains to apply Theorems 3.4.3 and 3.4.4.

Finally, we consider the boundeness of superposition operator on
the space (w0)p(Φ).

Theorem 3.4.6. Let 1 ≤ p, q < ∞. A superposition operator
Pf : (w0)p(Φ) → `q(Ψ) is bounded if and only if for every % > 0 there
are sequences a(%) = (ak(%)) ∈ `+q and c(%) = (ci(%))∞i=0 ∈ `+q such that

ψk(|f(k, t)|) ≤ ak(%) + ci(%)2−i/q(ϕk(|t|))p/q (3.4.20)

whenever ϕk(|t|) ≤ 2i/p%, 2i ≤ k < 2i+1, i ∈ N0.
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Furthermore, for every % > 0,

ηf,w0(%) ≤ νf,w0(%) ≤ (1 + 21/q)ηf,w0(%),

where
ηf,w0(%) = sup

{
‖Ψ(Pf (x))‖`q : ‖Φ(x)‖(w0)p ≤ %

}
and

νf,w0(%) = inf
{
‖a(%)‖`q + %p/q‖c(%)‖`q :

(3.4.20) holds (ϕk(|t|) ≤ 2i/p%, 2i ≤ k < 2i+1, i ∈ N0)
}
. (3.4.21)

Proof. Sufficiency. Suppose that for every % > 0 there are sequences
a(%) and c(%) from `+q such that the inequality (3.4.20) holds if ϕk(|t|) ≤
2i/p%, 2i ≤ k < 2i+1, i ∈ N0. Let % > 0 and x = (xk) ∈ (w0)p(Φ) be
such that

‖Φ(x)‖(w0)p ≤ %.

Then ϕk(|xk|) ≤ 2i/p% (2i ≤ k < 2i+1, i ∈ N0) and (3.4.20) yields

ψk(|f(k, xk)|) ≤ ak(%) + ci(%)2−i/q(ϕk(|xk|))p/q.

So we have

‖Ψ(Pf (x))‖`q =

 ∞∑
i=0

2i+1−1∑
k=2i

(ψk(|f(k, xk)|))q

1/q

≤

 ∞∑
i=0

2i+1−1∑
k=2i

(ak(%))q

1/q

+

 ∞∑
i=0

2i+1−1∑
k=2i

(
ci(%)2−i/q(ϕk(|xk|))p/q

)q1/q

≤ ‖a(%)‖`q +

 ∞∑
i=0

(ci(%))q2−i

2i+1−1∑
k=2i

(ϕk(|xk|))p

1/q

≤ ‖a(%)‖`q +

(
∞∑
i=0

(ci(%))q%p

)1/q

≤ ‖a(%)‖`q + %p/q‖c(%)‖`q <∞

whenever ‖Φ(x)‖(w0)p ≤ %.

The inequality ηf,w0(%) ≤ νf,w0(%) is obvious because of

‖Ψ(Pf (x))‖`q ≤ ‖a(%)‖`q + %p/q‖c(%)‖`q
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and ‖Φ(x)‖(w0)p ≤ %.

Necessity. Let Pf be a bounded superposition operator acting from
(w0)p(Φ) into `q(Ψ) and x = (xk) ∈ (w0)p(Φ). For fixed % > 0 we have

‖Ψ(Pf (x))‖`q =

(
∞∑

k=1

(ψk(|f(k, xk)|))q

)1/q

≤ ηf,w0(%)

whenever

‖Φ(x)‖(w0)p = sup
i≥0

2−i

2i+1−1∑
k=2i

(ϕk(|xk|))p

1/p

≤ %.

We define, for every i ∈ N0,

c̃i(%) = sup


2i+1−1∑

k=2i

(ψk(|f(k, xk)|))q

1/q

:

2−i

2i+1−1∑
k=2i

(ϕk(|xk|))p ≤ %p

 . (3.4.22)

Since f satisfies (B) by Lemma 3.2.9, we see that c̃i(%) <∞ (i ∈ N0).
Therefore, by definition of c̃i(%), for every ε > 0 there exists a sequence
y(%, ε) = (yk(%, ε)) such that

2i+1−1∑
k=2i

(ϕk(|yk(%, ε)|))p ≤ 2i%p (3.4.23)

and

c̃i(%) ≤

2i+1−1∑
k=2i

(ψk(|f(k, yk(%, ε))|))q

1/q

+
ε

2i
(3.4.24)

for any i ∈ N0.
Let r̃ ∈ {0, 1, 2, . . .} and ỹ(%, ε) = (ỹk(%, ε)) be a sequence with

ỹk(%, ε) =

{
yk(%, ε) if 1 ≤ k ≤ 2r̃,

0 if k > 2r̃.
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Then, by (3.4.23), we have

‖Φ(ỹ(%, ε))‖(w0)p ≤ %.

Next, we show that c̃(%) = (c̃i(%))∞i=0 ∈ `+q and ‖c̃(%)‖`q ≤ ηf,w0(%).
Indeed, using (3.4.24), we get(

r̃∑
i=0

(c̃i(%))q

)1/q

≤

 r̃∑
i=0


2i+1−1∑

k=2i

(ψk(|f(k, yk(%, ε))|))q

1/q

+
ε

2i


q

1/q

≤

 r̃∑
i=0

2i+1−1∑
k=2i

(ψk(|f(k, yk(%, ε))|))q

1/q

+

(
r̃∑

i=0

( ε
2i

)q
)1/q

≤ ‖Ψ(Pf (ỹ(%, ε)))‖`q + ε ≤ ηf,w0(%) + ε <∞.

Thus

‖c̃(%)‖`q =

(
∞∑
i=0

(c̃i(%))q

)1/q

= lim
r̃→∞

(
r̃∑

i=0

(c̃i(%))q

)1/q

≤ ηf,w0(%) + ε.

While ε > 0 is arbitrary, then c̃(%) ∈ `+q with ‖c̃(%)‖`q ≤ ηf,w0(%).

On the other hand, for every i ∈ N0,2i+1−1∑
k=2i

(ψk(|f(k, xk)|))q

1/q

≤ c̃i(%)

whenever

2−i

2i+1−1∑
k=2i

(ϕk(|xk|))p ≤ %p.

Applying Lemma 3.2.13 to the previous inequality with βp = 2i%p,
ϑ(β) = c̃i(%) and f(k, t) = 0 for k 6= 2i, 2i + 1, . . . , 2i+1− 1, we can find
numbers ak(%) (k = 2i, 2i + 1, . . . , 2i+1 − 1) such that

2i+1−1∑
k=2i

(ak(%))q ≤ ‖a(%)‖q
`q
≤ (c̃i(%))q,
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ψk(|f(k, t)|) ≤ ak(%) + 21/q 2−i/q%−p/q c̃i(%)(ϕk(|t|))p/q (3.4.25)

provided ϕk(|xk|) ≤ 2i/p%, 2i ≤ k < 2i+1. Putting ci(%) = 21/q %−p/q c̃i(%)
we have (3.4.20).

So we get

‖a(%)‖q
`q

=
∞∑

k=1

(ak(%))q =
∞∑
i=0

2i+1−1∑
k=2i

(ak(%))q ≤
∞∑
i=0

(c̃i(%))q = ‖c̃(%)‖q
`q

which yields
‖a(%)‖`q ≤ ‖c̃(%)‖`q ≤ ηf,w0(%).

By (3.4.25) it follows

ak(%) + 2−i/qci(%)(ϕk(|t|))p/q ≤ ak(%) + 2−i/q21/q%−p/q c̃i(%)(ϕk(|t|))p/q

≤ ‖a(%)‖`q + 2−i/q21/q%−p/q‖c(%)‖`q(2i/p%)p/q

≤ ηf,w0(%) + 21/q‖c̃(%)‖`q ≤ ηf,w0(%) + 21/qηf,w0(%)

= (1 + 21/q)ηf,w0(%)

whenever ϕk(|xk|) ≤ 2i/p% and i ∈ N0. Hence

νf,w0(%) ≤ (1 + 21/q)ηf,w0(%).

3.5 Applications

The classical sequence spaces c0, `p, `∞ (1 ≤ p <∞) can be consid-
ered as the spaces c0(Φ), `p(Φ), `∞(Φ), where Φ = (ϕk) with ϕk(t) = t
(k ∈ N). For Ψ = Φ from Theorems 3.3.1–3.3.6 we conclude the con-
tinuity of superposition operators from `∞, `p and c0 into `q and c0
for 1 ≤ p, q < ∞ (see [10], Theorems 2, 7 and 8; [44], Theorems 2.4
and 2.5) and from Theorems 3.4.3, 3.4.4 and Corollary 3.4.5 we get
known characterizations of the local boundedness and boundedness of
superposition operators in sequence spaces c0, `p, `∞ ([10], Theorems
3, 7 and 8). We remark that Theorems 7 and 8 of [10] are formulated
without proofs.

Theorems 3.3.7, 3.4.2 and 3.4.6 allows to formulate extensions of
some results of P luciennik ([45], Theorems 2, 3 and 5) about the con-
tinuity and the boundedness of superposition operator on w0.
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Proposition 3.5.1. Let 1 ≤ p, q < ∞. If the moduli ϕk (k ∈ N)
are strictly increasing, then a superposition operator Pf : (w0)p → `q is
continuous if and only if all functions f(k, ·) (k ∈ N) are continuous,
i.e., f satisfies (C).

Proposition 3.5.2. Let 1 ≤ p, q < ∞. A superposition operator
Pf : (w0)p → `q is locally bounded if and only if f satisfies (B).

Proposition 3.5.3. Let 1 ≤ p, q < ∞. A superposition operator
Pf : (w0)p → `q is bounded if and only if for every % > 0 there are
sequences a(%) = (ak(%)) ∈ `+q and c(%) = (ci(%))∞i=0 ∈ `+q such that

|f(k, t)| ≤ ak(%) + ci(%)2−i/q|t|p/q (3.5.1)

whenever |t| ≤ 2i/p %, 2i ≤ k < 2i+1, i ∈ N0.
Furthermore,

ηf,w0
(%) ≤ νf,w0(%) ≤ (1 + 21/q)ηf,w0

(%)

for every % > 0 with

ηf,w0
(%) = sup

{
‖Pf (x)‖`q : ‖x‖(w0)p ≤ %1/p

}
and

νf,w0(%) = inf
{
‖a(%)‖`q + %p/q‖c(%)‖`q : (3.5.1) holds

(|t| ≤ 2i/q%, 2i ≤ k < 2i+1, i ∈ N0)
}
. (3.5.2)

As certain generalizations of the spaces `∞, c0, `p and w0 we consider
the multiplier sequence spaces of Maddox type

`∞(p, u) =

{
x ∈ ω : sup

k
|ukxk|pk <∞

}
,

c0(p, u) =
{
x ∈ ω : lim

k
|ukxk|pk = 0

}
,

`(p, u) =

{
x ∈ ω :

∞∑
k=1

|ukxk|pk <∞

}
,

w0(p, u) =

{
x ∈ ω : lim

n

1

n

n∑
k=1

|ukxk|pk = 0

}
,
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where u = (uk) is a sequence with uk 6= 0 (k ∈ N) and p = (pk) is a
bounded sequence of strictly positive numbers (cf. [18]). Some authors
([2, 52, 49]) consider the spaces `∞(p, u), c0(p, u) and `(p, v) for special
multipliers

uk = k−α/pk , vk = kα/pk (α > 0). (3.5.3)

In the case uk = 1 (k ∈ N) the spaces `∞(p, u), c0(p, u), `(p, u) and
w0(p, u) are known as the sequence spaces of Maddox type `∞(p), c0(p),
`(p) and w0(p), respectively (see, for example, [17] and [29]). We note
that the sequence spaces of type `(p) were introduced much earlier by
Orlicz [40].

To apply our theorems for the multiplier spaces of Maddox type, we
put r = max{1, supk pk} and define the sequence of moduli Φ = (ϕk)
by

ϕk(t) = (|uk|t)pk/r (k ∈ N).

Then the spaces `∞(p, u), c0(p, u), `(p, u) and w0(p, u) we may consider
as the spaces `∞(Φ), c0(Φ), `r(Φ) and (w0)r(Φ), respectively. So, by
Propositions 2.3.3 and 2.3.7, the F-norm

gΦ(x) = sup
k
|ukxk|pk/r

is defined on c0(p, u) for any p and on `∞(p, u) under the restriction
infk pk > 0. We remark that if infk pk > 0, then `∞(p) = `∞ and
`∞(p, u) reduces to normed space

`∞(u) =

{
x ∈ ω : ‖x‖ = sup

k
|ukxk| <∞

}
.

The corresponding F-norms on `(p, u) and w0(p, u) are determined,
respectively, by

gΦ(x) =

(
∞∑

k=1

|xk|pk

)1/r

and

gΦ(x) = sup
i≥0

 1

2i

2i+1−1∑
k=2i

|ukxk|pk

1/r

.

It is not difficult to formulate the acting conditions for superpo-
sition operators on multiplier sequence spaces of Maddox type based
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on Propositions 3.2.1–3.2.6. Thereby, for the multipliers (3.5.3) we
get known characterizations of the operators Pf : `∞(p, u) → ` and
Pf : `(p, v) → ` ([49], Theorems 1 and 8; [52], Theorems 2.1 and 2.2,
the case pk = 1 (k ∈ N)).

Let q = (qk) be another bounded sequence of strictly positive num-
bers and v = (vk) be a sequence such that vk 6= 0 (k ∈ N). Now, putting
s = max{1, supk qk} and defining the sequence of moduli Ψ = (ψk) by

ψk(t) = (|vk|t)qk/s (k ∈ N),

from Theorems 3.3.1–3.3.7 we get the following statements about the
continuity of superposition operators on multiplier sequence spaces of
Maddox type.

Proposition 3.5.4. Superposition operators Pf : `(p, u) → `(q, v),
Pf : `(p, u) → c0(q, v), Pf : c0(p, u) → c0(q, v), Pf : c0(p, u) → `(q, v)
and Pf : w0(p, u) → `(q, v) are continuous if and only if all functions
f(k, ·) (k ∈ N) are continuous.

Proposition 3.5.5. If inf
k
pk > 0, then Pf : `∞(p, u) → `(q, v) and

Pf : `∞(p, u) → c0(q, v) are continuous if and only if all functions f(k, ·)
(k ∈ N) are continuous.

Basing on Theorems 3.4.1–3.4.4, 3.4.6 and Corollary 3.4.5 we get the
following statements about the boundedness of superposition operators
on multiplier sequence spaces of Maddox type.

Proposition 3.5.6. Let λ ∈ {c0(p, u), `(p, u)} and µ ∈ {c0(q, v),
`(q, v), `∞(q, v)}. For µ = `∞(q, v) we assume that infk qk > 0. A
superposition operator Pf : λ → µ is locally bounded if and only if f
satisfies (B).

Proposition 3.5.7. A superposition operator Pf acting w0(p, u)
into `(q, v) is locally bounded if and only if f satisfies (B).

We use the notation

η̃f,gΨ
(%) = sup {gΨ(Pf (x)) : gΦ(x) ≤ %}

for every % > 0.
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Proposition 3.5.8. Let λ ∈ {c0(p, u), `(p, u), `∞(p, u)}. For λ =
`∞(p, u) we assume, in addition, that infk pk > 0. A superposition
operator Pf : λ→ `(q, v) is bounded if and only if for every % > 0 there
exist a sequence a(%) = (ak(%)) ∈ `+q and a number γ(%) ≥ 0 such that

|vkf(k, t)|qk/s ≤ ak(%) + γ(%)|ukt|pk/s (|ukt|pk/r ≤ %, k ∈ N).
(3.5.4)

If λ ∈ {c0(p, u), `∞(p, u)}, then γ(%) = 0. Furthermore, for every % > 0,

η̃f,gΨ
(%) ≤ ν̃f,q(%) ≤ (1 + 21/s)η̃f,gΨ

(%),

where

ν̃f,q(%) = inf
{
‖a(%)‖`q + γ(%) %r/s : (3.5.4) is satisfied

}
.

In the case γ(%) = 0, we have

η̃f,gΨ
(%) = ν̃f,q(%).

Proposition 3.5.9. Let λ ∈ {c0(p, u), `(p, u), `∞(p, u)} and µ ∈
{c0(q, v), `∞(q, v)}. For λ = `∞(p, u) (µ = `∞(q, v)) we assume, in
addition, that infk pk > 0 (infk qk > 0). A superposition operator
Pf : λ → µ is bounded if and only if for every % > 0 there exists a
sequence a(%) = (ak(%)) ∈ `+∞ such that

|vkf(k, t)|qk/s ≤ ak(%) (|ukt|pk/r ≤ %, k ∈ N). (3.5.5)

Furthermore, for every % > 0,

η̃f,gΨ
= ν̃f,∞(%),

where
ν̃f,∞(%) = inf {‖a(%)‖`∞ : (3.5.5) is satisfied} .

Corollary 3.5.10. Let µ ∈ {c0(q, v), `(q, v), `∞(q, v)}. For µ =
`∞(q, v) we assume that infk qk > 0. Superposition operators Pf from
`∞(p, u) into µ are always bounded and hence locally bounded.

Proposition 3.5.11. A superposition operator Pf acting w0(p, u)
into `(q, v) is bounded if and only if for every % > 0 there are sequences
a(%) = (ak(%)) ∈ `+q and c(%) = (ci(%))∞i=0 ∈ `+q such that

|vkf(k, t)| ≤ ak(%) + ci(%)2−i/qk |ukt|pk/qk (3.5.6)
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whenever |ukt| ≤ 2i %, 2i ≤ k < 2i+1, i ∈ N0.
Furthermore,

η̃f,w0(%) ≤ ν̃f,w0(%) ≤ (1 + 21/s)η̃f,w0(%),

for every % > 0 with

η̃f,w0(%) = sup
{
‖Pf (x)‖s

`(q,v) : ‖x‖w0(p,u) ≤ %1/r
}

and

ν̃f,w0(%) = inf
{
‖a(%)‖` + %‖c(%)‖` :

(3.5.6) holds (|ukt|pk ≤ 2i%, 2i ≤ k < 2i+1, i ∈ N0)
}
. (3.5.7)

Sama-ae ([52], Theorems 6 and 14) considered the continuity of
superposition operators Pf : `∞(p, u) → ` and Pf : `(p, v) → ` for the
multipliers (3.5.3). Suantai ([52], Theorems 3.1–3.3 and 3.5, the case
pk = 1 (k ∈ N)) and Sama-ae ([49], Theorems 2, 9 and 13, Corollary
3) studied the local boundedness and boundedness of superposition
operators Pf : `∞(p, u) → ` and Pf : `(p, v) → ` for the multipliers
(3.5.3).
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Moodulfunktsioonide abil
defineeritud jadaruumid ja
superpositsioonoperaatorid

Jadaruumide teoorias on üheks uurimisobjektiks Orliczi jadaruu-
mid. Orliczi funktsiooni ϕ korral saab Orliczi jadaruumi defineerida
võrdusega

`∃(ϕ) =

{
x = (xk) :

∞∑
k=1

ϕ

(
|xk|/%

)
<∞ mingi % > 0 korral

}
=

= {x = (xk) : (ϕ (|xk|/%)) ∈ ` mingi % > 0 korral} .

Ruckle [48] ja Maddox [30] tõid antud soliidse jadaruumi λ ja moo-
dulfunktsiooni ϕ korral sisse uue jadaruumi

λ(ϕ) = {x = (xk) : (ϕ(|xk|)) ∈ λ}.

Jadaruumi λ(ϕ) mõistet üldistas Kolk [21], asendades moodulfunkt-
siooni ϕ moodulite jadaga Φ = (ϕk) ja vaadeldes ruumi

λ(Φ) = {x = (xk) : (ϕk(|xk|)) ∈ λ}.

Ruumi λ(Φ) definitsioon sisaldab erijuhuna Maddox’i tüüpi jadaruume
[16, 28], mis omakorda üldistavad vastavaid klassikalisi jadaruume `∞,
c0, `p ja (w0)p (1 ≤ p <∞).

Et käsitleda selliseid ruume ühtsest ja üldisemast vaatepunktist,
lähtume nn. ϕ-funktsiooni mõistest, mis üldistab moodul- ja Orliczi
funktsiooni mõisteid. Artiklites [16, 21] vaadeldud sisalduvusi on või-
malik ϕ-funktsioonide abil käsitleda üldisemal kujul. Saadud tulemused
on esitatud peatükis 1.3.
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Jadaruumide teoorias pakub olulist huvi ka ruumide λ(ϕ) ja λ(Φ)
topologiseerimine. Moodulfunktsioonide jada Φ = (ϕk) korral vektor-
ruum λ(Φ) ei ole enamasti normeeritav, siin tuleb normi asemel kasu-
tada üldisemaid funktsionaale, näiteks F-poolnormi (vt. [22, 23]) või
paranormi (vt. [50]). Moodulfunktsioonide maatriksi F = (fki) ja so-
liidse topeltjadade ruumi Λ korral kirjeldame jadaruumi

Λ(F) = {x = (xk) : (fki(|xk|)) ∈ Λ}

F-poolnormeeritavust. Saadud tulemused üldistavad artiklites [22, 23,
50] tõestatud teoreeme (vt. peatükk 2.3 ja 2.4).

Ruumide λ(Φ) topologiseerimisvõimalus lubab uurida sellistes ruu-
mides tegutsevate operaatorite erinevaid omadusi, nt. pidevust, tõkes-
tatust jne. Meid huvitavad nn. superpositsioonoperaatorid, mis moo-
dustavad ühe alamklassi kõigi (lineaarsete ja mittelineaarsete) ope-
raatorite hulgas.

Superpositsioonoperaatoreid ei ole jadaruumides uuritud nii põhja-
likult kui funktsioonaalruumides (vt. [1]). Superpositsioonoperaator
jadaruumist λ jadaruumi µ defineeritakse seosega

Pf (x) = (f(k, xk)) ∈ µ (x = (xk) ∈ λ),

kus f : N × R → R on mingi funktsioon omadusega f(k, 0) = 0 (k ∈
N). Üldiselt superpositsioonoperaator Pf on mittelineaarne. Mõned
nimetatud operaatori omadused võib leida Appelli ja Zabrĕıko raama-
tust [1].

Robert [47] ja Šragin [51] kirjeldasid operaatorit Pf Orliczi jadaruu-
mides. Superpositsioonoperaatoreid jadaruumides `∞, c0 ja `p, kui
1 ≤ p <∞, on mitmekülgselt uurinud Dedagich ja Zabrĕıko [10] (vt. ka
[8, 44]). P luciennik [45, 46] vaatles superpositsioonoperaatoreid jada-
ruumis w0. Superpositsioonoperaatorite pidevust ja tõkestatust jada-
ruumides on uuritud artilites [9, 44, 49, 52, 53]. Käesolevas dokto-
ritöös antakse tarvilikud ja piisavad tingimused superpositsioonope-
raatorite pidevuseks, lokaalseks tõkestatuseks ja tõkestatuseks moodul-
funktsioonide jada abil defineeritud jadaruumides. Saadud tulemuste
rakendusena vaatleme superpositsioonoperaatoreid Maddox’i tüüpi ja-
daruumides (vt. peatükk 3.5). Põhitulemused on esitatud peatükkides
3.3 ja 3.4.
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27.10.2003–31.01.2004: Tartu Ülikool, Puhta Matemaatika Insti-
tuut, erakorraline funktsionaalanalüüsi teadur (0.5 kohta)
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