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Chapter 1

Introduction

Advances in technology have changed the face of molecular biology. Se-

quencing the genomes of yeast, mouse and human has opened perspectives

and introduced a new paradigm for doing research. The high-throughput

technologies allow measuring thousands of effects simultaneously and do not

require very specific hypotheses, rather they are generated as the outcome of

experiment. One of the most used and universal new technologies is the gene

expression microarray. Given a sample of cells, it measures the activity or

expression of all the genes in the sample. The procedure generates a myriad

of data and a wealth of statistical methods have been created to analyze and

visualize the end results. Standardization of the experimental procedures

and accumulation of has opened up new opportunities. It is possible to use

old data to answer new questions, since so many experiments have been done

already. This line of research combines and explores the publicly available

datasets and is called gene expression meta-analysis.

In some sense this thesis also deals with meta-analysis. The aspect we are

interested in is co-expression of genes. Co-expression means that the genes

respond to different stimuli in similar ways and therefore have similar ex-

pression profile. The “guilt by association” principle states that co-expressed

genes display increased likelihood of functional relation. Our idea is that by

using multiple microarray experiments in finding co-expressed genes we can

get more relevant results. More biological conditions are covered and more

data gives us increased power to distinguish between random and system-
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atic similarity in expression. Several studies have have already confirmed the

utility of the idea [HMJ+00, ZMC+04, WKB05, LHS+04, SSKK03]. Despite

all those studies there are very few publicly available tools for performing

similarity search over multiple datasets simultaneously.

Our goal was to build such tool. However, we had to solve several method-

ological questions about similarity search. In particular we had to develop

statistically sound methods for data aggregation and for detecting the sig-

nificance of the results. We decided to do the similarity search on every

dataset in parallel and integrate the search results. This leaves us with a

rank aggregation problem. The most important contribution of the thesis is

a novel rank aggregation algorithm that is designed to work on noisy situa-

tions. We test the performance of the algorithm on both real and simulated

data. Large part of the thesis is dedicated to solving practical questions that

emerged, when using the algorithm. One problem is constraining the number

of results. The aim is to show only results that are significantly better than

random. However, this is not enough, the power to distinguish results from

random case is growing very fast, when increasing the number of datasets

and we end up with too many results. Therefore, we propose two schemes

for constraining the number of results consistently over different settings. In

addition, we propose the way to select relevant datasets for the similarity

search, to lessen the noise. As one result of the thesis, we present the simi-

larity search tool itself. There we have implemented most of the methodology

that we have developed within this thesis.
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Chapter 2

Introduction to gene expression

microarrays

Living cell is a very complicated biochemical system. Although it has

been studied extensively, the knowledge about its exact workings are sparse.

The main building blocks of the cell are proteins. In addition to forming

the structure of the cells, they have a wide variety of functions: catalysis,

immune recognition, cell adhesion, signal transduction, sensory capabilities,

transport, movement and cellular organization. Despite of all the diversity in

size, shape and function, all the proteins are built the same way from the same

building blocks. Chemically the proteins are strings of amino acids that are

folded into different structures. Only twenty different amino acids are used

in producing proteins. All the information about the amino acid sequences

is coded into DNA. Thus, DNA is a blueprint for all living organisms.

The DNA is a long spiral shaped molecule, which consists of two comple-

mentary strands of nucleotides. There are 4 different nucleotides: adenine,

guanine, thymine and cytosine. These nucleotides are usually denoted by

roman letters A, G, T and C respectively. One strand of DNA can be repre-

sented then as a string encoded with these 4 letters. The order of nucleotides

on the other strand is determined by the sequence in first one, it is said that

the two strands are complementary. Nucleotides form pairs with the ones on

other strand, where A is always paired up with T and C with G. It is known

that each amino acid is coded by a triplet of nucleotides on DNA. The parts
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of DNA that code a protein are known as genes. Humans have about 20000

protein coding genes [CFK+07].

To make the proteins, the information from DNA is first transcribed into a

smaller RNA molecule that is later used as a template for producing proteins.

The RNA is a simpler version of DNA that has only one strand and one of

the nucleotides thymine is substituted with uracil. Although the RNA is

single stranded, it can still bind to a singe stranded complementary DNA

molecule. This property is essential in many cell processes and experimental

methods. The process of synthesizing a complementary RNA molecule based

on DNA is called transcription. The RNA that is transcribed from a gene is

called messenger RNA or mRNA. The mRNA molecules are transported out

of the nucleus, where protein complexes called ribosomes attach to it and

start translating the sequence of RNA into protein.

2.1 Gene expression and microarrays

The process of producing proteins from genes is called gene expression.

Not all genes are expressed at once, it depends on the proteins needed cur-

rently in the cell. Therefore, knowing the genes expressed in the cell would

give a valuable characterization about the state of the cell. By comparing the

the expression in several conditions we could find the molecular differences

between them. The most exact way to quantify gene expression would be

measuring the number of different proteins in the cell. However, this is very

complicated on large scale due to the large variety of protein structures and

physical characteristics. Some solutions exist for this task, but right now

they are exceedingly expensive.

However, it is much easier to measure the number of different mRNA

molecules in a cell. With mRNA it is possible to use the fact that it binds

to complementary DNA molecules. Therefore, we can capture basically any

mRNA molecules with complementary single stranded DNAs and estimate

their abundance in the cell. Even more importantly, we can capture different

mRNA molecules in parallel. The technology for this is called gene expression

microarray or gene chip.

A gene expression microarray can measure the expression of all genes in
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the genome simultaneously. For each gene a batch of millions complemen-

tary DNA sequences are synthesized, each batch is printed to a spot on a

glass slide. as a result, each gene is measured by one or more spots on an

array. Before using the array, the mRNA is extracted from the biological

sample and labeled with a fluorescent marker. The solution containing la-

beled mRNA molecules is put on the glass slide, where all the spots start

capturing corresponding molecules. After some time, pictures are taken of

the array. The spots that captured more material should be brighter on the

picture due to the radioactive labeling of mRNA molecules. An example of a

picture can be seen on Figure 2.1a. The numerical values of gene expression

are inferred from the brightness of the spots. The end result of a microarray

study that is using several gene chips is a gene expression matrix, a schematic

illustration of it can be found on Figure 2.1b.

a b

Figure 2.1: A picture of microarray together with a schematic representation

of gene expression matrix.

The process of getting expression matrix out of a set of microarray pic-

tures is not trivial. Depending on the array type and design, the workflow

is different. In some cases, complicated image recognitions algorithms are

needed. Often there is a need for extensive statistical corrections. The in-

tensity of a spot depends on several factors besides the amount of specific

mRNA on the solution. By transforming the expression values, most of the

problems can be eliminated to the point that different arrays become com-
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parable. Whole process of producing expression matrix from image files is

called normalization. There are several different possibilities for normaliza-

tion, but in this thesis we ignore the issue and assume we already have an

expression matrix.

2.2 Gene expression analysis

The gene expression microarrays are used in wide variety of situations.

The most simple experimental design compares the gene expression in two

biological conditions. For example, biologists often compare normal and can-

cer tissue. In this analysis, the main goal is to find genes that are differently

expressed between the conditions. These genes can be used later as diagnos-

tic markers or functionally studied further. In the pipeline of a study, the

microarrays are often used for generating hypotheses and finding candidate

genes for further experiments.

For finding the genes that are differentially expressed between two con-

ditions, people usually use simple statistical tests, such as t-test. The test is

performed on each gene separately. The more complicated part is deciding

the significance of the test results. Large number of tests can introduce easily

false positives if common significance threholds are used. Therefore, the test

results need to be corrected for multiple testing at first. In the early days of

microarrays the many statisticians dealt with the multiple testing problems.

Several techniques, such as false discovery rate (FDR) and empirical Bayes

methods owe their popularity to the advent of microarrays. The experimen-

tal design can be more complicated, we may have more information about the

samples. For example we can measure the expression on different patients

with some disease. In these cases the usual linear models have proven to be

very useful.

Another statistical methodology that has relived its renaissance thanks to

microarrays, is cluster analysis. As the datasets are usually huge in normal

standards, then almost only way to visualize the data is by clustering. Either

we divide the data into smaller groups by k-means style clustering or draw a

dendrogram of hierarchical clustering. A clustered heatmap of a microarray

data has become the symbol of modern molecular biology.
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Depending on the particular question many different unsupervised and

supervised learning methods have been applied to the microarray data. For

example, early studies have shown that it is possible to recognize subtypes

of cancer based on the microarray profile [BRS+01]. Many popular classifi-

cation methods, such as support vector machienes, linear discriminants and

neural networks, have been employed to solve on the task [FLNP00, BGL+00,

THNC02]. A lot of effort has put into merging the microarray data with

other kinds of experimental data. For example, kernel based approaches and

graphical modeling has been tried [TDO+03, BTvOM07].

One of the great promises of microarray data is the ability to predict

functional relations between genes and maybe even annotate functionally

uncharacterized genes. The idea is to use co-expression for these tasks. If

two genes behave in similar fashion then it might mean several things. First,

the genes are regulated by the same mechanisms, the genes interact with each

other or just participate in same processes. In summary, if two genes are co-

expressed then it is more likely that they have some functional relations. This

principle is called Guilt by association and its validity is proved several times

[HMJ+00, ZMC+04, WKB05, LHS+04, SSKK03]. This principle can be put

into use in several ways. It can be used on its own to predict gene function

by looking at the co-expressed genes. Another possibility is to combine it

with other types of evidence to strengthen some hypotheses, Some examples

of this can be found in [LDB+06, KvBV+02].

With the accumulation of microarray studies a new trend in research

has emerged. It is possible to use old data to answer new questions. This

approach is called meta-analysis of gene expression. For example, scientist

have been trying to find some disease specific gene by merging multiple pub-

licly available datasets together [RKSM+07, SFKR04]. The usage of multiple

datasets also gives more power to distinguish the signal from noise.

In this thesis we concentrate on the co-expression queries over multiple

datasets. We are trying to build a tool that puts Guilt by association principle

in work and borrows its power from the multitude of expression datasets used.
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Chapter 3

Similarity search methods

In this chapter, we introduce and formalize the most important mathe-

matical concepts and techniques that are used in in this thesis. In our tool,

we want to find genes that are often co-expressed with a query gene. In addi-

tion, we want to identify the experiments where the genes were co-expressed.

In our setting, we perform the similarity search separately in every gene

expression experiment and later combine the resulting similarity rankings

into final co-expression ranking. This approach reduces the similarity search

into the rank aggregation problem. The problem of combining rankings is

old and has been studied in different contexts, like social choice theory and

information retrieval [DKNS01, Saa99]. We give an overview of most impor-

tant methods that are used to solve this problem. However, since none of

the methods fits perfectly to our setting, we propose an algorithm of our own

and test its applicability on simulated data.

3.1 Problem statement

Co-expression is a strong indicator of functional similarity between genes.

Finding co-expressed genes on only one microarray study cannot uncover all

the connections. By introducing more experiments and widening the spec-

trum of biological conditions, we have more power to find the co-expression

links. Our goal is to build a query engine that finds similar expression profiles

over many microarray experiments.
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As a result, we have a situation, where the input data consists of several

expression matrices and each of them corresponds to specific experiment. In

the simplest case all the experiments are on the same microarray platform.

That means, all the datasets contain the measurements for the same set of

genes. Which makes any combination of experiments relatively easy. Using

different microarray platforms introduces several technical difficulties. Dif-

ferent platforms measure the expression of different sets of genes. Then in

merging the data, we have to introduce some missing values, since we do not

have measurements for all the genes. Conversely, we can throw out all the

genes that are not present in all the arrays, but this might mean a huge loss

of data. Even more technical difficulties will arise, when we used data from

different organisms. In addition to the problem of different subsets of genes,

it is not trivial to if determine the identical genes between organisms.

In scope of this masters thesis, we develop methods only for the simplest

case, where all he experiments are on the same platform. At the same time

we keep in mind the more complicated settings, such as different platforms

and organisms, so the methods established in here, are relatively easy to

extend to the more complex query types.

Our goal is to find genes with similar expression to query gene. The most

obvious solution is to put all the microarrays to the same matrix and perform

the similarity search over this large matrix. However, this approach has sev-

eral shortcomings. An experiment is a set of microarrays, answering specific

biological question, prepared in one laboratory by the same people. Putting

all the microarrays to the same matrix can introduce some unwanted vari-

ation. For example, very strong lab effect on a microarray study has been

shown [IWS+05]. in other words, even if results are consistent within one

study, then merging two similar studies can introduce biologically meaning-

less artefacts. Also, the microarray normalization methods are going to start

distorting the expression values, if the biological conditions are too differ-

ent. Most importantly, it is quite difficult to generalize this single matrix

approach to the more complicated settings. If the sets of genes are different

between arrays, then we cannot just put the arrays together.

Therefore, we take a different approach and keep the experiments sepa-

rated. We have to do the similarity search in every one of the experiments,
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to estimate the global similarity between two genes. Given the results of

these queries, we have to find a way how to combine them into final list

of co-expressed genes. The actual similarity scores from the queries depend

on several factors. Most importantly, on the choice of co-expression mea-

sure. We do not want to restrict the choice of the metric to one alternative.

Different hypotheses require different similarity measures. Another factor

influencing the actual score values is the size and design of the experiment.

Often some large datasets contain many redundant experiments, but smaller

datasets measure very different conditions. So comparing numeric similarity

scores from different experiments can be quite difficult task. To avoid pit-

falls of direct aggregation of similarity scores, we use ordering information

instead.

More formally, we sort the genes by similarity to the query gene in each

dataset. For this, we may use any co-expression measure available, for ex-

ample correlation, absolute correlation or Eucleidean distance. As a result,

we end up with a different similarity order of genes for every experiment.

Consequently, we have to find a way to combine the single permutations

of genes into a final order. We expect the method to reward genes that come

out on the top of the lists more often than not. Another characteristic of

our system is that queries in many datasets will produce spurious results. It

might be that a gene is just not used in the specific biological conditions or

its expression has no meaningful changes. In this case, sorting by similarity

produces a random permutation of genes. Thus, the method for aggregating

lists has to be able to cope with this noise. Also, it is important that the

method can highlight the genes with significant co-expression to query gene.

Significant in this context means that the gene is so close to query gene in so

many datasets, that this is not very likely to happen if rankings were random.

3.2 Rank aggregation

We have reduced the problem of finding co-expressed genes to integrating

similarity rankings. The problem is not new, usually it is called rank aggre-

gation. The purpose of rank aggregation is to combine many different rank

orderings on the same set of candidates to obtain a better ordering. Rank ag-

10



gregation arises from several contexts. For example, it is studied thoroughly

in theory of social choice and voting [Saa99]. In this context, the task is to

find correct ranking of candidates if each voter ranks the candidates in order

of preference. For instance, we might try to order athletes based on several

competitions. The problem emerges also in context of information retrieval

when combining search results from different databases or search engines.

Formally the rank aggregation task is defined as follows. We have n×m
matrix of rankings R. Rows of R represent instances gi that are being ranked,

in our example genes, in case of voting, candidates. Let us denote the i-th

row of R as Ri. Each column of R is a ranking vector produced by a data

source or voter Dj. Let us denote the j-th column of R as Rj. The ranking

vector is a permutation of numbers from 1 to n, the number of instances

to be ranked. The rank aggregation can be formalized as a function of the

matrix R

R̄ = RankAgg(R), (3.1)

where R̄ is in some way optimal ranking vector.

To introduce some statistical methods, it is useful to normalize R to range

(0, 1). We can do it by simple division

Rnormalized =
1

n
R, (3.2)

where n is the number of rows in R and therefore, the maximal rank value

on every column. From now on we consider rank matrices that are already

normalized.

3.3 Rank aggregation methods

The first rank aggregation methods are from late 18th century. The first

was Borda count, which for every instance gi sums up values in the vector Ri

and orders the candidates based on the sums [Bor81]. This is equivalent of

taking an arithmetic mean of rankings for every gi. One can suggest several

similar ideas. For example, we can use median or different types of averages,

like geometric or harmonic. Which one of them is the best depends largely

on the setting and what we try to achieve.
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Nevertheless, it is possible to define optimality of rank aggregation. Con-

dorcet criterion looks at every pair of candidates and determines a winner

between them, by counting which one was preferred by most voters. The

overall winner is the one, who wins every individual matchup [dC85]. For

example, x > y if x has larger ranking than y in majority of datasets. Con-

dorcet criterion is an optimality benchmark that different rank aggregation

methods should satisfy. For example Borda count does not satisfy Condorcet

criteria, which is often considered as a major shortcoming of it.

Another natural optimality criterion for rank aggregation methods was

proposed by Kemeny [Kem59]. The Kemeny optimal ordering is a ranking

that minimizes distances to all the input rankings. Formally the Kemeny

optimal ordering is

R̄ = arg min
R̂

m∑
j=1

d(Rj, R̂), (3.3)

where d is distance measure between two ranking vectors. By minimizing

the distances to all input rankings, the Kemeny optimal ordering represents

in a sense a best ”compromise”. The distance measure used for comparing

the lists is Kendall tau [KEN38]. Which is defined as

K(σ, ρ) = |(i, j) : σi < σj and ρi > ρj|, (3.4)

where i and j are the objects to be ranked and σ and ρ are rankings. K(σ, ρ)

counts the pairs that have different rank order in σ and ρ. It has been shown

that finding Kemeny optimal ordering with Kendall tau is NP-hard, where

the size of instance is measured as the number of data sources [BTT89].

The NP hardness holds also with regards to the number of instances to be

ordered [DKNS01]. In our case, where we might have over 100 data sources

and over 20000 genes to order, the rank aggregation with this method would

be computationally very expensive.

Another distance measure that has been used is Spearman footrule [DKNS01].

Spearman footrule is defined as follows:

F (σ, ρ) =
n∑
i=1

|σi − ρi|. (3.5)
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Using Spearman footrule for finding optimal ordering is computationally less

expensive. It is also known [DG77], that Spearman footrule approximates

Kendall tau within the factor of two:

K(σ, ρ) 6 F (σ, ρ) 6 2K(σ, ρ). (3.6)

So by using Spearman footrule in finding Kemeny optimal ordering, we get

a good approximation for the Kendall tau version. In [DKNS01] it is shown

that optimal ordering using Spearman footrule can in turn be approximated

by ordering the instances by using median of their ranks, which is even less

expensive computationally.

Another interesting approach is to use Markov chains in rank aggrega-

tion. It was also proposed in [DKNS01]. Those methods construct a Markov

chain based on the ranking matrix. The states of the Markov chain are the

instances we want to order. The transition probabilities between the states

are calculated using the ranking matrix. The idea is to give higher proba-

bility for transitions from states that occur lower in the lists to states that

occur higher.

For example the simplest algorithm for building the transition matrix is

as follows: if the current state is an instance i, then the next state is chosen

uniformly from the multiset of all instances that were ranked higher than (or

equal to) i by some ranking Rj, that is, from the multiset ∪mj=1{l : Rj
l 6 Rj

i}.
That means, the Markov chain moves from states that are usally ranked

lower to the the states that are ranked higher. Therefore, we have higher

probability to end up in the states that appear more in the top. Thus,

for final ordering the stationary probabilities of the Markov chain are found

and the states are ordered by them. In [DKNS01] several different options for

constructing the Markov chains are proposed, each corresponding to different

heuristics and goals.

Current developments on the field of rank aggregation rely mostly on

the methods described above. From the voting theory point of view, impor-

tant questions are related to “correctness” of the aggregated ranking [Saa99].

There are several “voting paradoxes”, where different methods do not agree

and it is not clear what is the correct solution.

In computer science the focus is more on modifing the methods, to become

applyable in a variety of real world situations. One of the issues is of course
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speed of the algorithms, this question is addressed in [DKNS01]. The rank

aggregation methods are commonly used in web meta-search, where search

results are combined from different search engines. In this case, the number

of all web pages is enormous and it is not reasonable to rank them all, so the

algorithms can use only the top results from each engine. So the question

becomes, how to combine incomplete rankings. Approaches to solve this

problem can be found in [FKS03, Scu07].

3.4 Rank aggregation with outlier detection

In context of voting, all rankings are meaningful. The same applies for

web meta-search. But in our setting this is not true. In case of most queries,

we expect many datasets to produce arbitrary rankings. This fact shifts the

emphasis from finding optimal rank aggregation method to finding method

robust enough.

Therefore, we consider a different setup. Namely, we assume that the

ranking vector Ri for gene gi is a sample from mixture distribution. Data

sources where is no co-expression between query gene and gi produce rankings

from uniform distribution. When there is co-expression then the rankings

are from distribution skewed heavily towards 0. Given this model, the rank

aggregation method should identify genes thats ranking vectors contain most

observations from the skewed distribution.

If we have method that aggregates rankings as desired, then another

question arises: how many of the top genes are really important? With

the model we have described both the case we are interested in and the

one we are not. With any method, we have to find a way to discriminate

between relevant and random results. Further on, if the important results are

identified, then it is interesting to see, which data sources were responsible for

them. in other words, which type of experiments the co-expression occurred.

The latter gives hints about the nature of the connection and reveals datasets

that characterize this process most appropriately. This is what we call rank

aggregation with outlier detection.
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3.5 Rank aggregation with order statistics

On given assumptions a rank aggregation method was proposed in [SSKK03].

The article studied co-expression networks over several species. The authors

performed the co-expression query on every organism one by one and com-

bined the rankings from the queries into one result. The same method was

used in [ALML06], where the authors use different types of evidence to as-

sociate the genes with diseases. The method was used to merge the results.

The idea is to use the joint cumulative distribution function of order

statistics. Let us denote the ranking vector Ri with r = (r1, . . . , rm), the

ranks are already normalized to range (0, 1). Given the non-informative

case, our null hypothesis H0, then the vector is an i.i.d sample from uniform

distribution U(0, 1). If we order the values of r increasingly, we get a vector

of order statistics r = (r(1), . . . , r(m)). We are interested, if the values are

skewed towards 0, compared to uniform case. Thus, we can calculate the

probability that each R(j) is so small or smaller if the sample would be from

uniform distribution, which is the joint cumulative distribution function of

the order statistics. The corresponding probability is

F (r(1), . . . , r(m)) = P[(s1, . . . , sm) : s1 6 r(1), . . . , sm 6 r(m)],

with the constraint

s1 6 . . . 6 sm.

The integral for calculating the probability is

F (r(1), . . . , r(m)) = m!

∫ r(1)

0

∫ r(2)

s1

. . .

∫ r(m)

sm−1

ds1ds2 . . . dsm. (3.7)

The m! is the number of different rank vectors, that will give the same ordered

rank vector. This score is quite natural way to measure the skewness towards

0. At first glance, it even appears to produce p-values, and so they claim also

in [SSKK03]. In deciding the significance of the scores, they used standard

multiple testing machinery. However, these probabilities are not p-values,

since p-value is properly defined only on univariate statistics, but in this

case the statistic is a vector of rankings. Also p-value should have uniform
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distribution under H0. However with this score simulations show strong

skewness towards 0. Therefore, using standard multiple testing corrections

for deciding the significance of the score, might yield lot of false positives. So

care should be taken when interpreting the scores. For example in [ALML06]

the score was converted to p-values using simulations under null hypothesis.

The other problem with the score is, that it is computationally expensive

to calculate. In original article the authors offered an algorithm for it, but

its complexity is O(m!). That was enough for their purposes but unfeasible

for us, since we might have more than 100 rankings to aggregate at a time.

The authors of [ALML06] used the same score, but found the algorithm

impractical and came up with computationally less expensive alternative. If

we start calculating the integral (3.7), then pretty soon we can notice how

some components of the calculation start to reappear. The new algorithm

uses the observation and employes a iterative scheme for calculating F . Let

us denote Vk = F (r(1), . . . , r(k))/k! and V0 = 1. The Vk basically denotes the

result of k-th integration in (3.7). We can use iterative update rule for Vk

Vk =
k∑
j=1

(−1)j−1Vk−1

j!
(r(m−k+1))

j. (3.8)

By the definition of Vk, we can find the end result F (r(1), . . . , r(m)) = m!Vm.

This formula worked perfectly, when we merge moderate number of data

sources. However, if the number of data sources grows larger than 40 our

naive implementation of the algorithm becomes numerically unstable, due to

the alternating terms. In the case of our tool the number of data sources can

be much larger than 40. So we still need a solution to our problem.

3.6 BetaMEM method

As the previous method did not suit or needs we had to roll out our

own solution. Our assumptions are exactly the same as in previous section.

We assume that rankings come from a mixture distribution, where the first

component is uniform and second component is skewed. If there is no co-

expression, then all the rankings come from uniform component, this is our

null hypothesis when deciding the significance of the vector.
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Say we have the sample r from uniform distribution U(0, 1). Let us order

the values of r increasingly r = (r(1), . . . , r(m)). For every r(i) we can ask, how

probable it is to see i or more rankings smaller than it, if the r is sample from

U(0, 1). In case of H0 the number of elements smaller than r(i) has binomial

distribution B(m, r(i)). Thus for each r(i) we can calculate binomial p-value

pi = P(j or more smaller rankings than r(i)) (3.9)

=
m∑
k=i

(
m

k

)
rk(i)(1− r(i))m−k. (3.10)

Each of those p-values measures deviation towards 0 for corresponding order

statistic. Now we find which of the order statistics has the largest deviation

from expected distribution and use the corresponding p-value

p(r) = min{p1, . . . , pm}, (3.11)

as the final similarity score.

The actual calculations of pi are done using beta distribution quantiles.

There is a connection between beta and binomial distribution.

Fbeta(p, a,m− a+ 1) =
n∑
j=a

(
n

l

)
pj(1− p)m−j, (3.12)

It means that we can use beta distribution quantiles instead of binomial

distribution.

This fact has also a nice explanation. Under H0 the order statistic R
(j)
i

is distributed according to Beta(j,m − j + 1). As a result for every order

statistic we find, how much the distribution is skewed towards 0 compared

to its expectation. Thanks to the connection with beta distribution, we call

our method BetaMEM.

The score also has an interesting byproduct. When finding the order

statistic with minimal p-value, we actually find a separation between data

sources that contribute to the final score and the ones that do not. The r(i)
that yielded the smallest p-value can be considered as a significance cutoff

for rankings. All the rankings that are smaller than the r(i) contributed to

the final score, so they can be considered significant. This feature adds a new
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dimension to the search, not only do we see, that two genes are similar, but we

can also guess the nature of similarity, by studying where the co-expression

occurs.

The Figure 3.1 illustrates how the score works on a skewed ranking vector.

The vector was obtained from mixture of uniform and Beta(1, 50) distribu-

tions, 20 values are from the beta distribution that emits very small values.

The first histogram shows the distribution of rankings and the clear peak near

0. The second plot shows how the p-value of the order statistics changes and

reaches minima near 20. Which confirms our claim that the algorithm is

able to identify the datasets where the genes are co-expressed. The third

plot shows the actual values in the ranking vector ordered increasingly, the

vertical line marks the the spot that yielded minimal p-value.
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Figure 3.1: An example how BetaMEM method works. The first and third

plot show the distribution of the skewed ranking vector. We planted 20 small

values in the vector. Second plot shows the individual p-values on log scale

calculated for order statistics, the green dot represents the final score. We

can see the minima was reached near 20, exactly as it should.

In comparison to the joint cdf score described above, the BetaMEM

method is certainly computationally much more feasible: it depends on m

linearly. Also, it does not get numerically unstable even for large m values.

We cannot say it is a p-value, however in the next chapter we see that we it

is still correct use bonferroni multiple testing correction on it. So we have a

natural way for deciding on the significance of the p-value.
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3.7 Comparison of methods

Finally, we compared three methods on simulated data, to get some in-

sight about the performance of the methods. The goal was to find out how

well different methods recognize biased rank vectors. We selected three meth-

ods for comparison. From classical voting theory the Borda count, that is just

the sum of vector elements. Then the method from [SSKK03], which uses

joint cumulative distribution function of order statistics. Finally, our method

BetaMEM, which compares order statistics with their expected distribution.

The first step was to estimate the same significance thresholds for all the

methods, by simulating the distribution of scores under H0. We generated

a matrix of random rankings by taking 20 random permutations of vector

(1, . . . , 22000) as columns. We chose the number 20, because at that length

the algorithm (3.8) was still relatively stable; 22000 is approximately the

number of genes on a human gene expression array. For all the rows in the

matrix we applied all three scores. For each score, we took 0.01 quantile of

the calculated values for a significance threshold.

We used the mixture distribution model, for generating biased rank vec-

tors. The ranking vector contains two kinds of rankings: ones that show real

co-expression in the given dataset and ones that do not. The first group has

a distribution skewed strongly towards 0, second has uniform distribution.

We considered two scenarios. One with the biased elements very close

to 0 other with biased elements having more relaxed distribution. Usually

only few hundred top genes from co-expression query are considered to show

real expression similarity. For this two scenarios, we use Beta(1, 200) and

Beta(1, 50) as the biased mixture components. These distributions have peak

at 0 and are quickly decreasing afterwards. If we have 22000 genes on a chip,

then the first component produces rankings with an average of about 110,

second with 440. So these two scenarios are really close to the situations we

want to discover in the real life.

To simulate a wide variety of cases we varied the number of biased ele-

ments in the vectors from 1 to 10. For each case we generated 10000 observa-

tions. Our algorithm also tries to find the number of biased elements, so we

recorded these numbers. Since we know the real numbers we can compare
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found numbers with the actual result. The results are shown in the Table

3.1.

Beta(1, 200) 1 2 3 4 5 6 7 8 9 10
BetaMEM 0.94 0.71 0.2 0.01 0 0 0 0 0 0
Joint cdf 0.92 0.68 0.25 0.02 0 0 0 0 0 0
Borda Count 0.98 0.95 0.91 0.82 0.7 0.53 0.35 0.18 0.07 0.02
# sign elements 4.7 3.24 3.48 4.22 5.08 5.99 6.91 7.85 8.78 9.71
sd # sign elements 5.64 3.11 1.72 1.21 0.99 0.9 0.88 0.88 0.89 0.9

Beta(1, 50) 1 2 3 4 5 6 7 8 9 10
BetaMEM 0.97 0.89 0.7 0.4 0.13 0.02 0 0 0 0
Joint cdf 0.96 0.87 0.66 0.38 0.14 0.02 0 0 0 0
Borda Count 0.98 0.96 0.91 0.83 0.71 0.54 0.38 0.22 0.09 0.02
# sign elements 6.98 5.27 4.96 5.16 5.74 6.46 7.26 8.09 8.96 9.84
sd # sign elements 6.46 4.96 3.71 2.74 2.19 1.87 1.73 1.61 1.56 1.48

Table 3.1: First table presents the more biased scenario and the second less

biased. The numbers in the first three rows of the table show the proportion

of misclassified observations by different methods. The fourth row indicates

the average number of significant elements found by our algorithm, fifth row

is its standard deviation. The numbers above columns represent how many

small elements were added to the vector.

The results indicate, that both methods based on order statistics perform

on similar level. The misclassification rates differ by only few percentage

points and one is not clearly better than the other. Borda count, which is

equivalent to taking average rank, performed much worse. The bad perfor-

mance of Borda count can be explained by the fact, that it is not designed

to handle systems with high level of noise.

It is interesting to see that the average number of significant elements

predicted by our algorithm is in good correlation with the real number of

planted elements. The correlation is good for cases that can be reliably clas-

sified as biased vectors. In the more relaxed case, the average of significant

element estimation remained about right, but its standard deviation grew.

As summary we can say that our method works well. Its precision is on

par with the competing method, but its much easier to compute. Addition-
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ally the number of significant datasets found agrees nicely with the actual

number. So this is our method of choice in the subsequent study.
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Chapter 4

Determining the number of

co-expressed genes

So far we have defined only a method for ordering genes based on the

similarity. Given such order it is natural to ask where to draw the line that

identifies the results that show real co-expression. In previous chapter we

employed the strategy, where we simulated the score distribution under null

hypothesis and fixed the significance threshold based on it. This approach

is universal, but not very elegant, since we have to do the simulations with

different lengths of rank vector. In this chapter we propose a simpler solution.

The BetaMEM method was based on a minimum of a batch of p-values. The

minimizing step means that the final score is not a p-value anymore, but

actually we can still use some of the multiple testing machinery to find the

significance threshold. We introduce the Bonferroni correction and verify its

applicability to our setting experimentally.

4.1 Bonferroni correction

Suppose we test several statistical hypothesis simultaneously. Even if

the null hypothesis holds on every case, the probability to obtain a very

small p-value increases, the more tests we make. Thus, we cannot use α

as the significance threshold, if we want to control the probability of false

positives on that level. The multiple testing corrections aim to adjust the
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the significance thresholds, in order to hold the probability of false positives

under desired level.

Let T1, . . . , Tm be a set of hypotheses that we want to test and α the

desired level of significance. We want to find a criteria for passing Ti such

that in summary

P[some Ti passes |H0] 6 α. (4.1)

Using union bound we can write

P[some Ti passes |H0] = P[∪mi=1{Ti passes |H0}]

6
m∑
i=1

P[Ti passes |H0], (4.2)

If for every 1 6 i 6 m,

P (Ti passes |H0) 6
α

n

then from (4.2) we can see that (4.1) holds. The latter forms the basis of

Bonferroni correction. Namely, if we do m tests simultaneously and want to

achieve significance level α, then we must decrease the significance threshold

to α
n

for individual tests. This result holds even if the tests are not indepen-

dent. As union bound is really crude result for most cases, the Bonferroni

correction is considered to be very conservative.

The Bonferroni correction is directly applicable if we want to find sig-

nificance thresholds for BetaMEM scores. Indeed, the BetaMEM score is

calculated as a minimum of m p-values. These p-values are strongly corre-

lated, but the later does not matter for Bonferroni correction. Consequently,

we can take significance threshold as α
m

for individual score. On every query

we calculate the BetaMEM score for each of the n genes. Thus, for a query

the Bonferroni threshold is

tα =
α

mn
.
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4.1.1 Experimental validation of Bonferroni threshold

Clearly if all assumptions used to define BetaMEM score indeed hold

in biological data, then there should be no problem in applying Bonferroni

threshold for BetaMEM score. However, the latter is not immediately ev-

ident, as we made assumption that if two genes are not related, then the

rankings are i.i.d sample from uniform distribution. In real life, the data

is likely to contain intricate dependancies. Even if our search gene is not

co-expressed with any other genes in any dataset, then the rankings from

similarity searches can be still correlated, due to relationships between other

genes. The latter can cause unexpected behaviour of the BetaMEM scores.

To study that, we performed a simulation study.

The idea was to study the behaviour of BetaMEM score, when we know

that there is no connection between query gene and other genes. At the

same time it is critical that we preserve the cross correlated structure of the

datasets. To achieve that situation we randomized only the expression of

the query gene, all the other profiles were left intact. The BetaMEM scores

obtained this way correspond to our real null hypothesis. Our goal is to show

Bonferroni threshold works on this case. If we could show it, then we have

obtained a easy procedure for assigning significance to the results.

The exact experiment setup was as follows. We randomized expression

of one gene in each dataset, by drawing new values from standard Gaussian

distribution. Using this gene for the query, we applied our tool. Since we

are interested also the dependance on m, the query is done on 20, 30, . . . , 140

randomly selected datasets. The same procedure was repeated 100 times.

Next, we took the smallest BetaMEM score from each query, and found

out how many of them exceeded the Bonferroni thresholds. The results are

presented in Table 4.1.

For both 0.1 and 0.05 threshold the number of queries exceeding the

threshold is well within the expected limits, with average number of false

positives nearly 2 times smaller than expected. Based on these results, we

can clearly use Bonferroni threshold for deciding the significance of the query.
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# of datasets 30 40 50 60 70 80
Bonferroni 0.1 0.08 0.09 0.01 0.07 0.06 0.06
Bonferroni 0.05 0.04 0.03 0.01 0.01 0.04 0.04

# of datasets 90 100 110 120 130 140 mean
Bonferroni 0.1 0.05 0.07 0.05 0.04 0.06 0.06 0.0583
Bonferroni 0.05 0.00 0.04 0.04 0.01 0.03 0.03 0.026

Table 4.1: The table shows the percentage of randomized MEM queries that

exceed the bonferroni threshold. The percentages are based on 100 random-

izations.

4.1.2 The number of significant results

Several questions arise given the Bonferroni thresholds and real data. For

example, how many significant results one query produces? This number

certainly depends on the number of data sources used. By adding datasets,

we increase the chance, that more relevant datasets are used in the query.

We also increase the sample size for our test, which in turn allows to detect

more subtle effects. Thus, the number of significantly co-expressed genes is

likely grow. It is important to find out, how many neighbours on average we

can expect if we use Bonferroni correction and how strongly it depends on

the number of experiments used in the query.

We performed a experiment to study these effects. We selected randomly

500 genes, with each of them we performed 5 different queries: with 5, 10,

20, 40 and 100 datasets, selected randomly. From each of those queries

we extracted the number of genes, that had significant scores according to

Bonferroni correction on significance level 0.05.

The number of significantly similar genes depends a lot on the number

of datasets used for query. On Figure 4.1 the distributions in the case of 5,

40 and 100 data sources are presented. We can see that by increasing the

number of data sources, the number of similar genes grows pretty fast. With

5 datasets, most of the queries did not return any significant results, but

with 40 and 100, the number of results was mostly in thousands.

Table 4.2 characterizes the rapid increase in the number of results even

more comprehensively.

The increase in the number of results is really fast. So fast, that the
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Figure 4.1: Distribution of the number of significant results, depending on

the number of datasets used. The number of neighbours grows very rapidly,

when increasing the number of experiments

# of datasets 5 10 20 40 100
Similar genes on average 6.478 45.940 263.936 915.906 2540.600

Table 4.2: The table shows how the average number of similar genes depends

on the number of datasets used in the query.

results become incomprehensible even with moderate number of datasets.

Just to look through thousands of genes is a very tedious work. Even more

importantly, what does it exactly mean that we have thousand co-expressed

genes? This is almost 5% of the entire genome. All those genes cannot have

very strong functional similarities to the query gene. Thus, by increasing the

number of datasets, the power of the test grows so fast that the relevance of

”statistical significance” diminishes.
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Chapter 5

Advanced co-expression

thresholds

Our study of Bonferroni thresholds showed that using only statistical sig-

nificance for determining the number of co-expressed genes does not work.

The power of the test grows so fast when increasing the number of experi-

ments that the number of results gets out of hand very quickly. Thus, the

statistical significance plays a role only when we consider a query on very

few experiments. On larger queries, any reasonable number of top results is

almost certainly statistically significant. So question, how many results to

show to a user, became the question how many results a user can digest.

The fact that co-expression is significant between two genes does not tell

us too much about the actual connection between them. In most cases it

indicates that two genes participate in the same processes on very general

level, for example participate in development, metabolism or immune re-

sponse, but do not have direct connections. These kinds of relationships are

not what we are after. We want to find connections that can predict real in-

teraction between the genes. Thus, in addition to determining the difference

from random case, we have to characterize the strength of co-expression.

We have always an option to show only the k best results on every query,

but that does not make too much sense biologically. The number of relevant

neighbours for a gene can vary a lot. For genes that work in large complexes,

we expect many strongly co-expressed neighbours, at the same time, some
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regulatory genes should have only few close neighbours.

Of course, the BetaMEM scores do not only show significance, but also

measure the strength of similarity. The problem is that beyond significance,

we do not have any interpretation for the score values. Thus, it is hard to

place biologically justified thresholds for the scores. The problem becomes

even worse if we consider queries with differing number of datasets. For

example, consider the case we want to make the query on datasets corre-

sponding to specific tissue type or biological manipulation. Then the score

depends on both: the strength of co-expression and also on the power of the

test. Hence, we have to find a consistent way to interpret the scores that we

can define the desired strength of co-expression beforehand and then trans-

late it to actual score thresholds. The critical part is to take into account

also the dependance between p-values and the number of datasets used in

query.

5.1 Percentile approach

One possibility for thresholding the number of genes, is to study the

overall distribution of BetaMEM p-values. We can perform the query with

all the genes and record all the similarity scores. This way we obtain a

global distribution of similarity scores on real data. The natural way to

place similarity thresholds to the data, would be using the percentiles of the

global distribution. These thresholds would correspond to testing hypothesis

if the co-expression between these two genes is stronger than between two

randomly selected genes. The choice of the percentile to use would correspond

to the desired confidence level. For instance, if we take the 1% percentile of

a global BetaMEM score distributions for a threshold, then we test the given

hypothesis on significance level 0.01. Basically, this thresholding scheme

shows how exceptional is the result given all possible queries. Even more

intuitive way to express the percentile, is by fixing the number of expected

results. Since we have about 22000 genes on an array, then on average 220

genes should exceed the 1% percentile threshold on each query. In context

of our web tool tuning the number of expected results is a natural way of

adjusting stringency of queries.
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Of course, the scores still depend on the number of datasets used. So

to use this method we have to calculate the thresholds for every possible

number of datasets. These thresholds do not depend only on m, but also the

corresponding datasets. A priori m random datasets will produce thresholds

similar to the Bonferroni results. So is it enough to calculate the thresholds on

every m or do we have to calculate the thresholds on every single combination

of datasets. If the latter is true, then the task would be close to impossible.

5.1.1 Calculation of percentile thresholds

To study the applicability of the percentile thresholds, we examined them

on real data. The data consisted of 140 microarray datasets downloaded from

NCBI GEO public microaarray database. All experiments were performed

using Affymetrix HG U133 platform.

To study the threshold dependance on number of experiments m we took

random subsets of experiments with sizes 10, 20, 30, ..., 140. To see the

variability introduced by selection of experiments, we had 3 different subsets

for each value of m. We calculated the thresholds for each combination of

experiments. Since calculating the whole score distribution means about

22000 queries, we decided to approximate it by using results of 2000 queries

per subset of experiments. The percentiles were obtained by first storing the

results, sorting them and taking the value on appropriate position. Found

percentile thresholds are depicted on Figure 5.1. The resulting thresholds on

the figure correspond to 4, 16, 64, 256 expected results for a query.

By increasing the number of experiments m the thresholds are really get-

ting smaller, as expected. However, the replicate experiments on the same

m value are quite close together. To summarize, the variation introduced

by using different subset of experiments and approximating the score distri-

bution is much smaller than the variability due m. The latter means that

we can calculate the thresholds by taking into account only the number of

datasets used for query.

However the most interesting result is the clear linear dependance be-

tween the thresholds and number of experiments m in the log scale. This

dependance means we can calculate the thresholds without having to do ex-
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Figure 5.1: Linear dependance between number of datasets used and p-value

thresholds. The thresholds are given on negative log10 scale.

tensive queries. We just calculate the thresholds on few m values and find

the linear regression line through them. For intermediate values we can use

the values predicted by the regression line.

5.1.2 Testing the thresholds

Now that we know how to compute reasonable thresholds we can take the

next natural step in applying them to the real data. Although the thresholds

specify the expected number of genes per query, we do not know how the

actual distribution of results looks like.

In order to get some insights on this issue, we analyzed the same data

we used in threshold computation. Namely we studied, how many genes are

above the similarity threshold. An example in the case of using all experi-
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ments can be seen on Figure 5.2. The distribution is very similar if smaller

subsets of data is used.

Distribution of the number of  the results in 2000 queries,
 with 20 expected neighbours
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Figure 5.2: Histogram describing the distribution of number of results of a

query. This example is based on 2000 queries with expected return of 20

genes, 76 values were left off the picture because they were bigger than 150.

The maximal value was 574. On second plot we can see the relation between

the number of neighbours and the number of genes having so many of them,

in the log10 scale. This graph shows that the number of neighbours follows

approximately the power law.

The bottom line is that the results are really asymmetrically distributed.

In fact, the second graph reveals that the distribution follows approximately

the power law. Power law is a polynomial relationship between two variables,

usually in the form

f(x) = axk, (5.1)

where a and k are constants. The examples of power law can be found

everywhere, for example famous 80 - 20 rule (80% of the effects come from

20% of the causes) is based on it. It has been found, that the distribution of

the number of connections of nodes in all kinds of networks, tend to follow

power law.
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After taking logarithm from both sides of (5.1), we get a linear relation-

ship log (f(x)) = k log x+log a. In brief, the data follows the power law if the

log-log plot is close to linear. In our case, a line fits the data very well. Lin-

ear regression on the logarithmed data described 79% of the variation (R2).

It has been shown that this is the case also with gene expression networks

[SSKK03, LHS+04]. So our results fit in really nicely.

5.2 Rank rescaling methods

In this section we propose another algorithm for constraining the num-

ber of results and making BetaMEM scores independent of the number of

datasets used in the query. This approach takes us a step back to the rank

matrix. We modify the rankings before calculating the BetaMEM p-values.

The BetaMEM method is a statistical test that measures how much the

ranking distribution is skewed towards 0 compared to uniform. The study

with Bonferroni thresholds showed that the test power grew rapidly, when

increasing the number of experiments used in query, i.e increasing the sample

size. We want to control the number of results in a query, by specifying the

strength of the co-expression beforehands. A natural idea is to control the

power of the test, by adjusting the sample size.

As before, we assume that the meaningful ranking vectors are samples

from a mixture distribution, with uniform and skewed component. The

more skewed the mixture the stronger the co-expression. Depending on the

strength of similarity, different sample size is needed to distinguish it reli-

ably from uniform distribution. Thus, the strength of co-expression can be

classified, by the size of sample we need for detecting it.

In practice, the user will specify the desired strength of co-expression,

by giving the sample size. The ranking vectors are calculated as usual, but

before calculating the BetaMEM scores, the ranking vectors are transformed

into a new sample with the size given by user. The p-values are calculated

based on the new samples. At the end, Bonferroni thresholds can be applied

to the scores to detect significant similarities.

Let us have a sorted ranking vector r = (r1, . . . , rm). We assumed that

this ranking vector represents a sample from an underlying mixture distribu-
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tion. Our goal is to rescale the sample without losing information about the

distribution. It is useful to represent the sorted ranking vector as an increas-

ing function of the element position. We can normalize the positions also into

the range of (0, 1) and denote xi = i
m

. Figure 5.3 shows two interpolations

of a ranking vector.
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Figure 5.3: Different ways to represent and resample the ranking vector. On

first plot the vector is represented as a step function and on the second as a

linear interpolation of the points. The original vector has 15 points, the red

line represents the resampled vector that contains 6 points.

The first is a stepwise function, where all the values in range (xi, xi+1)

are equal to ri. The second plot represents the linear interpolation, where

all the points from ranking vector are connected with a straight line. Each

line Si between the dots xi and xi+1 can be written down as

Si(x) = ri +
ri+1 − ri
xi+1 − xi

(x− xi). (5.2)

The rescaling can be done using those functions. Suppose the desired

sample size is k. We can lay a grid with k points between 0 and 1, for

example take values {1/k, . . . , k/k}. We obtain the new ranking vector, if

we calculate the values of our interpolated functions on this grid.
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Technically the method suits for both scaling down the ranking vectors

and also scaling up, if the original sample size is smaller than desired. The

question is, if scaling up is advisable. Does the smaller sample describe the

distribution well enough that the BetaMEM scores on rescaled larger sample

will be similar to those obtained from real distribution. Or the upscaling

amplifies all the random effects and produces artificially better scores than

the actual underlying distribution would. Of course downscaling may have its

problems. The main question is, how much information we lose by rescaling

the vector. How much does the order of results change, if we throw out most

of the observations.

We have to study the two possible problems outlined above. If the method

can cope with both of them, then we have an intuitive algorithm that achieves

two goals at once: we can adjust the co-expression thresholds by the strength

of similarity and make the score independent from m.

5.2.1 Rescaling influence to BetaMEM scores

We assumed that the ranking vector comes from a mixture distribution.

By rescaling the vector we try to preserve the most important characteristics

of the distribution, so the BetaMEM scores are comparable to those obtained,

by sampling the vector straight from the mixture distribution. To study

BetaMEM score behaviour in case of rescaled vectors, we fixed the mixture

distribution, generated samples with different sizes from the distribution,

rescaled them and applied BetaMEM.

The mixture distribution was defined as follows: 20% values were from

Beta(1, 200) distribution, which is really close to 0 and 80% are from uniform

distribution. The rank vectors are sampled with sizes 10, 20, 40 and 80. With

each size we sample 1000 vectors. The vectors are rescaled to size 40 and

BetaMEM scores are calculated based on the rescaled samples. The results,

both with step-function rescaling and simple spline are on Figure 5.4.

As we can see on the figure, then downscaling the samples does not do any

harm in terms of BetaMEM score distribution. The distribution of scores in

the downscaled samples seem to be identical to the no rescaling case. However

upscaling can cause problems. The things are especially bad using step-
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Figure 5.4: BetaMEM scores on the samples with different sizes from same

distribution, rescaled to sample size 40.

function, it tends to create artificially smaller BetaMEM scores. However,

the spline approach works fine both ways. On upscaling the scores are a bit

smaller than they are supposed to. Thus, the upscaling is rather conservative,

the co-expression that we can detect has to be stronger, than the one we can

detect from the larger sample. This means we do not amplify the random

effects of smaller samples and introduce false positives.

On downscaling another effect comes into play that is not visible from

Figure 5.4. The BetaMEM scores from downscaled samples have a smaller

variation than scores from vectors with same size that have been sampled

straight from the mixture. To reason for this is very simple. Say we know

the real distribution generating the rankings. Then we can find a most rep-

resentative sample from that distribution, with the size k and calculate the

BetaMEM score based on that. There is nothing random in this process, so

there is no variance in resulting score. Now by increasing the sample size

we get better approximation to the real distribution generating the scores.

Therefore, the variance of the score decreases. Illustration of this can be

found on Figure 5.5.

In summary we can say that in terms of BetaMEM scores the rescaling
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Figure 5.5: BetaMEM score stabilization. The first plot displays the Be-

taMEM score distribution if a sample with 20 elements was taken straight

from the distribution. Second shows the scores on the same distribution, but

the original sample size was 100 and it was downscaled to 20. The scores are

on log10 scale.

of ranks is reasonable, especially when using the spline based method. On

downscaling, the distribution of BetaMEM scores stabilizes. On upscaling,

the distribution of the scores does not become unstable and create artificially

false positives.

5.2.2 Stability of the list on rescaling

Another question is, how much information we lose when rescaling the

rankings? If after rescaling the order of the genes changes completely, then

the rationality of this method is questionable. To explore this issue we applied

the rescaling to query results on real data to see the magnitude of changes

in the order.

To get some intuition, we performed queries with 10 and 100 random

datasets. Then we rescaled both the rank matrices of both queries to sample

size 40, recalculated BetaMEM scores and reordered genes based on them.
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Scatterplots that depict the dependance between old and new rankings can

be seen on Figure 5.6.
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Figure 5.6: Changes in the order after rescaling. Upscaling is done from 10

to 40 grid points, downscaling from 100 to 40.

We can see, that the rescaling does not stir up the rankings completely.

There is a strong correlation between the old and new rankings. It is interest-

ing to note that the differences between rankings seem to grow linearily, when

increasing the ranking. This suggest, that the magnitude of changes in the

order of results is proportional to the rank number. Thus, we can quantify

the changes introduced by rescaling, by studying the proportional differences

in rankings. Let σ and ρ be the orderings before and after rescaling. Then

for every gene i the rescaling error is

ei =
|ρi − σi|

σi
. (5.3)

For example in the cases presented on Figure 5.6 the average errors are 0.12

and 0.06 correspondingly. This means, on upscaling the average difference

between the old and new ranking is about 12% of the old ranking value.

We performed the same analysis on a number of queries, to get more com-

prehensive picture about the errors introduced by rescaling. We carried out
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500 queries with 10, 50 and 100 datasets. Rescaled the ranking matrix of the

top 1000 genes, reordered the genes and calculated the average differences.

The results are in Table 5.1.

10 25 50 75 100
10 0 0.122 0.117 0.139 0.141
50 0.170 0.088 0 0.035 0.011
100 0.131 0.076 0.045 0.031 0

Table 5.1: Average errors introduced by rescaling. Rows represent the num-

ber of datasets used and columns the target sample size.

We can see, that the order does not change too severely when rescaling.

Average difference in position is in every case less than 20% and usually

much smaller. Also, it appears that the stability of a list increases, if we

have larger original sample. Probably the differences between results are

more pronounced in case of larger sample and the downscaling does not

affect the relationships this much.

5.2.3 Choosing the target sample size

We claimed that we can specify the strength of co-expression by choosing

sample size. In our web tool, we plan to let the user choose the target sample

size in order to adjust the number of displayed results. Of course the sample

size itself, without knowing anything about the test, is rather unintuitive.

Therefore, we simulated samples from different scenarios and tested how big

sample is needed to detect the bias towards 0. The results of the simulations

should give intuition on selecting the target sample size on rescaling.

In theoretical treatment, we have assumed the mixture distribution of

rankings, where rankings come from either uniform distribution or one that

is skewed strongly towards 0. There are two parameters in the mixture that

influence the BetaMEM score. One is the proportion of elements from the

skewed distribution and the other is the actual skewness of the component.

If we want a comprehensive picture about the target sample size, we have to

vary both of the parameters.

We performed a following experiment. As the skewed distribution we
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used, the beta distribution with the first shape parameter being equal to 1.

This left us decreasing distribution, with density function

f(x) =
1

B
(1− x)β−1, (5.4)

where B is a normalizing constant and β the only parameter. The distribu-

tion is defined in range (0, 1) and its expected value is 1/(β + 1).

We fixed a set of values for both parameters of the mixture distribu-

tion. In choosing β values we kept in mind that we have roughly 20000

genes on a chip. The chosen β values correspond to the average rankings

of 10, 20, 30, . . . , 300. The proportions of skewed component were chosen to

be 10, 15, 20, . . . , 100. With each pair of parameter values, we tried to find

smallest size of the sample in which we can reliably detect the non random-

ness of the data, by using BetaMEM and Bonferroni threshold on significance

level 0.05.

To do that, we generated samples with 1000 rank vectors with given

parameters. We considered the sample as reliably detected, if BetaMEM

classified at least 950 rank vectors as significant. The results of the test can

be seen on Figure 5.7.

The results on Figure 5.7 can be used as a reference when user wants

to choose the target sample size in rescaling. Namely, we can visualize the

desired strength of co-expression and then look up from the Figure, how to

choose the target sample size. For example if we expect to have at least one

third of the rankings small, then we can rescale the rank vectors to size 20.
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Figure 5.7: Study on the size of sample that is needed to detect reliably a

rank vector from mixture distribution.
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Chapter 6

Dataset selection

So far we have developed methods for ordering the genes based on co-

expression with the query gene. We have also studied ways to determine the

number of relevant results. In this chapter, we study methods for selecting

the datasets. The selection of experiments that are used in the co-expression

search, is probably the single most important factor determining the outcome

of a query. We can improve the results significantly, if we apply proper

dataset selection.

more precisely, we explore how to quantify the importance of a gene in

a certain experiments. The latter allows us to improve the query by using

only datasets where a gene plays important role. This way we hope to find

neighbours that are similar to the query gene in most essential functional

aspects. We estimate the importance by variation of the gene in a experiment.

6.1 Dataset selection based on standard de-

viation

Microarrays are not very good at quantifying the absolute expression of

a gene, instead they give accurate picture about the dynamics of changes.

That is the reason, why correlation is a popular measure for co-expression.

But most of the genes are not changing their expression all the time. In a

typical experiment, the conditions are chosen to be quite similar, so not too
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many processes change between them. Thus, most of the genes are constantly

either turned on or off and the changes in their expression can be attributed

to random noise. On the other hand, similarity search gives less random

results if the query gene has big expression changes in the experiment that

reflect real biological rearrangements.

We can find an indirect confirmation of this claim, if we study the expres-

sion of genes that have many neighbours and those that have only few. As an

illuminating example, we took two genes that had hundreds of neighbours,

when using the percentile thresholds UBE1C and HNRPR and genes that

had none RABL5 and KCNIP2. Their global expression distribution over all

datasets can be seen on Figure 6.1.

RABL5

UBE1C

KCNIP2

HNRPR

Figure 6.1: Histograms of global gene expression distribution, for genes with

large number of neighbours are on the top row and no neighbours are on the

bottom row. The expression values are gathered from all datasets.

We can see immediately that the genes with many neighbours have a much

wider distribution. Consequently, they have large changes in many datasets

and similarity search in those experiments gives probably meaningful results.

As a result, BetaMEM test has more power to discover the co-expression.

Certainly we did not prowe that the large variation guarantees that we

get meaningful results, but might be a good indication. Nevertheless, we can
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use it to select datasets for query. Namely, we are going to assume the model

as follows for characterizing the influence of variation on search results. We

assume that there is a threshold for standard deviation of a gene expression

profile that can differentiate between the random fluctuations and meaningful

changes. If the standard deviation of a gene exceeds this threshold, then its

size does not matter too much. We can just consider that it is showing a

biologically meaningful effect. If we can find such threshold, then we have

a method for experiment selection. We can use just the datasets, where the

query gene has larger standard deviation than our threshold.

6.1.1 Study of gene expression variability

To verify the hypothesis postulated about the connection between gene

expression variability and number of query results, we conducted a series of

experiments on gene expression variability. The main aim was to explore and

characterize the dependance between query gene variation and the number

of results.

We calculated the standard deviations for every gene in every dataset.

For comparison we ran queries for 2000 random genes and found the number

of similar genes for each of them, by using percentile threshold that returns

on average 20 genes per query (see section 5.1.1). Now we had both the

data about the number of MEM results and also the standard deviations of

those genes in all datasets. Our model assumed that we can set a standard

deviation threshold in a way that the number of datasets, where the genes

variation exceeds that threshold, is correlated with the number of MEM

results. We used standard deviation threshold 0.45 for testing out our model.

The threshold has proven to be reasonable in our prior experience.

For each of the 2000 genes, we have the number of results and the num-

ber of datasets where its standard deviation exceeds 0.45. The correlation

between the two variables is 0.3, which is not too strong, but still indicates

an association between the two. To get a more precise picture about the

connection, we built a simple linear model between the variables:

ni = α + βdi + ei, (6.1)
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where α and β are the model parameters, ni shows the number of neighbours

for gene i, di is the number of datasets where its standard deviation exceeds

0.45 and ei is the error term. The fitted model showed that the factor d was

very significant for estimating the number of neighbours, its significance p-

value was close to 0. However, the model describes only 9% of the variation,

which is quite low. That means the standard deviation certainly is a factor

in determining the number of neighbours, but it does not explain too much.

We showed that even with a rather arbitrary standard deviation thresh-

old we can see the correlation between number of neighbours and variation.

To use the fact in practice, we should find a most optimal threshold that

distinguishes biological noise from meaningful expression. We can use the

same linear model to optimize the standard deviation cutoff, by finding one

that maximizes the significance of linear model.

We optimized the threshold, by trying a set of values. We fixed a grid of

possible thresholds: 0.10, 0.11, 0.12, ..., 1.00, and fitted the linear model in

each case. The range of grid was chosen based on previous experience. Figure

6.2 displays the relationship between the standard deviation threshold and

a t-statistic that measures the significance of the threshold in predicting the

number of neighbours.

Figure 6.2 clearly indicates that the standard deviation threshold that

maximizes likelihood of the model was 0.33. The unimodal shape of function

seen on Figure 6.2 matches pretty well the intuition about the thresholds.

Namely, if the threshold is too low, we include noisy datasets to the search,

if it is too high, then we throw out potentially useful information.

In case of our best standard deviation threshold 0.33, the linear model

describes 12% of the variation in the data. The number is still quite small.

To see why, let us turn to the scatter plot of the data that is shown on

the Figure 6.3. We can see that most of the queries have very few results,

regardless of the number of datasets with large standard deviations.This is

consistent with our earlier observation that the distribution of the number

of neighbours follows approximately the power law. Now if we concentrate

our attention to the genes that have many neighbours, we can see clear de-

pendance between the number of results and highly variable datasets. Thus,

we can conclude that high variability of gene expression is necessary, but not
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Figure 6.2: Optimization of the standard deviation threshold. On the y-axis

is the t statistic showing the significance of the number of highly variable

datasets in estimating the number of results. On x-axis is the standard

deviation threshold.

sufficient, condition for having high volume of neighbours. This means, we

do not lose too much information by throwing out the datasets where the

variation of query gene is low.

The plot on right hand side on Figure 6.3 is there just to reassure that

with our threshold the number of highly variable datasets is reasonably

6.1.2 Experiments with standard deviation threshold

Another interesting aspect to study is how this selection method based

on query gene variation works in practice. Therefore, we ran the queries on

selected datasets. To evaluate the goodness of results, we decided to look at

the corresponding BetaMEM scores. As a comparison we used query results

with random selection of datasets. If the scores with selected datasets are

consistently better than with random experiments, then it shows that we

have really reduced the noise and obtained more relevant results.

We took 20000 genes and for each gene identified the datasets, where its
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Figure 6.3: The left pane shows the dependance between the number of

results and number of datasets, where the standard deviation of expression

profile exceeded 0.33. The right pane describes the distribution of the number

of highly variable datasets over genes, given the optimized threshold 0.33

standard deviation exceeds 0.33. These datasets were used in the queries

with the corresponding genes. Our goal was to compare the similarity scores

from these queries with the scores with random data. We want to see if the

scores on selected datasets are consistently lower than on random datasets.

Let us recall the percentile based thresholds from section 5.1.1. The thresh-

olds were just percentiles of the global score distribution that characterize

well the behaviour of the smaller scores. To compare the distributions we can

study the percentiles of BetaMEM scores on selected and random datasets.

Previously we varied the number of datasets m and generated 2000 query

results for each one. Now the situation is more complicated, since m de-

pends on the reference gene. To solve the problem, we grouped the queries

by the number of experiments and calculated the percentiles in each group

separately. The new percentiles together with old ones are shown on Figure

6.4.

Figure 6.4 clearly indicates that BetaMEM scores on selected datasets

are significantly better than the ones on randomly chosen data. The lines on
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Figure 6.4: Comparison of the BetaMEM score distribution in the case of

random and selected datasets. The p-values are on -log10 scale

the picture describe the BetaMEM thresholds which should give out certain

number of genes on average. A closer look at the two sets of thresholds

reveals that the ones based on selected data are significantly better. We can

say very roughly that using the thresholds derived from randomly chosen

data will give four times more results on selected datasets than expected.

The results show clearly the utility of dataset selection.

Let us use the percentiles as thresholds on the actual queries, to see

if the standard deviation based dataset selection had any influence on the

distribution of results. The percentile values calculated on each m value were

little noisy (see Figure 6.4 left pane), due to small number of queries each

of those is based on. Therefore, we approximated the thresholds with linear

regression through all the individual percentiles. We applied them on all the

previous queries. Figure 6.5 contains a comparison of the number of results

with dataset selection and without it.

Although the distribution of the results seems to still follow the power

law, it is bit more balanced, than in case of all datasets. Thus, there are

less queries that do not give any results. This is of course good news in the

context of our web tool. But it also shows that by careful noise reduction, we
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Figure 6.5: The distribution of results for 20 expected neighbours using all

datasets vs using only significant datasets.

can reveal the connections between more genes and thus get more complete

results.
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Chapter 7

Practical outcome

The main goal of this thesis was to develop methods for expression simi-

larity search over multiple datasets. Hand in hand with the evolution of the

methods we have developed also the tool that implements them. Therefore,

the most important practical result of our work is the actual tool itself. In

this chapter we display the tool and discuss the features. Most of the simple

features that were proposed in the thesis are already implemented, some of

the more advanced methods are yet to be added.

We have also applied the tool on several settings. Here we show some

results to confirm that our tool really finds biologically meaningful results.

First, we present outcome of a WebMEM query with a known marker of

breast cancer FoxA1. We find several other breast cancer genes that are

similar to it. To show the applicability on a larger scale, we calculate expres-

sion similarities between genes from a metabolic pathway. The result allows

us to identify a subgroup of genes from the pathway that are very tightly

co-expressed.

7.1 The tool

There are not so many tools around that do gene expression similarity

queries over several datasets. The main reason is technical and conceptual

complexity. The query is computationally very expensive, since the corre-

sponding data sets are big. Smaller datasets are only few, larger can be up
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to 40-50 megabytes. As a result, analyzing one dataset at a time is not a

problem but if we have a hundred of them, then even reading in the data can

be quite slow. As a second step, we have to measure the co-expression and

sort the results that also takes time. According to our algorithm we have to

calculate the distances and sort in every dataset separately and afterwards

aggregate the results. This means a lot of computations that can be hard to

do within reasonable time.

In our case, the computationally expensive part, let us call it CoreMEM,

was programmed in C++ by Meelis Kull. CoreMEM works as a standalone

command line tool. The main methods from this thesis are implemented in

this part. The CoreMEM start the query from dataset selection, it is possible

to select the datasets based on standard deviation of query genes. The next

step is the actual calculation of all the relevant distances that can be done

with many distance measures. The last part is aggregating the rankings,

where also BetaMEM is implemented.

All this is done very fast, a full query with 140 datasets takes time about

10 seconds, if less datasets is used, the speed is even higher. CoreMEM is

especially useful if one does a large scale study, where results of many queries

are needed. For example, many experiments in this thesis would have been

impossible without that tool.

Although the CoreMEM is very useful for large scale studies and for power

usage, it is too complicated for ordinary biologist. In particular note that

the interpretation of results can be difficult for persons without sufficient

statistical background. To alleviate these shortcomings, we have built a web

tool on top of the CoreMEM. The web interface was programmed by Priit

Adler and it makes using our tool rather convenient. We call it WebMEM.

The Figure 7.1 represents the user interface of WebMEM.

An important parts of WebMEM are also the data collections. We have

gathered several groups of expression datasets from various sources. For

example for yeast, mouse and human we have a data collection that contains

all experiments that are publicly available on GEO database [BTW+07].

In addition we have data collection, where each dataset represents different

cancer and the data is compiled from different public sources [Con].

The normal usage of WebMEM is as follows. First, to do a query with
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default values, user has to insert only a gene name and select the data collec-

tion. The microarray can measure same genes with several different probes.

If that is the case for query gene, the program offers the choice, which probe

to use.

If the user wants he or she can customize the query further through the

advanced options, see Figure 7.1. The first batch of options lets user choose

the co-expression measure, rank aggregation method and output type. Al-

though we have always used correlation distance in this thesis, there are other

meaningful co-expression metrics that can be used in for queries. Therefore,

we have a wealth of choices for the metric. In addition to correlation we

have absolute correlation, eucleidic, minkowski, manhattan and many other

distances.

The default choice for rank aggregation method is BetaMEM, but there

are other choices, such as mean and geometric mean of k smallest rankings.

The output type can be chosen between textual and graphical output. A

textual output just lists the genes and their similarity scores, but graphical

shows also the rank matrix and indicates, where the co-expression was sig-

nificant. The example of graphic representation is on the bottom of Figure

7.1.

The next set of options deals with dataset selection. the user can use for

example a standard deviation threshold for that. Finally, we can select how

much output we want. We can control it either by the similarity score or

give a hard threshold on number of results.

The results themselves are represented as a table, where on the rows are

found genes and on columns datasets. The table itself represents the rank

matrix, based on what the similarity scores are calculated. Red squares rep-

resent the small rankings and blue the big. Large squares are the rankings

that were used in calculating the similarity score. As an example consider

BetaMEM score, then the ranks with large squares are the ones that were

classified as significant by BetaMEM. The purple squares on the top row

represent the standard deviation, the brighter the color the smaller the stan-

dard deviation. This representation gives user information about how the

query gene behaves in the selected datasets and in which datasets the the

co-expressions occurred.
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The link “Annotate results using Gene Ontology!” on top of the graphical

output gives a functional characterization about the resulting gene list. It

leads to g:Profiler [RKP+07], a tool developed in our group. The g:Profiler

tool finds functional categories that have large overlaps with the list.

One thing that current implementation of WebMEM lacks is an intelligent

dataset selection form. Very often the biologists are interested only in con-

nections between genes on very specific conditions, such as on some disease

or tissue type. It would be very good if we could select datasets based on the

biological conditions they correspond to. One problem is certainly the poor

annotation of microarray experiments, it is hard to divide the experiments

into biologically similar groups automatically. In our workgroup Aleksandr

Tkatchenko is applying some text mining methods on the problem.
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Figure 7.1: The WebMEM.
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7.2 Biological results

The tool can be used in wide variety of situations. Depending on the

biological question, different aspects of the results are interesting. A single

query can already give a lot of information. Often, the query can be only

one step on a longer pipeline of actions. For example, when searching for

regulatory elements on genome, we can use our tool to produce groups of

tightly co-regulated genes. We may also opt for large scale queries, where we

are trying to build huge gene expression networks, by finding the edges by

queries of CoreMEM. Here we just give a few examples about MEM usage in

biological context.

As the first example, we demonstrate the query with FoxA1 that is a

widely known marker gene of breast cancer [WBW+07]. Corresponding out-

come of the query is shown on the Figure 7.2. To reduce the noise the query

was done using only datasets where FoxA1 had large variation. The red boxes

mark the genes that are also often related to breast cancer. We can see that

the all the genes in our results were close to query gene in first six datasets.

It turned out that all the six experiments studied breast cancer. In summary,

a query with a marker of breast cancer identified several other genes that are

related to the disease and also brought out the experiments that were related

to the cancer. Therefore, biologically our query gave meaningful results.

Of course a single query on a single gene does not prove anything, it only

gives an intuition what kind of results we can expect. The second example

shows the large scale usage of the tool and tries to give more comprehensive

argument about the usability of it. We have mentioned several times that

given a functionally related group of genes, we can associate new members to

the group by searching genes with similar expression. This idea is based on

assumption that functionally related genes are also co-expressed. Although

this is a reasonable guess, it must be verified using practical data. To study

this hypothesis, we calculated BetaMEM scores between genes known to work

together and looked if we can find strong co-expression.

More specifically, we took the metabolic and signaling pathways from

Reactome database [VDS+07]. Then we calculated the BetaMEM scores

between all the genes on each pathway using the 140 human datasets. To
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Figure 7.2: The WebMEM query result with a gene FoxA1. The red boxes

mark other known breast cancer related genes. The green box indicates the

datasets related to breast cancer.
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visualize the results, we drew a clustered heatmap that has the same genes

both on rows and columns. The color of the boxes on the heatmap repre-

sents the log10 of BetaMEM scores between the corresponding genes. The

clustering should group together the genes that are similar with the same set

of genes. Therefore, the clusters tightly of co-expressed genes should appear

as darker boxes on the diagonal.

Figure 7.3 shows the results on Transcription pathway. The method

clearly works, as we can clearly identify one large group of genes that are

co-expressed with each other. Down the diagonal we can see other smaller

groups of genes that are also co-expressed. Several other pathways had even

larger groups of similar genes. The latter proves that some biological path-

ways, or at least parts of them, are really tightly co-expressed. Also, we are

able to find the co-expression with with our tool.
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Figure 7.3: The BetaMEM distances between the genes on the Transcription

pathway. we can clearly identify a group of genes that are very similarly

expressed
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Chapter 8

Discussion

Although we have solved most of the problems with rank aggregation,

there are several inherent limitations. We can only do the similarity search

using a single specific microarray platform at a time. Even though on some

platforms there are hundreds experiments available, incorporating many plat-

forms should give more comprehensive picture about the different tissues,

diseases and biological conditions. In this chapter, we discuss possible ways

to extend existing methods that we would be able to perform the query over

several microarray platforms.

As a second problem, we note that sometimes we are not only interested

only in co-expression with one gene, but rather with a set of genes. For in-

stance, we may want to associate new genes with already known functionally

coherent group of genes. Therefore, we discuss how to extend our methology

so that we could measure distance between a gene and a group of genes.

These methods utilize the concepts introduced in the previous chapters,

such as rescaling the rankings and BetaMEM score. This demonstrates the

strength and universality of our early design decisions that make extending

the capabilities of the tool relatively simple. This is important, since these

advanced queries are not available in any existing tool that we know of. Thus,

implementing those will be our top priority in the future.
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8.1 Combining data from different platforms

The advances in technology mean that more accurate sequence data with

better annotation becomes available all the time. That means it is possible

to design more precise microarrays. The large companies update their chips

from time to time, we refer to a chip as one platform. The difference between

platform is mainly in the sequences of probes that capture the mRNA. Some

of them are removed, some added and many changed. Thus, the collection

of genes is changed and we cannot be entirely sure that the changed probes

capture exactly the same mRNAs. All the reasons we mentioned make com-

paring data on different platforms not trivial.

One additional problem is, that expression of one gene is usually measured

with several probes on a chip and the measurements are sometimes quite

different. On one platform we may just use any of those probes and we do

not have a problem. If we are going to combine the data, then it becomes a

worry, because we have to find some kind of mapping between genes and the

probes that measure them.

In spite of all those problems it is important that we could extend the

MEM query over several platforms. The latter would dramatically increase

the number of datasets biologists could use in co-expression studies. Al-

though, results of chapter 4 indicate that we do not need to use more data

to increase the power of the test, we will cover larger variety of biological

conditions this way. As a result, we can perform queries that cover only a

certain type of experiments. For instance, we can search for co-expressions

manifested only in certain tissues or cancer types.

To extend MEM query to multiple platforms, we have to address all the

problems outlined before. As a first step toward solution we must combine

the expression profiles measuring the same gene in every experiment. There

is no correct solution to this task, but we can try some simple options. For

example, we can average their expression, select the ones that have largest

absolute expression or select the ones with the largest variation. Which

aggregation method is the best, is a question that cannot be determined

without extensive tests and therefore requires separate study. In the end of

this step, we have expression matrices with one expression profile per gene
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and the genes are comparable between platforms.

Next, we can proceed with the normal ranking queries. That is, given the

query gene, we can calculate the rank matrices on each platform where the

gene is present. We have to normalize the rankings to the range (0, 1) , before

combining rank matrices Next, we combine rankings from all the platforms,

where the gene is present. As a result we obtain a ranking vector for every

gene. The length of the ranking vector might vary. To get comparable

BetaMEM scores, we have to rescale the the rank vectors to a common length.

The previous results in chapter 5 indicate that linear interpolation of empiric

probability distribution should provide optimal result. After rescaling, we

can calculate the BetaMEM scores and sort the genes according to them.

The most critical part of the scheme presented above is compressing the

expression profiles, which requires separate study. In other respects the al-

gorithm is fairly straightforward and its implementation is our first priority.

8.2 Distance between gene and list of genes

One of the most important applications of MEM is associating genes with

some known biological processes. It is usually done by finding genes that are

expression wise similar to the the genes involved in the process. We can be

more confident in the association, if the gene is similar to several genes with

similar function. In a sense, we are trying to find a distance between a gene

and a set of genes. Of course, we can do the queries one by one and combine

the results afterwards, but it is more reasonable and elegant to calculate the

distance straight from the ranking matrices. In the follows we propose a

methodology for computing distances from list to gene and vice versa, that

can be applied on different occasions.

8.2.1 Estimating distance from gene to list

We start discussion on gene to gene list distance providing a beautiful

example. Assume we have collected an extensive database of experiments

and biologically relevant gene groups. For example, consider a database of

metabolic and signaling pathways, protein complexes and so on. Again user
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enters a query gene, but instead of genes it lists the functional groups by the

expression similarity to the query. That is, the tool finds possible functional

associations for a gene and outlines relevant experiments. The tool can give

valuable hints about the function, especially if the query gene is otherwise

poorly characterized.

For such ranking we can still use the rank matrix produced by MEM,

when defining the distance. Given a query gene, we use MEM to calculate

the n ×m ranking matrix R. Additionally, we have a group of functionally

related genes S = {s1, . . . , sk}. Let the RS be a fragment of R that contains

only rankings of S elements. All rankings in RS can be considered as a

sample from our mixture distribution with a small and a uniform component.

Strictly speaking, ranks in the same columns are not independent but we can

neglect this if the size of S is small compared to total number of genes. As

a result, we can apply the BetaMEM method directly to this sample, to get

the score.

Now note that corresponding score can vary a lot if we calculate distances

for groups with different sizes. Therefore, we have to use rescaling methods

to transform the ranking vectors into same size. Also we can control the

strength of detectable events by carefully selected target ranking vector size

on rescaling.

Finally, we can use the feature of BetaMEM that tells us which rankings

contributed to the score. We can map these rankings back to the matrix

RS and identify the genes and experiments that contributed mostly to the

similarity.

8.2.2 Estimating distance from list to gene

Again let us start from an interesting example: predicting new members

to known pathways. That is, we have to find genes that behave similarly

to the set of genes. Obviously, we can use the method we just described

and perform the distance query for every gene and then use the results for

reordering. This means, we have to do thousands of queries which is too

expensive computationally. Therefore, we define distance from list to a gene.

There can be different reasons for such queries. First, this kind of query
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would allow us to naturally combine several measurements of the same gene.

More precisely, if a gene is measured multiple times on an array, we can do

the query with all the instances simultaneously to get more comprehensive

results for the gene. We can also insert genes that are known to interact with

each other and try to find more interaction partners.

We base our methods again to the rank matrices. Suppose, we have a

set of query genes S = {s1, . . . , sk} . We can calculate the rank matrices for

every each S element. Now there are several ways how to combine individual

rankings.

First, we can just merge the rank matrices column wise, so that for every

gene the rank vector contains ranks from all the queries. If there is no

connection between the genes, then the ranks can be considered independent.

Again, we can calculate BetaMEM scores based on those values. Of course

the sample size increases very fast if we increase the number of elements in S.

As the scores grow quite rapidly with increase of sample size, the increase in

sample size can make the scores uninformative. Therefore, we should control

the sample size with rescaling of the ranking vector.

The second proposal is a sort of minimum distance with the gene group.

We have the MEM rank matrices or every gene in S. Instead of just dumping

the rankings into one vector for each gene, we group the rankings based on

the dataset. Thus we have for every gene and every experiment k rankings.

We obtain the final sample for a gene, if we take the minimal rank from each

group. Basically, given a gene we select for each dataset the ranking that

shows the largest similarity to one of the genes in S. Of course, with such

treatment of ranks we lose the assumption about the uniform distribution

of non informative rankings, since every final rank represents a minima over

several ranks. As a result we should use more elaborate formula for p-value

that counts in the minimum. Nevertheless, we can use other algorithms,

such as average ranking or median ranking, for finding similarity score. We

cannot estimate the significance of those scores, but we can at least order

the results.

The last score is appealing, since the gene that it finds does not have to be

similar to the whole group of input genes. It suffices if they are really similar

to few members of the group. The last property is very important if we
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are trying to assign genes to some metabolic or signaling pathways. These

pathways are not entirely homogeneous in expression, rather they contain

several subsets of genes that behave similarly. Thus, the minimum based

distance can give more relevant results in this context, since it does not

require similarity to the whole group of genes.

63



Chapter 9

Conclusions

Gene expression microarray has become a common tool among biologists.

As a result, the number of publicly available microarray experiments has

recently exploded. As whole genome studies, these experiments contain a

wealth of undiscovered information. The main goal of this thesis was to create

a tool that allows to explore this information and discover new connections.

In particular, we were interested in genes that behave in similar fashion in

multiple gene expression experiments.

When creating the tool we encountered several methodological problems

that we tried to solve within this thesis. The fist task was to come up

with a scheme for combining information from different experiments. We

chose a robust scheme, where we leave the individual studies intact, but

merge the results of individual similarity queries. As a result, we reduced

the task of finding similar genes into rank aggregation problem. Although

there are many existing methods none is appropriate for this task. Therefore

we had to design our own method for rank aggregation. To study and validate

the method we conducted a series of experiments that showed the method

performed satisfactorily in most situations.

Secondly, we addressed the question how to determine the significance

of obtained results. Namely, we described method for choosing significance

thresholds to the score values. Another interesting and practical issue was

the dependence between the score and and the number of experiments used in

the query. Our aim was to make the score independent of it, so the volume
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of results would be consistent regardless of the selection of datasets. We

proposed two solutions to achieve the goal. The first one is based on the

overall distribution of similarity scores. The second method exploits the fact

that our similarity score is a statistical test and we can control its sensitivity

by changing sample size.

While exploring the data, we noticed that the goodness of results is corre-

lated with the variance of query gene in the experiments used. We studied the

hypothesis and there was a strong link between these two quantities. That

gave us an idea how to reduce noise in the query by using only datasets,

where the gene has large variance. As a practical result we were able to also

quantify the needed variance.

One of the practical results of the thesis was the tool. We gave an overview

about its features and displayed also some examples about its usage. In

discussion we layed a path for further development of the tool. We introduced

several new query types that try to answer to biologically relevant questions.
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Ko-ekspressiooni päringud üle

mitmete eksperimentide

Magistritöö (40AP)

Raivo Kolde

Kokkuvõte

Geeni ekspressiooni mikrokiibid on muutunud bioloogidele igapäevaseks

töövahendiks. Seetõttu on viimasel ajal kasvanud plahvatuslikult avalikult

kättesaadavate eksperimentide arv. Ülegenoomi uuringutena sisaldavad need

andmed palju veel avastamata informatsiooni. Meie töö peamiseks eesmärgiks

oli luua tööriist, mis võimaldab kaevandada neid andmestikke ja avastada

uusi seoseid. Täpsemalt olime me huvitatud geenidest, mis käituvad väga

sarnaselt paljudes geeni ekspressiooni eksperimentides.

Tööriista loomisel kerkis esile mitmeid metodoloogilisi küsimusi, mille

lahendamisele ongi antud magistritöö pühendatud. Esmalt tuli välja mõel-

da, kuidas üldse ühendada informatsiooni erinevatest uuringutest. Meie ot-

sustasime suhteliselt robustse skeemi kasuks, kus me jätame eksperimendid

eraldiseisvateks üksusteks, kuid ühendame ainult sarnaste geenide otsingu

tulemused. Nii taandus meie sarnaste geenide otsing järjestuste ühendamise

ülesandele. Me uurisime põhjalikult olemasolevaid meetodeid selle ülesande

lahendamiseks, kuid ükski neist ei olnud meie jaoks sobiv. Seetõttu, me defi-

neerisime uue meetodi järjestuste ühendamiseks. Me testisime antud meeto-

dit nii simuleeritud kui ka reaalsetel andmetel ja jäime tulemusega rahule.
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Järgmisena tekkis küsimus, kuidas määrata saadud tulemuste olulisus

ja kuhu tõmmata selle piir. Inimene jõuab läbi vaadata vaid paarkümmend

kõige sarnasemat geeni, seega pole mõtet näidata tuhandeid tulemusi. Samas

on selge, et erinevate päringute puhul on ka tulemuste olulisus erinev, seega

näidata iga kord sama arvu vastuseid on ka vale. Sellele probleemile pakkusi-

me välja kaks lahendust. Esimene uuris üleüldist sarnasusskooride jaotust ja

määras piirid vastavalt sellele. Teine kasutas ideed, et meie sarnasuskoori saab

vaadelda ka statistilise testina, mille võimsust me saame ohjata valimi mahu

muutmisega. Mõlemal juhul me uurisime vastavate lahenduste käitumist kat-

setega nii reaalsetel kui simuleeritud andmetel. Mõlemal lahendusel on omad

voorused ning kumba kasutada, sõltub konkreetsest rakendusest.

Andmetega mängides jäi meile silma, et tulemuste headus on otseses seo-

ses päringu geeni hajuvusega kasutatavates andmestikes. Me uurisime se-

da hüpoteesi lähemalt ja leidsime tõesti selge seose. See andis meile idee

päringus esineva müra vähendamiseks: me kasutame ainult andmestikke, mil-

les päringu geeni hajuvus ületab teatud piiri. Me suutsime anda ka hinnangu

vastava piiri väärtusele.

Et meie töö peamiseks tulemuseks on ikkagi tööriist, siis andsime ülevaate

ka sellest. Lisaks pakkusime näiteid kasutamisest. Diskussiooni osas visanda-

sime plaani tööriista edasise arengu jaoks. Kirjeldatud algoritmid tõid ka

hästi esile esialgses disainifaasis tehtud valikute kasulikkuse.
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