
1
Tartu 2017

ISSN 1024-4212
ISBN 978-9949-77-404-3

DISSERTATIONES
MATHEMATICAE

UNIVERSITATIS
TARTUENSIS

111

A
N

N
A

 LEO
N

TJEVA
	

U
sing G

enerative M
odels to C

om
bine Static and Sequential Features for C

lassification

ANNA LEONTJEVA

Using Generative Models to
Combine Static and Sequential
Features for Classification

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS

111

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS

111

ANNA LEONTJEVA

Using Generative Models to
Combine Static and Sequential

Features for Classification

Institute of Computer Science, Faculty of Science and Technology,

University of Tartu, Estonia.

Dissertation has been accepted for the commencement of the degree

of Doctor of Philosophy (PhD) in informatics on 29th March, 2017

by the Council of the Institute of Computer Science, University of Tartu.

Supervisors:
Prof. Marlon Dumas
University of Tartu, Estonia

Prof. Jaak Vilo
University of Tartu, Estonia

Opponents:
Prof. Alessandro Sperduti
Università Degli Studi Di Padova, Italy

D.Sc.(Tech.) Jaakko Hollmén
Aalto University, Finland

The public defense will take place on May 22, 2017 at 16:15 in J.Liivi 2-405.

The publication of this dissertation was financed by the Institute of Com-

puter Science, University of Tartu and supported by Internationalization

Program DoRa carried out by Archimedes Foundation.

ISSN 1024-4212

ISBN 978-9949-77-404-3 (print)

ISBN 978-9949-77-405-0 (pdf)

Copyright: Anna Leontjeva, 2017

University of Tartu Press

http://www.tyk.ee/

Abstract

The accuracy of a classification model is highly dependent on the feature

set employed to train it. Extracting a suitable set of features from a dataset

can be a challenging task, particularly when the data captures observations

of phenomena that occur over time, such as a user interaction with a com-

puter system, a business process or a human movement. Such data usually

consists of features of an object that evolve over time (multivariate sequen-

tial features) and features that capture inherent properties of the object(s)

under observation (static features). Most existing machine learning algo-

rithms are designed to deal with either static or sequential features but not

both. Yet, in real-life scenarios, both types of features co-exist. This thesis

investigates the question of how to combine static and sequential features

in order to increase the accuracy of a classification model. The thesis ad-

vocates a hybrid generative-discriminative approach to build classification

models from sequential data and a framework that incorporates the hybrid

model to make an early prediction for an incomplete sequence. The key idea

is to use generative models (Hidden Markov Models and Recurrent Neural

Networks) to extract a set of features from multivariate sequential data,

and then to combine them with static features in order to build a discrim-

inative model. The main hypothesis is that the combination of generative

and discriminative models allows one to extract complementary patterns

from the data and to integrate them effectively in the resulting classifica-

tion model. The proposed hybrid approach is applied to three case studies

from different domains and involving different data types, specifically: (i)

prediction of deviant cases of a business process; (ii) detection of stealthy

5

fraudulent users in a social network; and (iii) discrimination of imaginary

movements in electrocorticography data. The latter case study illustrates

the use of the approach in the context of post-mortem classification of com-

pleted sequences, while the former two involve early classification, where

the goal is to predict the label of an incomplete sequence based on a model

built from a set of complete sequences. The advocated approach is able to

discriminate between deviant business process executions and normal ones

after only 5 events with an Area-Under-the-Curve (AUC) of 90%, to de-

tect 68% of stealthy fraudulent users with a 5% false positive rate, and to

achieve an accuracy of 80% for movement classification on electrocorticog-

raphy data. The thesis empirically compares the proposed approach against

baseline approaches and elicits properties that a dataset should exhibit in

order to benefit from the advocated approach.

6

Contents

Abstract 5

List of abbreviations 10

List of notations 11

1 Introduction 14

1.1 Contributions . 17

1.2 Outline . 18

2 Background 20

2.1 Classification . 20

2.1.1 Classification pipeline 22

2.1.2 Evaluation measures 24

2.1.3 Splitting strategies 26

2.1.4 Classification tasks in the case studies 27

2.2 Data types . 30

2.2.1 Sequences . 32

2.2.2 Graphs . 33

2.2.3 Data types in the case studies 33

2.2.4 Summary . 38

2.3 Classification models . 39

2.3.1 Discriminative classifiers 41

2.3.2 Generative classifiers 43

2.4 Ensemble learning . 55

7

3 Hybrid models and progressive index-based framework 60

3.1 Feature extraction from mixed data types 60

3.1.1 Feature extraction from sequences 60

3.1.2 Feature extraction from graphs 65

3.2 Hybrid models . 66

3.3 Notion of earliness . 75

3.4 Progressive index-based framework 76

4 Case study I: PBPM 81

4.1 Introduction . 81

4.2 Related work . 82

4.3 Complex symbolic sequence encodings in the PBPM domain 84

4.4 Evaluation . 89

4.4.1 Datasets . 89

4.4.2 Evaluation procedure 91

4.4.3 Results . 91

4.5 Discussion . 95

4.6 Conclusions . 99

5 Case study II: Fraud detection 101

5.1 Introduction . 101

5.2 Related work . 103

5.3 Fraud detection classifier and its inputs 104

5.3.1 Evaluation procedure 108

5.3.2 Results . 109

5.4 Conclusions . 112

6 Case study III: ECoG signal discrimination 114

6.1 Introduction . 114

6.2 Prerequisites . 115

6.3 Methods . 116

6.3.1 Stand-alone models for unicomponent data 116

6.3.2 Stand-alone models for bicomponent data 117

8

6.3.3 Multiple models on bicomponent data 118

6.4 Evaluation . 122

6.4.1 Evaluation procedure 122

6.4.2 Datasets . 125

6.4.3 Results . 128

6.5 Conclusions . 131

7 Conclusion and future directions 132

7.1 Summary of contributions 132

7.2 Future directions . 134

Appendix 137

Acknowledgements 138

Kokkuvõte (Summary in Estonian) 140

Bibliography 143

Curriculum Vitae 159

List of original publications 161

9

List of abbreviations

AR – autoregressive

ARMA – autoregressive

moving average

AUC – area under ROC curve

BCI – brain computer interface

BPI – business process intelligence

BPM – business process mining

ECoG – electrocorticography data

FPR – false positive rate

GB – gigabyte

GHz – gigahertz

HMM – hidden markov models

kNN – k-nearest neghobrs

LLR – log-likelihood ratio

LSTM – long short-term

memory unit

MA – moving average

ME – mixture of experts

ML – machine learning

MRI – magnetic resonance imaging

MSE – mean squared error

PBPM – predictive business process

monitoring

RAM – random-access memory

ReLU – rectified linear unit

RF – random forest

RMSProp – root mean square

propagation

RNN – recurrent neural networks

ROC – receiver operating

characteristic curve

RQ – research question

SVM – support vector machines

TPR – true positive rate

10

List of notations

In this list we present the common notations used in the work. We aim

to use the most common and consistent conventions, but notation systems

differ significantly in the literature and across domains. Therefore, the

same symbol may sometimes have multiple meanings, as well as the same

meaning can have different notations. Moreover, in some cases we keep the

difference to highlight the domain-specific value of it. In general, lowercase

letters denote indices and uppercase letters denote constants (for example,

timepoints are t = 1, . . . , T). Boldface lowercase letters indicate vectors

(e.g. x), while boldface uppercase is a matrix (e.g. A).

Notations for heavily-notated topics (e.g Baum-Welch algorithm and

LSTM unit) are described directly in the corresponding sections.

Symbol Meaning

D a (training) dataset

Dtest a test dataset

xi = (xi1, . . . , xim) a feature vector for i-th instance (with m features)

xi a value of a single feature for i-th instance

yi an output for i-th instance

N total number of instances in a dataset D with i-th instance
i ∈ 1, . . . , N

M total number of features in a dataset D, m ∈ 1, . . . ,M

Md total number of sequential features in D, md ∈ 1, . . . ,Md

Ms total number of static features in D, ms ∈ 1, . . . ,Ms

11

C total number of classes/levels in categorical feature, c-th level
is c ∈ 1, . . . , C

ŷ prediction of an output, either of a class or a score

Ic(x) indicator function for c-th level

Ω, Ω a vocabulary for simple and complex sequences, finite set of
elements

xseq
i a simple symbolic sequence of instance i and length t

Xseq
i a complex symbolic sequence of instance i, of length t and

with m features

xstatic, xseq feature vector static and sequential (explicitly highlighted)

T length of a sequence, t-th timepoint is t = 1, . . . , T

p(x) probability

X ∼ p random variable X distributed according to some distribu-
tion p

θ parameter vector

L(θ), l(θ) likelihood and log-likelihood function

s, s
′

states, s, s
′
∈ S

o observations, o ∈ O

K number of hidden states in HMM or number of clusters or
number of layers in a network

w, W weight vector, weight matrix

L(ŷ, y) loss function

st hidden node at timestamp t

� elementwise multiplication

x⊕ x
′

concatenation of two vectors

Lk, LE baselearner and ensemble learner

h(L) aggregation functions for ensemble, LE = h(Lk)

12

Domain-specific notations:

Symbol Meaning

BPL a set of historical traces in a BPM log (different versions are
indexed: BPL1)

σ a sequence corresponding to a business process

index similar to a timepoint in BPM

e event class in a trace

SKY a set of users represented via some set of features

ECOG a set of recorded trials in ECoG dataset

13

Chapter 1

Introduction

Classification is one of the most heavily used machine learning (ML) ap-
proaches as many real-life problems can be defined in terms of the classifica-
tion task. Discrimination between spam and non-spam emails based on the
content, detection of a disease based on the symptoms, categorization of cells
as benign or malignant based on MRI pictures are all prominent examples
of the classification task. In addition, several aspects contribute to the clas-
sification task popularity among ML practitioners, such as the existence of a
well-defined pipeline, ground truth comparison and the variety of available
methods. This leads to a number of frameworks that simplify the modeling
procedure and, thus, reduce the cost of trying different models in order to
choose the best one according to some goodness measure. Whether a model
succeeds in solving a particular task mostly depends on the chosen feature
space rather than on the chosen model. Despite recent efforts to make the
feature extraction from raw data automatic [Kriz 12, Hint 06, Beng 13], it is
still considered to be a long, iterative, and a largely creative process, where
the crucial goal is to construct informative, independent features that dis-
criminate between the classes and help the model to generalize well. In this
step, both the domain knowledge and the machine learning expertise are
equally required, which makes the whole process inefficient in terms of the
manual effort.

Moreover, raw data are not always representable through independent
features in a straightforward manner. Data types such as sequences and
graphs do not have a natural feature vector representation. There are mul-

14

tiple ways to aggregate the information or to come up with more advanced
features [Xing 10, Ries 10, Lin 03]. The task becomes even more challeng-
ing when the data consist of different data types. It often leads to some
data being either discarded or heavily aggregated as most of the machine
learning methods are not designed to deal with such a mixture.

In this work we show different possibilities how to handle multivariate
sequential data along with static features and graph data in a classification
task. We demonstrate that the results of common discriminative methods
can be improved by applying a generative approach for the feature extrac-
tion. Generative models belong to the class of models that optimize joint
probability, thus, aiming to reproduce the input data. Applied on multi-
variate sequences, they create a representation of the data in contrast to
the discriminative models, which only seek for the boundary between the
classes. The features extracted from the generative models enable the sub-
sequently applied discriminative classifier to access the sequential or struc-
tural information in the data. Therefore, the research hypothesis of this
thesis is that the use of generative models on the multivariate sequential
data together with the static features improves the resulting classification
model.

In this work, we propose the hybrid generative-discriminative approach,
which combines static and sequential components of a dataset and uses them
for the classification task. It is a two-step procedure, where we first train a
generative model on the multivariate sequential component of the data and
then use the output of the generative model along with the static component
to train a classifier. We compare the hybrid approach with another way of
model combination – an ensemble. In an ensemble predictions of different
models are used as features to train another classifier.

We apply the hybrid approach on three real-life problems from different
domains. By putting the problem of combining different data types in
the context of each domain we demonstrate the flexibility of the suggested
framework. First two case studies explore the possibility of early class
detection, where the goal is to predict a label using an incomplete sequence.
The third case study uses full-length sequences for the prediction in an effort
to discover the latent patterns. We discuss the details further and provide
the full machine learning pipeline for each of the case studies.

15

The first case study comes from the domain of Business Process Mining
(BPM) and aims to solve a predictive business process monitoring (PBPM)
problem, where the goal is to predict the outcome of an ongoing business
case as early as possible (for example, predicting whether the case will
deviate from the normal process flow). Commonly, a case is represented as
a sequence of events accompanied with the descriptive information that can
also be sequential. Such descriptive information in BPM domain is called a
payload. Earlier works on PBPM used different levels of aggregation: either
by calculating frequencies or using limited amount of payload information.
We show that the data can be represented via complex symbolic sequences
as well as list different ways of dealing with such a data type. We explore
simpler baselines that partially discard the information and compare them
to the approaches where all the available information is fed into the classifier.
We demonstrate that by using all available information from the logs we
significantly improve the results. We propose a general progressive index-
based framework that is beneficial for an early prediction of the outcome
of a business process. The results indicate that using this framework we
achieve high predictive power at early stages of the process – by using the
first few events.

The second case study analyses the problem of fraudulent users in Skype.
While being a very sensitive problem for the company, it has been studied for
some time. On one hand, the existing system already detects a vast majority
of fraudulent users. On the other hand, it is mostly semi-automatic with
a considerable amount of manual effort. We use available labeled data to
fit a machine learning model in order to detect fraudulent users in order to
potentially reduce the required manual effort. Furthermore, we improve the
existing approaches by finding fraudulent users that had not been detected
in first moments of their existence, which means that their behavior is less
common. The available data come from different sources, including dynamic
social graph and time series of Skype usage. The challenge is to fuse these
data types together. We apply hybrid approach with hand-crafted, static
features along with the ones extracted by applying the generative approach,
and demonstrate the usefulness of such combination.

The third case study is focused on multivariate time series of electro-
corticography data (ECoG) with the aim of classifying brain signal when

16

patients perform an imaginary movement of tongue or finger. While the
first two case studies explore feature extraction from the combination of
data types, the last part of the thesis aims at answering a slightly differ-
ent question: whether the feature extraction from a generative model – a
proposed hybrid approach is superior to an ensemble approach, where the
predictions from the generative and the discriminative models are combined.
In addition, we alter different parameters of a simulated dataset and derive
a few interesting observations regarding these parameters and how they af-
fect the classification accuracy. We provide insights into the properties a
dataset should exhibit in order to benefit from the hybrid method.

We believe that this work can be of particular interest for the practi-
tioners, who are seeking for model improvements in real-life classification
problems.

1.1 Contributions

To summarize, the contributions of this work are the following:

• We provide an overview of various ways to process data types such as
combination of sequences, static features and graphs in order to use
the data for the classification task purposes.

• We demonstrate how the machine learning pipeline can be adopted for
the cases when different data types are present. We do so on several
case studies.

• We suggest a hybrid generative-discriminative classification model
that efficiently combines static and sequential components of a dataset.

• We propose a progressive index-based framework that is beneficial
for an early prediction for multivariate sequential data and empiri-
cally validate the approach for the task of predictive business process
monitoring.

• We define several feature representations and compare them with the
suggested framework for an early prediction of process outcomes in
the BPM domain.

17

• We discuss how a combination of such data types as static features,
sequences, graphs, and sequences of graphs can enrich the classifier
for a fraud detection task.

• We compare hybrid and ensemble approaches, as well as “simpler”
models for a classification tasks on ECoG data and several public
datasets.

• With the help of a synthetic dataset we provide some suggestions how
and when to combine static and sequential components and when to
choose more complex methods over “simpler” models.

1.2 Outline

The chapters in the thesis are grouped into three parts: Chapter 2 dis-
cusses definitions, principles and basic concepts from machine learning field
that help the reader to go through the rest of the thesis. Examples and
illustrations are based on the case studies that are presented later.

Chapter 3 provides an overview of the existing solutions to the problem
of combining static and sequential features for the purpose of the classi-
fication task. The chapter further describes the hybrid models and the
proposed progressive index-based methodology as well as reviews the liter-
ature in this field. The notion of earliness is outlined in the context of the
suggested framework along with the reviewed literature on this topic.

Chapters 4, 5, and 6 belong to the third part of the thesis, where we
describe three case studies from different domains. In Chapter 4 we use
the classification model to make early predictions about deviant and reg-
ular business processes. We demonstrate how historical log data can be
represented in terms of complex symbolic sequences, where both static and
sequential data types are present. We make a hypothesis that using both
the control flow and the accompanying data payload helps to capture pat-
terns earlier compared to other baselines methods. We suggest to use for the
classification task index-based encoding and hybrid models that take into
account both data types. We support the hypothesis by the experimental
pipeline, where the baselines that rely on partial information are compared
to the suggested approaches. We show that we are able to achieve good

18

accuracy by making early predictions in case of two data logs and different
classification tasks. The results of this chapter were published in [Leon 15]
(Publication I).

Chapter 5 is based on the work published in [Leon 13] (Publication
II), where the hybrid approach based on Hidden Markov Models is used
for the discrimination of stealthy fraudulent users from the regular ones.
We also have different types of information at our disposal: static and
sequential data, as well as the dynamic social network. The idea is to
combine all of the information under the umbrella of a single classification
model, but instead of relying on aggregated summary statistics, we propose
to utilize generative model properties of Hidden Markov Models. The early
predictions are crucial for this task. We demonstrate that the technique is
promising by achieving 68% of true positive rate with 5% false positive rate.

The last case study is described in the Chapter 6, which is based on the
article [Leon 16] (Publication III). We apply the suggested hybrid model
with such generative methods as Hidden Markov Models and Recurrent
Neural Networks with Long Short-term Memory units on ECoG data, where
the aim is to classify between imaginary movements. We demonstrate that
raw sequential data can be decomposed into both static and sequential fea-
tures. Both of these data types can serve as an input to the classification
model if we use the hybrid approach. We use the ECoG dataset and several
other datasets in order to experimentally compare hybrid model to ensem-
bles, and to simpler techniques that use only static or sequential data. We
provide insights about data-specific parameters that can help to choose a
proper model for such a task.

Concluding remarks and directions for future research are outlined in
Chapter 7.

19

Chapter 2

Background

2.1 Classification

According to the common definition, machine learning (ML) is the subfield
of computer science, which explores and constructs sets of algorithms that
“give computers the ability to learn without being explicitly programmed”
(Arthur L. Samuel). Most often the term machine learning can be heard in
the context of big data as it is unfeasible to analyze huge amount of data
with regular analytical means or get useful information unless we apply
automatic pattern recognition[Murp 12, Han 11, Alpa 14]. In contrast to
the statistical hypothesis testing, in ML it is not necessary to define the
result of the analytical task in advance. Nowadays, the data are often
collected automatically without any particular goal, and the owner of the
data has a very vague understanding of what he wants to achieve with the
analysis. The beauty of machine learning is that ML provides methods not
only in case of the well-defined hypotheses, but can be applied to seek for
any interesting patterns in the data.

Algorithms that “give computers the ability to learn” are essentially ones
that can automatically detect patterns in the data. Once these algorithms
are “learned”, they can be applied on new or future data for the prediction
purposes or can help to extract digested information for decision making.

The field of machine learning is wide and expanding even more. For ex-
ample, some universities devote a whole curriculum to this field [Dono 15]
as the demand for the ML expertise is increasing. Typically, ML can be

20

divided into three main types: the supervised, unsupervised, and reinforce-
ment learning. The main difference of supervised approach from unsuper-
vised is that there is a “right” answer, or ground-truth; in other words, the
labels are provided along with the data. Supervised algorithms are trained
to predict that label using information from the data. Therefore, the prob-
lem is well-defined in terms of the error between predictions and the real
output – the smaller the mistake the better.

In unsupervised methods labels are not provided and the main task is to
cluster data, which means grouping of objects by some defined similarity.
The goal is to achieve such a division into groups, where the objects within
the groups are very similar, but not so much between the groups.

In the case of reinforcement learning, the methodology is somewhat dif-
ferent: the learning is performed by so-called agents that take actions in an
environment and get feedback either by getting a reward or a punishment.
Their goal is to maximize the reward and, thus, to determine an optimal
behavior in the given environment. Recently, this subfield of machine learn-
ing gained a lot of attention in the light of solving many tasks that were
previously unsolved, e.g. learning how to play Atari games. Another at-
tention spike was caused when the reinforcement algorithm won a human
professional in the advanced game Go [Mnih 13].

In this work, we mainly concentrate on problems related to the classifica-
tion task, which is a subtask of the supervised learning approach. Suppose
we are given a set of pairs D = {(xi, yi)}, i = 1, .., N , were xi is an input,
yi is an output for a particular instance i, and D is a training set of size N .
The goal of the supervised approach is to estimate an unknown function
from the input object x to output y:

f : x→ y (2.1)

The estimated function should be such approximation ŷ ∼ f̂(x) that gener-
alizes the relationship present in the data. In predictive setting it is applied
to predict output y for new instances by providing only input x as opposite
to the descriptive setting, where the goal is to explain assumed generation
process of the data.

The type of output y dictates the subclass of the supervised methods: in
case of continuous values, the problem is called regression, while in case of

21

categorical values of the output, the classification task is performed. Two-
class problem is called binary, but in general case yi ∈ {1, .., C}, where C is
number of distinct classes and the problem is called multiclass classification.

Continuous and categorical values are the most common types of output
with most of algorithms dealing only with these two types. However, more
complex problems are related to a non-trivial output type, like y being a
sequence (called temporal classification or sequence-to-sequence classifica-
tion) or any other structure (in general, referred to as structural learning).
The same is valid for the input x, so-called feature space. Features (also
often called variables or attributes) are vectors of size N . Let M be the
number of features. Then, for each instance i, xi is an M -dimensional fea-
ture vector, and x is N ×M feature matrix. In its simplest form, features
are either real-valued or categorical vectors, for example, the height or the
gender of a person, respectively. However, input data can come in various
forms, such as pictures, sequences, graphs, or any other objects. They are
often referred to as complex data types [Han 11]. In that case, it is not im-
mediately straightforward how to represent such structures in a classical ML
setup via vector representations [Murp 12]. Even more challenging is the
situation when the combination of various complex data types is present.

In this work, we discuss the representations of such complex data types
as sequences and graphs, their combination with static features, and how to
incorporate them together into the single ML pipeline. In the next section,
we discuss the ML pipeline itself.

2.1.1 Classification pipeline

The classification approach is summarized in the Diagram 2.1: features are
extracted from the raw data and the resulting feature matrix is split into
subsets: training, validation, and test samples. The main goal of such splits
is to prevent model from overfitting, which occurs when a model tries to
learn every fluctuation of the data instead of capturing general underlying
patterns. Usually it happens when complex models with many parameters
(compared to the number of data samples) are favored over simpler ones.
In case of overfitting, the training error becomes very small, but such a
model does not generalize to the test set, and, therefore to the real-world
data. In that case, estimating the performance on the unseen data helps

22

to diagnose the existence of overfitting. A validation set is required to be
able to choose hyperparameters – parameters of the models that can affect
the performance. The validation set helps to check performance iteratively
without seeing the test set. Multiple splitting strategies exist and we discuss
several of them in Section 2.1.3.

Next phase (Figure 2.1) is to fit a model to the training data, where the
algorithm can be tailored to the needs: models can be either interpretable,
but in general weaker in their performance, like logistic regression and deci-
sion trees, or black-boxes, like Random Forest or gradient boosted trees —
ensembles of many models that perform generally better, but more difficult
to understand the reasoning behind them.

Each fitted model is evaluated on a validation set using some measure of
performance. Again, there are various measures of model success that can
be used depending on several factors and on the field of application. Most
of measures for the classification are based on the confusion matrix. For
binary output often receiver operating characteristic (ROC) together with
Area under ROC curve (AUC) are used [Fawc 06]. We discuss evaluation
measures in more detail in Section 2.1.2.

If the resulting model does not perform well, there are many different
ways to proceed. For example, we can fine-tune model parameters (or hy-
perparameters), or change the feature space by extracting other features.
Another option to consider is to change the algorithm we use for the clas-
sification.

Once we find the best model among all the fitted ones according to
the defined metric, we apply it to the unseen data to make predictions.
Predictions are rarely provided in terms of classes, mostly they are on a
continuous scale – for binary classification from 0 to 1, where the cut-off for
the final class prediction can be chosen.

23

Figure 2.1: Machine learning pipeline

2.1.2 Evaluation measures

One of the most important parts of the machine learning approach is its
established experimental pipeline. While the collection of learning methods
is overlapping with the existing “classical” statistical approaches (where re-
gression is the most well-known example of such), the experimental pipeline
in machine learning is different. Instead of sophisticated hypothesis testing
in statistics, machine learning adopts the seemingly simple splitting strat-
egy, which is, however, theoretically justified by a field of statistical learn-
ing [Frie 01]. Such concepts as overfitting-underfitting and bias-variance
tradeoff can be considered as central in that regard.

There is no way to make claims about the “best classifiers” without a
proper definition of the classifier evaluation measures. These measures have
to be carefully chosen depending on a problem and the data at hand as there
is no single measure that “fits all". We introduce the measures that are used
in the experimental part of this work.

Recall that for the classification task we train a classifier by providing
the ground-truth outcome y. The algorithm uses a feature matrix to learn
a model and calculates the predictions ŷ — for a given set of features it
outputs the answer. It can be either on a same scale as the outcome (binary
for the binary task and predicted classes for multilevel classification) or
correspond to class probabilities (or other continuous scores) that sum to
1 for all predictions for a given instance xi. It is straightforward to choose
a threshold that would translate a score on the continuous scale to a class
representation. Given a fixed threshold, we can calculate a confusion matrix
that is the basis for many evaluation measures. It is defined as following:

24

Figure 2.2: Confusion matrix

Note that in a machine learning task the positive cases correspond to the
class of interest (encoded as 1), while the negative cases belong to the class
of regular instances or they represent the majority of the cases (encoded as
0). Based on a confusion matrix we define:

Accuracy = (TP + TN)/(TP + TN + FP + FN)

TPR (True Positive Rate) = TP/(TP + FN) and

FPR (False Positive Rate) = FP/(FP + TN),

where Accuracy is the number of correctly classified instances out of all. It
shows the general goodness of a classifier handling negatives and positives
with equal importance, while pair TPR-FPR is often used to detect rare
instances. TPR shows the proportion of correctly classified positives and
FPR shows the proportion of misclassified negatives.

In all measures that are based on a notion of the confusion matrix the
threshold for continuous score is already fixed. However, the choice of such
threshold is rarely straightforward. When the dataset is balanced with re-
spect to the number of positives and negatives, it is usually a good choice
to define the threshold as 0.5. Some prior knowledge of the classification
problem can shift it to a smaller value, making the classifier more conser-
vative (e.g. finding all suspicious users is of high priority, while labeling
regular users as suspicious is less harmful), while shifting a threshold to a
larger value than 0.5 leads to a more relaxed classifier towards positive (e.g.
it is of higher priority not to block regular users from making transactions
and only when the classifier is very certain, system blocks the transaction).
But once the dataset is not balanced (e.g. fraudulent users, deviant cases,
rare diseases represent only tiny percentage of the whole population), the

25

choice of the threshold becomes more tricky. In order to assess the classifi-
cation performance without the choice of the threshold the ROC (Receiver
operating characteristic) curve is constructed.

ROC curve visualizes all possible tradeoffs of TPR and FPR, which
allows us to inspect the results across different thresholds. The area under
the ROC curve (AUC) condenses the information provided by a ROC curve
into a single measure of performance [Brad 97] . A classifier of the random
guess, expressed as a ROC curve, is represented by a diagonal line with AUC
of 0.5, while the perfect classifier would score AUC of 1 and is represented by
the ROC curve crossing the coordinates (0, 1) - where FPR = 0 and TPR =

1. In other words, the AUC represents the probability that a classifier will
rank a randomly chosen positive instance higher than a randomly chosen
negative one. Also, in addition to comparing models using their AUC, it is
possible to fix the FPR to some small value of practical interest (for example
1% or 5%) and compare the TPR between the models.

2.1.3 Splitting strategies

In order to properly assess the quality of a classifier we need to adopt
proper techniques in such a way that no overfitting occurs. Otherwise
the measures are overly optimistic and may lead to data memorization
rather than learning, or in other words, we want the estimation of the
accuracy exhibit low variance and low bias. The main rule to keep in mind
is not to evaluate the performance on the same data that the classifier was
trained on. The basic splitting strategies are the train-test split (holdout)
and k-fold cross-validation, which are depicted in Figure 2.3. However,
bootstrap, leave-one-out cross-validation and resampling are also widely
spread [Efro 97, Koha 95]. We describe briefly the main ideas behind the
main strategy schemes.

train-test split is a very basic machine learning procedure, where the
data are randomly split according to some proportion. More frequently are
used 50% − 50% or 80% − 20% divisions. It is very simple procedure, but
it uses the data inefficiently. Therefore, it is not recommended to use it
when the dataset size is small. Moreover, the scheme is not suitable when
we need to learn hyperparameters of the model. In that case either data

26

has to be split equally on three disjoint subsets: training, validation and
test sets or we can use k-fold cross-validation.

k-fold cross-validation is a technique, which is used either to estimate
the measure of accuracy more reliably or to search for hyperparameters.
Data is split on k folds and model is trained on k − 1 folds and evaluated
on the remaining one. The procedure is repeated until all the k folds were
used for testing.

Figure 2.3: Basic splitting strategies: holdout split with 2/3 of the training
set and 1/3 of the test set; and k-fold cross validation with k = 3.

Often, more complex splitting strategies are required, especially when
the data has various deviations from the golden standard. For example,
when the data exhibits temporal shifts or is highly imbalanced. In the case
studies we describe in this thesis the evaluation procedures differ depending
on the domain, data and the goal of the study. We describe each of the
evaluation procedures separately. Please refer to Sections 4.4.2, 5.3.1, and
6.4.1 for the detailed descriptions of the procedures.

2.1.4 Classification tasks in the case studies

In this section we define the classification problems with respect to the
various domains. Each of these problems refers to a particular case study
that we later analyze in full. We use the case studies throughout the thesis
to illustrate the ideas discussed previously.

27

Classification of business process outcomes An interesting example
of a classification task can be found in the field of predictive business pro-
cess monitoring (PBPM) [Leon 15]. For the classification task purposes a
business process is analyzed from the perspective of event logs, consisting
of traces. Each trace represents one execution of a process (a case). A
trace is a sequence of events, each referring to an execution of an activity.
Often, logs can be accompanied with the metadata, either on a trace or
event level (payload). One of the tasks of PBPM in this case is to predict at
runtime the most probable outcome of an incomplete case. The outcome in
the context of a classification task (y) can be the fulfillment or the validity
of some constraint (for example, a time constraint) or any other condition
under interest of a business owner. For example, in sales process a possible
outcome y is the placement of a purchase order by a potential customer,
whereas in medical processes a possible outcome is the recovery of a patient
upon the completion of the treatment (see [Leon 15] for more details)). In
case of binary classification we refer to two possible outcomes as deviant
and non-deviant, where the first does not satisfy the required constraints.

The task of a classification learner in this domain is to predict the out-
come of an ongoing unlabeled case using the historical logs with the known
outcomes. Note that the ongoing case is not yet completed, while the his-
torical cases are. The formula 2.1 can be written as following:

f : BPL→ {deviant,non-deviant}

where we denote with BPL a set of all historical traces available for the
training. We need to extract for each case the feature vector xi = (xi1, . . .

xim, . . . , xiM), i = 1, . . . , N from the historical data BPL.

Classification of fraudulent users Valid financial transactions are of-
ten burdened by some amount of illicit transactions with the intention to
cause parties to suffer a loss. Such financial institutions as banks, money
transfer and e-commerce companies experience the problem of fraudulent
transactions. The fraud detection task has been receiving a lot of attention
[Fawc 97b, Bolt 02, Duma 16]. In general, the problem at hand is difficult
to solve for multiple reasons. One of them is the variety of applications
with different data sources depending on a particular application. More

28

importantly, different applications lead also to the great variety of fraud-
ulent schemes that are hard to detect without knowing what to look for.
Depending on a specific application, there is a whole ontology of various
fraudulent user types.

Even the detection levels can be many: sometimes it is important to
prevent just suspicious transactions, sometimes a particular user or client
or even whole groups of people involved in the suspicious activity should
be blocked. Another aspect is that the problem cannot be solved once and
forever as new schemes may be invented when the discovered fraudulent
schemes do not work anymore.

We bring an example of classification task for the problem of fraudulent
users detection in the context of Skype [Leon 12, Leon 13], one of the largest
providers of Internet communication software. Skype is targeted by fraudu-
lent users, who intentionally deceive other users or providers in many ways.
The types of fraudulent users relevant to Skype include (but not limited to)
credit card and other online payment fraudulent users, account take overs
and account abusers.

As Skype already implements very sophisticated techniques to capture
such users, it has collected a database with the verified labeling: for each
user there is information together with the labeling. In the simplest setting,
label (y) is binary: flag = 1 indicates that the user is fraudulent and flag =

0 otherwise. However, the problem can be seen as a multilabel classification,
where users have a higher granularity division: different types of suspicious
activities as well as different types of regular usage (e.g. whether a client
makes payments or uses only free services). Also, naturally there are many
choices over the feature space x as we can extract information from various
aspects: data related to payments, social activity of users, or whether the
provided personal information is in accordance to the user activity.

In the context of this example, the function 2.1 can be defined as:

f : SKY → {fraud, regular}

where each user ui ∈ SKY is represented as some feature vector xi =

(xi1, . . . xim, . . . , xiM) and SKY is the dataset of Skype users.

29

Classification of electrocorticography signals (ECoG) The last il-
lustrative example of a concept is based on the data of electrocorticography
for brain-computer interface (BCI). According to the experimental setup
[Lal 04], a subject had to perform imagined movements either with a finger
or the tongue. During these movements the time series of the electrical
brain activity were recorded with the help of the platinum 8 × 8 grid of
electrodes on the right motor cortex. All recordings were performed with
a sampling rate of 1000Hz. Every trial was recorded either for imagined
tongue movements or an imagined finger movement, but not the both. The
duration of each trial was 3 seconds.

The classifier here has to learn from the set of recorded trials and pre-
dict whether a trial corresponds to a imagined tongue movement or finger
movement:

f : ECOG→ {finger, tongue},

where ECOG is a set of recorded trials. The challenge here is to come up
with the suitable feature vector x, which is non-trivially extracted from the
signals of 64 electrodes.

2.2 Data types

In the previous section we discussed how the task of supervised learning
depends on two types of output y: numerical and categorical. Classification
task expects the output of the categorical values. Recall that in general ML
algorithms expect the data in a form shown in Figure 2.2:




features

x11 . . . x1j . . . x1m
...

...
...

instances xi1 . . . xij . . . xim
...

...
...

xn1 . . . xnj . . . xnm







labels

y1
...
yi
...
yn




(2.2)

In this section, we define and discuss different types of input x. The most
straightforward types of features are continuous, discrete, or categorical.
Continuous features have numerical values that can be characterized by

30

an infinite number of values between any two values. Discrete features
consist of a countable numerical values, while categorical features have a
finite number of values – categories. Categorical values might not have a
particular order. But if they do, they are called ordinal. where the values
can be put in a one-to-one correspondence with the discrete values. Most
of the ML algorithms deal with these types of features (see the description
of classification algorithms in Section 2.3.1).

Often data do not come in any of these types, but in more complex
types – for example, we might want to classify pictures by objects of various
shapes that are represented on them, or music by the hierarchy of genres,
or get sense of networks, either biological like protein structures or social
networks like Facebook. These are all examples of complex data. Complex
data types are schematically shown in Figure 2.4. It appears that in real-
life scenarios even more frequently we have to deal with the combination
of different data types. We refer to the combination of various data types,
complex or non-complex, as mixed data types. In this section we introduce
the notions and definitions of such complex data types as sequences and
graphs as prerequisites for the following case studies.

Figure 2.4: Complex data types. The illustration adopted from [Han 11].

In the aforementioned case studies (see Section 2.1.4) the most common
type of input is a sequence that is one of the main focuses of this work.

31

2.2.1 Sequences

In the general case, a sequence is defined as an ordered list of elements,
where an element can have a numerical real value or a symbolic repre-
sentation. The main difference from the feature vector representation is
that elements are not independent nor identically distributed (i.i.d). It is
expected that a sequence exhibit a strong correlation between successive
elements. One well-known and well-studied subtype of a sequence is time
series – a sequence with the assigned time interval. Adopting the onthology
from Xing, et al [Xing 10], we define the following types of sequences:

• simple symbolic sequence consists of ordered elements drawn from a
finite set of elements called a vocabulary (or alphabet) Ω. xseqi =

{x1, . . . , xt, . . . , xT } is called a sequence if xit ∈ Ω, where t is the
length of a sequence, t = 1 : T and i = 1 : N . The dataset for N
samples and T timestamps is a matrix of size N × T .

• complex symbolic sequence consists of ordered vectors, where each vec-
tor is from a vocabulary (which consists of vectors itself). The se-
quence Xseq

i is then a matrix {x11, . . . , xmt, . . . , xMT }, where xit ∈ Ω.
For N samples, M features and T timestamps the dataset is a 3-
dimensional matrix of size N ×M × T .

• univariate time series are sequences of a single feature m, collected
over equal time intervals.

• multivariate time series are sequences of multiple features, M , col-
lected over equal time intervals.

• sequences of complex objects are sequences of complex data types.
For example, the dynamic evolution of a network can be seen as a
sequence of graphs in time.

In this work we consider a sequence as a sequential feature as an opposite
to static features or feature vector as shown in Figure 2.2. In both time series
and sequences we refer to discrete timepoints t = 1, ...T , which may also
refer to positions or locations in the sequence.

32

2.2.2 Graphs

Social Network Analysis (SNA). has drawn a lot of attention due to the rise
of social networks popularity, which have become a part of our everyday
life. A graph is a common complex data structure that is fundamental to
the SNA. Graph theory and applications are in heavy use in bioinformat-
ics, chemistry, information networks and many more. Various tasks include
calculations on graph structures such as link predictions, community de-
tection, and network modeling. In this work we discuss the use of graph
structures as a part of input data for the classification task — in the study
of fraud detection (see Section 2.1.4) we adopt the social network combined
with other data types in order to enrich the feature set.

Recall that a graph is a pair G = (V,E), where V is a set of vertices
(or nodes) and E is a set of edges, where each edge connects a pair of
vertices (nodes), i.e. E ⊆ V ×V. Often in large networks it is not feasible
nor necessary to take into account the whole network. In that case we
can compute metrics and seek for patterns taking into account only a local
neighborhood of a particular vertex v. For a particular vertex v ∈ V , often
referred to as ego, the first-order egocentric network focuses on the subgraph
of G, where the direct connections of v and ties of this direct neighborhood
are taken into account.

In this work we apply SNA to extract useful features like Page Rank
and clustering coefficient in order to improve the classification accuracy of
the fraud detection case study (for more details see Section 2.2.3.2).

2.2.3 Data types in the case studies

Now, we return to case studies introduced in Chapter 2.1.4 and explore the
data types in each of these examples.

2.2.3.1 Data types in PBPM

In the example 2.1.4 we deal with the data of business process event logs
[Leon 15]. For the classification task of deviant processes we use two dif-
ferent real-life logs, but of the same kind and structure: the BPI challenge
2011 [Dong 11] log (herein called BPL1) and an event log (herein called
BPL2) of an Australian insurance company. The former log pertains to a

33

healthcare process and describes the executions of processes related to the
treatment of patients diagnosed with cancer in a large Dutch academic hos-
pital. Each case refers to the treatment of a different patient. The second
log relates to the handling process of insurance claims and covers about one
year of completed cases.

Each case in the logs corresponds to a sequence of events describing its
control flow or the ordered execution of events of the process. Each event is
associated with data in the form of attribute-value pairs. All the associated
data in the log is also referred to as payload. Moreover, each completed
case is associated with an outcome - a label, which can assume binary or
categorical values. We represent a case in the following form:

sequencei(eventi1{associated datai1}, . . . , eventin{associated datain}) : labeli

Figure 2.5: Complex symbolic sequence

Note that cases of logs are represented as complex symbolic se-
quences, where features related to the whole case are static, but features
related to events are sequential. Therefore this can be considered as a mixed
data type of sequential and static features. In Figure 2.6 a case corresponds
to one example from a hypothetical hospital log. Age is a static feature – it
does not change throughout the case, while an event itself and a resource,
corresponding to the procedure and the responsible party, respectively, are
sequential data.

sequencei(consultation{age:33, resource:general practitioner}, . . . ,
. . . , ultrasound{age:33, resource:nursing ward}) : false

Figure 2.6: Example of a complex symbolic sequence.

Table 2.1 summarizes the characteristics of these two logs (number of
cases, number of events, and number of event classes).

34

Log # Cases # Events # Event Classes

dataset BPL1 1,143 150,291 624

dataset BPL2 1,065 16,869 9

Table 2.1: Case study datasets.

In Section 3.1 we explore different options how to map complex symbolic
sequences to a feature representation and empirically demonstrate which of
the methods yields better classification accuracy.

2.2.3.2 Data types in fraudulent user detection

Earlier we mentioned that the classification task for this case study is to
detect fraudulent users by training on the existing examples. Each instance
requires a description that should be provided as a vector of features. The
dataset SKY [Leon 13] represents a carefully anonymized snapshot that
contains the Skype contact network, time series of the utilization of Skype
products, and time series of the social/contact request activity of users.
It does not contain information about individual calls and messages nor
their contents. The data types that are extracted from this dataset can be
divided into four groups (summarized in Table 2.2):

• Profile set : this set contains information about users, such as gender,
age, country and OS platform. The information for this set is ex-
tracted from the profile a user provided at account registration time.
Such information is not compulsory and is not verified by Skype. For
many users it is incomplete or totally missing. However, it is the sim-
plest feature set as it represents directly a feature vector with static
features as these features do not change in time (or change very
little).

• Skype product usage: this set of features is in the form of activity logs
representing the total number of days per month a user was active
using a specific product. None of the Skype usage data contained
information about individual Skype communications, such as the par-
ties involved in a communication, the content of communications, or

35

the time and date of communications. Rather, it merely contained
the number of days in each month that a Skype user used a partic-
ular communications feature, such as Skype chat, Skype video calls,
and Skype In and Skype Out calls. For example, such product as
“connected days” represents the number of days per month a user was
logged in Skype, while the product “video calls” shows how many days
in total the user initialized a video call. Due to the limitations of the
data, activity logs do not indicate which pairs of users actually com-
municate, nor distinguish a user who makes hundreds of calls from a
user who makes just one. Note that all activity logs are in the form
of monthly aggregated time series.

• Local social activity : relying on the user-to-user contact requests, we
build a directed social graph with 677.8 million nodes and 4.2 billion
directed edges with the accompanied timestamps of edge creations
and deletions. Edge creation shows that a user (the sender) sends
a a friendship request to another user (the receiver). If the receiver
accepts the request, it is counted as another edge creation. Edge
deletions are handled by the same principle. For each user we capture
information about his social activity through the egocentric graph
(one-hop neighborhood) and observe it over time. The data type we
deal with in this case is a sequential egocentric graph.

• Global social activity : we compute such measures as PageRank and
clustering coefficient. This is the most computationally expensive
feature set – in order to compute these features a full social graph of
users is taken into account. Here the data type is a regular, static,
graph due to the computational reasons. Only the latest snapshot of
the social network graph is utilized. We compute a PageRank score
for every user on the Skype communication graph (see Section 3.1.2).
Another input to our classifier that comes from the full contact graph
is the local clustering coefficient [Watt 98] (see Section 3.1.2). As
fraudulent users often seem to add unrelated users to their contact
lists, their clustering coefficients are often lower than those of normal
users.

36

Table 2.2: Sets of features with the corresponding data types and examples
of features

Profile set Skype product usage Local social activity Global social activity

static sequential sequential graphs static graph

gender, age,

country, OS

connected days,

audio call days,

video call days

chat days

additions by a user,

deletions by a user,

additions of a user,

deletions of a user,

accept rate (%), degree

page rank,

clustering coefficient

As we can observe, in this particular classification task various types
of data are present. In some cases there is a straightforward way to use
the provided data, but in others there are multiple ways to pre-process
the data to turn it into a feature vector. Depending on a particular pre-
processing we might lose a lot of information and miss patterns if we do not
care about the connections or temporal aspects of the mixed data types.
Later we demonstrate how such types can be combined together and discuss
empirical results of such combinations.

2.2.3.3 Data types in ECoG movement discrimination

In the last example in 2.1.4 we described the experimental setup and the
problem of detecting imaginary movements of tongue and finger. The ECoG
recordings are provided in the form of multivariate time series. The data
is three-dimensional: (10584, 64, 300), where first dimension corresponds to
samples, second — to channels and last one to time. Therefore, we have
10584 recordings of 300 ms duration for 64 channels, where each channel
recordings originate from one of the 8 × 8 ECoG platinum electrode grid.
The grid was placed on the contralateral (right) motor cortex. For each
sample a corresponding label provided: whether it is a tongue or finger
movement. In Figure 2.7 we depict two samples of all 64 channels for
the whole duration of 300 ms, where the upper figure corresponds to the
recordings during a finger movement and the lower figure — during a tongue
movement. As we can observe, the data is quite noisy. The transformation
of such data into a feature vector is not straightforward. In Section 3.1 we

37

suggest different ways to extract features from multivariate time series that
allow to capture both sequential and static components.

Figure 2.7: Two examples of ECoG multivariate time series for each of the
classes.

2.2.4 Summary

In Table 2.3 we provide a brief summary of mixed data types that serve as
the input for the classifiers in the case studies. As we can observe, all of
the above mentioned tasks require non-trivial approaches to represent data
in such a way that it fits ML pipeline for the classification task.

Table 2.3: Summary of complex data types presented in the case studies

SKY time series of egocentric graphs, graph, time series

BPL1, BPL2 complex symbolic sequences

ECOG multivariate time series

Next, we proceed with the background information about classification
techniques, followed by the overview of the generative models as these are
building blocks for the suggested frameworks.

38

2.3 Classification models

There is one essential division of machine learning methods that we use in
this work: the generative and discriminative models. “Typical” classifica-
tion methods belong to the discriminative family, while most of complex
data types exhibit dependencies that are better captured by the generative
approach.

As we mentioned earlier the ultimate task of the classification problem is
to predict a class y. In that context the discriminative methods are specifi-
cally crafted maximizing class prediction accuracy directly, by learning the
boundary between the classes of y. As opposite to generative models, these
methods do not try to capture the underlying data. On a contrast, the gen-
erative approach is oriented finding the underlying processes that “generate"
the data. In other words they model the underlying distribution, or distri-
butions for each of the classes. We refer to the latter case as a generative
classifier. The discriminative classifiers model the conditional probability
p(y|x), usually by maximizing

∑N
i=1 log p(yi|xi, θ), where θ corresponds to

the parameters of the model, while generative classifiers maximize joint log
likelihood

∑N
i=1 log p(yi,xi|θ) first and then can be used to calculate p(y|x)

by applying Bayesian rule.
Intuitively, the generative method has to extract more information from

the data by modeling the distribution of the features, including all the
temporal or structural connections between them. On one hand, a discrim-
inative classifier yields better results in the prediction task as it is modeled
directly [Vapn 98], on the other hand, it does not capture the information
hidden in a complex data structure.

In the book [Murp 12], the author discusses pros and cons of the two
approaches. We name just a few that are relevant in our context:

• Generative models are often easier to fit and under proper assumptions
[Jord 02] they converge faster.

• Generative classifiers fit the distributions for each class independently,
therefore, they do not need to be re-trained if we want to add an
additional class. For example, if we describe three types of fraudulent
users by a generative model and then discover another type, we train

39

an additional generative classifier. In case of a discriminative classifier
introducing an additional class requires retraining.

• Generative classifiers are often useful when the problem is semi--
supervised – some data are unlabeled.

• It is easier to handle missing features using generative approach. Dis-
criminative methods are more sensitive to such problems.

• Discriminative methods can handle correlated features and be easily
updated, while in generative models the violation of some assumptions
can lead to incorrect results.

In Figure 2.8 we demonstrate a toy example with the two approaches. For
the exact same data, in the left plot a generative model has to learn the
distributions for each class, which are not straightforward and difficult to
capture. That is, once the generative model is trained for each class, we
should be able to generate a new data samples from the same distributions.
For example, the distribution p(x|y = 0) depicted with the red line is mul-
timodal. In contrast, on the right plot the same data is used. But for the
discriminative classifier the goal is to find a boundary between classes y = 0

and y = 1. As we optimize the conditional probabilities, to find the simple
boundary of x = 0.54 with simple sigmoid function is quite easy. This toy
example demonstrates that fitting generative models might be a challenging
task compared to the training of discriminative models. However, a benefit
from the generative methods can overcome a hurdle.

40

p(x|y=0)

p(x|y=1)

0

1

2

3

0.0 0.5 1.0 1.5
x

de
ns

ity

p(y=0|x) p(y=1|x)

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5
x

pr
ed

ic
tio

ns

Figure 2.8: Data distributions for two classes. Adopted version of [Murp 12]
and [Bish 06].

We would like to take best from the two worlds for the mixed data types.
Discriminative approaches are widely used with hand-crafted features from
complex data. On the one hand, one can extract various features that de-
scribe the structure or temporality, at least to some extent. For example, if
we have a recording of consecutive timepoints, we implicitly might introduce
the first order differences between them. However, it is time-consuming to
come up with useful features as well as extract them. We suggest another
approach, where we still use discriminative models, but combine them with
the features coming from generative models. The generative model’s fea-
tures (see Section 2.3.2 for more details) can be learnt directly from the data
and provide more information compared to the manually designed features,
especially without any prior knowledge of the problem at hand. Potentially,
they can better reflect the structure of complex data types.

In the next sections we describe a few different machine learning algo-
rithms from both generative and discriminative families.

2.3.1 Discriminative classifiers

There is a variety of different algorithms for solving classification problem
and countless different modifications of them. We limit ourselves to the
well-known decision trees and to the Random Forest [Brei 01]. The decision
trees are essential building blocks for more complex methods, while Random

41

Forest is a discriminative algorithm that we use in all case studies that
provides state-of-the-art performance.

2.3.1.1 Decision tree

Decision tree is a common simple algorithm that learns decision rules, i.e.
conditional “if-else” rules inferred from the data features to predict the out-
put. The algorithm to construct the decision trees usually uses top-down
best-split strategy, meaning that at each step the algorithm chooses a fea-
ture that splits data in the best way. “Best split" is defined by some measure,
which dictates what version of the decision tree algorithm to apply: for ex-
ample, ID3 and C4.5 use the information gain, while in CART the best
split is defined by Gini impurity [Loh 11]. Decision tree method is easily
interpretable, but has multiple issues regarding stability and tendency of
overfitting. Even interpretability may be an issue – unpruned trees may
grow so deep that simple interpretation of the decision rules is no longer
possible. In addition, the dependencies in the data may not be representable
in a “decision rule” nature. However, it serves as one of the best base algo-
rithms (see Section 2.4 for more details) for more complex methods as for
example, Random Forest.

2.3.1.2 Random Forest

We adopt Random Forest [Brei 01] as our main classification algorithm as it
usually either outperforms other candidates or comes close to the top rank-
ings, and it requires almost no of hyperparameter optimization [Caru 06].
This algorithm, first introduced by Breiman and Cutler, is a modification of
bagging that builds an ensemble of decision tree classifiers. The idea behind
the algorithm is to reduce variance by reducing the correlation between the
trees. This reduction is achieved by growing unpruned trees with random
feature selection. The final classification result is derived by combining the
classification results of individual trees through majority voting. Since each
tree is trained independently, the training procedure can be easily paral-
lelized to be applicable for large data sets with many features. The most
important parameters (hyperparameters) are: 1) number of trees in the for-
est (ntree). The larger the forest, the higher is the probability that every

42

input instance of a training set gets predicted for a reasonable number of
times, 2) number of features that are randomly sampled as candidates at
each split (mtry). Essentially, it controls the amount of randomness. When
mtry equals to all the features in the data, it becomes identical to the deter-
ministic decision tree. According to Zhou et al. [Zhou 12], Random Forest
has a better generalization ability compared to regular bagging (see Sec-
tion 2.4) with the same amount of baselearners, and, in general, should be
preferable over bagging technique. In more details the generalization ability
of ensembles is described in Section 2.4.

2.3.2 Generative classifiers

Generative classifiers are considered to be weaker predictors as they opti-
mize the joint probability, trying to capture the distribution of the underly-
ing data instead of aiming at the discrimination between the classes. They
are called generative as we can use the fitted model to generate new samples
of data. In this work we use generative models as feature extractors rather
than classifiers. Next, we describe the two models we apply in our work in
more details.

2.3.2.1 Hidden Markov Models

Hidden Markov Models (HMM) have been the most frequently used tech-
nique for modeling sequence data since the 1980s [Good 16]. They belong
to the class of graphical probabilistic generative approaches, which means
they are used to generate samples from a joint distribution of observed and
unobserved features. In case of HMM there is an assumption that an ob-
served sequence is generated by some process that needs to be uncovered via
probabilistic reasoning. The idea behind HMM is that a sequence consists
of observed events generated by some hidden factors.

Despite many existing variations of HMM, the most commonly used is
the first-order Markov process with discrete hidden states [Rabi 89]:

Definition 2.3.1 (first-order Markov model).

p(S1:T) = p(S1)p(S2|S1)p(S3|S2) . . . = p(S1)

T∏

t=2

p(St|St−1)

43

Figure 2.9: A first-order
Markov model.

Figure 2.10: A first-order
HMM

The assumption of a Markov process states that the probability of a
given state depends only on the previous state, while ignoring the rest. See
Figure 2.9 for a graphical representation of the first-order Markov model).

The conditional distributions of Markov model p(St|St−1) can be rep-
resented using transition matrix, where each element of the matrix is the
probability of going from state s to state s′: Ass′ = p(St = s′|St−1 = s). An
HMM is a further extension of the Markov model, where assumed hidden
process can be modeled as Markov process, but we see only the observa-
tions, not the hidden states themselves. The type of observations dictate
the type of HMM. If observations are discrete, we can specify HMM with
the following components:

1. the probability distribution of the initial states: π = p(S1 = s), for
all realizations of states, s ∈ S,

2. the transition probabilities between states: A = p(St = s′|St−1 = s),
for all s, s′ ∈ S,

3. the emission probabilities (of the observable data) given a specific
state: B = p(Ot = o|St = s), for all states s ∈ S, and observations
o ∈ O.

If observations are not discrete, but continuous, Gaussian Mixture Models
[Reyn 15] can be used for the parametrization so that each hidden state
is described using the means and covariance matrices. The underlying as-
sumption is that the data is generated as a mixture of finite number of
Gaussian distributions with the unknown parameters.

In order to specify, train, and apply HMM for the purposes of feature
extraction we perform the following steps:

44

1. Specification of the discriminative training of HMM.

2. Choosing the number of hidden states K = |S|.

3. Definition of the vocabulary Ω or distinct set of observation values.

4. Initialization of the model λ = (π,A,B).

5. Training of the specified model λ.

6. Extraction of HMM-based features for further use in the next training
phase.

Next, we describe each of the steps in more details.

1. The discriminative training of HMM. HMM is an example of a
generative model, which means it can be fitted to unlabeled data. However,
for the purposes of this work it has to take into account the information
about the classes. Potentially, we can maximize the conditional likelihoods
instead of the joint distribution, which may improve the accuracy of the
classification. But it comes at the cost of more expensive procedure where
standard Baum-Welch algorithm (see the algorithm below) cannot be ap-
plied. As we use HMM as a feature extractor, we argue that the standard,
generative, HMM is better suited than the optimization of conditional like-
lihoods. Therefore, a more common approach is used, where HMM is fitted
separately for each class. For example, using HMMs for the fraudulent user
detection, we need to fit one HMM for fraudulent users (or each model for
a different type of fraudulent users) and one for regular users. Note that in
this case the number of hidden states may differ for each of the models. Next
outlined steps should be applied in this case for each of the class-specific
models separately.

2. The number of hidden states is a hyperparameter and should
be specified in advance. However, similarly to such unsupervised meth-
ods as K-means, experience or domain knowledge are of no help here. We
apply the most common approach to select the hyperparamer by using a
grid-search over possible range of number of hidden states. Other possi-
ble ways of specifying K include the particular application of variational

45

Bayes [MacK 97, Murp 12] or the special version of HMMs based on the
hierarchical Dirichlet process [Teh 12, Murp 12]. One important note is
that instead of choosing the best number of hidden states by maximizing
the likelihood or the discriminative accuracy of HMMs, we directly optimize
for the accuracy of the final classifier that includes features from the HMM
(for more details see 3.2).

3. The vocabulary Ω. There are several problems with the specification
of the vocabulary of observations in advance. Often, the complete set of
vocabulary is not known and therefore, the estimation of Ω on the training
set leads to the problem where some observations in the test set are not
specified. The problem is called out-of-vocabulary observations. The second
problem occurs when the number of hidden states K increases resulting in
the sparse emission distribution of the training set. It means that some ob-
servations appear only in one hidden state, but absent in others, which leads
to the multiple problems with the model. The first problem can be solved by
adding the vocabulary element that collects all the unknown observations.
The second problem can be solved by applying different smoothing proce-
dures, where one is to add small random noise to the emission probabilities
in the training. Other smoothing techniques exist that do not assign equal
weights to the rare observations, but they require some prior knowledge of
the observations. Therefore, we resort to the simplest one without the use
of priors.

4. The model initialization. In order to train a HMM we need to
specify the initial components of the model λ, namely, π, A, B. Again,
there are different ways to do so. It is not recommended to initialize the
model with zeros, as it has a danger of getting into local minima [Murp 12].
It is suggested to use either random initialization or use K-means to mitigate
this problem (to some extent). The estimation of the parameters is later
used to train EM with maximum likelihood on the same data. In our
experiments we apply random initialization with several restarts.

5. Training: Baum-Welch algorithm. The Baum-Welch algorithm
is a version of Expectation-Maximization (EM) method, where model λ

46

parameters are sought via maximum likelihood. It consists of two steps:
E step, which uses forward-backward algorithm to fit parameters, and M-
step, where we update the model parameters. We optimize the following
function λ∗ = argmaxλ p(O|λ). In other words we find such parameters of
the model that maximize the probability of observations. We proceed in
the following way:

• Initialize π, A, B randomly as discussed earlier.

• Apply forward procedure, namely, define the αs(t) as the probability
of observing the sequence till time t: o1, . . . , ot, where t = 1, . . . , T and
being in state s at time t: αs(t) = p(O1 = o1, . . . , Ot = ot, St = s|λ)

We can find it recursively:

1. αs(1) = πsbs(o1), where s ∈ S and bs(o1) is an element of emis-
sion matrix B.

2. at time t+ 1: αs′(t+ 1) = bs′(ot+1)
∑K

s=1 αs(t)as,s′ , where s
′ ∈ S

and as,s′ is an element of transition matrix A.

• Apply backward procedure. Define the probability of moving back-
ward from time T to t given the state s at time t: βs(t) = p(OT =

oT , OT−1 = oT−1 . . . , Ot+1 = ot+1|St = s, λ). Now, we can calculate
the probability of moving backward recursively:

1. βs(T) = 1

2. βs(t) =
∑K

s′=1 βs′(t+ 1)as,s′bs′(ot+1)

• Update the parameters: π∗s = γs(1), a∗s,s′ =
∑T−1

t=1 ξs,s′ (t)∑T−1
t=1 γs(t)

, b∗s(vj) =∑T
t=1 I(ot=vj)γs(t)∑T

t=1 γs(t)
where:

γs(t) = p(St = s|O, λ) =
αs(t)βs(t)∑K

s′=1 αs′(t)βs′(t)

ξs,s′(t) = p(St = s, St+1 = s′|O, λ) =
αs(t)as,s′βs′(ot+1)∑K

i=1 αi(T)

I(ot = vj) =





1 if ot = vj , where vj is a letter from a vocabu-
lary: vj ∈ Ω

0 if ot 6= vj , vj ∈ Ω

47

The provided calculations may seem confusing at first, but essentially, the
updated A and π in that case are normalized expected counts. New tran-
sition matrix intuitively means the sum of expected numbers of transitions
from s to s′ divided by the total number of transitions from s to anything
else. For updated B we sum the expected number of times we are in state
s and observe a symbol vj divided by the expected number of times we are
in state s.

6. Extraction of features from HMM Recall that we build separate
models for each of the classes. Namely, we maximize the likelihood L(λ) =∏N
i=1 p(xi|y = c, λ). Let us define λpos and λneg as generative models for

each of two classes in a binary classification task (it is trivial to extend it to
a larger number of classes) and l(λpos), l(λneg) as log-likelihoods for each of
the models. Then, a discriminative setting of HMM is achieved by applying
the rule:

if l(λpos) ≥ l(λneg) for an instance i⇒
assign the positive class label to the instance i.

As we discuss later, we exploit the models to form new, informative features
rather than apply them as stand-alone discriminative models (see Section
3.2 for more details). One way to proceed is to use purely the log-likelihoods
for each of the classes. However, our experiments suggest that use of log-
odds ratios is a better choice (see Chapter 6):

rHMM (xsecm) =
L(xsecm |λpos)
L(xsecm |λneg)

= l(xsecm |λpos|)− l(xsecm |λneg), (2.3)

where xsecm is the m-th sequential feature.

2.3.2.2 Generative Long Short-Term Memory Recurrent Neural
Network

Despite the heavy use specifically for sequential data, traditional HMMs
have various limitations [Suts 13]. First, the hidden states should be dis-
crete and due to the dynamic programming involved, the size of the hid-
den state space increases the computational time quadratically [Vite 67].
The most common use of HMMs is to model first order Markov processes,
which makes it difficult to capture possible long-term dependencies of the

48

data. Using HMMs of higher order also increases the hidden state space,
which becomes infeasible for an efficient computation [Grav 13]. Though
different versions of HMMs are introduced to tackle the problems to some
extent, another class of models called Recurrent Neural Networks (RNNs)
that is also specifically designed for sequences naturally provides the solu-
tion. RNNs also have a layer of hidden nodes, but this layer is capable of
representing a higher number of distinct states thanks to distributed state
representation. Previously, HMMs were either preferred over RNNs or they
were equally considered, mostly as RNNs had other limitations [Lipt 15].
One of them, for example, is the problem of vanishing/exploding gradients,
which occurs due to the effect of multiplying gradients multiple times. An
enhancement of the RNN structure, called Long Short-Term Memory unit
(LSTM) [Hoch 97], solved this problem, while the development of optimiza-
tion methods and further research of deep learning allowed to train RNN
models efficiently. The core idea of LSTM lies in replacing a usual artificial
neuron by a more complicated structure, called an LSTM unit. This struc-
ture makes an LSTM network capable of learning long-term dependencies.
LSTM has gained popularity by showing state of the art performance in
many fields [Grav 13, Suts 14, Sriv 15, Lang 14]. Next, we introduce the
general idea of RNN and explain the particular extension to the LSTM
version.

Basics of artificial neural nets. All artificial neural networks consist
of units or nodes (see Figure 2.11). A unit takes an input x, computes the
weighted sum of the input and passes it further to the activation function
ϕ producing non-linear output. There are different choices of activation
functions, where the most commonly used activation functions are sigmoid
σ(z) = 1

1+e−z and tanh: φ(z) = ez−e−z

ez+e−z . In recent works it was shown that
using the rectified linear unit (ReLU): ξ(z) = max(0, z), instead of sigmoid
and tanh, can often improve the performance of the network [Kriz 12].

In general, the variety of different neural networks depends on the struc-
ture that combines units together. The common way to represent the archi-
tecture of a network is using nodes and edges between them. The network
consist of layers of units, where the first is the input layer, last is the output
layer and any number of hidden layers in-between. Intuitively, the artifi-

49

'

X

x1 x2 x3

w3

w2
w1

X

i

wixi

Figure 2.11: An example of an
artificial unit with 3 inputs xi,
weighted sum

∑
and an activation

function φ.

ŷt�1 ŷt

xt�1 xt

s
(1)
t�1 s

(2)
t�1 s

(1)
t s

(2)
t

Figure 2.12: An example of a sim-
ple RNN spanning two timestamps
t that has one hidden layer with two
hidden nodes st.

cial network with some unit architecture is activated with an input data,
and activations are propagated through the network until the output ŷ is
produced. The training of neural networks consists of iterative updating of
the weights w to minimize some loss function L(ŷ, y). The most common
algorithm for the training is backpropagation [Rume 88]. The idea of the
backpropagation is to use forward and backward passes, where during the
forward pass the weights w and the loss function L are calculated and during
the backward pass the partial derivatives with respect to each parameter
are calculated using the chain rule. Intuitively, such an approach shows the
error contribution of each parameter. The weights are then adjusted by
gradient descent.

RNNs have the architecture that introduces the notion of temporal dy-
namics by allowing the cycles between nodes. In the “classical” version of
RNN (see Figure 2.12) the edges connect the adjacent timestamps. At the
time step t the hidden nodes st at that timestamp receive the information
from the input xt as well as from the hidden nodes st−1of the previous
timestep (t − 1). This leads to some sort of information sharing in the
sequential data.

RNN can have any type of the classification task from the sequence
classification discussed in this work with many-to-one connections, but also
many-to-many, where the input sequences can be trained to predict the
output sequences of any length. This is particularly useful in language

50

modeling, where translation from one language to another may not have
the input and output sentences of equal length.

LSTM. The vanishing/exploding gradient problem caused the initial RNN
to perform poorly when training longer dependencies in sequential data. It
occurs as the weights are updated proportionally to the gradient of the loss
function, and propagating the gradients through a few layers of the network
and across the time results in exponentially reduced (or increased) updates.
Therefore, the input many steps ago may not affect the output at the end
of the sequence. The solution to the problem was introduced by enhancing
the regular artificial unit (see Figure 2.11) with the LSTM unit depicted
in Figure 2.13. We describe the LSTM unit by adopting the notions of

ŷt�1 ŷt

xt�1 xt

s
(1)
t�1 s

(2)
t�1 s

(1)
t s

(2)
t

'

'

'

'

Y Y

Y

gt

it

ft

ot

st = gt � it + st�1 � ft

ht = st � ot

Figure 2.13: LSTM unit. Figure adopted from [Lipt 15]. Dashed edge shows
the recurrent edge to itself from step t to t-1

Lipton et al [Lipt 15]. The input data at time t(xt) is fed to the input node
gt. The input node takes also the information from the hidden layer at the
previous time step h(t−1) as it is depicted in Figure 2.12. Then, either tanh

or sigmoid σ is applied as the activation function on the sum of weighted

51

output. The other gates of LSTM units are input gate it, forget gate ft and
output gate ot that proceed in the exact same manner. More precisely they
are defined as follows:

gt = ϕ(Wgxxt +Wghh(t−1) + bg)

it = ϕ(Wixxt +Wihh(t−1) + bi)

ft = ϕ(Wfxxt +Wfhh(t−1) + bf)

ot = ϕ(Woxxt +Wohh(t−1) + bo)

where Wkj is the weight matrix from the layer j to the layer k and bk is the
bias term. The names of the gates are given according to the way they are
combined. In the internal state st:

st = gt � it + st−1 � ft

the outputs of input node and the input gate are elementwise multiplied.
Intuitively, the input gate controls how much information should be allowed
further. If the value of the input gate is zero, the information is considered
to be irrelevant for the task. The forget gate is similarly used to decide how
much information to forget from the previous internal state. The internal
state sums them together. It is important to notice that one of the solu-
tion to the vanishing/exploding gradient is introduced here by the constant
weight across the different time steps [Lipt 15]. Even with long time span
the errors are passed further with a constant weight. The resulting value of
the hidden LSTM unit output is calculated as:

ht = ϕ(st)� ot

The output gate ot regulates how much information to let out of the node.
Summarizing, an LSTM unit manages the information flow in the for-

ward pass by regulating with the gates how much information to let in and
out and how much to forget. In terms of the backward pass it regulates
how much error to propagate back.

52

Extraction of features from LSTM In order to be able to combine
static and sequential data for hybrid models as described in Section 3.2
we are also interested in the extraction of the information from the LSTM
network in a form of a feature. One way to proceed is to follow the same
principle as in the HMM case (see Section 2.3.2.1). In other words we can
use some notion of accuracy like mean squared error (MSE) between the
predicted sample and the true sequence for continuous values of a sequence
and define the new feature for each sequential feature xsecm as

rLSTM (xsecm) = log(
MSENEG

MSEPOS
) (2.4)

where MSEPOS and MSENEG are the mean squared errors between the true
output sequence and the generated sequence.

Note that compared to Equation 2.3 we use inverse MSE ratio. It is
mere a simple convenience — while MSE is an error, the inverse ratio shows
how likely it is that a sample comes from the generative model for positive
cases rather than from a generative LSTM model for negative cases. We
assume that the smaller the error, more likely the new sample belongs to the
corresponding model. Also, the MSE is defined for the continuous values of
a sequence, but it is straightforward to use another measure of accuracy in
the case of discrete values.

In order to clarify the procedure, we demonstrate how the MSE ratio
produced on a simplified example on a set of sequences in Table 2.4.

Table 2.4: Toy sequences for MSE ratio calculation

seq_nr sequence class

1 (2.1, 4.8, 6.6, 2.9) 1

2 (5.4, 5.1, 6.6, 4.8) 1

3 (5.5, 2.6, 2.1, 5.3) 0

4 (2.0, 6.2, 5.9, 5.3) 0

5 (2.0, 5.4, 5.6, 4.3) ?

First four sequences are used for the training and last is left for the pre-
diction. We train a separate LSTMmodel on sequences 1 and 2 (LSTMPOS)

53

and an LSTM on negative samples 3 and 4 (LSTMNEG). Once the models
are trained, we can use them to generate a new sequence number-by-number
and calculate the MSE ratios. It is an iterative process, where we give each
LSTM as an input the value of a sequence for the first timepoint and predict
the next symbol. For example, for the 5th sequence we provide as an in-
put a value 2.0 and produce the next value by LSTMPOS and LSTMNEG,
on the next iteration we provide (2.0, 5.4) as an input for both models.
We continue to do so until the end of the sequence. Next, we calculate
the MSE for each of the models. For the sake of example, let LSTMPOS

produced for the 5th sequence (3.0, 5.0, 5.9, 4.7), while LSTMNEG gave as
a result (5.3, 7.4, 6.6, 2.0). The corresponding MSE ratio according to the
Equation 2.4 would be: log(5.295/0.3525) = 1.17. This is the values of
MSE ratio for the 5th sequence; similarly, we obtain MSE values for each
of the unlabeled sequences. Later, we explain how the ratios are used to
enrich the feature set in the hybrid models (see Chapter 3 for more details).
Note that the “ground truth” that we compare with is not the label, but
the sequence itself.

2.3.2.3 Other methods of feature extraction from generative
models.

There are several other possibilities in addition to the one outlined in sec-
tions 2.3.2.1 and 2.3.2.2 that can reflect the information in time series.

Extraction of activations from LSTM. In case of LSTM there is a
possibility to use the activations of the last hidden layer of LSTM at the
last iteration as feature representation that an RNN model had defined and
use the activations as new features [Yosi 14]. The log-likelihood ratios are
almost the most aggregated form of information about the data samples
and predictions of a model are the highest level of aggregation. LSTM
activations st in this hierarchy can be considered as less aggregated ones,
meaning that they contain more information about the input. Later we will
explore how and when such new features from the LSTM network can help
to improve the result of the classification (see Chapter 6).

54

Fisher score. In our case studies we use log-odds ratios from the gen-
erative models that correspond to posterior probabilities to belong to one
class or another. One interesting line of research is to use the Fisher scores
as suggested in the work of Jaakkola et al. [Jaak 00]. The idea is to fit
HMM (or other generative model) for each of the classes and then, for each
new sequence to compute the derivative of the log-likelihood with respect
to the model parameters such as transition and emission matrices (in case
of HMM). The motivation behind such representation is that the HMM
can output the same score for different sequences, while the representation
through the gradient provides a natural way to compare two sequences with
respect to the same model. More precisely, Fisher score for sequence x is
defined as:

Ux = ∇θ logP (x|c, θ)

where θ are model parameters and c ∈ C is a c-th class. For further infor-
mation how to use Fisher score for the classification see Section 3.2.

2.4 Ensemble learning

In this work we often operate with the concept of ensemble learning. In this
section we take a closer look what ensemble learning is and why it is so pow-
erful. The concept of ensemble learning is very simple: multiple classifiers
can be trained for the same task and then combined together for the final
prediction. Sometimes ensemble learners are referred to as multiple classi-
fier systems. Figure 2.14 depicts the high-level architecture of an ensemble
learner. Ensembles consist of a set of baselearners. If the baselearners are
of same type (e.g. decision tree) an ensemble is homogeneous, while in case
of different types of baselearners (e.g. combination of a decision tree, a
logistic regression and a neural network) it is called heterogeneous ensem-
ble. In general, ensembles can generalize better than the baselearners. It
was shown that 1) the prediction of an ensemble is more accurate than the
prediction of a single best classifier and 2) the accuracy of weak classifiers
can be boosted to the level of accuracy of the strong ones. Moreover, it is
suggested that the powerful ensemble is the one which consists of diverse
and accurate base learners [Zhou 12]. Currently, ensembles are considered
to be a common approach in solving practical machine learning tasks that

55

… …

Dtrain(x, y)

L1 L2 Lk LK

LE = h(Lk)

Figure 2.14: The general representation of ensemble learning: multiple base-
learners L are fitted on the train data or their subset and then combined into
one ensemble learner LE by using simple average, major voting or another
learner.

aim at higher accuracy and do not require much of interpretability. One
of such examples is the Kaggle competitions [Gold 10], where the winner is
chosen according to the highest score and where even a small gain in the
prediction accuracy can be crucial. Majority of the winners in the recent
years use ensembles with hundreds of baselearners [Wind 14].

As there are no limits to how the classifiers are combined, there are many
ensemble versions and architectures. The taxonomy of ensemble types is not
well-defined. Various authors propose three, four, or even eighteen basic
schemes for ensembles [Sewe 08]. We describe here briefly bagging, boost-
ing and stacking, where the first is from the group of sequential ensemble
methods, the boosting is representing the parallel ensemble family, while
the stacking demonstrates the idea of more complex combination methods
for the baselearners rather than just average or major voting.

Before going into details about these particular examples of ensembles
we introduce simple combining techniques, where instead of second-level
learning some aggregation function h(·) is applied to combine predictions of
baselearners (see Figure 3.2a). Several popular aggregation functions h(·)
are often used for the classification task:

56

• indicator aggregation function is defined as:

I(Lk) =




Lk if k = T

0 if k < T
,

where T is a current timepoint. Indicator aggregation function is a
special case of ensembles. In other words, it is a gating function that
selects which baselearner to choose based on current time step.

• averaging is the most popular combination method, where the class
probabilities from the different models are combined. Let us define
a baselearner as Lk, k = 1 . . .K with the predictions of such a base-
learner being ŷLk

. Then,the metalearner prediction is:

ŷLE
= h(Lk) =

1

K

K∑

k=1

ŷLk

• majority voting is an aggregation method that we briefly mentioned
when describing Random Forest in 2.3.1.2. Given a sample, each base
classifier Lk votes for a particular class label for that sample. The final
class label is the one that gets the majority of the votes. Sometimes
the rejection option can be given, when there is a tie or in the case of
multilabel classification a winner class does not receive enough (above
a threshold) votes. The rejection option allows to introduce some
notion of uncertainty for the predictions, when a sample can be left
unclassified if the model is not “certain”.

Next we describe briefly the core ideas behind the common ensembles:

Boosting is sometimes described as a version of models’ weighted aver-
age. More precisely, in boosting base classifiers (often weak ones) are built
incrementally, such that each next base classifier’s focus is on the previ-
ously misclassified training instances. The final prediction is made by using
a combination of the weighted base classifiers. The classical example of
boosting is AdaBoost [Freu 95].

57

Bagging is short for Bootstrap Aggregation. Random Forest described
in Section 2.3.1.2 is the most famous example of that ensemble type. In
bagging baselearners are applied on different “versions” of a dataset, where
each version is sampled from the original dataset with replacement. The
final prediction is made by averaging in case of regression or by major
voting in case of classification. Random Forest is in this sense an extension
of bagging, where it also uses random selection of the features for each node
split of each baselearner — a decision tree in this case.

Stacking is usually referred to as a more general procedure of baselearner
combination, where instead of combining predictions of the baselearners in
simple fashion with weighted averaging or major voting, the outputs of base-
learners are trained again. In other words, it is a multiple step procedure,
where firstly the baselearners are trained. Next, the output of first-level
baselearners are handled as an input for the second-level learner or a met-
alearner. Often it is beneficial for stacking to be a homogeneous ensemble
within the first level and heterogeneous – between the levels. Later, in
our case study we compare stacking architecture of ensemble with the pro-
posed hybrid approach (see Section 3.2). In Figure 3.2a we demonstrate the
essential steps of the ensemble algorithm.

It is worth highlighting a few key differences and the consequent recom-
mendations. Boosting is aimed to decrease bias of a classifier by exploit-
ing the dependence between the baselearners (the performance is boosted
using the residual decrease), while bagging decreases variance by exploita-
tion of the independence between the baselearners. According to Kuncheva
[Kunc 03], weaker, simpler learners with large training sample sizes are pre-
ferred for the boosting and more complex, but unstable and weak ones are
better for bagging. According to Breiman [Brei 01], as bagging operates on
samples with replacement, the overlap of the instances in such samples is
somewhere around 63.2.%1 On one hand, it allows one to estimate the per-
formance during the training on out-of-bag instances, e.g. on other 36.8%,

1It is expected that for the i-th instance being sampled with replacement (where the
sample size m is equal to the size of the original dataset) the probability distribution
of being selected 1,2,. . . and more times is approximately Poisson (∼ Pois(λ)), therefore,
the probability of i-th instance occurring at least once is 1− (1/e) ≈ 0.632.

58

but on the other hand baselearners still have a large overlap in the datasets
they are using, and, therefore, using more stable baselearners in bagging
does not improve, in theory, the final classifier (bagging is not working
with the kNN as the base classifier [Zhou 12]). Unstable classifiers such as
unpruned trees are best suited for such an ensemble.

It is suggested by Ting and Witten [Ting 99] that the class probabilities
as an input to metalearner are more valuable than the predicted class as
they provide more information. However, we argue later that in the case
of mixed data types the information extracted from the sequences is better
served as a feature combined with other static features rather than the
independent model prediction (see Chapter 6). In Section 3.2 we suggest a
hybrid model that can be seen as a more complex ensemble architecture.

The notion of ensembles is important in the context of this work for
multiple reasons: 1) in case of discriminative approach we use Random
Forest that is ensemble in its nature, 2) this powerful structure is compared
against the proposed hybrid approach and 3) last but not the least, we
propose an ensemble scheme for early classification in the progressive index-
based framework (see 3.4).

59

Chapter 3

Hybrid models and progressive
index-based framework

Previously we discussed what are the common feature types and what are
considered to be the data with mixed data types — when the data comes
in a different form from the static feature matrix and violates the notion of
independence. In Section 2.2 we list various data types in the case studies
that are challenging for the machine learning flow. How can we handle them
to keep as much information as possible in the final feature representation?
In this chapter we first focus on several common ways of handling mixed
data types, then propose a hybrid approach that boosts the performance
of a classifier in certain scenarios by combining sequential and static data
together (see for details Section 3.2), and last, we outline the progressive
index-based framework that allows one to perform early classification by
taking advantage of hybrids and ensembles.

3.1 Feature extraction from mixed data types

In this section we outline different ways of feature extraction from both
sequential and graph data types that are used later for the case studies.

3.1.1 Feature extraction from sequences

When the desired information comes both in static and sequential forms,
the possible next step is to pre-process it in some way that makes it possible

60

to apply machine learning pipeline. Recall that static features correspond
to standard vector representation for classifiers and sequential features are
features that violate notion of i.i.d (see Section 2.2).

Sequential-to-static transformation. In case of such mixed data types
as static and sequential data, the most straightforward approach is to repre-
sent sequential features as static ones. The sequences are either aggregated
or transformed to static representation and can serve as the input along
with other static features to the machine learning model. Next, we list
some of the sequential features transformations. The goal is not to exhaus-
tively list all the possibilities, but rather demonstrate some basic principles
of transformations. Most of the methods serve as baselines for the later
empirical research.

Consider a single univariate symbolic sequence (or simple symbolic
sequence) for i-th instance xseqi with T timepoints. Note that sequences can
be of various length for different instances. We can translate a symbolic
sequence xseqi into a feature vector by summarizing information according
to a predefined vocabulary Ω. Thus, the size of the resulted feature vector
is the size of the vocabulary: ‖Ω‖ with each feature corresponding to a
particular letter in the vocabulary. Depending on the aggregation function
that we apply, we get the following representations:

• Boolean representation is the simplest form of such aggregation, where
each feature is expressed through the indicator function. In other
words, if the letter Ωi is presented in the symbolic sequence, the binary
feature corresponding to this word is one, otherwise zero.

• Frequency representation encodes a bit more information: instead of
recording the existence or absence of a letter in the vocabulary, we
count them. Note that in both of these cases the size of a feature vec-
tor can be very large which results in sparse matrix X. The frequency-
based approach also suffers from the heavy-tails of count distributions,
where some letters are largely underrepresented. The assumption of
both methods is that the vocabulary should be specified in advance.

• Index representation is an approach, where we take into account the
information about the order in which the elements occur in the se-

61

quence. Each resulting feature corresponds to a position in the se-
quence with the value of the element in that position. The size of the
feature vector is thus the length of the longest sequence.

• n-gram representation is a type of aggregation. It can be encoded in
terms of boolean or frequency representations, but the size of vocab-
ulary is increased as well as the feature space. Essentially, instead of
features corresponding to a single element in the vocabulary, we take
n-size tuples of elements. The elements of boolean and frequency rep-
resentations mentioned above can be considered as unigram features,
while bigrams would correspond to all unique pairs of vocabulary el-
ements.

Consider an example with the vocabulary Ω = {A,B,C} and one single
sequence xseq = {ABB}. Then:

A B C

Boolean representation 1 1 0

Frequency representation 1 2 0

1st 2nd 3rd

Index representation A B B

For 2-gram representation the same example would be:

AA AB AC BA BB BC CA CB CC

Boolean repres. 0 1 0 0 1 0 0 0 0

Frequency repres. 0 1 0 0 1 0 0 0 0

In case of complex symbolic sequences (see Section 2.2), the vocab-
ulary consists of vectors of symbols, not single symbols. Complex symbolic
sequences are multivariate sequences. Such data object can be represented
via tensor, or n-dimensional matrix, where one dimension is samples, one
– features and the last dimension is timepoints. We can apply the same
approaches as for simple symbolic sequences, – boolean, frequency, index
or ngram representations – but for each of the sequences separately. The

62

resulting feature matrix is therefore equal to the size of the corresponding
simple representation multiplied by number of features. For example, for
the boolean representation it is the size of the vocabulary of each feature
multiplied by the number of features. This way, the resulting matrix can
be used for the machine learning pipeline. In order to obtain index rep-
resentation for multivariate sequences, time spatialization is applied. Let
Md be the number of sequential features in a data sample, each of them of
length Td. In this case, every sample can be represented by a matrix of size
Md × Td:




x11 x12 . . . x1Td

x21 x22 . . . x2Td
...

...
. . .

...

xM1 xMd2 . . . xMdTd




By flattening the matrix we obtain a feature vector of length Md · Td thus
transforming a data sample from the time domain to the feature space:

(x11, x12, . . . , x1Td
, x21, x22, . . . , x2Td

, . . . , xMd1, xMd2, . . . , xMdTd
). (3.1)

In this work we discriminate between symbolic sequences that consist
of ordered observations of discrete values – symbols, and time series –
sequences with continuous observations. One way to project time series into
a feature vector is to aggregate them. For time series the simple statistics as
mean and standard deviation can serve as static features, but many other
methods exist [Lin 12, Lin 07]. Next, we mention a few approaches that are
later applied in the case studies.

The discretization, or division of continuous values into pre-defined bins
is the basic way to project continuous values onto discrete scale. Division
into bins on its own has different versions: one common method is to divide
time series into K equal intervals or into bins with equal frequencies. In-
evitably, such transformation leads to a discretization error [Kots 06]. Once
the time series are discretized, they take a symbolic representation and all
methods that were mentioned previously for sequences can be applied. Here,
methods for univariate time series can be easily extended to multivariate
features. However, the problem remains — we lose information not only by

63

discretization, but also as we do not account for a time-dependent informa-
tion.

Time-frequency transformation is another approach for discretization,
where time series are mapped from time domain into frequency domain.
Some of the most common methods include Fourier transform and wavelet
transform [Chui 92]. For example, recall the ECoG data time series (see
Figure 2.7). In Figure 3.1 we depict time series of only one channel and
its corresponding discrete Fourier transformation into 50 frequency com-
ponents. Once such transformation is applied, Fourier components can be
incorporated into the classification model as regular discrete features.

Figure 3.1

Static-to-sequential transformation. Another possible way to proceed
in order to take mixed data types into account is to apply models that
work on sequential data (like generative ones in a discriminative setting,
see Section 2.3.2) to both static and sequential data simultaneously. In
that case static features should be transformed into sequential ones. Static
features can be padded with constant values, in other words we construct
sequences of constant values and feed them to a sequential classifier along
with the sequential features. For example, if a sequence of sample i consists
of three observations, a static feature for i-th sample would be represented
as the single value repeated three times.

To conclude, there are ways to map static features to sequential or vice
versa. However, in both cases we do not take into account either dynamic
nature of the sequential features or we misrepresent the static information.

64

3.1.2 Feature extraction from graphs

Previously we discussed how to deal with the combination of sequential
features together with static feature vectors. In our fraud detection case
study (see Chapter 5) both sequential and graph data types are present.
We need to exploit the structure of a graph in order to obtain additional
information. There are two types of graph information: local and global,
where the local is obtained by extracting features manually from the ego-
centric graph, while the global features use the information from the whole
network. Next, we describe two global graph features that are used in the
case study.

PageRank The PageRank algorithm is widely used for ranking web pages
based on web link structures [Page 99]. Pages with high PageRank scores
are usually authoritative pages, with either many incoming links or links
from other important pages. Pages with low PageRank scores are usually
of low importance or spam pages. Recently, PageRank has also been used
for identifying spammers on social graphs [Chir 05, Huan 13]. In that work,
the PageRank algorithm is run on a reversed email graph. More specifically,
if user A sends an email to user B, one places an edge from B to A in the
reversed email graph. A spammer that sends many spam emails but receives
very few emails will have a high number of incoming edges in the reserve
email graph, hence will likely have a high PageRank score.

In our work, we adopt a similar approach and compute PageRank scores
on the reversed Skype user contact graph. More specifically, each user
represents a node in the graph. If user ui sends a friend request to user uj ,
we place a link from user uj to user ui. Thus, users with higher PageRank
scores are likely to be those that send out a large number of friend requests.
On such a reversed contact graph, we assign an initial uniform score to
each of the users and then perform iterative PageRank computation until
the PageRank scores converge.

In each iteration, each user u propagates her scores to neighbors (friends).
At the end of the iteration, a user u’s new PageRank score Ru,i+1 is com-
puted as:

Ru,i+1 = 1− d+ d
∑

{X:eXu∈E}

RX,i
outdegree(X)

65

where d is the damping factor usually set to be 0.85 [Brin 12], RX,i is the
score of the user X after the previous iteration, and {X : eXu ∈ E} is the
set of users in the graph having directed edges pointing to u (friends who
received contact requests from u).

The local clustering coefficient Another input to our classifier that
comes from the full contact graph is the local clustering coefficient [Watt 98].
The local clustering coefficient is the ratio of the number of connections in
the neighborhood of a user to the number of connections in a fully connected
neighborhood. Intuitively, it is a measure of how tightly the neighborhood of
the user is connected. In terms of the Skype network, each user’s contacts
constitute her neighborhood. If the neighborhood is fully connected, the
clustering coefficient is 1; on the other hand, if the clustering coefficient is
close to 0, there are no connections between contacts of the user.

More formally, let ki be the size of the neighborhood of user ui. Let ni
be the number of directed links between those ki users. Then, the clustering
coefficient cc(ui) of user ui is defined as:

cc(ui) =





0 if ki < 2

ni/(ki(ki − 1)) otherwise

It was demonstrated that clustering coefficient is greater in social networks
than in a random network [Watt 98].

Next, we discuss more advanced ways of static and sequential data com-
binations that can potentially extract more information, suggest the hybrid
approach and compare it with the ensembles.

3.2 Hybrid models

In the previous section we discussed how the dataset with mixed data types
such as sequences and regular static features can be represented as a proper
input for a classifier. The main goal is to extract information from both
static and sequential types of data so that it contributes to the classification
power. In this section we describe a more advanced approach to this prob-
lem, where discriminative classifier with static features is enriched with the

66

new features from generative models trained on the sequential data. We
refer to such approach as hybrid. By combining two different models, we
achieve a higher accuracy than singleton models as singleton models discard
or summarize the information to a great extent. We propose the hybrid ap-
proach and discuss its similarities and differences with other combination
methods.

It has become common knowledge that a single classification algorithm
even of high complexity is outperformed by many classifications combined
together [Diet 00]. The base classifiers of a multilayered classification sys-
tem should have enough diversity in order to exploit different patterns.
When the data consist of different data types like static and sequential fea-
tures, it leads already to a desired diverse information. However, it is still
very common to transform such mixed data to a single data type and apply
the regular classifier. We suggest a hybrid scheme for combination of data
types, which uses generative models within a discriminative pipeline. More-
over, in hybrid models instead of using compressed sequence information
represented as a prediction score (compared to ensembles in Figure 3.2a)
we rely on an intermediate step of generative models.

In Figure 3.2b we depict the schematic pipeline of the hybrid approach.
On a high level of abstraction, the provided data are divided according to the
type of features into a subset of data with static features and another subset
of either time series or symbolic sequences. Next, we use generative models
to learn a representation of the sequential features, where we train models
separately for each of the classification classes, i.e. use generative models
in a discriminative manner. We mentioned in Section 2.3.2 the benefit of
generative models for sequential data, which is to capture additional signal
from the available data.

Once we fit generative models for each of the classes, we calculate for
each instance the likelihoods that it belongs to each of the class-specific
generative models. We use this information as new features x

′ that de-
scribe the instance. New feature matrix x

′ ⊕ x is created, which becomes
a combination of the static features and the new features. This resulting
feature matrix is passed to a new classifier to be trained.

However, the likelihoods from the class-specific generative models are
not the only possibility to obtain new features. We discuss activations

67

of LSTM model as potential candidates for this role in Chapter 6. In this
thesis for a hybrid approach we experimentally analyze two types of the new
features x

′ : in case of HMM we use log-odds ratios (see Equation 2.3), and
in case of LSTM we explore LSTM MSE ratios (as outlined in equation 2.4)
and LSTM activations. Intuitively, log-odds and MSE ratios as the new
features x

′ show for each instance to which class it belongs more likely.
The interpretation of LSTM activations is less intuitive in this case, but
potentially may provide valuable insights.

In Figure 3.2 we compare hybrids to ensembles. Note the key differences
between the two methods: in an ensemble the metalearner uses predictions
of baselearners as the new features, in other words in ensembles baselearners
cooperate — the sequential and static models are trained for a weights to
be assigned to predictions of these models. Hybrid models represent the
cascading type [Heit 09] — static features are combined together with new
features of sequential models.

Dtrain(x, y)

Dtrain(xstatic, y) Dtrain(xseq, y)

Lstatic Lseq

ŷstatic ŷseq

LEnsemble

ŷEnsemble

(a) A schematic representation of
an ensemble

Dtrain(x, y)

Dtrain(xstatic, y) Dtrain(xseq, y)

x
0
= Lseq

Dtrain(xstatic � x
0
, y)

LHybrid

ŷHybrid

(b) A schematic representation of
a hybrid approach

Figure 3.2

68

Ensembles are very powerful methods, but in some situations hybrids
have more flexibility. Consider a toy example, where the underlaying process
of data generation consists of two features, one static – x1 and one sequential
– x2. The class of the instance is determined by the following rules:

x1 ≥ 7 & x2 = ARMA(p = 1, q = 1)⇒ class0

x1 ≥ 7 & x2 = ARMA(p = 2, q = 2)⇒ class0

x1 < 7 & x2 = ARMA(p = 1, q = 1)⇒ class1

x1 < 7 & x2 = ARMA(p = 2, q = 2)⇒ class0,

where ARMA stands for Autoregressive Moving Average model with p au-
toregressive terms and q moving average terms. For the comparison of two
methods we use the same baselearners for the ensemble and hybrid meth-
ods. For the sake of brevity we also simplify the baselearners to provide a
binary output. If we are to classify instances:

Table 3.1

x1 x2 class

5 ARMA(1,1) 1

5 ARMA(2,2) 0

8 ARMA(1,1) 0

8 ARMA(2,2) 0

a baselearner for the static features has problems classifying two first in-
stances and therefore, ambiguous. Now, recall that the metalearner of the
ensemble uses the predictions of two methods, while in the case of the hy-
brid approach we use initial static features in conjunction with the output
of the sequential model. In Table 3.2 we can observe that for the ensem-
ble first two cases can have either first or second class, which leads to the
uncertain classification results and would depend on an applied threshold
for the static baselearner rule. If first sample happens to be classified as 0,
then in the new feature space, samples 1 and 3 are identical, thought they
have different classes. For the hybrid model the input is not ambiguous
anymore and can be learned easily. Despite being overly simplistic, this toy

69

example demonstrates that the ensemble provides less flexible combination
of baselearners.

Table 3.2: Input for the metalearner in case of ensemble (left) and hybrid
(right) models.

Ensemble Hybrid

static

pred

seq

pred
real

static

feat

seq

pred
real

0/1 1 1 5 1 1

0/1 0 0 5 0 0

0 1 0 8 1 0

0 0 0 8 0 0

Not only ensembles provide ways to incorporate different models. Vari-
ous algorithms have been developed to combine different machine learning
algorithms [Kunc 04, Diet 00, Zhou 12]. There are a few other concepts
that are similar to the suggested hybrid approach. We already mentioned
multiple times one of the most prominent type: an ensemble of classifiers
(see Section 2.4). Others include mixture of experts and cascading classi-
fiers. Another interesting direction is kernel methods. Next, we provide
an overview of the literature in this field and discuss the similarities and
differences with our approach.

Ensemble methods. The main difference between general ensemble and
hybrid is that in the case of ensembles we operate at the level of models’
predictions, where metaclassifier combines the predictions with different
weights. In the case of ensemble base methods learn to cooperate [Kunc 04,
Zhou 12]. In the hybrid approach we operate at the level of features, where
valuable information in a generative model is extracted and passed to the
discriminative learner along with the static features. In case of ensembles
one can tune only the contribution of (in most cases) multivariate models
in the final ensemble, while in the suggested hybrid approach generative
models contribute to the prediction along with other features.

70

Mixture of experts. A prominent method for classifiers’ combination is
the mixture of experts (ME) [Nowl 90, Jaco 91]. The biggest difference
with the ensembles is the ability to specialize on each case instead of the
cooperative ability like in ensembles. Intuitively, mixture of experts consists
of base classifiers, each of them specializing on a separate region, and a
separate gating function that “decides” which classifier should be applied to
which region. The gate function is also learned along with the base classi-
fiers. Figure 3.3 shows a schematic representation of mixture of experts.

Dtrain(x, y) …

…

L1

L2

Lk

LK

G

g1

g2

gk

gK

ŷ

Figure 3.3: Mixture of experts. G is a gating function, Lk are experts/base
classifiers

In the most conventional ME both gating function and experts are lin-
ear classifiers. However, later other non-linear functions were proposed that
gained a better performance with the most prominent examples of neural
networks [Maso 14]. Moreover, each of the experts, in turn, can be a mix-
ture, which gives rise to a hierarchical ME type [Murp 12].

The suggested hybrid approach is different from ME in various ways. It
transforms predictions to new features and does not operate on the level
of predictions nor have a trained gate network. However, the way ME
uses each model to the region that the model knows the best, the hybrid
approach applies specific models to data types they excel at the most.

Cascade of classifiers. Another combination technique, which resembles
the hybrid approach is a cascade of classifiers [Viol 01, Rayk 10, Negr 08].
The basic idea is to use classifiers sequentially. Each classifier either passes

71

the instance to the next, increasingly complex classifier, or rejects it imme-
diately if some threshold is reached (see Figure 3.4). The first classifiers
are either less complex or trained with simpler features. With each new
classifier increases the complexity or/and features’ calculation cost. Such
systems are especially useful when the data is imbalanced and the focus is
on the detection of minority class. One prominent example is a boosted cas-
cade of classifiers [Viol 01], where AdaBoost is used in a sequential manner
to rapidly perform face recognition. Interestingly so, cascades of classifiers
were applied mostly in the context of image recognition and scene under-
standing in particular [Viol 01, Li 10, Heit 09].

Dtrain(x, y) L1 L2 … LK

increasing complexity or cost

ŷnegŷneg ŷneg

ŷpos

 ✓1  ✓K ✓2

> ✓1 > ✓2 > ✓K

Figure 3.4: A cascade of classifiers

The similarity with the hybrid approach lies in the sequential way of
classifiers’ combination. However, in the hybrid approach we do not in-
crease the complexity of the classifiers, but apply different types of models:
generative models are used for sequences and passed in a cascading manner
to the discriminative classifier. The idea of the combination of generative
and discriminative classifiers as a cascading model is introduced in work
of Negri and colleagues [Negr 08] with the application to vehicle detection.
However, their work differs from ours in many ways. They deal with the im-
ages and extract features using rectangular filters along with the histograms
of oriented gradient. Essentially, all of the data is static. Moreover, in terms
of the approach we do not reject any instances in advance.

Other hybrids. A work similar to ours is introduced by Lester et al.
[Lest 05], where the main goal is to recognize human activities. Their idea is
to first select the useful static features with boosting similarly to the work of

72

Viola et al. [Viol 01], use an ensemble of static classifiers (classifiers that deal
with static features) and apply Hidden Markov Model in order to smooth
activities and capture temporal dynamics. Altogether, their method is very
similar to the one proposed in this work with the difference of the order.
In our case we extract features from a general model and plug them into
a discriminative classifier, while in the work of Lester et al. discriminative
ensemble is used to find a small set of static features that is then used as
inputs to the HMM. This difference is justified by the different task at hand.
In their case they want to produce a generative model of activities, while
in our case we are interested in the classification task for mixed data types.

Kernel methods from generative models. There is a well-studied line
of research that investigates kernel methods that are derived from proba-
bilistic generative models [Jaak 99, Murp 12, Jaak 00, Gart 03]. Despite
defining the appropriate kernel function is not straightforward, there are
several methods that suggest valid kernel functions for the sequential data.
Kernels provide a way to use generative model for the classification task and
are especially useful when the length of the sequences varies. Let us first de-
fine a kernel function, which is relevant to the notion of similarity [Sonn 05].
It is defined on the set X as: K : X ×X → R such that for all x, z ∈ X

K(x, z) = 〈φ(x) · φ(z)〉, (3.2)

where φ is a mapping from X to an (inner product) feature space F ,
φ : x → φ(x) ∈ F. The use of kernel methods is motivated by the Cover’s
theorem, which states that given a set of training data that is not linearly
separable, it can be transformed into a training set that is linearly separable
by transforming it into a higher-dimensional space using some non-linear
transformation [Cove 65]. Informally, the so-called kernel trick allows to
compute a function K without the need of explicitly computing the func-
tion φ. Once the appropriate kernel function is defined (which satisfies the
Mercer’s condition [Merc 09]), any kernel method can be applied to any
type of data [Da S 10].

Various kernels have been suggested for the sequential data from general-
purpose kernels such as string kernels and k-spectrum kernels [Xing 10] to
domain-based kernels, like the Independent Domain kernel (IDK) based on

73

Pfam database [Alla 08, Ben 03]. However, the most relevant kernels in the
context of this work are Fisher kernels [Jaak 99, Jaak 00] that are based on
HMMs. Simply put, the key idea of Fisher kernel is to use the gradient of
log-likelihood with respect to the parameters of the HMM as the features in
a discriminative classifier [Gart 03]. In paragraph 2.3.2.3 we already defined
a Fisher score Ux that extracts a feature vector from a generative model.
It is trivial to enrich the static feature vector of Fisher scores with other
static features and pass it to the discriminative classifier. At this stage, this
idea fits into our suggested hybrid approach, where the Fisher scores can be
seen as new features x′ (see Figure 3.2b). In our approach we use log-odds
as such features produced by a generative classifiers, but the Fisher scores
can be also applied. It is an interesting direction that is left for the future
work.

However, if we want to kernalize the approach, we can define various
kernels on the vector of Fisher scores and pass it, for example, to SVM as
it is done in the work of Jaakkola et al. [Jaak 00]. But in principle, any
other generative-discriminative pairs of models can be used the same way,
for example an RNNs with random forest.

The commonly known Fisher kernel is defined as k(x, x
′
) = UTx I

−1Ux′ ,
where x and x′ are two sequences. If we use the Euclidean distance function
between the Fisher scores as:

D2(x, x
′
) =

1

2
(Ux − Ux′)TF−1(Ux − Ux′)

where F is the Fisher information matrix, we can use a Gaussian kernel

k(x, x
′
) = e−D

2(x,x
′
).

In our work we did not use Fisher scores nor Fisher kernels. Fisher scores
can be used with other static features and thus, incorporated in the pro-
posed hybrid approach naturally; Fisher kernels for the kernalized methods
where both static features and Fisher scores are present is another possible
approach, however, it does not fit to the suggested hybrid framework.

Our results demonstrate that the suggested in this work hybrid approach
with its differences from previous works is beneficial especially with the
state of the art generative models such as LSTM, where the model plays
the role of a generative feature extractor (see the empirical investigations

74

in Chapter 6). Nonetheless, the incorporation of the Fisher scores in the
hybrid approach as well as the line of research towards Fisher kernels can
be a fascinating future work.

3.3 Notion of earliness

Previously we described the hybrid models that handle sequential data along
with the static features for a classification task. By default it is assumed
that the final decision for the class is made at the end of the complete se-
quences. In other words, it is a whole-sequence based classifier. It requires
to observe all the information in advance before the classification is made.
However, often an early classification of an ongoing process is highly de-
sirable especially in time-sensitive domains. In such a case it is especially
necessary to extract all the information both from static and sequential
parts of the data as the amount of data is limited. In this chapter we in-
troduce a framework that provides a more flexible usage of classifications
for mixed data types, where the prediction can be made at early stages.
We discuss the aspect of earliness in the classification task and how it is
handled in the proposed framework.

The notion of earliness can be expressed as follows: in some classifica-
tion tasks the earlier we make the predictions about the outcome, the more
valuable it is under the constraint of the sufficient accuracy. Multiple exam-
ples of such tasks can be found: one of the examples is the prediction of the
diagnosis from the medical history of a patient, where the disease progresses
over time. The earlier a medical practitioner is able to diagnose a disease
the higher are chances to cure the patient. Many methods for sequential
data classification do not account for the earliness aspect by extracting fea-
tures from the full sequences; and constructing classifiers that are capable
to optimize for earliness by maintaining the level of accuracy is not straight-
forward [Xing 11]. There are several studies that investigate the problem of
time series early prediction. Most of the works define some threshold over
the accuracy that triggers the final decision [Hata 13, Xing 12, Anto 15]. In
essence, there is the trade-off between earliness and accuracy — by post-
poning the decision the accuracy increases. In work of Xing [Xing 11],
instead of threshold, the special features, shapelets, are extracted and the

75

classification is performed when some of the highly discriminative shapelets
are discovered. In some works the notion of the confidence/reliability is
also introduced, which shows the amount of uncertainty in the predic-
tion [Parr 13, Anto 15]. Another direction of the research is to investigate
the optimal t, where the prediction should be made. It is defined as the
optimal point between the misclassification cost and the delay cost and it
is adaptive [Dach 15, Tave 16]. The work of Hatami and Chira, [Hata 13]
suggest to use the rejection option, where the ensembles of classifiers should
agree above a certain threshold or the decision should be postponed. Xing
et al. [Xing 12] introduces the method based on nearest neighbors that ac-
counts for stability of the predictions. It is worth mentioning that most
of the works investigate univariate time series. In paper of He and col-
leagues [He 15], early prediction is discussed in the context of multivariate
time series. Also, the proposed procedure of the progressive index-based
system is similar to the work of Ishiguro [Ishi 00], where they apply each
weak classification algorithm for each time step. However, they explore
the problem of multi-label classification specifically, while we focus on the
combination of static and sequential features. Moreover, the progressive
index-based framework we introduce in the next section can also handle
multi-label classification naturally. Our work provides enough flexibility to
use a threshold measure as the accuracy is recorded at any timepoint. We
do not specify in advance when the optimal decision should be made and
it is left for future work. The suggested future direction would be to add
earliness as an additional hyperparameter and to estimate particular time-
points. In Chapter 4 we experimentally show on the PBPM case studies
that most of the predictions can be made at very early stages.

3.4 Progressive index-based framework

In this section we propose a progressive index-based framework that has
several improvements over the existing approaches: it handles multivariate
sequential data (1), it naturally incorporates the earliness of the prediction
(2), as well as handles sequences of different length (3). Moreover, it takes
into account both static and sequential features (4). Also, we are not limited
to the type of algorithms used in baselearners and the metalearners.

76

The suggested approach has two phases: learning phase and application
phase:

• (Initialization) Define a form of a baselearner Lt and a metalearner
LE or a form of an aggregation function h(L1, . . .Lt) .

• (Learning phase)

1. Collect static features xstatic of a dataset D.

2. Align sequential features xseq of a dataset D so that they have
a startpoint t = 1 and an endpoint t = T . In case of complex
sequences handle each of the sequential features separately by
flattening the matrix (see Section 3.1 and Equation 3.1).

3. For each t train a separate baselearner Lt by combining static
features with the sequential ones up to a fixed timepoint t. See
Sections 3.1 and 3.2 to see how static and sequential features can
be combined using different encodings or the hybrid approach.

• (Application phase) For each new running case xi in Dtest and either
for each timepoint t or for the latest available t use the metalearner
LE to obtain a prediction ŷt as depicted in Figure 3.5.

The above framework is very flexible as it allows one to choose various ways
to handle the problem of the classifier with the combination of multivari-
ate sequences and static features as it consists of different building blocks
that we defined in the preceding sections. We experimentally confirm the
framework’s usefulness and demonstrate the improvements over existing ap-
proaches in the following chapters, where we apply it on the case studies.

In Section 3.2 we discuss how to choose a baselearner for the framework
and in the following chapters we experimentally show how to apply index-
based method or combine it with more sophisticated sequential methods
like HMM and LSTM. For the results and the discussion see Chapter 6,
where we present the larger study of different combination methods. The
metalearner aggregation functions are listed in Section 2.4. In Chapter 4.1
we show how this framework is fully realized on a particular example from
the BPM domain and discuss different modifications.

77

baselearner
baselearner

baselearner
…

metalearner

…

se
qu

en
ce

 v
al

ue
s

timepoints

class

L2

L3

L8

LE

Figure 3.5: The illustration of the progressive framework. Sequences for
10 timepoints are depicted. Colors indicate the classes of the two sequences.
We construct multiple baselearners, where each subsequent baselarner uses
increased number of timepoints. The final metalearner uses the predictions
from all the baselearners.

Example. Let us outline a hypothetical example, where the progressive
index-based framework demonstrates its capabilities. Consider a dataset of
the same nature as discussed in 2.1.4 ECoG case study, where we analyze
electroencephalography data from 64 electrodes. For each of the trials there
exists a label: whether a patient imagines to move either a tongue or a finger.
Moreover, imagine that we have at our disposal the gender and the age of
a patient. Now let us initialize a framework:

• (Initialization) We choose a baselearner to be a hybrid model, which
handles sequential and static features as discussed in Section 3.2. In
a hybrid model we capture the sequential features with the LSTM
recurrent neural network as in Section 2.3.2.2 and calculate LSTM
odds-ratios (see Section 2.3.2.2 and Equation 2.4 in particular). We
train Random Forest on the set of static features concatenated with
these odds-ratios (Section 2.3.1.2). Once the baselearner is initialized,

78

we choose the metalearner to be logistic regression. That is Lt =

hybrid(LSTM, RF), LE = logit(L1, . . . ,Lt).

• (Learning phase, step 1: static feature extraction) Let us describe
the procedure of extracting static and sequential feature sets more
precisely. Firstly, we partition the recording of 3 seconds into a 300 ms
overlapping intervals with the sliding window. Thus, the first interval
would be a signal from 0 to 300 ms, while the second one from 100
to 400 ms and so on. We end up with 10584 such samples. For each
sample we perform a Fourier transformation as shown in Figure 3.1.
We pick first 100 frequency components from each piece. Let us denote
them xs = {f1, ...f100}. Therefore, the x′

s = {f1, . . . f100, age, gender}
is a matrix of 10584× 102.

• (Learning phase, step 2: feature matrix) The sequential feature set
is the initial raw time series divided into 300 ms overlapping pieces
for each of the 64 channels, which results in a 3D matrix xd of size
10584× 300× 64 that can be passed to a generative LSTM directly.

• (Learning phase, step 3: hybrid model) For each of the timepoints t we
need to train a baselearner — the hybrid model. In our case the earli-
est prediction we can make is at t = 300 and then we make predictions
in 100 ms steps as we use overlapping intervals. For each such t we
fit LSTM on a subset of xd for positive cases and for negative cases
separately. 64 new features denoted as hyb1, . . . hyb64 are obtained
using hybi = log(MSEneg) − log(MSEpos) for each of the channels.
After that, Random Forest is applied on the resulting feature matrix
of size 10584× 166.

• (Application phase) For each baselearner prediction ŷLt at timepoint
t we obtain a final prediction using logistic regression. Consider a
timepoint at 500 ms. We learn a new classifier, logistic regression,
with the baselearner predictions from L[0,300], L[100,400] and L[200,500],
where logistic regression estimates and assigns some weights for each
of the classifiers (see Figure 3.5).

79

Note that we do not discuss the proper splitting strategy in this example.
See section 6.4.1 for one possible way of cross-validation for the progressive
index-based framework.

80

Chapter 4

Case study I: PBPM

4.1 Introduction

In this section we describe the case study of the predictive business process
monitoring problem (PBPM). Recall the description of the classification
task from the description 2.1.4. The general idea can be summarized as the
ability to predict the deviance probability of a process as early as possible.
Existing approaches to the problem of PBPM [Magg 14, Conf 15] essentially
map the problem to that of early sequence classification [Xing 10], where a
classifier is trained over the set of prefixes of historical traces. This classifier
is used at runtime in order to predict the outcome of an ongoing case based
on its current (incomplete) trace. A key step is to extract features from
prefixes of historical traces. In this respect, existing approaches treat traces
as simple symbolic sequences, sequences of symbols, each representing an
event but without its payload. Sometime only the payload of data attributes
attached to the latest event is included in the feature vector of the classifier,
but the evolution of data attributes as the case unfolds is ignored.

In this chapter we investigate an alternative approach where the traces
are treated as complex symbolic sequences, that is, sequences of events each
carrying a data payload consisting of attribute-value pairs. As we deal with
a non-trivial data type, it is crucial to choose how to encode a complex
symbolic sequence in terms of feature vectors.

We propose the progressive index-based framework discussed in Chapter
3 and apply it in the BPM domain, as well as define different encodings of

81

sequences — feature vector representations of business processes. Namely,
we suggest and compare two different baselearners L and compare them
with several baselines. The first baselearner corresponds to index represen-
tation of a sequence (see Section 3.1). Using this encoding, we specify for
each position in the case the event occurring in that position and the value
of each data attribute in that position. The second encoding corresponds to
a hybrid baselearner that is obtained by combining the index-based repre-
sentation with discriminative Hidden Markov Models as described in details
in Section 3.2.

The proposed methods are evaluated in terms of their accuracy at differ-
ent points in a trace based on two real life logs: (i) a patient treatment log
provided for the BPI challenge 2011 [Dong 11] and (ii) an insurance claim
process log from an insurance company [Suri 13b]. The descriptions and
types of these datasets are discussed in Section 2.2.3.1.

4.2 Related work

Next, we provide an overview of existing predictive business process mon-
itoring approaches and where the suggested approach stands. We can
broadly classify existing PBPM techniques based on i) sources of data
that are taken into account ii) type of the predictions. In a first group
of works [Aals 11, Aals 10], the authors present a set of approaches in
which annotated transition systems, containing time information extracted
from event logs, are used to: (i) check time conformance while cases are
being executed, (ii) predict the remaining processing time of incomplete
cases, and (iii) recommend appropriate activities to users working on these
cases. In [Foli 12], an ad-hoc predictive clustering approach is presented,
in which context-related execution scenarios are discovered and modeled
through state-aware performance predictors. In [Rogg 13], the authors use
stochastic Petri nets for predicting the remaining execution time of a pro-
cess. In [Pola 14] the authors use both information from the control-flow
and the payload, using such methods as Support Vector Regression (SVR)
and Naive Bayes in order to predict the remaining time of the process.
This group of works concentrates on a control-flow of the processes or the
predictions are time-related.

82

A second group of works focuses on approaches that also use control-
flow, but instead of predictions they provide recommendations in order to
reduce task-specific risks. For example, in [Conf 15], the authors present
a technique that helps the participants in making risk-informed decisions,
with the aim of reducing the process risks. Risks are predicted by travers-
ing decision trees generated from the logs of past process executions. In
[Pika 13], the authors make predictions about time-related process risks, by
identifying and exploiting indicators observable in event logs that highlight
the possibility of transgressing deadlines. In [Suri 13a], an approach for
Root Cause Analysis through classification algorithms is presented. Deci-
sion trees are used to retrieve the causes of overtime faults on a log enriched
with information about delays, resources and workload.

An approach for prediction of abnormal termination of business pro-
cesses is presented in [Kang 12]. Here, a fault detection algorithm (local
outlier factor) is used to estimate the probability of a fault to occur. Alarms
are provided for early notification of probable abnormal terminations. In
[Cast 05], Castellanos et al. present a business operation management plat-
form equipped with time series forecasting functionalities. This platform
allows for predictions of metrics on running process instances as well as for
predictions of aggregated metrics of future instances (e.g., the number of
orders that will be placed next Monday).

PBPM focused on specific types of failures has also been applied to
real case studies. For example, in [Metz 12, Feld 13], the authors present
a technique for predicting “late show” events in transportation processes.
In particular, they apply standard statistical techniques to find correlations
between “late show” events and external variables related to weather condi-
tions or road traffic.

A key difference between these approaches and our technique is that
they rely either on the control-flow or on the related data for making pre-
dictions, whereas we take both source of information into consideration.
The similar approach has been considered in [Magg 14], where a framework
for the PBPM of constraint fulfillment and violation has been proposed. In
this approach, however, only the payload of the last executed event is taken
into account, while neglecting the evolution of data values throughout the
execution traces. The present case study aims at addressing the latter limi-

83

tation of previous studies by treating the input traces as complex symbolic
sequences.

It is worth noticing that a few further directions are already proposed
and evaluated based on the results of the present work. Verenich at al.
[Vere 15] apply clustering as an additional phase for the suggested progres-
sive index-based framework in attempt to speed-up the algorithm results.
The work of Teinemaa at al [Tein 16] focuses on the PBPM problem with
the additional source of data — textual information. They analyze and
propose solutions for handling such unstructured data type by extracting
features using techniques from natural language processing. In [Tree 16]
the milestone approach is compared to a progressive index-based frame-
work. The idea is to discard the notion of time alltogether and instead to
define milestones — significant events, where the aggregated information
about the processes reflects the state of the process that is important for
the prediction. This is especially useful when more granular data for each
index t is not available or largely missing, or there is no precise knowledge
in what order the events have happened.

4.3 Complex symbolic sequence encodings in the
PBPM domain

In this section we define the progressive index-framework (see Chapter 3)
for the BPM problem and discuss different choices of baselearners for that
task.

Let us first provide a high-level overview of the predictive process in a a
schematic way (Figure 4.1). To predict the outcome of an ongoing case, its
current (incomplete) trace of length t is encoded using complex symbolic
sequences (see Section 2.2.1). A complex symbolic sequence in the PBPM
context carries information about the control flow and the data flow of the
trace. The approach uses an assumption that a log of historical (completed)
cases is available for the training purposes. From the available cases, all the
information from the start till the index t is extracted and, in turn, encoded
in the form of complex symbolic sequences. In addition, these sequences are
labeled using a binary or categorical value according to their outcome —
for example, if a case is deviant, it is labeled as 1, and 0 otherwise. The

84

“historical complex symbolic sequences” are used to train a discriminative
classifier. After the training phase is completed, the classifier is applied
on a current ongoing trace and the most probable outcome is returned in
terms of the probability or a score, which indicates the confidence of a
classifier towards the real class of that case. We use Random Forest as a
discriminative classifier. However, in order to justify our choice we made
a comparison of the performances of a few discriminative algorithms when
applied to one of the BPM datasets. The results of the comparison are
shown in Figure 4.10.

Encode
using Complex

Sequences

Historical
cases

Historical
complex

sequences
Train Random

Forest classifier
Random
Forest

Predict the
outcome of the
current case

Incomplete
case

Encode
using Complex

Sequences

Current
complex

sequence

Figure 4.1: Overview of the proposed approach.

Recall that the case is represented in the form as depicted in Figure 2.5
(see subsection 2.2.3.1). As a running example, we consider the log in
Figure 4.2 pertaining to a medical treatment process. Each case relates to
a different patient and the corresponding sequence of events indicates the
activities executed for a medical treatment of that patient. Let us define a
sequence related to a business process as σ. In the example, consultation
is the first event of sequence σ1. Its data payload “{33, radiotherapy}”
corresponds to the data associated to attributes age and department. Note
that the value of age is static: it is the same for all the events in a case, while
the value of department is different for every event. In the payload of an
event, always the entire set of attributes available in the log is considered.

85

σ1 (consultation{33, radiotherapy},...,ultrasound{33, nursing ward}):false
...

σk (order rate{56, general lab},. . . , payment{56, clinic}):true

Figure 4.2: Running example of the complex symbolic sequences.

In case for some event the value for a specific attribute is not available, the
value unknown is specified for it.

The goal of predictive business process monitoring is outlined in Sec-
tion 2.1.4. We are interested in automatically deriving a function f that,
given an ongoing sequence σi provides a label for it, i.e., f : (BPL, σi) →
{C}. It is important to note that we achieve that by training a discrimi-
native classifier on sequences of the same length starting from t = 0 up to
a pre-defined index t that are derived from historical cases in BPL. As
we discussed earlier, the most crucial moment is to derive proper features.
Therefore, in the current case study we represent each sequence σi, i = 1...N

as a feature vector xi = (xi1, xi2, ...xit), where t ≤ T .
In the context of the PBPM task we investigate different encoding

schemes and compare them with several baselines. The baselines are de-
scribed in Section 3.1 and the two suggested approaches are the index-based
and the HMM-based encodings. The latter is essentially the encoding that
adopts the hybrid model for the classification and is described in more
details in Section 3.2. When the traces are treated as simple symbolic
sequences, the additional information related to data and data flow is ne-
glected, while in the index-based and HMM-based encodings we express all
the information through the multidimensional sequences and apply either a
discriminative classifier or use the generative models as feature extractors
to compliment the classifier.

Let us further consider the encodings described in Section 3.1 and apply
it on a toy example 4.2 of a hospital log.

86

consultation ultrasound ... payment label

σ1 1 1 ... 0 false

...

σk 0 0 ... 1 true

(a) boolean encoding.

consultation ultrasound ... payment label

σ1 2 1 ... 0 false

...

σk 0 0 ... 4 true

(b) frequency-based encoding.

event_1 ... event_t label

σ1 consultation ultrasound false

...

σk order rate payment true

(c) simple index encoding.

age event_1 ... event_t ... department_last label

σ1 33 consultation ultrasound ... nursing ward false

...

σk 56 order rate payment ... clinic true

(d) index latest payload encoding.

Figure 4.3: Baseline encodings for the example in Figure 4.2.

The first two baseline approaches in our experiments describe sequences
of events as feature vectors, where each feature corresponds to an event
class (an activity) from the log. Essentially, they take into account only
control flow in a very aggregated form. These encodings correspond to such
feature extraction methods as boolean and frequency representations (see
Section 3.1 for the details). Tables 4.3a, 4.3b show the example from Fig-
ure 4.2 encoded using these representations.

Another way of encoding a sequence is by using index representation,
where we take into account also information about the order in which events
occur in the trace, as in the simple index-based encoding. Here, each fea-

87

ture corresponds to a position in the trace and the possible values for each
feature are the event classes. By using this type of encoding the example
in Figure 4.2 would be encoded as reported in Table 4.3c.

The fourth baseline encoding adds to the simple index baseline the data
of the latest payload. Here, data attributes are treated as static features
without taking into consideration their evolution over time. Table 4.3d
shows this encoding for the example in Figure 4.2.

age event_1 ... event_t ... dep_1 ... dep_t label

σ1 33 consultation ultrasound radiotherapy nursing ward false

...

σj 56 order rate payment general lab clinic true

(a) index-based encoding.

age event_1 event_t ... dep_1 . . . dep_t LLR_event . . . LLR_dep label

σ1 33 consultation ultrasound radiotherapy nursing ward 0.12 . . . 0.56 false

. . .

σj 56 order rate payment general lab clinic 4.3 . . . 1.7 true

(b) HMM-based encoding.

Figure 4.4: Encodings for the example in Figure 4.2.

In the more complex form of index representation — index-based encod-
ing, the data associated with the events in a sequence is divided into static
and sequential information. The resulting feature vector xi, for a sequence
σi is:

xi = (xstatic1 , . . . , xstaticms
, e11, . . . emdt, x

seq
11 . . . xseqmdt

),

where each xstaticms
is a m-th static feature, each emdt is the md-th event class

at position (index) t and each xseqmdt
is a md-th sequential feature associated

to a corresponding event. The example in Figure 4.2 transformed into this
encoding is shown in Table 4.4a.

In order to deal with complex symbolic sequences in the HMM en-
coding we adopt the notion of hybrid model (see Section 3.2). It is the
index-based approach with the additional information that comes from a
generative model in the form of features. For each sequence we compute
the log-likelihood ratio (LLR) according to Equation 2.3. The resulting
feature vector, therefore, consists of LLR values extracted from each of the

88

sequential features, which is added to the feature vector obtained with the
index-based encoding. In particular, the input vector for the classifier is, in
this case:

xi = (xstatic1 , . . . , xstaticms
, e11, . . . emdt, x

seq
11 . . . xseqmdt

, LLR1, ..LLRmd
),

where each LLRmd
is the log-likelihood ratio computed based on the simple

symbolic sequence corresponding to either an event class or a sequential
feature of the original case. Table 4.4b shows an encoding for the example
in Figure 4.2 obtained by using log-likelihood ratio values.

4.4 Evaluation

In this section, we provide the description of the experiments that we carried
out. Our evaluation focuses on the following research questions:

• RQ1: Do the proposed encodings provide reliable results in terms of
predictions?

• RQ2: Do the proposed encodings provide reliable predictions at early
stages of the running case?

• RQ3: Are the proposed encodings stable with respect to the quality
of the results provided at different stages of the running case?

The three questions focus on three intertwined aspects. The first one
relates to the quality of the results (in terms of prediction correctness)
provided by the proposed encodings. The second one investigates how early
the encodings are able to provide reliable results. The third one focuses on
the stability of the quality of the results when computed at different stages
of an ongoing case. In the following, we describe the experiments carried
out to answer these research questions.

4.4.1 Datasets

The datasets for the particular case study are briefly described in the Sec-
tion 2.2.3.1. The event log for the dataset BPL1 contains domain specific

89

LTL # Positive cases # Negative cases

ϕ1 459 684

ϕ2 894 249

ϕ3 260 883

ϕ4 320 823

γ1 788 277

Table 4.1: Distribution of labels in the datasets.

attributes that are both case attributes and event attributes in addition to
the standard XES attributes.1 For example, Age, Diagnosis, and Treatment
code are the case attributes (that we consider as static features) and Activ-
ity code, Number of executions, Specialism code, and Group are the event
attributes (that we consider as sequential features). The second log BPL2

includes only event attributes like Claim type, Claim reason, and Amount.
We have defined 4 temporal constraints corresponding to the following

linear temporal logic rules [Pnue 77] over event classes in dataset BPL1:

• ϕ1 = F(“tumor marker CA− 19.9”) ∨ F(“ca− 125 using meia”),

• ϕ2 = G(“CEA− tumor marker using meia”→ F(“squamous cell carcinoma using eia”)),

• ϕ3 = (¬“histological examination−biopsies nno”)U(“squamous cell carcinoma using eia”),

• ϕ4 = F(“histological examination− big resectiep”).

and we have used them to label the cases in the training set from the dataset
BPL1 as compliant or non-compliant (one labeling for each rule). Cases
in the training set of dataset BPL2 have been labeled with respect to a
constraint corresponding to a rule γ1 formalizing a regulation internal to
the insurance company. This rule requires a claimant to be informed with
a certain frequency about the status of his or her claim. The distribution
of labels in the datasets is shown in Table 4.1.

1XES (eXtensible Event Stream) is an XML-based standard for event logs proposed
by the IEEE Task Force on Process Mining (www.xes-standard.org).

90

www.xes-standard.org

4.4.2 Evaluation procedure

In this case study we use as the main measure AUC (see Section 2.1.2).
The measure we use to evaluate the earliness of a prediction is based on
the number of events that are needed to achieve a minimum value for AUC.
Finally, we use standard deviation to evaluate the stability of the results
computed at different stages of an ongoing case.

In our experiments, we order the cases in the logs based on the time at
which the first event of each case has occurred. Then, we split the logs in two
parts. We have used the first part (80% of the cases) as a training set, i.e.,
we have used these cases as historical data. As we compare different versions
of baselearners which require different splitting strategy, the training set is
used differently in the experiments based on the different encodings. For
most of them, the entire training set was used to train a Random Forest
classifier. The only exception is the HMM-based encoding — it uses 75% of
the training set for training the HMMs and 25% for training the Random
Forest (later on we refer to it as validation set). For the application phase
we use the remaining 20% of the cases.

A few hyperparameters has to be chosen for our task. For Random
Forest classifier, number of trees is fixed to 500 and the optimal number of
features to use for each tree (mtry) was estimated separately using 5-fold
cross-validation on the training set (see Section 2.1.2). The optimal number
of hidden states for HMMs is estimated in a similar way. In particular, the
original training set is split, in turn, into training and validation cases and,
using these cases, different parameter configurations are tested. The optimal
ones – with highest AUC, were chosen for the experiments.

In order to measure the ability of the models to make accurate predic-
tions at an early stage, we computed the AUC values using indexes ranging
from 2 to 20. This choice is justified by the observation that for the defined
labelings for ϕ1-ϕ4 and γ1, encodings based on the sole control flow are able
to provide correct predictions after about 20 events.

4.4.3 Results

Figures 4.5-4.8 show the trend of the AUC values when predicting the out-
come of the cases in the test set from dataset BPL1 , with respect to

91

labeling rules ϕ1-ϕ4. In particular, each plot shows the evolution of the
AUC values for the encodings under examination when using the first 20
indexes of each case in the test set. In Figure 4.5, we plot the AUC trend
for predictions for the compliant rule ϕ1.

For very early predictions the baseline based on the latest data payload
gives an AUC that is comparable to the one obtained with complex symbolic
sequences. However, for longer prefixes, the encodings based on complex
symbolic sequences exploit the sequential information of the payload. Note
that starting from prefixes of length 7 the AUC for both the encodings based
on complex symbolic sequences is above 0.9.

Similar trends can be observed in Figures 4.6-4.7 where the case labeling
is based on the compliant rules ϕ2 and ϕ3. In Figure 4.8, the case labeling
based on the compliance with respect to the rule ϕ4, the divergence of the
AUC values of complex symbolic sequence encodings is more evident. Here,
the HMM-based encoding slightly outperforms the one that considers only
indexes.

●

●

●

● ●

● ● ●
● ●

●
● ● ● ●

●

●

●
●

0.6

0.7

0.8

0.9

5 10 15 20
number of events

A
U

C

encoding
● boolean

frequency_based
hmm_based

index_based
index_latest_payload
simple_index

Figure 4.5: AUC values using
prefixes of different lengths. La-
beling based on compliance with
respect to ϕ1.

●

●
●

●
●

●

●

●

●
● ● ●

●

● ●

●

●

● ●

0.55

0.65

0.75

0.85

0.95

5 10 15 20
number of events

A
U

C

encoding
● boolean

frequency_based
hmm_based

index_based
index_latest_payload
simple_index

Figure 4.6: AUC values using
prefixes of different lengths. La-
beling based on compliance with
respect to ϕ2.

Figure 4.9 shows the AUC trend obtained for the case labeling based on
the compliance according to γ1 of cases in the BPL2. We can observe that
also for this dataset, for early predictions the baseline encoding based on

92

●

●

● ●

●
●

●
● ●

●

●

● ●

● ●
●

●

●

●

0.5

0.6

0.7

0.8

0.9

5 10 15 20
number of events

A
U

C

encoding
● boolean

frequency_based
hmm_based

index_based
index_latest_payload
simple_index

Figure 4.7: AUC values using
prefixes of different lengths. La-
beling based on compliance with
respect to ϕ3.

●

● ●

●

●

● ●
● ●

●

● ● ●
●

●
●

● ●

●

0.5

0.6

0.7

0.8

0.9

5 10 15 20
number of events

A
U

C

encoding
● boolean

frequency_based
hmm_based

index_based
index_latest_payload
simple_index

Figure 4.8: AUC values using
prefixes of different lengths. La-
beling based on compliance with
respect to ϕ4.

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

0.5

0.6

0.7

0.8

5 10 15 20
number of events

A
U

C

encoding
● boolean

frequency_based
hmm_based

index_based
index_latest_payload
simple_index

Figure 4.9: AUC values using
prefixes of different lengths. La-
beling based on compliance with
respect to γ1.

●

●

●

●

●

●

● ● ●

●
●

●

●

●
●

●

● ●

●

0.6

0.7

0.8

0.9

5 10 15 20
number of events

A
U

C

encoding
● GBM_index

RF_index
SVM_index

TREE_index

Figure 4.10: AUC values us-
ing different classification algo-
rithms. Labeling based on com-
pliance with respect to ϕ1.

the latest data payload gives a good AUC, while the other baselines have a
lower AUC. For slightly longer prefixes (between 6 and 13), the AUC values
of all the baseline encodings is comparable with the encodings based on
complex symbolic sequences. From prefixes of length 11 the AUC values

93

mean across prefixes st. deviation across prefixes

encoding ϕ1 ϕ2 ϕ3 ϕ4 γ1 ϕ1 ϕ2 ϕ3 ϕ4 γ1

boolean 0.614 0.610 0.714 0.655 0.690 0.027 0.018 0.063 0.036 0.111

frequency-based 0.609 0.610 0.735 0.679 0.816 0.025 0.021 0.022 0.043 0.084

simple index 0.590 0.627 0.656 0.631 0.814 0.013 0.025 0.018 0.036 0.080

index latest payload 0.863 0.908 0.892 0.831 0.787 0.009 0.008 0.012 0.018 0.060

index-based 0.917 0.928 0.935 0.876 0.828 0.016 0.006 0.004 0.006 0.013

HMM-based 0.907 0.932 0.931 0.890 0.835 0.018 0.009 0.003 0.010 0.013

Table 4.2: AUC trends. Bold values show the highest average AUC values
(higher than 0.8) and the lowest AUC standard deviation values (lower than
0.02).

for the boolean encoding and for the one based on the latest data payload
decrease again. This case study shows that, although baseline encodings
can perform very well for certain prefix lengths, their performance is not
stable. On the other hand, encodings based on complex symbolic sequences
are able to provide a reasonable AUC (around 0.8 in this case) even for short
prefixes and to keep it constant or slightly improve it for longer prefixes.

Summing up, the case studies show that the baseline based on the latest
data payload and the encodings based on complex symbolic sequences pro-
vide, in general, reliable predictions. Table 4.2, reporting the average AUC
values for all the encodings under the examination, confirms these results.
However, while the baseline encoding is not always able to reach an average
AUC value of 0.8, the two encodings based on complex symbolic sequences
have an average AUC that is always higher than 0.82. Based on these re-
sults, we can, hence, positively answer RQ1 that the proposed encodings
provide reliable results in terms of predictions.

Our experimentation also highlights that some of the presented encod-
ings are able to provide reliable predictions at a very early stage of an
ongoing case. As shown in Table 4.3 (left), the baseline based on the latest
data payload and the encodings based on complex symbolic sequences are
able to provide an AUC higher than 0.8 in all the cases under examination
at a very early stage of an ongoing case (starting from prefixes of length 2
in most of the cases). This is not the case for the other baseline encodings.
The encodings based on complex symbolic sequences are also able in most

94

min(prefix) for AUC = 0.8 min(prefix) for AUC = 0.9

encoding ϕ1 ϕ2 ϕ3 ϕ4 γ1 ϕ1 ϕ2 ϕ3 ϕ4 γ1

boolean 8

frequency-based 6

simple index 6

index latest payload 2 2 2 2 2 2 2

index-based 2 2 2 2 3 7 2 2

HMM-based 2 2 2 2 2 7 2 2 18

Table 4.3: Min. number of events needed for an AUC > 0.8 (left) and > 0.9

(right).

of the cases to reach an AUC higher than 0.9, though not always at an
early stage of an ongoing case. Both these encodings require 7 events for
predicting the fulfillment of ϕ1 at this level of accuracy. The HMM-based
encoding is the only one able to predict the fulfillment of ϕ4 with an AUC
of 0.9 (after 18 events). Starting from these observations, we can positively
answer RQ2 that the proposed encodings provide reliable predictions at
early stages of the running case.

Finally, the experiments highlight that some of the encodings have a
trend that is more stable than others when making predictions at different
stages of the ongoing cases. Table 4.2 shows that the encodings based on
complex symbolic sequences have the most stable AUC trends (the standard
deviation for AUC is lower than 0.02 in all the cases). This is not always
true for the baseline encodings. We can then provide a positive answer to
RQ3 that the proposed encodings are stable.

4.5 Discussion

In Chapter 3 we introduce the concept of progressive index-based frame-
work. The presented case study adopts this framework and puts it in a
relevant to the field of BPM context. However, the general goal of the
framework is to solve a problem of early predictive business process moni-
toring. Previously we compared different encodings that can be used to cre-
ate feature representation for baselearners for the progressive index-based

95

framework. In this section we discuss how the progressive indexed-based
approach can be applied in order to provide more flexibility in terms of
capturing sequential data. In this section we demonstrate that there are
various options for the suggested encodings that can be used in the frame-
work.

Consider an algorithm of progressive index-based framework outlined
in Section 3.4. In the initialization stage we define the baselearners and
the metalearners. In our experiments on the BPM data logs we compare
different baselearners. Boolean, frequency and simple index-based baselines
are various baselearners Lt. More advanced baselearners are the index with
latest payload, index-based and HMM-based encodings, where the latter
corresponds to a hybrid model described in Section 3.2. For the purpose of
baselearner aggregation LE = h(Lt) we use a simple indicator aggregation
function. Namely, for each defined index t we train the baselearner Lt

and use the gating function that chooses at t = T baselearner Lt=T with
weight 1 and assigns weight 0 to other baselarners Lt6=T . For example, if
we want to predict whether the case is deviant only after 3 events, we pick
the baselearner trained on all historical cases for 3 events only.

There is the flexibility not only to pick any baselearner (from the simple
baselines mentioned above or advanced hybrids or ensembles), but also a
metalearner (or an aggregation function) as well. It helps to redistribute
the importance of the information contained in the baselearners trained on
the previous timestamps. The schematic version of the metalearner for the
progressive index-based framework is depicted in Figure 3.5.

For example, in Figure 4.11 we show the results for dataset BPL1 with
different LTL rules, where we explore different aggregation functions and
metalearners and how they affect the classification accuracies (in AUC).
Indicator and average aggregations are described in Section 2.4, while “rf”
and “linear” correspond to two metalearners – Random Rorest and linear
regression respectively, that are trained separately, on the next iteration.

The results of Figure 4.11 suggest that despite its simplicity the in-
dicator aggregation performs either as well or slightly better than other
aggregation functions almost for each index. There are a few possible ex-
planations of this phenomenon. The first one is that in the progressive
index-based framework we pick the model for index t that already accounts

96

for the information about the previous events. It handles this information
as features (not the separate models) and, therefore, the information from
other models is not novel nor useful. Note that the difference between the
models is not significant — AUC varies between the models less than 4
percent points. The second possible explanation of the simple metalearner
being better than more complex ones may lie in the fact that more complex
metalearners heavily overfit, and the results on a test set turn out to be
worse.

However, it is difficult to claim that the indicator aggregation is prefer-
able over other aggregation functions or metalearners — it might be the case
only for a particular case study. In some scenarios the information from the
previous events that is captured via models rather than features can be use-
ful. One example of metalearners being beneficial is when the control-flow
information is poorly aligned. Consider an example, when the hypotheti-
cal sequence 1: "A->B->A->C->D" is essentially similar to a sequence 2:
"A->A->C->D" and is same in terms of the outcome. The second event
"B" of the first sequence is just a rare deviation from the more prevalent
process of "A->A->C->D". Starting from the 2nd index the index-based
encoding takes into account a “shifted” information. If we use identity as
an aggregation function, the model Lt might misclassify such a rare case.
However, during the process of metalearner training, it might discover the
pattern that the first case is properly classified by the earlier models, but
misclassifies it after the "shifting". Such way, the metalearner applies a
higher weight for the earlier models (models trained on earlier indexes) for
the cases similar to the first sequence. Therefore, using indicator function as
a metalearner we may misclassify if such a rare case appears in the test set
(or in a real-time prediction), while the more complex metalearner would
classify it correctly with the help of the classifiers L≤t . These types of prob-
lems become less relevant with the increasing dataset size, but are expected
to be more frequent in smaller historical sets of traces.

97

●

● ●
● ●

● ●
●

● ● ● ●
● ●

● ● ● ● ●

0.85

0.90

0.95

1.00

5 10 15 20
number of events

AU
C

metafunction ● meta_average
meta_linear

meta_rf
meta_identitymeta_indicator
meta_rf

meta_linear
meta_avg

Dataset ϕ1

●
● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.85

0.90

0.95

1.00

5 10 15 20
number of events

AU
C

metafunction ● meta_average
meta_linear

meta_rf
meta_identity
meta_rf
meta_indicatormeta_linear

meta_avg

Dataset ϕ2

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.85

0.90

0.95

1.00

5 10 15 20
number of events

AU
C

metafunction ● meta_average
meta_linear

meta_rf
meta_identity
meta_rf
meta_indicatormeta_linear

meta_avg

Dataset ϕ3

●
● ● ● ● ●

●
● ● ● ● ● ● ● ●

● ●
● ●

0.80

0.82

0.84

0.86

0.88

5 10 15 20
number of events

AU
C

metafunction ● meta_average
meta_linear

meta_rf
meta_identity
meta_rf
meta_indicatormeta_linear

meta_avg

Dataset ϕ4

Figure 4.11: AUC values using prefixes of different lengths for different
metalearners. Note that vertical axis does not start with zero.

Execution Times All experiments were conducted using R version 3.0.3
on a laptop with processor 2,6 GHz Intel Core i5 and 8 GB of RAM. Ta-
bles 4.4 and 4.5 show the average execution time (in seconds) and the
standard deviation for the index-based and the HMM-based methods for
different prefix lengths.

The execution times for constructing the classifiers (offline) is between
1.08 seconds and 186.41 seconds across all the experiments for the index-
based encoding and between 0.99 and 186.41 seconds for the HMM-based
encoding. Note that, in addition, the HMM-based encoding also requires

98

HMM Training RF Training

2 5 10 15 20 2 5 10 15 20

index-based avg 1.08 5.05 26.29 79.20 176.65

index-based s.d. 0.09 0.22 2.46 5.54 12.28

HMM-based avg 23.14 34.11 49.03 65.95 83.51 0.99 4.88 26.55 81.74 186.41

HMM-based s.d. 1.24 2.53 4.02 4.75 8.23 0.20 0.55 1.18 6.25 11.22

Table 4.4: Execution times per prefix length in seconds for training.

Predictions

2 5 10 15 20

index-based avg 0.23 1.43 6.46 13.37 24.21

index-based s.d. 0.05 0.13 0.57 0.78 1.72

HMM-based avg 0.24 1.45 6.34 13.69 26.40

HMM-based s.d. 0.05 0.14 0.56 0.92 2.96

Table 4.5: Execution times per prefix length in seconds for predictions.

time for training the HMMs, ranging from 23.14 to 83.51 seconds. At
runtime, time for making a prediction on a given prefix of a case is in the
order of milliseconds for the runtime prediction on short cases (in the order
of seconds for longer cases).

4.6 Conclusions

The work has put forward some potential benefits of approaching the prob-
lem of predictive business process monitoring using complex symbolic se-
quence encodings. The empirical evaluation has shown that the index-based
encoding achieves higher reliability when making early predictions, com-
pared to pure control-flow encodings or control-flow encodings with only
the last snapshot of attribute values. The evaluation has also shown that
encodings based on HMMs may add in some cases an additional margin of
accuracy and reliability to the predictions, but not in a significant nor sys-
tematic manner. The further case studies indicated (see Chapters 5,6) that
the benefit of using HMM-based extractor is more prominent in datasets

99

with the higher amount of sequential data, longer sequences and stronger
temporal dependency.

A threat to validity is that the evaluation is based on two BPM logs only.
Although the logs are representative of real-life scenarios, the results may
not generalize to other logs. In particular, the accuracy may be affected
by the definition of positive outcome. For logs different from the ones used
here and other notions of outcome, it is conceivable that the predictive
power may be lower. A direction for future work is to evaluate the methods
on a wider set of data logs so as to better understand the limitations of
the suggested approaches in the domain of PBPM. Further in this thesis we
investigate a similar approach applied in other domains that gives a broader
overview of the models’ performance.

It is worth mentioning that further research was done by other re-
searchers in this field, and the results showed that in many cases index-based
encoding performs well [Tree 16, Tein 16, Vere 15].

The methods considered in this work are focused on the problem of
intra-case PBPM, where the aim is to predict the outcome of one individual
ongoing case seen in isolation from others. A macro-level version of this
problem is the inter-case PBPM, where the goal is to make predictions on
the entire set of ongoing cases of a process, like, for example, predicting
what percentage of ongoing cases will be delayed or end up in a negative
outcome. Initial work on inter-case PBPM [Conf 15] has approached the
problem using control-flow encodings plus the last snapshot of attribute
values. An avenue for future work is to investigate the use of complex
symbolic sequence encodings in this context.

100

Chapter 5

Case study II: Fraud detection

5.1 Introduction

In this chapter we demonstrate the application of the suggested approach
(see Chapter 3) to the problem of fraud detection that was introduced as
a second case study 2.1.4. Fraud detection has attracted considerable at-
tention in both academia and industry [Pate 13, Cole 15, McDo 15]. Tech-
niques for fraud detection rely on a wide variety of data, often tied to spe-
cific applications. Each application may in fact give rise to several different
kinds of data, even more so as fraud schemes evolve over time. In addition,
some of the data may be voluminous, incomplete, and not fully reliable.
Therefore, one strategic element in fraud detection is the development of
approaches for fusing disparate information sources, and for making sense
of the aggregate information, robustly and at scale.

We propose and evaluate an approach to this problem using the sug-
gested feature enrichment described in Section 3.2. It is based on super-
vised machine learning and combines information from diverse sources such
as static user profiles, time series that represent user activities, and the re-
sults of algorithms that analyze user social connections. Separately, these
sources can be insufficient for fraud detection. The data are often sparse,
contain missing values, and the abnormal patterns associated with attacks
may manifest themselves in different parts of the data. Our work explores
a new way to fuse the data sources, synergistically, for the purpose of fraud
detection.

101

We develop and study our approach in the context of Skype. See the
definition of the problem in Section 2.1.4 and the description of the dataset
along with the data types associated with it in Section 2.2.3.2.

The specificity of the previous case study lies in the encodings of a busi-
ness log, where the goal is to find the deviant case as early as possible.
The aim of the fraud detection task is to go beyond the present, sophis-
ticated defenses, and to detect “stealthy” fraudulent users, namely, those
that manage to fool those defenses for a relatively long period of time. Our
concrete objective is to catch these stealthy fraudulent users within the first
4 months of activity. Therefore, in opposite to BPM case study discussed
in Chapter 4, we do not investigate the earliness parameter, but rather fix
time at some threshold. It is requested by the needs of the company and
the existing framework at the moment.

Our results indicate that, with our methods, we are able to detect 68%

of these users with a 5% false positive rate; and we are able to reduce by
2.3 times the number of these users active for over 10 months.

To this data, we apply techniques and algorithms for supervised learn-
ing, but only after non-trivial pre-processing. As will be seen, one of the
challenges is relatively short time series to work with. In order to extract
as much information as possible from them, we use the approach suggested
in Section 2.3.2.1, where we use set of Hidden Markov Models that produce
odds of fraudulent vs. normal activities (both in terms of service utilization
and social activities). Similarly, we adapt techniques from work on social
graphs [Huan 13] in order to estimate the reputation of users according to
their social connections.

In summary, the contributions of this work are:

• an architecture and methods to process and fuse information from a
variety of sources in order to identify fraudulent users;

• an evaluation of the efficacy of the methods on real data;

• the quantification of the impact of each one of the different sources of
information for the task of detecting fraudulent users.

102

5.2 Related work

In this section we briefly review approaches and techniques related to our
study. We concentrate on research in machine learning and in social network
analysis, with the focus on work on fraud detection.

Skype allows users to communicate with each other via text messaging,
audio, and video calls. It supports both free services as well as paid-for
products and subscriptions. Skype is not a telecommunication provider
but, in some ways, fraud in Skype resembles fraud in telecommunication
services. Previous work (e.g., [Hila 08, Hila 09, Farv 11]) has extensively
studied fraud in telecommunications, and in some cases has explored data
mining and machine learning techniques [Fawc 97a, Ku 07, Wei 13]. How-
ever, these previous studies have mostly leveraged the static user profiles
and usage features for detection. In our work, we consider features of prod-
uct usage based on time series, which provide richer and more fine-grained
information than static features of product usage represented by simple
statistics (e.g., mean and standard deviations). In addition, we study a
broader set of features, including local and global social features.

In Skype, users add each other in friend lists and employ multiple chan-
nels to communicate. Thus, the Skype communication graph can be viewed
as a social network graph, to some extent, where nodes are Skype users
and the edges between then correspond to the contact lists. Social network
features were studied in the literature [Mcgl 09, Wang 08] as a tool for
fraud detection. Their value motivates us to explore them within a general
machine learning framework.

In order to fuse sequential features for usage and other static profile
features (for both training and detection), we combined the use of Hid-
den Markov Models and the (log-odds) comparison to normal users and a
classification framework based on Random Forest (see corresponding Sec-
tions 2.3.2.1, 2.3.1.2). A number of previous studies discuss the combination
of different machine learning methods [Ho 94, Cao 95]. In particular, the
general subject of classifier combinations has been considered and justified
theoretically by Kittler and Hatef [Kitt 98]. Furthermore, our approach
can be regarded as a simple way of cascading classifiers advocated by Viola
and Jones in the context of vision applications [Viol 01], except that we are

103

using the cascade to transform different inputs rather than to select regions
of the feature space.

In this work, we do not address how fraudsters might adapt and attempt
to evade our detection techniques (cf. [Nels 10, Huan 11]). We hope that
our use of a large number of features would make evasive actions rather
costly. Further investigation of such questions may be worthwhile.

Despite the existence and the deployment of various approaches to fraud
detection, many financial institutions and companies still rely on manual
review in addition to automatic screening, spending more than half of their
fraud management budget on review-staff costs. Recent reports indicate
that percentage of fraudulent transactions constantly increasing [Cole 15],
suggesting that fraud detection is still an important problem that requires
improved solutions.

5.3 Fraud detection classifier and its inputs

In the context of this case study, we define a fraudulent user as a registered
user who intentionally deceives another user or a service provider, causing
them to suffer a loss. There is a wide variety of fraud schemes [Albr 11]. The
kinds of fraud relevant to Skype include, in particular, credit card fraud and
other online payment fraud, as well as account abuse such as spam instant
messages.

As we mentioned earlier, our aim is to catch those fraudsters that elude
the first line of defenses at Skype. We define our target as those fraudsters
that engage in activity for over K months (after creating their accounts),
where K is a parameter which in this study we will set to 4 months. Our
strategy is to combine information from different kinds of activities, both
social (e.g., requests to be accepted as contact) and on the use of Skype
products. To this end, we cast the problem of fraud detection as that of
automated pattern classification.

More specifically the classification task of automatically deriving a func-
tion is described earlier in Section 2.1.4. Figure 5.1 depicts the entire work-
flow of the implemented process. The first two levels — the data and the
description of the feature sets are outlined in Section 2.2.3.2.

104

D
at

a
Fe

at
ur

e
se

ts
Pr

e-

pr
oc

es
si

ng
C

la
ss

ifi
ca

tio
n

Re
su

lts
Skype snapshot

Profile set Skype product
usage

Local social
activity

(ego-centric graph)

Global social
activity

(full contact graph)

Log-likelihood
ratios

PageRank

Clustering
coefficient

Binary classifier

Predictions

Figure 5.1: Entire workflow for the classification process.

An important note is that Skype takes the privacy of its users very
seriously, and we implemented rigorous and carefully considered safeguards
throughout this study in order to protect the privacy of Skype users. For
example, all Skype IDs were anonymized using a one-way cryptographic
salted hash function. None of the Skype usage data contained information
about individual Skype communications, such as the parties involved in
a communication, the content of communications, or the time and date
of communications. Rather, it merely contained the number of days in
each month that a Skype user used a particular communications feature,
such as Skype chat, Skype video calls, and Skype In and Skype Out calls.
Furthermore, the study’s data was maintained on separately administered
computer system, and access to it was strictly limited to the study’s authors.
Finally, the data was erased when it was no longer needed for research.

Relying on the user-to-user contact requests, we built a directed graph
that consists of 677.8 million nodes and 4.2 billion directed edges. We also
have timestamps of edge creations and deletions. Edge creation means that

105

a user (the sender) sends a friendship request to another user (the receiver).
Once the request is sent, we count it as an edge creation from the sender to
the receiver. After the request, there are two scenarios: either the receiver
accepts it or not. In case of acceptance, we consider it as another edge
creation from the receiver to the sender. We handle edge deletions by the
same principle.

Additionally, we have 10.8 million labels for fraudulent users, which we
use both in training, to induce the classifier, and for testing its accuracy
(see Section 2.1.2).

The labels further identify four different types of fraud schemes. Skype’s
definitions and procedures for these four different types of schemes is in-
ternal confidential information, which therefore we do not discuss further.
Moreover, in our work, we choose not to rely on Skype’s informal intent in
those definitions, nor on Skype’s software for each of the different types, in
order to develop robust, self-contained methods.

From dataset SKY we extract information to construct a feature vector
(xi1, xi2, . . . , xim) for each user. We divide the features into different types
according to the kind of information they provide as well as how much
processing is needed to transform raw data into the inputs to the classifier.
Table 2.2 summarizes the various types that we use throughout our study.
As we will see in Section 5.3.1, it is the combination of these different types
of features that will enable a better detection of fraudulent activity.

The various pieces of information described in Section 2.2.3.2 constitute
the inputs to our classifier. The user-profile features are in the form of
categorical data that can be directly fed into the classifier. The remaining
features (the activity logs and the local and the global social features) re-
quire further processing before they can be fed into the classifier. Part of
the novelty in our approach stems from this pre-processing, which provides
ways to enrich the discriminative classifier with the features from generative
in nature HMM. For that, we use a hybrid model described in Section 3.2.

Log-likelihood ratios of activity logs The LLR are calculated accord-
ing to the Equation 2.3. For the domain of fraud detection, the user activity
logs include information about Skype product usage as well as the addition
and deletion of contacts. We represent this information as a set of time

106

series. In order to combine the time series with other static, categorical
features, we further transform the data into a set of features represented
as log-likelihood ratios. We perform this data transformation for each type
of user activity (e.g., audio calls, video calls, contact additions) separately.
The process is adopted for the domain by performing the following steps:

1. Given a specific type of user activity (e.g., audio calls), build two
different models of activities, one for the normal users and the other
for the known fraudsters, based on training data.

2. For each user (to be classified), produce a score using the above two
models, representing how close this particular user is to the activities
of a fraudster vs. the activities of a normal user.

3. Feed this score into the classifier, where the score will be combined
with other features (and the scores from other activities) in order to
perform the classification.

This approach leverages the information from an entire time series in
order to produce a score that will be input to the classifier. It is fundamen-
tally different from previous approaches that summarize a time series using
simple statistics such as its mean or its standard deviation, and it can yield
better results [Gold 12].

In the case of this task, after some initial experimentation, we settled
for the following parameters and distributions:

• The user can be in one of two hidden states (which represent intensity
levels), and the initial distribution π is a binomial distribution.

• Correspondingly, the matrix of transition probabilities A uses also
binomial distributions.

• We discretize (see the discretization of time series in Section 3.1) the
space of observables (level of activity) into three possible ones: O1 (no
activity in this month), O2 (between one and five days of activity),
and O3 more than 5 days of activity in the month. Correspondingly,
the matrix of emissions comes from a multinomial distribution.

107

We use the standard Baum-Welch algorithm in order to fit the maximum
likelihood parameters listed above, with the same training data as for the
rest of the classification training. Once the parameters are fitted, a standard
dynamic programming algorithm is deployed. All the details are described
further in Section 2.3.2.1.

There is one interesting aspect that the fraud detection approach used
in this work can be seen as essentially employing cascading models that
we describe in Section 2.2.3.2. The log-likelihood computations for each
activity log provide a pre-classification from which the scores can be used
and compared at the next level by the final classifier.

5.3.1 Evaluation procedure

For the experimental evaluation of our techniques, we consider a sample
of Skype users that consists of 100, 000 randomly chosen users labeled as
fraudulent by Skype, and the same number of randomly chosen users with-
out being flagged. From this sample, we include a user u in our study if u
is not blocked within 4 months since its account creation. We end up with
34, 000 such users. In this set, the ratio of users labeled as fraudulent to
other users is 1:6.

We use 4 months as an observational period to collect activity logs
`(ui, aj). We selected the period of 4 months as a compromise: longer
periods may result in more information, but our data pertains to a limited
time window, and in addition we expect that relatively few fraudulent users
escape detection for many months.

We train the models using 5-fold cross-validation with 5 repeated splits
of 50% training and 50% test set. We use repeated splits due to a higher
imbalance of the dataset that leads to a higher variation of the measures.
We declare TPR, FPR and visualize the tradeoff between them using the
ROC. The corresponding AUC helps to observe the overall performance of
the models (see Section 2.1.2).

In our initial experiments, we benchmark several classifiers, including
Random Forest, SVM, and logistic regression (using both lasso and ridge
regularization). We estimated the accuracy via 5-fold cross-validation. As
Random Forest yielded superior results (by ≈ 10%), we also adopted it for
this case study as the main classifier.

108

Figure 5.2: Distribution of fraudulent users by their lifetime in months (of
undetected activity) before using our approach and after eliminating those
fraudsters caught by our approach

5.3.2 Results

Using our approach, we achieve a TPR of 68% with a FPR of 5%. This
TPR is especially significant as the fraudulent users that we are detecting
were able to overcome the first line of defenses in the existing, effective
detection system. Similarly, the FPR of 5%, which may appear as high for
a stand-alone system, may be reasonable in the context of other defenses. In
addition, with our approach, the number of the fraudulent users that elude
detection for more than 10 months since their account creation decreases
by a factor of 2.3.

Figure 5.2 plots the distributions of the account lifetimes for fraudulent
users before and after the application of our methods. Each account lifetime
is calculated as the interval from the account creation to the final detection
(closure) of the account by Skype. The horizontal axis is in months. The
figure labeled “Before” depicts the lifetime of fraudsters that escape Skype’s
current defenses. The figure labeled “After: missed” shows the lifetime of
fraudsters that would have escaped detection with our approach, and the
one labeled “After:detected” shows those fraudsters that would have been

109

Table 5.1: Table of TPR under an FPR of 5% with corresponding confidence
intervals, and AUC for different models when the features are used in isolation
(isolation) and added one at a time (nested)

Features TPR 95% C.I. AUC AUC

(FPR = 0.05) isolation nested

Profile set 0.50 (0.48;0.52) 0.79 0.79

Skype product usage 0.25 (0.23;0.27) 0.65 0.84

Local social activity 0.54 (0.52;0.56) 0.74 0.86

Global social activity 0.37 (0.35;0.39) 0.68 0.87

All 0.68 (0.66;0.70) 0.87

detected after the first 4 months of activity by our methods. The reduction
in volume is apparent.

Note that our method is most effective in detecting fraudsters that would
have 10 or less months of activity (after the initial 4 months), while missing
most of those that stay active for over 30 months. Preliminary investigations
indicate that an initial period of observation longer than 4 months would
improve the detection of such long-term fraud. Perhaps a cascading set
of classifiers, each with a different initial period of observation, would be
helpful. We also conjecture that a large number of these fraudsters took
over the accounts of normal users. Other techniques, such as change-point
detection, may be fruitful in this context.

Figure 5.3 shows the overall performance of classifiers built using only
one feature at a time (left-hand side, labeled “separate models”) and classi-
fiers built by adding one feature at a time (right-hand side, labeled “nested
models”). For the nested models we begin from the simplest classifier that
uses only the profile features. The next model combines profile features
and product usage features. We continue to increase the complexity of the
classifier by adding the feature sets one-by-one. In this study we use only
a particular order for adding the feature sets. The order corresponds to
the complexity and computational effort in pre-processing the features as
discussed previously (see Section 3.1).

110

Figure 5.3: ROC curves for models built on one feature (left-hand side and
labeled “separate models”) and models built by adding one feature at a time
(right-hand side and labeled “nested models”)

Figure 5.4: Distribution of fraudulent users by types and proportion of
detected among them

111

As depicted in the graph for nested models, the improvement in per-
formance as we add features is monotonic, confirming that all the features
contribute to detection.

Table 5.1 represents these results quantitatively. As can be observed, a
model based on only the local social activity information has the best TPR,
and the user profiles yield the best overall AUC score. Also, as mentioned
above, the best model is one where all the features are used.

Finally, we report on the statistics per type of fraudulent user. As can
be seen from Figure 5.4, we are able to detect most of the type II fraudsters,
but we are less successful in detecting type III and type IV fraudsters. In
further work, it may be attractive to investigate various feature sets for
different types of fraud, tailoring classifiers to the patterns of behavior that
correspond to each type of fraud.

5.4 Conclusions

In this case study, we present and evaluate an approach to detecting fraud-
ulent users based on supervised machine learning. The approach combines
information from diverse sources such as user profiles, user activities, and
social connections. As our results demonstrate, fraud classification improves
as we add each one of these sources (see Figure 5.3).

The concrete goal of our work was to detect stealthy fraudulent users.
Specifically, we identified 68% of these users within the first 4 months of
activity with a 5% false positive rate, and reduced the number of undetected
fraudulent users active for over 10 months by a factor of 2.3. We consider
that these quantitative results are encouraging and positive.

A central contribution of this work is a set of methods for transforming
raw data into features suitable for consumption by classifiers. In particular,
we use HMMs in order to enhance discriminative models from the time series
data. The applications of this approach go well beyond fraud detection (as
suggested by work on failure prediction [Gold 12]).

Our experiments also suggest several directions for further investigation.
The different detection rates for various types of fraud indicate that each
source of information may correlate differently with those types of fraud;
hence, more elaborate ways of combining and cascading classifiers may lead

112

to enhanced fraud detection for particular types of fraud. It should also be
interesting to perform experiments with longer time series, attempting in
particular to detect points in time at which users change behavior. Those
changes in behavior sometimes result from account hijacking, a difficult,
important problem that machine learning may help address.

113

Chapter 6

Case study III: ECoG signal
discrimination

6.1 Introduction

In the previous chapters we outlined two case studies that investigate com-
bination of multivariate sequences and static data, and briefly mention the
useful features from the graph data. In BPM domain we compare different
baselearners and find that it is beneficial to use a payload data along with
the control-flow, while in the case study of fraud detection we investigate
how to fuse static features with the graph data and short time series. In this
case study we use the ECoG data (see Section 2.1.4 for details). Modular
structure of the hybrid approach allows to use any generative model that
deals with sequential data in the feature enrichment process. In the two
previous case studies this task is performed by HMM. However, there are
other possibilities. Recently, RNN with LSTM units demonstrated supe-
rior results [Grav 13] and we decided to create an LSTM based hybrid and
compare its performance to HMM-based hybrid model.

In previous case studies we showed that the combination of static and
sequential features is very common on practice. In addition, for almost any
sequential dataset it is possible to extract static features out of sequential
data, which leads to a possibility to extract more information from the same
dataset. As we showed earlier (see Chapters 4, 5), it is possible to tackle
sequential data by transforming sequences into feature vectors that can

114

be fed into a discriminative method. Ensemble [Diet 00] methods provide
another way to address the issue: predictions made by a sequential model
on sequential data are combined with the predictions of a discriminative
classifier on static data (see Section 3.2). We devise a hybrid model (see
description of such an approach in Section 3.2) and show that the hybrid
way of stacking models [Wolp 92] is in general more beneficial than ensemble
methods. We summarize our main contributions as follows:

• We postulate an idea that combining sequential and static information
can boost classification performance.

• We empirically demonstrate that a hybrid method outperforms en-
semble and other baseline methods on ECoG discrimination problem
and on several other public datasets.

• We compare hybrid approach with the LSTM-based generative model
to the hybrid approach with the HMM-based generative model.

• We perform a controlled experiment on a synthetic dataset to inves-
tigate how dataset characteristics affect the baseline, ensemble and
hybrid methods’ performance.

6.2 Prerequisites

In this section, we describe the details of model architectures and set-ups
for the experimental phase.

We employ Random Forest (see Section 2.3.1.2) as a discriminative
model in two different ways: as a stand-alone discriminative classifier and as
a metalearner in ensemble and hybrid architectures. The Scikit-learn
[Pedr 11] implementation of Random Forest was used in our experiments.
For a HMMmodel (see Section 2.3.2.1) We use the hmmlearn [Lebe 15] im-
plementation of Gaussian HMM. Another generative model that we employ
is an LSTM network (see Section 2.3.2.2).

In all LSTM models we use mean squared error (MSE) between the true
test sequence and the generated sequence as our error function, RMSProp
[Daup 15] acts as the optimization method. Keras Deep Learning li-
brary [Fran 16] provides the implementation of LSTM.

115

6.3 Methods

In this section, we first describe the approaches that can be thought of as
competitors to the hybrid models, then we explain our main contribution
— the concept of a hybrid model and its versions.

Section 6.3.1 describes the methods that use only static or only sequen-
tial features (unicomponent) with a single discriminative algorithm. Sec-
tion 6.3.2 makes a step forward by using a feature space that includes both
data types (bicomponent) transformed to make the dataset suitable for the
algorithm at hand. For example, if we apply Random Forest to sequential
data we employ sequential-to-static transformation (see Section 3.1); on
the opposite side, if we need to apply a sequential model to static data we
perform static-to-sequential transformation by changing feature values into
“fake" sequences (see Section 3.1.1). Let the value of a static feature fi of a
sample be x, fi will be represented by a sequence of length ld with value x
at each time step. Section 6.3.3 discusses what are the options to construct
feature spaces that combine static and sequential features effectively and
describes ensemble and hybrid methods applied to these feature spaces.

6.3.1 Stand-alone models for unicomponent data

In this section we describe the simplest baseline approaches. These are the
models that are fit for only one data type: either static or sequential.

Random Forest on Static or Sequential Features. The most straight-
forward way to handle a multicomponent dataset is to build a model on
static features only. In this work such an approach is referred to as RFs (1)1.
We denote the number of static features in a dataset as ns. If the sequential
data has the sequences of a fixed length, then it is straightforward to apply
Random Forest on this data — we use time spatialization to represent time
series as one long feature vector. One obvious drawback of such an approach
is low performance due to the curse of dimensionality when sequences are
extremely long [Keog 11]. We use this baseline to estimate if the use of
a sequential model is justified. Our intuition is that if Random Forest is
able to achieve the same performance on the sequential data as sequential

1The number in brackets stands for the model ID we use throughout the text.

116

models do, then the particular sequential dataset does not have a strong
temporal component. We denote this method as RFd (4) and use it for the
comparison with sequential models such as HMM and LSTM.

Hidden Markov Models on Sequential Features. The method de-
noted as HMMd (2) is a direct application of HMM to sequential data. We
use HMM as a classifier as described in the Section 2.3.2.1.

Long Short-Term Memory on Sequential Features. The method
denoted as LSTMd (3) uses the same technique as HMMd (2) to act as a
classifier. In order to capture temporal dynamics in the data we train a
LSTM network to predict each value in the sequence (x2, x3, . . . , xld) given
all the previous ones. In the case of multivariate sequences the input size
of the network is equal to the number of sequential features nd; the number
of nodes nLSTM in the network is estimated separately for each dataset.
We train a single layer of LSTM followed by a fully connected layer of size
nLSTM × nd (see Figure 6.1 for the visual explanation). There are many
other possible LSTM architectures, but it is out of the scope of this work
to compare them all. We chose the architecture described above mainly
for two reasons: 1) in the current formulation it is more comparable with
HMM-based generative models and, 2) among other architectures we tried,
this one provided best or comparable results. The architecture of both GPOS

and GNEG networks are shown in Figure 6.1.

6.3.2 Stand-alone models for bicomponent data

The second class of baseline approaches utilizes both static and sequen-
tial data by concatenating them in such a way that a single classification
method is applicable. This is the most naïve way of using both data types
simultaneously, and, as it will be discussed later, has obvious limitations.

Random Forest on static and sequential features. The method un-
der the name RFs,d (5) transforms sequential data to static, concatenates
it with the original static features and employs Random Forest on the re-
sulting feature set.

117

Figure 6.1: LSTM network architecture for sequence generation. We predict
value at time step t from the time steps 1 . . . t − 1. Therefore, the output
sequence is the lagged version of the input sequence. The activations of the
LSTM units at the last iteration (shown in bold) are used as the features in
the HYBLSTMA (12) model (see Table 6.1).

Hidden Markov Model on static and sequential features. The
method implemented in HMMs,d (6) employs static-to-sequential transfor-
mation: for the dataset with nd sequential features of length ld it produces
ns additional sequential features of length ld. All of the values along these
sequences are constant and equal to the original value of the static feature
(see Section 3.1.1). Using this transformation we extend sequential feature
set from nd features to nd + ns features and apply HMM on it similarly to
HMMd (2).

Long short-term memory on static and sequential features. Using
the trick from HMMs,d (6) we obtain the sequential features from the static
features, concatenate them with the original sequential features and train an
LSTM classifier on the combined feature set. The learning algorithm itself
is analogous to LSTMd (3). We refer to this approach as LSTMs,d (7).

6.3.3 Multiple models on bicomponent data

Dealing with bicomponent data is the main focus of this work. In this
section we look into more efficient ways of combining static and sequential
features, than the straightforward methods presented in the previous sec-
tion.

118

6.3.3.1 Ensemble models

With an ensemble approach one can train different models for different data
modalities (for example, Random Forest for static features and LSTM for
sequential features) and combine their predictions using a linear model or
another layer of Random Forest (or any other discriminative method).

In this work we have two methods based on the ensemble approach:
ENSHMM (8), which takes the predictions made by Random Forest and the
predictions made by HMM classifier, and the ENSLSTM (9) that combines
Random Forest predictions with the predictions of LSTM classifier. In
both these models the final prediction is obtained by training an additional
Random Forest model using predictions as features. For more details about
ensemble methods refer to Section 2.4.

Ensemble of HMM and RF. The ensemble method ENSHMM (8) has
two stages. First stages works with the first half of the training set — a
Random Forest is trained on the static features and HMM classifier on the
sequential ones. In the second stage we use the samples from the second half
of the training set and estimate class probabilities for each sample using the
models trained in the first stage. In case of a binary classification problem
each sample is represented by 4 features. We obtain a new dataset where
each sample s from the second half of the original training set is represented
by: log probabilities that s ∈ POS and s ∈ NEG provided by Random
Forest, and L(s|GPOS), L(s|GNEG) log-likelihoods provided by HMM. In the
similar way we feed samples from the original test set into these models
and obtain a test set with the same 4-dimensional feature space. In more
details we describe the procedure of such feature extraction for HMM and
LSTM in Sections 2.3.2.1 and 2.3.2.2 with the corresponding formulas 2.3
and 2.4. Finally, we train Random Forest on 4-dimensional training set and
evaluate it on the corresponding test set. For the detailed explanation of
the experimental pipeline see Section 6.4.1.

Ensemble of LSTM and RF. LSTM ensemble ENSLSTM (9) builds a
new feature set in a similar to ENSHMM (8) way. The first two features
are the same as in the case of ENSHMM (8). The second two features are
obtained with POS and NEG LSTM networks. Namely, an input sequence

119

of a data sample s is fed into each of the networks, and the corresponding
output sequences are generated. Per class mean squared errors MSEPOS and
MSENEG between the true output sequence and the generated sequences are
used as the new features for the sample s. The number of such features is
equal to the total number of classes.

6.3.3.2 Hybrid models

The general idea of the hybrid approach is to employ generative models
such as HMM or LSTM to act as feature extractors from sequential data.
As generative models are able to generate sequences from the training data
distribution, it is reasonable to assume that these models can capture tem-
poral dynamics in the data. Therefore, the features extracted using these
models can act as an approximation for temporal information contained in
the data. These features are concatenated with the static features and a
discriminative classifier (Random Forest) is used to build the final predictor.

Since naïve ways of combining sequential data with static features give
poor performance (see Figure 6.6) we use the data representation provided
by sequential models to obtain a fixed-size feature set that contains knowl-
edge extracted from the temporal component of sequential data.

There are different features that can be extracted from generative mod-
els, with one such example being the Fisher kernels [Jaak 99]. In our ex-
periments we use log-likelihood ratios, MSE ratios or LSTM activations as
features for the enrichment of the static feature set. Our experiments have
shown that combining static features with ratios yields better performance
than combining static features with raw log-probabilities or MSE scores. In
the following subsections we go through the hybrid architectures we have
explored.

Hybrid of static features and HMM ratios. In the HYBHMM (10)

method two generative HMMmodels are built on the first half of the training
set: one for the samples with the positive class labels and one for the samples
with the negative class labels. These models are used to enrich both static
features of the second half of the training set with rHMM ratios as well as
the static features of the test set. Finally, Random Forest is trained on the
enriched feature set and evaluated on the enriched test set.

120

Hybrid of static features and LSTM ratios. In a very similar fash-
ion we can use LSTM to build generative models. HYBLSTM (11) extracts
MSE ratios rLSTM and enriches the set of static features on the second half
of the training set. Random Forest is trained on the enriched training set
and evaluated on the enriched test set.

Hybrid of static features and LSTM activations. Depending on how
detailed information we want to give to the final classifier we can choose
which features to extract from a generative model. The log-likelihood ra-
tios are almost the most compressed form of the information about the
data samples. Less compressed features depend on the inner workings of a
particular generative model. For a LSTM network we can take activations
of the last LSTM layer at the last iteration and use those activations to
enrich the set of static features. The model that does that is denoted as
HYBLSTMA (12). The final step is similar to all other hybrid architectures:
Random Forest is trained on the enriched training set (in this case it consists
of static features concatenated with LSTM activations) and evaluates the
performance on the test set. In our experiments, however, such an approach
is less accurate than the one based on the log-likelihoods.

In Table 6.1 we summarize all the models and mark the feature sets used
by each model. Note that in case of univariate datasets some of the models
are virtually the same: model (5) is the same as the model (1), model (7)
as the same as the model (3) and the model (6) is the same as the model
(2). The reason is that for univariate datasets we use spatialized dynamic
data as static features.

121

Table 6.1: List of models and the feature sets they operate upon.

Raw features Predictions Ratios Activations

Nr. Model name Static Sequential RF HMM LSTM HMM LSTM LSTM

Stand-alone

1 RFs X

2 HMMd X

3 LSTMd X

4 RFd X

5 RFs,d X X

6 HMMs,d X X

7 LSTMs,d X X

Ensemble
8 ENSHMM X X

9 ENSLSTM X X

Hybrid

10 HYBHMM X X

11 HYBLSTM X X

12 HYBLSTMA X X

6.4 Evaluation

6.4.1 Evaluation procedure

All the experiments for this case study use accuracy as the basic evaluation
measure as all the provided datasets are balanced.

In the case of hybrid methods (see Section 3.2) the splitting strategy
and feature handling are not straightforward. In this subsection we explain
the full pipeline both in the case of a training-test split and in the case of
cross-validation.

Training / test split. Splitting the data entails non-trivial steps in order
to perform feature enrichment without introducing bias into the models.
Methods that do not make use of feature enrichment employ the standard
machine learning pipeline where a training set is divided into training and
validation subsets. Model hyperparameters are estimated on the validation
set and the final model is trained on the whole training data and tested
on the test data. In case of ensembles and hybrids, however, the pipeline
differs. First, the training set is divided into two equal halves, let us call
them trainingA and trainingB. TrainingA is used to train the first tier
of models, which we call feature extractors — given a data sample their
purpose is to output additional features that describe that sample. In case

122

Figure 6.2: Architecture of an ensemble. The first half of the training set
is used to create models according to the data modality: Random Forest for
static data and a generative model for the sequential data. These models are
applied to the second half of the training set and to the test set to extract
predictions and form a new feature space. Random Forest is trained on the
enriched second half of the training set and evaluated on the enriched test set.

of ensembles these are baselearner output features as log-likelihoods of class
labels as discussed in Section 2.3.2, for hybrids the extracted features can
take any of the forms discussed in Section 3.2. Hyperparameters of the
feature extractor models are estimated on a validation subset of trainingA.

Once feature extractors are fully trained we use them to enrich trainingB
and test sets: sequential data of each sample from those sets is fed into a
feature extractor. The extracted features are concatenated with the static
features of that data sample. For example in case of the hybrid model with
LSTM activations, if we had a dataset with Md sequential features and Ms

static features, and we use LSTM network with 128 LSTM units as the
feature extractor, then the new feature space would be of size Ms + 128.

The final step of the pipeline is to train a second tier — a metalearner —
on the new feature space. Hyperparameters are estimated on the validation
subset of enriched trainingB, after that a final model is trained on the whole
enriched trainingB set and tested on the enriched test set.

The complete process is depicted in Figures 6.2 and 6.3.

123

Figure 6.3: Architecture of the hybrid model. First half of the training set is
used to create a model which will act as a feature extractor. Feature extractor
is applied to enrich the feature set of the second half of the training set and
the test set with additional features. Random Forest is trained on the second
half of the training set to create a final classifier, which is evaluated on the
test set.

Cross-validation. In the case of proposed hybrid architecture, cross-
validation provides a more efficient use of data. We take advantage of
the cross-validation technique in the following manner.

Instead of dividing the data set into two parts as it was done for the
training/test split case, we split data set into {C1, . . . , Ck} chunks, where
k is the number of cross-validation folds. We train a feature extractor
model using the data samples from chunks {C1, . . . , Ci−1, Ci+1, Ck} and
apply that model to enrich the samples from the Ci chunk. This process
is repeated for every chunk and as a result the whole dataset is enriched
without introducing overfitting bias.

The next iteration is to train a second tier model on the enriched data.
This is once again done using cross-validation and exactly on the same
chunks of data we used before. The process is no different from the clas-
sical application of cross-validation as outlined in section 2.1.3: a model is
trained on chunks {C1, . . . , Ci−1, Ci+1, Ck} and evaluated on the Ci chunk.
The reported accuracy is the average accuracy over k folds.

Hyperparameter Optimization. In order to find the best hyperpa-
rameter combination for a model, we apply Spearmint [Snoe 12] to search
through the parameter space. The method behind the tool is Bayesian op-
timization and it has been shown to be able to find hyperparameters that
yield performance equal or superior to that achieved using other hyperpa-

124

rameter optimization techniques. In our experiments every dataset has its
own set of parameters, see Table 6.4 for the details.

6.4.2 Datasets

We compare the described approaches on several datasets from different
domains as well as on a simulated data. In this section we describe the
datasets and their properties.

Synthetic ARMA dataset. In order to be able to compare results with
the ground truth and form the intuition how much information can be
extracted from different types of features, we have generated a synthetic
dataset with specific properties. Namely, one of the posed questions of
this work is whether combining static and dynamic features can boost the
overall performance on a given dataset. We model the required conditions
by splitting the data into four blocks in the way explained in Table 6.2.
Block 1 has samples with positive labels and values for the static features
are generated from GPOS model, while the dynamic features are generated
from the GNEG model. In block 2 the situation is reversed. The two last
blocks have correct labels for both parts. Therefore, models that do not
use information from both sources should be in a worse position. Indeed,
models (1)–(4) cannot achieve accuracy of more than 0.75 as can be seen in
Figure 6.7.

The dynamic features are simulated with ARMA(p, q) process [Hami 94],
where the orders of autoregressive (AR) and moving average (MA) parts
are drawn from a uniform distribution, p, q ∈ {1, . . . , 5}, while coefficients
of AR and MA processes are αi, βi ∼ U(−0.1, 0.1), respectively. All values
of the static features in the synthetic dataset are drawn from the Gaussian
distribution, N(µ, σ2), where µ ∼ U(0, 2) and σ ∼ U(0, 2).

For illustration purposes Figure 6.4 depicts eight randomly chosen time
series from the created synthetic dataset. The difference between classes is
not obvious, and, therefore, is not overly simple as a classification task.

Real-life datasets. We use datasets with different aspects: few univari-
ate time series widely used in the literature — FordA and FordB [Chen 15]

125

Table 6.2: Synthetic dataset is designed in a specific way. Each block con-
tains static and dynamic data, however the dynamic data in block 1 and static
data in block 2 are useless, making it impossible for a model that operates
only on one data modality to classify the whole dataset correctly.

Block Classifiability Label Static Dynamic

1

Classifiable by discrimina-
tive model as T, but genera-
tive model will confuse it for
F

T ∼ NT ∼ ARMAF

2

Classifiable by generative
model as T, but discrimina-
tive model will confuse it for
F

T ∼ NF ∼ ARMAT

3, 4 Classifiable by both as F F ∼ NF ∼ ARMAF

and a multivariate dataset from a particular domain — classification of
electrocorticography (ECoG) recordings from BCI competition III [Lal 04].
Also, we show the results on the Phalanges and Yoga datasets [Chen 15],
where the baseline methods perform as well as ensemble and hybrid ap-
proaches, and we discuss why it is the case. For the characteristics of the
chosen datasets the reader is referred to Table 6.3.

Table 6.3: Descriptions of the real-life datasets.

Datasets Samples Train set Test set
Static

features

Sequential

features

Sequence

length

Source of

benchmark

ECoG 10584 5-fold CV 320 64 300 [Schr 05]

FordA 4291 1320 3601 500 1 500 [Bagn 12]

FordB 4446 810 3636 500 1 500 [Bagn 12]

Phalanges 2658 1800 858 80 1 80 [Chen 15]

Yoga 3300 300 3000 426 1 426 [Bayd 15]

126

Figure 6.4: Example of generated synthetic time series.

Figure 6.5: Performance of 12 models on the synthetic dataset with varying
parameters. The ratio between the number of dynamic features and the total
number of features plotted on the horizontal axis. The vertical axis corre-
sponds to the size of the dataset on the left plot and to the length of the
sequence on the right plot.

Benchmarks from the literature exist for all of the datasets except for the
ECoG dataset. To the best of our knowledge we compare our scores with
the highest reported results and follow the same data splitting strategies.
Namely, we demonstrate the results on the train and test sets of the same
size as used in the literature. The sources of the benchmarks are provided in
Table 6.3. It is worth mentioning that despite the fact that the best result
gained for the ECoG dataset during the BCI Competition has accuracy of
0.91 [Schr 05], the authors use elaborate hand-crafted features extraction
methods such as combination of bandpower, CSSD/Waveform Mean and
Fisher Discriminant Analysis. Since we do not have access to the features

127

Figure 6.6: Performance on the real-life datasets.

they have used, we limit ourselves to classical Fourier analysis of ECoG
signal. Due to the differences in preprocessing the fair comparison cannot
be easily drawn. For ECoG dataset we apply 5-fold cross-validation and
compute the mean of accuracies over the folds. In Table 6.4 we list the
hyperparameters of all the trained models.

Table 6.4: Estimated hyperparameters. Column names stand for: LSTM
Size, Dropout, Optimization method, Batch size, number of Epochs; number
of HMM States, number of Iterations; number of RF Trees.

LSTM HMM RF

Dataset S D O B E S I T

ECoG 2000 0.5 rmsprop 32 50 6 50 500

FordA 512 0.0 rmsprop 1 20 2 50 500

FordB 512 0.0 rmsprop 1 20 2 50 500

Phalanges 128 0.0 rmsprop 1 10 2 50 500

Yoga 256 0.0 rmsprop 1 10 2 50 500

6.4.3 Results

In this section we report accuracies achieved by all of the approaches on
synthetic and real-life datasets and discuss our findings.

128

Insights from synthetic ARMA Dataset. As can be seen from the
results on the synthetic dataset (Figure 6.7) RF is far from good when
dealing with dynamic data, thus it confirms the intuition that the models
designed to work with dynamic data have merit. Stand-alone models on
bicomponent data (models (5)–(7), see Section 6.3.2) fail to capture the
information from the both sources. This observation is also generally true
for the real-life datasets (see Figure 6.6). Both the ensemble and hybrid
methods achieve almost perfect accuracy, and thus are good at extracting
information from sequential and static sources simultaneously.

Figure 6.7: Performance on the synthetic dataset. The vertical dashed lines
show the maximal achievable level of performance.

Next, we investigate various dataset characteristics with respect to the
methods’ performance by generating datasets with varying size, sequence
length (ld), number of static (ns) and dynamic features (nd). The resulting
heatmap is shown in Figure 6.5. Note that the ratio on the horizontal axis is
represented in discrete form and the intervals are not equal due to a limited
variation of the parameters.

There are a few observations that may be of interest for practitioners:

129

• Both ensemble and hybrid HMM (models ENSHMM (8),
HYBHMM (10)) show superior performance on longer sequences and
when the number of dynamic and static features is balanced.

• Hybrid and ensemble models based on LSTM (ENSLSTM (9),
HYBLSTM (11)) are less affected by the length of the sequence and
the ratio between static and dynamic features. They perform very
well across the whole range of those parameters, except for very short
sequences.

• All methods show lower performance on the datasets with very short
sequences and on the datasets with high imbalance towards dynamic
features. The decrease is visible when the proportion of dynamic
features reaches 80%.

• Noteworthy is also the overall similarity between the patterns of en-
sembles and hybrids, though latter have a bit higher accuracy.

• Hybrid model HYBLSTMA (12) with LSTM activations seems to per-
form well only for a bigger dataset size, longer sequences and with
only a few dynamic features.

Results on real-life datasets. The results across all real-life datasets
are shown in Figure 6.6. In general, every dataset has its own specifics and
thus, no single method performs best on all of them. For example, on the
ECoG dataset the model HMMd (2) is almost as good as hybrid methods in
spite of showing poor performance on all the other datasets. On the Yoga
and Phalanges datasets Random Forest on the static features performs as
well as the hybrid and ensemble methods. One possible reason why on some
datasets combination of dynamic and static features does not give higher
performance could be the absence of temporal dynamics in the data. In
such case the use of sequential models is irrelevant. The degree of temporal
connection can be estimated by comparing stand-alone models HMMd (2)

and LSTMd (3) with RFd (4). If Random Forest performs on dynamic
data better or similar to HMM and LSTM, then the temporal aspect is not
present (or sequential models fail to grasp it).

130

Hybrid model HYBLSTM (11) improved on the best result from the
literature on the datasets FordA and FordB. On the ECoG dataset both
hybrids HYBHMM (10) and HYBLSTM (11) outperformed the other meth-
ods. Moreover, despite the fact that the hybrid methods on Phalanges and
Yoga datasets do not beat the accuracy from the literature, in all of the
datasets they are either the best or very close to the best results.

It is also interesting to notice that the observations obtained from the
analysis of synthetic data are in line with the performance on the real
datasets. Namely, if a dataset has fewer samples or the sequences are rather
short (as in the case of Yoga and Phalanges datasets), then the hybrid ap-
proach does not provide a performance boost. However, if a dataset is large
and has long sequences as in the case of ECoG, FordA and FordB (see Table
6.3 for the dataset characteristics), then hybrids outperform other methods.

6.5 Conclusions

We propose and explore a novel way of combining dynamic and static fea-
tures in order to make it possible for a classification model to capture tem-
poral dynamics and static information simultaneously. Previous approaches
to this problem relied on ensemble methods where different models operate
on different data modalities and their predictions are combined. The hy-
brid approach we propose goes to a lower level and explores the possibility
of combining models not at the level of predictions, but earlier — it con-
catenates static features with either predictions of generative models, ratios
of class probabilities, or, when possible, with inner representation of the
data provided by a generative model. We demonstrate that this approach
outperforms other approaches and report results on several public datasets.
Additionally we explore the behavior of 12 different models on synthetic
data and describe how performance depends on such properties of a dataset
as the number of samples, number of static and dynamic features and the
length of the sequence, providing the guidelines for practitioners.

131

Chapter 7

Conclusion and future
directions

7.1 Summary of contributions

In spite of the existence of the well-defined machine learning pipeline and
a clear evaluation for the classification task the practical use of these tech-
niques in industry and on real-life data is still in its initial state. Manual
feature extraction, various data types, poor quality of the datasets con-
tribute to this lag between the academia and industry. In this work we
describe several case studies, discuss the use of the classification framework
and show the transformation of various sources of data and different data
types into the suitable input for a classifier.

This thesis approaches the problem of combining sequential and graph
data with static information for a classification task from the perspective of
practical applications. We propose a framework that uses information not
only from static features, but takes into account relevant information from
sequential data, and combines it together.

First, we propose the hybrid model that enables to combine generative
and discriminative model types, which, in turn, enriches the model ability
to capture data patterns. We use generative models for the sequential data
and transform the model outputs to the informative features that are fed
to a discriminative classifier. Overall, the results show that hybrid method

132

outperforms others when the data largely consists of sequences, but static
features also play an important role and cannot be discarded.

Next, we define a progressive index-based framework that allows one
to make early predictions, without the requirement for the case to end.
Essentially, it is a system of stacked ensemble type that handles multivariate
sequences with the static data and outputs predictions for each timestamp.
It can incorporate hybrid models or any other classifiers and learns to use
information from sequential and static features as well as to choose which
base models to use.

We outline three case-studies, each from the different domain. The
first one comes from the Business Process Mining, where we build a model
to classify deviant processes at early stages, after the execution of just a
few events. Our contribution differs from the other similar works as the
proposed classifier takes into account not only the information from the
control-flow, but advances by accounting for a data payload for each event.
Therefore, the classifier is able to capture deviant behavior not only in the
process itself, but also in the accompanied information. We use progressive-
index based framework, compare several different encodings of the data and
suggest the use of index-based encoding, while the encoding based on the
hybrid model does not improve the results in a systematic manner due to
the insufficient number of long sequences. The empirical evaluation has
demonstrated that with index-based encoding we achieve an AUC of 90%

after the execution of 5 events, while baseline encodings without additional
information do not achieve higher than AUC of 60%.

The second case-study shows the results of a classifier for a fraudulent
behavior in Skype network. We propose a method that uses information
from various data sources in order to find stealthy fraudulent users, those
that are either able to trick the first-line defense or salient ones. The various
sources include profile information, sequential data about product usage,
dynamic changes in social network and the information from the snapshot
of the global network. We apply the hybrid model to fuse all these sources
together, which results in a TPR of 68% with a FPR of 5%.

The third case study explores the possibilities of the hybrid model and
compares it with the ensemble technique with the aim of providing guide-
lines for hybrid model usage. We use ECoG dataset and several other public

133

datasets to overview 11 different classification models in order to choose the
best way of combining static and sequential features. Empirical evaluation
demonstrated that the use of the state of the art LSTM model as a gen-
erative model candidate is more beneficial than use of the Hidden Markov
Models. However, the use of LSTM activations as the input to the classifier
leads to worse results than in the case of the MSE scores. In addition, with
the help of the synthetic data, we alter different dataset parameters like
dataset size, number of static and sequential features, and the length of the
sequences to empirically evaluate, which properties a dataset should exhibit
in order to benefit from the advocated approach.

7.2 Future directions

This work proposes a path towards richer representation of data for a clas-
sifier. However, there are several aspects that potentially may improve the
suggested body of work. We outline a few interesting directions.

Interpretability. It is often discussed that for the real-life problems black-
box methods are much less preferable and people have difficulties trusting
the prediction when the reasoning behind the decision of the classification
is not clear. This poses a serious challenge to either achieve the same level
of precision with the existing transparent classification methods or to come
up with the additional techniques that expose the rationale behind the
black-box methods. Currently it is an active line of the research and sev-
eral attempts were made. For example, the work of Ribeiro et al [Ribe 16]
proposes the LIME technique, where the predictions of black-box classifiers
are approximated locally by a simple, interpretable linear model. Another
interesting direction towards interpretability is briefly outlined in the work
of Krakovna et al. [Krak 16], where Hidden Markov Models are combined
with the LSTM in order to increase the interpretability of these models.

Earliness. One of the benefits using the progressive index-based frame-
work is its ability to make predictions as the case progresses. However,
there is a tradeoff between the confidence of the early prediction and the
cost of delaying the decision. It is worth investigating how to incorporate

134

the detection of such an optimal timepoint into the suggested framework.
The paper of Tavenard et al. [Tave 16] suggests a method, which for each
time series provides the time when the prediction should be done in order
to minimize the cost of delaying the decision together with the cost of not
achieving enough accuracy.

Sequential component. Another contribution to the transparency of
the methods would be a pre-processing test that identifies whether the mul-
tivariate sequential data contains more information for a classifier or it can
be handled in a static manner. It is clear that the simple transformations
like sequential-to-static ones are computationally cheaper, and not all the
datasets exhibit strong sequential behavior. Although the suggested hybrid
approach can achieve the same accuracy as the simpler methods on uni-
component data, it is more efficient to use simpler methods when dataset
does not exhibit sequential dependency. A simple explorative test before
any modeling procedure would help to save time and effort.

Models. The field of machine learning advances with the rapid tempo,
and state of the art methods change in no time. It is worth considering to
compare the outlined approaches with the more advanced techniques. For
example, we use a very simple one layer architecture for the LSTM. How-
ever, more complicated architectures can be applied and compared. Also,
such concepts as transfer learning and end-to-end learning can potentially
help to reduce the multiple step procedure to a single model, where the
input is given “as is” and the automatic features are generated during the
training. With the deep learning gaining popularity, the whole field of ma-
chine learning is shifting from the culture of manual feature extraction to
the culture of seeking the architecture for each domain. Then, the model
trained on large datasets can be reused for the same task but for the differ-
ent, smaller, datasets. This is active line of the research with a few examples
outlined in [Long 16, Rusu 16]. We believe that such domains as BPM and
Fraud detection can benefit from using their “own” pre-trained models that
community could use.

135

It is thrilling to see how machine learning becomes more and more pow-
erful and we believe that the future research can help to improve all the
shortcomings of the current one.

136

Appendix

Source code

The implementation of all the methods described in the paper [Leon 16] and
the code for the exploratory analysis is available at the public repository
at: www.github/Generative-Models-in-Classification.

Supplementary material for the article "Complex Symbolic Sequence Encod-
ings for Predictive Monitoring of Business Processes" [Leon 15] is available
here: www.github/Sequence-Encodings-for-Predictive-Monitoring.

137

https://github.com/annitrolla/Generative-Models-in-Classification
https://github.com/annitrolla/Sequence-Encodings-for-Predictive-Monitoring

Acknowledgements

My doctoral studies have been funded by the European Social Fund’s Doc-
toral Studies Internalization Program (DoRa) carried out by Archimedes
Foundation and Software Technology and Applications Competence Cen-
ter (STACC). The preparation of this thesis has been also supported by
Horizon 2020 SoBigData project.

I would like to thank my supervisors Marlon Dumas and Jaak Vilo for
their valuable advices throughout all these years. They believed in me.
Without them I would not start nor finish my PhD studies.

I am very thankful to my reviewers Alessandro Sperduti and Jaakko
Hollmén, for their insightful suggestions and positive feedback.

This work would not be in a readable format without my friends who
found time to go through it and provide their comments and corrections.
Thank you, Irene Teinemaa and Elena Sügis. I am highly grateful to Ilya
Kuzovkin, who helped in so many ways that it will not be possible to list
it all here.

My doctoral studies have been a steep learning curve, where I was in-
troduced by Konstantin Tretyakov to a new fascinating area of research –
Machine Learning. For this life-changing introduction I would like to thank
him.

It is said that the environment around shapes person’s thoughts, and I
was very lucky to be around smart, intelligent people, who inspired me a
lot. I would like to express my gratitude to all my co-workers in STACC,
BIIT people and my fellows PhD students in Institute of Computer Science
at the University of Tartu. Our office kitchen was a place where most of
the new ideas were born.

138

Teamwork is not something that can be easily found and I appreciate
the collaboration with my co-authors of the papers.

I am also grateful for my friends. Some of them are far away, like
Anastassia Žegulova, some of them are closer, like Teele Tamme ja Liisa
Seppel, but all of them have been supportive and helpful on my long way
to a PhD degree.

Finally, I am grateful for the support from my family: mom, dad and
my sister as well as my grandfather, who checked the progress of my ”dis-
sertation“ every time he called. Unfortunately, he can not see me finishing
it, but I think it would make him very happy.

139

Generatiivsete mudelite
kasutamine staatiliste ja
jadatunnuste kombineerimiseks
klassifitseerimise eesmärgil

Klassifitseerimismudeli täpsus on otseses sõltuvuses treenimise jaoks valitud
tunnustest. Sobivate tunnuste otsimine ja läbiproovimine on väljakutset
pakkuv ülesanne mudeli treenimisprotsessis. Antud protsess võib osutuda
veelgi keerulisemaks kui andmetes esinevad koos nii aegread või jadad kui
ka staatilised tunnused, mis ajas ei muutu. Näiteks võib tuua kasutajate
profiiliandmed koos nende tarkvara kasutusajalooga mingi perioodi jooksul,
äriprotsessid koos nende metakirjeldusega, või liigutuste tagajärjel tekkivate
närvisignaalide andmestiku, kus on olulised ka katseisikuid iseloomustavad
faktorid. Enamik klassikalistest masinõppe algoritmidest kasutab kas ainult
staatilisi tunnuseid või ainult jadatunnuseid, kuid mitte mõlemaid. Prak-
tikas on aga klassifitseerimisprobleemide lahendamisel tihtipeale kasulikum
kaasata mõlemad tunnuste liigid.

Käesolev väitekiri uurib, kuidas ühendada nii staatilisi kui ka jadatun-
nuseid klassifitseerija täpsuse tõstmiseks, ning pakub välja hübriidalgoritmi,
mis integreerib jadatunnuste põhjal treenitud generatiivse mudeli väljundi
diskriminatiivsesse mudelisse. Põhiidee seisneb selles, et kasutada generati-
ivseid mudeleid nagu varjatud Markovi mudelid või rekurrentsed närvivõr-
gud jadatunnuste alusel mudeli treenimiseks ning seejärel kasutada treeni-
tud mudelite väljundeid uute tunnustena koos staatiliste tunnustega lõpp-
klassifitseerijas. Antud töö põhimõte baseerub eeldusel, et generatiivsete ja

140

diskriminatiivsete mudelite kombineerimine aitab saada lisainformatsiooni,
mis on oluline klasside eristamise jaoks. Käesolevas töös võrreldakse hübri-
idmudelit laiemalt levinud ansambelõppega ning mudelitega, mis õpivad
ainult staatiliste või ainult jadatunnuste põhjal.

Tihtipeale on tegu ka selliste klassifitseerimisülesandega, kus on vaja ole-
masolevate andmete põhjal ennustada andmeklassi palju varem kui perioodi
lõpus. Näiteks võib tuua tulevaste haiguste enneaegset riski tuvastamist
patsiendi haigusloo põhjal või petturi avastamist tema käitumise järgi, enne
kui petuskeem on teostatud. Paraku, mida varajasem ennustus, seda vähem
andmeid on selle tegemiseks saadaval. Seega on oluline kaasata kõik ole-
masolevad allikad, kasutades nii staatilisi kui ka jadatunnuseid. Antud töö
pakub välja raamistiku, mis võimaldab teha klassi ennustusi varakult, ehk
andmejadade alguses.

Pakutud lähenemist on rakendatud kolmes juhtumiuuringus erinevatest
valdkondadest. Kahe esimese juhtumiuuringu põhjal on tegu varajase en-
nustusega, kolmas juhtumiuuring tegeleb klassifitseerimisega täielikel mit-
memõõtmelistel jadadel.

Esimeses juhtumiuuringus ehitatakse mudel eristamaks hälvega äriprot-
sesse regulaarsetest, kasutades selleks mitte ainult äriprotsesse, vaid lisaks
protsessidele ka nendega kaasnevat infot. Põhieesmärgiks on klassifitseerida
alles algusjärgus olevat protsessi võimalikult varakult ja kõrge täpsusega,
kasutades ainult üksikute esimeste sündmuste realiseerimiseandmeid. Selle
töö tulemus erineb teistest sarnastest töödest selle poolest, et väljapakutud
klassifitseerija arvestab nii informatsiooni protsessi kohta kui ka lisainfot
iga realiseeritava sündmuse kohta. Juhtumiuuringus võrreldatakse erinevaid
meetodeid selliste andmete käsitlemiseks klassifitseerimise eesmärgil. Em-
piiriline analüüs näitas, et kasutades pakutud metoodikat saab eristada
hälvega ja hälveta protsesse 5 esimese sündmuse realiseerimisel 90% täp-
susega (mõõdetud AUC meetrikaga).

Teises juhtumiuuringus tegu on petturite tuvastamisega Skype sotsi-
aalvõrgustikus, kasutades selleks kasutajate profiiliandmeid, lokaalset käi-
tumist ning sotsiaalvõrgustiku mustreid. Pakutud hübriidmudel võimaldab
kõik need allikad hõlmata ühe mudeli alla. Treenitud mudelit rakendatakse,
et tuvastada salajaste, pikema perioodi vältel tegutsenud pettureid, keda
ei olnud kiiresti blokeeritud. Hübriidmudel saavutab 68% õigepositiivsete

141

tuvastamismäära (ing. k. True Positive Rate). kui on fikseeritud 5% vale-
postiiivsete tuvastamismäär (ing.k. False Positive Rate).

Kolmandas juhtumiuuringus klassifitseeritakse katseisikute kujutletavaid
liigutusi ajusignaalide põhjal, kus mudelisse kaasatakse nii ajusignaalid kuid
ka Fourier’ teisenduse abil saadud staatilised tunnused. Antud juhul uu-
ritakse hübriidmudelit lähemalt ning võrreldakse ansambelõppega ja teiste
bassmudelitega, eksperimenteeritakse ka generatiivse mudeli valikuga. Kokku
võrreldakse empiiriliselt 11 mudelit võrdletud erinevate andmestike põhjal.
Lisaks uuritakse sünteetilise andmestiku abil andmete parameetrite mõju
mudeli tulemusele. Tulemused näitavad, et hübriidmudel suudab üldjuhul
tõsta klassifitseerimistäpsust võrreldes teiste mudeliliikidega ning parima
tulemuse saavutab hübriid, kus generatiivseks mudeliks on rekurrentsed
närvivõrgud pika lühiajalise mälu sõlmega (Recurrent Neural Networks with
Long Short-term Memory unit).

142

Bibliography

[Aals 10] W.M.P. van der Aalst, M. Pesic, and M. Song. Beyond Pro-
cess Mining: From the Past to Present and Future. In: Bar-
bara Pernici, editor, Advanced Information Systems Engineering,
22nd International Conference, CAiSE 2010, Hammamet, Tunisia,
June 7-9, 2010. Proceedings, pp. 38–52, Springer, cited on pages: 82

[Aals 11] Wil M. P. van der Aalst, M. H. Schonenberg, and Minseok
Song. Time prediction based on process mining. Inf. Syst.,
Vol. 36, No. 2, pp. 450–475, cited on pages: 82

[Albr 11] W Steve Albrecht, Chad O Albrecht, Conan C Albrecht,
and Mark F Zimbelman. Fraud examination. Cengage Learning,
cited on pages: 104

[Alla 08] Cyril Allauzen, Mehryar Mohri, and Ameet Talwalkar. Se-
quence kernels for predicting protein essentiality. In: Proceed-
ings of the 25th international conference on Machine learning, pp. 9–
16, ACM, cited on pages: 74

[Alpa 14] Ethem Alpaydin. Introduction to machine learning. MIT press, cited
on pages: 20

[Anto 15] Alessandro Antonucci, Mauro Scanagatta, Denis Deratani
Mauá, and Cassio Polpo de Campos. Early Classification of
Time Series by Hidden Markov Models with Set-Valued Pa-
rameters. cited on pages: 75, 76

[Bagn 12] Anthony Bagnall, Luke M Davis, Jon Hills, and Jason Lines.
Transformation Based Ensembles for Time Series Classifica-
tion. In: SDM, pp. 307–318, SIAM, cited on pages: 126

[Bayd 15] Mustafa Gokce Baydogan and George Runger. Learning a
symbolic representation for multivariate time series classifica-

143

tion. Data Mining and Knowledge Discovery, Vol. 29, No. 2, pp. 400–
422, cited on pages: 126

[Ben 03] Asa Ben-Hur and Douglas Brutlag. Remote homology
detection: a motif based approach. Bioinformatics, Vol. 19,
No. suppl 1, pp. i26–i33, cited on pages: 74

[Beng 13] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Rep-
resentation learning: A review and new perspectives. IEEE
transactions on pattern analysis and machine intelligence, Vol. 35,
No. 8, pp. 1798–1828, cited on pages: 14

[Bish 06] Christopher M Bishop. Pattern Recognition. Machine Learning,
cited on pages: 41

[Bolt 02] Richard J Bolton and David J Hand. Statistical fraud de-
tection: A review. Statistical science, pp. 235–249, cited on pages:
28

[Brad 97] Andrew P Bradley. The use of the area under the ROC
curve in the evaluation of machine learning algorithms. Pat-
tern recognition, Vol. 30, No. 7, pp. 1145–1159, cited on pages: 26

[Brei 01] Leo Breiman. Random forests. Machine learning, Vol. 45, No. 1,
pp. 5–32, cited on pages: 41, 42, 58

[Brin 12] Sergey Brin and Lawrence Page. Reprint of: The anatomy
of a large-scale hypertextual web search engine. Computer
networks, Vol. 56, No. 18, pp. 3825–3833, cited on pages: 66

[Cao 95] Jun Cao, M. Ahmadi, and M. Shridhar. Recognition of hand-
written numerals with multiple feature and multistage classi-
fier. Pattern Recognition, Vol. 28, No. 2, pp. 153–160, cited on pages:
103

[Caru 06] Rich Caruana and Alexandru Niculescu-Mizil. An empirical
comparison of supervised learning algorithms. In: Proceedings
of the 23rd international conference on Machine learning, pp. 161–168,
ACM, cited on pages: 42

[Cast 05] Malú Castellanos, Norman Salazar, Fabio Casati, Umesh-
war Dayal, and Ming-Chien Shan. Predictive Business Oper-
ations Management. In: Proc. of DNIS, pp. 1–14, Springer, cited
on pages: 83

144

[Chen 15] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum,
Anthony Bagnall, Abdullah Mueen, and Gustavo Batista.
The UCR Time Series Classification Archive. July 2015. cited
on pages: 125, 126

[Chir 05] Paul-Alexandru Chirita, Jörg Diederich, and Wolfgang
Nejdl. MailRank: using ranking for spam detection. In: Pro-
ceedings of the 14th ACM international conference on Information and
knowledge management, pp. 373–380, ACM, cited on pages: 65

[Chui 92] Charles K Chui. Wavelets: a tutorial in theory and applica-
tions. Wavelet Analysis and its Applications, San Diego, CA: Aca-
demic Press,| c1992, edited by Chui, Charles K., Vol. 1, cited on pages:
64

[Cole 15] C. Coleman Coleman. Internet Crime report. 2015. cited on
pages: 101, 104

[Conf 15] Raffaele Conforti, Massimiliano de Leoni, Marcello La
Rosa, Wil M. P. van der Aalst, and Arthur H. M. ter Hof-
stede. A recommendation system for predicting risks across
multiple business process instances. Decision Support Systems,
Vol. 69, pp. 1–19, cited on pages: 81, 83, 100

[Cove 65] Thomas M Cover. Geometrical and statistical properties
of systems of linear inequalities with applications in pat-
tern recognition. IEEE transactions on electronic computers, No. 3,
pp. 326–334, cited on pages: 73

[Da S 10] Giovanni Da San Martino and Alessandro Sperduti. Mining
structured data. IEEE Computational Intelligence Magazine, Vol. 5,
No. 1, pp. 42–49, cited on pages: 73

[Dach 15] Asma Dachraoui, Alexis Bondu, and Antoine Cornuéjols.
Early classification of time series as a non myopic sequential
decision making problem. In: Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases, pp. 433–447,
Springer, cited on pages: 76

[Daup 15] Yann N Dauphin, Harm de Vries, Junyoung Chung, and
Yoshua Bengio. RMSProp and equilibrated adaptive
learning rates for non-convex optimization. arXiv preprint
arXiv:1502.04390, cited on pages: 115

145

[Diet 00] Thomas G Dietterich. Ensemble methods in machine learn-
ing. In: Multiple classifier systems, pp. 1–15, Springer, cited on pages:
67, 70, 115

[Dong 11] B.F. van Dongen. Real-life event logs - Hospital log. cited on
pages: 33, 82

[Dono 15] David Donoho. 50 years of Data Science. http://courses.csail.
mit.edu/18.337/2015/docs/50YearsDataScience.pdf, 2015. cited on
pages: 20

[Duma 16] Ekrem Duman and Yusuf Sahin. A Comparison of Classifi-
cation Models on Credit Card Fraud Detection with respect
to Cost-Based Performance Metrics. Use of Risk Analysis in
Computer-Aided Persuasion. NATO Science for Peace and Security
Series E: Human and Societal Dynamics, Vol. 88, pp. 88–99, cited on
pages: 28

[Efro 97] Bradley Efron and Robert Tibshirani. Improvements on
cross-validation: the 632+ bootstrap method. Journal of the
American Statistical Association, Vol. 92, No. 438, pp. 548–560, cited
on pages: 26

[Farv 11] Hamid Farvaresh and Mohammad Mehdi Sepehri. A data min-
ing framework for detecting subscription fraud in telecommu-
nication. Engineering Applications of Artificial Intelligence, Vol. 24,
No. 1, pp. 182–194, cited on pages: 103

[Fawc 06] Tom Fawcett. An introduction to ROC analysis. Pattern recog-
nition letters, Vol. 27, No. 8, pp. 861–874, cited on pages: 23

[Fawc 97a] T Fawcett and F Provost. Adaptive fraud detection. Data
mining and knowledge discovery, Vol. 316, pp. 291–316, cited on pages:
103

[Fawc 97b] Tom Fawcett and Foster Provost. Adaptive fraud detection.
Data mining and knowledge discovery, Vol. 1, No. 3, pp. 291–316, cited
on pages: 28

[Feld 13] Zohar Feldman, Fabiana Fournier, Rod Franklin, and An-
dreas Metzger. Proactive event processing in action: a case
study on the proactive management of transport processes.
In: Proc. of DEBS, pp. 97–106, ACM, cited on pages: 83

146

http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf
http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataScience.pdf

[Foli 12] Francesco Folino, Massimo Guarascio, and Luigi Pontieri.
Discovering Context-Aware Models for Predicting Business
Process Performances. In: Proc. of OTM Confederated Confer-
ences, pp. 287–304, Springer, cited on pages: 82

[Fran 16] et al. François Chollet. Keras. https://github.com/fchollet/
keras, cited on pages: 115

[Freu 95] Yoav Freund and Robert E Schapire. A desicion-theoretic
generalization of on-line learning and an application to boost-
ing. In: European conference on computational learning theory,
pp. 23–37, Springer, cited on pages: 57

[Frie 01] Jerome Friedman, Trevor Hastie, and Robert Tibshirani.
The elements of statistical learning. Vol. 1, Springer series in statistics
Springer, Berlin, cited on pages: 24

[Gart 03] Thomas Gärtner. A survey of kernels for structured data.
ACM SIGKDD Explorations Newsletter, Vol. 5, No. 1, pp. 49–58, cited
on pages: 73, 74

[Gold 10] Anthony Goldbloom. Kaggle. www.kaggle.com, 2010. cited on
pages: 56

[Gold 12] Moisés Goldszmidt. Finding Soon-to-Fail Disks in a Haystack.
In: Proc. of HotStorage, USENIX, cited on pages: 107, 112

[Good 16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. 2016. cited on pages: 43

[Grav 13] Alan Graves, Abdel-Rahman Mohamed, and Geoffrey Hin-
ton. Speech recognition with deep recurrent neural networks.
In: Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE In-
ternational Conference on, pp. 6645–6649, IEEE, cited on pages: 49,
114

[Hami 94] James Douglas Hamilton. Time series analysis. Vol. 2, Princeton
university press Princeton, cited on pages: 125

[Han 11] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining:
concepts and techniques. Elsevier, cited on pages: 20, 22, 31

[Hata 13] Nima Hatami and Camelia Chira. Classifiers with a reject
option for early time-series classification. In: Computational

147

https://github.com/fchollet/keras
https://github.com/fchollet/keras
www.kaggle.com

Intelligence and Ensemble Learning (CIEL), 2013 IEEE Symposium
on, pp. 9–16, IEEE, cited on pages: 75, 76

[He 15] Guoliang He, Yong Duan, Rong Peng, Xiaoyuan Jing,
Tieyun Qian, and Lingling Wang. Early classification on mul-
tivariate time series. Neurocomputing, Vol. 149, pp. 777–787, cited
on pages: 76

[Heit 09] Geremy Heitz, Stephen Gould, Ashutosh Saxena, and
Daphne Koller. Cascaded classification models: Combining
models for holistic scene understanding. In: Advances in Neural
Information Processing Systems, pp. 641–648, cited on pages: 68, 72

[Hila 08] Constantinos S. Hilas and Paris As. Mastorocostas. An ap-
plication of supervised and unsupervised learning approaches
to telecommunications fraud detection. Knowledge-Based Sys-
tems, Vol. 21, No. 7, pp. 721–726, cited on pages: 103

[Hila 09] Constantinos S. Hilas. Designing an expert system for fraud
detection in private telecommunications networks. Expert Sys-
tems with Applications, Vol. 36, No. 9, pp. 11559–11569, cited on pages:
103

[Hint 06] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reduc-
ing the dimensionality of data with neural networks. Science,
Vol. 313, No. 5786, pp. 504–507, cited on pages: 14

[Ho 94] Tin Kam Ho, Jonathan J. Hull, and Sargur N. Srihari. De-
cision combination in multiple classifier systems. IEEE trans-
actions on pattern analysis and machine intelligence, Vol. 16, No. 1,
pp. 66–75, cited on pages: 103

[Hoch 97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, Vol. 9, No. 8, pp. 1735–1780, cited on
pages: 49

[Huan 11] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP
Rubinstein, and JD Tygar. Adversarial machine learning.
In: Proceedings of the 4th ACM workshop on Security and artificial
intelligence, pp. 43–58, ACM, cited on pages: 104

[Huan 13] Junxian Huang, Yinglian Xie, Fang Yu, Qifa Ke, Martin
Abadi, Eliot Gillum, and Z Morley Mao. Socialwatch: de-
tection of online service abuse via large-scale social graphs.

148

In: Proceedings of the 8th ACM SIGSAC symposium on Information,
computer and communications security, pp. 143–148, ACM, cited on
pages: 65, 102

[Ishi 00] Katsuhiko Ishiguro, Hiroshi Sawada, and Hitoshi Sakano.
Multi-class boosting for early classification of sequences.
Statistics, Vol. 28, No. 2, pp. 337–407, cited on pages: 76

[Jaak 00] Tommi Jaakkola, Mark Diekhans, and David Haussler. A
discriminative framework for detecting remote protein ho-
mologies. Journal of computational biology, Vol. 7, No. 1-2, pp. 95–
114, cited on pages: 55, 73, 74

[Jaak 99] Tommi S Jaakkola, David Haussler, et al. Exploiting gen-
erative models in discriminative classifiers. Advances in neural
information processing systems, pp. 487–493, cited on pages: 73, 74,
120

[Jaco 91] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and
Geoffrey E Hinton. Adaptive mixtures of local experts. Neu-
ral computation, Vol. 3, No. 1, pp. 79–87, cited on pages: 71

[Jord 02] A Jordan. On discriminative vs. generative classifiers: A
comparison of logistic regression and naive bayes. Advances in
neural information processing systems, Vol. 14, p. 841, cited on pages:
39

[Kang 12] Bokyoung Kang, Dongsoo Kim, and Suk-Ho Kang. Real-time
Business Process Monitoring Method for Prediction of Ab-
normal Termination Using KNNI-based LOF Prediction. Ex-
pert Syst. Appl., cited on pages: 83

[Keog 11] Eamonn Keogh and Abdullah Mueen. Curse of dimension-
ality. In: Encyclopedia of Machine Learning, pp. 257–258, Springer,
cited on pages: 116

[Kitt 98] Josef Kittler, Mohamad Hatef, Robert PW Duin, and Jiri
Matas. On combining classifiers. IEEE transactions on pattern
analysis and machine intelligence, Vol. 20, No. 3, pp. 226–239, cited
on pages: 103

[Koha 95] Ron Kohavi et al. A study of cross-validation and bootstrap
for accuracy estimation and model selection. In: Ijcai, pp. 1137–
1145, cited on pages: 26

149

[Kots 06] Sotiris Kotsiantis and Dimitris Kanellopoulos. Discretiza-
tion techniques: A recent survey. GESTS International Transac-
tions on Computer Science and Engineering, Vol. 32, No. 1, pp. 47–58,
cited on pages: 63

[Krak 16] Viktoriya Krakovna and Finale Doshi-Velez. Increasing the
interpretability of recurrent neural networks using hidden
markov models. arXiv preprint arXiv:1606.05320, cited on pages:
134

[Kriz 12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. Imagenet classification with deep convolutional neural
networks. In: Advances in neural information processing systems,
pp. 1097–1105, cited on pages: 14, 49

[Ku 07] Yungchang Ku, Yuchi Chen, and Chaochang Chiu. A Pro-
posed Data Mining Approach for Internet Auction Fraud De-
tection. pp. 238–243, cited on pages: 103

[Kunc 03] Ludmila I Kuncheva and Christopher J Whitaker. Measures
of diversity in classifier ensembles and their relationship with
the ensemble accuracy. Machine learning, Vol. 51, No. 2, pp. 181–
207, cited on pages: 58

[Kunc 04] Ludmila I Kuncheva. Combining pattern classifiers: methods and
algorithms. John Wiley & Sons, cited on pages: 70

[Lal 04] Thomas N Lal, Thilo Hinterberger, Guido Widman, Michael
Schröder, N Jeremy Hill, Wolfgang Rosenstiel, Chris-
tian E Elger, Niels Birbaumer, and Bernhard Schölkopf.
Methods towards invasive human brain computer interfaces.
In: Advances in neural information processing systems, pp. 737–744,
cited on pages: 30, 126

[Lang 14] Martin Längkvist, Lars Karlsson, and Amy Loutfi. A re-
view of unsupervised feature learning and deep learning for
time-series modeling. Pattern Recognition Letters, Vol. 42, pp. 11–
24, cited on pages: 49

[Lebe 15] Sergei Lebedev and et al. hmmlearn. https://github.com/
hmmlearn/hmmlearn, cited on pages: 115

[Leon 12] Anna Leontjeva, Konstantin Tretyakov, Jaak Vilo, and
Taavi Tamkivi. Fraud detection: Methods of analysis for

150

https://github.com/hmmlearn/hmmlearn
https://github.com/hmmlearn/hmmlearn

hypergraph data. In: Advances in Social Networks Analysis and
Mining (ASONAM), 2012 IEEE/ACM International Conference on,
pp. 1060–1064, IEEE, cited on pages: 29

[Leon 13] Anna Leontjeva, Moises Goldszmidt, Yinglian Xie, Fang Yu,
and Martín Abadi. Early security classification of skype users
via machine learning. In: Proceedings of the 2013 ACM workshop
on Artificial intelligence and security, pp. 35–44, ACM, cited on pages:
19, 29, 35

[Leon 15] Anna Leontjeva, Raffaele Conforti, Chiara Di Francesco-
marino, Marlon Dumas, and Fabrizio Maria Maggi. Complex
Symbolic Sequence Encodings for Predictive Monitoring of
Business Processes. In: Business Process Management, pp. 297–
313, Springer, cited on pages: 19, 28, 33, 137

[Leon 16] Anna Leontjeva and Ilja Kuzovkin. Combining Static and
Dynamic Features for Multivariate Sequence Classification.
In: 2016 International Conference on Data Science and Advanced An-
alytics, IEEE, cited on pages: 19, 137

[Lest 05] Jonathan Lester, Tanzeem Choudhury, Nicky Kern, Gae-
tano Borriello, and Blake Hannaford. A hybrid discrim-
inative/generative approach for modeling human activities.
cited on pages: 72

[Li 10] Congcong Li, Adarsh Kowdle, Ashutosh Saxena, and
Tsuhan Chen. Towards holistic scene understanding: Feed-
back enabled cascaded classification models. In: Advances in
Neural Information Processing Systems, pp. 1351–1359, cited on pages:
72

[Lin 03] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu.
A symbolic representation of time series, with implications
for streaming algorithms. In: Proceedings of the 8th ACM SIG-
MOD workshop on Research issues in data mining and knowledge dis-
covery, pp. 2–11, ACM, cited on pages: 15

[Lin 07] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi.
Experiencing SAX: a novel symbolic representation of time
series. Data Mining and knowledge discovery, Vol. 15, No. 2, pp. 107–
144, cited on pages: 63

151

[Lin 12] Jessica Lin, Sheri Williamson, Kirk Borne, and David De-
Barr. Pattern recognition in time series. Advances in Machine
Learning and Data Mining for Astronomy, Vol. 1, pp. 617–645, cited
on pages: 63

[Lipt 15] Zachary C Lipton, John Berkowitz, and Charles Elkan.
A critical review of recurrent neural networks for sequence
learning. arXiv preprint arXiv:1506.00019, cited on pages: 49, 51,
52

[Loh 11] Wei-Yin Loh. Classification and regression trees. Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery, Vol. 1,
No. 1, pp. 14–23, cited on pages: 42

[Long 16] Mingsheng Long, Jianmin Wang, and Michael I Jordan. Un-
supervised Domain Adaptation with Residual Transfer Net-
works. arXiv preprint arXiv:1602.04433, cited on pages: 135

[MacK 97] David JC MacKay. Ensemble Learning for Hidden Markov
Models. Unpublished manuscript, http://wol. ra. phy. cam. ac. uk/-
mackay, cited on pages: 46

[Magg 14] Fabrizio Maria Maggi, Chiara Di Francescomarino, Marlon
Dumas, and Chiara Ghidini. Predictive Monitoring of Busi-
ness Processes. In: Proc. of CAiSE, pp. 457–472, Springer, cited on
pages: 81, 83

[Maso 14] Saeed Masoudnia and Reza Ebrahimpour. Mixture of ex-
perts: a literature survey. Artificial Intelligence Review, Vol. 42,
No. 2, pp. 275–293, cited on pages: 71

[McDo 15] Nancy K. et al. McDonnell. 2015 AFP Payments Fraud
and Control Survey. Tech. Rep., The Association for Financial
Professionals, cited on pages: 101

[Mcgl 09] Mary Mcglohon, Stephen Bay, Markus G Anderle, David M
Steier, and Christos Faloutsos. SNARE : A Link Analytic
System for Graph Labeling and Risk Detection. pp. 1265–1273,
cited on pages: 103

[Merc 09] James Mercer. Functions of positive and negative type, and
their connection with the theory of integral equations. Philo-
sophical transactions of the royal society of London. Series A, contain-

152

ing papers of a mathematical or physical character, Vol. 209, pp. 415–
446, cited on pages: 73

[Metz 12] Andreas Metzger, Rod Franklin, and Yagil Engel. Predic-
tive Monitoring of Heterogeneous Service-Oriented Business
Networks: The Transport and Logistics Case. In: Proc. of SRII
Global Conference, IEEE, cited on pages: 83

[Mnih 13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Martin
Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, cited on pages: 21

[Murp 12] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT
press, cited on pages: 20, 22, 39, 41, 46, 71, 73

[Negr 08] Pablo Negri, Xavier Clady, Shehzad Muhammad Hanif, and
Lionel Prevost. A cascade of boosted generative and dis-
criminative classifiers for vehicle detection. EURASIP Journal
on Advances in Signal Processing, Vol. 2008, p. 136, cited on pages:
71, 72

[Nels 10] Blaine Nelson, Benjamin IP Rubinstein, Ling Huang, An-
thony D Joseph, and JD Tygar. Classifier evasion: Mod-
els and open problems. In: International Workshop on Privacy
and Security Issues in Data Mining and Machine Learning, pp. 92–98,
Springer, cited on pages: 104

[Nowl 90] Steven J Nowlan and Geoffrey E Hinton. Evaluation of
Adaptive Mixtures of Competing Experts. In: NIPS, pp. 774–
780, cited on pages: 71

[Page 99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. The PageRank citation ranking: bringing order
to the web. cited on pages: 65

[Parr 13] Nathan Parrish, Hyrum S Anderson, Maya R Gupta, and
Dun-Yu Hsiao. Classifying with confidence from incomplete
information. Journal of Machine Learning Research, Vol. 14, No. 1,
pp. 3561–3589, cited on pages: 76

[Pate 13] Ahmed Patel, Mona Taghavi, Kaveh Bakhtiyari, and
Joaquim Celestino JúNior. An intrusion detection and pre-
vention system in cloud computing: A systematic review.

153

Journal of network and computer applications, Vol. 36, No. 1, pp. 25–
41, cited on pages: 101

[Pedr 11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine Learning in Python. Journal of Machine Learning
Research, Vol. 12, pp. 2825–2830, cited on pages: 115

[Pika 13] Anastasiia Pika, WilM.P. Aalst, ColinJ. Fidge, ArthurH.M.
Hofstede, and MoeT. Wynn. Predicting Deadline Transgres-
sions Using Event Logs. In: Proc. of BPM Workshops, pp. 211–216,
Springer, cited on pages: 83

[Pnue 77] Amir Pnueli. The Temporal Logic of Programs. In: Proc. of
FOCS, pp. 46–57, IEEE, cited on pages: 90

[Pola 14] Mirko Polato, Alessandro Sperduti, Andrea Burattin, and
Massimiliano de Leoni. Data-aware remaining time predic-
tion of business process instances. In: Neural Networks (IJCNN),
2014 International Joint Conference on, pp. 816–823, IEEE, cited on
pages: 82

[Rabi 89] Lawrence Rabiner. A tutorial on hidden Markov models and
selected applications in speech recognition. Proceedings of the
IEEE, Vol. 77, No. 2, pp. 257–286, cited on pages: 43

[Rayk 10] Vikas C Raykar, Balaji Krishnapuram, and Shipeng Yu. De-
signing efficient cascaded classifiers: tradeoff between accu-
racy and cost. In: Proceedings of the 16th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pp. 853–
860, ACM, cited on pages: 71

[Reyn 15] Douglas Reynolds. Gaussian mixture models. Encyclopedia of
Biometrics, pp. 827–832, cited on pages: 44

[Ribe 16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
" Why Should I Trust You?": Explaining the Predictions of
Any Classifier. arXiv preprint arXiv:1602.04938, cited on pages:
134

154

[Ries 10] Kaspar Riesen and Horst Bunke. Graph classification and clus-
tering based on vector space embedding. World Scientific Publishing
Co., Inc., cited on pages: 15

[Rogg 13] Andreas Rogge-Solti and Mathias Weske. Prediction of Re-
maining Service Execution Time Using Stochastic Petri Nets
with Arbitrary Firing Delays. In: Proc. of ICSOC, pp. 389–403,
Springer, cited on pages: 82

[Rume 88] David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. Learning representations by back-propagating er-
rors. Cognitive modeling, Vol. 5, No. 3, p. 1, cited on pages: 50

[Rusu 16] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu,
Razvan Pascanu, and Raia Hadsell. Progressive neural net-
works. arXiv preprint arXiv:1606.04671, cited on pages: 135

[Schr 05] Michael Schröder, Thilo Hinterberger, Thomas Navin Lal,
Guido Widman, and Niels Birbaumer. BCI III Compe-
tition Results. http://www.bbci.de/competition/iii/results/index.
html, 2005. cited on pages: 126, 127

[Sewe 08] Martin Sewell. Ensemble learning. RN, Vol. 11, No. 02, cited
on pages: 56

[Snoe 12] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Prac-
tical Bayesian optimization of machine learning algorithms.
In: Advances in neural information processing systems, pp. 2951–2959,
cited on pages: 124

[Sonn 05] Sören Sonnenburg, Gunnar Rätsch, and Christin Schäfer.
Learning interpretable SVMs for biological sequence classi-
fication. In: Annual International Conference on Research in Com-
putational Molecular Biology, pp. 389–407, Springer, cited on pages:
73

[Sriv 15] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhut-
dinov. Unsupervised learning of video representations using
LSTMs. arXiv preprint arXiv:1502.04681, cited on pages: 49

[Suri 13a] Suriadi Suriadi, Chun Ouyang, WilM.P. Aalst, and
ArthurH.M. Hofstede. Root Cause Analysis with Enriched

155

http://www.bbci.de/competition/iii/results/index.html
http://www.bbci.de/competition/iii/results/index.html

Process Logs. In: Proc. of BPM Workshops, pp. 174–186, Springer,
cited on pages: 83

[Suri 13b] Suriadi Suriadi, Moe Thandar Wynn, Chun Ouyang, Arthur
H. M. ter Hofstede, and Nienke J. van Dijk. Understanding
Process Behaviours in a Large Insurance Company in Aus-
tralia: A Case Study. In: Proc. of CAiSE, pp. 449–464, Springer,
cited on pages: 82

[Suts 13] Ilya Sutskever. Training recurrent neural networks. PhD thesis,
University of Toronto, cited on pages: 48

[Suts 14] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to
sequence learning with neural networks. In: Advances in neural
information processing systems, pp. 3104–3112, cited on pages: 49

[Tave 16] Romain Tavenard and Simon Malinowski. Cost-Aware Early
Classification of Time Series. In: Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pp. 632–
647, Springer, cited on pages: 76, 135

[Teh 12] Yee Whye Teh, Michael I Jordan, Matthew J Beal, and
David M Blei. Hierarchical dirichlet processes. Journal of the
american statistical association, cited on pages: 46

[Tein 16] Irene Teinemaa, Marlon Dumas, Fabrizio Maria Maggi, and
Chiara Di Francescomarino. Predictive Business Process
Monitoring with Structured and Unstructured Data. In: Inter-
national Conference on Business Process Management, pp. 401–417,
Springer, cited on pages: 84, 100

[Ting 99] Kai Ming Ting and Ian H Witten. Issues in stacked general-
ization. J. Artif. Intell. Res.(JAIR), Vol. 10, pp. 271–289, cited on
pages: 59

[Tree 16] Henri Trees, Anna Leontjeva, and Marlon Dumas. Predic-
tive Monitoring of Multi-level Processes. Master’s thesis, University of
tartu, Estonia, cited on pages: 84, 100

[Vapn 98] Vladimir Naumovich Vapnik and Vlamimir Vapnik. Statistical
learning theory. Vol. 1, Wiley New York, cited on pages: 39

156

[Vere 15] Ilya Verenich, Marlon Dumas, Marcello La Rosa, Fab-
rizio Maria Maggi, and Chiara Di Francescomarino. Com-
plex symbolic sequence clustering and multiple classifiers for
predictive process monitoring. cited on pages: 84, 100

[Viol 01] Paul Viola and Michael Jones. Rapid object detection using
a boosted cascade of simple features. In: Computer Vision and
Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on, pp. I–511, IEEE, cited on pages: 71,
72, 73, 103

[Vite 67] Andrew Viterbi. Error bounds for convolutional codes and
an asymptotically optimum decoding algorithm. IEEE trans-
actions on Information Theory, Vol. 13, No. 2, pp. 260–269, cited on
pages: 48

[Wang 08] Jyun-Cheng Wang and Chui-Chen Chiu. Recommending
trusted online auction sellers using social network analysis.
Expert Systems with Applications, Vol. 34, No. 3, pp. 1666–1679, cited
on pages: 103

[Watt 98] Duncan J Watts and Steven H Strogatz. Collective dynam-
ics of ‘small-world’networks. nature, Vol. 393, No. 6684, pp. 440–
442, cited on pages: 36, 66

[Wei 13] Wei Wei, Jinjiu Li, Longbing Cao, Yuming Ou, and Jiahang
Chen. Effective detection of sophisticated online banking
fraud on extremely imbalanced data. World Wide Web, Vol. 16,
No. 4, pp. 449–475, cited on pages: 103

[Wind 14] David Kofoed Wind and Ole Winther. Model Selection in
Data Analysis Competitions. In: MetaSel@ ECAI, pp. 55–60,
cited on pages: 56

[Wolp 92] David H Wolpert. Stacked generalization. Neural networks,
Vol. 5, No. 2, pp. 241–259, cited on pages: 115

[Xing 10] Zhengzheng Xing, Jian Pei, and Eamonn J. Keogh. A brief
survey on sequence classification. SIGKDD Explorations, Vol. 12,
No. 1, pp. 40–48, cited on pages: 15, 32, 73, 81

[Xing 11] Zhengzheng Xing, Jian Pei, S Yu Philip, and Ke Wang. Ex-
tracting Interpretable Features for Early Classification on
Time Series. SIAM, cited on pages: 75

157

[Xing 12] Zhengzheng Xing, Jian Pei, and S Yu Philip. Early classifica-
tion on time series. Knowledge and information systems, Vol. 31,
No. 1, pp. 105–127, cited on pages: 75, 76

[Yosi 14] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson.
How transferable are features in deep neural networks? In:
Advances in neural information processing systems, pp. 3320–3328,
cited on pages: 54

[Zhou 12] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC
press, cited on pages: 43, 55, 59, 70

158

Curriculum Vitae

Name: Anna Leontjeva

Date of Birth: 14.11.1985

Citizenship: Estonian

Education:

2010 – 2017 University of Tartu, Faculty of Mathematics and Computer
Science, doctoral studies, specialty: computer science.

2008 – 2010 University of Tartu, Faculty of Mathematics and Computer
Science, master studies, specialty: mathematical statistics.

2004 – 2007 University of Tartu, Faculty of Mathematics and Computer
Science, bachelor studies, specialty: mathematical statistics.

Work experience:

2017 – .. University of Tartu, junior researcher

2009 – 2017 STACC OÜ, researcher

2007 – 2010 Statistics Estonia, leading statistician

159

Elulookirjeldus

Nimi: Anna Leontjeva

Sünnikuupäev: 14.11.1985

Kodakonsus: Eesti

Haridus:

2010 – 2017 Tartu Ülikool, Matemaatika-informaatikateaduskond,
doktoriõpe, eriala: informaatika.

2008 – 2010 Tartu Ülikool, Matemaatika-informaatikateaduskond,
magistriõpe, eriala: matemaatiline statistika.

2004 – 2007 Tartu Ülikool, Matemaatika-informaatikateaduskond,
bakalaureuseõpe, eriala: matemaatiline statistika.

Teenistuskäik:

2017 – .. Tartu Ülikool, noorem teadur

2009 – 2017 STACC OÜ, teadur

2007 – 2010 Eesti Statistika, juhtiv statistik

160

List of original publications

1. Leontjeva, A., Kuzovkin, I. (2016, October). Combining Static and
Dynamic Features for Multivariate Sequence Classification. In the
Proceedings of the 3rd IEEE International Conference on Data Science
and Advanced Analytics (pp. 21-30). (referred to as Publication III).

Lead author. The author contributed to the idea, partly to the methods,
the writing, literature review, and the formalizations.

2. Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M.,
Maggi, F. M. (2015, August). Complex symbolic sequence encod-
ings for predictive monitoring of business processes. In International
Conference on Business Process Management (pp. 297-313). Springer
International Publishing. (referred to as Publication I).

Lead author. The author contributed to the methods and the analysis,
partly to the idea, the writing, and the formalizations.

3. Teinemaa, I., Leontjeva, A., Dumas, M., Kikas, R. (2015, August).
Community-Based Prediction of Activity Change in Skype. In Pro-
ceedings of the 2015 IEEE/ACM International Conference on Ad-
vances in Social Networks Analysis and Mining 2015 (pp. 73-80).
ACM.

4. Leontjeva, A., Goldszmidt, M., Xie, Y., Yu, F., Abadi, M. (2013,
November). Early security classification of skype users via machine
learning. In Proceedings of the 2013 ACM workshop on Artificial
intelligence and security (pp. 35-44). ACM. (referred to as Publica-
tion II).

161

Lead author. The author contributed to the methods and the analysis,
literature review, partly to the idea, the writing, and the formaliza-
tions.

5. Leijen, D. A., Leontjeva, A. (2012). Linguistic and review features
of peer feedback and their effect on the implementation of changes in
academic writing: A corpus based investigation. Journal of Writing
Research, 4(2).

The author contributed partly to the methods and the analysis.

6. Leontjeva, A., Tretyakov, K., Vilo, J., Tamkivi, T. (2012, August).
Fraud detection: Methods of analysis for hypergraph data. In Pro-
ceedings of the First IEEE/ACM International Workshop on Cyber-
security of Online Social Networks (IEEE/ACM CSOSN 2012), Istan-
bul. IEEE Conference Publications, (pp.1060-1064). IEEE.

Lead author. The author contributed to the analysis, partly to the
methods and writing.

162

163

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

 1. Mati Heinloo. The design of nonhomogeneous spherical vessels, cylindrical
tubes and circular discs. Tartu, 1991, 23 p.

 2. Boris Komrakov. Primitive actions and the Sophus Lie problem. Tartu,
1991, 14 p.

 3. Jaak Heinloo. Phenomenological (continuum) theory of turbulence. Tartu,
1992, 47 p.

 4. Ants Tauts. Infinite formulae in intuitionistic logic of higher order. Tartu,
1992, 15 p.

 5. Tarmo Soomere. Kinetic theory of Rossby waves. Tartu, 1992, 32 p.
 6. Jüri Majak. Optimization of plastic axisymmetric plates and shells in the

case of Von Mises yield condition. Tartu, 1992, 32 p.
 7. Ants Aasma. Matrix transformations of summability and absolute summa-

bility fields of matrix methods. Tartu, 1993, 32 p.
 8. Helle Hein. Optimization of plastic axisymmetric plates and shells with

piece-wise constant thickness. Tartu, 1993, 28 p.
 9. Toomas Kiho. Study of optimality of iterated Lavrentiev method and

its generalizations. Tartu, 1994, 23 p.
10. Arne Kokk. Joint spectral theory and extension of non-trivial multiplica-

tive linear functionals. Tartu, 1995, 165 p.
11. Toomas Lepikult. Automated calculation of dynamically loaded rigid-

plastic structures. Tartu, 1995, 93 p, (in Russian).
12. Sander Hannus. Parametrical optimization of the plastic cylindrical shells

by taking into account geometrical and physical nonlinearities. Tartu, 1995,
74 p, (in Russian).

13. Sergei Tupailo. Hilbert’s epsilon-symbol in predicative subsystems of
analysis. Tartu, 1996, 134 p.

14. Enno Saks. Analysis and optimization of elastic-plastic shafts in torsion.
Tartu, 1996, 96 p.

15. Valdis Laan. Pullbacks and flatness properties of acts. Tartu, 1999, 90 p.
16. Märt Põldvere. Subspaces of Banach spaces having Phelps’ uniqueness

property. Tartu, 1999, 74 p.
17. Jelena Ausekle. Compactness of operators in Lorentz and Orlicz sequence

spaces. Tartu, 1999, 72 p.
18. Krista Fischer. Structural mean models for analyzing the effect of

compliance in clinical trials. Tartu, 1999, 124 p.
19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,

56 p.

164

20. Jüri Lember. Consistency of empirical k-centres. Tartu, 1999, 148 p.
21. Ella Puman. Optimization of plastic conical shells. Tartu, 2000, 102 p.
22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.
23. Varmo Vene. Categorical programming with inductive and coinductive

types. Tartu, 2000, 116 p.
24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p.
25. Maria Zeltser. Investigation of double sequence spaces by soft and hard

analitical methods. Tartu, 2001, 154 p.
26. Ernst Tungel. Optimization of plastic spherical shells. Tartu, 2001, 90 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 p.
28. Rainis Haller. M(r,s)-inequalities. Tartu, 2002, 78 p.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
30. Töö kaitsmata.
31. Mart Abel. Structure of Gelfand-Mazur algebras. Tartu, 2003. 94 p.
32. Vladimir Kuchmei. Affine completeness of some ockham algebras. Tartu,

2003. 100 p.
33. Olga Dunajeva. Asymptotic matrix methods in statistical inference

problems. Tartu 2003. 78 p.
34. Mare Tarang. Stability of the spline collocation method for volterra

integro-differential equations. Tartu 2004. 90 p.
35. Tatjana Nahtman. Permutation invariance and reparameterizations in

linear models. Tartu 2004. 91 p.
36. Märt Möls. Linear mixed models with equivalent predictors. Tartu 2004.

70 p.
37. Kristiina Hakk. Approximation methods for weakly singular integral

equations with discontinuous coefficients. Tartu 2004, 137 p.
38. Meelis Käärik. Fitting sets to probability distributions. Tartu 2005, 90 p.
39. Inga Parts. Piecewise polynomial collocation methods for solving weakly

singular integro-differential equations. Tartu 2005, 140 p.
40. Natalia Saealle. Convergence and summability with speed of functional

series. Tartu 2005, 91 p.
41. Tanel Kaart. The reliability of linear mixed models in genetic studies.

Tartu 2006, 124 p.
42. Kadre Torn. Shear and bending response of inelastic structures to dynamic

load. Tartu 2006, 142 p.
43. Kristel Mikkor. Uniform factorisation for compact subsets of Banach

spaces of operators. Tartu 2006, 72 p.

165

44. Darja Saveljeva. Quadratic and cubic spline collocation for Volterra
integral equations. Tartu 2006, 117 p.

45. Kristo Heero. Path planning and learning strategies for mobile robots in
dynamic partially unknown environments. Tartu 2006, 123 p.

46. Annely Mürk. Optimization of inelastic plates with cracks. Tartu 2006.
137 p.

47. Annemai Raidjõe. Sequence spaces defined by modulus functions and
superposition operators. Tartu 2006, 97 p.

48. Olga Panova. Real Gelfand-Mazur algebras. Tartu 2006, 82 p.
49. Härmel Nestra. Iteratively defined transfinite trace semantics and program

slicing with respect to them. Tartu 2006, 116 p.
50. Margus Pihlak. Approximation of multivariate distribution functions.

Tartu 2007, 82 p.
51. Ene Käärik. Handling dropouts in repeated measurements using copulas.

Tartu 2007, 99 p.
52. Artur Sepp. Affine models in mathematical finance: an analytical approach.

Tartu 2007, 147 p.
53. Marina Issakova. Solving of linear equations, linear inequalities and

systems of linear equations in interactive learning environment. Tartu 2007,
170 p.

54. Kaja Sõstra. Restriction estimator for domains. Tartu 2007, 104 p.
55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.

Tartu 2007, 162 p.
56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-

tions. Tartu 2008, 123 p.
57. Evely Leetma. Solution of smoothing problems with obstacles. Tartu 2009,

81 p.
58. Ants Kaasik. Estimating ruin probabilities in the Cramér-Lundberg model

with heavy-tailed claims. Tartu 2009, 139 p.
59. Reimo Palm. Numerical Comparison of Regularization Algorithms for

Solving Ill-Posed Problems. Tartu 2010, 105 p.
60. Indrek Zolk. The commuting bounded approximation property of Banach

spaces. Tartu 2010, 107 p.
61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory

systems. Tartu 2010, 153 p.
62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-

ture by Counting Method. Tartu 2010, 87 p.
63. Marek Kolk. Piecewise Polynomial Collocation for Volterra Integral

Equations with Singularities. Tartu 2010, 134 p.
64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.

Tartu 2010, 137 p.
65. Larissa Roots. Free vibrations of stepped cylindrical shells containing

cracks. Tartu 2010, 94 p.

66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

67. Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

68. Olga Liivapuu. Graded q-differential algebras and algebraic models in
noncommutative geometry. Tartu 2011, 112 p.

69. Aleksei Lissitsin. Convex approximation properties of Banach spaces.
Tartu 2011, 107 p.

70. Lauri Tart. Morita equivalence of partially ordered semigroups. Tartu
2011, 101 p.

71. Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.
72. Margus Treumuth. A Framework for Asynchronous Dialogue Systems:

Concepts, Issues and Design Aspects. Tartu 2011, 95 p.
73. Dmitri Lepp. Solving simplification problems in the domain of exponents,

monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

74. Meelis Kull. Statistical enrichment analysis in algorithms for studying gene
regulation. Tartu 2011, 151 p.

75. Nadežda Bazunova. Differential calculus d3
 = 0 on binary and ternary

associative algebras. Tartu 2011, 99 p.
76. Natalja Lepik. Estimation of domains under restrictions built upon gene-

ralized regression and synthetic estimators. Tartu 2011, 133 p.
77. Bingsheng Zhang. Efficient cryptographic protocols for secure and private

remote databases. Tartu 2011, 206 p.
78. Reina Uba. Merging business process models. Tartu 2011, 166 p.
79. Uuno Puus. Structural performance as a success factor in software develop-

ment projects – Estonian experience. Tartu 2012, 106 p.
80. Marje Johanson. M(r, s)-ideals of compact operators. Tartu 2012, 103 p.
81. Georg Singer. Web search engines and complex information needs. Tartu

2012, 218 p.
82. Vitali Retšnoi. Vector fields and Lie group representations. Tartu 2012,

108 p.
83. Dan Bogdanov. Sharemind: programmable secure computations with

practical applications. Tartu 2013, 191 p.
84. Jevgeni Kabanov. Towards a more productive Java EE ecosystem. Tartu

2013, 151 p.
85. Erge Ideon. Rational spline collocation for boundary value problems.

Tartu, 2013, 111 p.
86. Esta Kägo. Natural vibrations of elastic stepped plates with cracks. Tartu,

2013, 114 p.
87. Margus Freudenthal. Simpl: A toolkit for Domain-Specific Language

development in enterprise information systems. Tartu, 2013, 151 p.
88. Boriss Vlassov. Optimization of stepped plates in the case of smooth yield

surfaces. Tartu, 2013, 104 p.

166

89. Elina Safiulina. Parallel and semiparallel space-like submanifolds of low
dimension in pseudo-Euclidean space. Tartu, 2013, 85 p.

90. Raivo Kolde. Methods for re-using public gene expression data. Tartu,
2014, 121 p.

91. Vladimir Šor. Statistical Approach for Memory Leak Detection in Java
Applications. Tartu, 2014, 155 p.

92. Naved Ahmed. Deriving Security Requirements from Business Process
Models. Tartu, 2014, 171 p.

93. Kerli Orav-Puurand. Central Part Interpolation Schemes for Weakly
Singular Integral Equations. Tartu, 2014, 109 p.

94. Liina Kamm. Privacy-preserving statistical analysis using secure multi-
party computation. Tartu, 2015, 201 p.

95. Kaido Lätt. Singular fractional differential equations and cordial Volterra
integral operators. Tartu, 2015, 93 p.

96. Oleg Košik. Categorical equivalence in algebra. Tartu, 2015, 84 p.
97. Kati Ain. Compactness and null sequences defined by spaces. Tartu,

2015, 90 p.
98. Helle Hallik. Rational spline histopolation. Tartu, 2015, 100 p.
99. Johann Langemets. Geometrical structure in diameter 2 Banach spaces.

Tartu, 2015, 132 p.
100. Abel Armas Cervantes. Diagnosing Behavioral Differences between

Business Process Models. Tartu, 2015, 193 p.
101. Fredrik Milani. On Sub-Processes, Process Variation and their Interplay:

An Integrated Divide-and-Conquer Method for Modeling Business Pro-
cesses with Variation. Tartu, 2015, 164 p.

102. Huber Raul Flores Macario. Service-Oriented and Evidence-aware
Mobile Cloud Computing. Tartu, 2015, 163 p.

103. Tauno Metsalu. Statistical analysis of multivariate data in bioinformatics.
Tartu, 2016, 197 p.

104. Riivo Talviste. Applying Secure Multi-party Computation in Practice.
Tartu, 2016, 144 p.

105. Md Raknuzzaman. Noncommutative Galois Extension Approach to
Ternary Grassmann Algebra and Graded q-Differential Algebra. Tartu,
2016, 110 p.

106. Alexander Liyvapuu. Natural vibrations of elastic stepped arches with
cracks. Tartu, 2016, 110 p.

107. Julia Polikarpus. Elastic plastic analysis and optimization of axisym-
metric plates. Tartu, 2016, 114 p.

108. Siim Orasmaa. Explorations of the Problem of Broad-coverage and
General Domain Event Analysis: The Estonian Experience. Tartu, 2016,
186 p.

109. Prastudy Mungkas Fauzi. Efficient Non-interactive Zero-knowledge
Protocols in the CRS Model. Tartu, 2017, 193 p.

110. Pelle Jakovits. Adapting Scientific Computing Algorithms to Distributed
Computing Frameworks. Tartu, 2017, 168 p.

	Abstract
	List of abbreviations
	List of notations
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Background
	2.1 Classification
	2.1.1 Classification pipeline
	2.1.2 Evaluation measures
	2.1.3 Splitting strategies
	2.1.4 Classification tasks in the case studies

	2.2 Data types
	2.2.1 Sequences
	2.2.2 Graphs
	2.2.3 Data types in the case studies
	2.2.4 Summary

	2.3 Classification models
	2.3.1 Discriminative classifiers
	2.3.2 Generative classifiers

	2.4 Ensemble learning

	3 Hybrid models and progressive index-based framework
	3.1 Feature extraction from mixed data types
	3.1.1 Feature extraction from sequences
	3.1.2 Feature extraction from graphs

	3.2 Hybrid models
	3.3 Notion of earliness
	3.4 Progressive index-based framework

	4 Case study I: PBPM
	4.1 Introduction
	4.2 Related work
	4.3 Complex symbolic sequence encodings in the PBPM domain
	4.4 Evaluation
	4.4.1 Datasets
	4.4.2 Evaluation procedure
	4.4.3 Results

	4.5 Discussion
	4.6 Conclusions

	5 Case study II: Fraud detection
	5.1 Introduction
	5.2 Related work
	5.3 Fraud detection classifier and its inputs
	5.3.1 Evaluation procedure
	5.3.2 Results

	5.4 Conclusions

	6 Case study III: ECoG signal discrimination
	6.1 Introduction
	6.2 Prerequisites
	6.3 Methods
	6.3.1 Stand-alone models for unicomponent data
	6.3.2 Stand-alone models for bicomponent data
	6.3.3 Multiple models on bicomponent data

	6.4 Evaluation
	6.4.1 Evaluation procedure
	6.4.2 Datasets
	6.4.3 Results

	6.5 Conclusions

	7 Conclusion and future directions
	7.1 Summary of contributions
	7.2 Future directions

	Appendix
	Acknowledgements
	Kokkuvõte (Summary in Estonian)
	Bibliography
	Curriculum Vitae
	List of original publications

