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1. INTRODUCTION 

Flukes (Trematoda), roundworms (Nematoda) and tapeworms (Cestoda) cons-
titute the three major groups of helminths that parasitize humans and other 
animals, representing an enormous health and economic burden globally (Hotez 
et al., 2008). Helminths are particularly widespread in low-income regions of 
the world – it is estimated that over one billion people in developing regions of 
Asia, sub-Saharan Africa and the Americas are infected with one or more 
parasitic worm species (WHO, 2012). Helminths can be transmitted to humans 
through contaminated soil, food and/or water, but also through arthropod and 
molluscan vectors. The worms can infect every organ and their effects on the 
host species may vary from mild to deadly (Lindquist and Cross, 2017). 

Tapeworms are flat, segmented worms, comprising species of a few milli-
metres (Echinococcus spp) up to several metres in length (Diphyllobothrium 
and Taenia spp). Albeit tiny, tapeworms of the genus Echinococcus cause a life-
threatening zoonotic disease called echinococcosis. Echinococcosis has a long 
history dating back to antiquity, as the first indications of this disease stem from 
Hippocrates (~460–377 BP) (Eckert and Thompson, 2017). Nevertheless, the 
disease is still relevant, having a significant socioeconomic impact to this day.  

The genus Echinococcus Rudolphi, 1801 (Cestoda: Taeniidae) comprises 
several species which cause echinococcosis in three forms: cystic echino-
coccosis, caused by E. granulosus sensu lato (s. l.), alveolar echinococcosis 
(E. multilocularis) and polycystic echinococcosis (E. oligarthra and E. vogeli). 
The two forms of public health relevance are cystic echinococcosis (CE) and 
alveolar echinococcosis (AE). Polycystic echinococcosis is less frequent and 
restricted to South and Central America (Tappe et al., 2008). Echinococcus 
granulosus s. l. and E. multilocularis are ranked 2nd and 3rd, respectively, in 
the list of food-borne parasites globally, while both CE and AE are considered 
among the 17 Neglected Tropical Diseases (NTDs) prioritized by the World 
Health Organization (FAO/WHO, 2014; WHO, 2015; Budke et al., 2017). The 
diseases are considered ‘neglected’ as they rank low on the priorities of govern-
ments and public health communities. Some of the other diseases listed among 
NTDs include leishmaniases, rabies, schistosomiasis and soil-transmitted 
helminthiases (WHO, 2015). 

Echinococcus multilocularis is widely distributed in the northern hemisphere 
and is typically maintained in a sylvatic lifecycle including canids and various 
species of rodents, while E. granulosus s. l. has a cosmopolitan distribution and 
infects a wide range of both wild and domestic animals (Deplazes et al., 2017). 
Thus, CE is not only a substantial human health problem, but represents a 
considerable economic burden on livestock industries. It has been estimated that 
approximately one million or more people are suffering from CE globally, while 
the disease causes monetary losses of up to 2 billion US dollars in global 
livestock industry annually (Torgerson and Macpherson, 2011).  
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1.1. Lifecycle of Echinococcus granulosus sensu lato (s. l.) 

The adult worm of E. granulosus s. l. is a few millimeters long (2–7 mm) and 
the mature worm possesses up to 5–6 segments, rarely more. The attachment 
organ is called a scolex and has two rows of hooks and four muscular suckers. 
The adult worm is a hermaphrodite and reproduces sexually, either by selfing or 
cross-fertilization, whereas the larval metacestode proliferates asexually (Eckert 
et al., 2001; Thompson, 2017).  

Echinococcus granulosus s. l. has a life cycle involving two hosts: a carnivo-
rous definitive host, which harbors adult worms, and a herbivorous or 
omnivorous intermediate host, in which the larval stage in the form of hydatid 
cysts develops. The parasite has an exceptionally wide host spectra, including 
mainly wild and domesticated ungulates, but also marsupials and primates as 
intermediate hosts, and various species of canids as definitive hosts. The 
hydatid cysts are fluid-filled structures in which up to thousands of protosco-
leces are produced, each capable of developing into an adult worm in the 
definitive host (Thompson, 2017). The lifecycle of the parasite requires a 
predator-prey relationship, as the definitive host acquires the infection by 
consuming the infected organs of prey animals. Adult worms in the definitive 
hosts produce eggs, containing embryos (oncospheres) which are shed into the 
environment with faeces, subsequently ingested by a suitable herbivorous or 
omnivorous host (Eckert et al., 2001; Thompson, 2017) (Fig. 1). The eggs are 
covered by a highly resistant outer layer, and are thus able to survive up to 
several months in a suitable humid environment, but are sensitive to desiccation 
(Eckert et al., 2001; Eckert and Deplazes, 2004). 

Humans are considered aberrant intermediate hosts of the parasite in which 
the larval stage develops. Cysts develop in various organs, most commonly liver 
(~75%) and lungs (~22%), but infections in muscles, kidneys, brain, spleen and 
other sites also occur (Eckert et al., 2001). Humans acquire the infection by 
accident, most commonly through close contact with dogs, as eggs can adhere 
to the coat of the animal. Other routes of transmission include the consumption 
of contaminated food (vegetables, salads, fruits and other plants) and water or 
handling egg-containing faeces or soil (Eckert and Deplazes, 2004; Deplazes et 
al., 2011). Although CE has a long asymptomatic incubation period that can last 
several years, severe clinical symptoms can be induced by cysts that have 
reached a particular size. Symptoms include abdominal pain, fever, vomiting, 
rashes, chest pain, chronic cough or shortness of breath. The most common 
methods of treatment are antiparasitic drugs, surgery or percutaneous techniques 
and if left untreated, CE can be life-threatening (Brunetti et al., 2010; Kern et 
al., 2017). 
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Figure 1. Lifecycle of Echinococcus granulosus sensu lato. Definitive hosts include 
several species of canids (e.g., dogs, wolves, jackals, dingoes), while intermediate hosts 
include a wide range of wild and domesticated species of mammals (e.g., sheep, cattle, 
goat, pig, buffalo, wild boar, moose, reindeer, wallaby, kangaroo). Humans represent 
accidental intermediate hosts. 
 
 

1.2. Genotypes and species of E. granulosus s. l. 

The taxonomy of E. granulosus s. l. has been a topic of controversy for decades. 
While species and strains were initially characterized based on differences in 
morphology, host occurrence, geographic distribution, and developmental 
biology, molecular studies based on mitochondrial (mtDNA) and nuclear DNA 
(nDNA) have clarified the extent of genetic variation and phylogenetic relations 
within E. granulosus s. l. (Lymbery, 2017). It is now regarded as a species 
complex as a number of genotypes (‘strains’) and species have now been 
characterized. Initially, 10 genotypes were identified (G1–G10), however, G9 is 
no longer considered a valid genotype and it has been speculated that G2 could 
also be invalid and represents a variant of G3 (Bowles et al., 1992, 1994; Scott 
et al., 1997; Thompson and McManus, 2002; Lavikainen et al., 2003; Vural et 
al., 2008; Abushhewa et al., 2010). Suggestions have been made to split these 
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genotypes into distinct species: E. granulosus s. s. (G1–G3), E. equinus (G4), 
E. ortleppi (G5) and E. canadensis (G6–G8, G10) or E. intermedius (G6, G7) and 
E. canadensis (G8, G10) (Thompson and McManus, 2002; Moks et al., 2008; 
Thompson, 2008; Saarma et al., 2009; Knapp et al., 2011, 2015; Lymbery et al., 
2015; Nakao et al., 2015; Yanagida et al., 2017; Laurimäe et al., 2018a). In 
addition, the species E. felidis is now also considered to belong to E. granulosus 
s. l. (Hüttner et al., 2008). However, the taxonomy is still under dispute. For 
example, a study by Yanagida et al. (2017) used two nuclear loci and suggested 
the sharing of nuclear alleles between genotypic groups G6/G7 and G8/G10, 
whereas recent data based on six nuclear loci suggested that G6/G7 and G8/G10 
are two distinct species (Laurimäe et al., 2018a). In addition, the evidence to 
regard E. granulosus s. s. as a single species is inconclusive as taxonomic 
studies of nuclear loci have never explicitly included G2 and G3.  

Although extensive research has been carried out to understand the extent of 
genetic diversity of E. granulosus s. l., recent studies have highlighted that our 
knowledge remains incomplete as new highly divergent haplotypes within this 
complex have been characterized (Wassermann et al., 2016; Laurimäe et al., 
2018b).  
 
 

 1.3. Distribution and host spectra of E. granulosus  
sensu stricto (s. s.) 

Echinococcus granulosus s. s. is the most widespread species of E. granulosus 
s. l. and also the most frequent causative agent of CE of humans (88% of 
sequenced cases; Alvarez Rojas et al., 2014) and thus deserves particular 
attention. The species is spread worldwide, while highly endemic foci exist in 
South America, the Mediterranean Basin and Asia where poorer communities of 
rural livestock-raising areas are most affected (Jenkins et al., 2005; Dakkak, 
2010; Jabbar et al., 2011; Hajialilo et al., 2012; Cardona and Carmena, 2013; 
Alvarez Rojas et al., 2014; Rostami et al., 2015; Cucher et al., 2016). Some of 
the main factors contributing to the persistence of CE include the frequent 
illegal and home slaughtering of animals for food, feeding raw offal to dogs, 
low public awareness of the disease, large populations of stray dogs and poor 
hygiene conditions (Eckert et al., 2001; Torgerson and Budke, 2003; Varcasia et 
al., 2011; Possenti et al., 2016).  

Of the three genotypes characterized within E. granulosus s. s. (G1–G3), G1 
by far the most prevalent worldwide, especially in Africa, Australia, Southern 
Europe, South America and parts of Asia (e.g., Breyer et al., 2004; Bart et al., 
2006; Varcasia et al., 2007; Šnabel et al., 2009; de la Rue et al., 2011; Addy et 
al., 2012; Pezeshki et al., 2013; Alvarez Rojas et al., 2016). While relatively few 
cases of G3 have been reported in South America, Australia and North Africa 
(e.g., M’rad et al., 2010; de la Rue et al., 2011; Espinoza et al., 2014; Alvarez 
Rojas et al., 2016; Zait et al., 2016), significantly higher prevalence is charac-
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teristic to Iran, Italy, Pakistan, Serbia and especially India (e.g., Capuano et al., 
2006; Busi et al., 2007; Pednekar et al., 2009; Latif et al., 2010; Sharbatkhori et 
al., 2011; Sharma et al., 2013a, 2013b; Debeljak et al., 2016; Ehsan et al., 
2017). G2 is the least prevalent genotype of E. granulosus s. s. and few cases 
have generally been reported worldwide (e.g., Kamenetzky et al., 2002; Guo et 
al., 2011; Casulli et al., 2012).  

Of all E. granulosus s. l. species, Echinococcus granulosus s. s. has the 
widest host spectra including domestic and wild ungulates (e.g., sheep, cattle, 
goat, pig, buffalo, wild boar), marsupials, camelids and several other mammals 
as intermediate hosts and primarily dogs, but also jackals, wolves and dingos as 
definitive hosts (Romig et al., 2017). The parasite perpetuates primarily in a 
domestic lifecycle, while the most important and widespread cycle involves 
dogs and sheep (Cardona and Carmena, 2013). Although G1–G3 have a largely 
overlapping host spectra, G1 has the widest host range of the three genotypes 
(Thompson, 2017).   
 
 

1.4. Molecular characterization and  
genetic diversity of E. granulosus s. s. 

Genotypes G1–G3 were first molecularly defined based on short fragments of 
the mtDNA cox1 (366 basepairs; bp) and nad1 (471 bp) genes (Bowles et al., 
1992; Bowles and McManus, 1993). The partial cox1 and nad1 mtDNA 
sequences have provided the basis for E. granulosus s. l. genotype distinction 
and the markers have represented highly valuable tools to investigate the 
genetic diversity and distribution of E. granulosus s. l. genotypes. According to 
the originally published sequences, G1–G3 differ by 1–3 positions in the cox1 
or nad1 gene regions.  

Genotype identification and research on the genetic diversity and phylogeo-
graphy of E. granulosus s. s. has most commonly been based on the same few 
hundred bp fragments of the cox1 and nad1 genes, rarely longer sequences (e.g., 
1609 bp of the cox1 gene). After decades of research, it became increasingly 
evident that the genetic variation is significantly higher than initially 
characterized, and accumulating data identified a large proportion of haplotypes 
not homologous with any of the sequences of G1, G2 or G3 originally described 
in Bowles et al. (1992), but that clearly belong to the same cluster (e.g., Vural et 
al., 2008; Šnabel et al., 2009; Casulli et al., 2012; Yanagida et al., 2012; 
Andresiuk et al., 2013; Romig et al., 2015). In addition to the high intrageno-
typic variation, low intergenotypic variation between G1–G3 has also been 
demonstrated (e.g., Casulli et al., 2012; Andresiuk et al., 2013; Romig et al., 
2015). These two pressing issues are especially well highlighted in a phylo-
genetic network of 137 E. granulosus s. s. haplotypes in Romig et al. (2015), 
based on 1609 bp of the cox1 gene. The phylogenetic network revealed a low 
level of differentiation into genotypes G1, G2 and G3, without clear differen-
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tiation into separate haplogroups. Furthermore, a large proportion of the 
haplotypes were not homologous with the sequences originally characterized in 
Bowles et al. (1992). Thus, the allocation of samples to G1–G3 has been 
dubious and without a clear definition, and the rationale of distinguishing these 
genotypes has been questioned. 

Despite the ambiguity in the definition of the genotypes, numerous studies 
have been carried out that have significantly contributed to our knowledge on 
the genetic diversity and population structure of E. granulosus s. s. (e.g., Nakao 
et al., 2010; Casulli et al., 2012; Rostami Nejad et al., 2012; Yanagida et al., 
2012; Andresiuk et al., 2013; Yan et al., 2013; Boufana et al., 2014, 2015; 
Alvarez Rojas et al., 2016, 2017; Hassan et al., 2017). The majority of the 
phylogenetic networks constructed thus far have yielded star-like structures 
with a commonly identified dominant central haplotype highly prevalent 
worldwide (e.g., Nakao et al., 2010; Casulli et al., 2012; Yanagida et al., 2012; 
Boufana et al., 2014, 2015). This common haplotype has been considered a 
founder lineage with a common source, from where a subsequent expansion of 
this species originated. It has been hypothesized that the Middle East is a 
possible candidate for the origin of E. granulosus s. s., as the genetic diversity 
in this region is higher than in several others (Yanagida et al., 2012). However, 
these hypotheses are awaiting further research.  
 
 

1.5. Aims of the thesis 

Despite the extensive research carried out on the inter- and intragenotypic 
genetic structure of E. granulosus s. s., significant gaps in knowledge still exist. 
The relatively short mtDNA sequences used so far (up to 1609 bp, whereas the 
full mtDNA of this species is ~13 500 bp), have yielded low resolution on 
phylogenetic networks and thus, the full extent of the mtDNA genetic variation 
within E. granulosus s. s. has remained unexplored, hindering detailed analyses 
of the taxonomy, genetic structure and phylogeographic history of this geno-
typic group. 

Firstly, one of the most pressing issues is the existence and distinction of 
E. granulosus s. s. mitochondrial genotypes. Although the analysis of the 1609 
bp cox1 gene sequences demonstrated that G1–G3 are nearly inseparable on the 
phylogenetic network and the rationale of distinguishing these genotypes in the 
future has been questioned, the distinction and genetic distance of G1–G3 based 
on significantly longer mtDNA sequences, has remained unexplored. This is 
particularly important to elucidate, as this information underpins our funda-
mental understanding of the genetic make-up of E. granulosus s. s., the most 
commonly associated species of human echinococcosis. 

Secondly, although after the initial molecular characterization of genotypes 
G1–G3 in the beginning of the 1990s, a proposal was made to treat G1–G3 as a 
single species due to their high genetic similarity based on mtDNA data, the 
evidence is still inconclusive. The taxonomic studies of nuclear loci have never 
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explicitly included all of the mitochondrial genotypes of E. granulosus s. s in 
analyses. However, this is crucial, as it would provide means to investigate the 
exchange of genetic material between the genotypes. Thus, despite the 
assumptions that the mitochondrial genotypes can be regarded as a distinct 
species E. granulosus s. s., further analysis is required. 

Thirdly, fascinating hypotheses have been proposed based on the phylo-
geographic studies on E. granulosus s. s. so far. Yet, due to the relatively short 
sequences used so far, the analyses have lacked sufficient phylogenetic power to 
reveal detailed insight into the phylogeographic history of the parasite. Also, the 
research so far has mostly included local populations, but there has been no 
global study. In addition, due to the ambiguity in the genetic differentiation of 
G1–G3, no studies so far have attempted to analyse the patterns of genetic 
diversity separately for the E. granulosus s. s. genotypes, thus possibly 
revealing differences in their phylogeographic history. 
 
The present thesis aims to fill these gaps in our knowledge and the specific 
objectives were as follows: 
(i) to assess the existence and distinction of E. granulosus s. s. mitochondrial 

genotypes G1–G3 using near-complete mtDNA sequences and a large 
panel of globally distributed samples (Kinkar et al., 2017, II; Kinkar et al., 
2018a, III; Kinkar et al., 2018b, IV), 

(ii) to analyse the taxonomic status of this genotypic group using sequence 
data of several nuclear loci for all genotypes of E. granulosus s. s. (II), 

(iii) to provide detailed insight into the global patterns of genetic diversity and 
phylogeography of all E. granulosus s. s. genotypes, analysing near-
complete mtDNA sequences of a large panel of globally distributed 
samples and highlight the advantage of using long sequences of mtDNA 
instead of the commonly used shorter sequences (Kinkar et al., 2016, I; III; 
IV). 
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2. MATERIALS AND METHODS 

2.1. Parasite material 

A total of 293 globally distributed E. granulosus s. s. (G1 and G3) samples 
obtained from various host species (sheep, cattle, human, wild boar, domestic 
pig, goat, buffalo, camel, dingo), one E. equinus (G4) sample from a Turkish 
donkey and three E. ortleppi (G5) samples from Indian buffaloes were analysed 
in this study (see Table 1 in I–IV; Fig. 1 in I–IV and Fig. 2 in III). In addition, 
one genotype G1 sequence originating from China was obtained from GenBank 
(AB786664; Nakao et al., 2013). The samples sequenced in the present study 
were obtained during routine parasite inspection or from hospital cases and 
were ethanol-preserved at –20 oC until further use. 
 
 

2.2. DNA extraction, PCR amplification,  
sequencing and assembly 

DNA extraction 
DNA was extracted from protoscoleces, cyst membranes or adult worms using 
High Pure PCR Template Preparation Kit (Roche Diagnostics, Mannheim, 
Germany), following the manufacturer’s protocols. 
 
PCR amplification, sequencing and assembly of mtDNA 
For PCR amplification of the mitogenome, 27 novel primers were designed (see 
Table 2 in I and II). Of these, 20 were used to amplify 8269–8274 bp of 
mtDNA (I) and 24 were used to amplify near-complete mitogenome sequences 
of 11 442–11 678 bp (II–IV). Sequencing was performed using the same 
primers as for the initial PCR amplification. For PCR cycle parameters and 
sequencing conditions, the reader is referred to the Materials and methods 
section ‘DNA extraction, PCR amplification and sequencing’ in paper I. 
Sequences were assembled in CodonCode v4.2.7 (I), v.6.0.2 (II–IV) and 
manually curated in BioEdit v7.2.5 (Hall, 1999). All sequences were deposited 
in GenBank and are available under accession numbers KU925351–KU925433 
(I), KY766882–KY766908 (II), MG672124–MG672293 (III) and MG682511–
MG682544 (IV). 
 
PCR amplification, sequencing and assembly of nuclear DNA 
Amplification and sequencing of 3 nuclear genes in paper II (2984 bp in total): 
transforming growth factor beta receptor kinase (tgf; 937 bp), calreticulin (cal; 
1272 bp) and elongation factor 1 alpha (ef1; 775 bp) was carried out according 
to Saarma et al. (2009). Sequences were assembled in CodonCode v.6.0.2 and 
manually curated in BioEdit v7.2.5. All nuclear sequences were deposited in 
GenBank and are available under accession numbers KY766909–KY766920. 
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2.3. Datasets  

To analyse the genetic variation and phylogeography of E. granulosus s. s. 
genotype G1 in Europe and to compare the phylogenetic resolution of different 
mitochondrial sequence lengths, article I represented 91 G1 samples originating 
from several European countries. To evaluate the taxonomy of E. granulosus s. 
s. and the mitochondrial distinction between genotypes G1 and G3, a total of 23 
E. granulosus s. s. samples were included in paper II. In addition, one 
E. equinus (G4) and three E. ortleppi (G5) samples were included in this paper 
to evaluate the genetic distance between G1 and G3 in relation to the distance 
from other E. granulosus s. l. genotypes/species. The genetic diversity and 
large-scale phylogeographic patterns of genotypes G1 and G3 were analysed 
using 212 G1 samples (III) and 39 G3 samples (IV). Further analysis of the 
mitochondrial distinction between genotypes G1 and G3 using a significantly 
larger dataset than in paper II, was based on the combined G1 and G3 datasets 
in papers III and IV. Note that some samples overlapped in papers I–IV, hence 
the sum of samples analysed in these papers is larger than the total number of 
samples indicated in Section 2.1 (see Supplementary Table S1 in III, IV and S2 
in III).  
 
 

2.4. Data analyses  

2.4.1. Phylogenetic analyses 

Phylogenetic networks were calculated using Network v4.6.1.2 (I, II) and 
v4.6.1.5 (III, IV) (Bandelt et al., 1999) (http://www.fluxus-engineering.com, 
Fluxus Technology Ltd.), considering both indels and point mutations. In paper 
I, networks were constructed for 3 different alignments using the same set of 
samples (n = 91) but different sequence lengths: (i) 8274 bp of mtDNA; (ii) the 
full cox1 gene of 1674 bp and (iii) 351 bp fragment of the cox1 gene. In paper 
II, networks were calculated separately for the mtDNA and nuclear datasets. In 
paper III, networks were calculated for three sequence datasets: (i) 212 G1 and 
10 G3 samples, (ii) sequences representing genotype G1 only (n = 212) and (iii) 
sequences representing genotype G1 from humans (n = 41). In paper IV, 
networks were calculated for three sequence datasets: (i) 212 G1 and 39 G3 
samples, (ii) samples belonging to genotype G3 only (n = 39) and (iii) 
sequences representing human samples of G1 (n = 41; sequences from paper 
III) and G3 (n = 5). 

The Bayesian phylogenetic analysis was performed for two different data-
sets. To assess the intragenotypic phylogenetic relations of genotype G1 and 
intergenotypic relations between genotypes G1 and G3, the first dataset 
represented altogether 222 E. granulosus s. s. samples, of which 212 belonged 
to genotype G1 and 10 to G3 (III). The second dataset represented 39 G3 
samples in order to analyse the phylogenetic relations of genotype G3 (IV). 
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Both analyses were performed in the program BEAST 1.8.4 (Drummond et al., 
2012) using BEAUti v.1.8.4 to generate the initial xml file for BEAST. For the 
first dataset (III), the general time-reversible nucleotide-substitution model with 
a proportion of invariable sites and gamma distributed rate variation 
(GTR+I+G; Tavaré, 1986; Gu et al., 1995) was used, while the Tamura-Nei 
nucleotide substitution model with gamma distributed rate variation (TRN+G) 
(Tamura and Nei, 1993; Yang, 1994) was used for the second dataset repre-
senting G3 samples only (IV). Both models of sequence evolution were 
determined using the program PartitionFinder 2.1.1 (Guindon et al., 2010; 
Lanfear et al., 2012, 2016). For both datasets, the exponential growth coalescent 
prior (Griffiths and Tavaré, 1994) was chosen for the tree, and a strict molecular 
clock was assumed owing to the intraspecific nature of the data (Drummond and 
Bouckaert, 2015). The posterior distribution of parameters was estimated by 
Markov Chain Monte Carlo (MCMC) sampling. MCMC chains were run for 10 
million states, and sampled every 1000 states with 10% burn-in. Log files were 
analysed using the program Tracer v1.6 (Rambaut et al., 2014). Both trees were 
produced using TreeAnnotator v1.8.4 and displayed in FigTree v.1.4.3 
(Rambaut, 2014).  
 
 

2.4.2. Population indices 

The population diversity indices – number of haplotypes (Hn), haplotype 
diversity (Hd) and nucleotide diversity (π) – were calculated using DnaSP 
v5.10.01 (I, III, IV) (Librado and Rozas, 2009). Neutrality indices Tajima’s D 
(Tajima, 1989) and Fu’s Fs (Fu, 1997) (I, III, IV) and pairwise fixation index 
(Fst) (I, III) were calculated using the population genetics package Arlequin 3.1 
(I), 3.5.2.2 (III, IV) (Excoffier et al., 2005). In paper I, indices were calculated 
for 3 datasets: (i) all G1 sequences (n = 91), (ii) different localities (Turkey, 
Spain, Italy and Southern Europe) and (iii) hosts (cattle and sheep). These 
datasets were calculated for three sequence lengths (8274 bp, 1674 bp and 351 
bp). In paper III, indices were calculated for four different datasets: (i) all G1 
sequences (n = 212); (ii) the three most numerous host species (cattle, sheep and 
human), (iii) five regions (South America, Africa, Asia/Australia, Europe and 
the Middle East), and (iv) eight countries for which sample size exceeded 10: 
Algeria, Argentina, Brazil, Iran, Italy, Spain, Tunisia and Turkey. In addition to 
datasets i–iv in paper III, the Fst value was also calculated between all G1 
samples (n = 212) and G3 samples (n = 10). In paper IV, diversity and 
neutrality indices were calculated for one dataset representing all G3 samples 
(n = 39). 
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2.4.3. Bayesian phylogeographic analyses 

The phylogeographic diffusion patterns of genotype G1 (III) and G3 (IV) were 
analysed using a Bayesian discrete phylogeographic approach (Lemey et al., 
2009). This approach estimates ancestral locations from the set of sampled 
locations and annotates the discrete location states to tree nodes (Lemey et al., 
2009; Faria et al., 2011). The standard Markov model was extended using a 
Bayesian Stochastic Search Variable Selection (BSSVS) procedure, which 
offers a Bayesian Factor (BF) test to identify the most parsimonious description 
of the phylogeographic diffusion process (Lemey et al., 2009). Specifically, the 
intial xml file generated in BEAUti in the Bayesian phylogenetic analysis was 
edited according to the ’Discrete phylogeographic analysis’ tutorial available on 
the Beast website (http://beast.bio.ed.ac.uk/tutorials – accessed in June 2017). 
The analysis was performed in BEAST 1.8.4 (Drummond et al., 2012) using the 
BEAGLE library (Ayres et al., 2012). For the G1 dataset in paper III, MCMC 
chains were run for 50 million states, sampled every 5000 states with 10% burn-
in. For the G3 dataset in paper IV, MCMC chains were run for 30 million 
states, sampled every 3000 states with 10% burn-in. The effective sampling size 
(ESS) of estimates was assessed using Tracer v1.6 (Rambaut et al., 2014), and 
the tree was produced using TreeAnnotator v1.8.4 and displayed in FigTree 
v.1.4.3 (Rambaut, 2014). The program SpreaD3 v0.9.6 (Bielejec et al., 2016) 
was used to visualize the output from the Bayesian phylogeographic analysis 
and to calculate the Bayes Factor supports. Three independent runs were 
conducted and geographic links that yielded an average value of BF > 10 were 
displayed. 
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3. RESULTS 

3.1. Successfully analysed samples and sequences 

In paper I, a total of 8274 bp of mtDNA was successfully sequenced for the 91 
E. granulosus s. s. G1 samples (the length of alignment was 8274 bp, while 
sequence length varied between 8269–8274 bp).  

In paper II, 23 E. granulosus s. s., one E. equinus and three E. ortleppi 
samples were successfully sequenced, yielding the final mtDNA alignment of 
11 502 bp (the sequence length was 11 422–11 443 bp for the E. granulosus s. 
s. samples, 11 465 bp for the E. equinus sample and 11 466 for the E. ortleppi 
samples). Three G1 samples were the same as in paper I, but additional 
mitochondrial loci were sequenced (~3400 bp). Nuclear markers cal, ef1 and tgf 
were also successfully PCR-amplified for the same set of samples, except for 
one sample that did not yield positive PCR results with the nuclear markers. 
The final length of the nuclear genes in alignment was 2984 bp.  

Of the 221 samples sequenced in paper III, 114 were newly sequenced, 
whereas the rest were from papers I, II and from Laurimäe et al. (2016) (8279 
bp; samples from South and Central America). However, additional mtDNA 
loci were sequenced for all of the overlapping samples (~3400 bp for the 
samples from paper I and Laurimäe et al. (2016) and ~240 bp for the samples 
from paper II). The 221 E. granulosus s. s. samples in paper III yielded an 
alignment of 11 682 bp. While most sequences were 11 675 bp in length, some 
varied from 11 674 bp to 11 678 bp.  

In paper IV, a total of 39 E. granulosus s. s. G3 samples were successfully 
amplified, of which 27 were newly sequenced and 12 were from paper II. For 
these 12 samples, ~240 additional basepairs were sequenced. The final align-
ment of the G3 samples was 11 675 bp.  

For further data on the overlapping sequences, see Supplementary Table S1 
in III, IV and S2 in III.   

 
 

3.2. Mitochondrial distinction between E. equinus,  
E. ortleppi and E. granulosus s. s.  

The mtDNA haplotypes of E. equinus and E. ortleppi were genetically highly 
divergent from E. granulosus s. s., separated by 1244 and 1387 mutations, 
respectively (Fig. 2 in II). The genetic distance between E. equinus and 
E. ortleppi was 1228 mutations. 
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3.3. Mitochondrial distinction between E. granulosus s. s. 
genotypes G1 and G3, and the validity of G2 

The E. granulosus s. s. samples were divided into two haplogroups, separated 
by 37 mutations (Fig. 2 in II, IV and Fig. 3 in III). The genotypes were 
designated according to the original genotype definitions sensu Bowles et al. 
(1992) (see section 3.1 in II, III and section ‘The phylogenetic network of 
E. granulosus s. s.’ in IV). Therefore, these two haplogroups corresponded to 
the E. granulosus s. s. mitochondrial genotypes G1 and G3 and were named 
accordingly. The phylogenetic networks demonstrated that G1 and G3 are 
clearly distinct genotype groups in the context of mitochondrial data, as no 
sequences were positioned between G1 and G3.  

The distinction of G1 and G3 was further supported by the Bayesian 
phylogenetic analysis which divided samples of genotype G1 and G3 into two 
well-supported clades (posterior probability value = 1.00; Figs. 4 and S1 in III) 
and the high Fst value between genotypes G1 and G3 (0.711; p < 0.00001 in 
III). 

Of the 39 G3 samples analysed, altogether four corresponded to genotype 
G2 according to the original definition in Bowles et al. (1992). These four 
samples positioned inside the G3 cluster and were not monophyletic (Fig. 4 in 
IV and Fig. 2 in II).  
 
 

3.4. Taxonomic status of E. granulosus s. s.  

Data based on three nuclear genes demonstrated that in the taxonomic sense, G1 
and G3 can be regarded as a single species E. granulosus s. s., as there was no 
clear separation between genotypes G1 and G3 based on the nuclear data.  

The analysed 26 samples were divided into 4 distinct sequences (Fig. 3 in 
II). Echinococcus granulosus s. s. samples (n = 22; one sample did not yield 
positive PCR results with the nuclear markers) comprised 2 sequences, 
separated by a single mutation. One sequence was dominant, comprising 20 
E. granulosus s. s. samples, whereas the other included 2 samples. The three 
analysed E. ortleppi samples had identical nuclear sequences, separated from 
E. granulosus s. s. by 36 mutations. The E. equinus sample was separated from 
E. ortleppi and E. granulosus s. s. by 23 and 45 mutations, respectively.  
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3.5. Genetic diversity and phylogeography  
of genotype G1 in Europe 

3.5.1. Phylogenetic network 

In the phylogenetic network, the analysed 91 sequences were divided into 83 
haplotypes (Fig. 2 in I). No predominant haplotype was revealed in the 
phylogenetic network, most haplotypes were singletons (n = 76). Five 
haplotypes (TUR45, TUR10, TUR35, TUR56 and ITA3) included two samples 
and one haplotype (TUR3) included 4 samples.  

Although geographically distant samples were often genetically distant (e.g., 
TUR41 from Turkey and SPA1 from Spain separated by 20 mutations) and 
geographically close samples genetically closely related (e.g., TUR11 and 
TUR13 from Turkey separated by 1 mutation), the opposite was also observed. 
Several samples obtained from geographically close localities showed remark-
ably high genetic distance (e.g., Turkish samples TUR12 and TUR26 both from 
Eastern Turkey separated by 24 mutations). In addition, numerous samples from 
different countries were frequently genetically closely related, as illustrated by 
several monophyletic groups that comprised closely-related samples from 
Turkey and other countries such as Albania, Greece, Romania and Spain. In 
addition, one group included an Italian (ITA4), Spanish (SPA7) and Finnish/ 
Algerian (FIN1) sample. No clear host-specific structure was detected in the 
phylogenetic network.  
 
 

3.5.2. Diversity, neutrality and fixation indices 

The overall haplotype diversity in Europe was 0.997, whereas nucleotide 
diversity was 0.00143 (Table 3 in I). Similar values were also observed in the 
Italian, Spanish and Turkish subpopulations, ranging from 0.952 to 1.000 and 
0.00068 to 0.00147, respectively, while the Italian population showed slightly 
lower values for both indices. Haplotype diversity values for cattle and sheep 
were 0.999 and 0.991, while nucleotide diversities were 0.00152 and 0.00131, 
respectively.  

Haplotype diversity was almost equally high for the 8274 bp (Hd = 0.997) 
and the full cox1 gene datasets (1674 bp; Hd = 0.920; Table S1 in I), whereas 
considerably lower for the 351 bp dataset (Hd = 0.596; Table S2 in I). 
Nucleotide diversity increased with shorter sequences (Tables 3, S1 and S2 in 
I): based on the 8274 bp dataset, π = 0.00143, for the full cox1 gene (1674 bp), 
π = 0.00196, and the value was 0.00219 for the partial cox1 gene (351 bp). This 
indicates that the average diversity of the fragments of the cox1 gene is higher 
compared with 8274 bp of mtDNA. 

Neutrality indices such as Tajima’s D and Fu’s Fs were significant for most 
of the analysed datasets (Table 3 in I). The lowest negative values were detected 
for the overall population, Turkish samples and for cattle and sheep.  
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Low Fst values were observed among different localities (Table S3 in I). The 
Fst value for the 8274 bp dataset was statistically significant only between 
Spain and Turkey (Fst = 0.04064, p < 0.05). Relatively low Fst values 
(Fst = 0.01180, p < 0.05) were also recorded between cattle and sheep subpopu-
lations. 
 
 

3.5.3. Phylogenetic resolution in comparison  
with shorter mtDNA sequences 

In the networks based on the reduced datasets of 1674 bp and 351 bp, sequences 
were divided into 49 and 11 haplotypes, respectively, of which two were 
predominant in both networks (Fig. 3 in I).  

Longer sequences had significantly more power to reveal the genetic 
relations between different haplotypes. Not only were haplotypes fully resolved 
on the phylogenetic network based on long sequences, but in comparison 
between the 8274 bp and 1674 bp datasets, some haplotypes were positioned 
into different haplogroups (e.g., SPA7 and FIN1), whereas several haplotypes 
(e.g., SPA4, SPA10, TUR6, TUR9, TUR42 and TUR43) assumed different 
phylogenetic relations to each other (Figs. 2 and 3 in I). The 351 bp dataset 
positioned the majority of the samples into two central haplotypes (Fig. 3 in I). 
 
 

3.6. Global genetic diversity, phylogeny and 
phylogeography of genotype G1 

3.6.1. Phylogeny 

The Bayesian phylogeny of genotype G1 yielded clades with varying support 
values, of which several clades were well resolved and received high posterior 
probability values (1.00; Figs. 4 and S1 in III).  

The phylogenetic network for genotype G1 was highly divergent: the 212 G1 
samples were divided into 171 haplotypes (Fig. 5 in III). Among the 171 
haplotypes, 147 were represented by a single sample, 18 haplotypes included 
two samples, 5 haplotypes (IRA1, BRA1, TUR1, TUR3, TUN5) included 3 
samples and one haplotype (ARB1) included 14 samples.  

In the phylogenetic network, multiple haplogroups (i.e., monophyletic 
groups) could be distinguished. Seven haplogroups named A–G, respectively, 
corresponded to the well-supported clusters in the Bayesian phylogenetic tree 
(posterior probability values = 1.00; Figs. 4, 5 and S1 in III). Of the nine 
haplogroups in grey (Fig. 5 in III), seven were well-supported on the phylo-
genetic tree (posterior probability values = 1.00; Figs. 4 and S1 in III). 

Some haplotypes in monophyletic clusters, grouped together according to 
geographic origin (Fig. 5 in III). For example, three monophyletic groups 
represented haplotypes only from Tunisia (TUN25, TUN11 and TUN1; TUN26 
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and TUN6; TUN13, TUN3 and TUN18). Another haplogroup (D) was of 
Middle Eastern origin, comprising samples from Turkey (TUR8, TUR21, 
TUR18, TUR19) and Iran (IRA11). In addition, one group was of North African 
origin and included samples from Tunisia (TUN5, TUN7) and Algeria (ALG9). 
Another group was of South American origin, including haplotypes from Brazil 
and Argentina (BRA4, ARG2, BRA6). In addition, haplogroup B included a 
central haplotype ARB1, which comprised samples from Argentina and Brazil. 
This haplogroup also included 12 haplotypes from Argentina, 4 haplotypes from 
Brazil (BRA7–BRA10), two haplotypes from Chile (CHI2 and CHI3) and one 
from Mexico (MEX1). In other monophyletic groups, samples from Eurasia 
clustered together, such as an Indian-Iranian group (IND1 and IRA16) and a 
Turkish-Spanish-Iranian group F (TUR12, TUR24, TUR27, TUR4, TUR9, 
IRA12 and SPA1). Haplogroup G from Eurasia represented haplotypes from 
Turkey (n = 12), Iran (n = 8), Albania (ALB1, ALB2), Moldova (MOL2) and 
Romania (ROM1), and haplogroup C represented haplotypes from Iran (IRA19, 
IRA6 and IRA5), Moldova (MOL3), Mongolia (MON1) and Romania (ROM2).  

Some of the geographically most distant haplotypes that clustered together 
included two haplotypes from Australia (AUS1 and AUS2) and a haplotype 
originating from Algeria (ALG4) (Fig. 5 in III). Another haplotype from 
Australia (AUS3) clustered together with 12 haplotypes from Africa and three 
haplotypes from Europe (SPA7, SPA4 and FIN1; haplogroup A). In addition, 
five haplotypes from Africa (ALG2, TUN15, MOR1, TUN27, ALG8) grouped 
with haplotype ARG8 from Argentina, and haplotypes ITA7, ITA6, ITA8, and 
TUN2 from Italy and Tunisia clustered together. 

The majority of monophyletic clusters included samples from different host 
species. The most numerous host species in this study, cattle and sheep, were 
genetically often closely related and some haplotypes (TUR17, TUN14 and 
ARB1) included samples from both hosts. The haplotypes representing 41 
samples from humans did not cluster together and were positioned in different 
haplogroups, together with samples from other hosts. Haplotype TUN5 from 
Tunisia represented three samples, one from sheep and two from humans and 
haplotype TUN15 also from Tunisia represented two samples, one from sheep 
the other from a human. 
 
 

3.6.2. Diversity, neutrality and fixation indices 

The overall haplotype diversity index for genotype G1 was 0.994, while 
nucleotide diversity was 0.00133 (Table 2 in III). The most numerous host 
species in this study – cattle, sheep and human – were also represented by 
similar haplotype diversity values (0.987 to 0.995), whereas nucleotide 
diversities ranged from 0.00128 to 0.00138. The haplotype diversity indices for 
genotype G1 from the five geographical regions ranged from 0.923 to 0.994, 
whereas the nucleotide diversities varied from 0.00083 to 0.00136, with 
samples from South America having the lowest values. Argentina had the 
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lowest values of haplotype and nucleotide diversities (Hd = 0.832 and 
π = 0.00057), whilst the corresponding values for other countries were higher 
(ranging from 0.956 to 1.000 and π ranging from 0.115 to 0.00143).  

Neutrality indices Tajima’s D and Fu’s Fs were negative and statistically 
highly significant for the whole G1 dataset (D = –2.77, Fs = –23.80; Table 2 in 
III). Neutrality indices were similar among host species and in the majority of 
the regions (Africa, South America, Europe and the Middle East). However, 
neutrality indices were statistically insignificant for Asia and Australia. Both 
neutrality indices were negative and statistically significant for Algeria, 
Argentina, Tunisia and Turkey, while only Tajima’s D was significant for Iran. 
The neutrality indices calculated for Brazil, Italy and Spain were all negative, 
but statistically insignificant.  

Low Fst values were observed between cattle, sheep and human samples of 
G1 (Fst < 0.05; Table 3 in III) and between most of the regions of G1 (Africa, 
Asia and Australia, Europe and the Middle East), ranging from 0.022 to 0.068 
(Table 4 in III). However, higher Fst values (ranging from 0.184 to 0.213) were 
detected between South America and the other regions. The highest Fst values 
were between Argentina and the Eurasian (Iran, Italy, Spain and Turkey) and 
African countries (Algeria and Tunisia), ranging from 0.269 to 0.359, while the 
value was slightly lower between Argentina and Brazil (0.124; Table 5 in III). 
The Fst values between the remaining countries were mostly less than 0.100. 
Statistically insignificant values were observed between Europe and Asia-
Australia (Table 4 in III) and between Algeria and Tunisia (Table 5 in III).    
 
 

3.6.3. Bayesian phylogeographic analysis  

The Bayesian phylogeographic analysis yielded 18 well-supported spatial 
diffusion routes for genotype G1, of which 11 had a Bayes Factor value of 10 to 
100, whereas the BF value was very high (>100) for seven routes (Fig. 7 in III). 
Values of >3 are considered well-supported (Lemey et al., 2009). A total of 
seven routes originated from Turkey, two of which had very high support 
(BF > 100; between Turkey and Iran and Turkey and Greece); six originated 
from Tunisia, three of which had BF values >100 (between Tunisia and Italy, 
Tunisia – Algeria and Tunisia – Argentina). Argentina was the ancestral 
location to Brazil (BF > 100), Mexico and Chile, while Iran was ancestral to 
India. Algeria was identified as the origin of the sample from a human from 
Finland.  
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3.7. Genetic diversity, phylogeny and  
phylogeography of genotype G3 

3.7.1. Phylogeny 

The Bayesian phylogeny of genotype G3 revealed multiple clades with varying 
support values, of which six were well resolved and received high posterior 
probability values (≥0.9; Fig. 3 in IV).  

The 39 G3 samples represented 34 distinct haplotypes in the phylogenetic 
network (Fig. 4 in IV). Among the 34 haplotypes, 30 were represented by a 
single sample, 3 haplotypes included two samples (TUR37, IND4 and FRA2) 
and SPA12 included 3 samples. Six haplogroups which corresponded to the 
well-supported clusters in the Bayesian phylogenetic tree (Fig. 3 in IV) could be 
distinguished and were named A–F, respectively (Figs. 3 and 4 in IV).  

Samples of various geographic regions clustered together in the six 
haplogroups (Fig. 4 in IV). In groups D and B, Iranian samples grouped with 
some of the European samples (IRA20, ITA11 and IRA21, ALB3, GRE3) and 
in haplogroup F Iranian, Turkish and European samples clustered together 
(IRA25, TUR39, TUR43 and ROM3). While the majority of group E was 
represented by samples of European origin, an Algerian sample ALG13 also 
clustered into this haplogroup. Samples of Iranian and Indian origin comprised 
haplogroup A (IND3, IND4, IRA24 and IRA22).  

While the majority of the monophyletic clusters included samples from 
different host species, group D was composed of two sheep samples. The three 
buffalo haplotypes in this study (IND3, IND4 and IND2) were most closely 
related to samples from camels (IRA24, IRA22 and IRA23) (see also haplo-
group A) while in group F, a relatively divergent camel sample (IRA25) 
clustered together with samples from cattle (TUR39), sheep (TUR43) and 
human (ROM3). In haplogroups E and C, human samples of European (FIN2, 
BUL1 and SPA16) and Algerian (ALG13) origin clustered together with 
European sheep samples and in group B, two sheep samples (GRE3 and IRA21) 
grouped together with a sample from cattle (ALB3). 
 
 

3.7.2. Diversity and neutrality indices 

The overall haplotype diversity index for genotype G3 was 0.992 (S.D. ± 0.008), 
while nucleotide diversity was 0.00143 (S.D. ± 0.00007). Neutrality indices 
Tajima’s D and Fu’s Fs were negative and statistically significant (D = –2.51, 
p < 0.000001 and Fs = –13.54, p < 0.01). 
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3.7.3. Bayesian phylogeographic analysis  

The Bayesian phylogeographic analysis yielded nine well-supported diffusion 
routes (BF > 10), of which two received the BF value of >100 (Fig. 5 in IV). 
These two strongly supported routes both originated from Turkey, suggesting a 
migration towards Romania and Iran. Iran was the ancestral location to India, 
Albania, Greece and Italy while Spain was ancestral to Algeria and Bulgaria 
(BF > 10). A well-supported diffusion route was also identified between Italy 
and France (BF > 10). 
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4. DISCUSSION 

4.1. Distinction of E. granulosus s. s. genotypes based  
on mtDNA and nDNA data 

The results based on near-complete mitochondrial genome sequences clearly 
demonstrate that G1 and G3 form distinct haplogroups, separated by 37 
mutations in the phylogenetic network (Fig. 2 in II, IV and Fig. 3 in III). 
Previously, the most comprehensive analysis of the distinction of E. granulosus 
s. s. was assessed using the cox1 gene (1609 bp), which yielded only 1–2 muta-
tions between G1 and G3, without clear separation into distinct haplogroups 
(Romig et al., 2015). However, sequencing a significantly larger portion of the 
mitogenome in the present study (>11 400 bp) has allowed, for the first time, to 
demonstrate that G1 and G3 are, in fact, clearly distinct mitochondrial geno-
types. This distinction was further supported by the Bayesian phylogenetic 
analysis (posterior probability value = 1.00; Figs. 4 and S1 in III) and by the 
high Fst value (0.711; p < 0.00001) between the two genotypes. It is important 
to note that the G1 and G3 samples were obtained not only from a wide 
geographical range, but also from countries where they exist in sympatry: 
Algeria, Albania, France, Finland, Greece, India, Iran, Italy, Romania, Spain 
and Turkey (Fig. 1 in II, III and IV). In addition, several host species analysed 
in the present study were shared between G1 and G3 (sheep, cattle, human and 
buffalo) (Table 1 in II, III and IV). Thus, the separation of these groups cannot 
be explained by clustering according to the geographical origin or host species 
of the samples. It is possible that future studies involving even larger datasets, 
may reveal haplotypes that position between G1 and G3 in mtDNA-based 
phylogenetic networks, as a few highly divergent haplotypes have been 
described within E. granulosus s. l. (Wassermann et al., 2016; Laurimäe et al., 
2018b). Nevertheless, these cases are likely rare and since our analyses included 
samples from both geographically overlapping and highly distant locations, it 
can be concluded that genotypes G1 and G3 represent clearly distinct mito-
chondrial lineages. 

The results of the mtDNA do not necessarily mean that genotypes G1 and 
G3 are separate biological entities. The mitochondrial genome does not undergo 
recombination and mutations accumulate at random. Once a mutation becomes 
fixed in a population, it forms a new lineage that is separate from the ancestral 
one. Mutations then continue to fix progressively in both the new and ancestral 
lineage in an independent manner. However, although mutations in the nDNA 
also accumulate at random, the nuclear genome does undergo recombination 
and in case of no barrier for gene flow, nuclear genes do not show separation 
into genetically distinct populations. Our data based on three nuclear genes 
distinguished E. granulosus s. s., E. equinus and E. ortleppi from each other 
with confidence, whereas there was no distinction between G1 and G3 (Fig. 3 in 
II), suggesting ongoing gene flow between the two genotypes. Thus, we were 
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able to confirm that in the taxonomic sense, G1 and G3 can be regarded as a 
single species E. granulosus s. s., which is further supported by the lack of 
ecological differences between the two genotypes. 

Our data suggests that G2 is not a valid genotype. Altogether four samples, 
which corresponded to the original molecular definition of genotype G2 sensu 
366 bp of cox1 (Bowles et al., 1992), clustered together with the G3 samples in 
the mtDNA networks and with both G1 and G3 based on nuclear genes. In 
addition, the putative G2 haplotypes in the mtDNA network were not 
monophyletic (Fig. 2 in II and Fig. 4 in IV) and we therefore suggest excluding 
G2 from the genotype list.  

As some E. granulosus s. l. genotypes are known to differ in terms of patho-
genicity, infectivity, developmental rate, physiology and other aspects 
(Thompson, 2017), it is possible that relevant differences might occur between 
G1 and G3. Although this has not yet been explored between these two 
genotypes and remains to be studied in the future, applying up-to-date 
molecular diagnostics to reliably identify and distinguish between G1 and G3 is 
a crucial prerequisite to perform further research on this topic.  

Although sequencing complete or near-complete mitogenomes is highly 
useful to gain deep insight into the genetic structure and phylogeography of this 
parasite, it might not be necessary for the assignment of samples into genotypes 
G1 or G3. Based on extensive sampling and sequencing data, we identified 
reliable diagnostic positions between G1 and G3 and developed a new genetic 
marker for the identification and distinction of the two genotypes (Kinkar et al., 
2018c). We found that nad5 is the best gene in mtDNA to differentiate between 
G1 and G3 as it offers clear advantages over the previous ones, providing a 
higher number of consistently diagnostic positions than the commonly used 
cox1 and nad1 genes. 
 
 

4.2. Genetic diversity and structure of  
genotypes G1 and G3  

Our results demonstrated very high global genetic variation within genotypes 
G1 and G3: the 212 G1 samples in paper III represented a total of 171 
haplotypes, whereas the 39 G3 samples in paper IV divided into 34 haplotypes. 
The values of haplotype and nucleotide diversity were similar between G1 
(Hd = 0.994; π = 0.00133) and G3 (Hd = 0.992; π = 0.00143), demonstrating 
that the genetic diversity is equally high for both genotypes, although G3 is 
globally significantly less prevalent than G1 (e.g., Breyer et al., 2004; Bart et 
al., 2006; Nakao et al., 2010; de la Rue et al., 2011; Casulli et al., 2012; Mitrea 
et al., 2014; Nikmanesh et al., 2014). Our results are in line with several 
previous studies reporting G3 to be less prevalent than G1: according to our 
combined datasets from papers III and IV, the prevalence of genotype G3 was 
15.6% while all other E. granulosus s. s. belonged to G1 (84.4%). However, 
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this might not reflect the true global prevalence of G3, as some regions were 
underrepresented in the present thesis. 

Due to the higher global prevalence of G1 and hence the significantly larger 
sample size of this genotype in the present study, we were able to further assess 
the patterns of global genetic diversity for genotype G1. Haplotype diversities 
within genotype G1 were high for different host species, most regions and 
countries (Table 3 in I and Table 2 in III), whereas Fst values were mostly low 
(Table S3 in I and Tables 3–5 in III). This points to high genetic diversity and 
low genetic differentiation between G1 subpopulations globally, particularly 
across the Mediterranean countries, as specifically addressed in paper I. The 
low genetic differentiation between subpopulations is further highlighted by the 
structure of the G1 phylogenetic network (Fig. 5 in III), where monophyletic 
clusters comprised samples from various geographic locations (e.g., haplogroup 
A, in which African, Australian and European samples clustered together). As 
the lifecycle of E. granulosus s. s. is maintained mainly by domestic animals, 
their distribution is subject to anthropogenic effects and thus these patterns are 
likely highly influenced by the extensive global animal transport and trade, 
resulting in the high degree of genetic diversity and lack of genetic differen-
tiation between different regions. Although Fst values could not be calculated 
for different G3 subpopulations due to small sample size, similar patterns were 
also well-highlighted by the structure of the phylogenetic network of G3 (Fig. 4 
in IV), where similarly to the G1 network, samples from various locations 
clustered together. 

However, as highlighted in paper III, the South American samples (particu-
larly Argentina) showed slightly lower values of haplotype diversities compared 
to other regions, coupled with higher values of Fst (Tables 2, 4 and 5 in III). 
This indicates lower genetic diversity and moderate genetic differentiation of 
samples from South America (particularly Argentina) compared with those 
from Africa and Eurasia. This is also supported by the structure of the 
phylogenetic network wherein some of the South American samples (and one 
sample from Mexico) formed a haplogroup with a dominant central haplotype 
comprising 14 Argentinian samples (Fig. 5 in III). A possible explanation for 
this is the more recent arrival to and sudden expansion of domestic animals 
(cattle and sheep) in South America during the 15th and 16th Centuries (Rodero 
et al., 1992) compared with the domestication history in Africa and Eurasia, 
extending thousands of years BC (Zeder, 2008; Lv et al., 2015). However, as 
Argentina contributed more to the lower Hd value for South America, this 
pattern could simply reflect the predominance of samples originating from the 
Buenos Aires province in Argentina (24 of 31) (Table S3 in III). However, the 
samples from Turkey in this study also originated from one area in the East 
(Erzurum and Elazig provinces), but yielded high haplotype diversity values 
nevertheless (Table 2 in III). Therefore, the results could indeed reflect a more 
recent arrival to and sudden expansion of E. granulosus s. s. genotype G1 in 
South America. However, to elucidate the genetic diversity and population 
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structure of the parasite in South America, further investigations are needed 
involving larger datasets. 

By comparing networks drawn from different sequence lengths (8274 bp, 
1674 bp and 351 bp; I), we were able to demonstrate that longer sequences 
revealed significantly higher resolution compared with the shorter sequences. 
One of the most striking differences was the dominance of the central haplo-
types. Although all three networks revealed two central ancestral haplotypes, 
the number of samples that were positioned into the central haplotypes varied 
significantly. Both networks based on the shorter sequences (1674 bp and 351 
bp) suggest that a wide geographical spectra of samples belong to both of the 
ancestral haplotypes, whereas these two haplotypes were fully resolved in the 
8274 bp network (Figs. 2 and 3 in I). Furthermore, in both networks based on 
the shorter sequences, the most dominant haplotype was identical to haplotype 
EG1, which has been found to be highly prevalent worldwide (Nakao et al., 
2010; Casulli et al., 2012; Yanagida et al., 2012; Boufana et al., 2014, 2015). 
However, the 8274 bp dataset showed that this haplotype is genetically highly 
diverse and was fully resolved. The networks also show that longer sequences 
have significantly more power to resolve the genetic relations compared with 
shorter sequences. For example, based on 8274 bp haplotypes SPA7 and FIN1 
belonged to the haplogroup with the Italian central haplotype, whereas the 
network based on 1674 bp suggested that the two haplotypes belong to the other 
haplogroup with the Turkish central haplotype (Figs. 2 and 3 in I). Our results 
demonstrate that using longer mtDNA sequences for phylogenetic and -
geographic analyses has indeed clear advantages over the commonly used 
shorter sequences. This has also been demonstrated for genotypes G6 and G7 in 
Laurimäe et al. (2018b), where complete mtDNA sequences were analysed 
revealing novel insight into the genetic structure of these genotypes. For 
example, genotype G7 was represented by two major haplogroups G7a and 
G7b, whereas sensu Bowles et al. (1992), the G7b samples would have been 
classified as genotype G6. 
 
 

4.3. Phylogeographic history and divergence of  
genotypes G1 and G3 

We performed the Bayesian phylogeographic analysis for the G1 (III) and G3 
(IV) datasets. As an output, the analysis reconstructs hypothetical migration 
routes of these parasites on to a map. While these links could be highly 
influenced by the complex livestock transport circuits in relatively recent 
history, some of them seemed to follow the diffusion routes of livestock early in 
history. However, it should be emphasised that linking the well-supported 
diffusion routes to a timescale remains speculative. The analyses revealed a 
number of well-supported routes of genotypes G1 and G3 that seemed to follow 
the spread of livestock animals from the centre of domestication during 
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Neolithic times (Zeder, 2008; Lv et al., 2015) (Fig. 5 in IV and Fig. 7 in III). 
For both G1 and G3, well-supported diffusion routes from Turkey towards 
Southern Europe and Iran were revealed. Interestingly, while Turkey was the 
origin of a large-scale expansion of genotype G1 (III), a large expansion of 
genotype G3 seemed to have occurred from Iran (IV). The Fertile Crescent of 
the Middle East is considered as one of the earliest centres of livestock 
domestication (mainly cattle, sheep, pigs and goats) from where the animals 
were later distributed east- and westwards (Bruford et al., 2003; Zeder, 2008; 
Chessa et al., 2009; Lv et al., 2015; Rannamäe et al., 2016). These phylo-
geographic results might therefore reflect the early spread of livestock, infected 
with G1 and/or G3, from this region. The possible ancestral location of 
E. granulosus s. s. in the Middle East has been suggested before (e.g., Nakao et 
al., 2010; Casulli et al., 2012; Yanagida et al., 2012; Hassan et al., 2017), but 
had not been demonstrated using the Bayesian phylogeographic approach.  

Although our results point to the Middle East as the origin of G3, it is 
plausible that a large expansion of this genotype has, in fact, occurred from 
India, which might not be revealed in the present study due to only a few 
samples originating from India (n = 4; IV). This scenario is also plausible, as it 
can be speculated that the spread of G3 could be connected to the domestication 
and subsequent spread of water buffaloes. Two subspecies of the water buffalo, 
the river and the swamp buffalo, were either both domesticated in the Indian 
subcontinent (Kierstein et al. 2004) or in the Indus valley region and China, 
respectively (Kumar et al. 2007; Yindee et al. 2010). Although G3 is no longer 
regarded as a buffalo-specific genotype and both G1 and G3 seem to be well-
adapted to buffaloes (Capuano et al., 2006), the relevance of India in terms of 
the expansion of G3, is highlighted by the fact that India has the highest global 
prevalence of genotype G3 (Sharma et al., 2013a). Another clue that the 
distribution of G3 could be linked to the domestication history of buffaloes, lies 
in the fact that the high prevalence of G3 coincides with the high prevalence of 
buffaloes in several regions (Italy, India, Iran and Pakistan) (Capuano et al., 
2006; Latif et al., 2010; Sharbatkhori et al., 2011; Sharma et al., 2013a). India is 
the first country in the world for the number of buffaloes, followed by China 
and Pakistan (Borghese, 2005). Although the abundance of buffaloes is 
significantly lower in Europe and the Middle East, the highest numbers of 
buffaloes in these regions exist in Azerbaijan, Egypt, Italy and Iran (Borghese, 
2005). Unfortunately, data on the prevalence of G3 is lacking from several of 
these countries, which would be highly important to evaluate this correlation. 
This hypothesis remains to be tested in the future using larger datasets. 

For genotype G1, in addition to Turkey, another location from which several 
diffusion routes originated was Tunisia. Among others, three routes showed a 
possible migration of genotype G1 from Tunisia to Argentina and Australia 
(Fig. 7 in III). During the 15th and 16th Centuries, sheep and other livestock 
were introduced to the Americas by Spanish and British colonizers. However, 
some animals that arrived to the Americas could have had an African origin as 
some of the livestock species (mostly pigs and goats) were taken aboard on the 
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Canary Islands, which were colonized by people from North Africa (Rodero et 
al., 1992; Rando et al., 1999; also discussed in Alvarez Rojas et al., 2017), 
possibly explaining the significant diffusion route between Tunisia and 
Argentina. The connection between Tunisia and Australia could also be linked 
to relatively recent history, as it is thought that the sources of Australian sheep 
could be Spain and/or North Africa. As discussed in Jenkins (2005), Merinos 
raised in North Africa arrived in Australia in the beginning of the 19th Century. 

Although Argentina assumed the ancestral position to the other American 
samples (Brazil, Chile and Mexico), this result is counter-intuitive in relation to 
the direction of livestock introduction to South America (Rodero et al., 1992) 
and more samples are required from this region to address the parasite’s 
phylogeographic history in this region. 

Another interesting result that the analysis revealed was the Algerian origin 
of the Finnish sample (Fig. 7 in III), which was in accordance with the 
presumed origin of the infection according to the data that we received about 
the patient. This suggests that implementing high-resolution molecular tools 
could potentially be used to determine the source of infection in human cases. 
However, this would require an extensive and high-quality global database of 
parasite sequences as references, which is currently lacking.  

Although the samples in the present study cover most of the global 
distribution range of genotypes G1 and G3, it is important to note that samples 
from some geographical regions, in which G1 or G3 have been found to be 
highly prevalent, were lacking or under-represented (e.g., Peru, Ethiopia, 
Kenya, Libya and Central Asia for G1; Pakistan and Serbia for G3). In addition, 
for genotype G1, samples from Argentina, Turkey and Tunisia were in excess 
compared with other regions. These aspects are highly important to consider in 
the context of the Bayesian phylogeographic analysis which is highly dependent 
on sampling and, therefore, should be interpreted with caution. It is also likely 
that some of the migrations proposed did not occur directly between the two 
locations, but were in reality much more complex involving geographical 
locations that were not represented in this study. While we are able to provide 
the first insight into the large-scale phylogeographic patterns of G1 and G3, 
these hypotheses should be further tested using larger datasets.  

To evaluate whether shorter sequences could also be used to investigate the 
phylogeographic history of the parasite, we carried out the Bayesian phylogeo-
graphic analysis for genotype G3 using the full cox1 gene (1674 bp) (IV). We 
conducted three independent runs which yielded inconsistent results with low 
Bayes Factor values. Thus, no significant diffusion routes could be identified 
based on the cox1 gene, highlighting that significantly longer sequences are 
required to investigate the phylogeographic history of the parasite using this 
approach. 

Due to the lack of fossil records to calibrate molecular clocks, the estimation 
of the divergence time of G1 and G3 remains speculative. One possible 
explanation to the emergence of the two mitochondrial genotypes could be 
linked to the Last Glacial Maximum (LGM) (26.5–19 kya), as it has been 
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widely accepted that climatic fluctuations during this period have shaped the 
distribution, genetic structure and diversity of present-day species (Hewitt, 
2000; Hofreiter and Stewart, 2009; Davison et al., 2011). As continental ice 
sheets extended into a large part of the temperate zone of the Northern 
hemisphere, the survival of most organisms was dependent on more hospitable 
southern refugia (Hewitt, 1999), but also more northern refuge areas, such as 
the Carpathian Mountains (Kotlík et al., 2006; Saarma et al., 2007; Schmitt and 
Varga, 2012). For numerous species, the isolation of populations in multiple 
refugia has resulted in the genetic divergence of mitochondrial lineages, still 
distinguishable in their mitogenome after post-glacial migrations (e.g., Taberlet 
and Bouvet, 1994; Santucci et al., 1998; Korsten et al., 2009; McDevitt et al., 
2012; Keis et al., 2013; Anijalg et al., 2018). Before E. granulosus s. s. became 
largely adapted to domestic hosts, it most probably circulated in a strictly 
sylvatic lifecycle and several mitochondrial groups of E. granulosus s. s. could 
have emerged due to separate glacial refugia of the host species. Subsequently, 
two of these lineages (i.e., ancestors of the present-day G1 and G3) could have 
given rise to the present E. granulosus s. s. populations. Although the present-
day mitochondrial lineages of several other species are geographically restricted 
due to post-glacial migration barriers (e.g., Taberlet and Bouvet, 1994; Hewitt, 
1999; Korsten et al., 2009; Davison et al., 2011; Anijalg et al., 2018), obligatory 
parasites infecting domestic animals have no such barriers due to the transport 
of host animals between different regions, resulting in the lack of geographic 
differentiation of the mitochondrial lineages observed for both G1 and G3. 
While G3 is significantly less prevalent world-wide than G1, it is challenging to 
propose scenarios that could have led to this contrast. Assuming that G1 and G3 
did indeed diverge during the LGM, it is possible that the refugium of G1 could 
have been significantly larger than that of G3, which could be reflected in the 
higher global prevalence of G1 even presently. Alternatively, G3 could have 
been more adapted to fewer host species initially. 

 

4.4. Concluding remarks and prospects for future studies 

The main strength of the present thesis lies largely on the high-resolution 
approach based on near-complete mtDNA sequences and analysis of nuclear 
loci, which allowed to firmly distinguish the mitochondrial genotypes of E. 
granulosus s. s., confirm the species status of this closely-related cluster and 
provide deep insight into the patterns of global genetic diversity and phylo-
geography of this parasite.  

The new data that the present thesis provides underpins future research on 
the distribution, patterns of genetic diversity and evolutionary trajectories of this 
highly zoonotic species, but also on the potential biological, ecological, genetic 
or other differences between genotypes G1 and G3. While we were able to 
provide first insight into the large-scale phylogeographic patterns of G1 and G3, 
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the hypotheses proposed in the present thesis should be further tested using 
significantly larger datasets, most importantly covering areas which were 
underrepresented in the present study (parts of Asia, Africa, South America and 
Australia). The primers used for the near-complete mtDNA sequencing in the 
present thesis can be widely applied in deep analysis of the mitogenome of 
these parasites. However, as the evolutionary history of the mtDNA lineage 
may differ from that of nuclear DNA, a complete understanding of the historical 
processes shaping the phylogeographical patterns of E. granulosus s. s. could be 
revealed using the combination of nuclear and mitochondrial data in the future.  

Understanding the genetic make-up of this zoonotic species in detail is 
highly important not only because of the fundamental knowledge that it 
provides about the parasite, but it is potentially also of practical value. Analyses 
of the phylogenetic relations of parasite samples provide highly relevant 
information for the transmission of different genotypes and could thus help to 
design more effective intervention strategies. As the majority of control 
programs have been regional (Craig and Larrieu, 2006), attention should shift to 
global intervention and control programs because of the likely anthropogenic 
transport of this parasite contributing massively to the worldwide distribution of 
the parasite, as highlighted in the present thesis. Also, the level of genetic 
diversity forms the basis for future adaptation of pathogens, for example, 
potentially constituting a force towards the emergence of new host-parasite 
associations and for the development of drug resistance (Morgan et al., 2012). 
Thus, deep analysis of genetic diversity and evolutionary trajectories of various 
parasites are likely to benefit significantly from large-scale mitochondrial and 
nuclear genome analyses. 
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SUMMARY 

Cystic echinococcosis (CE) is a zoonotic disease caused by tapeworms within 
the species complex Echinococcus granulosus sensu lato (s. l.). CE is spread 
worldwide and listed amongst the most severe parasitic diseases in humans, also 
representing a substantial economic burden on livestock industries. Within this 
complex, E. granulosus sensu stricto (s. s.) is associated with the majority of 
human CE cases globally and thus merits particular attention.  

Within E. granulosus s. s., three mitochondrial genotypes (G1–G3) were 
initially characterised. Although extensive research had been carried out on the 
genetic structure of this species, significant gaps still existed. As relatively short 
mitochondrial DNA (mtDNA) sequences had been used so far (up to 1609 bp 
whereas the full mtDNA of E. granulosus s. s. is ~13 500 bp), the full extent of 
the mitogenome variation within E. granulosus s. s. had remained unexplored, 
hindering detailed analyses of the taxonomy, genetic structure and phylogeo-
graphic history of this genotypic group.  

The present thesis addressed three key issues that had remained ambiguous 
thus far. Firstly, one of the most pressing questions was the existence and 
distinction of E. granulosus s. s. mitochondrial genotypes. Analyses of short 
sequence lengths had demonstrated that G1–G3 are genetically nearly 
inseparable in phylogenetic networks and the rationale of distinguishing these 
genotypes in the future had been questioned. However, the distinction and 
genetic distance of these genotypes based on significantly longer mtDNA 
sequences, had remained unexplored. Secondly, although a proposal had been 
made to treat G1–G3 as a single species due to their high genetic similarity 
based on mtDNA data, the evidence based on nuclear loci was still inconclu-
sive. Thus, despite the assumptions that the mitochondrial genotypes can be 
regarded as a distinct species, further analysis was required. Thirdly, due to the 
relatively short sequences used so far, analyses had lacked sufficient phylo-
genetic power to reveal detailed insight into the patterns of genetic diversity and 
phylogeography of E. granulosus s. s. In addition, due to the ambiguity in the 
genetic differentiation of G1–G3, no studies so far had attempted to analyse the 
genotypes separately, revealing possible differences in their phylogeographic 
history. 

The present thesis addressed these issues by sequencing and analysing near-
complete mtDNA sequences and several nuclear loci of a large panel of globally 
distributed E. granulosus s. s. samples. Firstly, we demonstrated for the first 
time that G1 and G3 are genetically clearly distinct genotypes on the basis of 
near-complete mtDNA data (separated by 37 mutations in the phylogenetic 
network), whereas our data provided evidence that G2 is not a valid genotype, 
but belongs to G3. The amount of genetic distinction between G1 and G3 
highlighted the importance to use up-to-date molecular techniques to distinguish 
these genotypes in further analyses. Secondly, we confirmed that G1 and G3 
can indeed be regarded as a single species E. granulosus s. s., as nuclear data 
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showed no distinction between the two genotypes, indicating on-going gene 
flow between them. Thirdly, the analyses of the global patterns of genetic 
diversity and phylogeography of E. granulosus s. s. revealed high genetic 
variation within genotypes G1 and G3. The high genetic diversity was coupled 
with low genetic differentiation between G1 and G3 subpopulations globally, 
particularly across the Mediterranean countries, which is likely the consequence 
of extensive anthropogenic animal transport and trade. However, slightly lower 
values of genetic diversity and moderate genetic differentiation was characte-
ristic to South America, possibly due to the more recent arrival of domestic 
animals to South America compared with the domestication history of livestock 
in Africa and Eurasia dating back thousands of years BC. The phylogeographic 
analysis revealed Middle East as the origin of a large-scale expansion of 
genotypes G1 and G3, a well-known domestication centre for sheep, cattle and 
goats, which are important intermediate hosts for E. granulosus s. s.  

The new data that the present thesis presents underpins our fundamental 
understanding of the genetic make-up of E. granulosus s. s. and provides basis 
for future research on the distribution, patterns of genetic diversity and 
evolutionary trajectories of this highly zoonotic species.  
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SUMMARY IN ESTONIAN 

Inimesele ohtliku paelussi Echinococcus granulosus sensu stricto 
globaalne geneetiline mitmekesisus ja fülogeograafia 

Tsüstiline ehhinokokoos (CE) on zoonootiline haigus, mida põhjustavad 
Echinococcus granulosus sensu lato (s. l.) liigikompleksi kuuluvad paelussid. 
CE on levinud kõikjal maailmas ning seda peetakse üheks raskemaks parasitaar-
haiguseks, mis põhjustab suuri majanduslikke kahjusid. Sellesse kompleksi 
kuuluvate liikide hulgas on E. granulosus sensu stricto (s. s.) eriti oluline olles 
ülemaailmselt kõige ulatuslikumalt levinud (levik on eriti lai Aafrikas, 
Austraalias, Lõuna-Euroopas, Lõuna-Ameerikas ja Aasias) ning ka globaalselt 
kõige sagedasem CE tekitaja inimesel (~88% haigusjuhtudest).  

Elutsükli läbimiseks on sellel parasiidiliigil vaja kahte peremeest, nii lõpp-
peremeest, kelleks on erinevad koerlased, kui ka vaheperemeest, kelleks on 
peamiselt sõralised. Lõpp-peremeeste organismis elutseb täiskasvanud uss, 
vaheperemeeste organismis arenevad tsüstid, milles paiknevad parasiidi vastsed. 
Tavaliselt ei tekita haigus lõpp-peremeestele märkimisväärseid terviseprob-
leeme, ent on eluohtlik vaheperemeestele. Liigil E. granulosus s. s. on ehhi-
nokokk-paelusside seast kõige laiem peremeesorganismide ring. Sinna hulka 
kuuluvad lõpp-peremeestest peamiselt koerad, hundid, šaakalid ja dingod ning 
vaheperemeestest peamiselt lambad, lehmad, kitsed ja pühvlid. Vaheperemeeste 
hulka kuulub ka inimene, keda peetakse parasiidi tupikperemeheks, kellelt 
haigus üldjuhul edasi ei kandu. Kui nakkus jääb õigeaegselt ravimata, on see 
inimesele eluohtlik. Tsüstid võivad areneda erinevates organites, kõige sageda-
mini maksas või kopsus ning on võimelised saavutama väga suuri mõõtmeid.   

Liik E. granulosus s. s. arvati koosnevat kolmest genotüübist (G1–G3), mis 
kirjeldati 1990ndate alguses kahe mitokondriaalse (mtDNA) geenifragmendi 
põhjal – cox1, 366 aluspaari (ap), ning nad1, 471 ap. Nendest kahest geenifrag-
mentist said kõige enam kasutud markerid E. granulosus s. s. genotüüpide 
eristamiseks ja geneetilise mitmekesisuse ning struktuuri analüüsimiseks. 
Harvem kasutati ka pikemaid järjestusi (nt. 1609 ap cox1 geenist). Kuigi cox1 
ning nad1 markerid leidsid laialt kasutust ning nende põhjal on tehtud palju 
olulisi uurimustöid E. granulosus s. s. geneetilise mitmekesisuse mõistmiseks 
eri maailma piirkondades, ilmnes nende kasutamisega aga üha enam probleeme. 
G1–G3 genotüüpide sisene geneetiline variatsioon oli osutunud mitmeid kordi 
kõrgemaks kui algselt kirjeldatud, mille tõttu ei olnud võimalik nende markerite 
põhjal suurt hulka parasiidiproove genotüübi täpsuseni määrata. Samuti leiti, et 
genotüüpide vaheline geneetiline erinevus on väga väike (1–2 mutatsiooni) ning 
E. granulosus s. s. siseste selgelt eristuvate genotüübigruppide olemasolu pandi 
kahtluse alla. Samas, kuna siiani oli analüüsides kasutatud lühikesi mito-
kondriaalseid järjestusi, oli kogu mtDNA (~13 500 ap) geneetilise variatsiooni 
ulatus teadmata ning sellest lähtuvalt esines mitmeid olulisi lünki.  

Käesolev doktoritöö keskendus peamiselt kolmele lahendamata küsimusele. 
Esimeseks oluliseks probleemiks oli E. granulosus s. s. mitokondriaalsete geno-
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tüüpide olemasolu tuvastamine ning üksteisest eristamine. Seega oli doktoritöö 
üheks eesmärgiks teha kindlaks mitmest genotüübist E. granulosus s. s. koosneb 
ning kui suur on nende vaheline geneetiline distants. Selleks sekveneeriti suurel 
hulgal parasiidiproovidel mitokondri genoomi pea täies ulatuses. Teiseks, kuigi 
oli välja pakutud, et G1–G3 on mitogenoomi geneetilise sarnasuse alusel üks 
liik, ei olnud seda teaduslikult näidatud. Selleks oli vaja täiendavaid tuuma-
geenide analüüse. Doktoritöö käigus sekveneeriti esmakordselt kõigil 
E. granulosus s. s. genotüüpidel kolm tuumalookust. Kolmandaks, kuna senised 
geneetilise mitmekesisuse ning fülogeograafia analüüsid põhinesid lühikestel 
mtDNA järjestusel, ei võimaldanud need mõista detailseid mustreid vähese 
fülogeneetilise eristusvõime tõttu. Lisaks olid senised tööd olnud lokaalsed, 
mistõttu puudus globaalne ülevaade. Kuna siiani oli paljusid G1–G3 proove 
geneetiliselt võimatu genotüübi täpsuseni määrata, siis ei olnud G1–G3 eraldi 
analüüsitud. See võimaldaks aga tuvastada erinevusi nende geneetilise mitme-
kesisuse mustrites. Selleks analüüsisime mitogenoomi pea täisjärjestuse alusel 
eri genotüüpide geneetilist struktuuri ning fülogeograafilisi mustreid. 

Kokku analüüsiti käesolevas doktoritöö käigus 293 E. granulosus s. s. proovi 
nii Lõuna-Ameerikast, Aafrikast, Euroopast, Aasiast kui ka Austraaliast. 
Proovid pärinesid erinevatelt peremeesliikidelt: lammas, veis, inimene, mets-
siga, kodusiga, kits, pühvel, kaamel ning dingo. Samuti kaasati analüüsi üks 
E. equinus (genotüüp G4) proov eeslilt ning 3 E. ortleppi (genotüüp G5) proovi 
pühvlilt. Töötasime välja 27 uut praimerit mitokondri genoomi pea täies 
pikkuses sekveneerimiseks (kuni 11 678 ap). Kolme juba varem publitseeritud 
praimeripaariga sekveneeriti ka kolm tuumalookust (kokku 2984 ap). DNA 
järjestused assambleeriti ning kontrolliti kasutades programme CodonCode, 
BioEdit ning Geneious. Järjestustega viidi läbi nii fülogeneetilisi kui ka –
geograafilisi analüüse kasutades peamiselt programme Network ning BEAUti & 
The BEAST. Programmidega DnaSP ning Arlequin arvutati erinevad populat-
siooni indeksid (haplotüüpide mitmekesisus, nukleotiidide mitmekesisus, 
neutraalsus indeksid Tajima’s D ja Fs ning populatsioonide paaridevaheline 
Fst), mis väljendavad ning võrdlevad populatsioonide sisest ning vahelist 
geneetilist mitmekesisust ning struktuuri.  

Olulisemad tulemused antud doktoritöös on järgmised. Esiteks tegime kind-
laks, et E. granulosus s. s. koosneb kahest selgelt eristuvast mitokondriaalsest 
genotüübist G1 ja G3 ning näitasime, et G2 ei ole eraldi genotüüp, vaid kuulub 
G3 hulka. Analüüsitud 293-st E. granulosus s. s. proovist 254 kuulus genotüüpi 
G1 ja 39 genotüüpi G3. Fülogeneetilisel võrgustikul eristas neid genotüüpe 37 
mutatsiooni, mis näitab, et tegemist on selgelt eristuvate mitokondriaalsete 
gruppidega. Neli proovi osutusid algse molekulaarse definitsiooni alusel 
genotüübiks G2. Need aga klasterdusid kokku G3 proovidega ning ei olnud 
fülogeneetilisel võrgustikul monofüleetilised. Seetõttu on alust järeldada, et G2 
ei ole eraldi genotüüp, vaid kuulub G3 hulka. Teiseks tegime kindlaks, et G1 
ning G3 võib tõepoolest lugeda ühte liiki (E. granulosus s. s.) kuuluvateks 
mitokondriaalseteks genotüüpideks, kuna tuumalookuste analüüsil ei eristunud 
need genotüübid teineteisest, viidates nende vahelisele geenivoolule. Kolman-
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daks iseloomustasime G1 ning G3 globaalset geneetilist mitmekesisust, struk-
tuuri ning fülogeograafiat. Näitasime, et mõlema genotüübi geneetiline mitme-
kesisus on globaalselt väga kõrge, kuigi G3 arvukus on ülemaailmselt oluliselt 
väiksem ja levik piiratum. Samuti oli mõlemale genotüübile iseloomulik erine-
vate alampopulatsioonide vähene geneetiline diferentseerumine. Kuna E. gra-
nulosus s. s. nakatab peamiselt koduloomi, on praegust parasiidi levikut suure 
tõenäosusega mõjutanud intensiivne loomakaubandus ning -transport, mis on 
suuresti lihtsustanud parasiidi kiiret levikut eri piirkondade ning ka geo-
graafiliselt väga kaugete riikide vahel. See väljendub erinevatest piirkondadest 
kogutud parasiidiproovide geneetilises sarnasuses. Samas oli Lõuna-Ameerikas 
geneetiline mitmekesisus mõnevõrra madalam ning geneetiline diferentseeru-
mine teistest alampopulatsioonidest kõrgem. On võimalik, et seda on põhjus-
tanud koduloomade hilisem jõudmine Lõuna-Ameerikasse võrreldes nende 
loomade kodustamise pika ajalooga Aafrikas ning Euraasias. Fülogeograafilise 
analüüsi tulemused näitasid, et genotüüpide G1 ning G3 üheks suuremaks 
ekspansiooni keskpunktiks on olnud Lähis-Ida, mis on hästi tuntud ka lamba, 
veise ja kitse kodustamise piirkonnana – kõik need liigid on olulised E. granu-
losus s. s. vaheperemehed. Seega on võimalik, et sellesse haigusesse nakatunud 
koduloomi leidus juba kodustamise algusest saati ning haigus levis edasi 
teistesse piirkondadesse kariloomade kasvatuse edasise levimise tõttu. Fülo-
geograafilise analüüsi huvitavaks tulemuseks oli ka Soome inimese proovi 
Alžeeria päritolu. Kuna selle proovi kohta oli eelnevalt teada, et nakkus võib 
olla saadud Alžeeriast, näitab see, et kasutades suure lahutusvõimega pikki 
mtDNA järjestusi, on Bayesi statistikale põhineva metoodika abil võimalik 
määrata inimnakkuste võimalikku päritolu.   

Käesolev doktoritöö kirjeldas esmakordselt inimtervise seisukohalt äärmiselt 
olulise parasiidiliigi E. granulosus s. s. geneetilist varieeruvust ning globaalset 
struktuuri ning tõi välja pikkade mitokondriaalsete järjestuste kasutamisel 
saavutatava kõrgema lahutusvõimega analüüside selged eelised, mis võimal-
dasid täita olulisi lünki senistes teadmistes. Töö on vundamendiks tulevastele 
analüüsidele selle liigi genotüüpide leviku, geneetilise mitmekesisuse ning 
fülogeograafia vallas.  
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