
UNIVERSITY OF TARTU

FACULTY OF SCIENCE AND TECHNOLOGY

Institute of Technology

Robotics and Computer Engineering

Kristaps Dreija

Online Battery Cell State of Charge

Estimation for use in Electric Vehicle

Battery Management Systems

Master’s Thesis (30 ECTS)

Supervisors: Prof. Gholamreza Anbarjafari

Egils Avots, MSc

Tartu 2018

Online Battery Cell State of Charge Estimation for use in

Electric Vehicle Battery Management Systems

Abstract

The electric vehicle (EV) is a complex, safety-critical system, which must ensure the

safety of the operator and the reliability and longevity of the device. The battery man-

agement system (BMS) of an EV is an embedded system, whose main responsibility

is the protection and safety of the high-voltage battery pack. The BMS must ensure

that the requirements for health, status and deliverable power are met by maintaining

the battery pack within the defined operational conditions for the defined lifetime of the

battery. The state of charge (SOC) of a cell describes the ratio of its current capacity

(amount of charge stored) to the nominal capacity as defined by the manufacturer. SOC

estimation is a crucial, but not trivial BMS task as it can not be measured directly, but

must be estimated from known and measured parameters, such as the cell terminal volt-

age, current, temperature, and the static and dynamic behavior of the cell in different

conditions. Many different SOC estimation methods exist, out of which (currently) the

most practical methods for implementing on a real-time embedded system are adaptive

methods, which adapt to different internal and external conditions. This thesis proposes

the use of the sigma point Kalman filter (SPKF) for non-linear systems as an equivalent-

circuit model-based state estimator to be used in one of the current series production EV

projects developed by Rimac Automobili. The estimator has been implemented and val-

idated to yield better results than the currently used SOC estimation method, and will

be deployed on the BMS of a high-performance hybrid-electric vehicle.

CERCS codes: Automation, robotics, control engineering (T125)

Keywords: State of charge estimator, Central difference sigma point Kalman filter,

Battery management system, Battery cell modelling, Electric powertrain vehicle.

2

Meetod elektrisõiduki aku laetuse taseme täpsemaks hin-

damiseks

Lühikokkuvõte

Elektrisõiduk (ES) on keeruline, ohutuse seisukohalt kriitiline süsteem, mis peab

tagama operaatori turvalisuse ning seadme töökindluse ja pikaealisuse. ES-i aku juh-

timissüsteem (BMS) on sardsüsteem, mille peamine ülesanne on kõrgepingeakude

ohutuse tagamine ja kaitse. BMS peab tagama, et aku tervist, olekut ja väljaantavat

võimsust puudutavad nõuded on täidetud ajal, mil aku töötab kindlaksmääratud ek-

spluatatsioonitingimustes ja seda kogu tootja poolt määratletud eluea jooksul. Lae-

tuse tase (SOC) kirjeldab hetkemahtuvuse (mahtuvus, ingl. k "capacity") (salvestatud

laengu suuruse) suhet tootja määratud nominaalmahtuvusega. SOC pole mõõdetav,

mistõttu on selle täpne hindamine lähtuvalt mõõdetavatest parameetritest nagu näiteks

elemendi klemmipinge, vool, temperatuur, elemendi staatiline ja dünaamiline käitu-

mine erinevates tingimustes BMSi üks olulisimatest ülesannetest. Eksisteerib palju er-

inevaid SOC-i hindamise meetodeid, milledest efektiivsemad meetodid sardsüsteemis

reaalajas rakendamiseks on nn adaptiivsed meetodid, mis on kohandatavad erinevatele

sise- ja välistingimustele. Käesolev uurimus soovitab kasutada sigma punkti Kalmani

filtrit (SPKF) mittelineaarsete süsteemide jaoks kui ekvivalentskeemide mudelipõhise

oleku hindajat, mida kasutatakse praegustes Rimac Automobili poolt välja töötatud see-

riatoodangu ES projektides. Pakutud algoritm SOC hindamiseks on juba rakendust lei-

dnud suure võimsusega hübriidelektrisõiduki BMS süsteemides ja on rakenduspõhiselt

tõestatud pakkuma täpsemaid tulemusi võrreldes seni kasutusel olnud hindamismee-

toditega.

CERCSi koodid: automaatika, robootika, juhtimistehnika (T125)

Märksõnad: Laengu eindaja, Keskmine erinevus sigma-punkt Kalmani filter, Aku juh-

timissüsteem, Aku modelleerimine, Elektrisõiduk.

3

Contents

Abstract 2

Lühikokkuvõte 3

List of Figures 7

List of Tables 9

Abbreviations, constants, generic terms 10

1 Introduction 13

1.1 Problem overview . 14

1.2 Motivation . 16

1.3 Goals . 17

2 Background 18

2.1 Battery cells . 18

2.1.1 Lithium chemistry based cells 19

2.2 Battery management system . 22

4

2.2.1 Battery management system workflow 22

2.3 State of charge . 24

2.3.1 The problem with state of charge estimation 25

2.3.2 State of charge algorithm complexity 25

2.3.3 State of charge estimation approaches 26

2.3.4 Choosing the state of charge estimation method 29

3 Related Work 31

3.1 Model-based estimation . 31

3.1.1 Equivalent circuit models . 32

3.1.2 First-order equivalent-circuit cell model 33

3.2 The discrete Kalman filter . 35

3.2.1 Non-linear Kalman filters . 37

3.2.2 Sigma-point Kalman filter . 38

4 The Proposed Methodology 42

4.1 Selected cell specification . 42

4.2 Model data acquisition . 43

4.2.1 Static cell parameter acquisition 44

4.2.2 Dynamic cell parameter acquisition 49

4.3 State of charge and battery parameter estimator implementation in C

programming language . 51

4.4 State of charge estimator validation test 58

5

4.4.1 Introduction . 58

4.4.2 Test equipment . 59

4.4.3 Test setup . 60

4.4.4 Test parameters . 62

4.4.5 Acquired data formatting . 64

5 Results 66

5.1 Validation test 1 . 66

5.2 Validation test 2 . 70

6 Conclusion and Future Work 75

6.1 Conclusion . 75

6.2 Future Work . 76

6.2.1 Static and dynamic cell parameter acquisition 76

6.2.2 Embedded programming code optimization 76

6.2.3 Cell model optimization . 77

6.2.4 Testing . 77

Acknowledgements 78

References 79

Non-exclusive licence to reproduce thesis and make thesis public 83

6

List of Figures

1.1 Two Tesla Model S 85kWh battery modules [1] 15

2.1 Lithium-ion cell [2] . 20

2.2 Tesla Model S 85kWh BMS PCB [1] 22

2.3 Visual representation of the SOC [3] 24

2.4 OCV-SOC curve for Lithium Iron Phosphate (LFP) cell [4] 27

3.1 Model-based estimator . 31

3.2 First-order ECM . 33

3.3 SPKF mean and covariance propogation, as compared with actual (sam-

pling) and EKF method [5] . 38

4.1 Test setup. Left: thermal chamber. Middle: battery tester. Right: test

computer. 44

4.2 Inside the thermal chamber. UUT . 44

4.3 UUT OCV-SOC relation at different temperatures 48

4.4 UUT OCV-SOC relation at different temperatures: 0% to 15% SOC . . 48

4.5 Track mode drive cycle: power per cell, first 100 seconds 50

7

4.6 Validation test setup block diagram . 60

4.7 Validation test setup . 62

4.8 RA-HPPC load profile . 63

4.9 RA-HPPC load profile one pulse cycle. 63

5.1 Cell terminal voltage. Blue line - voltage measured by the cell tester,

orange line - voltage measured by the RA BMS 67

5.2 Cell terminal voltage zoomed in for one spike cycle. Blue line - cell

tester, orange line - RA BMS . 67

5.3 Cell SOC. Blue line - reference SOC, orange line - estimated SOC . . . 68

5.4 Cell SOC zoomed in for one spike cycle. Blue line - reference SOC,

orange line - estimated SOC . 69

5.5 Absolute SOC estimation error . 69

5.6 SOC estimation percent error . 70

5.7 Cell current over time. Blue line - cell tester, orange line - BMS 71

5.8 Cell terminal voltage over time. Blue line - cell tester, orange line - BMS 72

5.9 Cell state of charge. Blue line - cell tester, orange line - BMS 73

5.10 SOC estimation absolute error . 74

5.11 SOC estimation percent error . 74

8

List of Tables

3.1 SPKF parameter calculation methods [6] [7] 40

4.1 A123 26700 cell specification . 42

4.2 Coulombic efficiency at different temperatures 46

9

Abbreviations

BMS - Battery Management System

C - General purpose low level structural programming language

C++ - General purpose low level structural programming language

CAN - Controller area network

CDKF - Central difference Kalman filter

CPU - Central processing unit

DOD - Depth of discharge

E-REV - Extended-range electric vehicle

ECU - Electronic control unit

EEPROM - Electrically erasable programmable read-only memory

EKF - Extended Kalman filter

EPTV - Electric powertrain vehicle (PHEV, HEV, E-REV or EV)

ECM - Equivalent circuit model

EV - Electric vehicle

HEV - Hybrid-electric vehicle

10

HV - High voltage

KF - Kalman filter

KL15 - Vehicle ignition switch position 2 (on)

LUT - Look-up table

LV - Low voltage

MCU - Micro-controller

NEDC - New European driving cycle

OCV - Open circuit voltage

PCB - Printed circuit board

PF - Particle filter

PHEV - Plug-in hybrid electric vehicle

RA - Rimac Automobili

RA-HPPC - Rimac Automobili hybrid pulse power characterization test profile

RMSE - Root mean square error

RT - Reference temperature

SIMD - Single instruction, multiple data

SOC - State of charge

SOH - State of health

SOP - State of power

SPKF - Sigma-point Kalman filter

TT - Testing temperature

11

UKF - Unscented Kalman filter

UUT - Unit under test

12

1 Introduction

Recent developments of commercially available PHEVs, HEVs, E-REVs and EVs have

raised the need for more efficient, affordable and safer methods for HV battery pack

control and management, where the cost of failure is exceptionally high.

A precise, real-time estimation of the different parameters of the battery in this case is

crucial, as it allows for a more aggressive and efficient use of the battery and its DOD,

optimizing the available power relative to the health and the state of the battery, which

in turn allows for a lighter and physically smaller battery design, reducing the cost of

the end-product.

Since most of the modern EPTVs nowadays use Lithium-ion (and similar Lithium poly-

mer) batteries, the focus of this Master’s thesis is on these cell chemistries. Further use

of the term battery assumes a Lithium-ion (and similar Lithium polymer) battery pack,

and the term cell assumes an individual Lithium-ion (and similar Lithium polymer) cell.

However, the algorithms used and described in this thesis are general and can be applied

to battery packs with other cell chemistries.

13

1.1 Problem overview

Generally, we can categorize the functional requirements of any arbitrary HV BMS in

four categories:

1. Monitoring and HV control: The system must be able to measure all of the

critical parameters of the battery pack, such as the individual cell voltage, cell or

cell module temperatures and the overall battery pack current and voltage. Ad-

ditionally, the BMS must be able to open, close and monitor the HV contactors,

measure isolation and act accordingly (although, this can also be the responsibil-

ity of the power distribution unit).

2. Protection: The system must be able to protect the individual cells from over-

charge, over-discharge, over-current, short circuits and temperatures outside of

the operational range.

3. Communication: The system must communicate with all of its consumers, in-

forming about all of the (depending on the application) necessary parameters,

such as the available current and power, SOC, SOH, isolation status and other

important parameters.

4. Performance and Health management: The system must be able to estimate

the SOC, SOH, calculate the available charge and discharge energy and power

limits, and balance the individual cells.

Categories 1 to 3 are fairly easily implemented in embedded software, which is run on

the BMS ECU, however, accurate battery performance and health estimation algorithms

are computationally heavy for real-time online estimation on embedded hardware. Be-

cause of that, most of the low-voltage non safety-critical applications, such as consumer

electronics, often use very simple (if any) methods to fulfill these tasks.

In the case of the EV, which is a complex safety-critical system, best practices must be

14

used in order to ensure the safety and longevity of the device. However, the limited

resources of the BMS ECU make the estimation of these parameters challenging, hence

the motivation for this thesis.

Figure 1.1: Two Tesla Model S 85kWh battery modules [1]

Figure 1.1 depicts two battery modules of the Tesla Model S 85kWh battery. The com-

plete pack contains a total of 16 battery modules, each of which in a 6S (series) 74P

(parallel) cell configuration. Each module (slave) communicates to the BMS coordina-

tor (master) over the CAN bus (private CAN), which in turn communicates with other

ECUs over a different CAN bus.

Even though the progress of technology is immense, the automotive industry is hesitant

to adopt these technologies, as it requires certain standards to be fulfilled, hence the

most powerful state-of-the-art computational units are mostly not used in the industry

for series production vehicles, as it takes years for the silicon vendors to certify their

15

products according to the automotive standards (safety, integrity, non-volatility, redun-

dancy, etc). That’s why the majority of the embedded automotive applications are still

written in either C or C++ (with critical parts still being written in Assembly), or Auto-

generated to C or C++ from a high level Model-Based programming language, such as

Matlab Simulink.

The SOC estimation has been selected for this thesis because it is the first step in the de-

velopment of a complete performance and health management subsystem for the BMS

of the HV battery of an EV. Without an accurate SOC calculation, all other relevant pa-

rameter values within the scope of this subsystem are up to a subject of drifting (relative

to the inaccurate estimation of the SOC).

However, a successful and precise SOC estimation can as a byproduct bring out addi-

tional information (parameters) about the battery, and hence can be further used in SOH

estimation, optimum DOD calculation, and energy and power limit calculation.

1.2 Motivation

The main motivation to perform the research and development of an accurate online

SOC estimator has arisen from the fact that the author of this thesis currently works as

a BMS Application Engineer at Rimac Automobili d.o.o. (RA) in Croatia, developing

embedded solutions for new, and improving the existing solutions for EPTV BMSs.

Developing a robust and accurate SOC estimation algorithm will result in more reliable

and safer battery packs, reducing the overall cost of the end-product and after-sale cost

of support and product recalls due to malfunction. Because of the fact that the battery

packs are one of the main selling products developed and sold by RA, the interest in

developing such algorithms is considerable. The algorithms need to be easily adapt-

able to different cell chemistries, as the same BMS hardware (with minimal embedded

software adaptations) is being used across different projects for different clients.

16

1.3 Goals

The main goal of this thesis is to develop a SOC estimation algorithm, with the compu-

tational complexity sufficient to be run as an embedded software module on one of the

available automotive grade MCUs.

The first part of the thesis consists of an overview of the working principles of Lithium

chemistry based battery cells and the BMS. The SOC is defined and explained, a dis-

cussion of the importance of the SOC estimation is conducted, and an overview of the

different SOC estimation approaches is presented.

In the next section of the thesis, different cell modelling methods are looked at, and the

(currently) most effective, practical cell model is chosen for this thesis and described

in more detail. After that, an overview of different SOC estimation algorithms is pre-

sented, and the one that best fits the constraints is selected for this thesis and described

in more detail. Afterwards, the cell model data acquisition procedure is defined, and the

appropriate experiments are defined, performed and described.

Next, the state estimation algorithm with the selected cell model is implemented in

Embedded-C for use as an embedded software module running on automotive embed-

ded hardware (MCU). The programming code structure is briefly explained, providing

some crucial code snippets.

After the estimator has been implemented, the validation test plan is defined and the

tests performed with different cell load profiles in a controlled environment. Finally,

the results are presented, conclusions are made, and possible future work and improve-

ments to the system are discussed.

17

2 Background

2.1 Battery cells

A battery cell is the smallest physical electro-chemical energy storage unit. The [8]

definition of a cell is: The basic electro-chemical unit, characterized by an anode and

a cathode, used to receive, store and deliver electrical energy.

A cell is called a primary cell if it can only be discharged once (the chemical reactions

done to produce current are irreversible). A cell is called a secondary cell, if it is

rechargable (the chemical reactions done to produce current are reversible). For this

thesis, only secondary cells are considered. A battery comprises of two or more electri-

cally connected individual cells. The main characteristic of a cell is its ability to store

and deliver electrical charge to a load circuit. The amount of charge that can be stored

in a cell (nominal cell capacity) is quantified in ampere-hours (Ah), and it describes

how many hours can a cell be discharged at a discharge current of 1 ampere (A).

The C rate of a cell is a widely used unit of describing different cells with different

characteristics and chemistries, and it simply quantifies the battery discharge rate rel-

ative to its capacity. So a rate of 1C quantifies the amount of current it takes to fully

charge or fully discharge the battery (or cell) in an hour. Alternatively, a C rate of 10C

will charge or discharge the cell in 1
10h, but at the rate of C/2, the battery (or cell) will

be fully charged or discharged in 2 hours.

18

Adding cells in series will increase the total battery voltage, but will keep the same

capacity as the individual cell (as per Kichoff’s law of voltage). Connecting cells in

parallel will yield the same voltage, but accumulate the capacities of the individual

cells of the battery, as the load current will be divided between the cells (Kirchoffs law

of current).

By designing different series-parallel (SP) configurations, the designer can fulfill dif-

ferent requirements for voltage, power, current and capacity. Simply,- if the design

asks for a large battery capacity but does not require high voltage, multiple cells can be

connected in parallel (for example, four 3Ah cells in parallel (1S4P), yielding a total

of 12Ah nominal battery capacity). The same goes for high voltage and high voltage-

high capacity configurations. In short, individual cells are used as building blocks to fit

different battery solutions.

2.1.1 Lithium chemistry based cells

Basic Lithium chemistry based battery cells are built from five components:

1. A negative and a positive electrode: On discharge, the negative electrode re-

leases electrons through external load, oxidizing the electrode (oxidation). On

charge, the negative electrode accepts electrons coming from external circuitry,

reducing the electrode (reduction). The same process in reverse applies to the

positive electrode.

2. An electrolyte material: The electrolyte is an electronic insulator (does not allow

electrons to pass) and an ionic conductor (allows for the flow of ions), and its main

function is to transport the ions from one electrode to the other (and back).

3. A separator: The separator isolates the electrodes. As electrolyte, it also prevents

electron-flow, but allows the flow of ions. The main purpose of the separator is to

avoid a short-circuit between electrodes.

19

4. A current collector on each electrode: Current collectors’ main purpose is to

reduce the ohmic resistance of an electrode, and also provide a better medium

for connecting the electrodes to the terminals of the cell (points to which external

circuitry is connected).

Different cells and different manufacturers will produce cells that include other compo-

nents, however, that is out of the scope of this thesis. Figure 2.1 depicts the schematic

diagram of a Lithium-ion cell.

Figure 2.1: Lithium-ion cell [2]

Advantages

The use of Lithium chemistry based cells has many important advantages over other cell

chemistries. Compared to other secondary cells, Lithium based chemistry cells have a

higher nominal voltage, typically at 3.7V (1.2V for NiCad). Energy density is also

much [9] greater than with other chemistries. Because of these facts, less cells can be

used to achieve the same battery voltage and energy density, resulting in lighter, more

20

compact battery packs. Also, the overall design of the battery gets improved with this

as there are less nodes that need to be monitored and controlled by the BMS.

Another important property of Lithium chemistry based cells is low self-discharge,

which means that the cell will retain its charge for a much longer time, compared

to other cell chemistries [2]. Other important advantages (compared to other cell

chemistries) include [9]: high power density, variety in sizes and shapes, low weight,

the possibility to optimize for capacity or discharge rate, large capacity, the fact that the

cells can be discharged at 40C or more, fast charging, large usable DOD, no memory

effect - no need for reconditioning high coulombic efficiency (95% and more), batteries

from these cells can be adapted to almost any voltage, power and energy requirements,

and a fast response to charge and discharge calls.

Disadvantages

The main disadvantage of Lithium chemistry based cells, compared to other cell

chemistries, is the cost (although, the cost has been falling with the increase of products

using Lithium chemistry based cells). Not only the cost of the cell itself, but also the

added cost of needing to incorporate a BMS, as the cells must be carefully kept within

their designed temperature and voltage ranges (overcharge and overdischarge can lead

to catastrophic failures, including fire and explosion hazard [10]).

Other important disadvantages (compared to other cell chemistries) include [9]: internal

impedance higher than equivalent NiCad cells, chemical instability - although improved

over time (with the likes of LiPo cells with solid electrolyte), Lithium is still chemically

very reactive, thus increasing the risk of catastrophic failures, relatively strict shipping

regulations for products containing Lithium-ion cells, significant degradation in high

temperatures, venting and a possible thermal runaway when physically damaged, and

the fact that the SOC estimation is more complex than with other cell chemistries, be-

cause of the flat OCV-SOC curve in the most of the operational SOC.

21

2.2 Battery management system

A BMS 1 [11] is an embedded system (electronics and embedded software) whose main

concerns are the protection and safety of the operator of the system, the protection of

the battery pack, the prolonging of the life of the battery pack, and the maintenance of

the battery pack in order to fulfill the design requirements.

Figure 2.2: Tesla Model S 85kWh BMS PCB [1]

2.2.1 Battery management system workflow

A simplified typical automotive BMS workflow can be described as Algorithm 1:
1IEEE Standard 1491 definition of the BMS (battery monitoring system: "A permanently installed

system for measuring, storing, and reporting battery operating parameters")

22

Algorithm 1 Typical automotive BMS application 2

while KL15 OFF do
sleep

end
initialization
while KL15 ON do

individual cell voltage and temperature measurement
battery pack current measurement
SOC estimation
SOH estimation
cell balancing
power and Energy calculation
CAN Communication
HV contactor management
data storage

end
opening contactors
data maintenance and storage

The BMS is in sleep mode until KL15 has been turned on. On system wake-up, all of

the MCU peripherals are initialized, followed by reading of the backed up data from the

on-board non-volatile memory, such as EEPROM. After that, all of the BMS algorithms

are initialized with initial values, and system checks are performed, flagging any unex-

pected values and/or errors. While the vehicle is kept in the on state (KL15 ON), the

main control loop is executed and all of the algorithms are performed. Firstly, all of the

necessary measurements are made (cell voltages, cell and PCB temperatures and battery

pack current, interlock, other digital and analog inputs) and any inconsistencies with

the system and safety rules are reported and immediately acted on. Then, the SOC and

SOH are being estimated, updating the according battery parameters. Cell balancing is

performed in case any of the cells in the packs and sub-packs are disbalanced (with non-

equal state of charge). The available power and energy limits are then calculated, and all

of the relevant information is sent over the CAN bus to higher-level governing/control
2Algorithm 1 is a simplified representation of what really happens in the system. Most often, many

of the processes are software-parallelized, meaning that they are executed by timer and other interrupts
(for example, CAN communication can be triggered by a 1ms timer interrupt, sending different CAN
messages with different periods. Also, it is assumed, that the BMS embedded software does not use an
operating system.

23

ECUs. Depending on the incoming requests over CAN, the HV contactors are managed

(opened/closed), their feedback read and any errors (stuck open/welded contactors) are

reported and acted on. Finally, the loop finishes its execution by housekeeping the rele-

vant data by storing it on non-volatile memory. The cycle is then repeated. Once KL15

is turned off, the HV contactors are disconnected, and all data housekeeping and storage

is performed, and the device enters sleep mode, preserving LV power.

2.3 State of charge

Electrochemically, the SOC of a cell is related to the average concentration of Lithium

in the negative-electrode solid particles to the negative-electrode solid particles. Thus,

we can define the SOC of any Lithium based cell as the ratio of the average Lithium

concentration to the maximum possible Lithium concentration in the electrode materi-

als. Based on the design limits of the cell, as defined by the cell manufacturers, the SOC

is intended to be a fixed value between 0% and 100% [6], and can be explained in terms

of electric charge (current ⇥ time (Ah)) as the ratio of its current capacity Q(t) to the

nominal capacity Qn, which is defined by the manufacturer and defines the maximum

amount of charge that can be stored in the cell. Thus, we can define the SOC in the

following way:

SOC(t) =
Q(t)

Qn
(2.1)

Figure 2.3: Visual representation of the SOC [3]

24

2.3.1 The problem with state of charge estimation

One of the main reasons why accurate estimation of SOC is not trivial is the fact that

(currently) it can not be measured directly with some sort of sensor, but it must be

estimated indirectly from known and measured variables, such as cell OCV curves in

different temperatures, overall battery current, cell terminal voltages and cell tempera-

tures.

2.3.2 State of charge algorithm complexity

The selection of the SOC estimation algorithm is a direct trade-off between the desired

performance and safety of the system, and the cost of embedded software development

(and testing and validation) and hardware complexity (more complex and precise algo-

rithms require more powerful computational units and more precise sensors). Never-

theless, precise SOC estimation provides many advantages over simpler methods, such

as [6]:

1. Battery longevity: Keeping the cells within 0% to 100% SOC (not allowing over

or under-charging) .

2. Battery performance: Having an accurate SOC estimation algorithm allows for

more aggressive and efficient battery utilization, as we can trust that it will not be

over or under-discharged.

3. System reliability and re-usability: Simple and unreliable SOC estimation algo-

rithms will behave differently with different battery utilization profiles, whereas

accurate SOC estimation algorithms are consistent between different usage pro-

files.

4. Power density: Since we can trust an accurate SOC estimation algorithm, the

DOD can be increased, thus allowing for higher power density, resulting in

smaller, lighter battery pack designs for the same output capacity.

25

5. Economy: As a result of the aforementioned points, the costs of the battery pack

can be greatly reduced,- smaller systems cost less and increase the performance

of the vehicle (less weight); reliable systems reduce warranty repair/recall costs.

2.3.3 State of charge estimation approaches

Many different SOC estimation approaches exist, and most of them can be used in

different applications. However, because of the fact that the HV batteries used in EPTVs

are a safety-critical system, poor and imprecise methods must be disregarded, and more

complex options must be considered.

Here we consider some SOC estimation approaches which use a combination of mea-

surements and a cell model. However, cell models are limited and there are parametric

uncertainties, not allowing for a design of an absolutely perfect algorithm [12]. The

classification of the SOC estimation methods varies from literature to literature, but

generally they are divide in the following categories [13] [12]:

1. Direct measurement methods: Measuring of the physical cell properties.

2. Book-keeping methods: Integration of the current flowing out of the cell.

3. Adaptive methods: Automatic SOC adaptation depending on different curren-

t/temperature profiles.

4. Hybrid methods: A combination of the previously stated methods.

In the next sections of this chapter different methods are briefly described, compared

and their potential use in EPTVs is pointed out.

Direct measurement

1. Open-circuit voltage method: Since the cell terminal voltage is a function of

the SOC (Equation 3.3), if we ignore the the hysteresis and slow changes are

26

disregarded (cell is at rest), we can approximate the cell terminal voltage to be its

OCV:

vk ⇡ OCV (zk) (2.2)

This results in a very simple SOC estimation algorithm which can be imple-

mented by simple LUTs, where each LUT represents the OCV of the cell for

different SOCs at a specific temperature. The main problem with this approach

is that vk ⇡ OCV (zk) only when the cell is at rest. Also, the character of the

Lithium based cell OCV-SOC curve (non-linear relationship) results in very poor

resolution within a range of the curve (even as small as 10mV cell voltage change

can yield an SOC change of tens of percent) as presented in Figure 2.4.

This approach is often used for SOC re-calibration after an extensive rest period

(up to hours), and also in simple safety non-critical BMS systems. However, this

method alone is not really applicable for use in EPTVs.

Figure 2.4: OCV-SOC curve for Lithium Iron Phosphate (LFP) cell [4]

27

Book-keeping

1. Coulomb counting method - current integration: Since one of the crucial mea-

surements that a practical BMS needs to take is the battery current, and the cell

manufacturer always defines the nominal (usable) cell capacity in Ah, we can

integrate the current flowing in and out of the battery to estimate the SOC. The

SOC in this case can mathematically be described as Equation 2.3:

zk = z0 �
�t

Q

k�1X

j=0

⌘jij, (2.3)

where

zk - SOC at discrete time index k,

z0 - initial SOC,

�t - total integration time,

Q - total cell capacity (A*s),

⌘j - cell coulombic efficiency,

ij - cell current.

The problem with this method is that the measured current is not precisely equal

to the actual cell current, as it also employs measurement noise, leakage currents,

cell self-discharge currents, etc. This, together with the fact that the actual cell

capacity and the coulombic efficiency ⌘ are only approximated values, adds to

the SOC estimation error, which is integrated along with the actual current. Gen-

erally, this method is more accurate than simple OCV-SOC LUT method alone,

because of the non-linearities of the OCV-SOC curve, but for more effective use,

the integrator needs to be reset and re-calibrated at frequent intervals in order to

minimize accumulated error. This can be done with the OCV method when the

cell is at rest, but is not the most optimal way on how to implement a robust and

safe SOC estimation algorithm. Also, in this case the cell cycle life, magnitude

of the current, temperature and history are not considered, adding to the error in

estimation.

28

Adaptive

With the recent developments in pattern recognition and artificial intelligence, new,

adaptive systems have become a popular research topic, resulting in the making of new,

robust mechanisms for SOC estimation. Such methods include various types of Neural

Networks, Support-Vector Machines and some variations of the Kalman Filter. Since

the parameters of these systems can adapt over time and circumstances, the practical

BMS can really benefit from these methods. However, the added computational com-

plexity and time of development very often are the biggest trade-offs when choosing

which method to employ in a commercial product, such as the EPTV.

Hybrid

Hybrid methods are also gaining popularity, as they allow for combining the positive

aspects of different methods that used alone would be insufficient, such as in an example

above, where the Coulomb-counting method was combined with the OCV method to

re-calibrate the integrator at rest-times.

2.3.4 Choosing the state of charge estimation method

Looking at the different SOC estimation methods, it is easy to define the best method

for use in EPTV’s BMS. Open circuit voltage method is the simplest of all methods, as

it only includes the use of a LUT or multiple LUTs (temperature dependent). However,

this method is very inaccurate, as the terminal voltage approaches the OCV only after

long rest periods, hence not applicable for use in EPTVs.

Coulomb-counting consists of a simple current integrator, and, while a little more com-

plex than the OCV method, is still trivial. Provides better results than the OCV method,

but is still inferior to more advanced methods due to unknown measurement errors,

which will accumulate together with the integrator.

29

Adaptive and hybrid methods really are the obvious choice for use in EPTVs, but an

educated choice has to be made on which methods can be employed for use on simple,

automotive MCUs. Neural Networks and Support-Vector Machines are a new trend,

but not currently widely used in industry because of their relatively high computational

complexity.

The Kalman filter (and it’s non-linear versions) has been used since 1960s [14] [15],

where it was first applied to navigation systems for the Apollo Project. The computer

used in Apollo missions used only 2kB magnetic core RAM; the CPU clock speed was

under 100 kHz [16], and the Kalman filter was simple enough computationally to put

on such minuscule hardware for today’s standards. The computational simplicity rel-

ative to the achievable performance is the main reason why the KF is still extensively

used today, and has been chosen for this thesis as the cell state and SOC estimation

algorithm.

30

3 Related Work

3.1 Model-based estimation

Two fundamental cell models currently exist [2], namely the empirical cell modelling,

and the physics-based cell modelling. Physics-based cell modelling is based on the

internal mechanisms of the cell, as opposed to the empirical cell modelling, which

employs the approximation of the cell’s voltage response to different inputs (current,

temperatures) via electrical circuits.

Currently, due to the relative simplicity and availability of different algorithms and

methods, empirical cell modelling is used almost exclusively in the industry [2], how-

ever, reduced-order physics-based cell modelling and its application in practical solu-

tions is being researched extensively [17]. A model-based state estimator block diagram

is depicted in Figure 3.1:

Figure 3.1: Model-based estimator

31

The downside of empirical cell modelling methods is that if the cell is being used in

different scenarios than those in which the cell model had been made (if the dynamic

behavior of the cell is not properly acquired), the model cannot be fully trusted. How-

ever, the simplicity of the calculations performed to use these methods (currently) out-

perform the physics based modelling methods.

Because of that, and also the fact that most embedded engineers who develop these

algorithms have more experience with circuit design than electro-chemistry [6], empiri-

cal cell modelling using equivalent circuit methods is chosen for this thesis, as the main

goal is the implementation of the SOC estimation algorithm on embedded hardware for

real-time operation.

3.1.1 Equivalent circuit models

The best methods for accurate SOC estimation must use computationally simple sets

of mathematical equations that describe the battery cell dynamics. Equivalent circuit

model’s representation of the cell is an electrical circuit. The models are empirically

built by performing experiments that show the dynamic cell behavior under different

circumstances (temperatures, currents). Equivalent-circuit model-based estimation can

combine all of the known variables (cell temperatures, terminal voltages and battery

current), and not only estimate the SOC, but also give information about other internal

states of the model.

The inputs (battery current and cell temperatures) are propagated through the model,

predicting the output (cell terminal voltage). The estimated output is compared to the

actual measured terminal voltage, and the difference (error) is used as a feedback to up-

date the estimation, effectively reducing the error over time. Additionally, the different

immeasurable noises can be incorporated in the model to improve the estimator.

32

3.1.2 First-order equivalent-circuit cell model

OCV(z(t))
R0

R1

C1

VUcell

Figure 3.2: First-order ECM

Figure 3.2 depicts the first-order ECM, where:

• OCV (z(t)) is the OCV represented as a voltage source;

• R0 is the internal resistance of the cell;

• R1 and C1 models the cell diffusion voltages.

More RC nodes can be added to improve the model, however, it adds to the computa-

tional complexity and is a trade-off when designing the algorithms. Since R0, R1 and

C1 can not be measured directly, they need to be optimized to experimentally acquired

cell data to best represent the behavior of the cell. [18] Once the algorithm is proven

to behave as expected, optimization methods must be performed in order to find the

optimal number of RC nodes, relative to the desired performance and the added com-

putational complexity.

The ECM can be described by means of mathematical equations in discrete-time, as

that’s how it will be implemented in embedded software. The derivation of the follow-

ing equations is explained in detail in [2]. Hysteresis model needs be added in case the

cell [19] (for example LiFePO4) exhibits it. However, the cell selected for this project

(Section 4.1) has minimal hysteresis and is assumed to be negligible.

33

State of charge

zk + 1 = zk �
⌘kik�t

Q
, (3.1)

where

zk - SOC at discrete-time index k,

⌘k - cell coulombic efficiency (discharge capcity
charge capacity),

ik - cell current,

�t - sample time (s),

Q - total cell capacity (A*s).

Diffusion current

iR1,k+1 = exp

✓
��t

R1C1

◆
iR1,k +

✓
1� exp

✓
��t

R1C1

◆◆
ik, (3.2)

where

iR1,k+1 - current flowing through R1. This term of the model describes the slow changes

of the diffusion processes which happen within the cell.

ECM state equation

We can define the state equation, which describes all of the dynamic effects of the cell:

vk = OCV (zk, Tk)�R0ik �
X

i

RiiRi,k, (3.3)

where

vk - cell terminal voltage,

R0 - internal cell resistance,

ik - current flowing through the circuit.

34

3.2 The discrete Kalman filter

The Kalman filter (also: linear quadratic estimator) is a recursive state estimation al-

gorithm that uses (noisy and inaccurate) sensor measurements to estimate the internal

state of a dynamic system. A good online source of knowledge about Kalman filters,

the fundamental KF mathematics, and practical applications is the University of Col-

orado Colorado Springs (UCCS) course Applied Kalman Filtering (ECE5550). All of

the lecture notes and videos are available on [20].

The algorithm can be described as a two step process:

• Prediction: Predict the internal state variables and output, and their uncertainties.

• Update: Update the prediction based on the new observations (measurements).

The prediction step looks at the state estimation from the previous time-step to cre-

ate the current estimate. It is called (a priori) (further (in equations) denoted with the

superscript �) state estimate as it does not take into account the observation (measure-

ment) at the current time-step. The update step combines the a priori state produced

in the prediction step with the measurement to improve the estimate. At this point, the

state estimate is called a posteriori (further denoted with a superscript +). The two

steps are typically recursively alternating between each other, but, for example, if the

measurements are taken less frequently, the update steps can be skipped until a new

measurement has been taken.

To make the concept clear within the context of cell state estimation, we can consider

a BMS that can measure the terminal voltage of the cell, the cell temperature and the

current. From Section 3.1, it is known that to estimate the SOC, we have to take into ac-

count the directly immeasurable (virtual) internal components of the cell, as illustrated

in Figure 3.2. The values of R0, R1 and C1 are the hidden variables. The state esti-

mation in this case involves predicting the state of the system based on the current and

35

temperature (the inputs of the system), and updating the prediction based on the mea-

sured terminal voltage. The difference between the estimated output (terminal voltage)

and the measured output acts as a feedback to the estimator, which is used to correct the

estimate as a weighted average between the prediction and the measurement (basically

deciding which to trust more: the measurement or the model prediction). The two main

Kalman Filter state equations are illustrated in Algorithms 3.4 and 3.5 [21]:

xk = FkXk�1 +Bkuk + wk, (3.4)

where

xk is estimated new state,

Fk is the state transition model applied to the previous state xk�1,

Bk is the control (input) model applied to the control vector uk,

wk is the process noise (could model the current sensor inaccuracy in our context, as-

sumed to be zero-mean Gaussian).

zk = Hkxk + vk, (3.5)

where

zk is the current observation of the system,

Hk is the observation model, mapping the true state space into the observed space (mea-

surement),

vk is the sensor noise (observation noise, assumed to be zero-mean Gaussian noise,

could model the output voltage measurement inaccuracy in our context).

The Kalman filter is a great optimal state estimator for linear systems, however, it is

easy to notice the non-linear behavior of our ECM, as is is easily visible in the ex-

ample OCV-SOC curve illustrated in Figure 2.4, and in the Equation 3.3. The linear

Kalman filter assumes a Gaussian distribution. If the state transition function is linear,

then the resulting distribution after performing a linear transformation will also be with

36

Gaussian properties. However, it will not be the case if the state transition function

is non-linear. In this case, the filter will not converge, providing very poor estimates.

Globally linearizing the curve to work with the KF would also yield very poor results,

hence non-linear versions of the Kalman filter must be considered instead.

3.2.1 Non-linear Kalman filters

There are multiple available non-linear extensions to the classic linear Kalman filter,

the most popular being [7]:

1. Extended Kalman filter (EKF): Still very popular in practice, however, it yields

poor results if the system is very non-linear, as it analytically linearizes the model

(the non-linear function) around the mean of the current state estimate (local lin-

earization). It is more computationally complex than linear KF, as it involves

Taylor series expansion to linearize the system equations [22].

2. Sigma-point Kalman filter (SPKF): Similar computational complexity as EKF.

Linearizes the model at each point in time by using statistical/empirical lineariza-

tion (educated sampling), but, in contrast, provides much better results [6] than

EKF, especially if the function is very non-linear.

3. Particle filter (PF): Many orders of magnitude more computationally complex

than EKF and SPKF, and are thus very impractical in real-life applications. How-

ever, it is the most precise method of the three. The main working principle of

PFs is to utilize Monte-Carlo integration methods to directly approximate the sys-

tem dynamics (sampling a lot of particles, whereas in SPKF, only a handful of

particles are chosen).

After analyzing the pros and cons of the three popular non-linear KF filtering methods, it

is clear that the best choice for a practical cell state and SOC estimation is to implement

the SPKF.

37

3.2.2 Sigma-point Kalman filter

Compared to the EKF, the SPKF approximates the probability distribution of the esti-

mate, instead of approximating the non-linear function. A visual representation of the

linearization methods (sampling, EKF, SPKF) is depicted in Figure 3.3:

Figure 3.3: SPKF mean and covariance propogation, as compared with actual (sam-
pling) and EKF method [5]

The non-linear state-space representation of the model is a set of two equations:

8
><

>:

xk = fk�1(xk�1, uk�1, wk�1)

zk = hk(xk, uk, vk),
(3.6)

where

vk, wk - independent, Gaussian (as in Equations 3.4 and 3.5).

The SPKF algorithm has been explained well in [6], [10] and [5], and can be described

in the following steps:

38

1. Choose a set of (sigma) points X (symmetrically distributed around the mean),

so that the mean and the covariance of the sigma points matches the mean (x̄) and

covariance (⌃x̃) of the modelled a priori variable.

The sigma points are calculated deterministically. Given the input variable x has

L dimensions, p+1 = 2L+1 sigma points will be calculated as in Equation 3.7:

X a,+
k�1 = {x̂a,+

k�1, x̂
a,+
k�1 + �

q
⌃a,+

ex,k�1, x̂
a,+
k�1 � �

q
⌃a,+

ex,k�1}, (3.7)

where

X is indexed from 0 to p,
p
⌃ is calculated using the Cholesky decomposition 1.

� is a tuning parameter (constant), mathematically explained in Table 3.1.

The weighted mean is calculated as in Equation 3.8:

x̂�
k =

pX

i=0

↵(m)
i X x,�

k,i , (3.8)

where

↵(m)
i is the weight factor for the mean value, Xi is the ith member of X .

The weighted error covariance is calculated as in Equation 3.9:

⌃�
ex,k =

pX

i=0

↵(c)
i (X x,�

k,i � x̂�
k)(X

x,�
k,i � x̂�

k)
T , (3.9)

where

↵(c)
i is the weight factor for the covariance.

Different methods for choosing ↵(m)
i , ↵(c)

i and � exist, two most popular being

the UKF and CDKF, and have been summarized in Table 3.1:

Because of the fact that CDKF only has one filter tuning parameter, providing a
1The definition and implementation in various programming languages can be found in [23].

39

Table 3.1: SPKF parameter calculation methods [6] [7]
Method UKF CDKF
�

p
L+ � h

↵(m)
0

�
L+�

h2�L
h2

↵(m)
k

1
2(L+�)

1
2h2

↵(c)
0

�
L+� + (1� ↵2 + �) h2�L

h2

↵(c)
k

1
2(L+�)

1
2h2

simpler implementation, it has been chosen as the UKF method for this thesis.

2. Propagate the chosen sigma points through the non-linear model equation (func-

tion), resulting in a new set of points (Z):

Zk,i = hk(X x,�
k,i , uk,X v,+

k�1,i) (3.10)

3. Approximate the a posteriori mean with the propagated set of points (Z):

ẑk =
pX

i=0

↵(m)
i Zk,i (3.11)

4. Calculate the a posteriori gain covariance matrices:

⌃ez,k =
pX

i=0

↵(c)
i (Zk,i � ẑk)(Zk,i � ẑk)

T (3.12)

⌃�
exez,k =

pX

i=0

↵(c)
i (X x,�

k,i � x̂�
k)(Zk,i � ẑk)

T , (3.13)

where

X x,�
k is calculated in Equation 3.5

Zk is calculated in Equation 3.10

ẑk is calculated in Equation 3.11

x̂�
k is calculated in Equation 3.8

40

5. Calculate the Kalman gain:

Lk = ⌃�
x̂ẑ,k⌃

�1
ẑ,k (3.14)

6. The new state estimate (updated with the new measurements) is then calculated

as:

x̂+
k = x̂�

k + Lk(zk � ẑk) (3.15)

7. The new error covariance matrix can then be calculated as:

⌃+
x̂,k = ⌃�

x̂,k � Lk⌃ẑ,kL
T
k (3.16)

41

4 The Proposed Methodology

4.1 Selected cell specification

The cell selected for modelling is a high-performance cylindrical cell in the 26700 pack-

age developed by A123 Systems. Unfortunately, the exact model and internal chemical

specification of the cell is confidential and not disclosed. This cell has been selected,

because it is the cell that’s going to be used for one of the current projects RA is devel-

oping. The developed model and algorithms will thus be deployed for this project.

The cell is designed for high-performance automotive applications, therefore it has a

very high operating temperature range, low internal resistance, and a very high maxi-

mum discharge current. The cell specification provided by the manufacturer is depicted

in Table 4.1:

Table 4.1: A123 26700 cell specification
Parameter Value
Cell Dimensions (mm) 26700
Cell Capacity (nominal, mAh) 3200
Internal Resistance (DC SOC:50%, T:23�C, Typ., m⌦) 2.8
Nominal Voltage (V) 3.65
Max Pulse Voltage (V,max) 4.2
Min Pulse Voltage (V,min) 2.5
Max Disharge Current (A, 10sec) 375
Cycle life (300A 75C Race profile Cycles) 1000 cycles
Operating Temperature (T�C) -30 to +85
Specific Power (nominal, W/kg) 12400
Power density (nominal, W/L) 29200

42

4.2 Model data acquisition

In order to discover the ECM parameters, empirical experiments need to be performed

on the selected battery cell. The parameters can be classified as static and dynamic.

Thus, two separate experiments need to be performed, where the only static parameter

is the OCV-SOC curve at different temperatures, and the rest of the parameters are dy-

namic.

The static and dynamic cell testing procedures used for this thesis have been designed

by Dr. Gregory L. Plett, a professor and researcher at University of Colorado at Col-

orado Springs (UCCS), and are described in the graduate course Modeling, Simulation,

and Identification of Battery Dynamics at UCCS. Lecture notes [18] and lectures them-

selves [24] from this course are available and free of charge on the UCCS web-page.

The reason for choosing these particular testing procedures is that they are the current

practice at RA. For the cell test equipment, three main components are used:

1. Battery tester for cell (dis)charging: Arbin LBT21084-05̃V-60/5/0.5/0.02A-

8CH-220V1P. Arbin instruments are the industry standard battery tester (cell,

module and pack level), used by companies and organizations, such as GE, Tesla,

NASA, Ford, Boeing, DELL, MIT, etc. [25]

2. Temperature and climatic test chamber: Weisstechnik VCL 4006, allowing -

70�C to +180�C temperature range. A more detailed specification can be found

on the product website [26].

3. Test computer: Controlling and monitoring the battery tester and the temperature

and climatic test chamber, as well as logging the data.

The thermal chamber is programmatically controlled by the battery tester with com-

munication over RS232 standard. The battery tester is connected to the test-computer

running the testing program and acquiring the data. The test setup is depicted in Figure

4.1.

43

Figure 4.1: Test setup. Left: thermal chamber. Middle: battery tester. Right: test
computer.

The Figure 4.2 depicts the UUT (A123 26700 cell) in the thermal chamber.

Figure 4.2: Inside the thermal chamber. UUT

4.2.1 Static cell parameter acquisition

Test procedure

The OCV-SOC relation at different operating temperatures is performed by discharging

and charging the cell at a small constant current (defined below), and acquiring the

44

accumulated current (Ah) and cell terminal voltage at discrete time-steps. The test is

repeated multiple times at different temperatures. The test procedure is described in

Algorithm 2, where reference temperature (RT) is +25�C 1:

Algorithm 2 Static cell parameter acquisition procedure
(1) Charge the UUT until the maximum defined terminal voltage has been reached.

for All testing temperatures (TTs) do
(2) Let the UUT temperature reach the TT and soak for at least 2 hours.
(3) Discharge the UUT with a constant-current of C/30, until the minimum voltage has

been reached.
(4) Let the UUT temperature reach the RT and soak for at least 2 hours.
(5) if Vcell < Vcellmin then

Charge the UUT at C/30 rate until Vcell == Vcellmin .
end

(6) if Vcell > Vcellmin then
Disharge the UUT at C/30 rate until Vcell == Vcellmin .

end
(7) Let the UUT temperature reach the TT and soak for at least 2 hours.
(8) Charge the UUT at C/30 rate until Vcell == Vcellmax .
(9) Let the UUT temperature reach the RT and soak for at least 2 hours.
(10) if Vcell < Vcellmax then

Charge the UUT at C/30 rate until Vcell == Vcellmax .
end

(11) if Vcell > Vcellmax then
Disharge the UUT at C/30 rate until Vcell == Vcellmax .

end
end

Coulombic efficiency calculation from acquired data

Since Vcellmin and Vcellmax in these tests are calibrated to RT (+25�C) (and SOC is tem-

perature dependant), the integrated current (ampere hours) at other temperatures will

differ from the ampere hours at the calibrated temperature. Coulombic efficiency is

temperature dependant, and it needs to be calculated for each of the operating tempera-

tures.

The calculation of the Coulombic efficiency at RT is straightforward, because all steps
1Cell minimum and maximum voltage is defined in the cell description in the cell specification 4.1.

45

of Algorithm 2 are performed at the same temperature. The calculation is presented in

Equation 4.1:

⌘(RT) =

P
Idischarged(RT)P
Icharged(RT)

(4.1)

However, since the SOC is calibrated to RT, and at temperatures other than RT will be

different, we can not be sure that we are using exactly 100% of the SOC. Hence, in the

Algorithm 2 we are performing steps (5),(6),(10) and (11) to make sure we use 100%

of the SOC. Consequently, the equation for calculating the Coulombic efficiency needs

to be adjusted, as described in Equation 4.2:

⌘(T) =

P
Idischarged(T) +

P
Idischarged(RT)P

Icharged(T)
� ⌘(RT)

P
Icharged(RT)P
Icharged(T)

, (4.2)

where

⌘ - cell Coulombic efficiency at a particular temperature,

RT - reference temperature (+25�C),

T - test temperature,

I - current at each time-step.

The calculated ⌘ = f(T (�C)) for the UUT is depicted in Table 4.2 below:

Table 4.2: Coulombic efficiency at different temperatures
+10�C +25�C +45�C +55�C +65�C
0.98591798 0.99131714 0.98712135 0.99020027 0.98796274

OCV-SOC calculation from acquired data

Since the SOC is temperature dependant, the output of the static tests will be a group

of OCV-SOC look-up tables. At each time-step (t is used and it is assumed to increase

in discrete steps, because T is already used for describing temperature), the DOD (and

46

consequently the SOC) can be calculated using equations 4.3 and 4.4:

DOD(t, T) =

tX

n=0

In(discharged)(T))

!

�

⌘(RT)

tX

n=0

In(charged)(RT)

!

�

⌘(T)

tX

n=0

In(charged)(T))

!
(4.3)

SOC(t, T) = 1� DOD(t, T)

Q(T)
, (4.4)

where

Q(T) - total cell capacity (Ah) at the test temperature, measured during performing

Algorithm 2.

The calculated SOC = f(OCV, T) for the UUT for different temperatures is depicted

in Figures 4.3 and 4.4 below:

47

Figure 4.3: UUT OCV-SOC relation at different temperatures

Figure 4.4: UUT OCV-SOC relation at different temperatures: 0% to 15% SOC

It is noteworthy to point out how linear the OCV-SOC curve is in the SOC range from

10% to 100% for this cell.

48

4.2.2 Dynamic cell parameter acquisition

To acquire the dynamic cell behavior, a requested power profile similar to that of the

real-world application must be applied over the entire SOC range and all operating

temperatures. The terminal voltage response will determine the cell’s behavior in these

conditions.

The power profile for use in EPTVs can be acquired by either simulating the particular

vehicle, which the battery is going to power, or experimentally acquiring the data in

conditions that best describe the operation of the vehicle. For automotive applications,

many different driving cycles are available. The driving cycle is defined as a series of

data points describing the vehicle’s speed over time.

In Europe, the most commonly used driving cycle standard is the NEDC, which repre-

sents the typical usage of the vehicle with both - urban driving and extra-urban driving.

Currently it is used for CO2, fuel consumption and electric range (in EPTVs) measure-

ments for vehicle regulations.

However, since the project where the cell is going to be used is a high-performance

racing vehicle, using only NEDC to acquire the dynamic cell behavior would be inap-

propriate. The drive cycle has been provided by the project owner, and it describes the

power profile in racing conditions of an actual test vehicle, making the data very appro-

priate for acquiring the cell dynamics.

It is also a common practice to extract the cell parameters for different drive cycles, and

using different parameters for different modes of the car (ECO-mode, Dynamic-mode,

Drag-race, Track, etc.). However, in this case only the driving cycle provided by the

project owner is used, as incorporating new configurations in the future is relatively

trivial once the estimation algorithms are proved to work properly. An example of an

acquired track-mode drive-cycle is illustrated in Figure 4.5 below:

49

Figure 4.5: Track mode drive cycle: power per cell, first 100 seconds

Test procedure

The dynamic cell test is performed by first (slowly) discharging the cell to 90% SOC to

make sure that the cell will not be over-charged in case of dynamic charging (regenera-

tive braking, recuperation), followed by discharging the cell with the drive-cycle profile

(RA-HPPC) (repeating the cycle until the SOC reaches 10% to avoid over-discharging

the cell), followed by charging the cell back to 100%, acquiring the accumulated cur-

rent (Ah), cell temperature and cell terminal voltage at discrete time-steps. The test is

repeated multiple times at different temperatures. The test procedure is described in

Algorithm 3, where reference temperature (RT) is +25�C 2:
2Cell minimum and maximum voltage is defined in the cell description in the cell specification 4.1.

50

Algorithm 3 Static cell parameter acquisition procedure
(12) Charge the UUT until the maximum defined terminal voltage has been reached.

for All testing temperatures (TTs) do
(13) Let the UUT temperature reach the TT and soak for at least 2 hours.
(14) Discharge the UUT with a constant-current of C/1, until 90% SOC has been

reached.
(15) Perform the dynamic power profile on the cell until 10% of SOC has been reached.
(16) Let the UUT temperature reach the RT and soak for at least 2 hours.
(17) if Vcell < Vcellmin then

Charge the UUT at C/30 rate until Vcell == Vcellmin .
end

(18) if Vcell > Vcellmin then
Disharge the UUT at C/30 rate until Vcell == Vcellmin .

end
(19) Charge the UUT at C/1 rate until Vcell == Vcellmax .
(20) Charge the UUT with constant-voltage until the current drops below C/30.

end

Now that all of the necessary data has been acquired, it is possible to calculate the rest

of the model parameters necessary for solving the ECM state equation (Equations 3.3

and 3.1): R0, ⌘k, Q, �, R1 and C1.

4.3 State of charge and battery parameter estimator

implementation in C programming language

The estimator has been implemented for the latest RA BMS version, which supports

management of up to 18 series connected battery cells. The BMS is using MPC5744P

[27] 32-bit MCU (running at 200MHz clock frequency) as the main processing and

management device, which is based on the Power Architecture® developed by NXP.

This micro-controller has been specifically developed with the Automotive industry in

mind, suitable for ISO26262 [28] ASIL-D (a risk classification scheme defined by the

ISO26262) applications.

The estimator has been implemented as an embedded software module for the existing

51

embedded software architecture, which does not utilize an operating system, but has a

simple, linear 100 task scheduler running at a 100Hz frequency, allowing each task to

take up to 100µs.

The embedded software has been hand-written in C, by using the S32DS-PA devel-

opment environment - S32 Design Studio IDE for Power Architecture based MCUs,

which is based on Eclipse and internally uses the open-source GNU Compiler Collec-

tion (GCC) and GNU Debugger (GDB).

The module has two main public functions - the state estimator initialization function,

and the iteration (step) function. The initialization function is depicted in Listing 1,

and the functionality is explained in the code below. This function is called by the

BMS_SLAVE_initModules() function, which initializes all of the modules and attaches

the necessary handles to the main RA BMS handle, which holds pointers to all of the

main module handles (pointers to structures).

52

Listing 1 State estimator initialization function C code
1 void MDL_SE_init(MDL_SE_handle_S *handle, MDL_CAN_handle_S

*canHandle,,!

2 BatMon_handle_S *batmonHandle, MDL_SE_cell_model_LUT_S
*cellModelLUTs, MDL_SE_error_E *err) {,!

3 //prechecks
4 #ifdef MDL_SE_FUNCT_PRECHECKS_ENABLED
5 //check parameters
6 if(handle == NULL || batmonHandle == NULL || cellModelLUTs ==

NULL) {,!

7 if(err != NULL) {
8 *err = MDL_SE_ERROR_NULL_PARAMENTER;
9 }

10 return;
11 }
12 #endif // #ifdef MDL_SE_FUNCT_PRECHECKS_ENABLED
13

14 if(err != NULL) {
15 *err = MDL_SE_ERROR_NONE;
16 }
17 // assign and initialize the handles and variables
18 handle->batmonHandle = batmonHandle;
19 handle->cellModelLUTs = cellModelLUTs;
20 handle->soc = 0.0f;
21 handle->coulomb_soc = 0.0f;
22 handle->soc_estimation_err_3SD = 0.0f;
23 handle->isSPKFCellInitialized = FALSE;
24 handle->state = MDL_SE_SPKF_GET_PARAMS;
25 handle->canHandle = canHandle;
26 // clear (init) the algorithm-variable structure
27 memset(&handle->spkfAlgVars, 0, sizeof(MDL_SE_SPKF_alg_var_S));
28 // initialize the common SPKF parameters - common for
29 // all cells
30 init_data_SPKF_common(&data_SPKF_com);
31 // initialize current averaging
32 init_rolling_avg(&handle->rollingAvgCurrent);
33 }

The main iteration function (step function called in predetermined time intervals) is

called by the scheduler every 10ms (the period of the scheduler), and each call (in the

current scheduler setting) can take up to 100µs, which means that without modifying

the scheduler, the iteration function must be split up in multiple parts, or has to use

multiple (consecutive) slots in the scheduler (or both). The iteration function is depicted

in Listings 2 - 6.

53

Listing 2 State estimator step function C code. Step 1.
1 void MDL_SE_iter_SPKF(MDL_SE_handle_S *handle, MDL_SE_error_E

*outErr) {,!

2 // Extract the pointers for more-readable code.
3 MDL_SE_SPKF_handle_S *cell_state = &handle->cell_state;
4 MDL_SE_cell_model_LUT_S *cellModelLUTs = handle->cellModelLUTs;
5 MDL_SE_SPKF_alg_var_S *spkfAlgVars = &handle->spkfAlgVars;
6 MDL_SE_cell_model_S * dynamic_cell_data =

&spkfAlgVars->dynamic_cell_data;,!

7 // Enter the state machine
8 switch(handle->state) {
9 case MDL_SE_SPKF_STEP_1:

10 // Test temperature set to 25 degrees Centigrade
11 spkfAlgVars->cellTemp = SE_TEST_DEBUG_TEMPERATURE;
12 // Get the cell voltage from the battery
13 // monitor module. Cell 1 used [index 0]
14 spkfAlgVars->cellVoltage =

handle->batmonHandle->cellVoltages[0] / 1000.0f;
// converted from mV to V

,!

,!

15 if(!handle->isSPKFCellInitialized) {
16 fp32_t initialSOC =

get_soc_from_ocv_lut(spkfAlgVars->cellVoltage,
spkfAlgVars->cellTemp, cellModelLUTs);

,!

,!

17 init_cell_state(&data_SPKF_com, cell_state,
initialSOC);,!

18 // For coulomb counting (to compare)
19 spkfAlgVars->accumulatedAh = initialSOC *

cellModelLUTs->QParam[DEBUG_TEMP_LUT_IDX]; //
initial estimated Ah from OCV

,!

,!

20 handle->isSPKFCellInitialized = TRUE;
21 }
22 populate_dynamic_cell_data(dynamic_cell_data,

cellModelLUTs, spkfAlgVars->cellTemp);,!

23 if(spkfAlgVars->cellCurrent < 0) {
24 spkfAlgVars->cellCurrent = spkfAlgVars->cellCurrent

* dynamic_cell_data->etaParam;,!

25 }
26 if(fabsf(spkfAlgVars->cellCurrent) >

dynamic_cell_data->QParam / 100) {,!

27 cell_state->signIk =
signum(spkfAlgVars->cellCurrent);,!

28 }
29 chol(cell_state->SigmaX, spkfAlgVars->SigmaXa_temp,

data_SPKF_com.Nx);,!

30

populate_est_error_cov_matrix(spkfAlgVars->SigmaXa_temp,
spkfAlgVars->SigmaXa);

,!

,!

31 populate_state_vector(cell_state, spkfAlgVars->xhata);
32 handle->state++;
33 break;

54

Step 1 of the iteration function sets the main variables for the SPKF: cell temperature,

cell voltage, dynamic (temperature dependant) cell model data and the cell current (not

in the code here, as it is updated using a CAN callback function outside). It also makes

the initial state prediction, based on the OCV-SOC LUT, if the filter is being run for the

first time, and performs the Cholesky decomposition, as explained in equation 3.5, and

prepares the data for the next step (populates the necessary arrays).

Listing 3 State estimator step function C code. Step 2.
1 case MDL_SE_SPKF_STEP_2:
2 calculate_sigma_points(spkfAlgVars->xhata,

spkfAlgVars->SigmaXa, spkfAlgVars->Xa, L, L);,!

3 sigma_point_state_fn(spkfAlgVars->Xa, cell_state->priorI,
dynamic_cell_data,,!

4 spkfAlgVars->Xa_new);
5 state_prediction_time_update(spkfAlgVars->Xa_new,

spkfAlgVars->xhat_new);,!

6 calculate_mean_deviation(spkfAlgVars->Xa_new,
spkfAlgVars->xhat_new, spkfAlgVars->Xs,,!

7 NR_OF_STATES);
8 error_cov_time_update(spkfAlgVars->Xs,

spkfAlgVars->SigmaX_new);,!

9 handle->state++;
10 break;

Step 2 calculates the sigma points (equation 3.5), and propagates them through the

SPKF state equations, resulting in a new set of points. After that, the state prediction

time update is calculated as the weighted average of the sigma points. In linear algebra,

this is done with a simple matrix multiplication, given that the weight matrix is diag-

onal. Following, the error covariance time update is calculated by performing matrix

multiplication of the mean deviation of the output sigma points with the diagonal co-

variance weight matrix, and the result of this operation is then used to perform another

matrix multiplication with the transposed mean deviation matrix.

55

Listing 4 State estimator step function C code. Step 3.
1 case MDL_SE_SPKF_STEP_3:
2 system_output_prediction_fn(cell_state, cellModelLUTs,

spkfAlgVars->Xa_new,,!

3 spkfAlgVars->cellCurrent, &spkfAlgVars->Xa[(1 + 2 * L)
* (NR_OF_STATES + 1)],,!

4 spkfAlgVars->cellTemp, dynamic_cell_data,
spkfAlgVars->Y_outEst);,!

5 handle->state++;
6 break;

Step 3 propagates the new sigma points (after passing them through the state function)

through the system output function to predict the new system output. This is the most

computationally heavy function in the whole SPKF algorithm.

Listing 5 State estimator step function C code. Step 4.
1 case MDL_SE_SPKF_STEP_4:
2 output_prediction_time_update(spkfAlgVars->Y_outEst,

&spkfAlgVars->yhat);,!

3 calculate_mean_deviation(spkfAlgVars->Y_outEst,
&spkfAlgVars->yhat, spkfAlgVars->Ys, 1);,!

4 cov_XY(spkfAlgVars->Xs, spkfAlgVars->Ys, spkfAlgVars->SigmaXY);
5 cov_Y(spkfAlgVars->Ys, &spkfAlgVars->SigmaY);
6 calculate_kalman_gain(spkfAlgVars->SigmaXY,

spkfAlgVars->SigmaY, spkfAlgVars->L_gain);,!

7 handle->state++;
8 break;

Step 4 performs the output prediction time update, which predicts the new system out-

put (the cell terminal voltage) by calculating the weighted mean of the input points.

After computing the necessary covariance matrices, the estimator gain matrix (Kalman

gain) is also calculated in this step.

56

Listing 6 State estimator step function C code. Step 5.
1 case MDL_SE_SPKF_STEP_5:
2 state_estimate_measurement_update(
3 spkfAlgVars->xhat_new,
4 spkfAlgVars->L_gain,
5 (spkfAlgVars->cellVoltage - spkfAlgVars->yhat));
6 error_cov_measurement_update(spkfAlgVars->SigmaX_new,

spkfAlgVars->L_gain,,!

7 spkfAlgVars->SigmaY);
8 // Save data in spkfData structure for next time
9 cell_state->priorI = spkfAlgVars->cellCurrent;

10 uint32_t i;
11 for(i = 0; i < (NR_OF_STATES * NR_OF_STATES); i++) {
12 cell_state->SigmaX[i] = spkfAlgVars->SigmaX_new[i];
13 }
14 for(i = 0; i < (NR_OF_STATES); i++) {
15 cell_state->xhat[i] = spkfAlgVars->xhat_new[i];
16 }
17 handle->soc = MDL_SE_get_SOC(cell_state);
18 handle->soc_estimation_err_3SD =

MDL_SE_get_estimation_error_3SD(cell_state);,!

19 canTxDBGStatusPXI.B.stateOfCharge = (uint32_t)
(handle->soc * 10000);,!

20 canTxDBGStatusPXI.B.socEstimationErr3SD = (uint32_t)
(handle->soc_estimation_err_3SD,!

21 * 10000);
22 coulomb_counting_soc(handle, outErr);
23 canTxDBGStatusCoulomb.B.stateOfCharge = (int32_t)

(handle->coulomb_soc * 10000);,!

24 canTxDBGStatusCoulomb.B.cellCurrent_mA = (int32_t)
((spkfAlgVars->cellCurrent * 1000.0f));,!

25 handle->state = MDL_SE_SPKF_STEP_1;
26 break;
27 default:
28 break;
29 }
30 }

Step 5 performs the state estimate measurement update. The new state vector is cal-

culated by adding the measurement error (cell terminal voltage measurement minus

estimate) multiplied by the Kalman gain to the state vector estimate from the previ-

ous SPKF iteration. After that, the error covariance matrix measurement update is also

performed. This step also overrides the previous state estimate and error covariance

matrices with the new values, and sets the new SOC, and populated the CAN interface

data with the new values. Now that the last step has been executed, the iteration func-

57

tion goes back to step 1, and this procedure is repeated indefinitely.

In the first, non-optimized version of the code, it has been calculated that running the

SPKF for one cell with the First-order equivalent-circuit cell model once per scheduler

cycle (10ms) takes up 21 scheduler slots. Adding the second RC node and hysteresis

would increase this number further. However, to validate that the algorithm works and

performs as expected, this is sufficient, as we can run the filter at 50ms period by split-

ting the function into a linear state-machine with five states and run it only for one cell.

However, the final version of the code must be optimized for speed, and the SPKF must

be tuned to best fit the application, which can be done offline by running the filter with

actual cell data (temperature, current and terminal voltage) acquired from a real driv-

ing test in a high-level programming language such as, for example, Matlab or Python,

and running an optimization method to find the best fit of the model for the particular

application. Thus, by fitting the parameters for different drive cycles, different driving

modes (like ECO/City, Sport, Track) can be developed, changing the SOC estimator

behavior depending on driving style.

These and other steps for improving the algorithm are further discussed in the Section

6.2, in which an overview on the future work and possible improvements is conducted.

4.4 State of charge estimator validation test

4.4.1 Introduction

The purpose of this test is to validate the SPKF SOC estimation algorithm on the RA

BMS for a single A123 cell (Section 4.1) at a constant temperature. Because of how

long the static and dynamic tests take to execute (for example, the static tests take 70h

of testing and data acquisition for one temperature, which yields a total of 700h of

testing time for 10 temperatures to get a decent amount of sample points for interpo-

58

lation), currently only +25�C temperature (controlled in the thermal chamber) is used

for validation of the algorithm, which, naturally will be extended to other temperatures

when all data is acquired and the operation of the algorithm at +25�C determined to be

satisfactory.

4.4.2 Test equipment

The equipment necessary to perform the validation tests can be summarized:

1. Data acquisition computer - used for logging CAN data from the RA BMS

(SOC, estimation error, current, cell voltage);

2. TENMA 72-10480 Digital-Control DC power supply 0-30V 3A - set to +12V

and 1A, used for powering the RA BMS and the IVT-S current sensor;

3. RA BMS - used for cell voltage and temperature measuring, and running the

SPKF algorithm. Sending the estimated SOC and error bounds (three standard

deviations) over CAN to the data acquisition computer;

4. A123 cell - test subject;

5. ARBIN cell tester - used for providing the load profile to the cell, as well as

measuring the current, temperature and terminal voltage of the cell;

6. Temperature and climatic test chamber: - used for controlling and monitoring

the cell temperature.

7. IVT-S current sensor [29] - the actual current sensor used in the final application

of the RA BMS. Used for providing the cell current to the RA BMS over CAN.

8. Vector VN1610 CAN interface [30] - used for receiving CAN data from the RA

BMS for logging and data analysis.

59

9. Miscellaneous cables, connectors and tools - cell holder, high-precision voltage

measurement needles (used for feeding back the cell terminal voltage to the Arbin

cell tester), wires.

4.4.3 Test setup

The test setup block diagram is visualized in Figure 4.6:

Figure 4.6: Validation test setup block diagram

The cell is placed in a custom cylindrical cell holder (as shown in Figure 4.2) with spe-

cial spring-pins that make a very good solder-less connection with the cell’s terminals

for precise voltage measurements. A temperature sensor is also connected to the cell

for feedback. The cell in the holder is then placed in the temperature and climatic test

chamber, with the temperature set to +25�C. The cell terminal voltage measurement

pins are connected to channel 0 of RA BMS, as well as to the Arbin cell tester. The

IVT-S current sensor is connected in series with the load (positive side) - the Arbin cell

60

tester; it is also connected to the +12V power supply and the RA BMS CAN interface.

The RA BMS is powered by the same +12V power supply as the IVT-S current sen-

sor. The RA BMS CAN connector (DB9) is connected to the Vector VN1610 CAN

interface, which sends the CAN data over USB 2.0 to the data acquisition and process-

ing computer, where all of the CAN messages are logged with the Vector CANalyzer

software. The BMS is sending three (relevant to this test) CAN messages with a pe-

riod of 10ms. CAN message ID 0x111 contains the cell terminal voltage, message

0x26 contains the coulomb-counting SOC and the IVT-S current (resolution: 1mA),

and the message 0x27 contains the SPKF SOC and the SOC estimate error bounds. The

RA BMS is also connected to the data acquisition and processing computer with the

Multilink Universal NXP MCU programmer for real-time debugging of the embedded

software.

The Arbin cell tester is running the pre-programmed cell load profile and logging the

temperature, cell terminal voltage and current (internal, high precision and accuracy

current sensor, not IVT-S). The data is stored in a SQL Database, which after the test is

exported to MS Excel (.xslx) and sent to the data acquisition and processing computer

for analysis and plotting. The physical test setup is illustrated in Figure 4.7:

61

(a) The whole test setup

(b) RA BMS and current sensor

Figure 4.7: Validation test setup

4.4.4 Test parameters

Tests with multiple different load profiles are performed within the same testing frame-

work in order to see the behavior of the state estimator in different conditions, and can

be summarized in a list:

1. RA-HPPC-60-1: A hybrid pulse power characterization test profile designed at

RA. Initial pulse is set to 60A, where each pulse lasts 0.5s, and each next pulse

is with a half of the amplitude of the previous pulse. After the pulses have been

performed, there is a 60s rest period, after which a constant 1A current discharge

is performed for 10min, after which, the cell is at rest (0A current) for 15 minutes

and the cycle is repeated until the cell terminal voltage reaches 2.7V. Depicted in

Figure 4.8 and Figure 4.9 (zoomed for one pulse cycle).

62

Figure 4.8: RA-HPPC load profile

Figure 4.9: RA-HPPC load profile one pulse cycle.

2. Constant 60A discharge from 100% SOC to 2.7V cell terminal voltage.

63

4.4.5 Acquired data formatting

Since the data acquired from the tests comes from two different, time non-synchronized

sources, some data processing needs to be performed in order to align the time-base,

plot the results and evaluate the performance. The CAN data acquired with the Vector

VN1610 CAN interface on the data acquisition computer through the Vector CANalyzer

software has been exported as a .mat Matlab formatted data file, with the CAN data

synchronized in time with a sample rate of 10ms. The data acquired by the battery

tester is by default exported as an .xslx MS Excel file with event-triggered time-base.

A Python script has been written that uses the flexible, open-source pandas [31] data

analysis and manipulation package. The script is depicted in Listing 7 and 8, and the

code is documented and explained within the listings.

Listing 7 Data analysis Python script (part 1)
1 # Import all packages
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from scipy.io import loadmat
5 import pandas as pd
6 from sklearn.metrics import mean_squared_error
7

8 FULL_CAPACITY_25 = 2.8910473 # Ah
9 CURRENT_SPIKE_LIM = 10

10 def mat_to_pandas_df(filename, time_key, exclude_list):
11 mat = loadmat(filename) # load mat-file
12 # Return a Pandas dataframe with the selected index
13 return pd.DataFrame({key:mat[key].flatten() for key in mat if

key not in exclude_list},index=mat[time_key].flatten()),!

14 # Get the Cell tester data
15 arbin_df = pd.read_excel(r"tester_data.xlsx",

sheetname='Channel_1_1'),!

16 arbin_df = arbin_df.dropna(axis=1, how='all') # drop all columns
with NaN's,!

17 arbin_df.index=arbin_df['Test_Time(s)'].round(2) # round to two
decimal places (10ms resolution),!

18 arbin_df_last_idx = arbin_df.index[-1]
19 arbin_data_fields = arbin_df.columns.tolist()
20 # Get the CAN data
21 filename = r"can_data.mat"
22 exclude_list = ["Time"]
23 can_df = mat_to_pandas_df(filename, "Time", exclude_list)
24 can_data_fields = can_df.columns.tolist()

64

Listing 8 Data analysis Python script (part 2)
1 # Merge the two dataframes, interpolate the empty spaces from the

cell tester data (NaNs),!

2 df3=can_df.merge(arbin_df, how='outer', right_index=True,
left_index=True).interpolate(method='linear'),!

3 # Scale the current from mA to A for the CAN data. Correct the
current sign,!

4 df3['DBG_Cell_State_Coulomb__DBG_Current_mA_IVT_S'] =
df3['DBG_Cell_State_Coulomb__DBG_Current_mA_IVT_S']/-1000,!

5 df3['IVT_Msg_Result_I__IVT_Result_I'] =
df3['IVT_Msg_Result_I__IVT_Result_I']/-1000,!

6 # Resync time to the best of our abilities
7 # Find the first occurence of a current spike
8 first_spike_idx_diff =

np.argmax(df3['Current(A)'].values<-CURRENT_SPIKE_LIM) -
np.argmax(df3['DBG_Cell_State_Coulomb__DBG_Current_mA_IVT_S']

,!

,!

9 .values<-CURRENT_SPIKE_LIM)
10 # Shift the cell tester data in time
11 for column in df3:
12 if column in arbin_data_fields:
13 df3[column] =

df3[column].shift(periods=-1*(first_spike_idx_diff)),!

14 # Remove all rows after the last row for which we have the Cell
tester data (as we shifted it up in time),!

15 df3 = df3.drop(df3.index[np.argmax(df3.index==arbin_df_last_idx -
first_spike_idx_diff):]),!

16 # Calculate the SOC and error bounds, and put it into the dataframe
17 df3['SOC'] = 100 * (1 - (df3['Discharge_Capacity(Ah)'] -

(df3['Charge_Capacity(Ah)']) / FULL_CAPACITY_25)),!

18 df3['err3sd_pos'] = df3['DBG_Cell_State_PXI__DBG_StateOfCharge'] +
df3['DBG_Cell_State_PXI__DBG_SOCEstimationError3SD'],!

19 df3['err3sd_neg'] = df3['DBG_Cell_State_PXI__DBG_StateOfCharge'] -
df3['DBG_Cell_State_PXI__DBG_SOCEstimationError3SD'],!

20 rms_err = np.sqrt(mean_squared_error(df3['SOC'],
df3['DBG_Cell_State_PXI__DBG_StateOfCharge'])),!

21 # Plot everything (for example, absolute error)
22 plt.figure()
23 (df3['SOC'] -

df3['DBG_Cell_State_PXI__DBG_StateOfCharge']).abs().plot(),!

24 plt.ylabel('Absolute error', size=14)
25 plt.title('Absolute SOC error over time', size=14)
26 plt.xlabel('Time [s]', size=14)
27 plt.locator_params(nbins=20, axis='x')
28 plt.locator_params(nbins=20, axis='y')
29 plt.grid()

65

5 Results

5.1 Validation test 1

First of all, to make sure that the voltage sensor works properly, and the time-base of the

two different data sources is aligned, the cell terminal voltage measured by the battery

tester has to be visually compared with the voltage measured by the RA BMS. In this

case the evaluation of the sensor precision and accuracy relative to the battery tester is

not important, as sensor noise is accounted for by the state estimator. The only concern

here is whether it follows the same trend within reasonable bounds, so that it can be said

that the sensor can be trusted, in case the state estimator doesn’t converge with reality

and starts drifting. Figure 5.1 depicts the cell terminal voltage over the whole test time,

and Figure 5.2 zooms in on one current spike cycle.

66

Figure 5.1: Cell terminal voltage. Blue line - voltage measured by the cell tester, orange
line - voltage measured by the RA BMS

Figure 5.2: Cell terminal voltage zoomed in for one spike cycle. Blue line - cell tester,
orange line - RA BMS

By means of visual inspection, it can be concluded that the voltage sensor works as

67

expected, and even though there is a small constant voltage difference (less than 5mV)

in amplitude measured by the two systems (which can be thought as a DC bias sensor

error), improving the sensor accuracy and precision is out of the scope of this thesis, and

the voltage sensor provides reasonable measurements. Figure 5.3 depicts the estimated

SOC over the whole test time, and Figure 5.4 zooms in on one RA-HPPC cycle. Figure

5.5 depicts the absolute error over time, and Figure 5.6 depicts percent error over time.

Figure 5.3: Cell SOC. Blue line - reference SOC, orange line - estimated SOC

68

Figure 5.4: Cell SOC zoomed in for one spike cycle. Blue line - reference SOC, orange
line - estimated SOC

Figure 5.5: Absolute SOC estimation error

69

Figure 5.6: SOC estimation percent error

From these figures, it can be concluded that the SOC estimation works as expected,

and, even though, the SOC estimation error increases, as the SOC decreases, that is to

be expected, as the model tuning parameters have initial reasonable values and have not

yet been tuned for the particular setup. The main point here is,- the estimator performs

well and does not unreasonably diverge from reality.

5.2 Validation test 2

The second test involves discharging the cell from 100% SOC to 2.7V cell terminal

voltage at a constant current of 60A at +25�C 1. The acquired data has been formatted

in a similar matter as described in Section 4.4.5. The results are illustrated in the figures

below.
1The cell will heat up to a higher temperature at this current, however, since the dynamic data for all

selected temperatures has not yet been acquired, the filter will assume +25�C, which will yield in worse
results than if the filter had all the data.

70

Figure 5.7: Cell current over time. Blue line - cell tester, orange line - BMS

As in validation test 1, the two data sets are aligned with respect to the first current

spike. The reason why the current reported by the cell tester is at 60A for a few seconds

longer is the way the data is sampled (lower sample rate than the BMS measurement).

71

Figure 5.8: Cell terminal voltage over time. Blue line - cell tester, orange line - BMS

Same behavior can be noticed in the cell terminal voltage graph - the voltage measured

by the cell tester sharply changes from 2.85V to 3.3V because of the lower sample rate,

whereas the BMS sends the voltage measurement over CAN every 10ms. However, both

devices provide close enough results to trust the BMS measurement.

72

Figure 5.9: Cell state of charge. Blue line - cell tester, orange line - BMS

The state of charge over time graph indicates that the SOC estimation algorithm works

very well. Calculating cross-correlation between the two data sets yields in 0.99386,

which is a very good result. Calculating the RMSE for our estimate yields in 0.73886,

whereas the RMSE for the SOC estimate with Coulomb counting yields in 1.598, which

is quite a considerable difference in favour of the SPKF approach.

73

Figure 5.10: SOC estimation absolute error

Figure 5.11: SOC estimation percent error

The error in estimate still increases as the SOC decreases, as expected. The percent

error in test 2 is considerably larger than in test 1, because test 2 actually approaches

0% SOC.

74

6 Conclusion and Future Work

6.1 Conclusion

The main goal of this thesis, which was to develop a flexible and precise real-time bat-

tery cell state of charge estimation algorithm that can be executed as a software module

on the Rimac Automobili battery management system and performs better than the ex-

isting state of charge estimation methods at Rimac Automobili, has been reached suc-

cessfully. In the tested conditions, the selected non-linear central difference sigma-point

Kalman filter state estimation algorithm, in conjunction with the equivalent-circuit bat-

tery cell model, provides better results than the mostly predominant Coulomb counting

method, which diverges over time and has to be re-calibrated often to provide relatively

stable results, and gives no information on the uncertainty of the estimate.

To reach this goal, an overview of the important terms, components, concepts and the-

ories has been made, and the optimal SOC estimation algorithm for the defined use

case has been discussed and selected. Experiments to acquire the battery cell behav-

ior under static and dynamic conditions for the selected cell have been conducted, and

the equivalent-circuit cell model parameters needed for the SOC estimation algorithm

have been calculated. The embedded programming code, which integrates into the ex-

isting battery management system’s software architecture, has been implemented, and

the system has been operating continuously for more than two weeks without showing

signs of divergence from truth or instability.

75

After acquiring the static and dynamic battery cell parameters for all other temperatures

within the operating range of the system, tuning the sigma-point Kalman filter param-

eters, extending/optimizing the embedded software module to work with all 18 (series)

cells for the particular project (while at the same time performing all of the other nec-

essary functions) and performing extended testing in real-life conditions, the developed

state of charge and battery cell parameter estimation algorithm will be deployed on a

real-world application, which is a series production high-performance hybrid-electric

vehicle.

6.2 Future Work

6.2.1 Static and dynamic cell parameter acquisition

In order to validate the cell model, the static and dynamic cell parameters need to be

acquired for multiple cells in the exact same conditions, running in parallel at the same

time. This is necessary to eliminate the fact that the cell, from which the parameters

are acquired, could potentially be faulty or in any way divergent from the average cell

within the batch, yielding completely inaccurate results.

6.2.2 Embedded programming code optimization

The main BMS MCU is capable of executing SIMD instructions, which allows the pro-

cessor to perform the same instruction on multiple data points at the same time This

means that the computationally time-consuming matrix (array) operations (Cholesky

decomposition, matrix inversion, matrix multiplication etc.) can be parallelized, reduc-

ing the computational units required to run the estimator. This would mean re-writing

the mathematical operation functions using intrinsic Assembly code instructions within

the C code (because of the closed-source nature of the automotive software compo-

nents, there are no available libraries currently provided by NXP (MCU manufacturer)).

76

6.2.3 Cell model optimization

Each battery cell behaves differently, hence each application will have different filter

settings, namely, the number of RC nodes in the equivalent series circuit and hysteresis.

The same goes for different driving modes. In race-track driving conditions the cell will

behave differently to stimuli, as compared to calm city-driving. The optimal settings for

a particular application can be acquired by measuring the current, temperature and cell

terminal voltages in these conditions, and building the model from there for each mode

(the mode can often be selected in high-performance cars either on the steering-wheel

or the dashboard). Additionally, the optimal number of RC nodes and whether or not

modeling hysteresis is necessary can be estimated by running an optimization algorithm

on the state estimator in various conditions and various settings, and measuring perfor-

mance and computational complexity, and then deciding on the best settings based on

the desired computational cost versus performance. This does not need to be executed

on the real-time embedded system, in fact, that would be unpractical. Instead, the state

estimator must be implemented in a high-level programming language (like, for ex-

ample, Python or Matlab), validated to work exactly as the estimator running on the

embedded system, and optimized from there.

6.2.4 Testing

In order to deploy the software module on the real-world application, extensive testing

both, in a laboratory (simulated drive-cycles), and in field (real drive-cycles), has to be

conducted and compared against the existing state of charge estimation algorithm.

77

Acknowledgements

I would like to thank my supervisors Gholamreza Anbarjafari and Egils Avots for advice

and guidance during the writing of this thesis.

78

Kristaps Dreija
/ Kristaps Dreija on 20.05.2018 /

Kristaps Dreija

References

[1] “Model s bms hacking,” 2017, https://hackaday.io/project/

10098-model-s-bms-hacking.

[2] G. L. Plett, Battery Management Systems Volume I. Battery Modelling. Artech

House, 2015, vol. I.

[3] “Visual representation of soc,” 2016, https://www.linkedin.com/pulse/

accutronics-adopt-30-state-charge-shipping-li-ion-1st-michele-windsor/.

[4] “Ocv-soc curve for lifepo4 cell,” 2015, https://www.researchgate.net/figure/

SOC-versus-OCV-Curve-for-an-18650-Lithium-Iron-Phosphate-LFP-Battery-Cell_

fig1_304655337.

[5] R. van der Merwe; Eric Wan, “Sigma-point kalman filters for probabilistic infer-

ence in dynamic state-space models,” pp. 4–8, 2004, http://www.gatsby.ucl.ac.uk/

~byron/nlds/merwe2003a.pdf.

[6] G. L. Plett, Battery Management Systems Volume II. Equivalent-Circuit Methods.

Artech House, 2016, vol. II.

[7] D. G. L. Plett, “Nonlinear kalman filters,” pp. 1–29, 2016, http://mocha-java.uccs.

edu/ECE5550/ECE5550-Notes06.pdf.

[8] N. Committee, “The definition of a battery cell,” National Electric

Code, p. 379, 2014, https://www.nfpa.org/Assets/files/AboutTheCodes/70/

70-A2013-ROPDraft.pdf.

79

https://hackaday.io/project/10098-model-s-bms-hacking
https://hackaday.io/project/10098-model-s-bms-hacking
https://www.linkedin.com/pulse/accutronics-adopt-30-state-charge-shipping-li-ion-1st-michele-windsor/
https://www.linkedin.com/pulse/accutronics-adopt-30-state-charge-shipping-li-ion-1st-michele-windsor/
https://www.researchgate.net/figure/SOC-versus-OCV-Curve-for-an-18650-Lithium-Iron-Phosphate-LFP-Battery-Cell_fig1_304655337
https://www.researchgate.net/figure/SOC-versus-OCV-Curve-for-an-18650-Lithium-Iron-Phosphate-LFP-Battery-Cell_fig1_304655337
https://www.researchgate.net/figure/SOC-versus-OCV-Curve-for-an-18650-Lithium-Iron-Phosphate-LFP-Battery-Cell_fig1_304655337
http://www.gatsby.ucl.ac.uk/~byron/nlds/merwe2003a.pdf
http://www.gatsby.ucl.ac.uk/~byron/nlds/merwe2003a.pdf
http://mocha-java.uccs.edu/ECE5550/ECE5550-Notes06.pdf
http://mocha-java.uccs.edu/ECE5550/ECE5550-Notes06.pdf
https://www.nfpa.org/Assets/files/AboutTheCodes/70/70-A2013-ROPDraft.pdf
https://www.nfpa.org/Assets/files/AboutTheCodes/70/70-A2013-ROPDraft.pdf

[9] “Battery and energy technologies: Rechargable lithium batteries,” 2018, http://

www.mpoweruk.com/lithiumS.htm.

[10] D. G. L. Plett, “Extended kalman filtering for battery management systems of lipb-

based hev battery packs part 1. background,” Journal of Power Sources 134, pp.

252–261, 2004.

[11] W. B. M. W. Group, “Ieee std 1491-2012 (revision of ieee std 1491-2005),” in

IEEE Guide for Selection and Use of Battery Monitoring Equipment in Stationary

Applications. IEEE, 2012.

[12] A. M. N. Watrin, B. Blunier, in Review of adaptive systems for lithium batteries

state-of-charge and state-of-health estimation. IEEE, 2012, pp. 1–6.

[13] E. J. W. V. Prajapati, H. Hess, in A literature review of state of-charge estima-

tion techniques applicable to lithium poly-carbon mono ouride (LI/CFx) battery.

IICPE, 2011, pp. 1–8.

[14] “Mit tutorial: The kalman filter,” 2017, http://web.mit.edu/kirtley/kirtley/

binlustuff/literature/control/Kalman%20filter.pdf.

[15] A. P. A. Mohinder S. Grewal, “Historical perspectives,” IEEE Control Sys-

tems Magazine, pp. 69–78, 2010, http://ieeecss.org/CSM/library/2010/june10/

11-HistoricalPerspectives.pdf.

[16] “An interview with jack crenshaw,” http://www.trs-80.org/

interview-jack-crenshaw/.

[17] “University of colorado colorado springs research publications,” 2018, http://

mocha-java.uccs.edu/dossier/research.html.

[18] D. G. L. Plett, “Equivalent-circuit cell models,” p. 14G, 2016, http://mocha-java.

uccs.edu/ECE5710/ECE5710-Notes02.pdf.

80

http://www.mpoweruk.com/lithiumS.htm
http://www.mpoweruk.com/lithiumS.htm
http://web.mit.edu/kirtley/kirtley/binlustuff/literature/control/Kalman%20filter.pdf
http://web.mit.edu/kirtley/kirtley/binlustuff/literature/control/Kalman%20filter.pdf
http://ieeecss.org/CSM/library/2010/june10/11-HistoricalPerspectives.pdf
http://ieeecss.org/CSM/library/2010/june10/11-HistoricalPerspectives.pdf
http://www.trs-80.org/interview-jack-crenshaw/
http://www.trs-80.org/interview-jack-crenshaw/
http://mocha-java.uccs.edu/dossier/research.html
http://mocha-java.uccs.edu/dossier/research.html
http://mocha-java.uccs.edu/ECE5710/ECE5710-Notes02.pdf
http://mocha-java.uccs.edu/ECE5710/ECE5710-Notes02.pdf

[19] D. S. J.B. Gerschler, in Investigation of open-circuit-voltage behaviour of lithium-

ion batteries with various cathode materials under special consideration of volt-

age equalisation phenomena. European Association for Battery, Hybrid and Fuel

Cell Electric Vehicles, 2009.

[20] “Lecture notes and recordings for ece5550: Applied kalman filtering,” 2014, http:

//mocha-java.uccs.edu/ECE5550/index.html.

[21] “Kalman filter,” 2018, https://en.wikipedia.org/wiki/Kalman_filter.

[22] C. D. Ghilani, Nonlinear equations and Taylor’s theorem. John Wiley & Sons,

Inc., 2010, vol. V.

[23] “Cholesky decomposition,” 2018, https://rosettacode.org/wiki/Cholesky_

decomposition.

[24] “Lecture notes and recordings for ece4710/5710: Modeling, simulation, and iden-

tification of battery dynamics,” 2015, http://mocha-java.uccs.edu/ECE5710/index.

html.

[25] “Arbin customers,” 2018, http://www.arbin.com/careers/.

[26] “Benchtop temperature and climatic test cham-

ber technical data,” 2018, http://weiss-uk.com/products/

temperature-and-climatic-testing/temperature-and-climatic-test-chambers/

benchtop-temperature-climatic-test-chambers.

[27] “Mpc5744p mcu reference manual,” 2018, http://www.bdtic.com/download/nxp/

mpc5744prm.pdf.

[28] “Iso26262 functional safety standards,” 2018, https://www.iso.org/standard/

43464.html.

[29] “Ivt-s high precision current measurement device with can interface datasheet,”

2018, https://www.isabellenhuette.de/fileadmin/Daten/Praezisionsmesstechnik/

Datasheet_IVT-S.pdf.

81

http://mocha-java.uccs.edu/ECE5550/index.html
http://mocha-java.uccs.edu/ECE5550/index.html
https://en.wikipedia.org/wiki/Kalman_filter
https://rosettacode.org/wiki/Cholesky_decomposition
https://rosettacode.org/wiki/Cholesky_decomposition
http://mocha-java.uccs.edu/ECE5710/index.html
http://mocha-java.uccs.edu/ECE5710/index.html
http://www.arbin.com/careers/
http://weiss-uk.com/products/temperature-and-climatic-testing/temperature-and-climatic-test-chambers/benchtop-temperature-climatic-test-chambers
http://weiss-uk.com/products/temperature-and-climatic-testing/temperature-and-climatic-test-chambers/benchtop-temperature-climatic-test-chambers
http://weiss-uk.com/products/temperature-and-climatic-testing/temperature-and-climatic-test-chambers/benchtop-temperature-climatic-test-chambers
http://www.bdtic.com/download/nxp/mpc5744prm.pdf
http://www.bdtic.com/download/nxp/mpc5744prm.pdf
https://www.iso.org/standard/43464.html
https://www.iso.org/standard/43464.html
https://www.isabellenhuette.de/fileadmin/Daten/Praezisionsmesstechnik/Datasheet_IVT-S.pdf
https://www.isabellenhuette.de/fileadmin/Daten/Praezisionsmesstechnik/Datasheet_IVT-S.pdf

[30] “Vector vn1600 can interface user manual,” 2018, https://vector.com/portal/

medien/cmc/manuals/VN1600_Interface_Family_Manual_EN.pdf.

[31] “Pandas - open-source python package for fast, flexible, and expressive data analy-

sis and manipulation,” 2018, https://pandas.pydata.org/pandas-docs/stable/index.

html.

82

https://vector.com/portal/medien/cmc/manuals/VN1600_Interface_Family_Manual_EN.pdf
https://vector.com/portal/medien/cmc/manuals/VN1600_Interface_Family_Manual_EN.pdf
https://pandas.pydata.org/pandas-docs/stable/index.html
https://pandas.pydata.org/pandas-docs/stable/index.html

Non-exclusive licence to reproduce the-

sis and make thesis public

I, Kristaps Dreija (date of birth: 17th of February 1993),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public, includ-

ing for addition to the DSpace digital archives until expiry of the term of validity of

the copyright, and

1.2 make available to the public via the web environment of the University of Tartu, in-

cluding via the DSpace digital archives until expiry of the term of validity of the

copyright,

ONLINE BATTERY CELL STATE OF CHARGE ESTIMATION FOR USE IN

ELECTRIC VEHICLE BATTERY MANAGEMENT SYSTEMS

supervised by Assoc. Prof. Gholamreza Anbarjafari and Ms. Egils Avots
2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual

property rights or rights arising from the Personal Data Protection Act.

Tartu 20.05.2018

	Abstract
	Lühikokkuvõte
	List of Figures
	List of Tables
	Abbreviations, constants, generic terms
	Introduction
	Problem overview
	Motivation
	Goals

	Background
	Battery cells
	Lithium chemistry based cells

	Battery management system
	Battery management system workflow

	State of charge
	The problem with state of charge estimation
	State of charge algorithm complexity
	State of charge estimation approaches
	Choosing the state of charge estimation method

	Related Work
	Model-based estimation
	Equivalent circuit models
	First-order equivalent-circuit cell model

	The discrete Kalman filter
	Non-linear Kalman filters
	Sigma-point Kalman filter

	The Proposed Methodology
	Selected cell specification
	Model data acquisition
	Static cell parameter acquisition
	Dynamic cell parameter acquisition

	State of charge and battery parameter estimator implementation in C programming language
	State of charge estimator validation test
	Introduction
	Test equipment
	Test setup
	Test parameters
	Acquired data formatting

	Results
	Validation test 1
	Validation test 2

	Conclusion and Future Work
	Conclusion
	Future Work
	Static and dynamic cell parameter acquisition
	Embedded programming code optimization
	Cell model optimization
	Testing

	Acknowledgements
	References
	Non-exclusive licence to reproduce thesis and make thesis public

