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Chapter 1

Introduction

Since its detection in 1925 the spin as a fundamental characteristic of ele-
mentary particles has been in the forefront of research in particle physics.
Starting with low-energy experiments like the determination of the gyro-
magnetic ratio of an electron, applications reach through colliders like the
synchrotron into present time where the linear colliders have become im-
portant for the determination of the structure of fundamental interactions.

The current thesis studies some aspects of spin physics in the domain of
electroweak interactions of the Standard Model, taking into account pos-
sible new physics interactions. Applying the formalism of the general rel-
ativistic spin density matrix, the analytical calculation of the spin effects
in e+e− annihilation processes with heavy final particles in e+e− → tt̄ and
e+e− → Zγ have been carried out and analyzed. New measurable spin-
dependent quantities sensible to the new physics manifestations have been
constructed. These quantities turn out to be helpful in disentangling new
physics contributions from the Standard Model ones. Beside the investi-
gation of possible new physics manifestations in the given processes, some
problems of higher spin physics are analyzed in the thesis as well. The
obtained results are helpful in understanding of the Standard Model and
setting limits to new theories that may exist at energy scales unavailable
at present time.

The thesis consists of 8 chapters followed by the four research publi-
cations. With a slight exceptions, Chapters 2-7 cover all the contents of
Publications I-IV.

Chapter 2 gives a short introduction to the Standard Model and new
physics effects under consideration.

In Chapter 3 the mathematical apparatus for the description of the
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spin orientations, given in Publications I-III in one or another form, is also
presented as a whole but more generally and at the same time also more
detailed as it is done in the Publications.

The content of Chapter 4 where spin orientation effects in the process
e+e− → tt̄ are considered together with possible anomalous scalar type
interactions, is practically identical to the one of Paper I without the in-
troductory part and the given mathematical apparatus for describing the
spin states.

In Chapter 5 the spin physics in the process e+e− → Zγ is investi-
gated and clarified in the case of the presence of anomalous ZγZ and Zγγ
couplings. This chapter covers in a slightly more general form the main
contents of papers II and III.

In Chapter 6 the spin polarization and alignment of the Z boson in
e+e− → Zγ are compared with those of e+e− → ZH. In this chapter the
results of Papers II and III are also partly used.

In Chapter 7 the problem of the gyromagnetic ratio for charged spin-1
particles is considered. As compared to Publication IV, a short review of
the difficulties in higher-spin physics is given here as well.

Except for Chapter 7, in all chapters the different notations of the kine-
matical parameters and the usage of them for expressing the final results
are made uniform. The same is done for references to equations and to the
literature.
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Chapter 2

Standard Model of

elementary particles and

new physics

The present theory of the fundamental interactions – the Standard Model
– is phenomenologically successful at energies up to some hundred giga-
electronvolt (GeV). At present the Standard Model (SM) is in consistence
with all accelerator-based experiments. Despite that quite impressive phe-
nomenological success the SM as a theory is far to be satisfactory. There are
several fundamental questions that remain unanswered by the SM. It does
not explain clearly the mechanisms and the scale of the electroweak sym-
metry breaking. The origin of flavours, the spectrum of fermion masses and
the CP -violation also remain beyond the scope of the SM. Though, the SM
contains higher-spin (s = 1) massive gauge bosons, the problem of building
consistent higher-spin interaction theory is not yet solved in the SM. The
SM does not answer also the questions which are needed for complete un-
derstanding of Big Bang cosmology: the dark matter, the dark energy as
well the inflation. This list can be continued. To these theoretical short-
comings one can add also the first experimental discrepancy. At present
there is strong experimental evidence for neutrino oscillations [1, 2, 3, 4]
whose most obvious and natural explanation is that, contrary to the SM
conception, the neutrinos are massive.

Due to all that, there are strong reasons to expect that there is a great
deal of (new) physics beyond the SM, with characteristic mass scale. The
present good agreement between the accelerator-based experimental data
and the SM predictions suggests that the energy scale associated with any
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new physics (NP) model should be high as compared to the electroweak
scale (≈ 246 GeV).

The search for NP can be proceeded in various ways. The most straight-
forward method for searching NP would be the production of NP particles.
Up to now the energy of the existing accelerators is not high enough to pro-
duce such particles. It is believed that the new accelerator, Large Hadron
Collider (LHC), started in 2009, is able to produce new physics particles,
first of all new on-shell resonances or a single heavy new particle in as-
sociation with a SM particle [5]. However, such a scenario for visualizing
NP experimentally is obviously beyond the reach of future e+e− colliders.
Fortunately, there are ways to probe NP at the energies below the NP mass
scale. These more indirect scenarios are based on observations of small de-
viations from the SM predictions in processes where the external particles
are ordinary SM ones, and NP effects can arise only from non-standard in-
teractions. The price to pay for such possibilities to measure NP effects is,
of course, the need of higher sensitivity, both theoretical and experimental.

One of the possible sources of NP may be the existence of anomalous
scalar-tensor type couplings. Such couplings arise in many extensions of
the Standard Model. Most of all the possible manifestations of scalar-
tensor couplings are investigated in the top-antitop pair production in e+e−

annihilation.
The top quark is by far the heaviest fundamental particle. Because of

this, couplings including the top quark are expected to be more sensitive to
new physics manifestations than couplings to other particles. This is why
the top quark physics is a very fascinating field of investigations and has
been developed actively for a long time. During the last decades theoretical
investigations have been connected closely to the physics of future colliders
like the LHC at CERN and the International Linear Collider (ILC). As
already stated above, the LHC is no longer a future collider. The setup has
been completed and first useful scientific information will be available in
near future. The center-of-mass energy of 14 teraelectronvolt (TeV) and the
very large statistics allows to determine top quark properties accurately. On
the other hand, the future of the ILC is presently unknown. Nevertheless,
we use it as an example of future e+e− linear collider and its possibilities.

The proposed ILC designed for a center-of-mass starting energy of 500
GeV (later up to 1 TeV) and about three orders less statistics as compared
to the LHC is still considered as a perspective tool for complementary in-
vestigations of new physics manifestations. The reason is that compared
to LHC, the ILC has two distinctive advantages: a very clean experimental
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environment and the possibility to use both longitudinally polarized (LP)
and transversely polarized (TP) beams. In the baseline design of the ILC,
electron beams with LP around 0.8 and positron beams with LP about 0.6
are foreseen. By using spin rotators these polarizations can be converted
almost without losses into the TP ones. Especially the use of TP beams
gains more and more attention. By using LP one can enhance the sensi-
tivity for different parts of the coupling which, at least in principle, can be
measured also for unpolarized beams. However, TP provides new directions
which allow to analyze interactions beyond the Standard Model (SM) more
efficiently. This facility should be available at the ILC or other colliders of
the same type.

One of the areas where the advantage of TP beams can be used is just
the investigation of anomalous scalar-tensor type couplings. More than
thirty years ago Dass and Ross [6] and later Hikasa [7] showed that for
TP e+e− beams the amplitudes of such couplings interfere with the SM
ones. Due to the helicity conservation this is not the case when using un-
polarized or LP beams. For vanishing initial state masses the scalar and
tensor-type couplings at the e+e− vertex are helicity violating, whereas the
SM containing vector and axial vector couplings are helicity conserving.
Therefore, in the limit of massless initial particles there are no non-zero in-
terference terms for unpolarized and LP beams. However, as the argument
of helicity conservation fails for TP beams, for TP initial beams the scalar-
tensor coupling amplitudes interfere with the SM ones. Ananthanarayan
and Rindani [8] demonstrated how TP beams can provide additional means
to search for CP violation via interference between SM and anomalous,
scalar-tensor type coupling contributions in e+e− → tt̄. Therefore, the use
of TP beams enables to probe new physics appearing already in first order
contributions. In addition, the additional polarization vector allows to an-
alyze CP violation asymmetries without the necessity for final state top or
antitop polarizations.

The aforementioned advantages can be used also in analysing (pseudo)
scalar unparticle manifestations via their virtual effects. The unparticle is
a new concept proposed by Georgi [9] based on the possible existence of
a nontrivial scale invariant sector with an energy scale much higher than
that of the SM. At lower energies this sector is assumed to couple to the
SM fields via nonrenormalizable effective interactions involving massless
objects of fractional scale dimension du coined as unparticles. Using con-
cepts of effective theories one can calculate the possible effects of such a
scale-invariant sector for TeV-scale colliders. The existence of unparticles
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could lead to measurable deviations from SM predictions as well as from
the predictions of various models beyond SM. The experimental signals of
unparticles might be of two kinds. If unparticles are produced, they man-
ifest themselves as missing energy and momentum. On the other hand,
unparticles can cause virtual effects in processes of SM particles.

Since Georgi’s significant publications the study of unparticle physics
has gained a lot of attention, shedding light on both theoretical and phe-
nomenological aspects. The most interesting theoretical developments of
unparticle physics are listed in [10].

From these theoretical studies it follows that unparticle physics features
a very rich phenomenology which may be radically different from particle
theory. The phenomenological studies consider mainly possible unparticle
manifestations in LHC and ILC processes. Since unparticle physics has
a very rich phenomenology, the number of papers in this sector is much
greater than in the theoretical sector. A significant part of the phenomeno-
logical studies in particle physics are related to the top quark, especially to
top quark pair production processes in e+e− collisions (see e.g. [11] and
references therein). A unique feature of virtual unparticle exchanges is the
complex phase of the unparticle propagator for timelike momenta. If this
feature could be identified, it would be a conclusive device for the existence
of unparticles. One way to capture the feature is again to use TP initial
beams at linear e+e− collider processes.

In this thesis it is studied how TP initial beams can be used to disentan-
gle scalar particle and unparticle contributions from SM contributions in
the process e+e− → tt̄. The analytic expressions for the differential cross
section of the process with anomalous scalar particle and virtual scalar
unparticle coupling corrections are presented in the case where the top
(antitop) quark polarization is measured. The main features of the SM,
anomalous particle and unparticle contributions and the methods to iso-
late signatures for different contributions are presented and analyzed.

Already for a long time it is believed that a possible source of NP may
be also the existence of anomalous gauge boson self-couplings which can
reveal themselves through the gauge boson production processes with non-
standard gauge boson self-couplings vertices. Motivated by this possibility,
such couplings have been theoretically extensively investigated and exper-
imentally tested. Though to date no evidence of anomalous gauge boson
self-couplings have been established, the bounds obtained at the CERN
e+e− collider and Fermilab Tevatron are comparatively weak [22, 23]. It is
also clear that the current colliders cannot provide sensitivities which would

14



be considerably better than the ones already achieved. Obviously, if the
anomalous gauge boson self-interactions altogether exist they are too small
to be established at current colliders. However, the study of gauge boson
anomalous self-interactions is an important item in the physics programs of
the planned next generation colliders. As soon as the proposed high energy
colliders start running, a dramatic improvement of the sensitivity of the
experiments to non-standard couplings is expected [24, 25]. It has been
shown that one of the most sensitive probes of NP is provided by the cou-
plings of three neutral gauge bosons [26]. Among the processes to which
such couplings could contribute are the neutral gauge boson production
processes in e+e− collisions (e+e− → γγ, Zγ, ZZ).

After putting into operation the planned next generation electron-posit-
ron colliders, new prospects for testing aforementioned anomalous couplings
in these processes will be open. A future e+e− International Linear Collider
(ILC) operating in the wide energy range up to 1 TeV and designed with
high luminosity, with an additional advantage to have both initial beams
longitudinally and transversely polarized provides an excellent discovery
potential. Due to these possibilities, the role of the initial particle polariza-
tions, especially the role of the transverse polarization in the processes with
possible anomalous parts of couplings have attracted noteworthy attention
in recent years [27, 28, 30]. A considerable part of these investigations
is constituted by those considering the LP and TP effects in the process
e+e− → Zγ. A lot of initial beams polarization effects in this process which
would be helpful in the experimental testing of anomalous couplings have
been found and analyzed. However, the studies connected with the role
of initial beam polarizations in searching for anomalous gauge boson self
interactions are not yet exhaustive.

In this thesis the possible anomalous gauge boson self-couplings correc-
tions to the Z boson spin orientation in the process e+e− → Zγ are studied
with an accent on the role of the longitudinal and transverse polarization of
the initial beams in disentangling the SM and anomalous couplings (ZγZ
and Zγγ).

The methods for searching non-standard physics manifestations below
the NP mass scale at high-sensitive colliders cannot be successful without
knowing the SM predictions with needed precision. Maybe most expres-
sively this requirement is given in the paper of Lykken [5]. He writes that
“... to first approximation LHC experimenters do not need to know any-
thing about BSM [Beyond the SM] models in order to make discoveries –
but they need to know a lot about Standard Model physics!” For detect-
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ing NP manifestations through the spin orientation effects in the processes
presented in this thesis, one needs to know a lot about spin effects within
the SM. One can say that the knowledge of all possible spin effects within
the framework of the SM forms a basis for rejecting or limiting various
nonstandard couplings. Hence, the studies of spin effects in the SM are
still worthwhile. In the thesis the spin orientation effects in e+e− → Zγ
in the SM near the threshold energy of the process is investigated in detail
and compared with those of the process e+e− → ZH.

Beside the possible existence of anomalous gauge boson self-couplings
another problem connected with the possible non-standard behaviour of
the gauge bosons exists. It is the problem of higher-spin interaction theory.
With the massive gauge bosons introduced into the SM, also the known
difficulties of higher-spin interaction theories have been incorporated into
the SM. Indeed, the charged spin-1 W± bosons cause serious troubles when
coupled minimally to electromagnetic field, among others the bad high-
energy behavior of scattering amplitudes. Weinberg showed [31] that non-
minimal couplings, especially those with gyromagnetic ratio g = 2, can
(partly) cure these difficulties.

The fact that in the case of higher spin particles the minimal electro-
magnetic coupling leads to serious inconsistencies was known more than
40 years ago [32, 33]. During the long-time investigations it became clear
that a promising way to get the consistent higher-spin interaction theory
is to introduce non-minimal interaction into the theory. The question is
how to find the true non-minimal coupling. In the case of spin-1 W± gauge
bosons, a suitable non-minimal coupling term linear in the field strength
tensor Fµν was added in fact by hand in order to overcome the bad high-
energy behaviour. Obviously the true form of the non-minimal coupling
with g = 2 lays on some theoretical grounds. Such grounds have been
looked for [34, 35]. However, the models proposed seem to be not general
enough. More generally, the search for theoretical grounds for the non-
minimal coupling which gives g = 2 is also the search for the dynamical
principle for building a consistent higher-spin electromagnetic interaction
theory.

One of the theoretical models that determines a special “dynamical”
nonminimal coupling is based on using the field-dependent invariant rep-
resentation of the Poincaré algebra [36]. In this thesis it is shown that the
“dynamical” coupling leads to the gyromagnetic ratio g = 2. In such a
manner, using a “dynamical” interaction may be one of the ways to reach
closer to the consistent higher-spin interaction theories.
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Chapter 3

Description of spin

orientations of particles

In processes the particles with non-zero spins are as a rule in a mixed spin
state. Contrary to the pure states, which can be described by a single wave
function, for describing the mixtures an incoherent mixture of 2s + 1 or-
thogonal pure state wave functions are needed. The most natural way to
describe the mixtures is to use the spin density matrix formalism. However,
since in the higher-spin (s ≥ 1) cases the calculations using general relativis-
tic spin density matrix formalism are not very simple and the expressions
obtained are often quite cumbersome, usually other ways to describe spin
physics in processes are used. In most papers the spin-related studies are
carried out by employing the helicity bases. This is reasonable because
the method of summing the Feynman diagram amplitudes with definite
helicities of initial and final particles has proved to be a powerful tool for
describing the spin orientation phenomena. However, the helicity basis will
not always be the most suitable one for spin effects analyses, especially when
particles are only moderately relativistic [42, 43, 44]. Therefore, since the
massive gauge bosons and the top quark, participating in the processes un-
der consideration in the thesis are very heavy, there is no reason to believe
that the helicity bases will be the best choice to describe their spin orien-
tations. In this thesis it is demonstrated that one can reach the desired
results comparatively easily also by using the relativistic density matrix
formalism in a general form. The essence of the method is explained in
the following. When interested in the spin orientation of certain particle
in the process, one replaces the uū (spin-1/2 case) or εµ ε∗ν (spin-1 case)
in the squared amplitude of the process by relativistic spin density matrix
describing the mixed state.

17



3.1 General properties of spin density matrices

To calculate the processes under consideration in the thesis the relativistic
spin density matrices for massive spin-1/2 and spin-1 particles are needed.
Thus, one must construct these density matrices.

We start with presenting the definition of the spin density matrix and
its main properties in a general case. Let us have a pure spin ensemble,
which is described by the wave function (state vector) that is generally a
coherent mixture of the eigenstates, i.e.

|ψ〉 =
∑

n

|n〉〈n|ψ〉 =
∑

n

an|n〉. (3.1)

The probability of finding the state in the eigenstate |n〉 is

pn = 〈n|ψ〉 〈ψ|n〉 = |an|2. (3.2)

Denoting the observable belonging to ensemble |ψ〉 by Q, one can give the
mean value of this operator as

〈Q〉 = 〈ψ|Q|ψ〉 =
∑

n,n
′

a∗nan
′ 〈n|Q|n′〉. (3.3)

Instead of the wave function |ψ〉 the pure ensemble can be described by an
operator

ρ = |ψ〉 〈ψ|. (3.4)

Indeed, if one has an observable Q, it is a simple task to show that

Tr ρQ = 〈ψ|Q|ψ〉. (3.5)

Hence, multiplying operator (3.4) by the operator Q and tracing the result,
one gets the same formula as in finding mean values with the help of the
wave function. By using the ρ-operator, one can for instance also find the
probability of the appearance some eigenvalue. For this one has to multiply
the operator ρ by the operator p̂(ak) = |ak〉 〈ak| and then take the trace
from the result to get

Tr ρp̂(ak) = |ak|2 = p(ak). (3.6)

Thus, it can be shown that pure ensembles may be described either by
the wave function, which is the vector in n-dimensional Hilbert space or
by the second-rank tensor in the same space. The operator ρ is called the
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density or statistical operator but more often it is called the density matrix.
One gets no advantage from using the density matrix instead of the wave
function. It is only an alternative possibility to describe pure ensembles.
Nevertheless, for the further aims we present here the general features of
the density matrix (3.4):

1. The density matrix is hermitian. If |ψ〉 =
∑

n |n〉 〈n|ψ〉 =
∑

n an|n〉,
then 〈n|ρ|n′〉 = ρnn′ = 〈n|ψ〉 〈ψ|n′〉 = ana∗

n
′ and ρn′ n = an′a∗n.

Hence, ρn
′
n = ρ∗

nn′ or

ρ = ρ†. (3.7)

2. The trace of the density matrix in any matrix representation is equal
to unity. Indeed, if the wave function is normalized, then

Tr ρ =
∑

n

ana∗n = 1. (3.8)

3. As every hermitian matrix, the density matrix can be reduced to the
diagonal form by a unitary transformation.

4. Every diagonal element of ρ in any representation must be non-
negative. The diagonal element ρnn = an a∗n is connected with the
probability of the ensemble being in some definite eigenstate, there-
fore

ρnn ≥ 0. (3.9)

Let us consider the diagonal form of pure state density matrix in more
detail. The operator ρ defined in (3.4) is in fact a projection operator,
which projects out the state |ψ〉. If the operator is the projection operator,
the squared operator has to be the same operator again. Thus,

ρ2 = |ψ〉 〈ψ|ψ〉 〈ψ| = |ψ〉 〈ψ| = ρ (3.10)

and
Tr ρ2 = 1. (3.11)

These features are conserved also in the diagonal form. Denoting the eigen-
values of ρ by ρn, one can write ρ2

n = ρn from which one gets ρn = 0 or
ρn = 1. As

∑

n ρn = 1 (from (3.8)), one gets that the diagonal elements of
ρ are equal to zero except for one of them, which is equal to unity.

Let us now turn to mixtures. Suppose that the ensembles, which cannot
be described by a single wavefunction can be described by some operator ρ,
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which is called the density matrix. Naturally, it is not the density matrix
defined by (3.4), but one supposes that formula (3.5) which in the pure
state determines the mean values of the operators is valid here as well. We
rewrite this formula with the new operator ρ:

〈Q〉 = Tr ρQ. (3.12)

One may take (3.12) (and most of experts really take) as definition of the
density matrix ρ. Let us now present the properties of this density matrix
[45].

1. The condition that 〈Q〉 is real for every hermitian operator requires
ρ to be hermitian:

ρnn
′ = ρ∗

n
′
n

(ρ = ρ†). (3.13)

2. The condition that the unit operator Î has the mean value 1, requires

Tr Îρ = Tr ρ =
∑

n

ρnn = 1. (3.14)

3. The hermitian matrix ρ can be reduced to the diagonal form by a
unitary transformation U :

ρd = UρU †. (3.15)

Since ρ is no longer a projection operator, all its diagonal elements
can have nonzero values.

4. The condition that every operator with non-negative eigenvalues has
a non-negative mean value requires ρ to be positively definite. This
means that every diagonal element of ρ in any matrix representation
has to be non-negative:

ρnn ≥ 0. (3.16)

The values of diagonal elements are restricted by the properties (3.14) and
(3.16) in the following way:

Tr ρ2 =
∑

n

ρ2
n ≤ (Tr ρ)2 . (3.17)

However, this formula restricts not only the diagonal but also the non-
diagonal elements of ρ. Indeed,

Tr ρ2 = Tr ρ ρ =
∑

n n
′

ρn n′ ρn′ n ≤ 1 (3.18)
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that limits the value of every single element of the density matrix.
We now proceed to analyze the relations between the density matrix

and mixture. The latter is described by the incoherent superposition of the
pure states. Incoherent superposition means by definition that to calculate
the probability of finding a certain mixed state, one must calculate the
probability for each pure state and then take an average attributing to
each of pure states an assigned weight. The pure state density matrix
expressed through the pure state wave function is given by (3.4). It can
be shown that the spin density matrix expressed through the incoherent
mixture of pure state wave functions takes the form [46]:

ρ =
∑

λ

ρλ|ψλ〉 〈ψλ|. (3.19)

Comparing this outcome to the pure state density matrix one finds that the
density matrix describing mixed state is given as a sum of several density
matrices of different pure states each of which taken with its weight. One
can take also (3.19) as the definition of the density matrix. However here
a problem arises. This representation is not unique. Many different inco-
herent mixtures leading to the same density matrix can be constructed. As
an example, the mixtures







ρ1 = 1
2

ρ2 = 1
2

,

{

|φ1〉 = 1√
2
|+〉 + 1√

2
|−〉

|φ2〉 = 1√
2
|+〉 − 1√

2
|−〉 (3.20)

and






ρ1 = 1
2

ρ2 = 1
2

,

{

|φ1〉 = |+〉
|φ2〉 = |−〉 (3.21)

lead to the same density matrix

ρ =





1
2 0

0 1
2



 ,

describing unpolarized spin-1/2 beams.
Generally, in arbitrary spin case, if among the eigenvalues of the ρ

there exist nonzero degenerate ones, several different mixtures correspond
to the same ρ. It is the lack of one to one correspondence between the
mixtures and the density matrices because the definition of the ρ by (3.12)
is preferred as compared to the definition through the mixture.
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3.2 Parametrization of spin density matrices

There are lot of possibilities to parametrize the density matrices. However,
not all ways of parametrization are convenient for solving most problems,
including the ones considered in this thesis. The two methods for the
parametrization of the spin density matrices mainly used are parametriza-
tion by Cartesian tensors and parametrization by spherical tensors. In the
thesis we use the first of them.

In nonrelativistic physics the spin-s density matrix is a hermitian (2s+
1)(2s + 1) matrix, which can be described maximally by 4s(s + 1) real pa-
rameters. To expand such a matrix a complete set of (2s+1)2 = 4s(s+1)+1
basis matrices is needed. If we constitute the basis by the unit matrix, the
spin matrices Sx, Sy, Sz and certain combinations of the products of the
spin matrices whose mean values transform like Cartesian tensors, we have
parametrized spin density matrices by Cartesian tensors.

Nonrelativistic spin-1/2 density matrix

We begin with the spin-1/2 case. To expand 2 × 2 density matrix four
basis matrices are needed. As the basis matrices may serve the unit matrix
and three spin matrices. Since the product of two spin matrices in the case
of s = 1/2 can be given again by the unit matrix and spin matrices

Si Sj = δijI/4 + iǫijkSk/2, (3.22)

where ǫijk is totally antisymmetric tensor, this choice is unique. Hence,

ρ = cI + ξxSx + ξySy + ξzSz. (3.23)

Since Tr Si = 0, and Tr I = 2, the trace condition Tr ρ = 1 gives at once
c = 1/2 and one can write

ρ =
1

2
(1 + 2ξiSi), (3.24)

where we have used the summation convention over repeated indices.
More often, instead of the spin matrices Si, the Pauli matrices σi = 2Si

are used. This gives a familiar form of nonrelativistic spin-1/2 density
matrix

ρ =
1

2
(1 + ξi σi). (3.25)

The expansion coefficients ξi as parameters of the ρ, are the mean values
of the basis matrices:

ξi = Tr ρσi. (3.26)
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They are the components of the polarization vector. The basis matrices I
and σi have some very good properties, which make their usage for spanning
the ρ matrix extremely convenient. The first property is the trace condition,
the second property is the orthogonality property in the sense of

Tr Si Sj =
1

2
δij , (Tr σi σj = 2δij). (3.27)

The third property is the advantage that if expanding the ρ matrix in
terms of I and σi one has used the scalar and vector representation of the
basis. These representations are irreducible. This means that various-rank
tensors do not mix under the space rotation: the components of tensors of
any rank are given by the components of the same rank tensors. If certain
rank tensors are equal to zero in some coordinate system, they must be
zero in any system.

The last good property of the basis used above is its hermiticity. From
this property the reality of the mean values of the basis follows.

Nonrelativistic spin-1 density matrix

Here our task is to construct a spin-1 density matrix expansion on the
basis with the same good properties as in spin-1/2 case. For describing
the spin-1 density matrix one needs maximally 8 real parameters and to
expand it 9 basis matrices are needed. For the first four matrices one can
take here, similarly to the spin-1/2 case a unit 3× 3 matrix and three spin
matrices Sx, Sy, Sz. Therefore we need five independent second rank irre-
ducible tensor components to span the whole basis. There are six different
products of two spin matrices: Sx Sy, Sx Sz, Sy Sz , Sx Sx , Sy Sy, Sz Sz, but
these products do not satisfy any of the four good properties of the spin-1/2
case. Their traces are not equal to zero, they are not irreducible, hermi-
tian or orthogonal. We begin with making this part of basis matrices to
be hermitian. In order to convert the basis to a hermitian one we will use
the fact that only the symmetrized product of two hermitian matrices is
hermitian. The second rank tensor can be divided into a symmetrical and
antisymmetrical part:

Si Sj =
1

2
(Si Sj + Sj Si) +

1

2
(Si Sj − Sj Si) =

1

2
(Si Sj + Sj Si) +

i

2
ǫijkSk.

(3.28)
Since the antisymmetrized part is a tensor one rank lower, we are interested
in the symmetric part only. According to group theory it reduces to a scalar
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and a second rank tensor with zero trace. Since TrSiSj = 2δij , one may
define

Sij =
3

2

(

Si Sj + Sj Si −
4

3
δijI

)

(3.29)

that are hermitian irreducible zero trace matrices. Therefore, one can take
Sij together with I and Si as the needed basis elements.

Then the density matrix takes the form

ρ =
1

3

(

I +
3

2
tiSi +

1

3
tijSij

)

. (3.30)

However, this basis is overdetermined. Instead of 9 matrices needed for
expanding the density matrix it contains ten matrices: It can be readily
seen when one expands (3.30) as

ρ =
1

3

[

I +
3

2
(txSx + tySy + tzSz)

+
2

3
(txySxy + txzSxz + tyzSyz)

+
1

3
(txxSxx + tyySyy + tzzSzz)

]

. (3.31)

But not all of the elements of the basis are linearly independent. There
exists a linear relation between three elements:

Sxx + Syy + Szz = 0. (3.32)

Indeed, because of the square angular momentum formula

~S
2

= S(S + 1),

which leads to ~S
2

= 2 in the spin-1 case, one has

3

2

[

2(S2
x + S2

y + S2
z ) − 4

]

=
3

2
(2~S 2 − 4) = 0.

Now the reduction of the number of the parameters from 9 to 8 can be
conveniently done by taking

txx + tyy + tzz = 0. (3.33)

Keeping in the mind these restrictions one can calculate the mean values
of all basic elements. These mean values ought to be equal to the corre-
sponding expanding parameters. Using the trace formulas in the spin-1
case

Tr SiSj = 2δij (3.34)
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and

Tr SijSlm =
3

2
(−2δijδlm + 3δilδjm + 3δimδjl), (3.35)

one can readily find that

〈Si〉 = Tr ρSi = ti (3.36)

and for i 6= j
〈Sij〉 = Tr ρSij = tij . (3.37)

For the mean values of the rest three basis matrices one gets

〈Sxx〉 = Tr ρSxx =
2

3
txx − 1

3
tyy −

1

3
tzz,

〈Syy〉 = Tr ρSyy =
2

3
tyy −

1

3
txx − 1

3
tzz, (3.38)

〈Szz〉 = Tr ρSzz =
2

3
tzz −

1

3
txx − 1

3
tyy.

However, by using the restriction (3.33), one gets

〈Sxx〉 =
2

3
txx − 1

3
tyy −

1

3
tzz −

1

3
txx +

1

3
txx = txx (3.39)

and similarly for 〈Syy〉 and 〈Szz〉. Hence, the overcomplete nonorthogonal
basis with the supplementary condition (3.32) is equivalent to the orthog-
onal basis. Also, due to restriction (3.33), one gets

ρij =
1

3
δij +

1

2
tk (Sk)i,j +

1

6
tkl(Sk Sl + Sl Sk)ij , (3.40)

with tk = Trρ Sk and tkl = Trρ Skl. The first is called the polarization
vector and the second is the orientation tensor describing the alignment
of spins. Note here, that the coefficient 3/2 in (3.29) is introduced to
guarantee that the parameters tk and tkl would be exactly the mean values
of the basic matrices. Taking the representation (Sk)ij = −iǫijk, one gets

(Sk Sl + Sl Sk)ij = 2δksδij − δkiδlj − δkjδli

and (3.40) can be written in a more simple form:

ρij =
1

3
(δij −

3

2
i tkǫijk − tij). (3.41)
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3.3 Restrictions on spin density matrix parame-

ters by positivity conditions

We begin with presenting physical boundaries (extremal values) of the spin
density matrix parameters. The knowledge of the boundaries of the pa-
rameters is useful when determining experimentally the spin states of the
particles. That is why there exist several papers devoted to the problem
of finding extremal values of spin density matrix parameters [46, 47]. The
problem itself is not complicated and in spin-1/2 and spin-1 cases one can
solve it in a straightforward way. As the parameters are equal to the mean
values of basis operators, one must find the expressions of these mean values
and then evaluate their extrema. As a rule the parameters take their ex-
tremal values when the spin ensemble is in some pure state. The boundaries
for spin-1/2 and spin-1 are given in the Table 3.1.

Parameter\ Spin 1/2 1

ξi resp. ti 1 1

tij (i 6= j) - 3/2

tii - 1, −2

Table 3.1: The extremal values of spin-1/2 and spin-1 density matrix pa-
rameters.

But physical boundaries are not the only restriction to the parameters of
the density matrix. In their physical region parameters cannot take values
separately from each other. Parameters are linearly independent. However,
they depend on each other nonlinearly, which is due to the positivity (non-
negativity) condition of the density matrix. It appears that the positivity
requirement restricts substantially all density matrix elements and with
this also the parameters of the density matrix. In order to become aware
of this, note that the positivity requirement is equivalent to the statement
that for every complex vector in a 2s + 1 dimensional space the condition
〈x|ρ|x〉 ≥ 0 is valid. From this it follows that all principal minors of ρ are
non-negative. Beginning from the lower-rank principal minors, one gets:

ρmn ≥ 0, (3.42)

∣

∣

∣

∣

ρmm ρmn

ρnm ρnn

∣

∣

∣

∣

= ρmmρnn − |ρmn|2 ≥ 0, (3.43)
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∣

∣

∣

∣

∣

∣

ρmm ρmn ρml

ρnm ρnn ρnl

ρlm ρln ρll

∣

∣

∣

∣

∣

∣

= ρmmρnnρll + ρmnρnlρlm + ρnmρlnρml

− ρlmρnnρml − ρnmρmnρll − ρlnρnlρmm ≥ 0.

(3.44)

The restrictions on the elements of ρ coming from these minors can be
given as linear combinations of various powers of the density matrix. The
equation (3.42) is the statement that every diagonal element of ρ is non-
negative.

In the case of s = 1/2 one has

Trρ2 = ρ2
mm + ρ2

nn + 2|ρnm|2 = 1 + 2(|ρnm|2 − ρmmρnn) (3.45)

and instead of (3.43) one can write

Trρ2 ≤ 1. (3.46)

This formula can be deduced from (3.43) also in the case of spin-1 (actually
in the case of any spin). This is already familiar formula, which does not
restrict substantially the ρ parameters. However, one can show that (3.44)
is equivalent to the inequality [46]

2Trρ3 − 3Trρ2 + 1 ≥ 0. (3.47)

This new formula restricts substantially the parameters in the spin-1 case.
If one expresses the density matrix ρ through its parameters, one gets the
restriction to the parameters:

2

9
− 1

2
ti ti +

1

2
titjtij −

1

9
tijtij −

2

27
tijtjktki ≥ 0. (3.48)

From this expression one can clearly see how the vector and tensor pa-
rameters of spin-1 density matrix depend nonlinearly on each other. The
expression is useful when analyzing the possibilities of tuning the final spin-
1 particle (Z-boson) orientation by varying the polarizations of the initial
beams of electrons and positrons.
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3.4 Relativistic spin-1/2 and spin-1 density matri-

ces

In order to calculate the processes under consideration in this thesis the
relativistic spin density matrices are needed. One can expect that the rel-
ativistic density matrices can be easily obtained by applying the Lorentz
boost transformation to the nonrelativistic ones deduced above. This is
indeed the case for the spin-1, however, for the spin-1/2 case difficulties
arise. The solutions of the Dirac equations describe both particles and
antiparticles and in these solutions one can separate the particle and an-
tiparticle ones and with it one can also build for them different spin density
matrices. On the contrary, the nonrelativistic density matrix (3.25) does
not distinguish between particle and antiparticle. Due to this it is better
to construct the relativistic pure state density matrix (the spin projection
operator) by boosting the rest frame density matrix built from rest frame
Dirac solutions. One can find such a procedure for building relativistic
density matrices in many textbooks (see, for example [70]) and this is why
we give here only the final result. It is

ρ∓ =
1

2
(6k∓ ± m)(1 + γ5 6s∓), (3.49)

where the upper sign refers to the particle (electron) and the lower one to
the antiparticle (positron). Here and afterwards we use the Feynman slash
notation 6A = Aµγµ. The polarization four-vectors are given as

sµ
∓ = (s0, ~s∓) =

(

~k∓ · ~ξ∓
m

, ~ξ∓ +
(~k∓ · ~ξ∓)~k∓
m(k0 − m)

)

, (3.50)

where ~ξ∓ are polarization vectors in the rest frames of particles (antipar-
ticles). It turns out that for construction of relativistic spin-1/2 density
matrices one does not need the theory of parametrization of non-relativistic
spin-1/2 density matrices. However, we hope that presenting such a theory
is helpful for a better understanding of the corresponding spin-1 theory.

Density matrices like (3.49) are usually substituted into the squared
amplitude instead of uū and vv̄. Since u and v describe the pure states,
the ρ∓ are pure state density matrices and due to this the restriction

|~ξ∓| = 1 (3.51)

is used. However, since the particles are really in mixed spin states, it is
more natural to substitute mixed state density matrix into the expression
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of the squared amplitude. When doing so the density matrix preserves its
form. Only the rest frame polarization vector module can now take any
values between zero and one (0 ≤ |~ξ| ≤ 1).

If the initial electron and positron beams have both LP and TP com-
ponents, it is useful to divide the polarization vector s∓ into LP and TP
parts. The limit m/k0

∓ → 0, which is used for the calculations in the thesis,
can be conveniently taken by making use of the approximation

sµ
∓ ≈ h∓

kµ
∓

m
+ τµ

∓, (3.52)

and subsequently setting m = 0. In this equation h∓ is the measure of the
LP and τµ

∓ = (0, ~τ∓) is the TP four-vector with ~τ∓ as transverse ((~k∓ ·~τ∓) =
0) component of the polarization vector. When substituting sµ

∓ in the form
(3.52) into (3.49), after using the limit m → 0, the latter takes the form
convenient for the calculations [6]:

ρ =
1

2
(1 ± h∓γ5 + γ5 6τ∓) 6k∓. (3.53)

In our calculations it is assumed that both initial beams, the electron and
the positron ones are arbitrarily polarized and this formula is always used.
It is assumed that the polarization state of only one of the final particle
in the process e+e− → tt̄ is observed. When the top quark polarization is
measured, one replaces u(pt)ū(pt) in the squared amplitude by the density
matrix

u(pt)ū(pt) →
1

2
(6pt + Mt)(1 + γ5 6st) (3.54)

and sums over the spin states of the antitop, i.e.

v(pt̄)v̄(pt̄) → (6pt̄ − Mt). (3.55)

If the antitop polarization is measured, one uses the replacements

v(pt̄)v̄(pt̄) → 1

2
(6pt̄ − Mt)(1 + γ5 6st̄) (3.56)

u(pt)ū(pt) → 6pt + Mt. (3.57)

Contrary to the spin-1/2 case, there are no problems when boosting the
nonrelativistic spin-1 density matrix deduced above to get the relativistic
one. Since the anti-Z boson coincides with the Z itself, there are no diffi-
culties connected with the particle-antiparticle problem and the relativistic
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density matrix for spin-1 Z boson can be obtained by simply boosting the
nonrelativistic one given by (3.41)

ρµν = Λ i
µ ρij(Λ

−1)j
ν =

1

3
Λ i

µ Λ j
ν (δij −

3

2
itkǫijk − tij), (3.58)

where the boost operator is given as

Λκ
λ =

(

E
M − pl

M
pk

M δk
l − pk pl

M(E+M)

)

. (3.59)

3.5 Polarization of final particles

In the thesis it is supposed that the spin orientation of one of the final
particles is observed. If the other final particle has non-zero spin, the
summation over its orientation states is performed. Under these conditions
the squared amplitude of the processes e+e− → tt̄ and e+e− → Zγ can be
given respectively in the forms

|M |2 ∼ S + Visi (3.60)

and
|M |2 ∼ S + Viti + Tijtij , (3.61)

where S, Vi and Tij are the scalar, vector and tensor built from the po-
larization parameters of the initial particles (h−, h+, ~τ−, ~τ+), kinematical
parameters of all the particles participating in the process and the coupling
constants.

In the processes analyzed in this thesis the kinematical parameters in
the CM system are ~k, ~p and M , where ~k is the electron momentum and
~p, M accordingly the momenta and masses of the top quark or Z boson.
At the threshold energies the processes are described only by one vector
(k̂).

We have used the symbols Si and Vi for both processes not assuming
that they have the same values. The squared amplitudes given above de-
termine the probability that the processes produce the final particles with
the spin orientation characterized by the density matrix parameters ξi (for
t and t̄) and ti, tij (for Z). On the other hand, the same probabilities can
be expressed also as the traced production of two density matrices:

Tr ρrρ ∼ (1 − srs) = 1 + ~ξ r~ξ (3.62)
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in the spin-1/2 case and

Trρr ρ ∼ 1 +
3

2
tri ti +

1

3
trij tij (3.63)

in the spin-1 case, where the real (actual) density matrices (and their pa-
rameters) of the final particles are denoted by the index r. The unindexed
symbols are the density matrices and their parameters, which are sub-
stituted into the squared amplitude instead of uū (vv̄) or (εZ

µ εZ ∗
ν ). By

comparing the calculated squared amplitudes (3.60) and (3.61) with the
expressions (3.62) and (3.63) one can find the actual polarization vectors
and alignment tensors.

As a result one obtains

ξr
i =

Vi

S
(3.64)

for the process e+e− → tt̄ and

tri =
2

3S
Vi, (3.65)

trij =
3

S
Tij (3.66)

for the process e+e− → Zγ. Such a method of finding the polarization
parameters of the final particles in the spin-1/2 case was first given in [48]
and generalized for the spin-1 case in [12, 13].
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Chapter 4

Anomalous scalar-type

couplings in e+e− → tt̄

In this chapter we consider the role of the polarization of the initial beams
in the process e+e− → tt̄ in searching for indications of possible anomalous
scalar particle and unparticle couplings. The main accent in these investi-
gations has been put to the role of transversely polarized initial beams. We
find and analyze the analytical expressions for the differential cross section
of the process with top or antitop polarization observed and show how the
differences between SM and anomalous particle or unparticle coupling con-
tributions provide means to search for anomalous coupling manifestations
at future linear colliders.

In our calculations we assume that the amplitudes for the anomalous
couplings are much smaller than the amplitudes of SM couplings. Because
of this, the squared amplitude of the SM process can be supplemented
by the interference of SM and anomalous couplings. The electron mass is
taken to be zero. The calculations have been performed in the center-of-
mass system without specifying the coordinate system and spin polarization
axes.

4.1 Amplitudes of the couplings

In the SM there are two tree-level s-channel Feynman amplitudes, one with
γ-exchange and the other with Z-exchange, describing the process

e+(k+) + e−(k−) → t(pt) + t̄(pt̄). (4.1)
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In the approximation used one can write these as

Mγ =
2e2

3s
v̄(k+)γµu(k−)ū(pt)γµv(pt̄), (4.2)

MZ = − g2

4 cos2 θW (s − M2
Z)

v̄(k+)γν(gV − gAγ5)u(k−)ū(pt)γν(cV − cAγ5)v(pt̄),

(4.3)

where gV = −1
2 + 2 sin2 θW , gA and cV = 1

2 − 4
3 sin2 θW , cA are corre-

spondingly the vector and axial-vector coupling constants of the Z-boson
to the electrons and the top quarks and the θW is the Weinberg angle.
s = (k+ + k−)2 is the first Mandelstam variable.

We use the effective anomalous scalar1 coupling amplitude (particle
case) in the form

Mp = Kp v̄(k+)(gS + igP γ5)u(k−) ū(pt)(cS + icP γ5)v(pt), (4.4)

where gS , gP and cS , cP are the scalar and pseudoscalar coupling constants
of the electron and the top quark, respectively, Kp = g2

p/Λ2
p with gp as

a dimensionless coupling constant and Λp is the scale of the anomalous
coupling.

The propagator for the scalar unparticle has the general form [9, 14]

∆ =
Adu

2 sin(duπ)
(−P 2)du−2, (4.5)

where du is the scale dimension and the factor Adu
is given by

Adu
=

16π5/2Γ(du + 1/2)

(2π)2duΓ(du − 1)Γ(2du)
. (4.6)

In the process under consideration mediated by the s-channel unparticle
exchange, the propagator features a complex phase,

(−P 2)du−2 = |P 2|du−2
e−iduπ. (4.7)

The Feynman rules for the interaction of the virtual scalar unparticle with
SM fermionic fields can be found in [14]. We use the general case with
different coupling constants for scalar and pseudoscalar interactions as well

1For simplicity, we use the term “scalar” to refer the combination of scalar and pseu-

doscalar couplings used in what follows.
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as for different flavours. In this case the virtual exchange of a scalar unpar-
ticle between two fermionic currents can be expressed by the four-fermion
interaction

Mu =
g2
u Adu

|P 2|du−2 e−i duπ

2 sin(duπ)(Λ2
u)du−1

v̄(k+)(gS+igP γ5)u(k−) ū(pt)(cS+icP γ5)v(pt̄).

(4.8)
In this expression we also use the same symbols gS , gP , cS and cP for
the scalar and pseudoscalar coupling constants without assuming that they
take the same values as in (4.4). In the CM system one takes ~k− = ~k,
~k+ = −~k, ~pt = ~p and ~pt̄ = −~p.

After substituting the needed spin density matrices (3.53) and (3.54)-
(3.55) or (3.56)-(3.57) into the squared amplitudes, after fairly routine cal-
culations one gets the analytical expressions for the squared amplitude of
the process with possible anomalous scalar particle or unparticle correc-
tions.

4.2 The expressions for the differential cross sec-

tion

Here we present the analytical expressions for the differential cross sec-
tion contributed from the three sources: from the SM couplings and from
the interference of the SM couplings with the anomalous scalar (particle)
coupling and scalar unparticle coupling. Each of these three expressions
describes two cases – when the top polarization and when the antitop po-
larization is measured. All these contributions will be considered in the
following.

The SM couplings

dσSM

dΩ

∣

∣

∣

cm
=

p

256π2k3
|MSM |2, (4.9)

where

|MSM |2 = M2
γγ + M2

ZZ + 2 ReMγM∗
Z

= 8k2NC

{

A1

(

E2 + p2 cos2 θ
)

+ A2M
2 + 4A3Ep cos θ

− 2M
[

(A4 E + A6 p cos θ) k̂ · ~s + (A5
p

E
cos θ + A6) ~p · ~s

]
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+ A7

(

−~τ− · ~τ+ p2 sin2 θ + 2 ~p · ~τ− ~p · ~τ+

)

− 2A8 M
[

~τ− · ~s ~p · ~τ+ + ~τ+ · ~s ~p · ~τ− + ~τ− · ~τ+

(

−~p · ~s + k̂ · ~s p cos θ
)]

}

, (4.10)

NC = 3 is the number of quark colours and

A1 = K2
γ(1 − h−h+) + K2

Z(c2
V + c2

A)[(g2
V + g2

A)(1 − h−h+) + 2gV gA(h+ − h−)]

+ 2KγKZcV [gV (1 − h−h+) + gA(h+ − h−)],

A2 = K2
γ(1 − h−h+) + K2

Z(c2
V − c2

A)[(g2
V + g2

A)(1 − h−h+) + 2gV gA(h+ − h−)]

+ 2KγKZcV [gV (1 − h−h+) + gA(h+ − h−)],

A3 = K2
ZcV cA[(g2

V + g2
A)(h+ − h−) + 2gV gA(1 − h−h+)]

+ KγKZcA[gV (h+ − h−) + gA(1 − h−h+)],

A4 = K2
γ(h+ − h−) + K2

Zc2
V [(g2

V + g2
A)(h+ − h−) + 2gV gA(1 − h−h+)]

+ 2KγKZcV [gV (h+ − h−) + gA(1 − h−h+)],

A5 = K2
Zc2

A[(g2
V + g2

A)(h+ − h−) + 2gV gA(1 − h−h+)],

A6 = K2
ZcV cA[(g2

V + g2
A)(1 − h−h+) + 2gV gA(h+ − h−)]

+ KγKZcA[gV (1 − h−h+) + gA(h+ − h−)],

A7 = K2
γ + K2

Z(c2
V + c2

A)(g2
V − g2

A) + 2KγKZcV gV ,

A8 = K2
ZcV cA(g2

V − g2
A) + KγKZcAgV (4.11)

with

Kγ =
Qfe2

4k2
, KZ = − e2

sin2(2θW )(4k2 − M2
Z)

. (4.12)

We use the three LP-dependent coefficients Ai (i = 1, 2, 3) for the unpo-
larized final state and the three LP-dependent coefficients Ai (i = 4, 5, 6)
for the polarized final state. The two coefficients Ai (i = 7, 8), which do
not depend on the LP parameters h± are used for contributions which de-
pend on the initial state transverse polarization for unpolarized (A7) and
polarized final state (A8). The coefficients are used to disentangle the cou-
pling constants and LP parameters from the kinematical parts as much as
possible. Qf = +2/3 is the electric charge of the top quark. k̂ = ~k/k

is the unit vector given by the momentum ~k, and k = |~k| is the energy
of the electron. E = k is the top quark energy, and ~p is the momentum
of the top quark (p =

√
E2 − M2). Finally, θ and ~s are the scattering

angle (with cos θ = k̂ · ~p/p) and the polarization vector of the top quark.
Both the top and antitop polarization measured cases have been described
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in terms of the top momentum and scattering angle. We have also used
the same notation ~s for the top and antitop polarization vectors ~st and ~st̄.
As a result the expressions in top and antitop polarization measured cases
entirely coincide. If one would like to describe the antitop case in terms
of antitop parameters, one has to take ~p and cos θ with the opposite signs
(−~p, − cos θ). This procedure changes the signs in front of a part of the
terms in (4.10) and one must use upper and lower signs to distinguish top
and antitop cases.

We have not used the Mandelstam variables because this makes the
expressions cumbersome and less clear for their further analysis. For the
same reason we have not expressed the top quark’s energy and momentum
by the energy and momentum of the electron.

The interference of the SM and anomalous scalar particle coupling

In taking into account anomalous scalar and pseudoscalar contributions,
we can assume that the factor Kp is small. Therefore, we can skip the
contribution |Mp|2 and obtain

dσSM+p

dΩ

∣

∣

∣

cm
≈ dσSM

dΩ

∣

∣

∣

cm
+

p

256π2k3
KpBa, (4.13)

where

Ba = 2ReMSMM∗
a/Kp =

= −16k2NC

{

(Kγ + KZgV cV )
[

gS k̂ × (~τ− + ~τ+) − gP (~τ− − ~τ+)
]

·

·
[

cSE~p × ~s ± cP (~p · ~s ~p − E2~s)
]

+ KZgA

[

gS(~τ− + ~τ+) + gP k̂ × (~τ− − ~τ+)
]

·

·
[

cV cS M~p ± cAcP E~p × ~s − cAcS(~p · ~s ~p − p2~s)
]

+

+
[

gS(h+~τ− − h−~τ+) + gP k̂ × (h+~τ− + h−~τ+)
]

·

·
[

(Kγ + KZgV cV )cSM~p + KZgV cA(±cP E~p × ~s − cS(~p · ~s ~p − p2~s))
]

+

+ KZgAcV

[

gS k̂ × (h+~τ− − h−~τ+) − gP (h+~τ− + h−~τ+)
]

·

·
[

cSE~p × ~s ± cP (~p · ~s ~p − E2~s)
]

}

(4.14)

The interference of the SM and anomalous scalar unparticle coupling

Apart from the different overall constants, the real part of the complex
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phase in the unparticle amplitude in (4.8) leads to the same expression Ba

as the scalar particle coupling amplitude. Therefore, one can write

dσSM+u

dΩ

∣

∣

∣

cm
≈ dσSM

dΩ

∣

∣

∣

cm
+

p

256π2k3
Ku (cos(duπ)Ba + sin(duπ)Bb) ,

(4.15)
where Ba is given in (4.14) and

Bb = 2ReMSMM∗
u/Ku = −16k2NC

{

[

gS k̂ × (~τ− + ~τ+) − gP (~τ− − ~τ+)
]

·

·
[

(Kγ + KZcV gV )cSM~p + KZcAgV

(

±cP E~p × ~s − cS(~p · ~s ~p − p2~s)
)

]

+

− KZcV gA

[

gS(~τ− + ~τ+) + gP k̂ × (~τ− − ~τ+)
]

·
[

cSE~p × ~s ± cP (~p · ~s ~p − E2~s)
]

+

− (Kγ + KZgV cV )
[

gS(h+~τ− − h−~τ+) + gP k̂ × (h+~τ− + h−~τ+)
]

·

·
[

cSE~p × ~s ± cP (~p · ~s ~p − E2~s)
]

+

+ KZgA

[

gS k̂ × (h+~τ− − h−~τ+) − gP (h+~τ− + h−~τ+)
]

·

·
[

cV cSM~p ± cAcP E~p × ~s − cAcS(~p · ~s ~p − p2~s)
]

}

(4.16)

and

Ku =
g2
u Adu

|P 2|du−2

2 sin(duπ)(Λ2
u)du−1

(4.17)

(note that |P 2| = 4k2). In the following we consider the region 1 ≤ du < 2.
For du = 1 the unparticle contribution is given by Ba which is already
included in the contribution of the anomalous scalar and pseudoscalar in-
teractions. On the other hand, for du = 3/2 the contribution is given purely
by Bb. However, we do not restrict to these two values but consider the
whole interval.

4.3 The main features of the contributions

Using the approximation in (4.13) or (4.15) where the squared amplitude
|Mp|2 resp. |Mu|2 is neglected, the process e+e− → tt̄ is fully described
by the analytical expressions for the SM and the anomalous scalar particle
and unparticle coupling contributions. In this section we report about ob-
servations on the SM and anomalous coupling contributions. We present
and analyze the main features of the contributions and the differences be-
tween the SM and anomalous coupling contributions as well as between the
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scalar particle and unparticle coupling contributions. These differences are
helpful in disentangling the different contributions at future e+e− colliders.
Part of the features given below are already known. We present them for
completeness only.

Standard Model versus anomalous coupling contributions

In comparing the SM contribution with the contribution from the scalar
particle or unparticle coupling, we come to the following conclusions:

1. The SM contributions depend on the longitudinal polarization of the
initial beams through the coefficients Ai (i = 1, . . . , 6) which contains
the LP parameters h− and h+ as well as the coupling constants (gV ,
gA, cV and cA). The coefficients Ai contain both linear and quadratic
terms in the LP parameters. By changing the values of h− and h+ one
can substantially increase or decrease the coefficients Ai and by this
selected parts of the coupling. However, one cannot form observables
different from those of the unpolarized beams. The anomalous scalar
(particle and unparticle) coupling contributions depend linearly on
the longitudinal polarization. However, the LP-depending terms can-
not occur without the existence of TP vectors: the LP parameters h−
and h+ are always multiplied by the vectors ~τ−, ~τ+ in combinations
h−~τ+ and h+~τ−.

2. In the SM contributions the TP dependent terms depend quadrat-
ically on the TP vectors. Due to this they are different from zero
only when both of the initial beams have TP components. In the
anomalous coupling contributions all the terms have to be and are
TP dependent. They depend linearly on the TP vectors without or
with the multiplicative LP parameters and, as a consequence, can
be different from zero also in the case where only one of the initial
beams is transversely polarized. The linear dependence provides a
crucial tool at future e+e− linear colliders for isolating signatures of
anomalous scalar couplings from the SM ones.

3. In the SM contributions all the terms depending on the final state po-
larizations are proportional to the final state fermion mass while the
terms independent of the final state polarizations for the most part
are independent of this mass. On the other hand, for the anomalous
coupling contributions the term independent of the final state polar-
ization is proportional to the final state fermion mass which is not the
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case for most of the terms depending on the final state polarization.
This fact stresses the advantages of investigating final state polariza-
tion effects in e+e− annihilation just for top-antitop pair productions.

4. The SM contributions are invariant with respect to the interchange
~τ− ⇄ ~τ+. Since applying the CP transformation to the process causes
the same changes, the above given invariance once more reflects the
CP conservation at that level. On the other hand, both the scalar par-
ticle and unparticle contributions depend on the TP vectors through
the four combinations

[

gS k̂ × (~τ− + ~τ+) − gP (~τ− − ~τ+)
]

, (4.18)
[

gS(~τ− + ~τ+) + gP k̂ × (~τ− − ~τ+)
]

, (4.19)
[

gS(h+~τ− − h−~τ+) + gP k̂ × (h+~τ− + h−~τ+)
]

, (4.20)
[

gS k̂ × (h+~τ− − h−~τ+) − gP (h+~τ− + h−~τ+)
]

. (4.21)

The fact that under CP the TP vectors ~τ− and ~τ+ interchange sug-
gests that there have to be CP-odd terms in the anomalous coupling
contributions and that CP invariance is violated in the process.

5. Expressing the results in terms of the momentum and scattering an-
gle of the top quark, the SM contributions to the differential cross
section is independent on whether the top or antitop polarization ~s
is measured. This is not the case for the anomalous contributions.
Here the terms containing the coupling constant cP have opposite
signs for the case of top and antitop polarization measurement. As
we will see later, this leads to different CP-odd parts in the cP - and
cS-depending terms.

6. The TP dependent terms of the SM contributions vanish at the thresh-
old of the process. On the other hand, in the anomalous coupling con-
tributions there exist terms that survive at the threshold. This gives
an additional tool for separating anomalous coupling contributions
from the SM ones.

Scalar particle versus unparticle coupling contributions

In comparing the contributions including scalar particle and unparticle cou-
plings, we obtain the following conclusions:
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1. The scalar particle and unparticle coupling contributions in (4.14)
and (4.16) depend on the same combinations of TP vectors ~τ− and
~τ+ as given in (4.18)–(4.21). This makes it difficult to separate these
contributions.

2. However, in the scalar particle and the unparticle coupling contri-
butions the TP-dependent combinations in (4.18)–(4.21) are multi-
plied by different final state expressions. In principle, this enables to
disentangle the different contributions by measuring the final state
polarizations.

4.4 CP violation analysis

CP violation in weak interactions was first reported for the neutral K-
meson system [15]. Further examples were found for D and B meson sys-
tems [16, 17]. Apart from this, the CP violation due to SM interactions
is predicted to be unobservably small [8, 18]. Hence, one of the important
indications of new physics would be the observation of CP violation outside
the aforementioned systems.

In this section we demonstrate that due to anomalous scalar particle or
unparticle coupling corrections to the SM contribution the CP symmetry in
e+e− → tt̄ is violated. We investigate how the interference between SM and
anomalous couplings gives rise to CP-odd quantities in case of transversely
polarized initial beams and construct the CP-odd asymmetries sensitive to
CP violation. For testing CP violation in the process it is not sufficient to
measure only the momenta ~k and ~p because the only scalar observable which
can be constructed from these vectors is ~k · ~p which is CP-even. Therefore,
either initial or final state polarization vectors are needed. In the case
under consideration the TP initial beams are mandatory: the interference
between SM and scalar anomalous couplings are non-vanishing only with
TP initial beams. The possibility to test CP violation in e+e− → tt̄ with
TP beams in the presence of scalar- and tensor-type anomalous couplings
was first demonstrated in [8] without measured final state polarization.

The SM and anomalous contributions given by (4.10), (4.14) and (4.16)
enable to construct CP-odd asymmetries for TP initial beams both in the
case of observed and non-observed final top (antitop) polarization for scalar
particle and unparticle interactions. For both initial beams transversely po-
larized, we take h− = h+ = 0.

CP violation for unpolarized final state quarks
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Let us first consider the case where the final particle spin states are not
observed. In this case both the scalar particle and unparticle coupling
contributions in (4.14) and (4.16) do not depend on the final state top
(antitop) polarization vector ~s. In taking h− = h+ = 0 as proposed, only
a single term remains in both contributions Ba and Bb. For the particle
coupling contribution this term contains the TP-depending factor (4.19),

Ba = −16k2NCKZcV gA[gS(~τ− + ~τ+) + gP k̂ × (~τ− − ~τ+)] · cSM~p. (4.22)

The CP transformation interchanges the TP vectors of the electron and
the positron whereas the momenta ~k and ~p remain unchanged. As a con-
sequence, the second part depending on the difference (~τ− − ~τ+) in (4.22)
changes sign under the CP transformation (i.e. it is CP-odd). Therefore,
CP is violated in the process. One can construct an asymmetry which is
sensitive to CP violation in case where the TP vectors ~τ− and ~τ+ of the elec-
tron and positron have opposite directions. If we use a coordinate system
where the z-axis is determined by the electron momentum ~k, we can direct
the x-axis along the electron and opposed to the positron TP vectors. The
situation is illustrated in Fig. 4.1(a). Such a choice leads to the CP-odd
quantity

k̂ × (~τ− − ~τ+) · ~p
|~τ− − ~τ+|p

= sin θ sinφ (4.23)

in the differential cross section, where φ is the azimuthal angle of the pro-
cess.

In the unparticle case the contribution cos(duπ)Ba + sin(duπ)Bb with

Bb = −16k2NC(Kγ+KZcV gV )[gS k̂×(~τ−+~τ+)−gP (~τ−−~τ+)]·cSM~p (4.24)

contains both TP dependent factors (4.18) and (4.19), mixed by the angle
duπ. The part in (4.18) causing CP violation in the process is gP (~τ− −
~τ+) ·~p. If the unparticle dimension is given by a specific model, the CP-odd
quantity in the differential cross section corresponding to (4.23) is achieved
when vectors ~τ− and ~τ+ are taken to be opposite and directed along an axis
which is rotated by α with

tan α = −Aa

Ab
tan(duπ), Aa := Kγ+KZcV gV , Ab := KZcV gA (4.25)

starting from the positive and negative direction of the x-axis, respectively
(cf. Fig. 4.1(b)). In this case we obtain a CP-odd quantity

[k̂ × (~τ− − ~τ+) cos α + (~τ− − ~τ+) sin α] · ~p
|~τ− − ~τ+|p

= sin θ sinφ. (4.26)
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In both cases one can construct the CP-odd asymmetry

A(θ) =

∫ π

0

dσ

dΩ
dφ −

∫ 2π

π

dσ

dΩ
dφ

∫ π

0

dσ

dΩ
dφ +

∫ 2π

π

dσ

dΩ
dφ

, (4.27)

where σ = σSM+p or σSM+u, resp. Such a quantity for the scalar- and
tensor-type (particle) couplings was first constructed and analyzed by Anan-
thanarayan and Rindani [8]. They estimated the sensitivity of planned fu-
ture colliders to new physics CP violation in e+e− → tt̄ and showed the
possibility to put a bound of approx. 7 TeV on the new-physics scale.
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Figure 4.1: Choice of the kinematics for the analysis of scalar particle (a)
and unparticle interactions (b) with tanα = −(Aa/Ab) tan(duπ), where
Aa,b are given in (4.25).

CP violation and final state polarization

CP-odd contributions are also observed in the terms which depend on the
final state top or antitop polarizations. These polarizations can be deter-
mined by analysing the distributions of the final state charged leptons from
the top (or antitop) decay. This method is viable in the top quark case
because the top quark is so massive that it decays before it can hadronize,
therefore avoiding masking nonperturbative effects. Of course, the observa-
tion of the CP violation through the measurement of the final state polar-
ization means a loss of statistics. On the other hand, this shortage might be
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partly softened by the fact that most of the polarization depending terms
are not proportional to the top mass and can be quite large as compared
to terms independent of the top polarization.

If we divide the polarization vector ~s of the final top or antitop quark
into a longitudinal and a transverse part,

~s = ~sL + ~sT =
E

Mp
h~p + ~τ , (4.28)

there is only a single term in both Ba and Bb that depends on ~sL. While
~p · ~sL~p − p2~sL = 0, the factor

~p · ~sL~p − E2~sL = −EMh

p
~p (4.29)

is proportional to the top mass. This factor is multiplied by the ~τ+- and
~τ−-depending expressions (4.18) in the particle and both (4.18) and (4.19)
in the unparticle case. Besides this, the terms containing these factors
are cP -dependent and therefore, as mentioned in point 5 of Sec. 3.1, have
different signs if both the contributions from top and antitop polarization
measurements are given by the top parameters (~p, θ). Due to this the CP-
odd terms depend on (~τ− + ~τ+) in the combinations hk̂ × (~τ− + ~τ+) · ~p for
the particle case and in addition on h(~τ− + ~τ+) · ~p for the unparticle case.

The terms depending on the transverse polarization of the final top
(antitop) are not proportional to the top mass. One can divide these terms
into cS-depending and cP -depending parts. In the cS-depending terms the
CP-odd parts depend on the difference of the ~τ− and ~τ+ vectors while in
the cP -depending parts they depend on the sum of these vectors. However,
the CP-odd parts in the corresponding terms of scalar particle and scalar
unparticle contributions depend differently on these vectors. If the CP-odd
part of some scalar particle contribution term contains the factor ~τ− − ~τ+

(or ~τ−+~τ+), the corresponding term in unparticle case depends in addition
on k̂× (~τ−−~τ+) (or k̂× (~τ−+~τ+)) and vice versa. This circumstance might
enable, at least in principle, to separate CP-odd asymmetries in scalar
particle and unparticle cases.

4.5 Final state polarizations

In this section we consider the actual polarizations of the final top or an-
titop quarks. The final quark polarizations provide additional tools for
studying the mechanisms of the process and for separating the anomalous
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coupling contributions from the SM ones. It is well known that in the Born
approximation the process e+e− → tt̄ with unpolarized or longitudinally
polarized initial beams produces final quarks with polarization vector lying
in the scattering plane [19]. When using TP beams the TP vectors ~τ−
and ~τ+ move the final top or antitop polarization vectors out of scatter-
ing plain. Therefore, in the approximation used the deviation of the final
quark polarization vectors from the reaction plain is only due to the TP
initial beams. SM contributes to TP-dependent terms only if both of the
initial beams are transversely polarized. If only one of the initial beams
is transversely polarized, such a deviation would indicate the presence of
anomalous couplings.

Top polarization for the SM

Let us consider the final state polarization in more detail at the threshold
of the process. At threshold the analytical expressions for the differential
cross sections in (4.10), (4.14) and (4.16) simplify considerably and the po-
larization properties of the quarks are displayed more clearly. We start our
investigations from the SM sector considering the polarization properties
of the top (antitop) quarks more generally. Since the TP-dependent terms
vanish at the threshold, the main question will be how much one can tune
the top (antitop) quark polarization by varying the LP parameters h+ and
h− of the initial beams. The result for the polarization turns out to depend
effectively on the parameter

χ =
h+ − h−
1 − h+h−

. (4.30)

At threshold the squared SM amplitude takes the form

|MSM |2|thres = 24M4
[

A1 + A2 − 2A4k̂ · ~ξ
]

, (4.31)

where ~ξ is the top quark polarization vector and Kγ and KZ have their
threshold forms

Kγ =
e2

6M2
, KZ = − e2

sin2(2θW )(4M2 − M2
Z)

. (4.32)

Using the method given in [13] one can find the magnitude and direction
of the actual polarization vector of the top quark,

~ξSM = −B(χ)k̂

A(χ)
, (4.33)
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Figure 4.2: The dependence of A(χ) and B(χ) on χ.

where

A(χ) =
A1 + A2

2(1 − h+h−)
= a1 + a2χ,

B(χ) =
A4

1 − h+h−
= a1χ + a2 (4.34)

with

a1 = K2
γ + K2

Zc2
V (g2

V + g2
A) + 2KγKZcV gV ,

a2 = 2KZcV gA(Kγ + KZcV gV ). (4.35)

In Fig. 4.2 the dependence of A(χ) and B(χ) on χ is given.

For the SM sector we use the values of the coupling constants and
other parameters as given by the Particle Data Group [20], gV = −0.037,
gA = −0.5, cV = 0.191, cA = 0.5, g = e/ sin θW , sin2 θW = 0.2415, Mt =
171.2 GeV, and MZ = 91.2 GeV. We draw the attention to the fact that
for χ0 = −0.408 we obtain B(χ0) = 0. Therefore, at this value χ = χ0 the
top polarization in the process appears only due to the anomalous coupling
contributions. At the same time A(χ0) is smaller than at the point χ = 0
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Figure 4.3: The top polarization in SM at threshold as a function of χ.

and as a consequence the top polarization from anomalous couplings is
larger than in the case of unpolarized initial beams.

Fig. 4.3 shows how much the top polarization vector can be tuned by χ
as compared to the case χ = 0, where the polarization is given by [21]

~ξSM |χ=0 = −0.408k̂. (4.36)

The fact that the magnitude of the top polarization vector at χ = 0
given in (4.36) is equal to the value of χ at which ~ξSM vanishes is not
an occasional coincidence but a consequence of the special shape of the
structure functions A(χ) and B(χ) in (4.34). The polarization function
ξSM in (4.33) is of the same shape as the reciprocal function

χ(ξSM ) = −a1 + a2ξSM

a1ξSM + a2
. (4.37)

As a consequence, ξSM (χ = 0) = χ(ξSM = 0) = −a1/a2 = −0.408. One
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can write the functions ξSM (χ) and χ(ξSM ) in a more compact forms

ξSM (χ) = − χ + a

aχ + 1
(4.38)

and

χ(ξSM ) = − ξSM + a

aξSM + 1
(4.39)

where a = a1/a2.

Anomalous coupling corrections to the SM top polarization

The anomalous scalar particle coupling corrections to the SM contribution
at threshold are given by

Ba|thres = ±48M4cP
~ξ
{

(Kγ + KZcV gV )[gS k̂ × (~τ− + ~τ+) − gP (~τ− − ~τ+)] +

+ KZcV gA[gS k̂ × (h+~τ− − h−~τ+) − gP (h+~τ− + h−~τ+)]
}

.

(4.40)

For the anomalous scalar unparticle corrections one obtains in addition

Bb|thres = ±48M4cP
~ξ
{

(Kγ + KZcV gV )[gS(h+~τ− − h−~τ+) + gP
ˆk × (h+~τ− + h−~τ+)] +

+ KZcV gA[gS(~τ− + ~τ+) + gP k̂ × (~τ− − ~τ+)]
}

. (4.41)

For h− = h+ = 0, the corresponding corrections to the top polarization
vector are

~ξp = Kp
~ξa, ~ξu = Ku(cos(duπ)~ξa + sin(duπ)~ξb) (4.42)

with

~ξa =
AacP

A(0)
[gS k̂ × (~τ− + ~τ+) − gP (~τ− − ~τ+)],

~ξb =
AbcP

A(0)
[gS(~τ− + ~τ+) + gP k̂ × (~τ− − ~τ+)], (4.43)

where Aa,b are defined in (4.25). In calculating values for the polarizations,
we have to give values to the anomalous coupling constants gS , gP , cS and
cP . Scalar particle couplings arise in many extensions of the SM. However,
up to now there exist no definite predictions about their values [8]. On
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the other hand, the unparticle phenomenology stands beyond the other
SM extension models. Therefore, one has to make here quite voluntary
presumptions that do not lay on definite theoretical grounds. Here we use
the “SM-connected” setting gS = gV , gP = gA, cS = cV , cP = cA, and
gp = gu = g.

The corrections to the top or antitop quark polarization due to anoma-
lous couplings are transverse to the top (antitop) quark polarizations due
to the SM which is antiparallel to the direction k̂ of the initial beams. The
angle between these two components is

tanϕp,u =
|~ξp,u|
|~ξSM |

. (4.44)

Using h± = 0, τ+ = 0 and τ− = 0.8 in order to eliminate the TP dependent
SM terms also close to the exact threshold, the vector ~ξu is a vector in
the plane spanned by ~τ− and k̂ × ~τ− orthogonal to k̂. However, a better
reference frame to consider is the one spanned by the orthonormal basis

êa =
gS k̂ × ~τ− − gP~τ−
√

g2
S + g2

P |~τ−|
, êb =

gS~τ− + gP k̂ × ~τ−
√

g2
S + g2

P |~τ−|
(4.45)

The situation is illustrated in Fig. 4.4. For different values of du the vector

runs on a ellipse with half axis of length Aa

√

g2
S + g2

P |~τ−| along êa and half

axis of length Ab

√

g2
S + g2

P |~τ−| along êb. The angle in negative mathemati-

cal order with respect to êa is given by α′, where tan α′ = (Ab/Aa) tan(duπ).
Together with the du-dependence given by Ku in (4.44) we can calculate
the dependence of the deviation angle ϕu on du in the region 1 ≤ du < 2 for
different values of the scale Λu. The result is shown in Fig. 4.5. Apparently,
close to du = 1 the value of the angle does no longer depend on the scale Λu

but takes a constant value because, using limdu→1 sin(duπ)Γ(1− du) = −π,
Kdu=1 is given by K1 = −g2

u/4k2. In Fig. 4.6 we show the dependence of
the scale Λu on the deviation angle ϕu for the values du = 1.3, 1.5, 1.7,
and 1.9. Finally, in Fig. 4.7 we show the dependence of the scale Λp on the
deviation angle ϕp for the anomalous scalar particle.

Our studies once more demonstrate the utility of using TP initial beams
for searching new physics indications. The additional directions provided
by TP vectors can be successfully used for constructing new measurable
quantities both in the presence of final top (antitop) polarization and its
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Figure 4.4: The vector ~ξu in the plane spanned by ~τ− and k̂ × ~τ− for
exemplary values for cS and cP and arbitrary scale for the coefficients,
where tanα′ = (Ab/Aa) tan(duπ).

Figure 4.5: Deviation angle ϕu in dependence on du for scales Λu = 2, 3,
5, and 10 TeV
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Figure 4.6: Scale Λu in dependence on the deviation angle ϕu for unparticle
dimensions du = 1.3, 1.5, 1.7, and 1.9

Figure 4.7: Scale Λp in dependence on the deviation angle ϕp
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absence. In the previous case one looses statistics but gains other advan-
tages in separating anomalous coupling signals from the SM contributions.
The anomalous coupling contributions depend linearly on the transverse
polarization vectors. This circumstance enables one to take only one of
the initial beams to be transversely polarized. Such a choice eliminates
the transverse polarization depending SM contributions. As an illustrative
example we showed how to estimate the anomalous scalar particle and un-
particle coupling manifestations through the measurement of the top quark
polarization near the threshold of the process.
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Chapter 5

Anomalous neutral gauge

boson self-couplings

5.1 Non-standard gauge boson couplings

Since the formulation of the SU(2)L ⊗ U(1)Y gauge theory of the elec-
troweak interaction [71, 72, 73] its predictions have been investigated and
tested with increasing precision. The discovery of the massive gauge bosons
[74, 75] confirmed the correctness of the basic ideas of the theory. To date
the couplings of W and Z bosons to leptons and quarks have been tested
with a good accuracy [20]. At the same time the interactions of W, Z and
γ bosons with each other have been tested with much lower precision. The
existence of gauge bosons self-couplings is an immediate consequence of the
non-Abelian local gauge symmetry and there are at least two reasons for
precise verification of such couplings. First, an experimental confirmation
of the existence of gauge boson self-couplings strengthens the belief that the
electroweak interaction is indeed governed by a non-Abelian gauge theory.
Second, in the case of establishing the deviations from the SM predictions,
an accurate measurement of the gauge boson self-couplings could act as
a pointer to the existence of new physics beyond the SM. In such a way
anomalous self-couplings provide an opportunity to infer NP at energies
lower than the production threshold of NP particles. Such an opportu-
nity adds, of course, importance to the precision test of the gauge boson
self-interactions and that is why these couplings have been extensively in-
vestigated during the last two decades or so, both theoretically and ex-
perimentally. At the more early stage of investigations, the charged boson
self-couplings received more attention as compared to the neutral boson
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ones. This is probably because charged boson self-couplings already receive
tree level SM contributions. In order to establish the non-Abelian structure
of the SM, the investigation of the processes with charged boson vertices
was more suitable. Later, as the investigations of the possible anomalous
self-couplings became more actual, the neutral gauge boson self-couplings
sector received more attention. Differently from the charged bosons, the
neutral boson self-couplings do not receive SM contributions at the lowest
order of perturbation theory: the gauge invariance dictates that within the
SM the trilinear neutral gauge boson vertices vanish at tree level. At the
same time the loop level SM contributions are too small to be measured
[38]. Due to these circumstances any experimentally established neutral
gauge boson self-couplings may be considered as purely anomalous. The
possible existence of anomalous neutral boson self-couplings can be tested
through the production of pair of neutral gauge bosons in pp̄ or e+e− col-
lisions. It is believed that one of the most sensitive probes of new physics
beyond the SM is provided by the trilinear couplings of the neutral gauge
bosons in the processes e+e− → Zγ, ZZ, γγ. The final gauge bosons here
are easy to detect experimentally, while their theoretical structure provides
a clean and unambiguous test of the SM electroweak interactions. There-
fore, without ambiguities the precision measurements of these processes can
be compared with the SM predictions and any deviation from these can be
considered as the contributions from non-standard couplings [37].

Aforegiven features make the potential of the given processes to probe
anomalous trilinear neutral boson self-couplings considerably high. There-
fore, these processes, especially the process e+e− → Zγ, have been ex-
tensively studied both theoretically [37, 38] and experimentally [39, 40],
though without success in observing anomalous couplings. If new physics
arises near the TeV scale, one expects on rather general grounds that the
deviations from the SM predictions are in order O(10−3 − 10−2). The sen-
sitivities provided by current colliders are of orders lower (beyond these
borders). However, the study of anomalous neutral gauge boson self-
couplings is an important item also in the physics programs of future col-
liders. A future e+e− International Linear Collider (ILC) designed with
very high luminosity (L = 3.4 × 1034 m−2s−1at

√
s = 500 GeV and L =

5.8 × 1034 m−2s−1at
√

s = 800 GeV) can provide a much better discovery
potential.

As already stated above, an additional advantage of the ILC is the pos-
sibility to have both initial beams longitudinally polarized. By using spin
rotators the longitudinal polarization can be converted into the transverse
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polarization. Therefore, another powerful tool of the ILC will be the use
of TP beams alongside with LP ones. Due to these possibilities, the role of
polarization, especially the role of TP in processes with possible anomalous
couplings has attracted noteworthy attention in recent years [27, 41, 29].
A considerable part of these investigations is constituted by the ones con-
sidering the TP effects in the process e+e− → Zγ. The possible use of TP
as a tool for non-standard couplings searches has been ignored for a long
time. However, recent years studies have clearly shown that the use of TP
beams would significantly enhance the potential for testing SM physics and
possible non-standard interactions. The use of LP and TP initial beams
complement each other. By using LP beams one can substantially enhance
the sensitivities to one or the other part of couplings, which however, at
least in principle, are measurable also in the case of unpolarized beams. At
the same time the use of TP beams enables the measurements of the parts
of couplings which are not accessible with unpolarized or LP beams.

A lot of work in clarifying the roles of LP and TP beams for searching
possible anomalous gauge boson self-couplings has been done. However,
these studies are yet not exhaustive. In this thesis the role of longitudinal
and transverse polarization of the initial beams in disentangling SM con-
tributions and anomalous ZγZ, and Zγγ couplings corrections to the Z
boson spin orientation in e+e− → Zγ are considered and analyzed.

5.2 Description of anomalous triple neutral gauge

boson couplings

As already written above, the anomalous couplings between three gauge
bosons can be divided into charged (WWγ, WWZ) and neutral (ZZZ,
ZγZ, Zγγ) sectors. For several reasons the description of neutral gauge
boson self-couplings are less simple than for charged bosons. One of these
reasons is that one should add here the constraints due to Bose statistics.
Since there are always at least two identical particles in triple neutral boson
interactions, the self-couplings vanish identically if all three particles are
on-shell. The appearance of neutral boson self-coupling vertices is only
possible if at least one of the gauge boson involved is off-shell.

The most general expressions for anomalous neutral gauge boson triple
self-coupling vertices restricted by Bose statistics, Lorentz and Uem(1) in-
variance were first given in [52]. From these general considerations the
general form of the couplings of a single off-shell boson (V = Z, γ) to the
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final pair of on-shell Zγ bosons follows. It is [37]

Γαβµ
ZγV (q1, q2, q) =

i(q2 − m2
V )

m2
Z

{

hV
1 (qµ

2 gαβ − qα
2 gµβ)

+
hV

2

m2
Z

qα[(q · q2)g
µβ − qµ

2 qβ ] − hV
3 ǫµαβσq2σ − hV

4

m2
Z

qαǫµβρσqρq2σ

}

, (5.1)

where the four-momenta are defined as given in Figure 5.1

Zα(q1)

γβ(q2)

V µ(q) = ieΓα β µ
Z γ V (q1, q2, q)

Figure 5.1: Triple gauge boson vertex.

As already stated, one of the processes, where NP interactions can in-
duce ZγZ and Zγγ vertices (5.1) is the process e+e− → Zγ.

The anomalous neutral gauge boson self-coupling between two Z bosons
and γ occurs also in the process e+e− → ZZ. As compared to this process
the Zγ variant seems to be more promising in a sence of searching NP
effects. Its cross section is larger than the ZZ one (by a factor 2 at large
scattering angles and larger at smaller angles).

In addition, the detection of Zγ mode is more efficient than the ZZ
one. As a whole, the number of events for the Zγ mode is estimated to be
an order of magnitude larger than for the ZZ mode [37]. As a consequence,
the sensitivities achievable by investigating the process e+e− → Zγ have
to be better as well.
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The vertices like (5.1) can also be considered as generated by an effective
Lagrangian [53]. The main assumption of the Effective Lagrangian Theory
(ELT) is that the mass scale Λ of the NP is so heavy that it is beyond the
reach of present and near future colliders. If so, the only observable NP ef-
fects should be due to anomalous interactions of usual SM particles. Under
these conditions, one can integrate out heavy NP states and the observable
effects can be described by an effective Lagrangian depending on operators
involving only SM fields. In other words, the NP effects below Λ can be
described by effective interaction terms in the Lagrangian constructed only
with the help of light fields. The situation here is (and must be) similar to
the one in Fermi’s effective weak interaction theory.

As we can see from (5.1), in the general case both the ZγZ and Zγγ cou-
plings can be parametrized in terms of four couplings: hZ, γ

1 , hZ, γ
2 , hZ, γ

3 and

hZ, γ
4 (hZ

i for ZγZ and hγ
i for Zγγ coupling). The hZ, γ

1 and hZ, γ
2 coupling

terms violate CP invariance and the hZ, γ
3 and hZ, γ

4 conserve it. Due to the
fact that anomalous couplings have a non-renormalized nature, a constant
value of the couplings hZ, γ

i leads to the cross-sections rapidly growing with
energy (

√
s) and, therefore, to an unreasonable unitarity violating size. To

cure such unreasonable behaviour, one must take hZ, γ
i to be form factors

decreasing with increasing CM energy. One can choose between various
forms of form factors. Ordinarily they are given as [54]

(

1 +
s

Λ2

)−n
(5.2)

with n = 3 for hZ, γ
1,3 and n = 4 for hZ, γ

2,4 . Here the parameter Λ should be
regarded as a physical cutoff, where the effective theory does not work any
more and has to be replaced by a more fundamental theory.

Actually, as pointed out by several authors (see [50, 51, 37]), the in-
troduction of form factors is somewhat in contradiction with the basic as-
sumption of the ELT that the NP mass scale must be very much higher
than the energy level, where the Effective Lagrangian formalism is tested.
Only in this case one can work with effective Lagrangians keeping only
the lowest dimension operators. The additional s-dependence introduced
by the form factors corresponds to the presence of special (but arbitrary)
higher dimensional operators. Therefore, it would be generally better to
work without form factors keeping the energies far from the unitary limit.

Fortunately, when analyzing the experimental results obtained at e+e−

colliders at a given energy, it is not very important whether one uses form
factors or not. It is because one can unambiguously translate the results
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obtained with form factors to those obtained without them. In this thesis
the form factors in their explicit form are not introduced.

For calculating the spin orientation effects with possible anomalous ZγZ
and Zγγ couplings corrections, the following assumptions have been made.

First, we use the approximation linear to the anomalous couplings. Sim-
ilarly to the investigations of the NP effects in e+e− → tt̄ in the previous
chapter, anomalous couplings are considered to be so small that when calcu-
lating the NP corrections one can take into account only the contributions
from the interference of the SM and anomalous couplings amplitudes.

Second, we limit ourselves to the CP-conserving anomalous couplings.
Since the CP-violating couplings in (5.1) cannot be generated if NP inter-
actions of γ and Z conserve CP, we suppose that this is indeed the case.
There are two lowest order diagrams in the SM (Fig. 5.2) responsible for
the process

e+(k+) + e−(k−) → Z(p) + γ(pγ). (5.3)

e−

e

e+

e−

e

e+

Z

γ

γ

Z

k−

k+

k−

k+

p

ppγ

pγ

Figure 5.2: The lowest order diagrams of the process e+e− → Zγ in the
SM.

The corresponding amplitude is

M = − eg

2 cos θw

{

1

t − m2
v(k+)γλ(6k−− 6p + m)γν(gV − gAγ5)u(k−)

+
1

u − m2
v(k+)γν(gV − gAγ5)(6p − 6k+ + m)γλu(k−)

}

× ε∗(Z),ν(p) ε∗(γ),λ(pγ) . (5.4)

The anomalous ZγZ and Zγγ CP-conserving amplitudes (Fig. 5.3) are
given respectively

MZγZ =
ieg

2 cos θw

1

M2
v(k+)γα(gV − gAγ5)u(k−)

57



×
{

hZ
3 ǫ νλρ

α p(γ)
ρ +

hZ
4

M2
qνǫ λρσ

α qρp
(γ)
σ

}

ε∗(Z),ν(p)ε∗(γ),λ(pγ) ,(5.5)

MZγγ = −ie2 1

M2
v(k+)γαu(k−)

×
{

hγ
3ǫ νλρ

α p(γ)
ρ +

hγ
4

M2
qνǫ λρσ

α qρp
(γ)
σ

}

ε∗(Z),ν(p)ε∗(γ),λ(pγ) .(5.6)

e−

e+

Z

γ

Z γ

e−

e+

Z

γ

k−

k+

k−

k+

p p

pγ pγ

Figure 5.3: The anomalous diagrams of the process e+e− → Zγ.

In these expressions t = (k− − p)2 and u = (p − k+)2 are invariant
Mandelstam variables, qµ = kµ

+ + kµ
− is the four-momentum transfer, M

and m stand for the Z boson and electron masses. In our calculation the
latter is taken to be negligible.

5.3 Anomalous ZZγ and Zγγ couplings and Z bo-

son spin orientation in e+e− → Zγ

Using the formalism given above, one can in a general manner calculate the
Z boson spin polarization and alignment in e+e− → Zγ with the correction
of possible anomalous ZγZ and Zγγ couplings. This is done in the CM
system and in the limit of vanishing electron mass as in Chapter 4. The
calculations needed are fairly routine. They are based on using the standard
trace technique for Dirac spinors with both the longitudinal and transverse
components of the polarization vectors in combination with Lorentz boosts.

The general structure of the polarization vector ~t and the alignment
tensor is found to be

~t =
2

3S′

{

[−]~V +

(

[+]hZ
k − 1

2
<+> sin 2θwhγ

k

)

~Vk
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+3

[

gL gR hZ
k − 1

4
(gL + gR) sin 2θwhγ

k

]

~Vk,T

}

, (5.7)

tij =
3

S′

{

[+]Tij +

(

[−]hZ
k − 1

2
<−> sin 2θwhγ

k

)

Tk, ij

+2

[

gL gR Tij, T − 1

4
sin 2θw(gL − gR)hγ

k Tk, ij, T

]

}

, (5.8)

where

S
′

= [+]S+([−]hZ
k −

1

2
< − > sin 2θw hγ

k)Sk+gL gR ST +sin 2θw(gL−gR)hγ
k Sk,T .

(5.9)
We have used the shorthand notations

[±] = g2
L(1 − h−)(1 + h+) ± g2

R(1 + h−)(1 − h+),

<±> = gL(1 − h−)(1 + h+) ± gR(1 + h−)(1 − h+). (5.10)

In order to write the expressions in a more symmetric form, we have used
the chiral coupling constants

gL =
1

2
(gV + gA), gR =

1

2
(gV − gA). (5.11)

The contributions from the anomalous couplings have been denoted by the
index k with the summation over repeated indices (k = 3, 4), the other ones
are the SM contributions. The contributions from the transverse polariza-
tions of the initial beams are denoted by an additional index T. The an-
alytical expressions for the scalars (S, ST, Sk, Sk, T), vectors (~V , ~Vk, ~Vk, T)
and tensors (Tij , Tij, T, Tk, ij , Tk, ij, T) are:

S = 2k2[M2 + p2(1 + cos2 θ)], (5.12)

~V = 3k2
{

E Mk̂ + [2 p2 − M(E − M) cos θ p̂]
}

, (5.13)

Tij = k2
{

M2(k̂ik̂j −
1

3
δij) + M(E − M) cos θ(k̂ip̂j + k̂j p̂i −

2

3
cos θ δij)

+ [p2 + (E − M)2 cos2 θ](p̂ip̂j −
1

3
δij)

}

, (5.14)

S3 =
4

M2
k3p2E sin2 θ, (5.15)

S4 = − 8

M4
k5p3 sin2 θ, (5.16)
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~V3 =
6

M3
k2p2

{[

k(E + p cos2 θ) +
M2

2
sin2 θ

]

k k̂

−
[

k2 E +
M2

4
(2k − M) + k(E − M)(k + M) cos2 θ

]

cos θ p̂

}

(5.17)

~V4 =
12

M5
k5p3(E + p cos2 θ)(p̂ cos θ − k̂), (5.18)

T3, ij =
4 k3 p2

M3

{

k M(k̂ik̂j −
1

3
δij) + k(k − M) cos θ(k̂ip̂j + k̂j p̂i −

2

3
cos θ δij)

− 1

2

[

M p + (E − M)(4k + M) cos2 θ
]

(

p̂ip̂j −
1

3
δij

)}

, (5.19)

T4, ij =
8k5p3

M5

{

−k cos θ

(

k̂ip̂j + k̂j p̂i −
2

3
cos θδij

)

+
[

M + (2k − M) cos2 θ
]

(

p̂ip̂j −
1

3
δij

)}

, (5.20)

ST = −4k2 p2 [sin2 θ(~τ− · ~τ+) − 2(p̂ · ~τ−)(p̂ · ~τ+)], (5.21)

S3, T =
2 k3 p3

M2
[sin2 θ(~τ− · ~τ+) − 2(p̂ · ~τ−)(p̂ · ~τ+)] (5.22)

S4, T =
4 k5 p3

M4
[sin2 θ(~τ− · ~τ+) + 2(p̂ · ~τ−)(p̂ · ~τ+)], (5.23)

~V3, T = −4 k2 p2

M3

{

k k̂ cos θ

[

−M2

2
(~τ− · ~τ+) + 2kp(p̂ · ~τ−)(p̂ · ~τ+)

]

+ p̂

[

M2

4
[M + (2k − M) cos2 θ](~τ− · ~τ+)

− 2k(k + M)(E − M)(p̂ · ~τ−)(p̂ · ~τ+)

]

+ [(p̂ · ~τ+)~τ− + (p̂ · ~τ−)~τ+]k

(

k p sin2 θ − M2

2

)}

, (5.24)

~V4, T = −8 k4 p3

M5

{

k̂ cos θ

[

M2

2
(~τ− · ~τ+) − 2k E (p̂ · ~τ−)(p̂ · ~τ+)

]

+ p̂

[

−M2

2
cos2 θ(~τ− · ~τ+) + 2k p (p̂ · ~τ−)(p̂ · ~τ+)

]

+ k[~τ−(p̂ · ~τ+) + ~τ+(p̂ · ~τ−)](E cos2 θ − p)

}

, (5.25)

Tij, T = k2

{

M2(~τ− · ~τ+)

(

k̂ik̂j −
1

3
δij

)
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+ M(E − M)(~τ− · ~τ+) cos θ

(

k̂ip̂j − k̂j p̂i −
2

3
cos θδij

)

−
(

p̂ip̂j −
1

3
δij

) [

(p2 − (E − M)2 cos2 θ)(~τ− · ~τ+)

− 2(E − M)2(p̂ · ~τ−)(p̂ · ~τ+)

]

+ M(E − M)

[

(p̂ · ~τ+)

(

p̂iτ− j + p̂jτ− i −
2

3
(p̂ · ~τ−)δij

)

+ (p̂ · ~τ−)

(

p̂iτ+ j + p̂jτ+ i −
2

3
(p̂ · ~τ+)δij

)]

+ M2

(

τ− iτ+ j + τ− jτ+ i −
2

3
(~τ− · ~τ+)δij

)}

, (5.26)

T3 ij, T = −4k2p2

M2

{

k2

(

k̂ik̂j −
1

3
δij

)

(~τ− · ~τ+) − k

M
cos θ

(

k̂ip̂j + k̂j p̂i −
2

3
cos θδij

)

×
[

M

(

k − M

4

)

(~τ− · ~τ+) − k(E − M)(p̂ · ~τ−)(p̂ · ~τ+)

]

+
k

M

(

p̂ip̂j −
1

3
δij

) [

M

2
(p + (E − M) cos2 θ)(~τ− · ~τ+)

+ (2k − M)(E − M)(p̂ · ~τ−)(p̂ · ~τ+)

]

+ k2 sin2 θ

[

τ− iτ+ j + τ− jτ+ i −
2

3
(~τ− · ~τ+)δij

]

+
k2

2

[

(p̂ · ~τ+)(k̂iτ− j + k̂jτ− i) + (p̂ · ~τ−)(k̂iτ+ j + k̂jτ+ i)
]

+
k

2M

[

k(E − M) sin2 θ − M

2
(2k − M)

]

×
[(

p̂iτ− j + p̂jτ− i −
2

3
(p̂ · ~τ−)δij

)

(p̂ · ~τ+)

+

(

p̂iτ+ j + p̂jτ+ i −
2

3
(p̂ · ~τ+)δij

)

(p̂ · ~τ−)

]}

, (5.27)

T4 ij, T = −4k4p3

M5

{(

k̂ip̂j + k̂j p̂i −
2

3
cos θδij

)

cos θ

×
[

−M2

2
(~τ− · ~τ+) + 2kp(p̂ · ~τ−)(p̂ · ~τ+)

]

+ 2

(

p̂ip̂j −
1

3
δij

) [

M

(

k −
(

k − M

2

)

cos2 θ

)

(~τ− · ~τ+)
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+ 2k(E − M)(p̂ · ~τ−)(p̂ · ~τ+)

]

− k(E − p cos2 θ)

[(

p̂iτ− j + p̂jτ− i −
2

3
(p̂ · ~τ−)δij

)

(p̂ · ~τ+)

+

(

p̂iτ+ j + p̂jτ+ i −
2

3
(p̂ · ~τ+)δij

)

(p̂ · ~τ−)

]}

. (5.28)

In these expressions, k̂ and p̂ are unit vectors along the electron and the
Z boson momentum, respectively, and ϑ is the angle between them (the
scattering angle). In the formulas one can express the Z boson energy E
and momentum p = |~p| through the initial electron energy k = |~k|

E =
1

k

(

k2 +
M2

4

)

, p =
1

k

(

k2 − M2

4

)

. (5.29)

minimizing in this way the number of final state variables. This has been
done in [55] and [56]. However, to keep the formulas similar to the ones
given in the previous chapter for the process e+e− → tt̄ and afterwards, we
do not do it here.

5.4 Observation and analysis

The process e+e− → Zγ with a subsequent leptonic decay of the Z boson
Z → l+l− is a self-analyzing process with respect of the Z boson spin ori-
entation. The scattering process determines the Z boson spin orientation.
The spin orientation (polarization and alignment) of the Z boson is trans-
ferred to the angular distribution of the Z boson lepton decay products.
As a consequence, if the angular energy distribution of the final lepton in
Z → l+l− has been measured, one can put limits to the anomalous ZγZ
and Zγγ couplings. The expressions for the anomalous coupling contribu-
tions to the Z boson spin orientation, especially the ones describing the TP
contributions to the alignment tensor, do not seem to be very enlightening.
However, one must take into account that the calculations have been made
in a general case without specifying spin quantization axes and coordinates.
By introducing an appropriate coordinate system and by choosing suitable
quantization axes one can considerably simplify the expressions. However,
even in the aforegiven general form, the fully analytical expressions have
the structure from which their general features can easily be learned.

We now make some observations on these SM and anomalous LP- and
TP-dependent contributions to the Z boson spin orientation. We begin
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with presenting two common features of the LP- and TP-dependent contri-
butions. First, it is not difficult to see, that due to the momentum factors
pn ≡ |~p |n (n = 2 or 3) in the expressions of all anomalous couplings these
terms vanish at the threshold of the process. This is because the inability
of the anomalous couplings to contribute at the threshold is coded already
in the forms of these couplings: they are linear in the final photon four-
momentum pγ , which vanishes at the threshold of the process. However,
being zero at the threshold of the process, the anomalous coupling correc-
tions rapidly increase with the energy of colliding beams, which, as already
stated, leads to the necessity of describing the anomalous couplings by the
energy-dependent form-factors, which decrease when the energy increases.
Second, from all anomalous coupling expressions, one can also learn that
they do not give contribution to the process when the Z boson is emit-
ted along the beamline (p̂ = ±k̂). Contrary to SM contributions, those of
anomalous coupling grow with the increase of scattering angle. Thus, the
ratio of anomalous contributions to the SM ones is larger when the angle
between beamline and direction of Z boson momentum is larger.

As next we proceed to analyze the influence of the longitudinal polariza-
tion of the initial beams on the SM and NP contributions to the Z boson
spin orientation. As one can see, in the absent of transversely polarized
initial beams all contributions (i.e. the SM and the anomalous ones) to
the process depend on the coupling constants (gL, gR) and LP parameters
(h+, h−) only through the common factors (5.10). The scalar, vector and
tensor quantities (5.12) – (5.20) depend neither on the coupling constants
nor on the LP parameters. Just due to this, as emphasized earlier, LP
does not enable measurements which are inaccessible by using unpolarized
beams. But one can substantially change the SM and anomalous contri-
butions to the Z boson orientations by choosing different values for the
h− and h+ parameters in these polarization depending factors. However,
this conclusion does not apply in the same way to the polarization vector
(5.7) and the alignment tensor (5.8) of the Z boson. The contributions
from the SM, ZγZ and Zγγ couplings to the polarization vector and the
alignment tensor are accompanied by the ratios of different factors. From
(5.7) and (5.8) one can easily see that the SM Z boson polarization vector
depends on the polarization of the initial beams but the alignment does
not. Examining from the same viewpoint the anomalous correction parts,
one observes that the signs “+” and “−” in the polarization-depending
factors belonging to anomalous contributions are reversed as compared to
the signs belonging to the corresponding SM ones. Due to this the con-
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Figure 5.4: The ratios of polarization-dependent factors as the functions of
the electron polarization.

tributions from the ZγZ couplings to the Z boson polarization and the
alignment depend also “reversely” on the initial state polarizations. The
anomalous ZγZ coupling corrections to the Z boson alignment tensor de-
pend on the polarization parameters h+ and h−, whereas the corrections to
the polarization vector do not depend on these parameters if one neglects
the weak influence of the [−]hZ

k Sk. Since the anomalous Zγγ coupling con-
tributions are accompanied by the ratios <±>/[+] (which differ from the
unity), the Zγγ contributions both to the polarization and to the alignment
depend on the longitudinal polarization of the initial beams. The actual
magnitudes of the initial beams polarization effects in the contributions
from different couplings are determined by the sensitivities of the ratios
[−]/[+] and <±>/[+] to the variations of the longitudinal polarization pa-
rameters h+ and h−. In Fig. 5.4 these ratios are given as functions of the
longitudinal polarization of the initial electron. Since one cannot enlarge
here the theoretical range of the changes of the ratios with the use of simul-
taneously polarized beams, the investigations of the h− dependence of the
factors would be sufficient. One can see in Fig. 5.4 that the ratio <+>/[+]
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(the factor in the Zγγ contribution to the polarization vector) most sensi-
tively depends on the polarization of the initial electron. Taking this fact
into account, one can state that the substantial initial-beam-polarization-
dependent deviation from the SM contribution to the polarization vector
(5.7) indicates the Zγγ coupling.

A different picture appears for the alignment tensor (5.8). Here the con-
tribution from the ZγZ coupling is (via [−]/[+]) more sensitive to the vari-
ation of the beam polarization. The range of the changes of the <−>/[+]
factor due to the h− variation is much narrower. This ratio also does
not change the signs like the other ones. At the same time its module is
large. Such a behaviour of the ZγZ and Zγγ anomalous coupling con-
tributions may give a possibility to distinguishing them. Still one more
observation is that [−] = 0 if h− = (g2

L − g2
R)/(g2

L + g2
R) and <+>= 0 if

h− = (gL + gR)/(gL − gR). Thus, the SM does not give any measurable
contribution to the polarization vector (5.7) and the ZγZ coupling to the
alignment tensor (5.8) when the initial electron beam is about 15% polar-
ized along its momentum. If the electrons are about 7.5% polarized in the
same direction, the Zγγ coupling contribution to the polarization vector is
also vanishingly small.

To illustrate the possible range of the anomalous coupling contributions
and the role of the longitudinally polarized beam in it, we have chosen a
few plots that demonstrate the angular dependence of the SM and SM+NP
contributions to the Z boson polarization and the alignment with different
values of the e+ and e− longitudinal polarizations (Figs. 5.5, 5.6).

For simplicity we have restricted ourselves to the case where only one of
the anomalous couplings hZ

3 , hZ
4 , hγ

3 or hγ
4 differs from zero. The anomalous

couplings hZ,γ
1 and hZ,γ

3 are accompanied by a M−2 factor and hZ,γ
2 and

hZ,γ
4 by a M−4 factor (5.5), (5.6). Often these factors are reinterpreted in

terms of the NP scale. We have not redefined them in such a manner. In
all figures we have taken hZ,γ

3 = 0.001 and hZ,γ
4 = 0.0001. These values

are larger than the ones to which the ILC observability limits are found to
correspond. However, for these values the SM and SM+NP curves are still
clearly visible in every given diagram.

We now focus ourselves to the main features of the TP contributions
from both the SM and the anomalous parts of couplings. For a better un-
derstanding the reasons why by using TP one can get different information
as compared to LP, we present a comparison of the TP contributions with
those from LP.

For the beginning we remember the already well-known fact. Differently
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Figure 5.5: SM and anomalous contributions to the module of the Z boson
polarization vector.

from the LP contributions, in the case of the vanishing electron mass the
TP contributions are different from zero only if both the electron and the
positron are simultaneously transversely polarized. The validity of this
statement can also be observed from the expressions above.

Further, one can see from (5.21)-(5.28) that, unlike the LP contribu-
tions, the various couplings (SM, ZγZ and Zγγ) do not give TP dependent
contribution to all the quantities calculated, i.e. to S, ~t and tij . Only the
anomalous Zγγ couplings contribute the TP-dependent part to all of these
quantities. The SM does not contribute to ~t and, on the contrary, the ZγZ
couplings contribute only to ~t. This feature could be helpful for disentan-
gling the contributions from various couplings.

As already emphasized above, in the LP case the contributions to the
process depend on the coupling constants and on the beam polarization
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Figure 5.6: SM and anomalous contributions to the Z boson spin alignment
with respect to the Z boson momentum line (A(p̂ip̂j − 1/3δij)).

parameters only through the factors [±] or <±>. Contrary to the LP
contributions, the TP contributions are not factorized. They depend on
the polarization parameters ~τ− and ~τ+ through the quantities ST, Si,T, Vi,T

etc. in a manner given in (5.21)-(5.28). As a consequence, TP can enable
the measurements which are not accessible with LP or unpolarized beams.

TP provide the theory with extra directions. Due to the vectors ~τ−
and ~τ+, the Z boson polarization vector ~t obtains additional components
((5.24)-(5.25)) and new alignment axes are added to the spin orientation
tensor tij ((5.27)-(5.28)). The extra directions can also be used for con-
structing new asymmetries.

We now proceed to demonstrate some possibilities of using the TP con-
tributions for testing the SM and anomalous couplings. We begin with
the Z boson polarization vector. Since the SM generates no TP-dependent
terms in ~t, any such term has to come from the anomalous couplings con-
tributions. As a characteristic feature of these contributions, we emphasize
that due to the ZγZ and Zγγ TP-dependent contributions to the Z boson
polarization vector, the latter obtains an additional part which generally
lies not on the reaction plain (cf. the last terms in (5.24) and (5.25)). As a
consequence, the whole Z boson polarization vector lies outside the reaction
plain. Hence, the existence of the angle between the Z boson polarization
vector and the reaction plain indicates the anomalous self-couplings contri-
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butions from the transversely polarized initial beams.
Let us consider a concrete example. For simplicity we restrict ourselves

to the cases where only one of the anomalous couplings (hγ
3 or hZ

3 ) differs
from zero. We also assume that two TP vectors are perpendicular to each
other and the Z boson momentum is perpendicular to one of these vectors.
For choosing the degrees of polarization we take the values of the linear
polarizations foreseen in the base line design of the ILC (Le− = 0.8, Le+ =
0.6) and assume a 100% efficiency of spin rotators, i.e. we take the values
of the transverse polarizations to be |~τ−| = 0.8 and |~τ+| = 0.6. In this case
the values for the angle (α) between the reaction plain and the Z boson
polarization vector for different values of hγ

3 and hZ
3 are given as functions

of the scattering angle in Fig. 5.7.

Figure 5.7: The dependence of tanα on the scattering angle.

The same configuration for the vectors ~τ−, ~τ+, ~̂k and ~̂p simplifies con-
siderably also the formulae of the TP contributions to the alignment tensor
tij (5.8), (5.26) - (5.28). The axial vector coupling constant (gA = gL−gR),
which is at work in the anomalous TP-dependent contributions to the align-
ment tensor tij , is large as compared to the SM one (gLgR = (g2

V − g2
A)/4).

At the same time the anomalous ZZγ coupling does not contribute to the
TP-dependent part of tij (5.8). Due to these factors the TP-dependent
spin alignment can improve the sensitivity to anomalous Zγγ couplings.
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When taking for concreteness the coordinate axes so that ~τ− = (|~τ−|, 0, 0),

~τ+ = (0, |~τ+|, 0), ~̂k = (0, 0, 1), ~̂p = (sin ϑ, 0, cos ϑ), one can readily see that
only the terms with the alignment axes built with the help of TP vectors
survive. Furthermore, in this particular case, the components txy and tyz of
the alignment tensor contain only TP-dependent tensor components. TP-
independent contributions are equal to zero. In Fig. 5.8 we compare the
SM and SM+Zγγ contributions to txy.

Figure 5.8: The dependence of txy on scattering angle.

We end the section with a comment on the possible additional asym-
metries in the TP case. Here one must depart from the fact that the TP
contributions are invariant under a simultaneous reversal of the directions
of ~τ− and ~τ+ and change the sign when only the direction of one of these
is reversed.

Thus, by renoting S
′

in (5.9) as S
′ ≡ S

′

(~τ−, ~τ+), one can write

S
′

(−~τ−,−~τ+) = S
′

(~τ−, ~τ+), S
′

(−~τ−, ~τ+) = S
′

(~τ−,−~τ+) = −S
′

(~τ−, ~τ+).
(5.30)

From (5.30) it follows that one cannot construct asymmetries at this point
similar to the left-right asymmetry in the LP case [55]. Instead, one can
define

A+,− =
S

′

(~τ−, ~τ+) − S
′

(−~τ−, ~τ+)

S′(~τ−, ~τ+) + S′(−~τ−, ~τ+)
, (5.31)
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which due to (5.30) is the ratio of the TP-dependent and TP-independent
parts of contributions.

Let us consider the SM case. For the vectors ~τ−, ~τ+ and ~̂k we choose the
same configuration as in the previous example. However, we do not restrict
the direction of the Z boson momentum, i.e. ~̂p = (sin ϑ cos φ, sin ϑ sinφ, cos ϑ).
Then we get

A+,− =
2gLgR

g2
L + g2

R

|~τ−||~τ+|
p2 sin2 θ sin 2φ

M2 + p2(1 + cos2 θ)
. (5.32)

It is interesting to note that in the case k ≫ M the maximal value of A+,−
(i.e. when ϑ = π/2 and φ = π/4) is approximately determined by a very
simple formula

A+,− =
2gLgR

g2
L + g2

R

|~τ−||~τ+| ≈ −|~τ−||~τ+|. (5.33)

By using (5.9) and (5.21) – (5.23) one can easily construct the formulae
for A+,− asymmetries in the presence of anomalous couplings. Since the
anomalous ZZγ coupling does not generate TP-dependent contributions in
S

′

(~τ−, ~τ+), such asymmetries would be helpful in testing the existence of
the anomalous Zγγ couplings. We do not present any of these formulae.
Instead we illustrate the dependence of A+,− on the scattering angle in the
cases of SM and SM+Zγγ in Fig. 5.9.

Figure 5.9: Asymmetries A+,− for SM and SM+Zγγ.
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Chapter 6

Processes e+e−→Zγ, ZH in

the Standard Model

Besides the anomalous neutral gauge boson self-couplings analyzed above,
there exists another trilinear neutral boson self-coupling, namely the self-
coupling ZHZ important for testing the SM and searching for possible new
physics implications. Such a coupling occurs in the process e+e− → ZH
mediated by virtual Z boson exchange in the s-channel. In the SM at tree
level this process is described by a Feynman diagramm with a point-like
ZHZ vertex (Fig. 6.1). For investigating possible manifestations of inter-

e−(k−)

e+(k+)

H(pH)

Z(p)

Z(q)

Figure 6.1: Higgs production with point-like ZHZ coupling.

actions beyond the SM one can modify the point-like vertex by means of
a momentum-dependent form factor or by adding more complicated forms
of anomalous couplings [76, 77]. A scalar boson with properties of the SM
Higgs boson is likely to be discovered at the LHC. However, one cannot be
sure that only one scalar Higgs doublet is sufficient for symmetry breaking
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as predicted by the SM. According to various models beyond the SM some-
thing more is needed. To discover possible manifestations of these models
the ILC is more suitable than the LHC. Taking into account the possibility
of finding the indications of physics beyond the SM changing the nature of
the Higgs mechanism, one can say that the process e+e− → ZH provides
an important mechanism for the production of the Higgs boson. However,
it is clear that searching for non-standard physics effects at future colliders
cannot be successful without knowing the SM predictions with sufficient
precision. Therefore, the studies of spin effects within the SM are still
worthwhile. The knowledge of all possible spin effects in some of the SM
processes forms a basis for rejecting or limiting various anomalous couplings
or any other deviations from the SM.

6.1 Similarities of the Z boson spin orientations

In this section we demonstrate that the spin orientation of the Z boson
in e+e− → ZH and e+e− → Zγ calculated in the framework of the SM
at tree level are quite similar. Even more, at threshold energies the ex-
pressions for the Z boson polarization vector ti and alignment tensor tij in
those processes coincide. One can find the expressions of these parameters
for e+e− → Zγ in Chapter 5. For calculating corresponding expressions
in e+e− → ZH, one can start from the amplitude corresponding to the
Feynman diagram in Fig. 6.1. Actually, at lowest order there are three
Feynman diagrams corresponding to this process. However, the two dia-
grams in which the Higgs boson couples to the electron (or positron) line
can be ignored due to the smallness of the coupling, which is proportional
to the electron mass. The amplitude corresponding to the diagram in Fig.
6.1 is [13]:

M =
g2

2 cos2 θW

M

s − M2
v̄(k+)γµ(gV − gAγ5)u(k−)(−gµν +

qµqν

M2
)εν ∗

Z (p),

(6.1)
where qµ = kµ

+ + kµ
− is the four-momentum transfer and M stands for the

Z boson mass. Note that the term qµqν/M
2 in (6.1) can also be ignored

due to the small electron mass. With the approximation that the electron
mass is negligible as compared to the typical energy scale of the process,
for the CM system one can find the polarization vector and the alignment
tensor of the Z boson by using traditional methods. The expressions for
these parameters have been found in [13]. The polarization vectors and
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alignment tensors for the Zγ and ZH processes are:

~tZγ =
2

SZγ
[−] [EMk̂ + (2E + M)(E − M) cos θ p̂], (6.2)

~tZH =
2

SZH
[−] [EMk̂ − M(E − M) cos θ p̂], (6.3)

tij, Zγ,ZH =
3

SZγ, ZH

{

[+]

[

M2(k̂ik̂j −
1

3
δij) + M(E − M) cos θ (k̂ip̂j + k̂j p̂i −

2

3
cos θδij)

+ (±p2 + (E − M)2 cos2 θ)(p̂ip̂j −
1

3
δij)

]

+ 2gLgR

[

M2(~τ− · ~τ+)(k̂ik̂j −
1

3
δij)

+ M(E − M) cos θ(~τ− · ~τ+)(k̂ip̂j + k̂j p̂i −
2

3
cos θδij)

− [(p2 − (E − M)2 cos2 θ)(~τ− · ~τ+) − 2(E − M)2(p̂ · ~τ−)(p̂ · ~τ+)](p̂ip̂j −
1

3
δij)

+ M(E − M)[(p̂ · ~τ+)(p̂iτ− j + p̂jτ− i −
2

3
(p̂ · ~τ−)δij)

+ (p̂ · ~τ−)(p̂iτ+ j + p̂jτ+ j −
2

3
(p̂ · ~τ+)δij)]

+ M2(τ− iτ+ j + τ− jτ+ i −
2

3
(~τ− · ~τ+)δij)

]

}

, (6.4)

where

SZγ = 2[+][M2 + p2(1+ cos2 θ)]− 4gLgRp2[sin2 θ(~τ− ·~τ+)− 2(p̂ ·~τ−)(p̂ ·~τ+)]
(6.5)

and

SZH = [+] [2M2+p2 sin2 θ]+2gLgRp2[sin2 θ(~τ− ·~τ+)−2(p̂·~τ−)(p̂·~τ+)]. (6.6)

The other notations have been already used before or are obvious. One
can immediately see the similarities between the Z boson orientation pa-
rameters in two different processes. Note here that the numerators of the
expressions for the tij Zγ and tij ZH are the same, except for the signs in
front of a single term where the upper sign belongs to Zγ and the lower
sign to the ZH process.

As already stated, at threshold energies the expressions for both pro-
cesses coincide:

~tthres =
[−]

[+]
k̂ =

g2
L(1 − h−)(1 + h+) − g2

R(1 + h−)(1 − h+)

g2
L(1 − h−)(1 + h+) + g2

R(1 + h−)(1 − h+)
k̂, (6.7)
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tij thres =
3

2
(k̂ik̂j −

1

3
δij) +

3 gL gR

g2
L(1 − h−)(1 + h+) + g2

R(1 + h−)(1 − h+)

×
[

(~τ− · ~τ+)(k̂ik̂j −
1

3
δij) + τ− iτ+ j + τ− jτ+ i −

2

3
(~τ− · ~τ+)δij

]

.

(6.8)

The coincidence of the Z boson spin orientations at the thresholds of two
different processes, one of them being described by two (u- and t-channels)
Feynman diagrams and the other by one (s-channel) diagram, may seem
somewhat peculiar. However, this result can be expected. One can say that
the formulas (6.7) and (6.8) give the spin orientation parameters of the real
Z boson in the process e+e− → Z. The Higgs boson is a spin-0 particle and
therefore cannot affect the spin orientation of the Z boson at the threshold
of e+e− → ZH. On the other hand, at the limit ~p → 0 in e+e− → Zγ
the photon can obviously be considered as a radiative correction to the
main process e+e− → Z. So the coincidence of the Z boson orientation
parameters for the two different processes can be taken as a cross-check for
our formulas.

6.2 Tuning the Z boson spin polarization and align-

ment

We proceed to analyze these threshold expressions in order to demonstrate
the importance of using polarized initial beams in e+e− linear colliders.
From (6.7) one can learn how much the Z boson polarization vector can
be tuned by variation of the LP of the initial beams. In allowing the h−
and h+ parameters to take values as large as possible, we suppose that the
beams have no TP components. Like it was done when considering the
process e+e− → tt̄ in Chapter 4, we also express ~tthres through the effective
polarization parameter

χ =
h+ − h−

1 − h− h+
.

We obtain
~tthres = t(χ)k̂, (6.9)

where

t(χ) =
χ + b

bχ + 1

with

b =
g2
L − g2

R

g2
L + g2

R

=
2 gV gA

g2
V + g2

A

≈ 0.147.
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In Fig. 6.2 the dependence of the polarization vector of the Z boson on the

Figure 6.2: The Z boson polarization in SM at the thresholds of e+e− →
Zγ, ZH as a function of χ.

effective polarization of the beams is given. The fact that t(χ0) = −χ(t0) =
b = 0.147 is again due to the similarity of t(χ) and

χ(t) =
−t + b

b t − 1
.

To clarify how much it is possible to tune the Z boson polarization vector as
compared to the unpolarized (χ = 0) case, one has to justify whether there
exist some additional restrictions on this vector due to positivity conditions
(3.48). Both the polarization vector and the alignment tensor depend only
on the vector k̂. When choosing the coordinate system with the z-axis
along the vector k̂, one gets

~t → tz =
χ + b

bχ + 1
k̂z,

tij → tzz =
3

2
(k̂2

z − 1

3
δzz) = 1, (6.10)
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txx = −1

2
,

tyy = −1

2
.

All the other components are equal to zero. When substituting these com-
ponents into the positivity conditions (3.48) it turns out that the condition
is satisfied independently of the tz and, therefore, also independently of the
value of χ.

Hence, by varying the effective polarization χ one can theoretically force
the Z boson polarization vector to take any value between −1 and 1. Prac-
tically achievable values are not far from the theoretical ones. When using
the values h− = ± 0.8, h+ = ± 0.6, planned to be achieved at the ILC, one
can reach the effective polarization of the initial beams χ = ± 0.95 which
lead to

t(χ) = +0.96
−0.93 . (6.11)

If h− = h+ = 0 and ~τ− 6= 0, ~τ+ 6= 0, one can tune the alignment tensors by
changing the TP vectors. One can show that also in this case the positivity
condition (3.48) does not put additional restrictions to the components of
the alignment tensor. If one uses the same reference frame as above then

tz =
g2
L − g2

R

g2
L + g2

R

,

tzz = 1, (6.12)

txx = −1

2
+

3 gL gR

g2
L + g2

R

τ−xτ+ x,

tyy = −1

2
− 3 gL gR

g2
L + g2

R

τ−xτ+ x.

When inserting these parameters into the expression for the positivity con-
dition, one finds that this condition is satisfied for any value of the TP
components τ−x, τ+ x as well for the coupling constants gL, gR. As a con-
sequence, one can tune the Z boson alignment by changing the TP vectors
over all practically available values.

The studies given in this chapter demonstrate that the spin orientations
of the final massive particles from the e+e− annihilation near threshold are
quite similar.
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Chapter 7

Higher-spin interaction

theory and gyromagnetic

factor

7.1 Difficulties of higher-spin field theory

Understanding the higher-spin interactions is a longstanding problem. How-
ever, in spite of its more than 70 years history, the main goal – construction
of a consistent higher-spin interaction theory – has not been achieved yet.
Higher spins start from the values spin one and higher. This concept is
not universally accepted. For a part of investigators “higher-spin” means
s ≥ 3/2. The specialists in supergravity updated the convention of the
higher spin to be even s ≥ 5/2. [57] Nevertheless, at least in the Standard
Model the troubles start already from the value s = 1. Therefore, it seems
that the convention s ≥ 1 as the higher-spin region is more justified than the
other ones. The investigations of higher-spin fields started in last century
thirties from papers by Dirac [58], Wigner [59], Fierz and Pauli [60] and
followed by the works of Rarita and Schwinger [61], Bargmann and Wigner
[62] and others. The difficulties in higher spin physics revealed themselves
when one tried to couple higher-spin fields to an electromagnetic field. In
the 1960s concrete defects of the higher-spin interaction theory were found.
Federbush [32], Johnson and Sudarshan [33] and Schwinger [81] demon-
strated that in the case of minimal electromagnetic coupling some of the
anticommutation relations become indefinite. It appeared that the defects
were also present at the classical level. Velo and Zwanziger [84] showed
that in an external electromagnetic field there appeared acausal (superlu-
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minal) modes of propagation. Afterwards other defects (bad high-energy
behaviour of the amplitudes, various algebraic problems etc.) revealed
themselves. Since the sixties of the last century much work was done to
solve the problems, but no satisfactory results have been obtained in the
framework of ordinary field theory with minimal electromagnetic coupling.

The search for a consistent higher-spin interaction theory has been faced
with various difficulties. The theory of the relativistic wave equations is
based on the representations of the Poincaré group, which in the field the-
ory are somewhat specific in their mathematical realization. In addition,
the theory of higher-spin fields is altogether rather complicated and due to
that the wave functions and Lagrangians proposed have not been always
correct. Thus it has been sometimes difficult to understand whether the
problems were technical or pertined to a principle. As a matter of fact,
the difficulties in higher-spin physics are generic to all field theoretic de-
scriptions of relativistic higher-spin particles. The difficulties are related
to the fact that covariant higher-spin field has more components than it is
necessary to describe the spin degrees of freedom of the physical particle.
To get rid of redundant degrees of freedom one must set up constraints be-
tween the field components. Using the language of Lagrangians, one has to
construct free Lagrangians, which in addition to the Dirac and Proca type
higher-spin equations would yield also constraint equations that reduce the
number of degrees of freedom to the physical values. The problem is how
to introduce interactions under these conditions. If the interactions are in-
troduced consistently with the free field theory, the number of independent
field components remains unchanged. Otherwise the free theory constraints
may be violated and unphysical degrees of freedom may be involved.

In order to put constraints on the field components it is reasonable to
use the symmetry framework. To reduce the number of degrees of freedom
of the free field to a physical value certain symmetries have to be imposed
in formulating the action. Any free higher-spin action must be invariant
under a transformation which leaves only the physical (2s+1) spin degrees
of freedom. Needless to say that not every interaction introduced into
the theory will be consistent with the constructions of the free theory. The
inconsistent, free theories symmetries violating forms of interactions violate
also the degree of freedom counting of the free theory, which generally leads
to acausal modes of propagation of particles, to indefinite norms of states, to
bad, non-unitary high-energy behaviour of the amplitudes of processes etc.

Hence the main promise of constructing consistent higher-spin theory must
be that the interaction introduced into the theory should not introduce also
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spurious degrees of freedom. Therefore, the interacting theory has to obey
similar symmetry requirements as the corresponding free theory or, even
better, preserves the gauge symmetries of the free theory. The possibility
to construct consistent higher-spin theories with gauge invariant couplings
was first pointed out by Weinberg and Witten [63]. However, the realization
of this scenario is beset with difficulties and to date no general prescription
for constructing in such a way a consistent higher-spin field theory for any
spin has been found. Even though certain progress in understanding of
massless higher-spin interaction theory has been made during the last two
decades [34, 64, 65, 66, 67, 68].

The higher-spin interaction theory is related to the Standard Model in
several ways. With introducing the massive spin one gauge bosons into
the theory, one also introduces higher-spins problems into the Standard
Model. The difficulties reveal themselves, for example, in scattering pro-
cesses with participation of a charged gauge bosons, W±, in the initial or
final state, or when constructing three-vertex gauge boson self-interactions.
The consistent higher-spin interaction theory is also needed in quantum
chromodynamics. Quantum chromodynamics does not yet allow to de-
scribe low-energy hadronic processes in terms of underlying quark-gluon
dynamics. Due to this one has to use a more phenomenological approach
in terms of hadronic fields. However, one of the basic problems here is the
treatment of hadrons with s ≥ 1 [86].

To understand better the problems of modern theories beyond the SM
one also needs a better understanding of ordinary higher-spin field theory.
For example, the string theory is free from many of aforementioned higher
spin problems and due to this it is believed that it can consistently describe
quantum gravity. A reason behind this consistent behaviour is that string
theories contain an infinite tower of all spin states. But at the same time
there exist serious troubles in the physical interpretation of string theories.
The existence of consistent higher-spin interaction theory would help to
understand better the physics behind the string theory. It is believed that if
a breakthrough in understanding the basic problems of the ordinary higher-
spin field theory would happen, it might become a fashionable topic [66].

7.2 Higher-spin physics and gyromagnetic factor

The gyromagnetic factor can be defined for systems possessing a charge,
mass and angular momentum. In relativistic quantum mechanics a factor
g = 2 is resulted from the Dirac (s = 1/2) equation. But what is the value
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of the gyromagnetic factor for the higher spin particles? Belinfante [93]
calculated the g-factor for s = 3/2 in the case of minimal electromagnetic
coupling and got g = 2/3. After comparing this result with Dirac s = 1/2
and s = 1 case he supposed that the g-factor for arbitrary spin s is given
by the formula g = 1/s. A general proof of Belinfante’s conjecture g = 1/s
for particles with arbitrary spin in the case of minimal electromagnetic
coupling was given by Napsuciale and Vaguera-Arango [94].

This is a simple and nice formula. However, due to the serious incon-
sistences of the higher-spin minimal electromagnetic interaction theory it
cannot be taken too seriously. The value g = 1 for s = 1 charged bosons
W± for example leads to serious difficulties in description of γW -scattering,
where the amplitude of the process increases rapidly with increasing energy,
leading to a violation of unitarity. Weinberg [31] showed that when taking
instead of the minimal coupling non-minimal ones, especially those which
lead to g = 2 for arbitrary spin, one can (at least partially) cure the diffi-
culties. And though the electrodynamics of charged particles of unit spin
remains unrenormalizable for any value of g ≥ 1, the higher order electro-
magnetic corrections in γW scattering amplitude ought to be small and the
amplitudes behave well at infinity if g = 2. Currently it is almost a common
agreement that the value for the gyromagnetic factor for all truly elemen-
tary charged particles of any spin is g = 2. This picture is also supported
by the experimental value for the W boson gyromagnetic factor, which is
gW = 2.22 ± 0.20 [20] and which definitely rules out value gW = 1. To
justify the choice g = 2 for any spin usually the following main arguments
are given:

1. g = 2 value must hold to generate good high-energy behaviour of
scattering amplitudes [31];

2. In the case g = 2 the Bargmann-Michel-Telegdi [80] equation of mo-
tion of the polarization vector takes its simplest form [34]:

dSµ

dτ
=

e

m
FµνS

ν ; (7.1)

3. The only massive higher-spin charged fundamental particle in the SM,
the W boson with s = 1 has at tree level gW = 2 [35].

The first two of these reasons can be classified as “practical needs” and the
third one presumes in more general case the particle to be a gauge one [69].

Obviously, the value g = 2 must rest on some fundamental theoretical
ground. Such grounds have been looked for in recent years [34]. In [69]
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another symmetry principle based on field-dependent invariant representa-
tion (the “dynamical” representation) of the Poincaré algebra given in [36]
is used.

Since the gyromagnetic factor is determined by the form of interaction,
the search for the symmetry principle that would generate the g = 2 value
is also the search for the symmetry principle for building a consistent in-
teraction theory. In relativistic particle theory the Poincaré group plays
a fundamental role. However, when the interaction is introduced in the
form of minimal electromagnetic coupling, in the case of higher-spin theo-
ries the Poincaré invariance is violated. Thus, to avoid the violation of the
Poincaré invariance one needs a dynamical principle, which would result in
a minimal coupling in lower spin cases (s = 0, 1/2) and a new, non-minimal
Poincaré-invariant coupling in the higher spin (s ≥ 1) cases.

We take the representation in [36] as a dynamical principle that deter-
mines the “dynamical” electromagnetic coupling. The “dynamical” cou-
pling for arbitrary spin s ≥ 1 contains a non-minimal term linear in the
field strength tensor Fµν . It appears that due to this term the non-minimal
coupling may lead to g = 2.

The “dynamical” algebra in the case of the spin-1/2 particles was first
introduced by Chakrabarty [87] and further studied by Beers and Nickle
[89]. In [36] the construction of the “dynamical” representation has been
generalized to the arbitrary spin case. The representations are built by
introducing a plane electromagnetic field into the free Poincaré algebra.
The new, “dynamical” representations are constructed from the generators
of the free Poincaré algebra and the external field in such a way that the
new, field-dependent generators obey the commutation relations of the free
Poincaré algebra.

In analogy to the free particle theory, from this starting point the wave
equations with respect to the “dynamical” representation of the Poincaré
algebra can be constructed. These equations describe the “dynamical”
interactions of the particles with the external plane wave field. In spite of
the external electromagnetic field,in this theory the particle behaves like a
free particle. Since the free higher-spin theory has no defects there is hope
that the troubles existing in the minimal coupling theory (or at least some
of them) can be avoided in the “dynamical” interaction theory. This would
be in accordance with the aforegiven statement that the interaction has to
be introduced in such a way that the symmetries of the free theory are not
violated.

As has been shown already by Chakrabarti [87], the simplest way to
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build the “dynamical” representation is to introduce the external field by a
non-singular transformation. Consequently, the problem is to find a field-
dependent transformation U , such that the transformed Poincaré genera-
tors

πµ = UPµU−1

Mµν = UMµνU
−1, (7.2)

where Pµ = i∂µ, Mµν = Lµν +Sµν with Lµν = xµPν −xνPµ and Sµν as the
generators of the finite-dimensional representation of the Lorentz group,
would obey the commutation relations of the free-particle theory, i.e.

[Mµν , Mρσ] = i(gµσMνρ + gνρMµσ − gµρMνσ − gνσMµρ),

[Mµν , πσ] = i(gνσπµ − gµσπν),

[πµ, πν ] = 0. (7.3)

The concept of Lorentz covariance raises the requirement that the op-
erator U has to be of Lorentz type for the generator Sµν (local Lorentz
transformation).

It appears that such an operator can be found without problems for a
plain wave (laser) field

Aµ = Aµ(ξ), ξ = k · x. (7.4)

For arbitrary spin s
U = U0 · U(s) , (7.5)

where

U0 = exp

{

i

∫

dξ

2(k · P )

[

2e P · A(ξ) − e2A2(ξ)
]

}

. (7.6)

and

U(s) = exp

{

−i
e

2(k · P )
[kµAν − kνAµ] Sµν

}

. (7.7)

The details connected with the inverse operator (kP )−1 can be found in
[87]. Note that this operator is well-defined and successfully used in a lot
of papers (see for instance [89, 90, 91]). By applying the transformation
(7.5) to the operator Pµ one gets

πµ = Pµ +
e

2(k · P )
kµ(eA2 − 2A · P − FσρS

σρ). (7.8)
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Being supplied with the mathematical apparatus given above one is ready
to transform a free Klein-Gordon equation

(P 2 − m2)ψ = 0 (7.9)

into the equation in the “dynamical” representation.
Equation (7.9) describes a spectrum of spins. As already described

above, to get a spin-1 theory one must eliminate all superfluous spins by
putting subsidiary conditions (constraint equations) to the equation. Since
there exists no prescription how this can be done in arbitrary spin case,
we will consider in the following the simplest and most familiar spin-1 and
spin-3/2 cases.

In the massive spin-1 case the subsidiary condition is already present
in the Proca equation

{

(P 2 − m2)gµν − PµPν

}

φν = 0. (7.10)

This equation can equivalently be written as the equation and subsidiary
condition

(P 2 − m2)φµ = 0,

Pνφ
ν = 0. (7.11)

By applying the U -transformation to these free spin-1 particle equations
one gets the equations in the “dynamical” representation:

{

(D2 − m2)gµν − DµDν − 2ieFµν

}

φν
d = 0 (7.12)

and

(D2 − m2)φµ − 2ieFµνφ
ν
d = 0,

Dνφ
ν
d = 0, (7.13)

where D2 = DσDσ, Dσ = Pσ − eAσ and φd = Uφ .
The details of the deduction of these equations can be found in [36]. The

non-minimal term linear in Fµν = ∂µAν − ∂νAµ guarantees a good high-
energy behaviour of the scattering amplitudes and leads to a value g = 2 of
the gyromagnetic factor. The equations (7.12) and (7.13) deduced in the
framework of the “dynamical” theory coincide with well-known equations
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describing the coupling of a spin-1 particle with the charge e to the elec-
tromagnetic field. The non-minimal term linear in Fµν was put into these
equations as a practical need without reasonable theoretical foundations.

In spite of this, quite often it is stated that the coupling in (7.12) and
(7.13) is the minimal one, i.e. it can be obtained by making the substitution
Pµ → Dµ = Pµ − eAµ in the free equations (7.10) and (7.11). Indeed, due
to the fact that the replacement Pµ → Dµ is not unique in (7.10) one can
use a trick here [92]:

−PµPν → −PµPν +k [Pµ, Pν ] → −DµDν +k [Dµ, Dν ] −→k=2 −DµDν −2ieFµν .
(7.14)

However, the choice k = 2 is only one possibility among many. By a trick of
such kind one can get the field strength term with an arbitrary numerical
coefficient in front of Fµν . Besides, without adding the commutator term
2[Pµ, Pν ](= 0!) to the left hand side of the first equation in (7.11) one does
not get from this equation the Fµν term in (7.13) by the minimal coupling
prescription Pµ → Dµ either. In the “dynamical” theory, the field strength
term arises from the P 2 term (UP 2U−1 = π2 = D2 − eFµνS

µν) and (7.13)
follows uniquely from (7.11). Moreover, since πµ and πν commute like Pµ

and Pν , by applying the U -transformation to (7.10) one gets also uniquely
(7.12).

To get a unique minimal coupling theory one must depart from first-
order equations, where the procedure Pµ → Dµ is unambiguous. However,
the Kemmer-Duffin spin-1 equation with the minimal coupling leads in
according with the g = 1/s conjecture to g = 1. In the case of the first-
order equations it is not difficult to verify that the “dynamical” interaction
is introduced by a modified minimal coupling procedure [36]

Pµ → Pµ − eAµ − e

2(k · P )
kµFρσSσρ = Dµ − e

2(k · P )
kµFρσSρσ. (7.15)

The last term in the equation does not give any contribution to the spin-0
and spin-1/2 equations. However, in the s > 1/2 cases the added spin-
dependent term increases the gyromagnetic ratio as compared to the min-
imal coupling one.

It can be seen more clearly by examining the spin-dependent terms in
the second-order equations. Since every “dynamical” first-order equation
has the Klein-Gordon divisor (if such an operator exists for free equation),
one can always find the corresponding second-order equation. By applying,
for example, the Klein-Gordon divisor to the “dynamical” Rarita-Schwinger
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linear spin-3/2 equation, one obtains

[

(D2 − m2 − eFρσsσρ)gµν − 2ieFµν

]

ψν
d = 0,

(7.16)

γµψµ
d = 0,

where sσρ = i
4 [γσ, γρ] is the Lorentz spin-1/2 generator. Contrary to the

minimal coupling case, where spin-3/2 Rarita-Schwinger equation leads to
the gyromagnetic ratio g = 2/3, the spin dependent terms in (7.16) suggest
the value g = 2.

Finally, the investigations have shown that the “dynamical” interactions
can be developed also in two plain-wave cases or maybe even in the general
case of n plain-waves [95].
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Chapter 8

Summary

The Standard Model has been phenomenologically very successful. Up to
now the predictions of the Standard Model have been in consistence with
all accelerator-based experiments. However, the Standard Model as a the-
ory is less impressive. There are a lot of fundamental questions that remain
unanswered by the Standard Model. Due to this there are strong reasons
to expect that beyond the Standard Model at the higher energy level there
exists new physics, more fundamental than the Standard Model physics.
The most straightforward method for searching new physics would be the
production of new physics particles. However, the Large Hadron Collider
(LHC) excluded, the energies needed for such a scenario are beyond the
reach of present colliders and obviously also of the future International
Linear Collider (ILC). But the possibilities to probe new physics at the en-
ergies below the new physics mass scale exist. These, more indirect scenar-
ios are based on observations of small departures from the Standard Model
predictions in the processes between Standard Model particles, and new
physics indications can arise only from non-standard interactions. For such
methods higher sensitivity, both experimental and theoretical is needed.

It is well known that spin effects as compared to the other ones, are
more sensitive to new physics indications. The possibility to use at ILC
both longitudinally and transversely polarized initial beams provides a pow-
erful tool for searching new physics through the spin orientation effects in
ILC processes. In this thesis the utility of using polarized and especially
transversely polarized beams for searching new physics is once more demon-
strated.

In the first publication the process e+e− → tt̄ is studied in the case
of possible existence of non-standard (anomalous) scalar-type particle and
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unparticle couplings. The use of transversely polarized initial beams in this
process enables to probe the appearance of such type anomalous couplings
already in first order contributions making these studies altogether sensible.
The analytic expressions of these contributions are found for the case when
either the top or the antitop polarization is measured. It is shown that
they contain CP-odd terms due to which the CP-invariance in the process
is violated. Various asymmetries sensible to CP violation are constructed.
It is also demonstrated how one can probe the anomalous couplings by
measuring the angle between the reaction plain and the final state top
(antitop) polarization vector.

In the second publication the process e+e− → Zγ with longitudinally
polarized initial beams is studied in the case of existence of anomalous
trilinear neutral gauge boson self-couplings ZγZ and Zγγ. The analytical
expressions for the final Z boson polarization vector and the alignment ten-
sor are found and analyzed. The differences between the Standard Model
and anomalous couplings contributions are presented which in principle en-
able to disentangle them. It appears that the influence of the longitudinal
polarizations on the Z boson spin orientation is determined by the factors
depending on longitudinal polarization that are different in the different
contributions. By varying the longitudinal polarization parameters h− and
h+ in these factors, one can increase or decrease the role of different con-
tributions. This probability is helpful in separating anomalous coupling
contributions from the Standard Model ones.

In the third publication the role of the transversely polarized initial
beams in disentangling the Standard Model and anomalous ZγZ and Zγγ
self-couplings in e+e− → Zγ is studied. The analytical expressions for
the transverse-polarization-depending contributions for the Z boson spin
orientation from the Standard Model and anomalous couplings are calcu-
lated and analyzed. The differences between the contributions depending
on transverse and longitudinal polarization are presented. Differently from
the longitudinal polarization the transverse polarization provides the the-
ory with extra directions. Thanks to these directions determined by the
transverse polarization vectors ~τ− and ~τ+ the Z boson polarization vec-
tor obtains additional components. Since the Standard Model generates
no terms to the Z boson polarization vector which depend on transverse
polarization, any such term has to be from the anomalous couplings. Due
to the ZγZ and Zγγ couplings, the Z boson polarization vector obtains
an additional part and is moved outside the reaction plain. By measuring
the angle between the reaction plain and the Z boson polarization vec-
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tor, one can get information about the possible existence of the anomalous
couplings.

The contributions depending on the transverse polarization change also
the alignment tensors which can be measured in the experiment. The extra
directions can also be used to construct new asymmetries.

In the fourth publication the “dynamical” interaction theory developed
by Estonian scientists is used to support theoretically the value g = 2 of the
gyromagnetic factor in spin-1 case. In the relativistic quantum mechanics
the factor g = 2 is resulted from the Dirac (s = 1/2) equation. In the
general case the minimal electromagnetic coupling being the part of the
Standard Model, leads to g-factor g = 1/s. The value g = 2 from this
well-known formula is consistent with the Dirac theory as well as with the
experiment. However, the value g = 1 for the s = 1 charged gauge bosons
W± leads to serious difficulties in description of γW scattering where the
amplitude of the process in this case increases rapidly with increasing en-
ergy. Currently it is almost common agreement that the value for the
gyromagnetic factor for all truly elementary charged particles of any spin
is g = 2. This agreement is also supported by the experimental value of
W boson gyromagnetic factor gW = 2.22 ± 0.20. However, theoretical ar-
guments for supporting the g = 2 value emerge rather from the practical
needs than from fundamental theoretical grounds. In the “dynamical” the-
ory a term linear to the field strength tensor Fµν is added to the minimal
electromagnetic coupling part. This term is zero for the spin-0 and spin-
1/2, but nonzero in higher-spin cases. In the publication it is shown that
due to this term the “dynamical” theory leads to the value of g = 2 for
spin-1 case. Such a result supports the value g = 2 and also suggests to
the further developing of the “dynamical theory”.

The thesis starts with the overview of the Standard Model and pos-
sibilities for searching new physics indications shedding light also at the
concrete cases of anomalous scalar-type interactions and neutral gauge bo-
son self couplings. In the next chapter the mathematical apparatus for
describing spin orientation phenomena is presented in a general manner.
The following chapters decribe the possibilies of probing new physics in the
aforegiven processes as well some higher spin physics problems. The thesis
ends with a short survey of the results.
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Summary in Estonian

Uue füüsika otsingud raskete osakeste tekkel
e+e−-annihilatsiooniprotsessides

spinnorientatsiooni efektide kaudu

Kuigi juba läinud sajandi 70-ndate alguses loodud elementaarosakeste füüsi-
ka teoreetiline mudel – Standardmudel – on olnud kooskõlas kõigi seniste
kiirendikatsetega, ei ole ta teooriana siiski rahuldav. Paarikümmet kat-
sest võetud parameetrit sisaldades on ta liialt empiiriline ega suuda vastust
anda temast endast johtuvatele olulistele küsimustele. Seetõttu on põhjust
arvata, et seniste kiirendite energiatest palju kõrgemal energiaskaalal ek-
sisteerib hoopis fundamentaalsem, nn uus füüsika, millelt loodetakse saada
vastuseid paljudele Standardmudelis vastamata jäänud küsimustele. Uue
füüsika olemasolu võib katsest tuvastada kaheti – otseselt ja kaudsemalt.
Uue füüsika otseseks avastamiseks oleks uue füüsika osakeste leidmine kii-
rendiprotsessidest. Usutakse, et kui 2009. aastal käivitatud Suur Hadronite
Põrguti (LHC) elementaarosakese uurimiskeskuses CERNis maksimaalse
põrkeenergiaga (14 teraelektronvolti) tööle hakkab, on ta võimeline uue
füüsika osakesi tekitama. Aga plaanitud tulevikukiirendi, elektrone posit-
ronidega põrgatava Rahvusvaheline Lineaarpõrguti (ILC) energiast (algul
0.5, hiljem 1 teraelektronvolt) jääb uue füüsika osakeste tootmiseks ilm-
selt vajaka. Õnneks on teid uue füüsika ilmingute otsimiseks ka allpool
uue füüsika energiaskaalat. Need põhinevad Standardmudeliga ennustatud
tulemustest väikeste kõrvalekallete otsimisel Standardmudeli osakeste vahe-
listes protsessides, kus uue füüsika efektid võivad tekkida ainult mitte-
standardsetest interaktsioonidest. Taoline uue füüsika ilmingute otsimine
nõuab nii katselt kui teoorialt uut tundlikkust.

Käesolev doktoritöö, mis võtab kokku autori nelja avaldatud publikat-
siooni sisu, käsitleb valdavas osas uue füüsika ilmingute otsimist spinnefek-

89



tide kaudu ILC protsessides e+e− → tt̄ ja e+e− → Zγ. On ammune tõde,
et võrreldes ülejäänutega on osakeste spinnide orientatsioonidest tingitud
efektid tundlikumad uue füüsika ilmingute suhtes. See asjaolu annab spinn-
efektide kasutamise seisukohalt ILC-le LHC ees eelise – vaatamata suurele
allajäämisele põrkeenergiates. Seda võimaluse tõttu kasutada temal nii
piki- kui ristpolariseeritud algosakeste (elektronide ja positronide) kimpe.
Eriti ristpolariseerituid, mis erinevalt pikipolariseeritutest toovad teoori-
asse täiendavaid suundi, mille abil saab konstrueerida spinnolekutest sõltu-
vaid uusi mõõdetavaid suurusi.

Esimeses publikatsioonis uuritakse uue füüsika ühe võimaliku allika –
anomaalsete, skalaarset tüüpi interaktsioonide – mõju protsessile e+e− →
tt̄. Ristpolariseeritud algkimpude korral on, erinevalt polariseerimata või
pikipolariseeritud algkimpude juhust, skalaarset tüüpi anomaalsete interak-
tsioonide panused juba häiritusarvutuse esimest järku liikmetesse – Stan-
dardmudeli ja anomaalsete interaktsioonide interferentsliikmetesse – nullist
erinevad. See asjaolu annabki anomaalsete skalaarset tüüpi interaktsioonide
uurimisele toodud protsessis mõtte. Publikatsioonis arvutatakse nende
panuste analüütilised avaldised juhul, kui mõõdetakse kas t- või t̄-kvargi
polarisatsiooni. Tulemustest selgub, et panuste hulgas on CP-paarituid
liikmeid, mistõttu protsessis rikutakse CP-invariantsust. Konstrueeritakse
mitmeid CP-rikkumise suhtes tundlikke asümmeetriaid nii lõppkvarkide
polarisatsiooniolekute mõõtmise kui mittemõõtmise korral. Näidatakse ka,
kuidas reaktsioonitasandi ja t- (või t̄-)kvargi polarisatsioonivektori vahe-
lise nurga mõõtmine võimaldaks tuvastada anomaalsete interaktsioonide
olemasolu.

Teises publikatsioonis uuritakse neutraalsete kalibratsioonibosonite või-
malike anomaalsete omainteraktsioonide ZγZ ja Zγγ avastamisvõimalusi
pikipolariseeritud algkimpudega protsessis e+e− → Zγ. Leitakse Z-bosoni
polarisatsioonivektori ja reastustensori analüütilised avaldised. Näidatakse,
et Standardmudeli interaktsioonide panuste erinevusi saab põhimõtteliselt
kasutada nende panuste üksteisest eraldamiseks ILC eksperimentides. Sel-
gub, et algkimpude pikipolarisatsioon mõjutab Z-bosoni spinnide orien-
tatsioone erinevates panustes olevate erinevate faktorite kaudu. Vaid need
faktorid sõltuvad elektroni ja positroni pikipolarisatsioonide parameetritest
h− ja h+. Muutes neid parameetreid, võib suurendada või vähendada eri-
nevate panuste osakaalu, mis avaldub omakorda Z-bosoni spinnide orientat-
sioonide muudatustes. See asjaolu aitab kaasa anomaalsete interaktsioonide
eraldamisele Standardmudeli omadest ja ka omavahel.

Kolmandas publikatsioonis uuritakse algkimpude ristpolarisatsiooni rolli
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võimalike anomaalsete omainteraktsioonide ZγZ ja Zγγ ilmingute tuvas-
tamisel protsessis e+e− → Zγ. Leitakse analüütilised kujud Standard-
mudeli ja anomaalsete interaktsioonide ristpolarisatsioonidest sõltuvatele
panustele Z-bosoni polarisatsioonivektorisse ja reastustensorisse. Erinevalt
pikipolarisatsioonidest toovad ristpolarisatsioonid teooriasse täiendavad suu-
nad ja tänu nendele genereeritakse Z-bosoni polarisatsioonivektorile täien-
davaid komponente. Kuna leitud avaldistest nähtub, et Standardmudeli
interaktsioonid ei genereeri Z-bosoni polarisatsioonivektorisse ristpolarisat-
sioonist sõltuvaid panuseid, siis iga Z-bosoni ristpolarisatsioonist sõltuv lii-
ge saab tulla vaid anomaalsetest panustest. Tänu anomaalsetele panustele
saab polarisatsioonivektor täiendava osa, mis viib ta reaktsioonitasandist
välja. Nurga olemasolu Z-bosoni polarisatsioonivektori ja reaktsioonitasandi
vahel viitab anomaalsetele interaktsioonidele. Ristpolarisatsiooni vektorid
~τ− ja ~τ+ lisavad ka orientatsioonitensoritele täiendavaid liikmeid. Samuti on
näidatud, kuidas nende vektorite abil saab konstrueerida uusi asümmeetriaid.

Neljanda publikatsiooni temaatika kuulub kõrgemate spinnide (s ≥
1) füüsika valdkonda. Siin kasutatakse eesti teadlaste poolt arendatavat
“dünaamilise” vastastikmõju teooriat tuletamaks güromagnetilise kordaja
väärtust spinn-1 alusosakeste jaoks. Relativistlikus kvantmehhaanikas tule-
neb güromagnetilise kordaja g väärtus g = 2 Diraci (spinn-1/2) võrrandist.
Kasutades Standardmudelisse kuuluvat minimaalse elektromagnetilise vas-
tastikmõju teooriat on näidatud, et suvalise spinni s korral on güromagneti-
line kordaja avaldatav valemiga g = 1/s. See ammune valem annab s = 1/2
korral güromagnetilisele kordajale sama väärtuse mis Diraci võrrand ning
see on kooskõlas ka eksperimendiga. Kuid valemist tuleneva güromagnetilise
kordaja väärtus g = 1 spinn-1 osakeste jaoks viib sama spinniga laetud
W± kalibratsioonibosonite juures tõsistele raskustele γW -hajumise kirjel-
damisel, kus tõenäosusamplituudid energia kasvades kiiresti suurenevad.
Sel ja muudelgi põhjustel on välja kujunenud peaaegu ühine arvamus, et
iga alusosakese güromagneetiline kordaja võrdub sõltumata spinni suuru-
sest kahega. Seda arvamust toetab ka W -bosoni güromagnetilise kordaja
eksperimentaalne väärtus gW = 2.22 ± 0.20. Samas on seda väärtust
toetavad senised teoreetilised argumendid liiga praktilised, vähesema toe-
tusega fundamentaalsematele alustele. “Dünaamilise” vastastikmõju teoo-
rias lisandub minimaalse elektromagnetilise vastastikmõju osale väljatugevus-
tensorit Fµν sisaldav liige. See liige on null spinnide 0 ja 1/2 korral, kuid
nullist erinev kõrgemate spinnide juhul. Publikatsioonis on näidatud, et
tänu väljatugevustensorit sisaldavale liikmele annab “dünaamiline” teoo-
ria spinn-1 korral güromagnetilise kordaja väärtuseks g = 2. Selline tule-
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mus toetab mitte ainult teadlaste üldist arvamust, vaid omab tähtsust ka
“dünaamilise” teooria edasise arendamise seisukohalt.

Doktoritöö algab ülevaatega Standardmudelist ja uue füüsika ilmingute
võimalikest tuvastamismeetoditest, valgustades ka anomaalsete skalaarset
tüüpi interaktsioonide ja kalibratsioonibosonite omainteraktsioonidega seo-
tud küsimusi ning selles valdkonnas senitehtut. Järgnev peatükk annab
osakeste spinnide orientatsioonide kirjeldamise üldise matemaatilise apara-
tuuri. Neile lisanduvad ülaltoodud protsesse analüüsivad peatükid ja kõrge-
mate spinnide füüsika raskusi käsitlev peatükk. Doktoritöö lõpeb töö-
tulemuste põgusa kokkuvõttega.
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Teenistuskäik

1998-2004: Tartu Ülikool, doktorant
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