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INTRODUCTION 

Bacteria are the most skillful organisms to adapt to and withstand diverse 
environmental conditions. A wide variety of both biotic and abiotic stressors are 
influencing their life. Therefore, bacteria have evolved highly coordinated and 
interconnected molecular networks that integrate different and simultaneous 
extracellular signals into adequate physiologic responses. These physiologic 
responses are mediated by regulation of gene expression at transcriptional, post-
transcriptional and protein activity levels as well as via highly controlled 
synthesis and degradation of dedicated small signaling molecules that regulate 
the aforementioned processes. 

One of the most global bacterial stress survival mechanisms – the stringent 
response – is mediated by an alarmone nucleotide (p)ppGpp. This molecule is 
synthesized in response to nutrient and other stresses and is able to regulate not 
only bacterial growth and survival, but virulence and host evasion during 
pathogenesis. Representatives of RelA-SpoT Homolog (RSH) family of proteins 
control the (p)ppGpp levels. These enzymes are highly conserved among bacteria 
due to their evolutionary importance and the universal nature of the stringent 
response in bacteria. In this thesis, I contribute to knowledge on RSH enzymes 
by taking a glimpse into working mechanisms of Small Alarmone Synthetases 
(SAS) – so far not so well studied RSH representatives. Specifically, I have invest-
igated the enzymatic characteristics of two SAS proteins: Enterococcus faecalis 
RelQ and Staphylococcus aureus RelP. The distinctive features of the working 
principles found for these proteins underlay their role in fine-tuning the stringent 
response, and possibly in post-transcriptional regulation – as we have discovered 
E. faecalis RelQ has an RNA-binding property that is directly connected to its 
enzymatic function.  
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1. Post-transcriptional regulation by RNA-binding proteins  

Post-transcriptional control of gene expression is important for bacteria to adapt 
to changing surroundings. It can be achieved by regulatory RNA-binding proteins 
(RBPs), which can modulate translation of the target mRNA in several ways. For 
example, they can protect RNA from RNases by shielding the target mRNA, 
compete with ribosomes for binding the ribosome binding site (RBS), act as a 
chaperone by providing a platform for the interaction of target RNA with its 
effector or modulate transcription termination/antitermination structure formation. 
The best-studied examples of these proteins are Hfq and CsrA, which represent 
the two archetypical mechanisms of this regulation – chaperone-like regulation 
or formation of stable complex with target RNA, respectively [1]. 
 
 
 

1.1 Chaperone-like regulation by Hfq 

Hfq is a conserved RNA-binding protein which was initially identified in 
Escherichia coli as an essential host factor for replication of bacteriophage Qß 
[2, 3]. Later it was discovered to be important for the bacterium itself, as loss of 
Hfq results in reduced growth rate, attenuated stress resistance and diminished 
virulence [4]. Hfq was shown to play an important role in biofilm formation, 
motility, catabolite repression control and others [5]. Although Hfq regulates 
gene expression post-transcriptionally via several different mechanisms, 
probably its main function is facilitation of transient intermolecular base-pairing 
of regulatory small RNAs (sRNAs) with the target mRNAs [6]. By doing so, Hfq 
affects translation and turnover rates of many cellular mRNAs, additionally 
providing protection for RNA molecules from chemical and enzymatic 
degradation. 

The ability of Hfq to bind several molecules simultaneously can be attributed 
to its ring-like homohexameric structure with three distinct RNA-binding inter-
faces: distal, proximal and lateral (Fig. 1B). Each domain has disparate binding 
specificity [7, 8]. The proximal part preferentially binds AU-rich motifs, the 
distal site has poly(A) binding specificity and the lateral site preferentially binds 
U-rich sequences and double-stranded RNA segments. Hfq binding can trigger 
changes in secondary structure of the target RNA which would render parts of it 
more accessible for base-pairing as well as promote the recruitment of protein 
partners such as RNase E, Rho and polynucleotide phosphohydrolase (PNPase). 
Given these diverse functional features, Hfq is capable of using different stra-
tegies to regulate mRNA and controversially either inhibit or promote translation 
[9]. For example, by facilitating regulatory sRNA binding to the RBS region of 
the mRNA, Hfq sequesters ribosome entry and therefore inhibits translation 
initiation. This is often followed by degradation of sRNA:mRNA hybrid by 
RNase E and/or PNPase [10, 11]. Conversely, Hfq promotes translation initiation, 
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for example by releasing the RBS from the secondary structure therefore making 
it accessible to ribosome binding. Finally, due to the shared binding preference 
of Hfq and Rnase E toward AU rich motifs, Hfq also can oppose the RNA decay 
by shielding RNA from RNase cleavage [12]. 

 
 

1.2 Translation regulation of mRNA by CsrA 

CsrA (Carbon storage regulator A) is another widely conserved RNA-binding 
protein found in more than 1,500 bacterial species [13]. It is a global regulator 
that is post-transcriptionally affecting more than 100 genes involved in carbon 
metabolism, production of virulence factors, and bacterial motility [14]. The 
general outcome of its action is activation of exponential phase functions and 
repression of stationary phase processes [15, 16]. 

The most common mode of action for CsrA is direct competition with ribo-
some binding to the target mRNA [17] (Fig. 1A). mRNA binding specificity of 
CsrA proteins is dependent on both primary sequence and secondary structure: 
the binding consensus sequence of CsrA is RUACARGGAUGU, with ACA and 
GGA motifs being 100% conserved and GGA being a part of a hairpin structure 
[17]. Since GGA motif is a component of Shine-Dalgarno sequence, CsrA 
competes with ribosome binding to target mRNA resulting in reduced translation 
initiation and consequent mRNA degradation [18–20]. 

 

Figure 1. The structure of CsrA dimer in complex with hcnA mRNA (A; PDB 
accession code 2JPP) and Hfq hexamer in complex with RydC sRNA (B; PDB 
accession code 4V2S). For both structures mRNA is shown in orange and protein 
subunits in other colors. Adapted from [21]. 
 
 

Proximal side

Distal side
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2. Nucleotide second messengers: master regulators 
of bacterial physiology  

The common strategy used by bacteria to respond to changing surroundings is 
modulation of the intracellular concentration of nucleotide-based second 
messengers which, transduce signals from the environment (mediated by 
extracellular first messengers) into according cellular responses. Since bacteria 
simultaneously sense and respond to an array of stimuli, they employ a wide 
diversity of these regulatory molecules. The underlying principles for different 
second messengers are similar: nucleotide messengers are synthesized or degraded 
by distinct enzymatic activities and they exert their functions by allosterically 
binding to and regulating the effector molecules (most commonly proteins). The 
effector molecules, in turn, interact with a molecular target, which finally is a part 
of output function of the second messenger. The working principle of nucleotide 
second messengers is outlined in Fig. 2. As in bacteria signaling molecules are 
found to regulate biofilm formation and production of virulence factors, interest 
towards nucleotide signaling has been growing and repertoire of the second 
messengers expands. 

Structurally they can be categorized into cyclic and linear nucleotides. To 
name some examples, among cyclic representatives most extensively studied 
second messengers are cyclic adenosine monophosphate (cAMP) and cyclic di-
guanosine monophosphate (c-di-GMP), and among linear ones guanosine penta- 
and tetraphosphate or (p)ppGpp (Fig. 3) [22]. An overview of these three 
messenger nucleotides will be given in the next sections of this thesis, with the 
emphasis on the (p)ppGpp, considering it is far the most global messenger 
nucleotide. Among other nucleotides, which will not be commented here are 
newcomers like c-di-AMP and c-AMP-GMP or less studied linear messengers 
ppApp [23] and ppGp [24]. All of the messenger compounds listed above are 
purine-based. The reason for the bias in favor of purines and not of pyrimidines 
most probably lies in their chemical properties. The two-ring system of purines 
creates a greater potential for stronger interactions with the receptors when 
compared to single-ring pyrimidines. The structure of purines is more favorable 
for forming stacking interactions and has more potential for hydrogen-bonding 
contacts. Therefore, receptors have probably evolved to create binding pockets 
for purine-based messengers rather than for pyrimidine-based molecules [25]. 
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Figure 2. Underlying principles of control exerted by nucleotide second messengers 
as exemplified by three most well-studied representatives: cAMP (left), (p)ppGpp 
(center) and c-di-GMP (right). Messenger nucleotides are synthesized in response to 
extracellular stimuli and consequently bind to their effector molecule (most commonly – 
protein enzyme). As a result of this interaction, the activity of the effector molecule is 
changed, finally leading to reorganization of cellular physiology. 
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2.1 cAMP 

The first nucleotide second-messenger to be discovered was cAMP, which was 
identified in 1950’s as mediator of hormone-induced changes in metabolism of 
eukaryotes [26, 27]. In the 1960’s it was shown for the first time that cAMP is 
also produced in E. coli [28]. Now, after decades of extensive research, it is 
considered as classic textbook paradigm for second messenger signaling in 
bacteria and is known to be involved in catabolite repression in E. coli and other 
species. cAMP is synthesized by adenylate cyclase CyaA in response to carbon 
limitation (Fig. 3, left row). Accumulating cAMP binds to its receptor protein 
Crp [29] – a global transcription factor of E. coli. This binding triggers activity 
of Crp, which is to interact with specific promoters and stimulate transcription of 
genes involved in catabolism of alternative sugars, for example, the lac operon 
[29, 30]. Additionally, cAMP regulates virulence, flagellum biosynthesis and 
biofilm formation [31]. 
 

 
Figure 3. Chemical structures of cAMP (A), c-di-GMP (B) and pppGpp (C). 

 

 
2.2 c-di-GMP  

Since its discovery in mid-1980’s, c-di-GMP has become recognized as an 
ubiquitous signaling molecule [32]. The most prominent function of c-di-GMP is 
to regulate transition between two lifestyles of bacteria – motile single cells and 
adhesive multi-cellular communities [33]. For better survival and withstanding 
environmental cues bacteria mostly live in surface-associated way. These bacteria 
undergo drastic changes in their physiology, transcription profile and metabolism 
when compared to the genetically identical free-living bacteria. c-di-GMP is 
considered to be the influencer of these changes. Accumulation of high c-di-GMP 
concentrations induces expression of components of extracellular matrix such as 
adhesive proteins, extracellular polysaccharides and curli fimbriae, and, there-
fore, promotes biofilm formation and adhesive lifestyle. Conversely, cells that 
use flagella or pili for their movement have low c-di-GMP concentrations [33]. 
c-di-GMP is metabolized by three protein domains – GGDEF, EAL and HD-GYP, 
names of which stem from the conserved amino acid motifs in their active sites. 
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Dimerization of two GGDEF domains is needed for the synthesis of c-di-GMP 
from two GTP molecules. EAL or HD-GYP are responsible for c-di-GMP 
degradation. Opposing cyclase and phosphodiesterase activities of these proteins 
lead to tight regulation of transition between sessile and moving lifestyles of 
bacteria [34]. Although not much is known about the extracellular trigger for  
c-di-GMP accumulation, there is growing evidence that surface contact itself can 
serve as activating signal for c-di-GMP production [35, 36]. 
 
 

2.3 (p)ppGpp  

(p)ppGpp was discovered by analyzing the changes in intracellular nucleotide 
pools upon amino acid starvation in E. coli, where Cashel and Gallant have 
identified two unusual spots on a thin layer chromatogram, TLC [37]. These 
“magic spots” were thereafter shown to be hyperphosphorylated guanosine nucle-
otides, alarmones ppGpp and pppGpp, collectively referred to as (p)ppGpp. 
Subsequent analyses showed that the two messengers are synthesized on idling 
step of protein synthesis that is explained later (§ 3.1) [38] in a chemical reaction 
of pyrophosphate transfer from ATP to the 3' position of GTP or GDP, resulting 
in pppGpp or ppGpp, respectively [39] (Fig. 4). The (p)ppGpp is a global second 
messenger that affects numerous processes in bacterial cell, with physiological 
effects ranging from growth rate regulation to virulence [40]. Its main role is to 
mediate the global stress survival program of bacteria – the so-called “stringent 
response” – a prime hallmark of which is accumulation of the alarmones and 
inhibition of production of so-called “stable RNA”, i.e. ribosomal RNA (rRNA) 
and transfer RNA (tRNA) [41]. During acute stringent response (p)ppGpp levels 
were estimated to reach millimolar concentrations and are needed to survive 
unfavorable environmental conditions [42]. Under the balanced growth, the 
alarmones are present in the cell at the basal levels of 10’s of μM which are 
necessary for coordination of normal metabolism [43].  

Figure 4. (p)ppGpp synthesis from ATP and GTP/GDP. 
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Although for a long time (p)ppGpp-mediated signaling was considered to be 
unique for bacteria, in early 2000s (p)ppGpp was identified in chloroplasts of 
plants, where it has been shown to accumulate in response to biotic and abiotic 
stresses [44]. The presence of the (p)ppGpp-mediate signaling in chloroplasts can 
be explained by the antient origin of chloroplasts from endosymbiotic event 
between photosynthetic cyanobacteria and an eukaryotic organism. In addition to 
the role in stress response, (p)ppGpp has been shown to influence growth and 
development of plants [45, 46] as well as photosynthesis [47]. Intriguingly, in 
chloroplasts (p)ppGpp is also accumulated in response to increase in Ca2+ 
concentrations, showing possible connection between eukaryotic and prokaryotic 
signaling in chloroplasts [48]. This thesis will focus solely on bacterial (p)ppGpp 
signaling. 
 
 

2.3.1 The stringent response: (p)ppGpp over-production  
upon acute stress 

The first identified and studied phenotypic trait of the stringent response was 
inhibition of stable RNA (tRNA and rRNA) synthesis upon amino acid depriva-
tion. It was indicated to be dependent on the function of a single gene, mutation 
of which leads to two consequences [41]. First, it results in so called “relaxed” 
phenotype, in which, as opposed to the “stringent”, synthesis of stable RNA is 
resumed independently of amino acid deprivation. The gene was therefore 
designated as relA. Second, the “relaxed” strains are not able to accumulate 
(p)ppGpp, indicating the connection between the stringent response and (p)ppGpp 
production. Eventually, the protein product of relA gene was identified to be the 
enzymatic catalyst responsible for (p)ppGpp synthesis.  

Later studies showed that not only amino acid starvation can trigger stringent 
response, but deprivation of other nutrients like carbon [49–51], fatty acid [52], 
iron [49–51] or non-nutrient condition like heat shock [53], can initiate (p)ppGpp 
production. Moreover, inhibition of stable RNA is now only one of many more 
(p)ppGpp-dependent cellular responses. These include inhibition of nucleotide, 
cell envelope, lipid and phospholipid biosynthesis, DNA replication as well 
simultaneous activation of amino acid production and expression of proteins 
needed for stress survival [54]. This all leads to overall reorganization of cellular 
resources resulting in repression of growth and division and promotion of 
survival and nutrient synthesis [40]. Several decades of research have changed 
the stringent response into global regulatory system that integrates many stress 
signals into cellular responses at different levels. 
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2.3.2 ppGpp during normal growth: the role of basal (p)ppGpp levels  

(p)ppGpp can exert important regulatory effects at concentrations that are way 
below those needed for activation of stringent response. It is shown to act as a 
rheostat affecting expression of different genes at its different concentrations 
[55]. A transcriptional study of two regulons affected by ppGpp – Leucine-
responsive regulatory protein Lrp and RpoS (RNAP sigma factor that regulates 
expression of genes responsible for entry into stationary phase and general stress 
response genes) – has demonstrated that that these factors are expressed at 
different stages of the stringent response activation [56]. Specifically, Lrp is 
activated in the early stage when cells are still actively growing and measured 
ppGpp concentrations at that time were only below 100 pmol ml–1 OD–1. RpoS, 
on the other hand, is expressed when the ppGpp concentration reached above 400 
pmol ml–1 OD–1, i.e. when upon growth arrest [56]. Therefore, it was concluded 
that beginning of starvation as a first aid bacteria tries to restore intracellular 
amino acid pools, but if more severe conditions are met, then survival responses 
are activated. 

Although (p)ppGpp is usually connected to survival under harsh conditions, 
it has been also indicated as an important coordinator of normal metabolism 
during balanced growth conditions. This coordination is exerted by the basal 
levels of the alarmone, which is always present in the bacterial cell during normal 
growth at the concentration of around 50 μM [53]. Already in 1980’s the basal 
levels of (p)ppGpp were demonstrated as growth rate regulators in E.coli, when 
it was shown that (p)ppGpp levels and growth rate anti-correlate [57]. More 
recently this topic has been revisited, and (p)ppGpp was proven to be the major 
growth rate regulator as in cells where (p)ppGpp is absent growth-rate control is 
abolished during balanced growth [58].  

Bacterial strains that are completely unable to synthesize (p)ppGpp, known as 
(p)ppGpp0 strains (genes encoding the proteins for (p)ppGpp synthesis are 
deleted), are used to study the functions of basal levels of the alarmone [59]. 
Characterization of transcriptional profile of (p)ppGpp0 in E. faecalis showed up-
regulation of genes involved in energy generation under starvation conditions, 
however during balanced growth alternative carbon sources were used for energy 
production. Phenotypically the (p)ppGpp0 strain showed switch from normal 
homolactic to heterofermentative metabolism, which subsequently led to H2O2 
production [60]. These observations indicate that basal levels of (p)ppGpp are 
important for keeping the balanced metabolism in E. faecalis and are required for 
fully efficient stringent response activation. 

(p)ppGpp inhibits GTP production by targeting enzymes in GTP synthesis 
pathway [61, 62]. In Bacillus subtilis and E. faecalis strong inhibition of HprT 
(hypoxantine-guanine phosphoribosyltransferase) and Gmk (GMP kinase) is 
established with IC50 ranging from 11 to 80 μM. Moreover, complete absence of 
(p)ppGpp results in increased GTP levels which lead to severe inhibitory effect 
and possibly cell death (so called death by GTP) and it happens independently of 
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stress conditions [61, 62]. Collectively, these observations substantiate that GTP 
homeostasis is regulated by basal levels of (p)ppGpp. 

Regulation of GTP levels by (p)ppGpp also contributes to survival of nutrient 
downshifts as dysregulation of GTP metabolism in (p)ppGpp0 causes severe 
auxotrophic requirements for specific amino acids. B. subtilis (p)ppGpp0 shows 
strong auxotrophic requirements for BCAA, valine and threonine and also 
moderate requirements for histidine, arginine and tryptophane. At the same time 
strain where the basal levels are present shows strong auxotrophy only for valine 
and moderate requirements for leucine, isoleucine and methionine [63, 64]. This 
auxotrophy is connected to the elevated levels of GTP in (p)ppGpp0 strain, which, 
in turn, either directly and/or through the activation of transcriptional regulator 
CodY represses the transcription of the genes encoding the enzymes involved in 
amino acid biosynthesis.  

Finally, it is shown that basal levels of (p)ppGpp confer bacterial tolerance to 
antibiotics vancomycin, ampicillin and norfloxacin [43, 59, 60].  

 
 

2.3.3 Regulation of transcription by (p)ppGpp 

With extensive effects on bacterial metabolism and physiology, the (p)ppGpp is 
capable of regulating the expression of hundreds of genes [65, 66]. The (p)ppGpp 
mediated stringent transcription control can be exerted in two ways. In many 
bacterial species, the alarmone acts indirectly through altering cellular GTP level 
(see below). In proteobacteria (p)ppGpp alters transcription through direct 
interaction with RNAP. The classical example is E. coli RNAP: (p)ppGpp 
directly binds to the RNAP (Fig. 5) and regulates its activity either positively or 
negatively depending on the kinetic properties of the target promoter sequences 
[67]. In cooperation with transcription factor DksA, (p)ppGpp inhibits tran-
scription from promoters that form short-lived complexes with RNAP, such as 
those of stable RNA genes [68]. These promoters are characterised by the 
presence of GC-rich discriminator region, suboptimal –35 and –10 elements and 
shorter –10/–35 spacer length (16 bp vs optimal 17 bp) [69]. ppGpp and DksA 
also act together to activate other promoters (e.g. promoters of amino acid 
biosynthesis genes) either indirectly by the increase of available RNAP levels, 
which are freed from rRNA promoters or directly by stimulating the association 
rate of RNAP [70].  

The molecular mechanism of DksA-mediated RNAP regulation remained a 
mystery for more than two decades. It was suggested that DksA exerts its effects 
by protruding its coiled coil into the secondary channel of RNAP and coordinates 
(p)ppGpp-bound Mg2+ ions therefore stabilizing RNAP:ppGpp interaction [71]. 
Recent structural analyses supported this idea, directly demonstrating the role of 
DksA in forming the (p)ppGpp binding site of the RNAP (Fig. 5). In the presence 
of DksA, ppGpp has a second binding site (site 2) on RNAP in addition to the 
one that was characterized previously (site 1) [72]. The two sites are located 60 Å 
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apart from each other with site 1 being at the β’-ω subunit interface and site 2 
intriguingly at the DksA-β’ interface (Fig. 5) [72, 73].  

In many other bacterial species, e.g. Firmicutes, the alarmone production 
regulates transcription indirectly through altering GTP levels in the cell. A prime 
example of a bacterial species in which (p)ppGpp does not bind to RNAP is 
B. subtilis [74, 75]. Transcriptional control in these organisms is mediated by the 
reciprocal change in the GTP/ATP pools caused by GDP/GTP conversion to 
ppGpp/ pppGpp during the stringent response. (p)ppGpp reduces accumulation 
effects of GTP in two ways. First, GTP is consumed upon production of the 
alarmone. Second, (p)ppGpp directly inhibits IMP degydrogenase, the first enzyme 
in the GTP synthesis pathway. The latter scenario leads to IMP accumulation, 
which is also a precursor for ATP and therefore ATP production is promoted. 
Thus increase in ATP and decrease in GTP levels lead to changes in tran-
scriptional profile for promoters sensitive to concentration of initiating nucleotide 
causing repression of transcription driven by promoters initiating from GTP 
nucleotide and upregulation of stringent promoters initiating from ATP [61, 74].  

 

 
Figure 5. Structure of E. coli RNA polymerase in complex with DksA and two 
ppGpp molecules. DksA bound in the secondary channel is shown in green, the two 
ppGpp molecules are shown in red. Adapted from [73], PDB accession code 5VSW. 
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2.3.4 (p)ppGpp targets in addition to RNAP 

Although global regulatory functions of (p)ppGpp are exerted through its effect 
on transcription profile of the cell, there are many other core cellular processes 
that are affected by the alarmone. (p)ppGpp is capable of directly binding and 
inhibiting proteins involved in such processes like protein biosynthesis (trans-
lation), DNA replication, acid stress response and polyphosphate metabolism 
[76].  

Translational GTPases EF-G [77], EF-Tu [78] and IF2 [79] are all direct 
targets of (p)ppGpp. Due to structural similarity between GTP and (p)ppGpp, the 
nucleotides orthosterically bind the GTP-binding active site of GTPases [80]. 
Therefore, (p)ppGpp interferes with elongation and initiation steps of the trans-
lation, e.g. binding to IF2 prevents 30S initiation complex formation [79]. Invest-
igations of the affinities of (p)ppGpp and GTP towards GTPases showed that 
(p)ppGpp does not bind these enzymes better than the native substrate, GTP, 
indicating that inhibition by (p)ppGpp is transient and takes place at its peak 
concentrations during the stringent response [81]. An Isothermal Titration 
Calorimetry (ITC) study showed that (p)ppGpp has higher affinity towards IF2 
than to EF-G, suggesting that the alarmone primarily affects initiation step of 
translation, rather than translocation [82]. 

(p)ppGpp was also suggested to regulate protein degradation by affecting 
polyphosphate (polyP) metabolism. PolyP is an anionic polymer of hundreds of 
phosphate residues, which is synthesized from ATP by polyphosphate kinase and 
degraded to inorganic phosphate by exopolyphosphatase [83, 84]. PolyP is 
accumulated in the cell during nutrient downshifts and in cooperation with ATP 
dependent Lon protease which degrades ribosomal proteins and thereby restores 
amino acid supply of the cell [85]. (p)ppGpp is responsible for accumulation of 
polyP as it inhibits the polyphosphatase activity [86]. 

Besides regulation of protein synthesis and degradation, (p)ppGpp is also 
involved in inhibition of DNA replication elongation by directly targeting DNA 
primase (DnaG) – an essential component of replication complex. Interestingly 
replication forks arrested by (p)ppGpp do not recruit recombination protein RecA 
indicating that the forks are not disrupted. This implies that (p)ppGpp is important 
for maintaining genomic stability during nutrient downshifts [87]. 

(p)ppGpp also regulates acid stress response by modulating activity of inducible 
lysine decarboxylase (LdcI) in E. coli [81]. LdcI is activated in response to low-
pH environments. It increases cytoplasmic pH by consuming a proton as it 
catalyzes decarboxylation of L-lysine to cadaverine and carbon dioxide [88]. 
Cadaverine is then transported out of the cell in exchange for lysine. LdcI is found 
to co-crystalize with (p)ppGpp and its activity is strongly inhibited by the alarmone 
in mildly acidic conditions [89]. Although still bound to LdcI, (p)ppGpp is unable 
to inhibit LdcI at low pH. These findings suggest that (p)ppGpp coordinates acid 
stress and stringent response by preventing amino acid consumption by de-
carboxylases when pH is normalized [90].  
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Despite the intensive and continuous study of the topic it was only very 
recently that comprehensive search for (p)ppGpp targets was undertaken. Two 
approaches – Differential Radial Capillary Action of Ligand Assay (DRACALA) 
[91] and capture-compound mass spectrometry [92] – were used in two different 
studies to systematically screen for the potential (p)ppGpp effectors. The latter 
approach, being advantageous, identified 56 hits including almost all previously 
known (p)ppGpp targets. Many of the new targets fell into the previously 
determined “classes” of (p)ppGpp binders, suggesting the conserved nature of the 
affected processes. These are de-novo and salvage pathways of nucleotide meta-
bolism, translation, ribosome biogenesis etc. For example, in addition to previously 
described representatives of (p)ppGpp targets from nucleotide metabolism 
pathway – like HprT, Gmk, GuaB – two new binders were identified in this class. 
PurF – the first enzyme in de novo purine synthesis pathway was shown to be 
inhibited by (p)ppGpp in vitro, and E. coli strain with mutated PurF was shown 
to over-produce purine nucleotides as compared to wild-type strain [91]. A new 
possible player in purine salvage pathway, YgdH, is another potential (p)ppGpp 
target identified by DRACALA assay. Interestingly, DRACALA assays have 
also identified potential novel (p)ppGpp degradation proteins. Although repertoire 
of the (p)ppGpp targets has greatly expanded, physiological relevance of these 
new targets still remains to be validated by dedicated follow-up studies. 
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3. RSH enzymes and the stringent response 

The (p)ppGpp levels are regulated by the members of RelA-SpoT Homolog [93] 
protein family. The protein family name comes from their representatives in 
E. coli, RelA and SpoT. While RSH proteins are conserved among bacteria, their 
structure and repertoire differ among bacterial species. Structurally they can be 
divided to long and short RSHs [94]. Long RSHs are comprised of regulatory  
C-terminal domain region (CTD) and catalytic N-terminal domain region (NTD) 
(Fig. 6). The exact function of C-terminus remains unknown. Short RSHs how-
ever lack these regulatory domains and possess only either synthetase or hydro-
lase domains, and are referred either Small Alarmone Synthetases (SASs) or 
Small Alarmone Hydrolases (SAHs), respectively [95–98].  

In representatives of Gamma- and Betaproteobacteria there are two long RSH 
proteins, one of which has major (p)ppGpp synthetic (RelA) and the other major 
(p)ppGpp hydrolytic activity (SpoT) [94]. Most common bacterial RSH 
representative is bifunctional Rel, present (responsible for (p)ppGpp metabolism) 
in most of the bacterial species [94]. Bifunctional Rel can sometimes be accom-
panied by one or two monofunctional SAS proteins, especially in Firmicutes.  

 

Figure 6. Domain structure of RSH proteins. Long RSH proteins are composed of six 
domains: (p)ppGpp hydrolysis domain (HD), (p)ppGpp synthesis domain (SYNTH), 
TGS (Threonyl-tRNA synthetase, GTPase, SpoT [99]), Helical, Conserved Cysteines and 
ACT (Aspartokinase, Chorismate mutase, TyrA) [94]. 
 
 

3.1 Monofunctional RSH enzyme RelA 

RelA is the best-studied RSH representative and most of what is known about the 
mechanism of stringent response activation is based on the studies on E. coli 
RelA. Although it possesses SYNTH and HD domains, enzymatically it is only 
capable of (p)ppGpp synthesis, with the HD domain being inactivated [100]. The 
(p)ppGpp production by RelA is triggered by amino acid starvation [38] and heat 
shock [101], and it is further allosterically activated by the (p)ppGpp itself [100]. 
Despite of several decades of study, there are still ongoing discrepancies 
concerning the molecular mechanism of RelA action. 



24 

Soon after the discovery of (p)ppGpp, its synthesis by RelA was shown to be 
induced by stalled ribosomes with cognate uncharged tRNAs in the A-site [38]. 
According to prevailing theory of RelA’s mechanism of activation, amino acid 
starvation leads to increased abundance of deacylated tRNAs in the cell, which 
bind the vacant ribosomal A-site and consequently stall the translation; these 
stalled ribosomes are a prerequisite for RelA binding and activation (Fig. 7). 
Some recent studies, however, proposed that RelA first binds the deacylated 
tRNA in the cytoplasm, and this complex is then loaded on the ribosome, 
eventually triggering the (p)ppGpp synthesis [102, 103].  

There is also uncertainty in how the catalysis step is carried out – does it take 
place while RelA is bound to the ribosome or when it is free in the cytoplasm? 
To date, three models have been put forward. Wendrich and collages proposed 
so-called “hopping” model according to which RelA gets activated by stalled 
ribosomal complex, synthesizes one (p)ppGpp molecule and the act of catalysis 
fuels RelA’s dissociation from the ribosome, letting the enzyme “hop” between 
the ribosomes [104]. Two other studies using single molecule tracking in live 
cells resulted in somewhat contradictory results. English and colleagues proposed 
an “extended hopping model” [105]. Specifically, according to this model RelA 
produces multiple (p)ppGpp molecules off the ribosome per dissociation event. 
Conversely, Li and colleagues concluded that RelA performs several acts of 
(p)ppGpp synthesis while bound to the ribosome [106]. 

Three recent cryogenic electron microscopy (cryo-EM) structures of E. coli 
RelA bound to the “starved” ribosomal complexes have provided crucial insights 
into the molecular mechanism of amino acid starvation sensing by RelA [95–98, 
107]. When bound to the ribosome, RelA assumes a boomerang-like open 
conformation with its catalytic N-terminal domain region extending into the 
solvent not contacting with the ribosome while the C-terminal domain region 
protrudes into the intersubunit space of the ribosome, making multiple contacts 
both with tRNA and rRNA (Fig. 8). Specifically, the TGS domain of RelA 
contacts with CCA acceptor end of the tRNA thereby inspecting the 
aminoacylation state of the tRNA [98]. The rest of the protein protrudes deeper 
the intersubunit space. The Helical linker domain is wrapped around the acceptor 
arm of tRNA and ACT domain interacts with elbow region of tRNA. The CC and 
ACT domains make most contacts with the ribosome, localized on ASF of the 
23S rRNA. These contacts position deacylated tRNA in a distorted A/T-like 
conformation. Surprisingly, RelA does not contact the ribosomal protein uL11, 
while biochemical experiments show the requirement of uL11 for activation of 
RelA upon amino acid starvation [108].  
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Figure 7. Mechanism of RelA activation by starved ribosomal complexes upon 
amino acid starvation. During amino acid downshift, the pool of deacylated tRNA 
increases and tRNAs stall the translation by binding to the ribosomal A-site. These stalled 
ribosomes are sensed and bound by stringent factor RelA. When binding to the 50S 
ribosomal subunit, RelA adopts an “open” active conformation making contacts both with 
rRNA and deacylated A-site tRNA, resulting in a distorted confirmation of the latter 
tRNA. Synthesis of (p)ppGpp is induced. When conditions become favorable, SpoT 
hydrolyses (p)ppGpp back to GTP or GDP and pyrophosphate (PPi) is released. 
 

 

Figure 8. Structure of RelA bound on the ribosome. RelA is wrapped around A-site 
tRNA (dark grey) with its N-terminal Synthetase (red) and Hydrolase (green) domains 
being located outside of the ribosome structure. C-terminal part of RelA consisting of 
TGS (light blue), Helical linker (purple), ACT (yellow) and CC (orange) domains 
protrude into the intersubunit space of the ribosome. 50S ribosomal subunit is depicted 
in cyan, 30S subunit in light grey. E-site and P-site tRNA-s are in blue and pink 
respectively. PDB accession code is 5IQR. Adapted from [98]. 
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3.2 Bifunctional RSH enzyme SpoT 

The second RSH protein responsible for (p)ppGpp metabolism in Gamma- and 
Betaproteobacteria is SpoT. As opposed to RelA, SpoT is capable of both syn-
thesizing and hydrolyzing (p)ppGpp [49]. Synthetic activity of SpoT is however 
rather weak compared to RelA, but intriguingly SpoT is capable of responding to 
various stress stimuli aside from amino acid starvation. These include limitations 
of several nutrients: carbon, phosphate, iron and fatty acids [49–51]. Another 
important outcome of (p)ppGpp synthesis by SpoT is maintaining basal levels of 
the alarmone during normal growth conditions. Basal levels produced by SpoT 
are in turn connected to the expression of virulence in many pathogenic bacteria, 
as only ΔrelA ΔspoT double knockout strains – and not single mutants ΔrelA – 
show attenuated virulence phenotypes [109]. The most important and essential 
function of SpoT is (p)ppGpp hydrolysis since deletion of spoT gene in relA-
positive background leads to lethality, caused by uncontrolled accumulation of 
(p)ppGpp abolishing the cell growth [49]. It is worth mentioning that the double 
ΔrelA ΔspoT deletion is not lethal, but leads to the ppGpp0 phenotype, which is 
auxotrophic for multiple amino acids [49]. The essentiality of the SpoT-mediate 
detoxification prompted the idea of SpoT being a potential therapeutic target for 
developing new antibacterials. However, no attempts to specifically inhibit 
hydrolytic activity of SpoT have been made – or at least not reported so far – 
possibly, partially due to the difficulty of purification of the protein and lack of 
any structural data that could guide the in silico design of small molecule 
inhibitors. All of the currently available biochemical investigations of SpoT are 
made with either partially purified protein [110, 111] or a truncated version [52]. 

Although biochemical investigations of SpoT are very limited due to failure 
to successfully purify the protein, some interaction partners of SpoT are identified 
and mechanisms of its regulation elucidated. For example, Acyl Carrier Protein 
(ACP) is shown to interact with SpoT and activate its (p)ppGpp synthetic activity 
[52]. Thereby ACP, being a sensor of lipid metabolic status of the cell, signals 
inhibition of fatty acid synthesis to SpoT and stringent response is thereafter 
activated. Conversely, GTPase CgtA, was shown to bind SpoT in order for low 
(p)ppGpp levels to be maintained during exponential growth. Thus, repression of 
stringent response is assured in nutrient-replete conditions [112–114]. 

Catalytic site of SpoT contains conserved metal chelating His-Asp (HD) motif 
[115] and (p)ppGpp hydrolytic activity of SpoT is dependent on concentrations 
of Mn2+ ions [116]. 

 
 

3.3 Bifunctional RSH enzyme Rel  

Although RelA and SpoT are, due to historic reasons, the most well-studied 
representatives of RSH family, the majority of bacterial species use single bi-
functional enzyme, named Rel, for both synthesis and degradation of (p)ppGpp. 
Phylogenetic studies showed that Rel is ancestral to RelA and SpoT with latter 
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ones being products of rel gene duplication followed by functional diversification 
of the two copies [94, 117]. Combining both enzymatic activities for synthesis and 
degradation of (p)ppGpp in one protein makes Rel a fascinating study subject. 
Despite decades of research, it is yet unclear as to how the two opposing activities 
are regulated in such a manner that futile reaction cycles are avoided. 

Several studies suggest reciprocal character of synthetic and hydrolytic 
activities of Rel protein. Hogg and colleagues showed that the NTD domain 
region of Rel from Streptococcus dysgalactiae subsp. equisimilis adopts two 
distinct conformations representing “hydrolase-ON/synthetase-OFF” and “hydro-
lase-OFF/synthetase-ON” states of the protein [118]. They suggest that substrate 
binding to the either of the active sites triggers conformational switch leading to 
deactivation of the opposing site. 

Biochemical experiments with M. tuberculosis [119], Thermus thermophilus 
[120] and B. subtilis [121] Rel showed that, similarly to E. coli RelA, the 
(p)ppGpp synthesis by these enzymes is activated by deacylated tRNA on the 
ribosomal complex. This activation is accompanied by almost complete loss of 
(p)ppGpp hydrolysis activity – this again prompts the presence of regulatory 
communication between active sites of Rel [119]. Although biochemical investi-
gations of M. tuberculosis Rel have showed that in this organism enzyme is 
activated by deacylated tRNA in the ribosomal A-site, microbiological experi-
ments have shown that in live bacteria complete removal of nutrients is needed 
to activate the stringent response [122]. Other bacteria were also found to require 
alternative stimuli to activate (p)ppGpp production by Rel. For example, in 
Helicobacter pylori stringent response is elicited upon carbon starvation and acid 
stress [123]. In Caulobacter crescentus (p)ppGpp is produced in response to 
combined carbon and nitrogen limitations [124]. Rel protein in Myxococcus 
xanthus can detect limitations of amino acid, carbon, phosphate and nitrogen 
[125]. The diversity in signals that activate stringent response in different bacteria 
can be accounted for their need to cope with different lifestyles. 

 
 

3.4 Monofunctional RSH SAS enzymes 

Until the last decade, bi-functional Rel was considered as the sole RSH in 
Firmicutes responsible for both production and degradation of (p)ppGpp. How-
ever, in contrast to previous findings that in B. subtilis and C. glutamicum [63, 
126] inactivation of rel gene led to (p)ppGpp0 phenotype, it was shown for S. 
mutans that Δrel mutant was still able to produce (p)ppGpp [127]. Latter obser-
vation indicated that in S. mutans there are other sources of (p)ppGpp besides 
Rel. Indeed, S. mutans genome (UA159) was found to contain two ORFs encoding 
single-domain ppGpp synthetases homologous to RelA/SpoT synthetase domain 
but lacking the hydrolase domain. These Small Alarmone Synthetase enzymes 
were shown to produce (p)ppGpp [128]. More recently extensive phylogenetic 
studies of RSH enzymes across the tree of life showed that SAS proteins are 
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ubiquitous in Firmicutes [94], making the typical repertoire of RSHs in Firmi-
cutes – one long bifunctional Rel and one or two short monofunctional SAS 
proteins, usually named RelQ and RelP, with the latter one being absent in some 
species. Surprisingly another class of SAS named RelV is also found in a 
representative of Gammaproteobacterium Vibrio cholerae [129]. Such extensive 
presence of SAS enzymes suggests their evolutionary advantage and raises the 
question of their special function in bacteria. Although there is still vast 
uncertainty in the contribution of SAS factors to bacterial physiology, recent 
studies have shed some light onto mechanism of their action and their possible 
biological roles [55]. 

Recent structural data showed that B. subtilis RelQ forms a symmetric oval-
shaped homotetrameric structure that binds two pppGpp molecules at the 
interface of subunits (Fig. 9). Biochemical data supports that bound pppGpp 
molecules in the cleft act as allosteric activators of the B. subtilis RelQ and that 
tetrameric structure of the protein is essential for its enzymatic activity [130]. 

The activity of SAS enzymes is believed to be regulated on transcriptional 
level, meaning there is a direct correlation between increase in (p)ppGpp levels 
and the abundance of the enzyme. SAS proteins are up-regulated in response to 
different stress stimuli. For example, in B. subtilis expression of SAS1 (RelQ) is 
promoted in response to cell wall damage [93], B. subtilis relP transcription is 
upregulated by alkaline shock [131], in S. aureus by cell wall stress [132], in 
Streptococcus mutans by oxygen stress [133]. SAS proteins are not only activated 
during stress, but constitutively produce basal levels of (p)ppGpp during favor-
able growth conditions [43, 128]. As earlier, basal levels of (p)ppGpp are neces-
sary for keeping normal metabolism of the cell during unrestrained growth as 
well as needed for fully efficient mounting of the stringent response, also for GTP 
homeostasis, virulence and resistance to cell wall antibiotics [43, 61]. 

 

 
Figure 9. Tetrameric structure of B. subtilis RelQ with two allosteric pppGpp 
molecules in the central cleft (shown in red). PDB accession code 5DED, adapted from 
[130]. 
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3.5 Monofunctional RSH enzyme Metazoan SpoT  
homolog protein 1, Mesh1 

Intriguingly, RSH enzymes were identified in animals. The so-called metazoan 
SpoT homolog 1 (Mesh1) protein possesses conserved Mn2+ binding catalytically 
active HD domain and structurally is very similar to bacterial SAH enzymes 
[134]. Mesh1 has been shown to degrade (p)ppGpp in vitro as well as to 
complement the lack of SpoT in E. coli cells. The physiological substrates and 
the role of these proteins in animals is however elusive as there is no (p)ppGpp 
and no proteins that synthesize the alarmones in metazoa. Nevertheless, the 
deletion of mesh1 leads to substantial changes in physiology of Drosophila. 
Δmesh1 mutants showed retarded body growth and impaired response to amino 
acid starvation [134]. These findings indicate the importance of Mesh1 in 
starvation responses in higher organisms prompting functional conservation of 
the protein. One recent study embarked on a search for potential substrates of 
Mesh1 in mammalian cells and it was proposed that NADPH could be the natural 
substrate of the protein [135]. However, an independent study contradicted these 
results by showing no changes in NADPH levels in E. coli cells upon expression 
of Mesh1 [136]. 
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4. Role of (p)ppGpp in bacterial virulence and inhibition 
of the stringent response as a therapeutic strategy 

Many pathogenic bacteria rely on (p)ppGpp signaling to coordinate the expression 
of their virulence genes and to confer survival in the host organisms [109]. For 
example, (p)ppGpp induces bacterial adherence of enterohemorrhagic and uro-
pathogenic E. coli strains, the virulence trait of these bacteria is colonization on 
epithelial cells of intestine and urinary tract, respectively [137, 138]. Absence of 
(p)ppGpp in Salmonella enterica leads to inability to invade and replicate in 
intestinal epithelial cells [139]. Finally, the viability during host invasion requires 
functionality of the stringent response. For example in case of F. tularensis, 
H. pylori and S. aureus (p)ppGpp is needed for macrophage survival [109]. 

Recently the connection of (p)ppGpp to formation of so-called persister cells 
became a hotly debated topic. According to widely accepted model (p)ppGpp 
accumulation leads to activation of toxin-antitoxin (TA) systems, which, in turn, 
was proposed to be connected to persistence [140]. However, the experimental 
papers supporting that model has been questioned [141–143], resulting in the 
retraction of the original papers [140, 144, 145]. 

Since the growing body of evidence supports the involvement of (p)ppGpp-
mediated signaling in bacterial virulence and survival within host organisms 
during infection makes the stringent response a potential therapeutic target. In 
recent years several classes of compounds were tested as potential stringent 
response inhibitors: i) antibiotics acting via inhibition of translation leading to 
inhibition of Rel/RelA RSH enzymes, ii) compounds that directly inhibit 
synthetic activity of RSH proteins and iii) compounds that catalytically degrade 
(p)ppGpp. 

 
 

4.1 Antibiotics that target translation 

Antibiotics thiostrepton and tetracycline directly inhibit Rel/RelA activation by 
starved ribosomes [146, 147]. Tetracycline blocks tRNA incorporation to the  
A-site of the ribosome and deacylated tRNA in the A-site is a prerequisite for 
activation of the Rel/RelA, thus leading to efficient inhibition of the (p)ppGpp 
synthesis [104, 148]. 

Thiostrepton inhibits translation by interfering with the binding and action of 
several translational GTPases such as EF-G, EF-Tu and IF2 [149–151]. The 
inhibition is mediated by the antibiotic binding to the cleft between helices 43 
and 44 of the 23S rRNA and ribosomal protein uL11 [152]. Since uL11 is 
indispensable for activity of RelA [108], it was suggested that thiostrepton 
inhibits (p)ppGpp synthesis by interfering with the function of uL11 and was 
shown to do such in vitro [38, 148]. 

In addition to specific inhibition of RSHs activation by ribosomal complexes, 
all antibiotics that target protein synthesis universally abrogate the stringent 
response indirectly since blocking of translation leads to accumulation of 
aminoacyl-tRNAs and, consequently, decrease in the concentration of deacylated 
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tRNAs. Due to its fast uptake chloramphenicol is most widely used antibiotic as 
inhibitor of the stringent response in microbiological experiments [153, 154]. 

 
 

4.2 ppGpp analogues 

Synthetic activity of RSH proteins was also targeted directly by using synthetic 
analogues of (p)ppGpp that would bind to the catalytic site of Rel/RelA proteins 
and outcompete the GTP/GDP substrates [155]. The (p)ppGpp molecule is a poor 
starting point for developing an antimicrobial: it is large, unstable and highly 
charged, therefore unable to penetrate cell membrane. 

First such compound was Wexselblatt’s bisphosphonate or (10) [155]. In this 
compound pyrophosphate moieties at 3' and 5' positions are substituted with non-
hydrolysable methylene-bisphosphonate groups. Although in the test tube it 
showed moderate inhibitory effect on Rel proteins, the IC50 in mM range is 
physiologically irrelevant. Another problem is that as this compound is highly 
hydrophilic it is inactive against live bacteria [155]. 

Further modifications of compound (10) led to development of ppGpp ana-
logue inhibitor Relacin [156]. Its structure contains less charged due to the use of 
diglycine moieties instead of the pyrophosphate groups and the guanine base is 
carrying 2-N-isobutyryl protecting group. The resultant molecule is less 
hydrophilic and it was shown to have inhibitory effect in vivo as well as in vitro, 
but only at physiologically irrelevant millimolar concentrations [156, 157]. 

 
 

4.3 Peptide 1018  

One more compound that was suggested to inhibit the (p)ppGpp-mediated 
signaling is anti-biofilm peptide 1018 [53]. Since this compound is active against 
broad-spectrum of bacteria, it was suggested to exert its activity by affecting 
some widely conserved bacterial mechanism. Since the cells treated with 1018 
fail to accumulate (p)ppGpp, it was suggested that 1018 directly binds to the 
(p)ppGpp and marks it for degradation [53]. 

However, the follow-up studies questioned the proposed mechanism of 1018 
as a specific stringent response inhibitor [158, 159]. Firstly, peptide 1018 does 
not inhibit biofilm formation specifically, but eradicates planktonic cells with the 
same efficiency. Secondly, the control peptide, with the inverted amino-acid 
sequence of 1018 (named respectively 8101) had even better antibacterial 
efficiency than 1018 itself [158]. Moreover, the antibacterial efficiency of 1018 
does not seem to rely on specific degradation of (p)ppGpp, since it is equally 
potent against wild type and ppGpp0 (i.e. lacking RSH enzymes) strain [159]. 
Finally, the inverted 8101 version co-precipitates with ppGpp equally well as the 
original 1018 [158]. Later Bryson and colleagues [160] re-confirm the inefficacy 
of both Relacin and peptide 1018 in targeting the stringent response inhibition as 
neither of these compounds were able to reverse tolerance and/or growth defect 
phenotype exhibited by elevated (p)ppGpp levels in S. aureus
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AIMS OF THE STUDY 

The topic in this study is investigation of the biochemical properties of two SAS 
proteins: 
 
• E. faecalis RelQ (Papers I and II) 
 

• S. aureus RelP (Paper III) 
 
Specifically, the focus of the study was identification of the cellular components 
responsible for regulation of the enzymatic activity of those proteins and 
characterize the enzymatic properties of the RSHs in question.  



33 

MATERIALS AND METHODS 

All materials and methods are described in detail in publications I, II and III. The 
most important methods are outlined here. 
 
 

1. Enzymatic assays 

Enzyme experiments for both E. faecalis RelQ and S. aureus RelP were per-
formed at 37 °C in HEPES:Polymix buffer [161]: 25 mM Hepes pH 7.5, 0.5 mM 
CaCl, 95 mM KCl, 5 mM NH4Cl, 8 mM putrescine, 1 mM spermidine, 5 mM 
K3PO4 pH 7.3 with 5 mM Mg2+ supplemented with 1 mM beta-Mercaptoethanol. 
Reaction mixtures containing 250 nM E. faecalis RelQ or S. aureus RelP and 300 
or 200 μM 3H-GDP were pre-incubated for 2 min at 37 °C in the presence of 
fixed or increasing concentrations of different effectors: (p)ppGpp, metal ions, 
Relacin, mRNA coding for a Met-Phe (MF) dipeptide, 5'-GGCAAGGAGGUA 
AAAAUGUUCAAA-3'. E. faecalis RelQ was also tested in presence of starved 
ribosomal complex or its separate components (0.5 μM E. coli 70S, 2 μM tRNAPhe 

and tRNAMet, 2 μM model mRNA encoding the Met-Phe (MF) dipeptide) 
(Fig. 10). Thereafter reaction is activated by 1 mM ATP. 

After reaction initiation by ATP, the 5 μl aliquots were taken throughout the 
course of the reaction and quenched with 4 μl of 70% formic acid supplemented 
with a cold nucleotide standard (10 mM GDP and 10 mM GTP) used for UV 
shadowing after resolution on PEI-TLC plates (Macherey-Nagel). Nucleotides 
were resolved in 0.5 mM KH2PO4 pH 3.5 buffer, after which the plates dried and 
then cut into sections as guided by UV shadowing. 3H radioactivity was quanti-
fied by scintillation counting in Optisafe-3 scintillation mixture (PerkinElmer/ 
Fisher). Progression of the reaction was quantified as substrate (3H-GDP) to 
product (3H-ppGpp) conversion, [3H-ppGpp/(3H-ppGpp + 3H-GDP)]. 

 
 

2. Electromobility shift assay (EMSA) 

10 μl of total reactions were performed in Hepes:Polymix buffer with at 37 °C. 
Before the reaction mixtures were assembled, stock mRNA was incubated for 
2 min at 65 °C to melt possible secondary structures. Reaction mixtures were 
assembled by adding fixed or increasing concentrations of E. faecalis RelQ or 
S. aureus RelP to the mRNA (final concentration 0.15 μM), followed by the 
addition of RelQ and 4 U/μl of RiboLock RNase inhibitor (Thermo Fisher 
Scientific). In case of E. faecalis RelQ, combinations of nucleotides (final con-
centrations: 1 mM ATP, 1 mM GDP and 100 μM ppGpp) were added prior to 
addition of the enzyme. The reaction mixture is then incubated for 10 min at 
37 °C, after which 5 μl of loading dye (40% sucrose supplemented with 
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bromphenol blue) was added per 10 μl (i.e. 1.5 pmol of mRNA) and the samples 
resolved on 12–15% Tris:borate:EDTA (TBE) gels run at 4 °C (120–140 V) for 
1.5–2 hours. Gels were stained with SYBR Gold nucleic acid stain (LifeTechno-
logies) for 10 minutes prior to visualization using a Typhoon Trio Variable Mode 
Imager (Amersham Biosciences). 
 
 

3. Preparation of recombinant proteins 

3.1 E. faecalis RelQ 

E. faecalis RelQ protein was purified from E. coli BL21(DE3) chemical com-
petent cells transformed with pET28a plasmid encoding C-terminally 6His-
tagged RelQ. Cells were grown in 400 ml LB medium under antibiotic selective 
pressure. Protein expression was induced with 1 mM Isopropyl β-D-1-
thiogalactopyranoside (IPTG) at OD600 0.6 and grown for additional 2 hours at 
30 °C. Cells were harvested by centrifugation for 15 minutes at 3000 rpm and 
diluted in cell opening buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM 
Imidazole, 10% glycerol, 1 mM β-Mercaptoethanol (βMe), pH 8) with addition 
of 1 μg/ml DNase-1 and 1 mM PMSF. Cells were lysed by Stansted Pressure Cell 
Homogeniser FPG12800 after which cell debris were removed by centrifugation 
for 30 min at 15 000 rpm. Supernatant was loaded on the 1 ml His-trap Ni2+ 

column (GE Healthcare) equilibrated with Washing buffer: 50 mM NaH2PO4, 
300 mM NaCl, 25 mM Imidazole, 10% glycerol, 1 mM βMe, pH 8. After additio-
nal wash by increasing ionic strength to 1 mM NaCl, protein was finally eluted 
with increasing imidazole concentration over 20 minutes, until achieving 100% 
Elution buffer: 50 mM NaH2PO4, 300 mM NaCl, 300 mM Imidazole, 10% 
glycerol, 1 mM βMe, pH 8. Fractions containing pure protein were pooled and 
concentrated against Storage buffer (20 mM Tris-HCl pH 8, 500 mM NaCl, 
1 mM EDTA, 5 % glycerol) using Amicon Ultra Centrifugal Filters. Protein con-
centration was measured by Bradford protein assay. 
 
 

3.2 S. aureus RelP 

Protein expression and purification procedure was the same as for E. faecalis 
RelQ with the exception of buffers used:  
• Cell opening/Washing buffer: 50 mM Tris-HCl pH 8, 500 mM NaCl, 5 mM 

MgCl2, 10 mM imidazole, 1 mM βMe 
• Elution buffer: 50 mM Tris-HCl pH 8, 500 mM NaCl, 5 mM MgCl2, 300 mM 

imidazole, 1 mM βMe 
• Storage buffer: 30 mM Tris-HCl pH 8, 300 mM NaCl, 5 mM MgCl2, 5 mM 

βMe, 5% glycerol. 
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RESULTS AND DISCUSSION 

1. Biochemical characterization of E. faecalis RelQ  

Enterococcus faecalis is a Firmicute bacteria encoding both long bifunctional 
RSH Rel and short monofunctional RSH RelQ [59]. This bacteria is commensal 
in our gut, but is also opportunistic pathogen causing several infections ranging 
from urinary tract infections to severe conditions like endocarditis or bacteremia 
[162]. Commonly these diseases are hospital-acquired and this can be accounted 
for the ability of E. faecalis to withstand many adverse conditions like prolonged 
starvation, exposure to sanitizers and most importantly to antibacterial treatment. 
E. faecalis has intrinsic and acquired resistance towards many commonly used 
antibiotics like penicillin, clindamycin, aminoglycosides and most of ceph-
alosporins [163, 164]. This bacterium accumulates (p)ppGpp in response to 
stresses like alkaline and heat shock, and vancomycin treatment. Importantly, 
resistance to vancomycin was shown to be dependent on functionality of RelQ 
protein [43, 59, 60]. Therefore, given the clinical relevance, we focused to dissect 
the mechanism of E. faecalis SAS enzyme through biochemical investigations. 

When I started working on the project, most of what was known about SAS 
enzymes was based on transcriptional studies [60], and the enzymatic mechan-
isms of SAS were unexplored. Given the domain organization of SAS enzymes, 
we reasoned that they have different enzymatic properties from that of long 
RSHs. SAS lack the C-terminal regulatory domain region (CTD) of long RSHs, 
which in case of E. coli RelA mediates ribosome binding and RelA activation. 
The lack of CTD suggests that SAS RSHs are being regulated differently, specifi-
cally that SAS enzymes act independently of the ribosome.  

In our laboratory we have established a biochemical experimental setup for 
studying enzymatic properties of long RSH E. coli RelA [100]. This system mimics 
the native intracellular signal that induces the activation of RelA in starved cells, 
i.e. the stalled ribosomal complexes. In our system, we reconstitute the said com-
plexes from purified 70S E. coli ribosomes, model mRNA, and native deacylated 
E. coli tRNA. Using radioactive nucleotide substrates combined with separation 
of nucleotides on TLC and consequent scintillation counting, we applied this 
system to follow the synthesis of (p)ppGpp by E. faecalis RelQ. The aim was to 
answer the following questions: 
 
1. Is the enzymatic activity of E. faecalis RelQ regulated by starved ribosomal 

complexes or/and individual components of the complex: ribosomes, mRNA 
or tRNA? 

2. Is E. faecalis RelQ allosterically regulated by ppGpp/pppGpp similarly to 
E. coli RelA? 

3. What is the preferred nucleotide substrate of RelQ: GDP or GTP? 
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1.1 E. faecalis RelQ activity is not induced by 70S ribosomes or tRNA, 
and is inhibited by model mRNA(MF) 

E. coli RelA is virtually inactive in the absence of 70S ribosomes and it is strongly 
activated by the starved ribosomal complexes consisting of 70S ribosomes, model 
mRNA(MF) coding MF dipeptide, deacylated initiator tRNAi

Met in A-site and 
tRNAPhe in the P-site. As predicted, the enzymatic activity of E. faecalis RelQ is 
insensitive to addition of 70S ribosomes (Fig. 10). Surprisingly, when the starved 
complexes are added, the enzymatic activity of RelQ is almost completely abo-
lished. This observation raises the question: which individual component of the 
RelA-activating starved ribosomal complex responsible for the inhibition of RelQ 
activity? By testing the effects of each component separately we demonstrated 
that it is the mRNA(MF) that is responsible for the effect. This phenomenon was 
later investigated in detail, see section ‘2. RelQ combines two archetypical regu-
latory mechanisms: nucleotide messenger-mediated signaling and RNA binding’, 
below. 
 

 
Figure 10. ppGpp synthesis activity of E. faecalis RelQ in the presence of ATP and 
GDP and substrates alone (first bar), starved ribosomal complex (second bar) and 
individual components of the ribosomal complex (70S ribosomes, tRNAPhe and 
mRNA(MF)) as indicated on the figure. 
 
The synthesis activity of multi-domain E. coli RSH RelA is allosterically activated 
by the product, ppGpp/pppGpp, with the latter being the primary effector [100, 
165]. Single-domain E. faecalis RSH RelQ displays the same effect: addition of 
100 μM ppGpp alleviates the lag-effect of the ppGpp production time course by 
E. faecalis RelQ, just like it does in the case of E. coli RelA (Fig. 11). In an 
excellent agreement with our results, later an independent report from Gert Bange 
lab demonstrated that pppGpp positively regulates activity of B. subtilis RelQ by 
binding to the central regulatory cleft of the protein [130]. 
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Figure 11. ppGpp activates synthetic activity of E. coli RelA (A) and E. faecalis RelQ 
(B). Empty black circles represent the time course of ppGpp synthesis without addition 
of ppGpp, empty red circles – with ppGpp added. On panel A ppGpp is added at the 15 
minute timepoint. 
 
 

1.2 E. faecalis RelQ has a preference to GDP substrate and 
pppGpp activator 

Our next question was what is the preferred substrate of RelQ (GDP or GTP) and 
what is the preferred activator (ppGpp or pppGpp). We have determined the 
kinetic properties (kcat and Km) of E. faecalis RelQ enzyme, and estimated the 
relative efficiency of GTP and GDP utilization as substrates by calculating the 
specificity constant kcat/Km (Table 1). We preformed our enzyme kinetics experi-
ments in the presence of either 100 μM ppGpp or pppGpp.  

RelQ has a moderate preference (i.e. higher kcat/Km) toward GDP over GTP 
as a substrate (Fig. 12), but the nature of the added alarmone fine-tunes the extent 
of this preference (Table 1). Specifically, in the presence of ppGpp RelQ has an 
approximately 2-fold-higher preference toward GDP over GTP: kcat/Km(GDPppGpp) 
= 2.08 ± 0.82 mM–1s–1 versus kcat/Km(GTPppGpp) = 1.19 ± 0.43 mM–1s–1. Addition 
of pppGpp promotes the preference towards GDP approximately 4-fold: 
kcat/Km(GDPpppGpp) = 3.90 ± 1.28 mM–1s–1 versus kcat/Km(GTPpppGpp) = 0.87 ± 
0.30 mM–1s–1. Collectively, our results demonstrate that E. faecalis RelQ prefers 
GDP as a substrate and pppGpp as an activator. 
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Figure 12. E. faecalis RelQ utilizes GDP more readily as a substrate. Increasing 
concentrations of substrates (GTP or GDP) were supplied to E. faecalis RelQ and turnover 
rates of (p)ppGpp synthesis (3H ppGpp synthesized per RelQ per minute) were obtained 
in the absence of (p)ppGpp. 
 
Table 1. Kinetic constants for ppGpp and pppGpp production by E. faecalis RelQ 
in the presence of ppGpp or pppGpp. 

Substrate Cofactor kcat (s–1) Km (mM) kcat/Km  
(mM–1 s–1) 

GTP ppGpp  0.58 ± 0.07  0.49 ± 0.17  1.19 ± 0.43 

 pppGpp  0.74 ± 0.1  0.85 ± 0.27  0.87 ± 0.3 

GDP ppGpp  1.34 ± 0.2  0.65 ± 0.24  2.08 ± 0.82 

 pppGpp  0.81 ± 0.07  0.21 ± 0.07  3.9 ± 1.28 
  
 

1.3 Relacin does not inhibit E. faecalis RelQ 

Since the (p)ppGpp-mediated signaling is implicated in virulence of pathogenic 
bacteria, in recent years it became a target for development of new antibacterials 
[166], such as ppGpp analogue Relacin [156]. In case of several bacterial species 
the basal (p)ppGpp levels were shown to be responsible for virulence/patho-
genicity and antibacterial tolerance [109]. Since in Firmicute bacteria SAS 
proteins are responsible for the maintenance of these basal (p)ppGpp levels, it is 
essential to efficiently target those RSH enzymes when developing new anti-
bacterials that are aimed to compromise the (p)ppGpp-mediated signaling. How-
ever, so far only long ribosome-dependent RSH proteins have been tested for 
inhibition by Relacin [156].  
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We have tested the efficiency of E. faecalis RelQ inhibition by Relacin, adding 
increasing concentrations of Relacin to ppGpp synthesis reactions (Fig. 13). As 
a positive control, we used E. coli RelA. Consistently with the results of Wex-
selblatt and collogues [156], E. coli RelA is dose-dependently inhibited by 
Relacin. However, E. faecalis RelQ is virtually immune to Relacin. Even addition 
of 5 mM Relacin – a concentration that completely inhibited RelA – have no 
significant effect. We concluded that bacterial species that encode SAS RSHs 
might not be successfully targeted by compounds that were optimized to inhibit 
long RSH. Further analyses are needed to assess if SAS representatives from 
other bacteria will also be insensitive to Relacin. 

 

 
Figure 13. While the enzymatic activity of E. coli RelA is moderately inhibited by 
Relacin E. faecalis RelQ is immune to the compound. To calculate the RSH activity, 
the turnover rate (3H ppGpp synthesized per RelQ per minute) in the presence of Relacin 
was divided by that in the absence of Relacin, total ppGpp accumulation in the absence 
of Relacin is set to 1. 
 
 

2. RelQ combines two archetypical regulatory  
mechanisms: nucleotide messenger-mediated  

signaling and RNA binding 

When we analyzed biochemical properties of E. faecalis RelQ we discovered that 
mRNA(MF) inhibits the synthesis of (p)ppGpp by RelQ (Fig. 10). This kind of 
effect has never been observed for other RSH proteins, thus prompting a more 
detailed investigation. We reasoned that the biological purpose of this RelQ:mRNA 
interaction could be either regulation the enzymatic activity of RelQ, or, alternat-
ively, RelQ could be acting as an RNA-binding protein, similarly to classical 
RBPs CsrA and Hfq. Therefore, we decided to characterize the relationship 
between the RelQ:mRNA and RelQ:(p)ppGpp complex formation on one hand 
and RelQ’s enzymatic activity on the other, using a combination of enzymatic 
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assays and binding assays – electrophoretic mobility shift assays, EMSA, to study 
RelQ:mRNA complex formation and Differential Radial Capillary Action of 
Ligand Assay, DRACALA, to study RelQ:(p)ppGpp complex formation 

First, by titrating increasing concentrations of model mRNA(MF) and fol-
lowing its effect on ppGpp production by RelQ, we demonstrated that this RNA 
a very potent inhibitor. It is able to abolish ppGpp synthesis of 250 nM RelQ at 
concentration as low as 150 nM (Fig. 14A, empty black circles). ppGpp has an 
opposing effect on RelQ’s enzymatic activity, serving as a strong allosteric 
activator (Fig. 11B). When 100 μM of ppGpp is added in mRNA(MF) titration 
experiments, the alarmone efficiently mitigates the inhibition by mRNA (Fig. 
14A, empty red circles). The alarmone does not, however, abrogate the inhibition 
completely, as 1 μM mRNA still inhibits RelQ activity approximately five-fold 
in the presence of 100 μM ppGpp. 
 

 
Figure 14. Single-stranded mRNA(MF) potently inhibits ppGpp synthesis by 
E. faecalis RelQ. The inhibition is sequence-specific (A, empty black circles) and is 
mitigated by ppGpp (A, empty red circles); other derivatives of this mRNA including its 
double-stranded (A, filled circles) and antisense (B) versions as well as corresponding 
single- and double-stranded DNA (C) show poor inhibition of RelQ activity. Titrations 
were performed with increasing concentrations of single-stranded (empty circles) and 
double-stranded (filled circles) nucleotides in the presence (red circles) or absence (black 
circles) of 100 μM ppGpp. 
Next, we evaluated the structure and/or sequence specificity of the RelQ 
inhibition by mRNA by testing a panel of derivatives of the model mRNA(MF). 
Specifically, we used its antisense (Fig. 14B) and double-stranded versions (Fig. 
14A, filled circles), also corresponding single-stranded and double-stranded 
DNA (Fig. 14C) as well as made mutational analysis of this mRNA to look for 
the sequence specificity (Fig. 15). Taken together, the results of these 
experiments demonstrated that:  
1)  RNA is significantly better inhibitor than DNA  
2)  Single stranded nucleic acids are more efficient inhibitors than double stranded  
3)  Inhibition by single-stranded RNA is sequence-specific, with a tentative 

consensus GGAGG  
4)  ppGpp has a universal protective effect. 
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Figure 15. mRNA sequence specificity of RelQ inhibition. As a starting point, we use 
24 nucleotide long inhibitory model mRNA(MF) (red) and its ineffective complementary 
antisense RNA (blue). By swapping the 3' and 5' halves of these RNA molecules, (A) we 
demonstrated that that 5' half of mRNA(MF) is an essential for inhibition of RelQ. Next, 
we probed the length of the inhibitory RNA (B) and identify length requirement of 12–
15 nucleotides. Prompted by the fact that the inhibitory mRNA contains Shine-Dalgarno 
sequence AGGAGG, which is, in turn, reminiscent of the CsrA’s target consensus 
RUACARGGAUGU, we next tested the necessity of this sequence by mutating the GG 
motifs in inhibitory mRNA (C) or adding GG motifs in otherwise inactive polyA 
sequence (D). We found that only sequence containing GGAGG cluster is able to 
completely inhibit RelQ activity. To calculate the RelQ activity, the turnover rate  
(3H ppGpp synthesized per RelQ per minute) in the presence of RNA was divided by that 
in the absence of RNA. 
 
Our next question was whether the observed inhibition of RelQ by mRNA(MF) 
takes place through complex formation between the two. Using EMSA I directly 
demonstrated the complex formation (Fig. 16A). Importantly, the complex 
formation is incompatible with protein’s enzymatic activity: simultaneous addition 
of both of the substrates (GDP and ATP) to EMSA assay results in RNA disso-
ciation from the protein (Fig. 16B). However, this effect did not happen when 
individual substrates are added (Fig. 16B) or when other nucleotides, that are not 
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accepted by the enzyme or the non-hydrolysable ATP analog AMPCPP added in 
combination with GDP (see paper II, Fig. S4C). We reasoned that the very act of 
ppGpp synthesis, rather than binding of the nucleotides is responsible for 
dislodging of mRNA from RelQ. In agreement with this idea, catalytically 
inactive D82G mutant variant of RelQ protein forms complex with mRNA as 
efficiently as wild-type RelQ, but this complex is insensitive to addition of ATP, 
GDP or ppGpp (Fig. 16C). 

 
Figure 16. RelQ binding to mRNA and ppGpp synthesis are incompatible. 
(A) Complex formation between 0.15 μM mRNA and increasing concentrations of 
E. faecalis RelQ was monitored by EMSA. (B) Simultaneous addition of substrates ATP 
and GDP disrupts RelQ:mRNA complex, same is not observed when individual 
nucleotides are added. Addition of 100 μM ppGpp does not have strong effect on this 
complex as opposed to its strong effect on enzymatic activity of the protein. 
(C) Enzymatically inactive RelQ D82G binds mRNA with same efficiency as wild-type 
RelQ, however this complex is insensitive to addition of substrates ATP and GDP.  
 
Next we compared the effects of ppGpp and pppGpp on RelQ:mRNA complex 
formation. In agreement with stronger effect on induction of the enzymatic 
activity of RelQ [130], pppGpp also destabilizes RelQ:mRNA complex much 
more potently than ppGpp. Titration of (p)ppGpp in EMSA assay showed that 
pppGpp potently abrogated mRNA binding to RelQ with an EC50 of 35 ± 6 μM 
(Fig. 17B), ppGpp on the other hand is able to disrupt the complex only when 
titrated up to 1 mM (Fig. 17A). Finally, we have analyzed complex formation 
between pppGpp/ppGpp and RelQ by DRACALA assay. In agreement with the 
data for B. subtilis [167] pppGpp efficiently bound E. faecalis RelQ with EC50 of 
2.1 ± 0.1 μM. ppGpp on the other hand was a poor binder and even in the 
presence of 20 μM RelQ only 10% of ppGpp was associated with the protein 
(Fig. 17C). 32P-labelled pppGpp was displaced from RelQ by increasing con-
centrations of mRNA(MF) with an IC50 of 2.8 ± 0.1 μM (Fig. 17D). Similar effect 
was observed for 32P-ppGpp (IC50 of 5.2 ± 1.9 μM), but not for 32P-ATP (data not 
shown). These results demonstrate that (p)ppGpp and mRNA binding to 
E. faecalis RelQ are mutually exclusive. 
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Figure 17. pppGpp and mRNA have destabilizing effect on each other’s binding to 
RelQ, ppGpp has only moderate effect on RelQ:mRNA complex. (A and B) EMSA 
analysis of complex between 0.15 μM mRNA(MF) and 2 μM RelQ in presence of 
increasing concentrations of ppGpp (A) and pppGpp (B). (C) DRaCALA analysis of 
complex formation between increasing concentrations of RelQ with 50 nM 32P-labelled 
ATP, ppGpp and pppGpp. (D) Increasing concentrations of mRNA(MF) displace 32P-
pppGpp from 20 μM RelQ as monitored by DRaCALA. 
 
Given these differences in efficiency of dislodging mRNA:RelQ complex, we 
also next characterized the protective effect of ppGpp and pppGpp against mRNA-
mediated inhibition in enzymatic assays. Using GDP or GTP as a substrate, we 
titrated ppGpp or pppGpp in the presence of mRNA(MF) (Fig. 18). Concentration 
of mRNA was kept constant at the level that ensured complete inhibition of 
RelQ’s enzymatic activity in the absence of allosteric regulators. When GDP was 
used as a substrate, pppGpp had the most pronounced protective effect, completely 
rescuing the inhibition by mRNA(MF) at EC50 of 21.4± 15 μM. Other combination 
of nucleotides show lower protective effect. The combination of GTP with ppGpp 
fails to rescue any enzymatic activity, which is in good agreement with highest 
catalytic activity of RelQ attained in the presence of the allosteric activator 
pppGpp and GDP substrate. 
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Figure 18. The combination of GDP as a RelQ substrate and pppGpp as allosteric 
activator provides best protective effect against mRNA(MF) inhibition. 
 
Based on these results, we propose a working model according to which RelQ: 
RNA interaction acts as a regulatory switch between inactive and active forms of 
the protein (Fig. 19). RelQ is in an inactive state while it is bound to its target 
mRNA; increase in (p)ppGpp levels allosterically stimulates RelQ’s synthetase 
activity and leads to its dissociation from RNA target. Based on the similarity of 
consensus sequence GGAGG that we found to be essential for RelQ inhibition to 
the Shine-Dalgarno sequence AGGAGG we suggest that RelQ can also regulate 
ribosome-availability of its target mRNA. Therefore, RelQ combines the two 
post-transcriptional regulatory paradigms – RNA binding similarly to Csr/Hfq 
and synthesis and responding to second messenger (p)ppGpp. However further 
analyses are needed to investigate the cellular targets of RelQ. 
 

 
Figure 19. RelQ:RNA interaction as a switch between inactive and active states of 
the SAS enzyme. E. faecalis RelQ is in its inactive form when bound to the mRNA, 
which possesses a consensus sequence GGAGG. Increasing levels of (p)ppGpp in the cell 
allosterically stimulate enzymatic activity of RelQ and target mRNA is therefore released 
from the protein:RNA complex. 
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3. Structural and biochemical characterization  
of S. aureus RelP  

In many representatives of Firmicute bacteria, such as S. aureus or B. subtilis, 
RelQ is accompanied by a second SAS protein named, RelP [131, 132]. Despite 
of high sequence homology between the two (see paper III, Fig. S3), presence of 
second homologous protein prompts its differential function and regulation. 
Transcriptional studies have shown that RelQ and RelP are expressed at different 
stages of bacterial growth [131]. Expression of RelQ is induced throughout 
exponential phase of the growth, but not in stationary phase; conversely, 
expression of RelP is transiently induced upon the entry into stationary growth 
phase [131]. While mostly functional studies are carried out for RelQ protein, 
little is known about RelP. We set out to investigate structural and mechanistic 
characteristics of RelP protein from S. aureus and indeed find some distinctive 
features of this enzyme. 

 

 
Figure 20. As opposed to E. faecalis RelQ, S. aureus RelP is inhibited by ppGpp. 
(A) Using the same conditions for both proteins – 200 μM GDP and 1 mM ATP as 
substrates, 200 nM of either of the enzyme in presence or absence of 100 μM ppGpp – 
the maximal turnover rates are achieved for S. aureus RelP without addition of ppGpp, 
oppositely it is inhibited by ppGpp. In case of E. faecalis RelQ, maximal turnover rates 
are achieved upon addition of 100 μM ppGpp, but even in the presence of the activator 
turnover rate of E. faecalis RelQ is around 4 times lower than S. aureus RelP. (B) The 
characteristic lag-phase in the time-course of ppGpp production of E. faecalis RelQ and 
E. coli RelA is not observed for S. aureus RelP both in the presence or absence of ppGpp. 
 
Our biochemical assays show S. aureus RelP to be considerably more efficient in 
ppGpp production than E. faecalis RelQ (Fig. 20A): S. aureus RelP has nearly 
4 times higher turnover rate (46.6 ± 4.17 reactions per enzyme per minute) 
compared to E. faecalis RelQ (maximal turnover rate of 12.4 ± 0.6 reactions per 
enzyme per minute) (Fig. 20A). Oppositely to E. faecalis RelQ (and E. coli 
RelA), which both are activated by (p)ppGpp, S. aureus RelP is inhibited by 
addition of the alarmone (Fig. 20A and B) and does not show a lag-phase in the 

E. faecalis
RelQ

S. aureus
RelP

A B
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ppGpp production curve (Fig. 20B). We investigated the strength of this inhi-
bition for both ppGpp and pppGpp and found ppGpp (IC50

ppGpp = 45 ± 8 μM) a 
bit more potent inhibitor than pppGpp (IC50

ppGpp = 94 ± 26 μM) (see paper III, 
Fig. 3CD). 

For E. faecalis RelQ we also showed that it is bound and inhibited by single 
stranded mRNA and that this binding is mutually exclusive with allosteric 
activation by pppGpp. We therefore tested if S. aureus RelP is also affected by 
single-stranded RNA but same effect was not found – RelP is not inhibited by 
mRNA nor forms protein:RNA complex (see paper III, Fig. 3E,F). 

The difference in the effect of the (p)ppGpp on the activities of two SAS 
enzymes can be readily explained by the structural differences of these proteins. 
Although both of the enzymes form tetrameric structures with the central cleft 
(Fig. 9 and Fig. 21, respectively), oppositely to E. faecalis RelQ, S. aureus RelP 
lacks the (p)ppGpp binding site in the cleft. Therefore, we suggest that (p)ppGpp 
orthosterically inhibits (p)ppGpp production by S. aureus RelP (i.e. inhibition is 
arising from competition of product binding at the active site). This is confirmed 
by structural data that showed pppGpp bound to the active site in post-catalytic 
state. Guanine bases of both GDP (in pre-catalytic state) and ppGpp (in post-
catalytic state) stack on a universally conserved Tyr-151 residue. Due to con-
served nature of this residue, we investigated if its replacement with alanine 
(Y151A) will affect the ppGpp synthesis of RelP. Indeed, we observed complete 
loss of RelP Y151A activity (Fig. 22B).  
 

 
Figure 21. Tetrameric structure of S. aureus RelP. PDB accession code 6EX0.  
 
The inhibitory effect of (p)ppGpp on RelP production suggests that RelP cannot 
be active simultaneously with other RSH proteins, but it is rather activated by a 
separate stress signal. This suggestion is consistent with B. subtilis transcrip-
tomics data [131], that showed dramatic but transient upregulation of RelP in the 
late exponential phase, only when RelQ production was abrogated. The dramatic 
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and transient upregulation is also consistent with higher turnover rate of S. aureus 
RelP. 

Structural analysis of RelP have identified a four-histidine site at the dimer-
dimer interface of RelP tetramer, indicating that RelP might be a metal-binding 
protein, and that it could be allosterically regulated by metal ions. While this 
structural element is highly suggestive of zinc-binding site, no Zn2+ ion could be 
located at this site. Nonetheless, we tested the effect of Zn2+ on the catalytic rate 
of RelP, using Ni2+ as a specificity control (Fig. 22A). Both these metals are not 
found in the structure of a protein, but both at high concentrations have inhibitory 
effect on RelP. In the presence of increasing Zn2+ concentrations RelP activity 
shows biphastic concentration response curve: up to 4 μM Zn2+ acts as an activator 
and inhibits RelP at higher concentrations; Ni2+ in turn has only inhibitory effect 
nearly completely abolishing activity of RelP at concentration of 40 μM 
(Fig. 22A). To test if these metals act on a protein through the histidine-site, we 
substituted the two histidine residues (H73 and H74) to alanine. To our surprise 
this mutation resulted in complete loss of RelP activity (Fig. 22B), suggesting the 
site essential for structural integrity or/and enzymatic activity of the protein, 
however not providing us information about its specific purpose in Zn2+ binding. 

 

 
Figure 22. High concentrations of divalent metals Zn2+ and Ni2+ inhibit ppGpp 
production by S. aureus RelP (A). Alanine substitutions of putative Zn2+-binding 
residues H73 and H74 and universally conserved residue Y151 result in complete loss of 
S. aureus RelP activity (B) 
 
Zinc stress has been shown to induce stringent response by RelP in B. subtilis 
[168]. This is consistent with our observation that low concentrations of Zinc 
induce ppGpp production by RelP. It is therefore appealing to suggest that 
physiological role of RelP may be responding to oxidative stress induced by 
chelation of low amounts of metal ions present in the environment. Although the 
mechanistic details of this effect are still yet to be discovered, our data suggests 
that in Firmicute bacteria second SAS protein, RelP, could be involved to 
responses to different set of stress signals than RelQ. 
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CONCLUSIONS 

Results of this thesis reveal several working principles of Small Alarmone 
Synthetases E. faecalis RelQ and S. aureus RelP. Specifically, I conclude that: 
 
• E. faecalis RelQ preferentially utilizes GDP as a substrate and it is allosteri-

cally activated by pppGpp more efficiently than by ppGpp  
• E. faecalis RelQ is not inhibited by Relacin, currently the most promising 

ppGpp analogue inhibitor of RSH enzymes 
• E. faecalis RelQ combines two archetypical regulatory mechanisms: RNA 

binding and synthesis of alarmone (p)ppGpp 
• S. aureus RelP is more catalytically efficient enzyme than E. faecalis RelQ 
• S. aureus RelP is not activated by its product (p)ppGpp as E. coli RelA or 

E. faecalis RelQ 
• S. aureus RelP is not inhibited by mRNA(MF) as is E. faecalis RelQ 
• Enzymatic activity of S. aureus RelP is induced in the presence of μM-range 

concentrations of Zn2+ ions. 
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SUMMARY IN ESTONIAN 

Väikesed bakteriaalse poomisvastuse häälestajad – vaade väikeste 
alarmooni süntetaaside hingeellu 

Bakterid elavad pidevalt muutuvates ja tihtipeale karmides tingimustes. Selleks, 
et kiiresti reageerida ja edukalt toime tulla muutlike ja ebasoodsate oludega on 
bakterirakkudel evolutsioneerunud spetsiaalsed keerukad regulatoorsed mehha-
nismid. Üheks kõige levinumaks selliseks mehhanismiks on “bakteriaalne poomis-
vastus”. Poomisvastus on vahendatud alarmoonmolekuli (p)ppGpp poolt, mida 
sünteesitakse vastuseks aminohappevaegusele ja muudele stressitingimustele. 
Selle akumuleerumine rakus soodustab bakterite ellujäämist mõjutades erinevaid 
rakulisi protsesse nagu transkriptisoon, translatsioon, replikatsioon. (p)ppGpp 
mängib olulist rolli ka bakterite virulentsuses, biofilmi tekkes ja ka antibiootikum-
resistentsuses. Seega poomisvastuse uurimine on ka kliinilisest aspektist väga 
oluline. 

(p)ppGpp molekuli tase rakus on reguleeritud bakterites konserveerunud RelA-
SpoT homoloogsete (RSH) valkude poolt. Käesolev käsikiri on pühendatud RSH 
valguperekonna vähemtuntud liikmete uurimisele – E. faecalis RelQ ja S. aureus 
RelP. Nimelt uurisin nende valkude ensümaatilisi omadusi ja tõepoolest leidsin, 
et need omavad erilisi tunnuseid võrreldes teiste uuritud RSH valkudega. Näiteks 
S. aureus RelP on katalüütiliselt efektiivsem, kui E. faecalis RelQ ja ta ei ole 
aktiveeritud produkti (p)ppGpp poolt, nagu E. coli RelA või E. faecalis RelQ. 
Teisalt leidsime, et E. faecalis RelQ on järjestusspetsiifiliselt inhibeeritud mRNA 
poolt. Sellist regulatsioonimehhanismi, mis ühendab (p)ppGpp sünteesi ja mRNA 
sidumist, ei ole siiani täheldatud ühegi teise RSH valgu jaoks.  
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