
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Ülari Laurson

Veri�cation and Simpli�cation of DMN

Decision Tables

Master's Thesis (30 ECTS)

Supervisor: Marlon Dumas, PhD

Supervisor: Irene Teinemaa, MSc

Tartu 2016



Veri�cation and Simpli�cation of DMN Decision Tables

Abstract: The Decision Model and Notation (DMN) is a standard notation to
specify decision logic in business applications. A central construct in DMN is a
decision table. The rising use of DMN decision tables to capture and to automate
everyday business decisions raises the need to support analysis tasks on decision
tables. This thesis provides scalable algorithms to tackle three analysis tasks:
detection of overlapping rules, detection of missing rules and simpli�cation of de-
cision tables via rule merging. All proposed algorithms have been implemented in
an open-source DMN editor and are tested on large decision tables derived from a
credit lending data-set.

Keywords: Decision Model and Notation, Decision Table, Sweep Algorithm,
Overlapping Rules, Missing Rules, Rule Merginng

CERCS: P175, Informatics, systems theory

DMNi otsustabelite veri�tseerimine ja lihtsustamine

Lühikokkuvõte: Decision Model and Notation (DMN) on standardne notatsioon,
mida kasutatakse ärirakendustes otsuste loogika kirjeldamiseks. Otsustabelid on
DMNi üks peamisi osi. DMNi otsustabelite suurenev kasutatavus igapäevaste äriot-
suste ülesmärkimiseks ja automatiseerimiseks on tõstatanud vajadust analüüsida
otsustabeleid. See lõputöö annab ülevaate DMN otsustabelist ja kirjeldab kolme
skaleeruvat algoritmi, mis on mõeldud leidmaks kattuvaid reegleid ja puuduvaid
reegleid ning lihtsustada otsustabeleid kasutades reeglite ühendamist. Kõik välja
pakutud algoritmid on implementeeritud avatud lähtekoodiga DMN redaktorisse ja
katsetatud suurte otsustabelite peal, mis pärinevad krediidiandmise andmebaasist.

Võtmesõnad: Decision Model and Notation, Otsustabelid, Sweep Algoritm, Kat-
tuvad Reeglid, Puuduvad Reeglid, Reeglite Ühendamine

CERCS: P175, Informaatika, süsteemiteooria

2



Contents

1 Introduction 4

1.1 Decision tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Goal and problem statement . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 9

2.1 Decision table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Line sweeping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Rule merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Polygon rectangulation . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Classical approach . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 DMN tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Signavio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Prologa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Contribution 19

3.1 Finding overlapping rules . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Finding missing rules . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Decision table simpli�cation . . . . . . . . . . . . . . . . . . . . . . 26

4 Tool implementation 33

4.1 Syntactic check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Overlapping rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Missing rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Table simpli�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Evaluation 41

5.1 Veri�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Simpli�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Conclusion 46

3



1 Introduction

In 2014, Object Management Group (OMG) published Decision Model and Nota-
tion (DMN) standard [11]. Decision Model and Notation primary goal is to provide
a common notation that is readily understandable for all business users including
business managers, analysts, and developers. DMN consists two levels: a �decision
requirements level� and a �decision logic level�. The decision requirements level
de�nes the input data we need in order to make a decision. The decision logic
level describes how each decision is made. Decisions are usually expressed as de-
cision tables. In decision tables, the columns representing the inputs and outputs
of a decision, and rows represent rules. Columns typically are typed so that they
have an associated domain. A rule is a conjunction of basic expressions (one basic
expression per cell). Basic expressions are captured using a language known as
S-Feel (Simpli�ed Friendly Enough Expression Language).

1.1 Decision tables

Before we describe this thesis goal and analyze the problem, let us give an overview
of decision tables and their elements.

Figure 1: Sample decision table with its elements

4



In Figure 1 we see one example of the decision table, where rules are as rows.
There are two more possible ways how to construct these tables, rules as columns
(see Table 2) and rules as cross-table (see Table 4). For simplicity we are using
only rules as rows and all other examples are following the same structure. Let us
describe each element a little bit closer:

1. Table name: Name of the table. In this example table name is �Loan
Grade.�

2. Input and output column: Concrete conditions of a rule. In this example,
we see two input column �Loan Duration� and �Annual Income�, and one
output column �Grade.�

3. Input and output entry: One input or output value in input or output
column. Output column has three output entries �C�, �A� and �B�.

4. Irrelevant: If input entry has the value �-�, then it means that every input
satis�es the input entry, and this clause is irrelevant for the speci�ed rule.
In Figure 1 we see that input �Annual Income� has a �-� that means every
value satis�es this input.

5. Rule numbers: Each rule has its rule number. Rule numbers are counted
from top to bottom. This example has three rules.

6. Hit indicator: Indicates, if only one rule can satisfy or multiple rules are
allowed too. In our examples, we use �U� (Unique) hit indicator. It means
that only one rule can match. There are other hit indicators in DMN stan-
dard, but we are using only �Unique�, because if decision table has �Unique�
hit policy, then the table cannot contain any overlapping rules.

7. Completeness indicator: Optional attribute. We are using �C� (Com-
plete) in our work because then all possible input combinations must be
covered in the decision table.

8. List of values: Optional attribute. Can specify what values a column can
have. In our work, we do not use this optional attribute.

The rules in the decision table in Figure 1 should be interpreted as follows:

1. If the customer asks for a loan duration of 36 and his annual income is less
than 56943, then he gets a grade �C.�

2. If the customer asks for a loan duration of 36 and his annual income is more
than 56943, then he gets a grade �A.�

3. If the customer asks for a loan duration of 60, then she gets a grade �B.�

5



1.2 Goal and problem statement

Using DMN decision tables for making critical business decisions raises the question
of ensuring the correctness and simplicity of these tables. Detecting errors in
DMN tables may prevent costly defects. Correct tables have to be consistent and
complete.

The main contribution of this thesis is scalable algorithms for two basic cor-
rectness checking tasks over DMN tables and one algorithm for simpli�cation task.
Hoover and Chen describe their work how to verify decision tables, but they only
deal with the categorical values [9]. These two correctness checking tasks are the
detection of overlapping rules and detection of missing rules. Detection of missing
rules allows to check for completeness of the table, while detection of overlapping
rules allows one to check for two possible issues: (i) inconsistent rules, meaning
two rules that overlap and that are associated with two di�erent outputs; and (ii)
redundant rules, which occurs when two rules overlap and they have the same
output.

Let us now explain, with examples, the possible cases of overlapping and miss-
ing rules. In the �rst case, all inputs and outputs of two rules overlap, then these
rules are redundant. In Table 1 we see rule (Age = Adult, Marital Status = Mar-
ried, Parental Status Kids, Discount = 30%) is covered in rules 2 and 3, and they
are redundant. The second kind of overlap occurs when all inputs are the same and
outputs are di�erent, these rules are inconsistent. Rule 1 and 3 are inconsistent in
rule (Age = Adult, Marital Status = Single, Parental Status = Kids). In Table 1
we see that rule (Age = Child, Marital Status = Single, Parental Status = No
Kids) is not covered. It means that table has at least one missing rule.

UC
Inputs Outputs

Age Marital Status Parental Status Discount

1 Adult Single - 10%
2 - Married - 20%
3 - - Kids 30%

Table 1: Decision table with missing and overlapping rules

In addition to correctness checking, another useful analysis task on DMN deci-
sion tables is to detect and merge adjacent rules with the same output. By doing
so, we can obtain a simpler decision table (fewer rules), which potentially can
improve readability. Speci�cally, two rules can be merged if they have the same
output, and they only di�er in one input column or if an input has a numeric
type, then two rules have to be contiguous in one input column, and the rest input

6



columns have to be the same. In Table 2, we can merge rules 1 and 2, we get
new rule (Age = [20..50], Marital Status = Married, Discount = 20%). We can
also merge rules 4 and 5 into one rule and get a new merged rule (Age = [60..90],
Marital Status = "-" Discount = 30%). The merged table (simpli�ed table) can
be seen in Table 3.

UC
Inputs Outputs

Age Marital Status Discount

1 [20..30] Married 20%
2 (30..50] Married 20%
3 (30..50] Single 30%
4 (60..90] Married 30%
5 (60..90] Single 30%

Table 2: Decision table with overlapping rules

UC
Inputs Outputs

Age Marital Status Discount

1 [20..50] Married 20%
2 (30..50] Single 30%
3 (60..90] - 30%

Table 3: Decision table after rule merging

The proposed scalable algorithms are based on a novel geometric interpretation
of DMN tables and inspired by sweep-based spatial join algorithms [1]. Each rule in
a decision table is mapped to an iso-oriented hyper-rectangle in an N-dimensional
space (N represents the number of columns). Accordingly, the problem of detect-
ing overlapping rules is mapped to that of detecting overlapping hyper-rectangles.
Meanwhile, the problem of detecting missing rules is mapped to that of di�erenc-
ing the N-dimensional space de�ned by the N columns of a DMN table, and the
collection of hyper-rectangles induced by its rules. The problem of simpli�cation
is mapped to that of splitting hyper-rectangles into smaller hyper-rectangles that
do not overlap. In the end, if possible these hyper-rectangles are merged back into
bigger hyper-rectangles so that no hyper-rectangles overlap each other.

Chapter 2 describes in more detail background of decision tables, discusses re-
lated work and gives an overview of di�erent DMN tools. Furthermore, it describes

7



other approaches and methods that can be used to partially solve veri�cation and
simpli�cation problems. Chapter 3 presents the proposed algorithms for veri�ca-
tion and simpli�cation, and explains them in detail. Chapter 4 introduces a DMN
toolkit dmn-js and explains how our proposed algorithms work there. Chapter 5
represents the empirical evaluation of these algorithms. Chapter 6 summarizes the
contributions and outlines future work.

8



2 Background

In this chapter, we describe DMN in more detail and give an overview of DMN
background. We present the algorithm and method that can be used to solve
decision table veri�cation and simpli�cation problems. Also, in this chapter we
describe two DMN tool and explain, how they verify and simplify decision tables.

2.1 Decision table

Before decision tables, �owcharts were used to express decisions. The �owchart
has �aws such as hard to draw, di�cult to comprehend, hard to control if the chart
is complete or not, to all the same series of actions give the same result. Decision
table was �rst introduced in 1963 [12]. Decision tables are very understandable and
can be written in almost any language. Another way to represent decisions is to use
decision trees or regression trees. A simple decision table and the corresponding
decision tree can be seen in Figure 3.

Formerly, decision tables were often presented using the vertical �rules as
columns� layout [12, 14] (see Figure 2). In Figure 2 we see the main parts of
decision tables. Black arrows indicate how to read rules. The horizontal double
line separates input and output entries, and the vertical double line separates ex-
pressions from entries. Nowadays, it is more common to display rules as rows (see
Table 1), Camunda and Signavio are displaying this way rules. Rules as rows is
more feasible if the number of rules is larger than the number of input and output
attributes. Another possible way to represent decision table is as cross-table (see
Table 4). In cross-table, there are no rule numbers and hit policies.

Figure 2: Decision table with rules as columns

Traditionally, decision tables are required to be unique, i.e. only one rule

9



Discount
Marital Status

Discount Married Single

Age

[20..30] 20% 0%
Age (30..50] 0% 30%

(50..90] 30% 30%

Table 4: Rules as cross-table

matches a given set of inputs, and complete, i.e. all possible input combinations
are covered. The DMN standard alleviates this requirement by introducing the
concept of hit policy, which determines the outcome of a decision table in case of
multiple matches. DMN hit policies consist of two parts: a hit indicator and a
completeness indicator. There are two groups of hit indicators single and multiple
hit policy [11]. Hit indicators are represented by a single letter in DMN decision
tables (marked in bold below).

Single hit policies are the following:

1. Unique: no overlap between rules and only one rule can match. Default
indicator.

2. Any: overlap between rules is possible, but overlapping rules have to have
the same output. Otherwise, the result is unde�ned.

3. Priority: rules may overlap, with di�erent outputs. Returned is the rule that
has the highest output priority. An ordered list of output values represents
output priorities.

4. First: rules may overlap, with di�erent outputs. The �rst rule that matches
is returned.

Multiple hit policies are the following:

1. Output order: all hits are returned in decreasing order of output priorities.
An ordered list of output values represents output priorities.

2. Rule order: all hits are returned in rule order.

3. Collect: returns all hits in the arbitrary order. Operators, such as sum, min,
max and count, can be added to the outputs.

Completeness indicator is an optional attribute. Complete means that all pos-
sible input combinations are covered in the decision table. Incomplete indicates

10



that tables may have some missing input combinations. In our work, all our de-
cision tables are Unique and Complete so that the problem of �nding overlapping
and missing rules become relevant.

UC
Inputs Outputs

Income Credit History Dept Rating

1 [0..15000] - - High
2 [15000..35000] Unknown High High
3 [15000..35000] Unknown Low Moderate
4 [15000..35000] Bad - High
5 [15000..35000] Good - Moderate
6 > 35000 Unknown - Low
7 > 35000 Bad - Moderate
8 > 35000 Good - Low

Figure 3: Decision table and the corresponding decision tree

So far, we have mentioned that DMN uses decision tables, but the full scope of
DMN is much wider. For example, DMN covers the construct of decision require-
ments diagrams (DRD), see Figure 4. In DRD, we can represent complex decisions
and show the dependencies of each decision. DRD consists of three main parts:

1. decisions: are represented as decision tables.

2. input data: the data that you give to your decision table in order to get
output.

3. relation between decisions: arrows which connect di�erent DRD parts.

11



DMN covers some additional DRD symbols and parts, but these three are the
most important and commonly used.

Figure 4: A simple Decision Requirements Diagram

In Figure 4 we see that two decision tables can be connected. First, we calculate
Decision 2 and its output is the input to Decision 1. This way we can connect several
decision tables so that each decision table provides input to the next decision table.
This way we can build more complex decisions. In our current work only use one
decision table at a time, i.e. our tables do not give any output to another table,
and our tables do not need any outputs from other decision tables.

There are several tools, such as Signavio1, Prologa2 and Bizagi Studio3, that
supports DMN, enabling one to construct DRD diagrams and create decision ta-
bles.

2.2 Line sweeping

A sweep line algorithm (plane sweep algorithm) [1, 15] is used to �nd overlap or
collision between lines (planes). Let us explain, how this algorithm works and
detects overlap in a simple case.

Our task is to �nd all the intersection between N horizontal and vertical line
segments. We have lines as in the left side of Figure 5 and we now want to �nd the
intersection between these lines. In sweep line algorithm a vertical line just sweeps
the data from left to right. Each time a vertical line hits a line segment's end points
we need to perform some actions. The set keeps track of y-coordinates. Another

1http://www.signavio.com
2http://www.http://feb.kuleuven.be/prologa/
3http://www.bizagi.com/en/products/bpm-suite/studio

12

http://www.signavio.com
http://www.http://feb.kuleuven.be/prologa/
http://www.bizagi.com/en/products/bpm-suite/studio


Figure 5: Line sweeping algorithm in action [16]

event happens when sweeping algorithm hits a right end (represented by blue dots
in Figure 5) of a horizontal line segment then, this line segment or y-coordinate
is removed from the set because this line is processed completely. The third kind
of event happens when algorithm hits a vertical line (represented by red lines in
Figure 5). Now algorithm has to perform a 1D-range search for y-coordinates that
are in the set, and if some y-coordinates are between these vertical line endpoints,
then we have an overlap between two lines.

For storing x-coordinates we have a couple of options. We can use a priority
queue or sort x-coordinates into ascending order. It is important that x-coordinates
are sorted otherwise line sweeping algorithm does not work properly. Sweep line
algorithm takes NlogN+R time to �nd all the R intersections between N orthogo-
nal line segments. Sorting x-coordinates, inserting and deleting y-coordinates will
take NlogN time, and range search will take NlogN +R time [15].

Spatial overlap. We described how line sweeping algorithm works with two-
dimensional data, but what about three-, four-, or hundred-dimensional data?
How can we �nd in this data an overlap? In the case of multidimensional data,
an overlap occurs only if there are overlap in all dimensions. In Figure 6 we see
that shapes A and C overlap (C is inside A), the second overlap is between A
and B (partial overlap). Shape D does not overlap with any other shape. Using
sweeping line algorithm, we can �nd these overlaps. We start by sweeping the �rst
dimension, if overlap has been found, then we sweep the second dimension (it is
necessary only to sweep these data that overlapped in the previous dimension), if
we still have an overlap, then we scan the next dimension and so on. If we found

13



Figure 6: Spatial overlap

that two shapes or data overlap in all the dimension, then these two elements
overlap [1]. In this way, we can locate the overlap between �nite-dimensional
data. Overlap size between A and C is C itself because C is inside A. Overlap
between A and B is the dark gray shape that we can see in Figure 6. Overlap does
not have to be between exactly two elements, it can occur between two or more
elements.

2.3 Rule merging

2.3.1 Polygon rectangulation

A possible way to simplify a decision table is to convert all the rules into polygons.
Then, the problem reduces to the problem of polygon rectangulation [4, 10]. In
polygon rectangulation problem we give an orthogonal polygon (all interior angles
are 90 or 270 degrees) as input and the polygon will be decomposed into adja-
cent, non-overlapping rectangles that will fully cover the input polygon. One can
solve the problem by �nding a maximum independent set [19] in bipartite intersec-
tion graph [22] of axis-parallel diagonals. The diagonals connect pairs of concave
vertices (at the point of a 270-degree interior angle). We see concave vertices in
Figure 7 the �gure on the right. In Figure 7, the left �gure represents the input
polygon and center �gure represents the result of polygon partition into rectangles.

14



Figure 7: left: orthogonal polygon, center: minimum number of rectangles, right:
diagonals that connect pairs of concave vertices [4]

Using this approach, we always get the minimum number of rectangles, which
can be calculated as n/2 + h − g − 1 [5, 18]. The n is the vertex count of the
current polygon; h represents the holes and g is the maximum size of a set of
disjoint diagonals (connecting two concave vertices of the polygon). If we take
Figure 7, then the minimum number of rectangles is 38/2 + 3 − 4 − 1 = 16. The
idea of converting rules into polygons and then solving polygon rectangulation
problem can be used to simplify decision tables that contain only two dimensions,
and it always gives us the optimal solution. The problem is that it only works
with two-dimensional cases. Polygon rectangulation problem in three-dimensional
version is NP-complete [3].

2.3.2 Classical approach

Pollack proposed a simple approach for combining decision tables, i.e. two rules
that have the same output and di�er only in one condition can be combined to-
gether [13, 17]. Also, Hewett and Leuchner [8] used very similar approach to
simplify decision tables. In this approach, we �rst have to calculate all combina-
tions of conditions. If we have conditions like in Table 5, then we can construct a
decision table that can be seen in Table 6.

Conditions Values

Annual Income > 10,000 Yes(Y), No(N)
Loan Size > 20,000 Y, N
Loan Duration > 36 Y, N

Table 5: Conditions and values

Next, we take the �rst rule (N, N, N) and try to combine these rule with other

15



Possible Combinations

Conditions
Annual Income > 10,000 N N N N Y Y Y Y

Loan Size > 20,000 N N Y Y N N Y Y
Loan Duration > 36 N Y N Y N Y N Y

Actions
Grade A X X X
Grade B X X X X X

Table 6: Decision table with all combinations and actions

rules. The second rule (N, N, Y) can be merged together, and the new rule would
be: N, N, "-". If we combine two rules together, then we start at the beginning
again, this means we take the new rule (N, N, "-") and try to combine it with the
other rules, but no merge is possible. Next, we take second rule (N, Y, N) and try
to join to all the rules that are on the right side of the rule because we already
have attempted to combine it with the rules that are on the left. The rule (N,
Y, N) can be combined with the rule (N, Y, Y) and the new rule would be (N,
Y, "-"). We again, start from the �rst rule (N, N, "-") and we see that it can be
combined with the rule (N, Y, "-"). The new rule is then N, "-", "-". Again, start
with the �rst rule (N, "-", "-") and try to combine with other rules that are on
right side of the rule. We see that no merging is possible and take the next rule
(Y, N, N), and it can combine with the rule (Y, N, Y), the new rule (Y, N, "-").
So again, we start with the �rst rule and try to combine it with other rules. No
other rules can merge. The �nal decision table can be seen in Table 7.

Combinations

Conditions
Annual Income > 10,000 N Y Y Y

Loan Size > 20,000 - N Y Y
Loan Duration > 36 - - N Y

Actions
Grade A X X
Grade B X X

Table 7: Decision table after merging

This approach can be used with numerical domains as well. Then, two rules
can be combined, if they have the same result and only diverge in one condition,
and the condition where they di�er the values are contiguous otherwise two rules
cannot merge.

16



2.4 DMN tools

Tools that allow one to construct business rules, such as Signavio and Prologa,
provide some level of veri�cation or simpli�cation, but the algorithms used by
these tools are proprietary and the information is undisclosed.

2.4.1 Signavio

Signavio is a software vendor and provides three tools: Process Editor for process
modeling, Decision Manager for decision management and E�ektif for creating
work-�ows. We are most interested in Decision Manager because with this tool
one can create decision tables and verify them.

Figure 8: Signavio Decision Manager decision table example

In Figure 8 it can be seen how Signavio Decision Manager displays decision
tables and how the tool shows the errors in tables. How is this di�erent from
our work? The �rst di�erence is that Signavio does not tell us if the overlap also
occurs in outputs. For example, rules 5 and 6 have the same output and input,
the overlap between rules 2 and 4 occurs only in inputs. At this time, we cannot
say anything about the overlap in outputs, based on the error table provided by
Signavio.

The second di�erence is how Signavio highlights overlapping rules in the de-
cision table. Signavio adds a vertical red line to rule numbers where the overlap

17



occurs, but it colors all the overlaps. In this example, we have two di�erent over-
laps among the various rules. If the decision table is much bigger and has more
overlaps in it, then it is much harder to �nd the overlap groups. In our implemen-
tation, you can push a button, and it will highlight these rules where the overlap
occurs. Our implementation can be seen in Figure 18.

Another di�erence is with missing rules. How the missing rule is showed is
very similar to our work, but it does not have the possibility of adding missing
rules automatically. Our implementation has this functionality. We implemented
a button for each missing rule, if the button is clicked, then it would add a missing
rule automatically into decision table without typing it ourselves, this can be seen
in Figure 19.

The diagnosis of overlapping and missing rules produced by Signavio is unnec-
essarily large: it often reports the same rule overlap multiple times. This behavior
will be further explained in Chapter 5. Last di�erence is simpli�cation option.
Signavio does not allow any decision table simpli�cation. In Figure 8, our simpli-
�cation algorithm would have merged rules 5 and 6 into one rule.

2.4.2 Prologa

Prologa [20, 21], developed by Jan Vanthienen, allows modeling business decision
knowledge, business rules, decision models, complex procedures in the form of
decision tables. In Prologa, one can construct the decision tables in a way that
prevents overlapping and missing rules. The tool also supports the simpli�cation
of a decision table via rule merging: two rules are merged when all but one of
their input entries are the same, and their output entries are identical as well.
Prologa has a limitation; it requires columns to have boolean or categorical do-
mains. It means that numerical domains need to be discretized into intervals when
constructing a decision table [20].

In Figure 9 in the left can be seen Prologa tool and it has the same values
as in Figure 8. In the right can be seen how Prologa has simpli�ed the decision
table. Also, Prologa tool can minimize the inputted rules (rules can be seen in
Rules section below the decision table in Figure 9); we can see that it minimized
the inputted rules and right �gure in Figure 9 has only three rules (original six).
Minimization will combine multiple rules together so that combined rule will give
the same output or information as the not combined rules. In the left �gure in
Figure 9 rules 1, 2, 5 and 6 can be combined to one (see rule 1 in the right �gure
in Figure 9).

18



Figure 9: Prologa tool before and after simpli�cation

3 Contribution

We describe in this chapter three algorithms: (i) detecting overlapping rules, (ii)
detecting (in)completeness, and (iii) simplify decision table via rule merging. The
presented algorithms rely on a geometric interpretation of a DMN decision table.
Every rule in a table is presented as an iso-oriented hyper-rectangle in an N-
dimensional space (N represents the number of columns). So, an input entry in a
rule can be seen a constraint over one of the columns (i.e. dimensions).

In the case of a numerical dimension, an input entry is an interval (poten-
tially with an in�nite upper or lower bound) and thus it de�nes a segment or line
over the dimension corresponding to that column. In the case of a categorical
column, we can map to a disjoint interval each value of the column's domain �
e.g. �Re�nancing� to [0..1), �Card payo�� to [1..2), �Car leasing� to [2..3), etc. �
and we can see an input entry under this column as de�ning a segment (or set of
segments) over the dimension corresponding to the column in question. The con-
junction of the entries of a row hence specify a hyper-rectangle, or in the case of a
multi-valued categorical input entry (e.g. {�Re�nancing�, �Car leasing�}) multiple
hyper-rectangles. The hyper-rectangles are iso-oriented because in S-FEEL only
constraints of the form �attribute operator literal� are allowed and those constraints
de�ne iso-oriented lines or segments.

For example, decision table and the geometric interpretation of the table 1 are
shown in Figure 10. The two dimensions, x and y, represent the two input columns
(Annual income and Loan size) respectively. The table contains four rules: A, B,
C, and D. Some of them are overlapping. For example, rule A overlaps with
rule C. Their intersection is the rectangle [500, 1000]× [500, 1000]. The table also
contains missing values. For example, vector 〈200, 2000〉 does not match any rule

19



in Table 10.

3.1 Finding overlapping rules

Algorithm 1 �nds overlapping rules in a DMN table. This algorithm is an extension
of the line-sweep algorithm for two-dimensional spatial joins proposed in [1]. The
idea of this latter algorithm is to pick one dimension (e.g. x-axis), project all
objects into this dimension, and then sweep an imaginary line orthogonal to this
axis (i.e. parallel to the y-axis). The line stops at every point in the x-axis where
either an object starts or ends. When the line makes a �stop�, we gather all objects
that intersect the line (the active list). These objects overlap along their x-axis
projection. In [1], it is then checked if the objects also overlap in the y-axis, and if
so they are added to the result set (i.e. the objects overlap). Algorithm 1 extends
this idea to N dimensions.

The algorithm takes as input:

1. ruleList, containing all rules of the input DMN table;

2. i, containing the index of the column under scrutiny;

3. N, representing the total number of columns;

4. OverlappingRuleList, storing the rules that overlap.

UC
Inputs Outputs

Annual Income Loan Size Grade

A [0..1000] [0..1000] VG
B [250..750] [4000..5000] G
C [500..1500] [500..3000] F
D [2000..2500] [0..2000] P

Figure 10: DMN decision table and its geometric representation

20



The algorithm starts analyzing the �rst column of the table (axis x). All rules
are projected over this column. Note that the projection of a rule on a column is
an interval. We indicate the projection of rule K over axes x and y with IxK and IyK
respectively. All the intervals are represented in terms of upper and lower bounds.
The bounds are sorted in ascending order (line 7), if the column has numerical
values.

For categorical columns, we �rst �nd for every categorical value the rules that
contain this categorical value. Next, we control each categorical value to each
other and check if some categorical values have the same rules. If we have rules
as in Table 8, then we �nd for each categorical value the rules where it is present.
We get map were {A : {1, 2, 3}, B : {1, 2, 3}, C : {1, 3}, D : {3, 4}}. In this
map, we can merge A and B because they have the same rules in them. We can
say then that rules 1, 2 and 3 overlap in {A, B}, rules 1 and 3 overlap in {C} and
rules 3 and 4 overlap in {D}.

UC
Inputs Outputs
Value Result

1 A, B, C -
2 A, B -
3 A, B, C, D -
4 D -

Table 8: Decision table with categorical values

The algorithm iterates over the list of sorted bounds (line 8). In the case of
Figure 10, the rules projected over the x-axis correspond are:

A

B
C

D
lower bound upper bound

Considering the rules above, the algorithm �rst analyzes the lower bound of IxA.
Therefore, IxA is added to an active list of intervals for the �rst column x, Lx, since
the bound processed is a lower bound (line 13). Next, the algorithm processes the
lower bound of IxB and IxB is added to Lx. Then, the lower bound of IxC is processed
and IxC is added to Lx. Finally, the algorithm processes the upper bound of IxB.

21



Algorithm 1: Procedure �ndOverlappingRules.
Input: ruleList; i; N ; overlappingRuleList.

1 if i == N then

2 de�ne current overlap currentOverlapRules; /* it contains the list of
rules that overlap up to the current point */ ;

3 if !overlappingRuleList.includes(currentOverlapRules) then
4 overlappingRuleList.put(currentOverlapRules);

5 else

6 de�ne the current list of bounds Lxi
;

7 sortedListAllBounds = ruleList.sort(i);

8 foreach currentBound ∈ sortedListAllBoundaries do
9 if !currentBound.isLower() then

10 �ndOverlappingRules(Lxi
,i +1, N , overlappingRuleList); /*

recursive call */
11 Lxi

.delete(currentBound);
12 else

13 Lxi
.put(currentBound);

14 lastBound = currentBound;

15 return overlappingRuleList;

Every time an upper bound of an interval is processed (line 9), the following
column of the table is analyzed (in this case y) by invoking �ndOverlappingRules
recursively (line 10). The recursive call is invoked only if the current bound is an
upper bound because lower bound does not give us any extra knowledge that we
do not get from only processing the upper bound and no overlapping rules will be
missed if we do not call the recursion. This would make the algorithm only slower
because of the extra checking. That is the reason why we only invoke recursive
call with upper bounds.

All the intervals projections on y of the rules corresponding to intervals con-
tained in Lx (in our example A, B, and C) are represented in terms of upper
bounds and lower bounds:

A

B
C

The bounds are sorted in ascending order. The algorithm iterates over the list

22



of sorted bounds. Considering the intervals above, the algorithm �rst encounters
the lower bound of IyA. Therefore, I

y
A is added to the active list of intervals for the

second column y, Ly. Next, the algorithm processes the lower bound of IyC and
adds IyC to Ly. Then, the upper bound of IyC is processed. Since there is no other
column in the table, this means that all the rules corresponding to the intervals in
Ly overlap. At the end of each recursion, the interval corresponding to the current
bound is removed from the current active list (line 11). In addition, when the
last column of the table is processed (line 1), the algorithm checks whether the
identi�ed set of overlapping rules is contained in one of the other sets produced
in a previous recursion (lines 3). This check is important because our algorithm
is not smart enough to identify only the maximal sets of overlapping rules with
a non-empty intersection when sweeping the rules, but it will also return subsets
of the maximal sets. This is the reason why we need to check if identi�ed set
is contained in one of the other sets produced in a previous recursion. If this
identi�ed set is not contained in previous sets, then the new set of overlapping rules
is added to the output list overlappingRuleList (line 4). In this way, the procedure
outputs maximal sets of overlapping rules having a non-empty intersection stored
in overlappingRuleList (line 16).

3.2 Finding missing rules

Algorithm 2 describes the procedure for �nding missing rules, which is also based
on the line-sweep principle. The algorithm takes as inputs �ve parameters:

1. ruleList, containing all rules of the input DMN table;

2. missingIntervals, storing the current missing intervals;

3. i, containing the index of the column under scrutiny;

4. N, representing the total number of columns;

5. MissingRuleList, storing the missing rules.

The algorithm starts analyzing the �rst column of the table (axis x). Consider
again the projection of the table in Figure 10 on x:

A

B
C

D

23



Lower and upper bounds of each interval are sorted in ascending order (line 3), if
the current column has numerical values. For categorical column, we just check
all the categorical values that are represented in the current rules to all possible
values that can be in this column. If some categorical values are not represented
in current rules, then these values are the missing categorical values and we are
adding it into missingIntervals. The algorithm iterates over the list of sorted
bounds (line 4).

Considering the rules above, the algorithm �rst analyzes the lower bound of
IxA. Therefore, I

x
A is added to an active list of intervals for the �rst column x, Lx.

An interval is added to the active list only if its lower bound is processed (line
15). If the upper bound of an interval is processed, the interval is removed from
the list (line 17). Next, the algorithm processes the lower bound of IxB. Since Lx

is not empty, IxB is not added to Lx yet (line 11). Starting from the interval IA,B
(line 12) having the lower bound of IxA as lower bound and the lower bound of IxB
as upper bound, the following column of the table is analyzed (in this case y) by
invoking �ndMissingRules recursively (line 13).

All the interval projections on y of the rules corresponding to intervals con-
tained in Lx (in our example only A) are represented in terms of upper and lower
bounds, obtaining in this case the following simple situation:

A

The bounds are sorted in ascending order. The algorithm iterates over the list
of sorted bounds. The �rst bound taken into consideration is the lower bound of IyA
so that IyA is added to Ly (since Ly is empty). Since this bound corresponds to the
minimum possible value for y, there are no missing values between the minimum
possible value for y and the lower bound of IyA (line 5). Next, the algorithm
processes the second bound in Ly that is the upper bound of IyA. Considering
that the upper bound of IyA is the last one in Ly, the algorithm checks if this
value corresponds to the maximum possible value for y (line 5). Since this is not
the case, this means that there are missing values in the area between the upper
bound of IyA and the next bound over the same column (in this case area 1). The
algorithm checks if the identi�ed area is contiguous to an area of missing values
previously found (line 7), we need to check this because our sweeping algorithm
may split the missing rules into several pieces (see Figure 10 areas 4 and 6). If
this is the case, the two areas are merged (line 8). Doing so our algorithm will
produce less missing rules and is more comprehensible by humans. If this is not
the case, the area is added to a list of missing value areas (line 10). In our case,
area 1 is added to a list of missing value areas. Note that the algorithm merges
two areas of missing values only when the intervals corresponding to one column
are contiguous and the ones corresponding to all the other columns are the same.

24



Algorithm 2: Procedure �ndMissingRules.
Input: ruleList; missingIntervals; i; N ; missingRuleList.

1 if i > N then

2 de�ne the current list of boundaries Lxi
;

3 sortedListAllBoundaries = ruleList.sort(i);
4 foreach currentBound ∈ sortedListAllBoundaries do
5 if !areContiguous(lastBound, currentBound) then
6 missingIntervals[i] = constructInterval(lastBound,

currentBound);
7 if missingRuleList.canBeMerged(missingIntervals); then
8 missingRuleList.merge(missingIntervals);
9 else

10 missingRuleList.add(missingIntervals);

11 if (!Lxi
.isEmpty()) then

12 missingIntervals [i] = constructInterval(lastBound,
currentBound);

13 �ndMissingRules(Lxi
,missingIntervals,i +1, N ,

missingRuleList); /* recursive invocation */

14 if currentBound.isLower() then
15 Lxi

.put(currentBound);
16 else

17 Lxi
.delete(currentBound);

18 lastBound = currentBound;

19 return missingRuleList;

In the example in Figure 10, areas 4 and 6 are merged.
At this point, the recursion ends and the algorithm proceeds analyzing the

intervals in the projection along the x-axis. The last bound processed was the
lower bound of IxB so that IxB is added to Lx. Next, the algorithm processes the
lower bound of IxC (since Lx is not empty, IxC is not added to Lx yet). Starting
from the interval IB,C having the lower bound of IxB as lower bound and the lower
bound of IxC as upper bound, the following column of the table is analyzed (in this
case y) again through recursion.

All intervals projections on y of the rules corresponding to intervals contained
in Lx (in this case A and B) are represented in terms of upper and lower bounds:

A B

25



The bounds are sorted in ascending order. The algorithm iterates over the list
of sorted bounds. Considering the rules above, the algorithm �rst processes the
lower bound of IyA so that IyA is added to Ly (Ly is empty). Then, the upper bound
of IyA is processed. When the algorithm reaches the upper bound of an interval
in a certain column, the interval is removed from the corresponding active list.
Therefore, IyA is removed from Ly. Next, the lower bound of IyB is processed. Since
Ly is empty, the algorithm checks if the previously processed bound is contiguous
with the current one (line 5). Since this is not the case, this means that there are
missing values in the area between the upper bound of IyA and the next bound over
the same column (in this case area 2). The algorithm checks if the identi�ed area
is contiguous to an area of missing values previously found. If this is the case, the
two areas are merged. If this is not the case, the area is added to a list of missing
value areas (in our case area 2 is added to a list of missing value areas). The list
of missing areas stored in missingRuleList is returned by the algorithm (line 19).

3.3 Decision table simpli�cation

Before we describe rule merging algorithm, we have to describe procedures that
we are doing before we can merge rules. First, we have to group all the rules that
have the same output into one group. In Figure 10 all the rules would be in the
separate group and no rule merging would be possible. Let us pretend that all the
rules have the same output, then we have one group where are rules: A, B, C and
D. Next, we make a connected graph [6] where rules are represented as nodes and
nodes are connected with an edge, if they overlap or contiguous in one dimension.
To �nd connected graph we can use sweep line technique as well. We �rst sweep
the �rst dimension, we sweep the line until we reach some cap (previous interval
and next interval are not contiguous and they do not overlap) and all the rules that
were before the cap we take them to next dimension and again do the line sweep
with these rules. Doing this, we end up with the connected graph. Separating
rules into connected graphs will make the algorithm faster because we only have
split and merge rules that are in the connected graph that we are processing. So
the splitting part will not produce so many rules as it would be if we would apply
our splitting algorithm to all the rules. Also, in merging part, the algorithm has
to check fewer rules, if they can be merged into one rule. Applying this to rules
A, B, C and D, we get three connected graphs: (A and C), (B) and (D). Next,
we split each connected graph separately. The rules are sliced into smaller rules
where there is no overlap between rules, this can be seen in group G1 in Figure 11.
Doing all previously explained procedures, we end up with three groups of rules
G1, G2 and G3 (see Figure 11).

Next, we will �nd the order of the input dimensions. Numerical dimensions are
before categorical dimension in the order. The numerical dimension columns are

26



sorted into descending order based on their cuts count (di�erent bounds count).
The categorical columns are sorted into ascending based on their di�erent cate-
gorical value count. The numerical columns are processed by descending order
because then there is more possibility that several rules can merge into one than
columns where there are fewer cuts. It should produce fewer rules in the end.
The categorical columns order to not a�ect the result so much. In our algorithm,
they are sorted in ascending order, but we can sort these in descending order. We
process the numerical columns �rst because it gave us better result mostly than
another way around. These columns order will not always give the best result, it
heavily depends on the current decision table. Further analysis is necessary. Fi-
nally, we are applying our rule merging algorithm to these groups. In our example,
only rules that belong to group G1 the merging algorithm is applied because other
groups have only one rule in them.

Algorithm 3 describes the procedure for �nding missing rules, which is also
based on the line-sweep principle. The algorithm takes as inputs three parameters:

1. ruleList, containing all rules of the input DMN table;

2. N, representing the total number of columns;

3. columnOrder, containing the input column order.

The algorithm �rst takes the input column from columnOrder that is analyzed
�rst (line 3). In our case, it would be axis x. In the case of Figure 11, the rules in
group G1 are projected over the x-axis are:

2

6

1

3

4
5

7

Upper and lower bounds of each interval are sorted in ascending order (line
4), if the column has numerical values. For categorical columns, we compare all
rules ruleList to each other, if two rules have the same value in all the columns,
except in current column (dimensionIndex). If rules have the same values, then
the two rules are merged, and the categorical values are also merged that were in
current column, so the merged rule has both rule categorical values. The algorithm
iterates over the list of sorted bounds (line 5).

Considering the rules above, the algorithm �rst analyzes the lower bound of
Ix1 . Then, it checks the if-clauses, but all the clauses are false, and it saves the
bound Ix1 into lastBound (line 16). Next, the algorithm processes the lower bound

27



Figure 11: Sliced rules and their groups

of Ix3 and it assigns the current bound to lastBound (line 16). Next, the algorithm
processes the upper bound of Ix1 . The current bound is added into backList (line
8) because it is the upper bound and frontList is empty (line 7). Next bound
is the upper bound of Ix3 and it is added into backList (line 8). The algorithm
processes the next bound that is the lower bound of Ix2 . The bound Ix2 is added
into frontList (line 10) because it is the lower bound, backList is not empty and
it is contiguous with the previous bond (line 9). Next, bound is the upper bound
of Ix4 . The current bound is added into frontList (line 10) because it is the lower
bound, backList is not empty and it has the same bound value as previous bound
(line 9). Next bound Ix6 is also added into frontList. Next bound is the upper
bound of Ix2 . We now apply the mergeRules function (line 12) because the others
if-clauses are not true and backList is not empty and frontList is not empty (line
10) two of the function parameters are current backList and frontList. All the
rules in backList are contiguous with frontList in dimensionIndex.

First,mergeRules takes one rule in backList and compares to all the other rules
that are in frontList one by one. The comparison of two rules will tell us if two
rules have the same input in all the input columns except one (dimensionIndex).
We already know that two rules are contiguous in dimensionIndex. If they are
the same, then two rules are merged into one rule. In our example, if backList
contains {Ix1 , I

x
3 } and frontList contains {Ix2 , I

x
4 , I

x
6 } then rules Ix1 and Ix2 , and

rules Ix3 and Ix4 are merged into one rule. In ruleList, we have now {Ix2 , I
x
4 , I

x
6 ,

Ix5 , I
x
7 }, where rules Ix2 and Ix3 have new boundaries (these boundaries are also

updated in backList). Next, our mergeRules function tries to merge adjacent
rules, we do this kind of merge because it will give us less rule in the end than
without adjacent merging. If we have rules like Figure 12 and merge rules without
merging adjacent rules, then we end up with three rules: {1, 2}, {3, 4, 7, 8} and

28



{5, 6} (the rules in set are merged), but if we do adjacent merging, then we end up
with two rules: {1, 2, 3, 4, 5, 6} and {7, 8}. We see that merging neighbor rules
give us fewer rules than without it. For adjacent merging, the function takes the
backList array and compares each rule against each other. Two rules are adjacent
if in one dimension they are contiguous and in all other dimension, they have the
same value. In current backList, two rules are adjacent: Ix2 and Ix4 . These two
rules are merged and new ruleList contains four rules {Ix2 , I

x
6 , I

x
5 , I

x
7 }. Finally,

mergeRules returns the ruleList.

Figure 12: Rules geometric representation

After mergeRules function, the algorithm has updated ruleList and will make
the backList and frontList empty (lines 13, 14). Newly merged rules can be
seen in Figure 13. Last we were processing the upper bound of Ix2 and now we are
adding this into backList (line 15). Next, the algorithm processes the upper bound
of Ix4 , but we see that this rule has merged with Ix2 and the rule is not anymore
in ruleList and the algorithm ignores that rule (line 6). Next bound is the upper
bound of Ix6 and it is added to backList (line 8) because the rule is still in ruleList
list (line 6). The algorithm next processes the lower bound of Ix5 and will add this
into frontList (line 10) because it is the lower bound and is contiguous with last
bound (line 9). Next bound is the lower bound of Ix7 and this also will be added
into frontList (line 10). Next, the algorithm processes the upper bound of Ix5 and
mergeRules function will be called (line 12) because backList and frontList are
not empty, and previous if-clauses were not true (line 11).

First, mergeRules takes one rule in backList and compares to all other rules
that are in frontList one by one. The comparison of two rules will tell us if two
rules have the same input in all the input columns except one, where they are
contiguous (x-axis). If they are the same, then two rules are merged into one rule.
In our example, if backList contains {Ix2 , I

x
6 } and frontList contains {Ix5 , I

x
7 } then

rules Ix6 and Ix7 are merged into one rule. So, in ruleList we have now {Ix2 , I
x
5 ,

29



Algorithm 3: Procedure hyperplaneSweep.
Input: ruleList; N ; columnOrder.

1 for i in range(N) do
2 de�ne backList; /* it contains the list of rules that end in same point */

de�ne frontList; /* it contains the list of rules that start in same
point and meet with backList rules */ ;

3 dimensionIndex = columnOrder[i];
4 sortedListAllBounds = ruleList.sort(dimensionIndex);
5 foreach currentBound ∈ sortedListAllBoundaries do
6 if currentBound.isIn(ruleList) then
7 if (currentBound.isUpper() && frontList.isEmpty()) then
8 backList.put(currentBound);
9 else if (currentBound.isLower() && !backList.isEmpty()

&& (areContiguous(lastBound, currentBound) ||
(lastBound.value == currentBound.value)) then

10 frontList.put(currentBound);
11 else if (!backList.isEmpty() && !frontList.isEmpty()) then
12 ruleList = mergeRules(ruleList, backList, frontList,

dimensionIndex);
13 backList = {};
14 frontList = {};
15 backList.put(currentBound);
16 lastBound = currentBound;

17 ruleList = mergeRules(ruleList, backList, frontList,
dimensionIndex);

18 return ruleList;

Ix7 }, where the rule Ix7 has new boundaries (these boundaries are also updated in
backList). Next, our mergeRules function tries to merge adjacent rules. For this,
the function takes the backList array and compares each rule against each other.
Two rules are adjacent if in one dimension they are contiguous and in all other
dimensions, they have the same value. In current backList, there are not adjacent
rules. So, mergeRules returns the ruleList that contains three rules {Ix2 , I

x
5 , I

x
7 }.

After mergeRules function, the algorithm has updated ruleList and will make
the backList and frontList empty (lines 13, 14). Newly merged rules can be
seen in Figure 14. Last we were processing the upper bound of Ix5 and now the
algorithm is adding this into backList (line 15). Next, the algorithm processes the
upper bound of Ix7 and is added into backList (line 8). We have no bounds to

30



Figure 13: Rules after the �rst merge

process and we try to merge these rules that are in backList and frontList (line
17). The algorithm cannot merge any rule so the algorithm will process the next
dimension.

The algorithm takes the second input column from columnOrder (line 3).
All interval projections on y of the rules corresponding to rules in Figure 14 are
represented in terms of upper and lower bounds:

2

5
7

Figure 14: Rules after the second merge

Lower and upper bounds of each interval are sorted in ascending order (line 4).
The algorithm iterates over the list of sorted bounds (line 5). The algorithm will
process the bounds the same way as it did with the x-axis. The algorithm does
not merge any rules because there are no rules that can be merged. Algorithm
then stops and returns the ruleList (line 18).

31



After all groups are analyzed and swiped over, we end up with �ve rules that
can be seen in Figure 15.

Figure 15: Rules after merging

32



4 Tool implementation

We implemented the algorithms on top of dmn-js: the open-source rendering and
editing toolkit of Camunda DMN4. In it current version, dmn-js does not sup-
port correctness veri�cation or simpli�cation. Our dmn-js extension with veri�ca-
tion and simpli�cation features can be found at https://github.com/ulaurson/
dmn-js and a deployed version is available for testing at http://dmn.cs.ut.ee/.

Camunda it is an open source platform and can be used for work�ow and busi-
ness process management. Camunda allows you to create BPMN diagrams and
decision tables, but it does not provide any decision table veri�cation or simpli-
�cation. It is possible to download Camunda DMN tool into your computer and
start writing business rules yourself. All the sources are available on GitHub. Ca-
munda allows all people to contribute to dmn-js. Also, people can �x issues and
implement new features into DMN.

It uses Node.js, which is an open-source, runtime environment for developing
a server-side web application. Also, you have to install npm and grunt to Node.js
in order to build the project, if you download it from GitHub. npm is a package
manager for Node.js and grunt is a JavaScript task runner. The tool itself is also
developed in JavaScript. The tool is a library-style application that makes adding
new functionality very simple. We made a new folder into library folder and
added our scripts into there. We did not have to change any core dmn-js scripts.
To use our new created functions we have to change index.html and index.js. Into
index.html we added our veri�cation and simpli�cation buttons, into index.js we
modify so that its modeler reads our scripts and add functionalities behind these
added buttons, so when buttons are clicked our functions are executed.

In Figure 16, we see that there are two additional gray cells that the regular
decision table does not have. These two rows describe technical details. These
details are necessary for decision engine in order to execute the decision. The �rst
gray row contains variable names. In this example, we see three variable names,
customerAge, status, discountPercentage. Second rows are telling to decision
engine the type of the expression, in this example we see two types: integer and
string. There are more types such as Boolean, double and date (our algorithm
does not work with date type). dmn-js allows us to hide these technical details by
clicking the button "Hide Details" and it will hide these technical detail cells (see
Figure 18).

In dmn-js one can change hit policy, the user just has to click on the hit policy
and a list will pop-up, where one can select di�erent hit policies. The tool has
functions that allow us to add and delete input and outputs. Adding an input
and output is very simple the user just has to click green plus sign that is behind

4https://camunda.org/

33

https://github.com/ulaurson/dmn-js
https://github.com/ulaurson/dmn-js
http://dmn.cs.ut.ee/
https://camunda.org/


Figure 16: dmn-js decision table example

Input and Output, see Figure 16. If the user performs a mouse right-click on one
cell then a new panel opens. The panel has two sections: Rule and Output or
Input. Active rule and column cells backgrounds are light yellow. In Rule section,
we can add new rules below or above of our active rule, delete our current active
rule, and clear the active cell content. In Output section, we can add new column
to our active column left or right side, and remove our current active column.
dmn-js has functionality that allows us to change column and rule orders, one has
to click on these six dots and hold the mouse button down and just move where
user want it and release the mouse button. The dmn-js tool also has functionality
for reading decision tables from XML and writing decision tables into XML. These
functionalities allow us to save decision tables and later reading it again, the table
is saved into a .dmn format. The button that downloads decision table into your
computer can be seen in Figure 17, the button is called "download".

Before we go to detail what we implemented into dmn-js, let us explain how
these decision tables are represented in computer readable manner. All the rules,
inputs and outputs are saved as objects. These objects contain IDs (rule, column
and cell), a reference to the previous or next rule, a reference to the previous or
to the next column, cell value, column type and much more that are irrelevant.
We take these objects and make our new objects, these objects contain only infor-
mation that we need such as rule ID, column ID, cell ID, rule number, cell value

34



and column type. Then, we create a new object that represents one rule, its value
is an array. Into the array, we add all previously constructed objects that belong
to the current rule. The array �rst element is the object that represents the �rst
column value and the second element is the another object that represents the
second column value and so on.

4.1 Syntactic check

We implemented a syntactic check that checks if each cell has the right type of
content. Our algorithm just controls each cell and checks if its content matches
its column type. If not, then we color this cell red and add a tooltip that is
hidden at �rst. To add the tooltip, we �rst make the error text and make the div

element where we put the error text. Next, we associate the created div with the
cell where the syntactic error is. Also, we add two mouse events to the cell. One
event is onmouseover that will show the div element with the error text, the div

position is calculated based on the cursor position. onmouseout will hide the div

element. Pointing a mouse on error cell will execute onmouseover event and will
reveal tooltip and its content. We are making the div element for every error cell
separately and also add these two mouse events into each error cell. In Figure 17
we see two syntactic errors.

Figure 17: Decision table with syntactic errors

In third rule and �rst column we see an error. We have a syntactic error because

35



all the cells in this column have to be double, but this cell has a string value. The
second syntactic error is in �rst rule and second column, it cell content has to be a
string, but right now it content is an integer. We mentioned that we implemented
a tooltip for every error cell, we can see one of the tooltips in Figure 17. Our
cursor is pointed to a cell which value is "< 33" and a gray tooltip shows what is
wrong with this cell, if we drag mouse out of the cell, then tooltip will be hidden
again.

4.2 Overlapping rules

For veri�cation, a user just has to click a veri�er button and our algorithm will
verify the decision table. Veri�cation button is below decision table in the left
corner, see Figure 17. When clicked this button it will �nd all overlaps in the
decision table. Our algorithms will �nd two kinds of overlaps, overlaps where
inputs and outputs are the same and overlaps where inputs are the same and at
least one output is di�erent. In Figure 18 we see that our algorithm has found
two overlaps. Rules 2 and 5, and rules 4 and 6 have overlaps. Let us explain
in more detail about these overlapping rules that we can see in Figure 18. The
overlapping rules can be seen in "Missing and overlapping rules" table. It produces
maximal sets of overlapping rules with a non-empty intersection. If at the end of
rule numbers is "(outputs are the same)" then these rules have same inputs and
outputs. We see that rules 4 and 6 are also overlapping, but they have di�erent
outputs. We implemented a function that will highlight the overlapping rules
when clicked. The overlapping rules are highlighted in red. In Figure 18 we see
that highlighted are rules 2 and 5. Clicking the second time same button will
unhighlight overlapping rules.

Our algorithms take input these objects that we constructed from dmn-js ob-
jects we described earlier (contain objects where each object represents one rule).
Our implemented �ndOverlappingRules �nds returns an array where each array
element represent an overlap. The overlaps are saved as objects and it contains
the row IDs (keys) that overlap each other. Next, we are adding output values and
rule number to each row IDs. We get new an array that has the information that
we need in order to check the overlap type. Next, we check if inside an overlap
all the rules have the same output or not, if not then we separate rules into a
smaller group where each group has the same output values. Next, we take each
overlap object and get the rule numbers and overlap type. Using that information
we construct new table row element (tr), it will be added to error table. Into the
row we store the overlapping rule IDs of current overlap, we need this information
for highlighting rules, this information is hidden from the user. Row �rst column
has the output string, it tells us which rules overlap and overlap type. Row second
column contains the highlighting button where we add a click event listener. This

36



event listener will add a new CSS class to all the rows that overlap or remove
the class from the rows. The class will color the overlapping rows to light red.
For highlighting, we use the stored overlapping rule IDs. This way we add every
overlap into the error table.

Figure 18: dmn-js decision table with overlapping rules

4.3 Missing rules

The same veri�cation button that �nds the overlapping rules also �nds the missing
rules. In Figure 19 decision table has three missing rules. These missing rule cases
are very easy to read. In each missing rule description, there are values inside
brackets. The �rst value inside brackets shows, what is missing in the �rst input
column, the next value shows, what is missing in the second input column and so
on. For example, missing rule ([21, 65), �gold", any) has following missing rule:
Age = [21, 65), Customer Status = "gold", Lives in Estonia = "-". �Any� means
irrelevant value ("-") and every input will satisfy this clause.

In Figure 19 we can say that there are three kinds of missing rule cases. First,
missing rule case is missing a categorical value. With interval [21, 65) there is
no rule with "Customer Status" equals "gold". The second case is missing an
interval value. In decision table, there is no rule where "Age" equals [65, 80). The
third case has a missing Boolean value. With "Age" equals >= 80 and "Customer
Status" equals "gold" or "silver" there is no rule with "Lives in Estonia" equals
true.

37



Figure 19: dmn-js decision table with missing rules

Our missing rule algorithms will output an object that contains arrays. Each
array represents a missing rule, array elements contain the missing intervals. For
every missing rule, we make a new table row element (tr) using array information, it
will be added into the error table. Into the row we store the array that contains the
missing intervals, this information is hidden from the user. The row �rst column
contains the information of the missing rule. The row second column contains the
button for adding missing rules into the table to this button we add a click event
listener. This event listener will add a new row into decision table and use the
hidden data to �ll the added row cells with the intervals and the clicked row from
error table will be removed. To output columns, the implementation will add a
�-�.

4.4 Table simpli�cation

Last functionality that we added into dmn-js was decision table simpli�cation via
rule merging. The user can just press the simpli�cation button and the algorithm
will simplify the decision table, see Figure 17 where simpli�cation button is located.
First, our algorithm �nds the new simpli�ed rules. Next, the algorithm will delete
the old table and then will add each rule one by one into the decision table.

Simpli�cation will make the decision table more readable and understandable.

38



Figure 20: Decision table before and after simpli�cation

In Figure 20, the above decision table is a regular decision table that has no over-
lapping rules and no missing rules. Lower decision table represents the simpli�ed
table, it has fewer rows and it is more readable. Our algorithm merged four times
two rules into one in this example, it also can merge three or more rules into one
rule. Let us explain more how and why we can merge rules into one. Figure 20
decision table allows our algorithm to merge rules 1 and 2 because two rules only
di�er in one input clause and output clause is the same. These two intervals can
merge into one because two intervals are contiguous. In our example, "< 21" and
"[21, 80)" we can merge into "< 80." New merged rule can be merged with rule 6
(see rule 3 lower table in Figure 20). Rules 3 and 4 we can merge because they
di�er only in "Customer Status". After merging cell has values: "gold", "silver",
"bronze." New merged rule can merge with rule 7 (see rule 1 lower table in Figure

39



20). We see that rules 1 and 3 in lower table are also contiguous in one column and
in other columns they have same values, but we cannot merge these rules because
the output clauses are di�erent.

40



5 Evaluation

For the evaluation, we created decision tables from a loan dataset of LendingClub
� a peer-to-peer lending marketplace5. The employed dataset contains data about
all loans issued in 2013-2014 (23 5629 loans). For each loan, there are attributes of
the loan itself (e.g., amount, purpose), of the lender (e.g., income, family status,
property ownership), and a credit grade (A, B, C, D, E, F, G).

Using Weka [7], we trained decision trees to classify the grade of each loan
from a subset of the loan attributes. Then each trained decision tree into a DMN
table by mapping each path from the root to a leaf of the tree into a rule. For
this, we used algorithms that were implemented by Irene Teinemaa. Then we
implemented an algorithm that interprets a DMN table into .dmn �le. The .dmn

�le then we imported into dmn-js. For veri�cation and simpli�cation, we used
di�erent attributes and pruning parameters in decision tree discovery.

5.1 Veri�cation

Using di�erent attributes and pruning parameters in the decision tree discovery,
we generated DMN tables containing approx. 500, 1000 and 1500 rules and 3, 5
and 7 columns (nine tables in total). The 3-dimensional (i.e. 3-column) tables
have one categorical and two numerical input columns; the 5-dimensional tables
have two categorical and three numerical input columns, and the 7-dimensional
tables have two categorical and �ve numerical input columns.

By construction, the generated tables do not contain overlapping or missing
rules. To introduce overlapping rules in a table, we selected 10% of the rules. For
each of them, we then randomly selected one column, and we injected noise into
the input entry in the cell in the selected column by decreasing its lower bound and
increasing its upper bound in the case of a numerical domain (e.g. interval [3..6]
becomes [2..7]) and by adding one value in the case of a categorical domain (e.g. {
Re�nancing, CreditCardPayo� } becomes { Re�nancing, CreditCardPayo�, Leas-
ing }). These modi�cations make it that the rule will overlap others. Conversely,
to introduce missing rule errors, we selected 10% of the rules, picked a random
column for each row and �shrank� the corresponding input entry.

We checked each generated table both for missing and incomplete rules and
measured execution times averaged over 5 runs on a single core of a 64-bit 2.2
GHz Intel Core i5-5200U processor with 16GB of RAM. The results are shown in
Table 9. Execution times for missing rules detection are under 2 seconds, except
for the 7-columns tables with 1000-1500 rules. The detection of overlapping rules
leads to higher execution times, due to the need to detect sets of overlapping

5
Dataset available at https://www.lendingclub.com/info/download-data.action

41

https://www.lendingclub.com/info/download-data.action


rules and ensure maximality. The execution times for overlapping rules detection
on the 3-columns tables is higher than on the 5-columns tables because the 5-
columns tables have fewer rule overlaps. This is because there are proportionally
fewer categorical columns in the 5-columns tables than in the 3-columns ones, and
the modi�cations made to categorical columns create more overlaps.

In addition to implementing our algorithms, we implemented algorithms de-
signed to produce the same output as Signavio. In Signavio, if multiple rules have
a joint intersection (e.g. rules {r1, r2, r3}) the output contains an overlap entry
for the triplet {r1, r2, r3} but also for the pairs {r1, r2}, {r2, r3} and {r1, r3} (i.e.
subsets of the overlapping set). Furthermore, the overlap of pair {r1, r2} may be
reported multiple times if r3 breaks r1 ∩ r2 into multiple hyper-rectangles (and
same for {r2, r3} and {r1, r3}). Meanwhile, our approach produces only maxi-
mal sets of overlapping rules with a non-empty intersection. In Table 12 can be
seen what Signavio outputs and what our approach is outputting. Also, Signavio
will output more missing rules because Signavio does not merge the missing rules.
Di�erences between our approach and Signavio approach can be seen in Table 14.

Table 10 shows the number of sets of overlapping rules and the number of
missing rules identi�ed by our approach vs. Signavio's one. In all runs, both the
number of overlapping and missing rules is drastically lower in our approach.

3 columns 5 columns 7 columns

#rules 499 998 1 492 505 1 000 1 506 502 1 019 1 496
overlapping time 432ms 7 975ms 29 201ms 240ms 2 158ms 7 079ms 8 318ms 8 953ms 84 927ms
missing time 160ms 611ms 1 672ms 163ms 820ms 1 942ms 2 173ms 7 029ms 18 263ms

Table 9: Execution times (in milliseconds)

3 columns 5 columns 7 columns

#rules 499 998 1 492 505 1 000 1 506 502 1 019 1 496

#overlapping our approach 239 725 1204 172 363 632 300 494 854

rule sets Signavio 1 226 10 920 23 115 679 3 692 8 921 23 175 22 002 118 920

#missing our approach 117 330 726 136 254 462 134 322 518

rules Signavio 668 2 655 5 386 563 2 022 4 832 5 201 18 076 43 552

Table 10: Number of reported errors of type �overlapping rules� & �missing rule�

UC
Inputs Outputs

Age Points Discount

1 <= 100 - -
2 [50..75] [0..100] -
2 >= 50 - -

Table 11: Decision table with overlapping rules

42



Approach Rules Description

Signavio#1 Rule 1, 3 Overlapping rules: These rules apply for ([50, 75], <0 )
Signavio#2 Rule 1, 2, 3 Overlapping rules: These rules apply for ([50, 75], [0, 100] )
Signavio#3 Rule 1, 3 Overlapping rules: These rules apply for ([50, 75], >100 )
Signavio#4 Rule 1, 3 Overlapping rules: These rules apply for ((75, 100], any )

Our approach#1 Rule 1, 2, 3 Outputs are same

Table 12: Outputted overlapping rules by Signavio and our approach. Based on
Table 13

UC
Inputs Outputs

Age Points Discount

1 < 100 [0..100] -
2 [20..50] > 200 -
2 >= 100 - -

Table 13: Decision table with missing rules

Approach Description

Signavio#1 No rule exists for ( <20, <0 )
Signavio#2 No rule exists for ( <20, >100 )
Signavio#3 No rule exists for ( [20, 50], <0 )
Signavio#4 No rule exists for ( [20, 50], (100, 200] )
Signavio#5 No rule exists for ( (50, 100), <0 )
Signavio#6 No rule exists for ( (50, 100), >100 )

Our approach#1 No rule exists for ( <100, <0 )
Our approach#2 No rule exists for ( <20, >100 )
Our approach#3 No rule exists for ( <[20, 50], (100, 200] )
Our approach#4 No rule exists for ( (50, 100), >100 )

Table 14: Outputted missing rules by Signavio and our approach. Based on Ta-
ble 13

43



5.2 Simpli�cation

Using di�erent attributes and pruning parameters in the decision tree discovery, we
generated DMN tables containing approx. 100 rules, 3 and 5 columns and increased
1, 2 and 3 columns bounds (six tables in total). The 3-dimensional (i.e. 3-column)
tables have one categorical and two numerical input columns; the 5-dimensional
tables have two categorical and three numerical input columns. These generated
tables do not contain overlapping rules. We inject noise into the table the same
way as we do in overlapping rules case (see the previous subsection). Only di�erent
is that we do not select one column each time, but in some cases, we select two
columns or three columns and inject noise into these selected input columns.

We simpli�ed each generated table and measured execution times averaged over
5 runs on a single core of a 64-bit 2.6 GHz Intel Core i5-3230M processor with
4GB of RAM. The results are shown in Table 15. In this table, the execution time
includes rule splitting and rule merging times. Execution times for our algorithm
are under 6 seconds, except for the 7-columns table with 3-columns increased.
The execution times for our approach is better than Pollack approach in every
experiment. The execution times with our algorithm are all below one minute than
Pollack approach execution times are all more than one minute. Our algorithm
is faster because our algorithm will �nd connected rules and because of that we
have fewer rules to split and fewer rules to check if they can merge. Also, our
merge algorithm is faster. Pollack algorithm will produce a huge amount of rules
after splitting and merging algorithm has to compare a lot of rules. We can also
optimize Pollack algorithm with �rst �nding the connected rules and then applying
splitting and merging rules to these rules, this will make the algorithm much faster.
The last row of Table 15 represents the execution time of simpli�cation where all
possible rule column order was used to merge rules together and the best solution
was outputted. For the merging part, we used our implemented merging algorithm.
This approach is slower than our single column order approach, but it is faster than
Pollack approach. This approach heavily depends on the number of dimensions,
the more dimensions the slower the approach is. This approach does not suit for
DMN tables where are many dimensions.

3 columns 5 columns

#Columns modi�ed 1 2 3 1 2 3
our approach 526ms 1 128ms 5 720ms 345ms 550ms 30 073ms
Pollack approach 14min 12min 15min 58min 51min 565min
All combination 1 234ms 2 086ms 10 262ms 8 527ms 13 515ms 689 323ms

Table 15: Execution times

Table 16 shows the number of rules after simpli�cation by our approach vs.

44



Pollack approach [13]. Our algorithm produces fewer rules than Pollack approach.
Our algorithm will output more than 50 rules less than Pollack approach. We
see that trying every possible dimension order gives the best solution, the lowest
number of rules. We see that our approach with single dimension order is not so
far behind from all dimension combination, the di�erences are less than 10 rules.

3 columns 5 columns

#Columns modi�ed 1 2 3 1 2 3
our approach 104 107 96 105 104 119
Pollack approach 178 178 158 165 163 206
All combination 97 101 90 102 100 110

Table 16: Number of rules after optimization

45



6 Conclusion

To summarize, the contributions of this thesis are:

1. An approach to interpret a DMN decision table (with N input columns) as
a set of hyper-rectangles in an N-dimensional space.

2. Sweep-line algorithms for detecting overlapping and missing rules in DMN
decision tables.

3. A sweep-line algorithm to simplify a decision table by merging adjacent rules.

The proposed algorithms have been implemented on top of the dmn-js DMN
open-source toolkit. A deployed instance of the tool implementation is available
at http://dmn.cs.ut.ee and the source code can be found at http://github.
com/ulaurson/dmn-js

Based on the tool implementation, we have conducted empirical evaluations to
compare the proposed algorithms with respect to existing approaches (in particular
the one implemented in Signavio) in terms of scalability, conciseness of the feedback
provided to users (in the case of overlapping and missing rules) and compactness
of the simpli�ed tables. The results show that the proposed approach consistently
outperforms existing ones at the expense of some performance overhead.

A paper describing the algorithms for detection of missing and overlapping
rules and their implementation has been accepted at the BPM conference [2].

The contributions of this thesis could be further extended in the following
directions: One direction for future work is to encompass other aspects of the
DMN standard, such as the concept of Decision Requirements Graphs (DRGs), this
allows multiple decision tables to be linked together in various ways. The current
proposal focuses on analyzing DMN tables where the expressions are written in
S-FEEL (i.e., expressions of the form attribute-operator-literal), future works will
focus on supporting more complex types of expressions. Also, to make the splitting
part of simpli�cation smarter, so it will have to merge less rule in merge part. Have
to analyze more rule merging part, particularly when it better to merge adjacent
rules and when not. So, we get even fewer rules than with our current simpli�cation
algorithm. Finally, analyze more deeply the splitting and merging approach and
look if there is a possibility to combine splitting and merging part together, so
both are performed in a single pass.

46

http://dmn.cs.ut.ee
http://github.com/ulaurson/dmn-js
http://github.com/ulaurson/dmn-js


References

[1] Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jef-
frey Scott Vitter. Scalable sweeping-based spatial join. In VLDB, 1998.

[2] Diego Calvanese, Marlon Dumas, Ülari Laurson, Fabrizio Maria Maggi, Marco
Montali, and Irene Teinemaa. Semantics and analysis of DMN decision tables.
CoRR, abs/1603.07466, 2016.

[3] Victor J. Dielissen and Anne Kaldewaij. Rectangular partition is polynomial
in two dimensions but np-complete in three. Inf. Process. Lett., 38(1):1�6,
1991.

[4] David Eppstein. Graph-theoretic solutions to computational geometry prob-
lems. CoRR, abs/0908.3916, 2009.

[5] Leonard A. Ferrari, P. V. Sankar, and Jack Sklansky. Minimal rectangular
partitions of digitized blobs. Computer Vision, Graphics, and Image Process-
ing, 28(1):58�71, 1984.

[6] Christopher D. Godsil and Gordon F. Royle. Algebraic Graph Theory. Grad-
uate texts in mathematics. Springer, 2001.

[7] Mark A. Hall, Eibe Frank, Geo�rey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The WEKA data mining software: an up-
date. SIGKDD Explorations, 11(1):10�18, 2009.

[8] Rattikorn Hewett and John H. Leuchner. Restructuring decision tables for
elucidation of knowledge. Data Knowl. Eng., 46(3):271�290, 2003.

[9] Douglas N Hoover and Zewei Chen. Tablewise, a decision table tool. In
Computer Assurance, 1995. COMPASS'95. Systems Integrity, Software Safety
and Process Security. Proceedings of the Tenth Annual Conference on, pages
97�108. IEEE, 1995.

[10] J Mark Keil. Polygon decomposition. Handbook of Computational Geometry,
2:491�518, 2000.

[11] Object Management Group. Decision Model and Notation (DMN) 1.0, 2015.

[12] Solomon L. Pollack. Analysis of the decision rules in decision tables. Memo-
randum RM-3669-PR, RAND Corporation, 1963.

[13] Solomon L Pollack, Harry T Hicks, and William J Harrison. Decision tables
theory and practice. 1971.

47



[14] Udo W. Pooch. Translation of decision tables. Comp. Surv., 6(2):125�151,
1974.

[15] Robert Sedgewick. Algorithms in C. Addison-Wesley, 1990.

[16] Robert Sedgewick and Kevin Wayne. Geometric algorithms. https://www.

cs.princeton.edu/~rs/AlgsDS07/17GeometricSearch.pdf, 2007.

[17] Keith Shwayder. Combining decision rules in a decision table. Commun.
ACM, 18(8):476�480, 1975.

[18] Valeriu Soltan and Alexei Gorpinevich. Minimum dissection of rectilinear
polygon with arbitrary holes into rectangles. In Proceedings of the Eighth
Annual Symposium on Computational Geometry, Berlin, Germany, June 10-
12, 1992, pages 296�302, 1992.

[19] Robert Endre Tarjan and Anthony E. Trojanowski. Finding a maximum
independent set. SIAM J. Comput., 6(3):537�546, 1977.

[20] Jan Vanthienen and Elke Dries. Illustration of a decision table tool for spec-
ifying and implementing knowledge based systems. International Journal on
Arti�cial Intelligence Tools, 3(2):267�288, 1994.

[21] Jan Vanthienen, Christophe Mues, and Ann Aerts. An illustration of veri�ca-
tion and validation in the modelling phase of KBS development. Data Knowl.
Eng., 27(3):337�352, 1998.

[22] Hongyuan Zha, Xiaofeng He, Chris H. Q. Ding, Ming Gu, and Horst D.
Simon. Bipartite graph partitioning and data clustering. In Proceedings of the
2001 ACM CIKM International Conference on Information and Knowledge
Management, Atlanta, Georgia, USA, November 5-10, 2001, pages 25�32,
2001.

48

https://www.cs.princeton.edu/~rs/AlgsDS07/17GeometricSearch.pdf 
https://www.cs.princeton.edu/~rs/AlgsDS07/17GeometricSearch.pdf 


Non-exclusive licence to reproduce thesis and make thesis public

I, Ülari Laurson (date of birth: 17th of April 1991),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

Veri�cation and Simpli�cation of DMN Decision Tables

supervised by Marlon Dumas and Irene Teinemaa

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 19.05.2016

49


	Introduction
	Decision tables
	Goal and problem statement

	Background
	Decision table
	Line sweeping
	Rule merging
	Polygon rectangulation
	Classical approach

	DMN tools
	Signavio
	Prologa


	Contribution
	Finding overlapping rules
	Finding missing rules
	Decision table simplification

	Tool implementation
	Syntactic check
	Overlapping rules
	Missing rules
	Table simplification

	Evaluation
	Verification
	Simplification

	Conclusion

