
U N I V E R S I T Y OF T A R T U

Faculty of Mathematics and Computer Science

Institute of Computer Science

Henri Lakk

Model-Driven Role-Based Access

Control for Databases
Master's Thesis (30 ECTS)

Supervisor: Raimundas Matulevi£ius, PhD

Author: . �. . . � May 2012
Supervisor: . �. . . � May 2012

Allowed to defend
Professor: . �. . . � May 2012

Tartu 2012

Abstract

With the constant march towards a paperless business environment, database
systems are increasingly being used to hold more and more sensitive informa-
tion. This means they present an increasingly valuable target for attackers.
A mainstream method for information system security is Role-based Access
Control (RBAC), which restricts system access to authorised users. However
the implementation of the RBAC policy remains a human intensive activity,
typically, performed at the implementation stage of the system development.
This makes it di�cult to communicate security solutions to the stakeholders
earlier and raises the system development cost, especially if security imple-
mentation errors are detected.

The use of connection pooling in web applications, where all the applica-
tion users connect to the database via the web server with the same database
connection, violates the the principle of minimal privilege. Every connected
user has, in principle, access to the same data. This may leave the sensitive
data vulnerable to SQL injection attacks or bugs in the application.

As a solution we propose the application of the model-driven development
to de�ne RBAC mechanism for data access at the design stages of the system
development. The RBAC model created using the SecureUML approach
is automatically translated to source code, which implements the modelled
security rules at the database level. Enforcing access-control at this low level
limits the risk of leaking sensitive data to unauthorised users.

In out case study we compared SecureUML and the traditional security
model, written as a source code, mixed with business logic and user-interface
statements. The case study showed that the model-driven security develop-
ment results in signi�cantly better quality for the security model. Hence the
security model created at the design stage contains higher semantic complete-
ness and correctness, it is easier to modify and understand, and it facilitates
a better communication of security solutions to the system stakeholders than
the security model created at the implementation stage.

3

4

Contents

1 Introduction 9

I Background 11

2 Model-Driven Development 13
2.1 Model-Driven Architecture . 13
2.2 Model-Driven Development 16
2.3 Model-Driven Security . 17
2.4 Conclusion . 18

3 Security Modelling Languages 19
3.1 Misuse Cases . 19
3.2 UMLSec . 20
3.3 MAL Activity . 21
3.4 SecureUML . 21
3.5 Conclusion . 24

4 Tools 27
4.1 Modelling Tools . 27

4.1.1 Obeo Acceleo . 27
4.1.2 IBM Rational Rose Data Modeler 28
4.1.3 Sparx Enterprise Architect 29
4.1.4 NoMagic MagicDraw 30
4.1.5 Comparison . 32

4.2 Oracle DBMS . 33
4.2.1 Oracle PL/SQL . 33
4.2.2 Data access control in DBMS 34

4.2.2.1 DBMS Role Based Access Control 34
4.2.3 Fine-Grained Access Control 35

4.2.3.1 Using Virtual Private Database 35
4.2.3.2 Using Views 36

5

4.3 Velocity . 38
4.4 Conclusion . 39

5 Modelling Guidelines 41
5.1 De�ning Stereotypes . 41
5.2 Using separate diagrams . 42
5.3 De�ning a Secure Resource . 42
5.4 De�ning Roles . 43
5.5 Permissions . 43
5.6 De�ning Constraints . 43
5.7 Conclusion . 43

II Contribution 45

6 Contribution 47
6.1 A Model-driven Role-based Access Control for SQL Databases 47
6.2 Comparing Quality of Security Models: A Case Study 48
6.3 An Approach to Assess and Compare Quality of Security Models 49
6.4 Conclusion . 50

III Conclusions 51

7 Conclusions and Future Work 53
7.1 Limitations . 53
7.2 Conclusions . 54
7.3 Future Work . 55

Resümee 57

Bibliography 58

IV Publications 63

A Model-driven Role-based Access Control for SQL Databases 67

Comparing Quality of Security Models: A Case Study 99

6

An Approach to Assess and Compare Quality of Security
Models 117

List of Figures

2.2.1 MDD adoption spectrum, adapted from [6] 17

3.1.1 Use case and misuse cases in the banking example [4] 20
3.4.1 SecureUML meta-model (adapted from [17, 5]) 22
3.4.2 Action types for the security permission 22
3.4.3 Meeting Scheduler with SecureUML 23

List of Tables

4.1 Pricing of MagicDraw . 32

7

8

Chapter 1

Introduction

Today security has become an important aspect in information systems engi-
neering. A mainstream method for information system security is Role-based
Access Control (RBAC), which restricts system access to authorised users.
However the implementation of the RBAC policy remains a human inten-
sive activity, typically, performed at the implementation stage of the system
development. This makes it di�cult to communicate security solutions to
the stakeholders earlier and raises the system development cost, especially if
security implementation errors are detected.

With the explosion in web-based commerce and information systems,
databases have been drawing ever closer to the network perimeter [16]. This
is a necessary consequence of doing business in the Web - the customers need
to have access to the information systems via web servers, so the web servers
need to have access to the databases. As the result of this, the databases dare
closer to the attackers. With the trend towards a paperless business envi-
ronment, database systems are increasingly holding more and more sensitive
information, which makes them a valuable target for attackers.

Furthermore, in old desktop applications the RBAC was su�cient [27].
The applications where connected with the database but the number of users
was limited. This two-tier architecture results in a model where the user is
working with an application layer that interfaces directly with the database
layer. This means the database would directly identify the computer, the
user transactions and the user. Thus, it becomes possible to authorise user
and follow up single user transactions in order to discover signs of intrusion,
as all the transactions of the same user are passed via the same connection.
But, today, web applications are executed at the browsers by sending request
to the Web server, which performs transactions to/from the database. As
the result of this three (or more)-tier architecture, the database is not able
to identify neither who has accessed the data not the transaction of the same

9

user. The web application does not open nor close a connection before/ after
each request but uses a connection pool to store connections. Using such
a connection pool a large number of users can also be satis�ed with few
database connections.

However, regarding the database security, the principle of minimal privi-
lege is violated, and every connected user has access to the same data. Such a
situation results in horizontal (i.e., access to the data of other user) and verti-
cal (i.e., access to a department's data) privileges escalation. This may leave
the sensitive data vulnerable to SQL injection attacks or bugs in the appli-
cation. �Although many advances have been made in developing secure appli-
cations, trusting applications which are developed under time constraints by
developers which are not security experts, presents a large risk to the database
and therefore databases are threatened by these applications� [27].

In this thesis we propose the application of the model-driven development
to de�ne RBAC mechanism for data access at the design stages of the system
development. The RBAC model created using the SecureUML approach is
automatically translated to the implementation with database views and
triggers.

Our case study showed that the model-driven security development results
in signi�cantly better quality for the security model. Hence the security
model created at the design stage contains higher semantic completeness
and correctness, it is easier to modify and understand, and it facilitates a
better communication of security solutions to the system stakeholders than
the security model created at the implementation stage.

The thesis is divided into four parts. In the �rst part we give an overview
of model-driven architecture, model-driven development and model-driven se-
curity. We will describe several security modelling languages (Missuse cases,
UMLSec, MAL Activity, SecureUML) and compare these languages and ex-
plain the choice to use SecureUML to model RBAC. We compare modelling
tools and explain the choice to use NoMagic MagicDraw in our project. We
describe the Oracle database and the access control and give an overview
of the Velocity language and template engine. Finally we give guidelines on
modelling security constraint for a database using secureUML and propose
conventions for modelling to make the security models more easy to read.

In the second part we provide a brief summary of the published (and
submitted) papers. In the third part we will give the conclusion and list the
future work of this project. Finally in part four we provide our published
and submitted papers.

10

Part I

Background

11

Chapter 2

Model-Driven Development

In this chapter we give an overview of model-driven architecture (MDA),
model-driven development (MDD) and model-driven security (MDS).

2.1 Model-Driven Architecture

The Model-Driven Architecture (MDA)[1, 12] is a development paradigm
that aims to separate business and application logic from technology evo-
lution. It helps to build code quickly, in a middle ware independent, well
designed, consistent and maintainable fashion. The aim of MDA is to the
separation of technology dependent concepts from independent concepts.
This solution limits the problems of platform dependencies and portability
of the software and thereby reduces the costs. The separation is supported
at model level to avoid platform dependencies in all phases of the life cycle.
The transformation mappings from Platform-Independent Model (PIM) to
Platform-Speci�c Model (PSM) support to reduce the cost of adaptation of
the subsystems to di�erent platforms.

MDA proposes solutions to automate the software development process.
The main objective is the reduction of the time to market based on tool
support for the re�nement of models and code generation. This approach re-
duces development errors because it reduces the manual development process
and provides support to reuse the best-known solutions. In this development
process, the tools can provide support for the integration of di�erent soft-
ware development phases based on the transformation of models of di�erent
phases. The tool support provides a constructive method based on models
with the combination of concerns at modelling level.

Models provide support for di�erent types of problems: i) description
of concepts, ii) validation of these concepts based on checking and analysis

13

techniques, iii) transformation of models and generation of code, con�gura-
tions, and documentation. Separation of concerns avoids confusion because
of the combination of di�erent types of concepts. MDA introduces solutions
for the specialisation of the models for speci�c concerns and for the intercon-
nection of concerns based on models. This approach reduces the complexity
of models by the specialisation of modelling activities. It improves commu-
nication between stakeholders using the models to support the interchange
of information.

The main idea of the MDA paradigm is a development process with the
following steps:

1. Secure business requirements for an application.

2. Develop UML diagrams for the domain model, independent of any par-
ticular technology (J2EE, Microsoft .NET, CORBA, etc.). This UML
model represents the core business services and components. This UML
model would be the same regardless of whether to use J2EE or .NET.

3. Build UML diagrams for the application, speci�c to a particular tech-
nology (such as J2EE, for example). This UML model will have ele-
ments that are technology-speci�c, such as speci�c J2EE design pat-
terns. This Platform Dependent Model can be built manually, or much
of id can be generated using an MDA tool and hand-tune only the
pieces of it that require customisation.

4. Finally, generate the application code using an MDA tool. Instead of
writing the application by hand based on the UML model, the majority
of the code is generated from the UML diagrams. In the case of J2EE,
the MDA tool would generate most of the servlets, JSPs and EJBs.
The developers would then be left to �ll in any details that could not
be modelled using UML, such as business logic.

As mentioned above MDA enables to generate code from UML models. It
was also possible pre-MDA. Rational Rose, for example, can generate Java
classes from a UML model. The key advancement of MDA is that it enable
to go from a platform independent, high-level design all the way to platform
speci�c code that is fairly complete. There are several particular points to
note:

� MDA starts from a higher level of abstraction than other design pro-
cesses. The top-level model (PIM) is very abstract; just entities and
services.

14

� The PSM is a complete description of the application in the form of
meta-data. At that level it is possible to enhance the design with
technology speci�c features (e.g. custom �nders for EJB entity beans)
without touching Java code.

� The code generated from the PSM is close to a complete application.
Many tools generate code from some kind of model (such as Middlegen
or XDoclet), but they give only pieces of an application. They are not
comprehensive because they do not start from a complete model of the
application.

� The algorithms that generate PSM from PIM, and code from PSM, are
intended to be con�gurable by the architect.

The suggested bene�ts of MDA are:

� Faster development time. Generating code rather than handwriting
each �le, saves the �busy work� required to write the same �les over and
over again. For example, in the J2EE world, it is sometimes needed to
write six or more �les to create just one EJB component. Most of this
can be automated with a clever code generation tool.

� Architectural advantages. When using MDA, the system is mod-
elled using UML�not just by modelling Java classes, but high-level
domain entities as well. This procedure forces the developer to actu-
ally think about the architecture and object model behind the system,
rather than simply diving into coding, which many developers still do.
Software engineering principles have proven that designing the system
�rst, will reduce the possibility of introducing architectural �aws into
the system later on in the development life cycle.

� Improved code consistency and maintainability. Most organisa-
tions have problems keeping their application architectures and appli-
cation code consistent in their projects. Some developers will use well-
accepted design patterns, while others will not. By using an MDA tool
to generate the code with a consistent algorithm, rather than writing
it by hand, all developers get the ability to use the same underlying
design patterns, since the code is generated in the same way each time.
This is a signi�cant advantage from the maintenance perspective. For
example, developers at organisations that subscribe to an MDA ap-
proach to development will all be able to understand each other's code
more easily because they will be levering the same design paradigm
and language.

15

� Increased portability across middle-ware vendors. If it is needed
to switch between middle-ware platforms (for example, switching be-
tween J2EE, .NET or CORBA), the PIM is reusable. From the PIM,
one should be able to regenerate the code for the new target platform.
While not all of the code can be regenerated automatically, the ability
to regenerate a large proportion of one application certainly would save
time over having to rewrite it all from scratch.

2.2 Model-Driven Development

Model Driven Software Development (MDD)[31, 28] is a new trend in util-
ising models in software development. MDD refers to the systematic use of
models and model transformations as primary engineering artefacts through-
out the entire software life cycle. This, in practice often means that the code
is generated from models and thus the models need to be used e�ciently
and e�ectively. The vision of MDD requires shifting the focus of estima-
tions, analyses, or evaluations from code to models. For example, the initial
complexity analyses should be done based on models or test planning and
development should be done based on models.

MDD raises the level on abstraction at which developers create software
by simplifying and formalising the various activities and tasks that make
up the software development process. The idea is to automate the process
of creating new software and to facilitate evolution in a rapidly changing
environment by using model transformations.

In MDD models are no longer simple mediums form describing software
systems or facilitating inter-team communication. Models are part of the
development process, and even the code is managed as a model. Using MDD,
a software system is obtained through the de�nition of di�erent models at
di�erent abstraction layers. Models of a certain abstraction layer are derived
from models of the upper abstraction layer, by means of automatic model
transformations.

The way [31] in which the companies can adopt MDD is presented in
Figure 2.2.1 which shows an adaptation of the modelling spectrum by Brown
[6]. The left hand side of the spectrum represents the traditional develop-
ment without graphical modelling - the code is the main artefact. The right
hand side of the spectrum represents the opposite of it, the code playing a
secondary role and the development is done solely using models (e.g. utilising
executable modelling techniques). The model centric approach is an ambi-
tious goal of MDD as it still is based on code while the models are the main
artefacts. Most (or all, if possible) of the code is generated from models; the

16

Figure 2.2.1: MDD adoption spectrum, adapted from [6]

developers, however, are given a possibility to add the code and synchronise
it with models. The fact that the code can be altered after it is generated and
it can be synchronised is close to the idea of round-trip engineering, where
the code and the model coexist and one is synchronised once the other is
updated. Such a usage scenario can be seen as an advanced usage of models
which is the extension of the idea of basic modelling. The basic modelling
represents a situation when models are used as a documentation and as basic
(usually architectural only) sketches of the software to be built. The models
and the code coexist but the code is the main artefact which is used in the
course of software development. In the code visualisation scenario the code
is the main artefact; models are generated automatically and are not used to
develop software, but to provide means of understanding the code.

2.3 Model-Driven Security

For security-critical systems MDA facilitates security consideration from early
stages in the development process and provides a seamless guidance through
the development stages [13]. Model-Driven Security (MDS) [7] is a recently
proposed specialisation of the MDA approach. In MDS designers specify sys-
tem models along with their security requirements. Using tools, these mod-
els are automatically generated into system architectures, including complete
and con�gured access control infrastructures. It is argued that this approach
�bridges the gap between security analysis and the integration of access control
mechanism into end systems�. MDS integrates security models with system
design models and thus produces a new kind of model, security design models.

17

2.4 Conclusion

The Model-Driven Architecture (MDA) is a development paradigm that sep-
arates business and application logic. The business logic is expressed in
platform independent models, which can be transformed with existing map-
pings into platform dependent models. The suggested bene�ts of MDA are
faster development time, better design of the system, improved consistency
and maintainability and increased portability across middle-ware vendors.

Model Driven Software Development (MDD) utilises models in software
development. In MDD systematic use of models and model transformations
is the primary engineering artefacts throughout the entire software life cycle.
This, in practice often means that the code is generated from models and
thus the models need to be used e�ciently and e�ectively. The idea is to
automate the process of creating new software and to facilitate evolution in
a rapidly changing environment by using model transformations.

In MDS designers specify system models along with their security require-
ments. Using tools, these models are automatically generated into system
architectures, including complete and con�gured access control infrastruc-
tures.

18

Chapter 3

Security Modelling Languages

In this chapter we will describe several security modelling languages (mis-
suse cases, UMLSec, MAL Activity, SecureUML). We will compare these
languages and explain the choice to use SecureUML to model role-bases ac-
cess control.

3.1 Misuse Cases

Use cases document functional requirements of a system by exploring the sce-
narios in which the system may be used [4]. Scenarios are useful for eliciting
and validating functional requirements, but are less suited for determining
security requirements which describe behaviours not wanted in the system.
Similar to anti- goals, misuse cases are a negative form of use cases and thus
are use cases from the point of view of an actor hostile to the system. They
are used for documenting and analysing scenarios in which a system may
be attacked. Once the attack scenarios are identi�ed, countermeasures are
then taken to remove the possibility of a successful attack. Although misuses
cases are not entirely design-oriented as they represent aspect of both prob-
lems and solutions, they have become popular as a means of representing
security concerns in system design. Worth noting is that they are limited by
the fact that they are based only on scenarios. Completeness of requirements
analysed through scenarios is not guaranteed as other scenarios by which the
security of a system could be exploited may be left out.

Figure 3.1.1 shows some of the use cases and misuse case in the bank
account example. Use cases are represented as clear ellipses while misuse
cases are represented with the shaded ellipses. The «threatens» stereo-
type implies that the given misuse case is a threat to the satisfaction of the
requirements of the corresponding use case.

19

Figure 3.1.1: Use case and misuse cases in the banking example [4]

As illustrated in Figure 3.1.1, the security threats described in misuse
cases are based on the functional requirements described in use cases. For
example, the create account use case can be threatened by the create spurious
account and present counterfeit identity misuse cases. The attacker in both
misuse cases could be a malicious bank manager. An untrustworthy bank
manager could also fraudulently transfer funds from a customer account to
the spurious account

3.2 UMLSec

UMLSec[4] is an extension of UML which allows an application developer
to embed security-related functionality into a system design and perform
security analysis on a model of the system the system to verify that it sat-
is�es particular security requirements. Security requirements are expressed
as constraints on the behaviour of the system and the system design may be
speci�ed either in a UML speci�cation or annotated in source code. UMLsec
assumes that requirements have already been elicited and there exists some
system design to satisfy them. Its objective is to establish whether the system
design satis�es security properties. The design is then progressively re�ned
to ensure that it satis�es security requirements.

A major purpose of security modelling is to de�ne mechanisms to sat-
isfy security criteria, such as con�dentiality and integrity. To support this
activity UMLSec is de�ned as a UML pro�le extension using stereotypes,
tagged values and constraints. Constraints specify security requirements.
Threat speci�cations correspond to actions taken by the adversary. Thus,
di�erent threat scenarios can be speci�ed based on adversary strengths. A

20

subset of UMLsec are the role-based access control stereotype � «rbac» � its
tagged values and constraints. This stereotype enforces RBAC in the busi-
ness process speci�ed in the activity diagram. It has three associated tags
{protected}, {role}, and {right}. The tag {protected} describes the states
in the activity diagram, the access to whose activities should be protected.
The {role} tag may have as its value a list of pairs (actor, role) where actor
is an actor in the activity diagram, and role is a role. The tag {right} has as
its value a list of pairs (role, right) where role is a role and right represents
the right to access a protected resource. The associated constraint requires
that the actors in the activity diagram only perform actions for which they
have the appropriate rights.

3.3 MAL Activity

The idea of Mal(icious)-Activity Diagrams[29] is to use the same syntax and
semantics as for ordinary UML Activity Diagrams, only with the addition of
the following:

� Malicious activities, shown with icons that are the inverse of normal
activity icons

� Malicious actors, indicated with swim-lanes where the actor name is
shown as inverse (i.e., white text on black background).

� Malicious decision boxes (i.e., where the decision is made with a mali-
cious purpose) shown as the inverse of normal decision boxes.

3.4 SecureUML

The SecureUML meta-model [18] based on the RBAC model, is shown in
Figure 3.4.1. It de�nes the abstract syntax to annotate UML diagrams with
information pertaining to access control. The meta-model introduces con-
cepts like User, Role, and Permission as well as relationships between them.
Protected resources are expressed using the standard UML elements (concept
of ModelElement). In addition ResourseSet represents a user de�ned set
of model elements used to de�ne permissions and authorisation constraints.
The semantics of Permission is de�ned through ActionType elements used
to classify permissions. Here every ActionType represents a class of security-
relevant operations (e.g., read, change, delete, and etc) on a particular type
of protected resource. On another hand a ResourceType de�nes all action

21

types available for a particular meta-model type. An AuthorisationCon-
straint is a part of the access control policy. It expresses a precondition
imposed to every call to an operation of a particular resource. This precon-
dition usually depends on the dynamic state of the resource, the current call,
or the environment. The authorisation constraint is attached either directly
or indirectly, via permissions, to a particular model element representing a
protected resource.

Figure 3.4.1: SecureUML meta-model (adapted from [17, 5])

Figure 3.4.2: Action types for the security permission

At the concrete syntax level SecureUML is a �lightweight extensions�
of UML, namely through stereotypes, tagged values and constraints. The
stereotypes are de�ned for the classes and relationships in the class diagrams
and are speci�cally oriented to the terminology of the RBAC model: «se-
cuml.user», «secuml.role», «secuml.permission», «secuml.actionType»,

22

«secuml.resource», and others. The concrete syntax of SecureUML is pre-
sented in Figure 3.4.3 by illustrating it on the Meeting Scheduler example.

Figure 3.4.3: Meeting Scheduler with SecureUML

In this Figure we de�ne a secure resource Meeting, which is characterised
by a place where, and a time when a meeting should be organised. These data
needs to be secured from unintended audience. Thus, a certain restriction on
changing the resource state (changing the value of the attributes place and
time) of this resource needs to be de�ned for the role MeetingInitiator
and role MeetingParticipant. Association class InitiatorPermission
characterises three actions allowed for the MeetingInitiator:

� action enterMeetingDetails (of type Insert) de�nes that MeetingIni-
tiator can enter place and time by executing operation setTime-
Place() (see class Meeting);

� action changeMeetingInformation (of type Update) allows changing
place and time of the Meeting by executing operation changeTime-
Place() (see class Meeting);

� action deleteMeetingAgreement (of type Delete) permits deleting
place and time of the Meeting by executing operation deleteTime-
Place() (see class Meeting);

Similarly, association class ParticipantPermission de�nes a restriction for
the MeetingParticipant role. It introduces an action getMeetingDetails
(of type Select) that says that only MeetingParticipant can view Meeting
place and time. This is done through operation viewTimePlace() de�ned in

23

class Meeting. To strengthen these four permissions we de�ne authorisation
four constraints, written in Objec Constraint Language (OCL):

AC#1:
context MeetingAgreement::setTimePlace():void
pre: self.roleInitiator.hasBeenAssignedTo=caller

AC#2:
context MeetingAgreement::changeTimePlace():void
pre: self.roleInitiator.hasBeenAssignedTo=caller

AC#3:
context MeetingAgreement::deleteTimePlace():void
pre: self.roleInitiator.hasBeenAssignedTo=caller

Authorisation constraint AC#1 means that operation setTimePlace() (of
class Meeting) can be executed (enter time and place), by a user set de�ned
as variable caller, that are assigned to be MeetingInitiators. Similarly,
the authorisation constraint AC#2 de�nes restriction for operation change-
TimePlace() and the authorisation constraint AC#3 de�nes restriction for
operation deleteTimePlace().

AC#4:
context MeetingAgreement::viewTimePlace():void
pre: self.roleParticipant.hasBeenAssignedTo=caller

Authorisation constraint AC#4 de�nes a permission to execute operation
viewTimePlace() for the set of users (e.g., caller) that are assigned for
the role MeetingParticipant.

3.5 Conclusion

Misuse cases and MAL-activity diagrams address security concerns through
negative scenarios executed by the attacker. These modelling approaches
could be applied to model RBAC in a system, however they are rather gen-
eral than speci�c. However the languages SecureUML and UMLsec actually,
contain targeted concepts for RBAC[21].

Both SecureUML and UMLsec are applicable to model RBAC solutions.
They have means to address the RBAC concepts and relationships. The
strong feature of SecureUML is the explicit de�nition of permissions through
authorisation constraints using OCL. On another hand at the methodological
level SecureUML only focus on the solution domain[18]. The consequences
of using SecureUML is a solution to an access control problem in access
rights to resource are assigned to roles and users are assigned to roles with
speci�c authorization constraints [4]. UMLsec provides means to identify

24

and consider system risks, determine system vulnerabilities, and also develop
solutions (RBAC is one of them) to mitigate the identi�ed risks[18].

Although both approaches originate from UML, SecureUML and UMLsec
focus on di�erent modelling perspectives to de�ne security policies. UMLsec
is used to model dynamic characteristics of RBAC , thus it relies heavily
on activity diagrams. SecureUML is used to model static characteristics of
RBAC, thus, it is applied in the class diagrams[18]. Based on this, we have
chosen to model the RBAC for databases using SecureUML.

25

26

Chapter 4

Tools

In this chapter we introduce the tools used in the project. First we compare
modelling tools and explain the choice to use NoMagic MagicDraw in our
project. In the second part we describe Oracle database and the access
control. Finally we give an overview of the Velocity language and template
engine.

4.1 Modelling Tools

In this section we give an overview of the modelling tools we considered to
use in this project. Most of the overview of the tools is based on their o�cial
web pages. We compare the tools and explain the choice to use MagicDraw
further on in this project.

4.1.1 Obeo Acceleo

Acceleo1 is a pragmatic implementation of the Object Management Group
(OMG) MOF Model to Text Language (MTL) standard. Acceleo [26] is an
open source project, licensed under the Eclipse Public License (EPL) started
in the French company Obeo. Acceleo is guaranteed to work on all PC-type
computers on which Eclipse itself can be used. Acceleo is distributed as free
software (also called "Open Source") and is licensed under EPL2 (Eclipse
Public Licence). Acceleo features:

� Complete integration with both the Eclipse environment and the EMF
framework.

1http://www.eclipse.org/acceleo/
2http://www.eclipse.org/legal/epl-v10.html

27

http://www.eclipse.org/acceleo/
http://www.eclipse.org/legal/epl-v10.html

� Code/model Synchronization.

� Incremental generation.

� Smooth adaptation for any industrial projects.

� Ease of update and management of templates.

� Syntax highlighting, auto-completion and error detection.

4.1.2 IBM Rational Rose Data Modeler

Rational Rose Data Modeler3 is a visual modelling tool that makes it possi-
ble for database designers, analysts, architects, developers and anyone else on
development team to work together, capturing and sharing business require-
ments, and tracking them as they change throughout the process. It provides
the realization of the ER methodology using UML notation to bring database
designers together with the software development team. With UML, the
database designer can capture information like constraints, triggers and in-
dexes directly on the diagram rather than representing them with hidden
properties behind the scenes. Rational Rose Data Modeler gives allows to
transfer between object and data models and take advantage of basic trans-
formation types such as many-to-many relationships. This tool provides an
intuitive way to visualize the architecture of the database and how it ties
into the application.

The main features of the Data Modeler are:

� Enables database designers to visualize how the application accesses the
database, so problems are escalated and resolved before deployment.

� Enables the creation of the object models, data models and data storage
models and provides the ability to map logical and physical models to
�exibly evolve database designs into the application's logic.

� Supports round-trip engineering between the data model, object model
and de�ned data language (DDL) �le/database management system
(DBMS) and o�ers transformation synchronization options (synchro-
nization between data model and object model during transformation).

� O�ers a data model-object model comparison wizard, supports forward
engineering of an entire database at a time, and integrates with other

3http://www-01.ibm.com/software/awdtools/developer/datamodeler/features

28

http://www-01.ibm.com/software/awdtools/developer/datamodeler/features

IBM Rational Software Development life-cycle tools Provides the abil-
ity to integrate with any Source Code Controle (SCC)compliant version
control system, including IBM Rational ClearCase®.

� Provides Web publish models and reports to improve communication
across the extended team.

� Operating systems supported: HP-UX, Solaris (Sun Microsystems),
Windows family.

The licence for Rational Rose Data Modeler with twelve month of support
costs from 1316¿ to 2794¿ (excluding taxes), depending on the nature of
the licence (i.e �oating or authorized user licence, initial �x term licence).

4.1.3 Sparx Enterprise Architect

Enterprise Architect[30] (EA) is a Computer Aided Software Engineering(CASE)
tool for the design and construction of software systems. EA supports the
UML 2.0 speci�cation, which describes a visual language by which maps or
models of a project can be de�ned. EA is a progressive tool that covers all
aspects of the development cycle, providing full traceability from initial de-
sign phase through to deployment and maintenance. It also provides support
for testing, maintenance and change control.

Some of the key features of Enterprise Architect are:

� Create UML model elements for a wide range of purposes.

� Place those elements in diagrams and packages.

� Create connectors between elements.

� Document the elements you have created.

� Generate code for the software you are building.

� Reverse engineer existing code in several languages.

EA can forward and reverse engineer C++, C#, Delphi, Java, PHP, VB.NET
and Visual Basic classes, synchronize code and model elements, and design
and generate database elements. High quality documentation can be quickly
exported from your models in industry standard .RTF format and imported
into Word for �nal customization and presentation. Enterprise Architect
supports all UML 2.0 models/diagrams. It is possible to model business

29

processes, web sites, user interfaces, networks, hardware con�gurations, mes-
sages and more. Capture and trace requirements, resources, test plans, de-
fects and change requests. From initial concept to maintenance and support,
Enterprise Architect has the features to design and manage development and
implementation.

The licence for Enterprise Architect varies from 95$ to 335$ per user,
depending on the edition, amount purchased and the nature of the licence
(i.e. �oating or standard licence). Enterprise Architect has three editions:

� Corporate - supports large, collaborating teams with security and
remote DBMS access.

� Professional - full featured UML modelling for work-groups, analysts
and developers.

� Desktop - comprehensive UML modelling tool for individual analysts.

4.1.4 NoMagic MagicDraw

MagicDraw [25] is a visual UML modeling and CASE tool with teamwork
support. Designed for Business Analysts, Software Analysts, Programmers,
QA Engineers, and Documentation Writers, this dynamic and versatile devel-
opment tool facilitates analysis and design of Object Oriented (OO) systems
and databases. It provides the industry's best code engineering mechanism
(with full round-trip support for Java, C#, C++, WSDL, XML Schema, and
CORBA IDL programming languages), as well as database schema modeling,
DDL generation and reverse engineering facilities.

MagicDraw is available in several licences:

� Personal Edition contains UML diagramming capabilities, including
full UML 2 support and extensibility features, basic reporting function-
ality, and image export. Exported �les are stored in XMI format. All
model elements can be accessed via the MagicDraw Open API. This
edition has everything needed to draw, edit, and publish UML models.
Personal Edition is available only in a standalone version and is not
designed for use with MagicDraw Teamwork Server.

� Standard Edition provides all of the Features of Personal Edition
and adds Web Application Extension (WAE) content, and Robustness
diagrams. Standard Edition also adds model analysis and facilitation
features, customizable and extendable patterns, integrations with most
popular IDEs, and a set of prede�ned model templates and UML pro-
�les. Standard Edition supports UNISYS XMI and the latest Model

30

Driven Architecture (MDA) tool o�erings. UNISYS XMI diagramming
extensions allow the interchange of MagicDraw models with other UML
modelling tools. Standard Edition is available in standalone, �oating
and mobile license versions and is fully compatible with MagicDraw
Teamwork Server. Standard Edition is ideally suited for analysts and
architects who need various model extensions and modelling facilita-
tions.

� Architect Edition is specially packaged to provide the optimal price
and technical features necessary for architects who do not need the full
capabilities of the Enterprise Edition. This edition combines the com-
mon functionality of the Standard Edition together with some options
from the Enterprise Edition: advanced modelling facilitations and anal-
ysis, reverse engineering and code generation for DDL, WSDL, CORBA
IDL and XML. Architects have less need for IDE integrations as well as
Java and C++ code engineering, so these capabilities are not included.

� Professional Edition is built on the Standard Edition capabilities
and is available in one of three programming language speci�c ver-
sions: Java, C++ and C#. In addition to the Standard Edition fea-
tures, Professional Edition adds code generation and reverse engineer-
ing functionality. Depending on the language version selected, the user
will receive:

� Java version - Code engineering for Java, Java bytecode. Integra-
tion with Java IDEs.

� C++ version - Code engineering for C++.

� C# version - Code engineering for C#, CIL (MSIL).

Professional Edition is ideal for anyone who wants to generate code from
an existing model or create a UML model from an existing project.

� Enterprise Edition represents the top of the line in the MagicDraw
family of products. Enterprise Edition combines all of the functional-
ity of the Personal and Standard Editions, and all three versions of the
Professional Edition, into a comprehensive state-of-the-art UML pro-
gramming solution. In addition Enterprise Edition features code engi-
neering and diagramming functionality in CORBA IDL, EJB, WSDL
and XML schema. For working with DB structure, Enterprise Edition
not only provides code engineering and diagramming, but also provides
structure retrieval via JDBC.

31

� Community Edition is free for developers working on non-commercial
projects. It has a minimal functionality set and only the class diagram
has no limitations. Other diagrams allow saving a project with up to
25 use cases, states, classi�er roles, action states, instances, nodes, and
components. Community Edition is designed for creating static struc-
ture models when XMI output is needed and it is ideally suited for
Open Source projects. Printing and image export capabilities are also
included.

� Reader Edition is made for reading and previewing UML models
created with MagicDraw and it is free of charge. It is useful for sharing
ideas expressed in UML with partners, colleagues, or clients, who do
not have a copy of MagicDraw. Printing and image export capabilities
are also included. Since MagicDraw version 14.0, Reader Edition has
the ability to open and review Teamwork Server projects.

The licence fees depend on the licence and licence type and are presented in
Table 4.1.

Licence Type
Commercial Licence Academic Licence

Standalone Mobile Floating Standalone

Personal Edition 156¿ N/A N/A 53¿

Standard Edition 531¿ 631¿ 849¿ 211¿

Professional Edition 956¿ 1061¿ 1586¿ 319¿

Architect Edition 1249¿ 1374¿ 1906¿ 411¿

Enterprise Edition 1694¿ 1906¿ 2699¿ 581¿

Table 4.1: Pricing of MagicDraw

4.1.5 Comparison

To choose a suitable modelling tool for the project, we compared four mod-
elling tools having one free ware (Obeo Acceleo) and three commercial (IBM
Rational Rose Data Modeler, Sparx Enterprise Architect, NoMagic Magic-
Draw) modelling tools.

The main criteria for the choice where:

� Price - Our industrial partner was already using Sparx Enterprise Ar-
chitect as their modelling tool. Our goal was to investigate if we can
use this tool to use existing licences or �nd an other suitable modelling
tool with licence fees comparable with Enterprise Architect.

32

� Functionality - many modelling tools support UML and code gener-
ation from models, but due to the nature of our project custom code
generation is needed.

The tools where chosen from the well-known vendors of modelling tools,
which supported UML.

In the pricing criteria we ordered the tools based on the additional cost
to the project and availability of the licence. Our �rst choise was Enterprise
Achitect due to the fact that the licences where already available to be used
by our industrial partner. The second choice for the tool was Obeo Acceleo,
which is a free software. The �rst two choices would not add any addi-
tional costs to the project. The third and the fourth tools where accordingly
NoMagic MagicDraw and IBM Rational Rose Data Modeler. This order,
starting with Enterprise Architect, was used to investigate the usability in
our project.

Sparx Enterprise Architect allows to generate RTF (Rich Text Format)
and HTML (Hyper Text Mark-up Language) custom reports of the models,
but it lacks the ability to generate complex reports and thus was eliminated
from the choice. Based on tutorials found in the user manuals[26, ?] of Ac-
celeo and MagicDraw's Velocity template engine were suitable for the project.
Rational Rose was eliminated from the choice by being the most expensive
tool while having two cheaper alternatives available.

Ultimately MagicDraw was chosen as the tool for the project. The choice
was made based on the simplicity of Velocity templates compared to the
transformation engine provided by Obeo Acceleo.

4.2 Oracle DBMS

We have chosen to use Oracle DBMS in this work, because it is probably
the most popular database server, with the largest share of the market [16].
It's used in most vertical market areas for a range of storage need such as
�nancial records, human resources, billing and so on. One of the reasons for
this is that Oracle was an early player in the RDBMS area and it provided
versions of its database that ran on most operating systems; and it still does.

4.2.1 Oracle PL/SQL

Oracle PL/SQL [10, 3] is a completely portable, high-performance transac-
tion processing language. Oracle PL/SQL stands for Procedural Language
extension to the Standard Query Language (SQL). PL/SQL was introduced
by Oracle Corporation to overcome some limitations in SQL and provide a

33

more complete programming solution to build mission-critical applications
which run against the Oracle database. PL/SQL is an embedded language
and was not designed to be used as a standalone language. It is intended to
be invoked from within a host environment. The language ensures that the
programs can stay entirely within the operating-system independent Oracle
environment.

One of the important aspects of the language is its tight integration
with SQL. This means the programs do not rely on intermediate software
(e.g. Open DataBase Connectivity (ODBC) or Java DataBase Connectivity
(JDBC)) to run SQL statements. PL/SQL provides among other features
control �ow, exception handling and advanced data types.

4.2.2 Data access control in DBMS

In this section we describe the Oracle DBMS role based access control and
give an overview how to implement �ne grained access control using Oracle
Virtual Private Database and using views.

4.2.2.1 DBMS Role Based Access Control

The Oracle DBMS implements the notion of roles [15, 22] since early 1990s,
and it includes support for administration of the access control state. Oracle
has, for years, provided security at the table level and, to some extent, at the
column level. Privileges may be granted to allow or restrict users (or groups
of users) to access only some tables or columns. Privileges may be granted to
speci�c users to insert only into certain tables while allowing them to select
from other tables. For example, a user John can be granted select access
to the table Meeting owned by Bob, which allows John to select any row
from the table, but not to update, delete, or insert.

There are two kinds of privileges in Oracle: system privileges and object
privileges. There are over 100 system privileges in Oracle 10g. For example,
the create role system privilege allows one to create a new role, drop any
role allows to drop any role, grant any role allows to grant any role to a
user or another role. An object privilege identi�es an object, which is either
a table or a view, and an access mode, which is one of the following: select,
insert, update and delete. Oracle's permission management is a hybrid
of Discretionary Access Control (i.e. each object has an owner who exercises
primary control over the object [8]) and RBAC. Privileges can be granted
to users and to roles. And roles can be granted to roles and to users. A
system privilege or a role can be granted �with admin option�. If a user is
granted a role with admin option, then we say the user has administrator

34

power over the role. This enables the user to grant the role to other users
and roles as well as to revoke the role from other users or roles. A role r1

can also be granted to another role r2 with admin option, in which case any
user that is a member of r2 has administrator power over r1 . A user can
create a role if he has the create role system privilege and the role to be
created does not already exist. When a role is created, the creator will be
automatically granted the role with admin option. This enables the creator
to further grant the role to any other role or user.

Object-level privileges satisfy many requirements, but sometimes they
are not granular enough to meet the various security requirements that are
often associated with a company's data. A classic example arises from Ora-
cle's traditional human resources demonstration tables. The employee table
contains information about all the employees in the company, but a depart-
mental manager should only be able to see information about employees in
his department.

4.2.3 Fine-Grained Access Control

Database �ne-grained access control allows to limit or grant access to database
objects in more detail than object based RBAC. It allows to specify access
rules to database table rows and columns. There are two alternatives for �ne
grained access control in Oracle RDBMS, using: Virtual Private Database
or database views.

4.2.3.1 Using Virtual Private Database

The Virtual Private Database (VPD) [23] enables data access control by user
with the assurance of physical data separation. For example the VPD can
ensure that on-line banking customers see only their own accounts. The
web-hosting companies can maintain data of multiple companies in the same
Oracle database, while permitting each company to see only its own data.
Within the enterprise, the VPD results in lower costs of ownership in de-
ploying applications. Security can be built once, in the data server, rather
than in each application that accesses data. Security is stronger, because it
is enforced by the database, no matter how a user accesses data. Security is
no longer bypassed by a user accessing a reporting tool or new report writer.

VPD's row-level security (RLS) [14, 22] allows you to restrict access to
records based on a security policy implemented in PL/SQL. A security policy
simply describes the rules governing access to the data rows. This process is
done by creating a PL/SQL function that returns a string. The function is
then registered against the tables, views, or synonyms you want to protect

35

by using the DBMS_RLS PL/SQL package. When a query is issued against
the protected object, Oracle e�ectively appends the string returned from the
function to the original SQL statement, regardless of how that statement was
executed., thereby �ltering the data records. If you create the condition in
such a way that it excludes all rows that should not be seen by a user, you
will e�ectively be establishing security at the row level. Oracle's automatic
application of the predicate to a user's SQL statement is a key aspect of what
makes RLS secure and comprehensive.

At a high level, RLS [22] consists of three main components:

� Policy - a declarative command that determines when and how to
apply restrictions on a user's access during queries, insertions, deletions,
updates, or combinations of these operations. For example, you may
want only UPDATEs to be restricted for a user, while SELECTs remain
unrestricted, or you may want to restrict access for SELECTs only if the
user queries a certain column (e.g., SALARY), not others.

� Policy function - a stored function that is called whenever the con-
ditions speci�ed by the security policy are met.

� Predicate - a string that is generated by the policy function, and
then transparently and automatically appended by Oracle to the WHERE
clause of a user's SQL statements.

Oracle Database 10g o�ers a new feature to VPD called Column Sensitive
VPD[14]. The objective of this feature is to invoke the security policy when
a speci�c column is referenced. It is possible to mask values (e.g. with NULL),
when the user does not have access to the data. An other option is to hide
an entire row, when it contains a value which is not accessible to the user.

According to Oracle Database 10g Release 2 Licensing information [2]
VPD is available only for Enterprise Eddition. As we have only Oracle 10g
Standard Edition at our disposal, we are unable to use this feature in this
thesis.

4.2.3.2 Using Views

Oracle has supported database views for many years[14]. Views can be used
to solve many challenges, and views can be a tremendous security tool. Views
can hide columns, mask data values and aggregate data to remove personally
identi�able information for maintaining privacy.

Views are database objects and access to them occurs at the object level.
However, privileges on the view are separate and distinct from the privileges

36

on the underlying objects the view accesses. Allowing users access to a
view and not to the underlying objects is an e�ective security technique for
insulating your sensitive data.

Consider the example where the user Bob wishes to allow certain users to
see which meeting rooms are booked at a certain time. He does not have to
allow access to the Meeting, Users, Users_Meeting tables. He can simply
create a view that contains the information based on the tables. Granting
access to the view then allows users to retrieve this summary data while
simultaneously maintaining separate security for the underlying objects.

This is an excellent technique in cases where privacy needs to be main-
tained. The view could easily be showing a medical researcher the number
of patients that have been diagnosed with a certain illness. Likewise, the
view could show a bank manager the number of customers with certain �-
nancial status. As the actual names are hidden by the view, any sensitive
information that can be derived by correlating the department, diagnosis, or
�nancial status with an individual is prevented.

Views are an ideal tool for providing column-level security (CLS). CLS
has three possible de�nitions:

� Preventing access to the column - this means that the column is
inaccessible to the users. The column values should not just be hidden
- the column should not exist. Then, by granting the users access to the
view and not to the underlying table, you have successfully removed
user access to the sensitive column data. This is largely a security by
design solution - the security was done prior to developing and deploy-
ing any application code. This may or may not be a possible solution
for existing designs and �elded applications. For many applications,
views can replace tables because many applications have no bias for
querying directly against tables or directly against views. However, a
challenge may exist if an application can only access tables or if an
application is already written and you expect it to go against a specif-
ically de�ned table. In the last case, you may be able to rename the
table and create the view with the name the table originally had.

� Masking and controlling the values of a column - this means that
some but not all of the column values are accessible. For the values that
are not to be seen, you can mask the values returned to the user. For
example, you may elect to return the string �NOT AUTHORISED� or
return the value zero when a user queries a column to which you wish
to hide its real value. Another masking option is to return a null.
Returning null is a good choice because they are a standard value for
data that does not exist.

37

� Controlling access to the values within a column. Consider an
example where users can access only the place of the meeting where
they are the initiators or participants. Users should be prohibited from
accessing the location of other meetings. Because the user has access
to certain locations of the meetings, it is not possible, to hide the
entire column. To meet this CLS requirement, a view can be used
with a function that masks the values of the salary column. Views
with functions are an e�ective column-level security technique. The
functions can return di�erent values for di�erent rows based on a policy
decision that is implemented within the function.

For data updates, there exist cases, where a user cannot issue direct updates
on the view. This could break your applications resulting in an error like
“ORA-01733: virtual column not allowed here�. This is an easy problem to
solve. Oracle provides Instead-of triggers for performing DML operations on
complex views. You can simply create an Instead-of trigger for this view.
When you do this, you want to ensure the trigger's behaviour is consistent
with the security policy provided by the view.

One particularly useful aspect of views is that they provide row-level
security. Row-level security, sometimes referred to as �ne-grained access
control, ensures that security is applied not only to the object (for example,
a database table) but also to each row within the object. When combined
with a check constraint, views in this manner are simple to understand,
implement, and manage.

This method of �ne-grained access control is not limited to Oracle database,
and could be implemented on any relational database system, which supports
views and instead-of triggers on them. Nevertheless we will use Oracle spe-
ci�c syntax throughout the thesis.

4.3 Velocity

Velocity[24] is a Java-based template engine that processes templates and ref-
erences Java objects to produce output documents. A basic Velocity template
can contain static text, layouts, conditional statements and place holders for
each referenced Java object. When a template is being read by Velocity,
conditional statements will be processed and place holders will be replaced
with the value from the referenced Java objects. It is possible to use Velocity,
for example, to generate web pages, email, SQL, and XML documents. A
template in Velocity is a text �le that tells Velocity how the output should
look like.

Two of the major components of Velocity are[11]:

38

� complete language for manipulating content including loops and con-
ditionals

� Access to Java object methods

4.4 Conclusion

In this chapter we introduced the main tools used in this thesis. We started
by comparing four modelling tools Obeo Acceleo (See Section 4.1.1), IBM
Rational Rose (See Section 4.1.2), Sparx Enterprise Architect (See Section
4.1.3) and NoMagic MagicDraw (See Section 4.1.4). Based on the price and
functionality MagicDraw was chosen to be used in this project. It is not the
cheapest of the alternatives, but enables easily to create model transforma-
tions into code using its Velocity language based template engine.

We gave an overview of the Oracle Database. This included the Oracle
speci�c PL/SQL language, which is a procedural language to complement
the SQL language, Oracle database RBAC and two alternatives (i.e. Us-
ing database views with triggers and using Oracle Virtual Private Database
(VPD)) to implement �ne-grained access control on the database. Although
implementing �ne-grained access control using VPD is the standard way in
Oracle, we chose to implement it with database views and triggers due to the
fact that VPD is not available in Oracle Standard edition.

Finally we introduced the Velocity template language. This language is
used to transform the SecureUML models into code, which can be executed
on the database system.

39

40

Chapter 5

Modelling Guidelines

In this chapter we give guidelines on modelling security constraint for a
database using SecureUML. We also provide some conventions for modelling
to make the security models more easy to read. In the following we will
assume the structure (e.g. tables and columns with their exact names) of
the underlying database is known (i.e. the database exists or has been mod-
elled). A primary key for every database table is mandatory, for simplicity
we assume the primary key column is called uniquely id for every table.

The following sections are ordered in a logical way, like a security architect
would most likely design the security. First we de�ne security resources,
which need to be secured. We will continue by de�ning security roles followed
by permissions which associate the roles and resources. Finally we will de�ne
conditional constraints on the permissions.

5.1 De�ning Stereotypes

SecureUML is not a part of UML, this means we need to de�ne the required
stereotypes. As the �rst step we need to de�ne the following stereotypes:

� «secuml.resource» - stereotype for resources (i.e. the objects which
need to be secured).

� «secuml.resourceView» - stereotype for resource view (i.e. a subset
of a resource view).

� «secuml.role» - stereotype for roles.

� «secuml.permission» - stereotype for permissions.

� «secuml.constraint» - stereotype for constraints.

41

Some modelling tools like MagicDraw allow to import elements from other
projects. To avoid repeatedly rede�ning the stereotypes for every new Se-
cureUML project, it is recommended to de�ne a reusable project, containing
only the stereotypes, which can be easily imported.

5.2 Using separate diagrams

When modelling large systems it is useful to use several diagrams. This is
essential with SecureUML, due to the fact that every permission between a
secure resource and a role adds at least one association and an association
class to the model and probably one or many constraint classes. This can
easily result in a complex and di�cult for humans to read diagram with tens
or even hundreds of classes. To keep the model simple to read, we recommend
to use at least one diagram for each pair of role and secure resource.

To further more enhance the readability of the diagrams, the classes with
di�erent stereotypes should be placed on every diagram the same way. We
propose the layout for the diagram as follows: role on the left side , permission
and their constraints on them in the middle and resource whit its constraints
on the right hand side.

5.3 De�ning a Secure Resource

The �rst thing in de�ning the security model we have to select the objects
which need to be secure. In a database these objects are tables.

A resource in SecureUML is a class with the «secuml.resource» stereo-
type. To de�ne a resource on a database table the resource has to be given the
same name as the table and all the columns with the exact names and types
have to be added as attributes of the class. In principle, the table objects in
the data model can be reused as the resource by adding the stereotype, but
in this case we recommend to make a copy of the object.

Resource views can be used to apply permissions on a subset of a resource
(i.e. in our case, apply them only on some of the tables columns). Resource
views can be applied to only one resource with a dependency association.
Resource views may only have some or all the attributes as the underlying
resource. A resource view has a stereotype «secuml.resourceView».

42

5.4 De�ning Roles

Roles are modelled as classes with the «secuml.role» stereotype. The main
property of the role object is the name. The name is the only property of the
role class which is used while generating the actual code, this means roles
may have an arbitrary number of attributes and methods, but they will be
ignored.

5.5 Permissions

Permissions are assigned to roles on resources. This is modelled as an as-
sociation class with the «secuml.permission» stereotype between role and
resource objects.

Permissions on a database security model may have up to four attributes
- one for each action type. The action types (i.e. Insert, Update, Delete,
Select) specify the for which action the permission is applied to. The name
of the permission class and the names of the attributes are not used in the
code generation process, thus may be given arbitrary descriptive names. For
readability we recommend to the �Permission� su�x to every permission
association class name (e.g. InitiatorPermissioin).

5.6 De�ning Constraints

Constraints allow more precise access control with the model. Constraints
may be applied to resources or permissions. The constraints are classes with
the «secuml.constraint» stereotype and are applied as dependencies to the
appropriate classes with the direction from the constraint towards the object.
The actual constraints are speci�ed on the constraint class and are written
in PL/SQL. The reference self represents the database table row being
currently accessed (i.e. being updated, deleted, inserted or selected). This
reference with a correct column name, separated by a dot �.�) may be used
inside the PL/SQL constraint (e.g self.username != ’administrator’).

For readability We recommend to use the �Constraint� su�x for every
constraint name (e.g. ParticipantAuthConstraint).

5.7 Conclusion

In this chapter we gave guidelines on how to model SecureUML security con-
straints. As a �rst thing the stereotypes of all the SecureUML extension have

43

to be de�ned or imported from an other existing SecureUML project. The
SecureUML speci�c objects role, constraint, resource and resource view are
based on class diagram classes. Permissions are association classes, between
roles and resources or resource views.

To avoid di�cult to read models, the security model should be divided
into separate diagrams for each pair of role and secured resource. The secured
resources (e.g. tables in databases) have to be placed with their constraints
on the right hand side of the diagram. The role's have to be placed on the
left side of the diagram. The permissions between roles and secured resources
and their constraints should be placed in the middle of the diagram.

44

Part II

Contribution

45

Chapter 6

Contribution

A mainstream method for information system security is Role-based Access
Control (RBAC), which restricts system access to authorised users. While
the bene�ts of RBAC are widely acknowledged, the implementation and ad-
ministration of RBAC policies remains a human intensive activity, typically
postponed until the implementation and maintenance phases of system de-
velopment. This deferred security engineering approach makes it di�cult for
security requirements to be accurately captured and for the system's imple-
mentation to be kept aligned with these requirements as the system evolves.
On the one hand practitioners might not be aware of the approaches that
help represent security concerns at the early system development stages. On
the other hand a part of the problem might be that there exists only limited
support to compare di�erent security development languages and especially
their resulting security models.

6.1 A Model-driven Role-based Access Control

for SQL Databases

In �A Model-driven Role-based Access Control for SQL Databases � we
present an approach for the model-driven RBAC for the SQL databases.
We illustrate how the SecureUML model could be translated to the database
views and instead- of triggers implementing the security authorisation con-
straints following the transformation templates developed in the Velocity
language.

We observe that security models facilitate automatic code generation.
We also argue that the security models should be prepared with the high-
quality modelling language that ensures the model semantic completeness,
and tools that guarantee model syntactic validity and syntactic completeness.

47

Only then one could expect that model-driven security could yield a higher
productivity with respect to a traditional development. In our case study
we note that semantic correctness of SecureUML is comparatively high since
the representation is oriented only to the security concerns. We also observe
that the SecureUML model is easier modi�able, which leads to the model
evolvability. We identify that the SecureUML models are understandable at
least to readers who are familiar with UML. This might ease communication
of security solutions to project stakeholders.

6.2 Comparing Quality of Security Models: A

Case Study

In �Comparing Quality of Security Models: A Case Study � [20] we com-
pare the quality of two security models, which propose a solution to the
industrial problem. One model is created using PL/SQL, a procedural ex-
tension language for SQL; another model is prepared with SecureUML, a
model driven approach for security. We result in signi�cantly better quality
for the SecureUML security model: it contains higher semantic completeness
and correctness, it is easier to modify and understand, and it facilitates a
better communication of security solutions to the system stakeholders than
the PL/SQL model.

A result review was performed together with the developers of the se-
curity models. Firstly, the developers noted that the overall quality of both
models could be improved if to take into account these evaluation results. For
example the traceability, annotation, and understandability of the PL/SQL
model could be easily improved using code comments. However, the de-
velopers acknowledged that this is not the case in the common practice or
the code comments, even if they are present, are not su�cient. On another
hand to improve syntactic validity of the SecureUML model we could write
the authorisation constraints in OCL instead of SQL. Secondly, developers
provided few remarks regarding some qualitative properties. For instance,
semantic completeness could be improved by presenting concrete instances
in the models. This means hard coding in the PL/SQL model and object
presentation in the SecureUML model. However, this neglects the principle
of generosity in modelling. On one hand, a tool used to make the PL/SQL
model, does not support hyper-linking. Although there exist several PL/SQL
editing tools (e.g., Oracle SQLDeveloper or Quest Software Toad for Oracle,
actually used by our industrial partner) that supports cross-references be-
tween various model elements, but these were not used in this case study.

48

On another hand, developers also indicated that PL/SQL grammar princi-
ples, the ones, which allow expressing procedures (e.g., PROCEDURE meet-
ing_permissions in Fig. 4) and referring to them from the main code, could
also be seen as textual cross-referencing. Thus, we estimate this qualitative
property as partial for the PL/SQL model.

6.3 An Approach to Assess and Compare Qual-

ity of Security Models

In �An Approach to Assess and Compare Quality of Security Models� [19] we
propose a systematic approach to assess quality of the security models. To
illustrate validity of our proposal we investigate three security models, which
present a solution to an industrial problem. One model is created using
PL/SQL, a procedural extension language for SQL; another two models are
prepared with SecureUML and UMLsec, both characterised as approaches for
model-driven security. The study results in a higher quality for the later se-
curity models. These contain higher semantic completeness and correctness,
they are easier to modify, understand, and facilitate a better communication
of security solutions to the system stakeholders than the PL/SQL model.

Our approach to systematic approach to compare quality of security mod-
els is based on the instantiation of the SEQUAL framework. To illustrate
the performance of our proposal we have executed a cases study, where we
have compared quality of three security models. One model is prepared at
the implementation stage using PL/SQL; other two models are developed
at the system design stage using SecureUML and UMLsec. We resulted in
(i) a higher quality for the SecureUML security model regarding UMLsec
and PL/SQL; and (ii) higher quality for the UMLsec security model regard-
ing PL/SQL. Thus, it suggests that practitioners should consider security
analysis at the earlier stages (at least design or maybe even requirements en-
gineering) of the software system developing. However we also note that ex-
ecutability of the UMLsec model is worse than executability of the PL/SQL
model. Thus, if one wishes to create executable models he would prefer
PL/SQL (or SecureUML) instead of UMLsec. Our comparison also identi�es
important directions for improvement of the security analysis at the early
stages. For example, a mature security modelling method needs to be in-
troduced in order to guide discovery of the early security requirements and
to support security quality assurance through overall project planning. This
would allow improving the traceability qualitative property, also facilitating
recording of the rationales for security decisions. Another concern includes

49

development and improvement of the modelling tools (e.g., MagicDraw and
Velocity interpreter) that would support the translation of the design models
(e.g., SecureUML) to the implementation code (e.g., PL/SQL). For instance,
we need to de�ne guidelines and transformation rules for the OCL-based au-
thorisation constraints. This would also improve the syntactic validity of the
SecureUML model. On the other hand executability of the UMLsec secu-
rity model is not supported at all � this might result in that practitioners
would select the PL/SQL language instead. For the successful adoption by
practitioners, model driven security analysis should be compatible with the
working processes.

6.4 Conclusion

These papers make up the main contribution of this research project. In
�A Model-driven Role-based Access Control for SQL Databases � we present
the transformation rules from SecureUML into Oracle database statements.
Based on these rules, we have developed Velocity templates, which do the
transformation automatically. In �An Approach to Assess and Compare
Quality of Security Models� do a survey, comparing the quality of two mod-
els. Compared to human written application source code containing security
constraints, we result in signi�cantly better quality for the SecureUML se-
curity model. Finally in �An Approach to Assess and Compare Quality of
Security Models� we propose an approach to estimate the quality of models.
This approach is illustrated by comparing SecureUML, UMLsec and PL/SQL
code.

50

Part III

Conclusions

51

Chapter 7

Conclusions and Future Work

7.1 Limitations

As described in Chapter 5 and Appendix A �A Model-driven Role-based
Access Control for SQL Databases � a primary key value for the underlying
protected table is mandatory. This requirement may be an obstacle applying
our method on existing systems.

Using our security constraints on foreign key values may cause problems
with data integrity. It is possible to model security constraints on a foreign
key column and on the referenced table such, that although the user can see
the foreign key values, but not the actual records in the referenced table.
This situation would not be possible without the security constraints and
would result in an ORA-02291: integrity constraint (string.string)
violated - parent key not found exception in Oracle databases.

The biggest concern of the generated code is the performance. If the
generated access-control reduces the performance of the whole system (i.e.
by making the database into a bottleneck), the software developers would
probably discard the bene�ts of MDS and implement the RBAC by hand
(as they have done countless times in previous projects). The most serious
impact on performance is coming from the usage of security functions in the
database view de�nition. This could result in a situation, where the database
engine is not able to indexes when running queries. As the functions rely on
some meta-data (e.g. user role or username), de�ning function indexes is not
possible.

53

7.2 Conclusions

Today, as the databases are holding ever increasingly more sensitive data
and are are accessible though web applications, they represent a valuable
target for attackers. In this thesis we propose the application of the model-
driven (MDD) development to de�ne RBAC mechanism for data access at the
design stages of the system development. The RBAC model created using the
SecureUML approach is automatically translated to the implementation with
database views and triggers with the transformation templates presented
in �A Model-driven Role-based Access Control for SQL Databases � (See
appendix A).

The Model-Driven Architecture (MDA) is a development paradigm that
separates business and application logic. The business logic is expressed in
platform independent models, which can be transformed with existing map-
pings into platform dependent models. The suggested bene�ts of MDA are
faster development time, better design of the system, improved consistency
and maintainability and increased portability across middle-ware vendors.

Model Driven Software Development (MDD) utilises models in software
development. In MDD systematic use of models and model transformations
is the primary engineering artefacts throughout the entire software life cycle.
This, in practice often means that the code is generated from models and
thus the models need to be used e�ciently and e�ectively. The idea is to
automate the process of creating new software and to facilitate evolution in
a rapidly changing environment by using model transformations.

In MDS designers specify system models along with their security re-
quirements. Using tools, these models are system architectures, including
complete, con�gured access control infrastructures, are automatically gener-
ated.

Misuse cases and MAL activity diagrams address security concerns through
negative scenarios executed by the attacker. These modelling approaches
could be applied to model RBAC in a system, however they are rather gen-
eral than speci�c. However the languages SecureUML and UMLsec actually,
contain targeted concepts for RBAC[21].

Both SecureUML and UMLsec are applicable to model RBAC solutions.
They have means to address the RBAC concepts and relationships. The
di�erence between these languages is that SecureUML is used to model static
characteristics of RBAC, thus, it is applied in the class diagrams and UMLsec
is used to model dynamic characteristics of RBAC , thus it relies heavily on
activity diagrams[18]. Based on this, we are using SecureUML together with
OCL to model static RBAC and to be used in this project.

We have chosen to use MagicDraw as our modelling tool based on the

54

price and functionality. It is not the cheapest of the alternatives (Obeo
Acceleo, IBM Rational Rose, Sparx Enterprise Architect), but it enables
easily to create model transformations into code using its Velocity language
based template engine.

PL/SQL is an Oracle database speci�c language, complements the SQL
language. The Oracle database has two alternatives (i.e. Using database
views with triggers and using Oracle Virtual Private Database (VPD)) to
implement �ne-grained access control. Although implementing �ne-grained
access control using VPD is the standard way, we chose to implement it with
database views and triggers due to the fact that VPD is not available in
Oracle Standard edition and not supported by other database engines.

The Velocity template language captures the information from the Se-
cureUML model which then is used to transform into code (database views
and instead-of triggers). The code can be executed on the database to enforce
the security constraints.

In this chapter we gave guidelines on how to model SecureUML security
constraints. As a �rst thing the stereotypes of all the SecureUML extension
have to be de�ned or imported from an other existing SecureUML project.
The SecureUML speci�c objects role, constraint, resource and resource view
are based on class diagram classes. Permissions are association classes, be-
tween roles and resources or resource views. To avoid di�cult to understand
models we propose a simple convention, how to model the security constraints
using SecureUML.

7.3 Future Work

Staron [31] identi�es �ve conditions for the successful adoption of the model
driven development technology. He stresses the maturity of the modelling
technology and maturity of the related methods. He also speaks about the
process compatibility and the necessity for the core language-engineering
expertise. Finally, he stresses the importance of the goal-driven adoption
process.

Following [31] we see necessary improvement for our proposal. For exam-
ple, a mature security modelling method needs to be introduced in order to
guide discovery of the security requirements and to support security quality
assurance through project planning. A possible candidate could be adop-
tion of the security risk management methods, e.g., ISSRM [9]. This would
improve traceability, also record rationales for security decisions.

Another concern is development of the modelling tools (e.g., MagicDraw
and Velocity interpreter) that would support a translation of the design mod-

55

els (e.g., SecureUML) to the implementation code (e.g., database views and
instead-of triggers). For instance, we need to de�ne guidelines and transfor-
mation rules for the OCL-based authorisation constraints.

Model driven security analysis should be compatible with the working
processes. We plan to perform another case study where we would investigate
quality of processes to develop security models at the design stage (e.g.,
using SecureUML or other modelling language) against quality of processes
to develop security models at the implementation stages.

Oracle databases support �ne-grained access control using Virtual Private
Database [23] (VPD), which enables data access control by users with the
assurance of physical data separation. The next step for the transformation
is to take advantage of the VPD and compare the performance of the two
approaches (i.e. using views with instead-of triggers and using VPD).

To adapt the solution in an industrial project, it is essential to analyse
the performance impact. The goal of the survey is to estimate the scalability
of the solution and if it is practically usable.

Finally, we need to support a goal-driven process, where we would de�ne
goals to introduce security model-driven development systematically. In this
paper we speci�cally focussed on the security policy for the data model. Our
future goal is to develop transformation rules that would facilitate implemen-
tation of the security concerns at the system and software application and
presentation levels.

56

ROLLIPÕHINE LIGIPÄÄSUKONTROLL ANDMEBAASIDELE
Henri Lakk
Resümee

Liikudes üha enam paberivaba äri suunas, hoitakse üha enam tundlikku
informatsiooni andmebaasides. Sellest tulenevalt on andmebaasid ründaja-
tele väärtuslik sihtmärk. Levinud meetod andmete kaitseks on rollip~ohine
ligipääsu kontroll (role-based access control), mis piirab süsteemi kasutajate
~oiguseid vastavalt neile omistatud rollidele. Samas on turvameetmete realisee-
rimine arendajate jaoks aegan~oudev käsitöö, mida teostatakse samaaegselt
rakenduse toimeloogika realiseerimisega. Sellest tulenevalt on raskendatud
turva vajaduste osas kliendiga läbirääkimine projekti algfaasides. See oma-
korda suurendab projekti reaalsete arenduskulude kasvamise riski, eriti kui
ilmnevad turvalisuse puudujäägid realisatsioonis.

Tänapäeva veebirakendustes andmebaasi ühenduste puulimine (connec-
tion pooling), kus kasutatakse üht ja sama ühendust erinevate kasutajate
teenindamiseks, rikub vähima vajaliku ~oiguse printsiipi. K~oikidel ühendunud
kasutajatel on ligipääs täpselt samale hulgale andmetele, mille tulemusena
v~oib lekkida tundlik informatsioon (näiteks SQLi süstimine (SQL injection)
v~oi vead rakenduses).

Lahenduseks probleemile pakume välja vahendid rollip~ohise ligipääsu kont-
rolli disainimiseks tarkvara projekteerimise faasis. Rollip~ohise ligipääsu kont-
rolli modelleerimiseks kasutame UML'i laiendust SecureUML. Antud mude-
list on v~oimalik antud töö raames valminud vahenditega genereerida koodi,
mis kontrollib ligipääsu ~oiguseid andmebaasi tasemel. Antud madaltaseme
kontroll vähendab riski, et kasutajad näevad andmeid, millele neil ligipääsu
~oigused puuduvad.

Antud töös läbiviidud uuring näitas, et mudelip~ohine turvalisuse arenda-
mise kvaliteet on k~orgem v~orreldes programmeerijate poolt kirjutatud koo-
diga. Kuna turvamudel on loodud projekteerimise faasis on selle semantiline
täielikkus ja korrektsus k~orge, millest tulenevalt on eda kerge lugeda ja muuta
ning seda on lihtsam kasutada arendajate ja klientide vahelises suhtluses.

57

58

Bibliography

[1] Model driven development for j2ee utilizing a model driven architecture
(mda) approach. Technical report, The Middleware Company, 2003.

[2] Oracle Database Licensing Information 10g Release 2 (10.2). http://
docs.oracle.com/cd/B19306_01/license.102/b14199.pdf, 2010.

[3] Shashaanka Agrawal, Cailein Barclay, Eric Belden, Dmitri Bronnikov,
Sharon Castledine, Thomas Chang, Ravindra Dani, Chandrasekha-
ran Iyer, Susan Kotsovolos, Neil Le, Warren Li, Bryn Llewellyn,
Valarie Moore, Chris Racicot, Murali Vemulapati, John Russell, Guhan
Viswanathan, and Minghui Yang. PL / SQL User's Manual and Refer-
ence. Oracle, 2005.

[4] Arosha Bandara, Hayashi Shinpei, Jan Jurjens, Haruhiko Kaiya, Atsuto
Kubo, Robin Laney, Haris Mouratidis, Armstrong Nhlabats, Bashar
Nuseibeh, Yasuyuki Tahara, Thein Tun, Hironori Washizaki, Nobukazi
Yoshioka, and Yijun Yu. Security patterns: Comparing modeling ap-
proaches. Technical report, Department of Computing,Faculty of Math-
ematics, Computing and Technology,The Open University, 2009.

[5] David A. Basin, J"urgen Doser, and Torsten Lodderstedt. Model driven
security: From UML models to access control infrastructures. ACM
Trans. Softw. Eng. Methodol., 15(1):39�91, 2006.

[6] Alan Brown. An introduction to model driven architecture. The Rational
Edge, Part I: MDA and today's systems:13�17, February 2004.

[7] Manuel Clavel, Viviane Silva, Christiano Braga, and Marina Egea.
Model-driven security in practice: An industrial experience. In Pro-
ceedings of the 4th European conference on Model Driven Architecture:
Foundations and Applications, ECMDA-FA '08, pages 326�337, Berlin,
Heidelberg, 2008. Springer-Verlag.

59

http://docs.oracle.com/cd/B19306_01/license.102/b14199.pdf
http://docs.oracle.com/cd/B19306_01/license.102/b14199.pdf

[8] Stephen Dranger, Robert Sloan, and Jon Solworth. The complexity of
discretionary access control. In Hiroshi Yoshiura, Kouichi Sakurai, Kai
Rannenberg, Yuko Murayama, and Shinichi Kawamura, editors, Ad-
vances in Information and Computer Security, volume 4266 of Lecture
Notes in Computer Science, pages 405�420. Springer Berlin / Heidel-
berg, 2006. 10.1007/11908739_29.

[9] Éric Dubois, Patrick Heymans, Nicolas Mayer, and Raimundas Mat-
ulevi£ius. A systematic approach to de�ne the domain of information
system security risk management. In Selmin Nurcan, Camille Salinesi,
Carine Souveyet, and Jolita Ralyté, editors, Intentional Perspectives on
Information Systems Engineering, pages 289�306. Springer Berlin Hei-
delberg, 2010. 10.1007/978-3-642-12544-7_16.

[10] Steven Feuerstein and Bill Pribly. Oracle PL/SQL Programming.
O'Reilly Media Inc, 4th edition edition, 2005.

[11] Joseph D. Gradecki and Jim Cole. Mastering Apache Velocity. Wiley
Publishing, Inc., 2003.

[12] Jean-Marc J'ez'equel, Heinrich Huÿmann, and Stephen Cook, editors.
UML 2002 - The Uni�ed Modeling Language, 5th International Confer-
ence, Dresden, Germany, September 30 - October 4, 2002, Proceedings,
volume 2460 of Lecture Notes in Computer Science. Springer, 2002.

[13] Jan Jürjens and Pasha Shabalin. Tools for secure systems development
with UML: Security analysis with atps. In Maura Cerioli, editor, Fun-
damental Approaches to Software Engineering, volume 3442 of Lecture
Notes in Computer Science, pages 305�309. Springer Berlin / Heidel-
berg, 2005. 10.1007/978-3-540-31984-9_23.

[14] David Knox. E�ective Oracle Database 10g Security by Design.
McGraw-Hill, Inc., New York, NY, USA, 1 edition, 2004.

[15] Ninghui Li and Ziqing Mao. Administration in role-based access control.
In Proceedings of the 2nd ACM symposium on Information, computer
and communications security, ASIACCS '07, pages 127�138, New York,
NY, USA, 2007. ACM.

[16] David Litch�eld, Chris Anley, John Heasman, and Bill Grindlay. The
Database Hacker's Handbook: Defending Database Servers. John Wiley
& Sons, 2005.

60

[17] Torsten Lodderstedt, David A. Basin, and J"urgen Doser. SecureUML:
A UML-based modeling language for model-driven security. In UML,
pages 426�441, 2002.

[18] Raimundas Matulevicius and Marlon Dumas. A comparison of Se-
cureUML and UMLsec for role-based access control. In Databases and
Information Systems, pages 171�185. University of Latvia Press, Riga,
Latvia, July 2010.

[19] Raimundas Matulevicius, Henri Lakk, and Marion Lepmets. An ap-
proach to assess and compare quality of security models. Comput. Sci.
Inf. Syst., 8(2):447�476, 2011.

[20] Raimundas Matulevicius, Marion Lepmets, Henri Lakk, and Andreas
Sisask. Comparing quality of security models: A case study. In Mirjana
Ivanovic, Bernhard Thalheim, Barbara Catania, and Zoran Budimac,
editors, ADBIS (Local Proceedings), volume 639 of CEUR Workshop
Proceedings, pages 95�109. CEUR-WS.org, 2010.

[21] Raimundas Matulevi£ius and Marlon Dumas. Towards model transfor-
mation between SecureUML and UMLsec for role-based access control.
In Proceedings of the 2011 conference on Databases and Information
Systems VI: Selected Papers from the Ninth International Baltic Con-
ference, DB&IS 2010, pages 339�352, Amsterdam, The Netherlands,
The Netherlands, 2011. IOS Press.

[22] Arup Nanda and Steven Feuerstein. Oracle PL/SQL for DBAs. O'Reilly
Media, Inc., 2005.

[23] Kanichiro Nishida and Shankar Duvvuri. Row Level Security with BI
Publisher Enterprise. Oracle, January 2009. Available online.

[24] No Magic, Inc. Creating a Report Template to Use in MagicDraw, ver-
sion 16.6 edition, 2010.

[25] No Magic, Inc. MagicDraw User's Manual, version 16.6 edition, 2010.

[26] Obeo, http://www.acceleo.org/doc/obeo/en/acceleo-2.
6-user-guide.pdf. Acceleo User Guide.

[27] Alex Roichman and Ehud Gudes. Fine-grained access control to web
databases. In Proceedings of the 12th ACM symposium on Access control
models and technologies, SACMAT '07, pages 31�40, New York, NY,
USA, 2007. ACM.

61

http://www.acceleo.org/doc/obeo/en/acceleo-2.6-user-guide.pdf
http://www.acceleo.org/doc/obeo/en/acceleo-2.6-user-guide.pdf

[28] Pablo S'anchez, Ana Moreira, Lidia Fuentes, Joao Ara'ujo, and Jos'e
Magno. Model-driven development for early aspects. Inf. Softw. Tech-
nol., 52:249�273, March 2010.

[29] Guttorm Sindre. Mal-activity diagrams for capturing attacks on business
processes. In Pete Sawyer, Barbara Paech, and Patrick Heymans, edi-
tors, Requirements Engineering: Foundation for Software Quality, vol-
ume 4542 of Lecture Notes in Computer Science, pages 355�366. Springer
Berlin / Heidelberg, 2007.

[30] Sparx Systems, http://www.apexnet.com.ar/downloads/
EAUserGuide5.0.pdf. Enterprise Architect Version 5.0 User Guide,
July 2005.

[31] Miroslaw Staron. Adopting model driven software development in in-
dustry � a case study at two companies. In Model Driven Engineering
Languages and Systems, pages 57�72, 2006.

62

http://www.apexnet.com.ar/downloads/EAUserGuide5.0.pdf
http://www.apexnet.com.ar/downloads/EAUserGuide5.0.pdf

Part IV

Publications

63

A
A

A Model-driven Role-based

Access Control for SQL Databases

Publication:
Raimundas Matulevi£ius and Henri Lakk, A Model-driven Role-based

Access Control for SQL Databases, Journal of Database Management, Under
review, 2012

65

 1	

A Model-driven Role-based Access Control
for SQL Databases

	

	

Raimundas Matulevičius and Henri Lakk
Institute of Computer Science, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia

{rma@ut.ee, henri.lakk@gmail.com}

	

ABSTRACT

Nowadays security has become an important aspect in information systems engineering. A
mainstream method for information system security is Role-based Access Control (RBAC),
which restricts system access to authorised users. While the benefits of RBAC are widely
acknowledged, the implementation and administration of RBAC policies remains a human
intensive activity, typically postponed until the implementation and maintenance phases of
system development. This deferred security engineering approach makes it difficult for security
requirements to be accurately captured and for the system’s implementation to be kept aligned
with these requirements as the system evolves. In this paper we propose a model-driven
approach to manage SQL database access under the RBAC paradigm. The starting point of the
approach is an RBAC model captured in SecureUML. This model is automatically translated to
Oracle Database views and instead-of triggers code which implements the security constraints.
The approach has been fully instrumented as a prototype and its effectiveness has been validated
by means of a case study.
Keywords: Model-driven security, Role-based access control, SecureUML, PL/SQL, Updatable
view, instead-of trigger

1. INTRODUCTION

Security engineering is an engineering discipline within system engineering “concerned with
lowering the risk of intentional unauthorized harm to valuable assets to level that is acceptable to
the system’s stakeholders by preventing and reacting to malicious harm, misuse, threats, and
security risks” (Firesmith, 2007). Developing a secure system correctly is difficult and error-
prone. It is not enough to ensure correct functioning of security mechanisms used; they cannot be
“blindly” inserted into a security-critical system. It is observed (Sindre and Opdahl 2001, 2005,
Jurjens, 2005), that while functional requirements are generally analysed during requirements
engineering and design stages, security considerations often arise most usually during
implementation or maintenance stages. Firstly, this means that security engineers get little
feedback about the secure functioning on the system in practice, since security violations are
kept secret for fear of harming an organisation’s reputation. Secondly, security risks are very
hard to calculate: security-critical systems are characterised by the fact that the occurrence of a
successful attack at one point in time on a given system increases the likelihood that the attack
will be launched subsequently at another system point. This is a serious hindrance to secure
system development, since the early consideration of security (e.g., at the requirements and/or

A
A

 2	

design stage) allows engineers to envisage threats, their consequences and design
countermeasures. Then design alternatives, that do not offer a sufficient security level, could be
discarded.

One possible suggestion to solve the above problem is an approach called model driven
architecture (MDA). MDA provides a solution for the system development process based on
models (de Miguel et al., 2002). The models, the simplified representations of reality, could be
looked at from different perspectives (e.g. problem domains, architectural solutions), studied for
different purposes (e.g. analysis of problems, evaluation of architectural solutions), and their
evolution and transformation could address different objectives (e.g. integration of technical
concepts, transformations between different modelling language).

For security-critical systems MDA facilitates security consideration from early stages in
the development process and provides a seamless guidance through the development stages
(Jurjens, 2005). Model driven security (MDS) could be supported using different modelling
languages. On the one hand, at the various development stages and for different stakeholders’
purposes, security can be addressed using various models: like goal models created with i* (Yu,
1997), Tropos (Bresciani Et al., 2004) or KAOS (Dardenne et al., 1993, van Lamsweerde, 2004);
data models created with ER (Chen, 1976) or UML (OMG, 2005). These modelling languages
are not, specifically, designed with security in mind and, thus, their support for security is weak.

On the other hand there exist security modelling languages specifically dedicated to
analysis and modelling of system security concerns. For example, abuse frames (Lin et al., 2004)
suggest means to consider security during early requirements engineering stage. Secure i* (Elahi,
et al., 2007) addresses security trade-offs. KAOS’ extension to security (van Lamsweerde, 2004)
was augmented with anti-goal models designed to elicit attackers’ rationales. Tropos has been
extended with the notions of ownership, permission and trust (Giorgini et al., 2005). Another
version of Secure Tropos (Mouratidis, 2006) defines security through security constraints. Abuse
cases (McDermott and Fox, 1999), misuse cases (Sindre and Opdahl, 2001, 2005) and mal-
activity diagrams (Sindre, 2007) are the extensions for the modelling languages from the UML
family. Another two UML extensions (through the stereotypes, tagged values and constraints)
towards security are UMLsec (Jurjens, 2005) and SecureUML (Lodderstedt et al., 2002; Basin et
al., 2006). Those languages are, basically, used to address security concerns during the system
design stage.	
 All the security modelling languages support understanding of the security
concerns through discovery of all the important security requirements and relevant domain
properties. In other words, they support validity criteria with respect to the stakeholder needs.
However, in general, they provided limited support to transform the security model to code.
Thus, it requires an additional effort of system developer to verify the implemented security
concerns. 	

In nowadays information systems databases still remain the key technology to gather,
store, and manage the business data. The database logical structure is defined with the standard
query language (SQL). Although transformation of a structural data model (e.g., expressed in
UML class diagram, or ER diagram) to SQL code is highly supported by the variety of the
modelling tools, we did not observe how graphical security models could be translated to
mission-critical constraints. Typically, the implementation of these constraints remains a
programmer’s job. However, this is a labour intensive activity and required a thorough validation
of the code.

In this paper we present a set of transformation templates that help to translate the security
model expressed in SecureUML (Lodderstedt et al., 2002; Basin et al., 2006) to security

 3	

constraints based on database views and instead-of triggers. These security constraints are
applied to the SQL database schema (which could be also generated from, for example, the UML
class diagram) to enforce the role-based access control rules to the secured data. By our
approach we, firstly, remove necessity to verify security concerns at the implementation level,
because all the security complexity is modelled during the system design stage. Secondly, the
necessity of the code validation is also abandoned, because the code is automatically generated
from the SecureUML security models.

Although, the transformation templates and examples given in the paper are Oracle DBMS
specific, the approach is not limited to it. Oracle was chosen as the base system by our industrial
partner. The generated code can be applied to any relational database that supports views,
instead-of triggers and packages. But using the generated code on other than Oracle database
may require some modifications depending on the differences in the syntax.

In order to validate our proposal we perform a cases study, where we compare two security
models: one directly created in PL/SQL (Feuerstein, et al., 2005), another created in SecureUML
and, then, transformed into database views and instead-of triggers code using our proposal. We
result in better quality for the second model.

This paper is organised as follows: Section 2 gives the background for our research. It
focusses on the principles of role-based access control and introduces the SecureUML language.
In Section 3 we discuss how to transform the data model to the data SQL code, and how to
translate the security model into authorisation constraints using database views and instead-of
triggers. Section 4 presents a case study. Finally, Section 5 discusses our contribution and
concludes the paper.

2. BACKGROUND

2.1. Role-based Access Control

The core RBAC model is shown in Figure 1. It includes five major concepts: Users, Roles,
Objects, Operations, and Permissions. A User is defined as a human being but this concept could
also be extended to machines, networks, or intelligent autonomous agents. A Role is a job
function within the context of an organisation. Some associated semantics includes authority and
responsibility conferred on the user assigned to the role. Permission is an approval to perform an
operation on one or more protected objects. An Operation is an executable image of a program,
which upon invocation executes some function for the user. Hence, the operation types and
secured objects depend on the type of system where they are implemented. User assignment and
permission assignment are many-to-many relationships. The first describes how users are
assigned to their roles. The second characterises the set of privileges assigned to a role.

Figure 1. The core RBAC model (adapted from (Sandhu and Coyne, 1996; Ferraiolo et al., 2001))

A
A

 4	

The basic concept of RBAC is that users are assigned to roles, permissions are assigned to
roles, and users acquire permissions by being members of roles. The same user can be assigned
to many roles and a single role can have many users. Similarly, for permissions, a single
permission can be assigned to many roles and a single role can be assigned to many permissions.

2.2. SecureUML

A modelling language is characterised through three major components abstract syntax, concrete
syntax and semantics. We will discuss each of these components in order to present SecureUML
(Lodderstedt et al., 2002; Basin et al., 2006).

2.2.1. SecureUML Abstract Syntax

An abstract syntax of SecureUML (Lodderstedt et al., 2002; Basin et al., 2006) is organised as a
UML class diagram and displayed in Figure 2. It adapts the principles of the RBAC model, and
introduces concepts like User, Role, and Permission as well as relationships RoleAssignment and
PermissionAssignment. Here secured objects and operations are expressed through protected
objects, which are modelled using the standard UML constructs (e.g., see concept of
ModelElement). In addition, ResourseSet represents a user defined set of model elements used to
define permissions and authorisation constraints.

Figure 2. SecureUML meta-model (adapted from (Lodderstedt et al., 2002; Basin et al., 2006)

The semantics of Permission is defined through ActionType elements used to classify
permissions. Here every ActionType represents a class of security-relevant operations on a
particular type of protected resource. In Figure 3 we introduce four specific security actions:
Select, Update, Insert, and Delete, which we will define later in Section 4. On the other hand a
ResourceType defines all action types available for a particular meta-model type.

An AuthorisationConstraint expresses a precondition imposed to every call to an operation
of a particular resource. This precondition usually depends on the dynamic state of the resource,
the current call, or the environment. The authorisation constraint is attached either directly or
indirectly to a particular model element that represents a protected resource.

 5	

Figure 3. Action types for the security permission

2.2.2. SecureUML Concrete Syntax

At the concrete syntax level SecureUML is a “lightweight extension” of UML, namely through
stereotypes, tagged values and constraints. The stereotypes are defined for the classes and
relationships in the class diagrams and are specifically oriented to the RBAC terminology. In
Figure 4 we illustrate the SecureUML concrete syntax through the Meeting Scheduler example
(Feather et al, 1997).

Figure 4. Meeting Scheduler with SecureUML

In Figure 4 we define a secure resource Meeting, which is characterised by a place where,
and time when a meeting should be organised. These data needs to be secured from unintended
audience. Thus, a certain restriction on changing the resource state (changing the value of the
attributes place and time) needs to be defined for the roles MeetingInitiator and
MeetingParticipant.

Association class InitiatorPermission characterises three actions allowed for the
MeetingInitiator:
• action enterMeetingDetails (of type Insert) defines that MeetingInitiator can enter place

and time by executing operation setTimePlace() (see class Meeting);
• action changeMeetingInformation (of type Update) allows changing place and time of the

A
A

 6	

Meeting by executing operation changeTimePlace() (see class Meeting);
• action deleteMeetingAgreement (of type Delete) permits deleting place and time of the

Meeting by executing operation deleteTimePlace() (see class Meeting);
Similarly, the association class ParticipantPermission defines a restriction for the
MeetingParticipant role. It introduces an action getMeetingDetails (of type Select) that says that
only MeetingParticipant can perform viewTimePlace().

To strengthen these four permissions we define authorisation four constraints, written in
object constraint language (OCL) (Warner and Kleippe, 2003):

AC#1:	

 context MeetingAgreement::setTimePlace():void
 pre: self.roleInitiator.hasBeenAssignedTo=caller

AC#2:	

 context MeetingAgreement::changeTimePlace():void
 pre: self.roleInitiator.hasBeenAssignedTo=caller

AC#3:	

 context MeetingAgreement::deleteTimePlace():void
 pre: self.roleInitiator.hasBeenAssignedTo=caller

AC#4:	

 context MeetingAgreement::viewTimePlace():void
 pre: self.roleParticipant.hasBeenAssignedTo=caller

Authorisation constraint AC#1 means that operation setTimePlace()	
 can be executed by a user set
defined as variable caller, that are assigned to be MeetingInitiators. Similarly, the
authorisation constraint AC#2 defines restriction for operation changeTimePlace(), AC#3 for
operation deleteTimePlace(), and AC#4 for operation viewTimePlace().

2.2.3. SecureUML Semantics

In (Basin et al. 2006) semantics of Secure UML is formalised to satisfy two purposes: (i) to
define a declarative access control decisions that depend on static information, namely the
assignments of users and permissions to roles, and (ii) to support implementation-based access
control decisions that depend on dynamic information, namely, the satisfaction of authorisation
constraints in the current system state. Similarly to (Anaya et al., 2010; Dubois et al., 2010) we
discuss the conceptual SecureUML semantics for the purpose of system modelling. We utilise
the RBAC model to define semantics of the SecureUML constructs (Matulevičius and Dumas,
2010, 2011) as illustrated in Table 1.

Some mappings between RBAC and SecureUML are understood as a lexical
correspondence. For example, the SecureUML classes with the stereotype <<secuml.user>>
correspond to the RBAC users, <<secuml.role>> to the RBAC roles, and <secuml.permission>>
to the RBAC permissions. These SecureUML constructs and RBAC concepts are similar
according to their textual expression, and also their semantic application (see Meeting Scheduler
in Figure 4).

 7	

Table 1. Correspondence between RBAC concepts and SecureUML constructs

RBAC concepts SecureUML construct Meeting Scheduler example
Users
(concept)

Class stereotype
<<secuml.user>>

Class Users

User assignment
(relationship)

Association between classes with
stereotypes <<secuml.user>>	
 and
<<secuml.role>>	

Association relationship
[hasBeenAssignedTo–assignedinitiator] and
[hasBeenAssignedTo–hasAssignedParticipant]

Roles
(concept)

Class stereotype
<<secuml.role>>

Classes
MeetingInitiator and MeetingParticipant

Permission
assignment
(relationship)

Association class stereotype
<<secuml.	
 permission>>

Operations of association classes
InitiatorPermissions and ParticipantPermissions

Objects
(concept)

Class stereotype
<<secuml.	
 resource	
 >>

Class Meeting

Operations
(concept)

Operations of a class with
stereotype <<secuml.resource>>

Operations
setTimePlace(),	
 changeTimePlace(), and	

viewTimePlace()

Permissions
(concept)

Authorisation constraint AC#1, AC#2, and AC#3

The SecureUML classes with the stereotype <<secuml.resource>> are used to define

objects that need some security protection. This corresponds to the RBAC concept objects. Since
the value of attributes (that characterise the state of the protected resources) could be changed by
the resource (object) operations, these operations (that belong to the classes with the stereotype
<<secuml.resource>>) are understood as the RBAC operations.

To define the RBAC user assignment we use the association link between classes with
stereotypes <<secuml.user>> (e.g., Users) and <<secuml.role>> (e.g., MeetingInitiator). We
define a class Users with a stereotype <<secuml.user>> and link this class to the roles (classes
with stereotype <<secuml.role>>) using association links. We map these association relationships
to the RBAC user assignment relationship. Finally, we define that the SecureUML authorisation
constraints characterise the RBAC permissions. The SecureUML association class with a
stereotype <<secuml.permission>> is introduced for this purpose, too.

2.3. Role-Based Access Control in Relational Databases

Like many other available databases (e.g., DB2, MySQL, PostgreSQL, SQLite and others),
Oracle DBMS implements the notion of roles (Nanda Feuerstein, 2005; Li and Mao, 2007), and
includes support for administration of the access control state. Oracle has provided security at the
table level and, to some extent, at the column level. Privileges may be granted to allow or restrict
users to access only some tables or columns. There are two kinds of privileges in Oracle: (i)
system privileges (e.g. privilege to create new roles) and (ii) object privileges (e.g. privilege to
insert new records into a table). An object privilege identifies an object, which is either a table or
a view, and an access mode, which is one of the following: select, insert, update or
delete.

A
A

 8	

Object-level privileges satisfy many requirements, but in some cases they are not granular
enough to meet the security requirements that are associated with a company's data. A classic
example arises from Oracle's traditional human resources demonstration tables. The employee
table contains information about all the employees in the company, but a department manager
should only be able to see information about employees in his department. This is requirement is
not solvable with object-level privileges and, therefore, is usually implemented in a higher (e.g.
business or presentation) tier.

In (Roichman et al., 2007) object-level permissions are used with the old desktop
applications, where the applications are connected with the database but the number of users is
limited. This two-tier architecture results in a model where the user is working with an
application layer that interfaces directly with the database layer. This means the database would
directly identify the computer, the user transactions and the user herself. Thus, it becomes
possible to authorise user and follow up single user transactions in order to discover signs of
intrusion, as all the transactions of the same user are passed via the same connection.

However, nowadays, web applications are executed at the browsers by sending request to
the Web server, which performs transactions to/from the database. As the result of this three (or
more) -tier architecture (also called pooling), the database is not able to identify neither who has
accessed the data not the transaction of the same user. The web application does not open nor
close a connection before/ after each request but uses a connection pool to store connections.
Using such a connection pool a large number of users can also be satisfied with few database
connections. However, regarding the database security, the principle of minimal privilege is
violated, and every connected user has an access to the same data. Such a situation results in
horizontal (i.e., access to the data of other user) and vertical (i.e., access to a department’s data)
privileges escalation. “Although many advances have been made in developing secure
applications, trusting applications which are developed under time constraints by developers
which are not security experts, presents a large risk to the database and therefore databases are
threatened by these applications” (Roichman et al., 2007).

3. DATA ROLE-BASED ACCESS CONTROL USING MODEL-DRIVEN SECURITY

Our proposal to model and implement security policy for the data is presented in Figure 5. It
consists of two major steps. Firstly, we present a transform a data model, expressed as the UML
class diagram, to the data code represented in the SQL code. Secondly, we propose a way to
transform a security model defined using SecureUML, into the security constraints, represented
with database views and instead-of triggers. Both the SQL code and the security constraints are
intertwined together when executing them on the Oracle relational database management system.
In Section 3.3 we overview the software tools used to support our proposal.

 9	

Figure 5. Data and Security Model Transformation

3.1. Data Model Transformation

Transformation of the logical data model to the data model SQL code is supported by
majority of the UML modelling tools. Typically this transformation consists of two steps (see
Figure 6). The logical data model (e.g., Figure 7) expressed in the UML class diagram is
translated to the physical data model. The classes in the physical model (Figure 8) are equipped
with the stereotype <<table>> indicating that they represent database tables. Each table is
complemented with a primary key attribute (e.g., see Users attribute <<PK>>-­‐id:integer).

Figure 6. Data Model Transformation

Figure 7. Logical Data Model

The associations of the logical data model are transformed into database foreign keys (i.e.,

dependencies with stereotype <<FK>>). One-to-many associations (e.g. between Meeting and

A
A

 10	

RequiredMaterial) are transformed into a single foreign key. Many-to-many associations from
the logical data model are transformed into the physical data model by introducing a new table
(e.g., Users_Meeting).

The physical data model (Figure 8) is translated to data definition language (DDL, Figure
9) class by class: for every class with the stereotype <<table>> a CREATE	
 TABLE statement is
generated. The attribute names and types are transformed respectively into table columns names
and data types.

Figure 8. Physical Data Model

CREATE SEQUENCE Users_SEQ;

CREATE SEQUENCE Meeting_SEQ;

CREATE SEQUENCE RequiredMaterial_SEQ;

CREATE TABLE Users (
 name VARCHAR (255),
 id_Users INTEGER PRIMARY KEY);

CREATE TABLE Meeting (
 place VARCHAR (255),
 time DATE,
 id_Meeting INTEGER PRIMARY KEY,
 fk_Usersid_Users INTEGER NOT NULL,
 FOREIGN KEY(fk_Usersid_Users) REFERENCES Users (id_Users));

CREATE TABLE RequiredMaterial (
 id_RequiredMaterial integer PRIMARY KEY,
 fk_Meetingid_Meeting INTEGER NOT NULL,
 FOREIGN KEY(fk_Meetingid_Meeting) REFERENCES Meeting (id_Meeting));

CREATE TABLE Users_Meeting (
 fk_Usersid_Users INTEGER,
 fk_Meetingid_Meeting INTEGER,
 PRIMARY KEY(fk_Usersid_Users, fk_Meetingid_Meeting),
 FOREIGN KEY(fk_Meetingid_Meeting) REFERENCES Meeting (id_Meeting),
 FOREIGN KEY(fk_Usersid_Users) REFERENCES Users (id_Users));

Figure	
 9.	
 Database	
 SQL	
 data	
 definition	
 script

 11	

	

3.2. Security Model Transformation

Following the Meeting Scheduler example (see Section 2.2) we will illustrate how the RBAC
policy defined in the SecureUML security model is transformed into database views and instead-
of triggers, which implement the security constraints. In Figure 10 a secured resources – objects
of class Meeting – are equipped with a stereotype <<secuml.resource>>. Two roles (classes
MeetingInitiator and MeetingParticipant carrying the stereotype <<secuml.role>>) have different
set of permissions (association classes MeetingInitiator and MeetingParticipant) to access and
modify Meeting	
 values (place and time). Two authorisation constraints –
InitiatorAuthConstraint and ParticipantAuthConstraint– restrict the permissions of the defined
roles. These constraints are expressed in PL/SQL to simplify the model transformation to the
security constraints. The procedures InitiatorAuthConstraint(self.id) and
ParticipantAuthConstraint(self.id) are provided in Appendix A and they correspond to
authorisation constrains AC#1-4. Appendix A also includes procedure sec.is_role(argument),
used to identify role for which security action is granted.

Figure	
 10.	
 Meeting	
 Scheduler	
 Security	
 Model	

	

In Figure 11 we present how the SecureUML security model is transformed automatically
into the PL/SQL security authorisation constraints. Using Velocity

1
 template language we have

developed security transformation rules and adapted them to the transformation templates (see
Appendix B). These rules specify four security actions (see Figure 3) performed on the secured
table: (i) Insert, for entering new data; (ii) Update, for changing the existing data; (iii) Select, for
viewing existing data; and (iv) Delete, for deleting data. By applying the transformation
templates the SecureUML security model is systematically translated to database views and
instead-of triggers, which implement security authorisation constrains on the secured data. We
will illustrate this translation in the Meeting Scheduler example.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 http://velocity.apache.org/engine/devel/user-guide.html

A
A

 12	

Figure	
 11.	
 Security	
 model	
 transformation	

	

3.2.1. Select authorisation constraint

The Select	
 authorisation constraint specifies the data that could be viewed at the runtime.

At the data level the secure resources are interpreted as database tables as discusses in Section
3.1. As illustrated in Figure 12, a database view is created for a secured resource (e.g., Meeting),
which in SecureUML diagram (see Figure 10) carries stereotype <<secuml.resource>>. The
created view corresponds to the same schema structure but the unique name is created adding
suffixes “_v” to the table names. For instance, for secured resource Meeting we define its data
view Meeting_v, which has two secured attributes	
 place and name

2
.

For every secured attribute (e.g., name and place) the Select statement performs a
conditional check on a Boolean expression. If the check returns TRUE, the attribute value is
selected and allowed to view; otherwise the NULL result is provided.

The Boolean expression is a combination of implicit and explicit constraints. The implicit
constraint checks the Role assigned to a runtime user. The Role is captured from the SecureUML
class with a stereotype <<secuml.role>> and through its association class (carrying stereotype
<<secuml.permission>>) with the secured resource. In Figure 10 (see association class
InitiatorPermission) we can see that only MeetingInitiator is allowed to perform Select action on
the Meeting’s place and data. In the view declaration (see Figure 12) the implicit constraint is
defined as function sec.is_role(argument)

3
, where argument is the name of the Role (e.g.,

MeetingInitiator) participating in the Select	
 action.
The explicit constraint is defined in the SecureUML classes with the stereotype

<<secuml.constraint>>. These are connected to the security permission and applied on the
secured resource. They become part of the Boolean expression, as illustrated in Figure 12 (see,
sec.ParticipantAuthConstraint(self.id)).

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

2	
 For the technical details we need to define the third attribute, which is the primary key of the secured table, as
illustrated in Figure 9. However none of the security constraints are defined on this attribute, thus, we leave it aside
from the discussion.
3	
 The implementation of this function may vary depending on the authentication method used (e.g., LDAP or
password authentication).

 13	

-- Imported common-sql.vtl
CREATE OR REPLACE VIEW Meeting_v
AS
 SELECT
 CASE
 WHEN sec.is_role('MeetingParticipant') = 'Y' AND
 sec.ParticipantAuthConstraint(self.id) = 'Y'
 THEN self.place
 ELSE CAST (NULL AS VARCHAR2)
 END AS place ,
 CASE
 WHEN sec.is_role('MeetingParticipant') = 'Y' AND
 sec.ParticipantAuthConstraint(self.id) = 'Y'
 THEN self.time
 ELSE CAST (NULL AS DATE)
 END AS TIME
 FROM Meeting self
 WHERE sec.is_role('MeetingParticipant') = 'Y'
 AND sec.ParticipantAuthConstraint(self.id) = 'Y'
/

Figure	
 12.	
 Transformed	
 Select	
 authorisation	
 constraint	
 	

3.2.2. Delete authorisation constraint

The Delete authorisation constraint (see Figure 13) specifies which data a user, assigned to
a valid role, can remove. The Delete constraint is implemented through an instead	
 of	
 delete
trigger (which is assigned a unique name Meeting_delete_trigger) on the database view as
described in Section 3.2.1. When an SQL DELETE statement is executed on a row of the view,
the trigger is executed instead of this statement. The trigger can result in success or failure. In the
first case, if there is no security violation and if the targeted data are not referenced from other
sources, the requested data are deleted; otherwise the action results in an exception.

To delete the targeted data, these need to be selected based on their primary key (e.g.,
res.ID=:OLD.ID in Figure 13). Similarly to the Select	
 constraint, a Boolean expression to check
the condition for data deletion consists of the implicit (e.g., sec.is_role(MeetingInitiator)),
captured from the class MeetingInitiator and association class InitiatorPermission and explicit
constraints (e.g sec.InitiatorAuthConstraint(self.id)	
 =	
 ‘Y’, captured from the class
InitiatorAuthConstraint, carrying <<secuml.constraint>>) parts.

3.2.3. Insert authorisation constraint

The Insert authorisation constraint (Figure 14) specifies which new data a User, assigned

to a valid Role, can insert into a table. It is implemented through an instead	
 of	
 insert	
 trigger
(e.g., Meeting_sec_insert_trg) on the secured resource. Execution of the trigger results in
success or in failure. On one hand if there is no security violation and if the new inserted values
are valid, trigger will give a positive result. On another hand the update action will result in an
exception.

A
A

 14	

The insert authorisation constraint is row-based because it is not possible
4
 to insert only

parts of a row into a table. This means that the before the actual insert is performed, a Boolean
security constraint is checked. The Boolean constraint consists of the implicit role constraint (e.g,
sec.is_role(MeetingInitiator), captured from the SecureUML class MeetingInitiator	
 and
association class InitiatorPermission and an explicit constraints (e.g.
sec.InitiatorAuthConstraint(self.id)	
 =	
 ‘Y’, captured from the class InitiatorAuthConstraint).

-- Imported common-sql.vtl
CREATE OR REPLACE TRIGGER Meeting_delete_trg
 INSTEAD OF DELETE ON Meeting_v
 REFERENCING OLD AS OLD
 FOR EACH ROW
DECLARE
 self Meeting%ROWTYPE;
 ex_denied EXCEPTION;
BEGIN
 SELECT * INTO self FROM Meeting res WHERE res.ID = :OLD.ID;
 IF sec.is_role('MeetingInitiator') = 'Y' AND
 sec.InitiatorAuthConstraint(self.id) = 'Y'
 THEN
 DELETE FROM Meeting tbl WHERE tbl.ID = :OLD.ID;
 ELSE
 RAISE ex_denied;
 END IF;
EXCEPTION
 WHEN ex_denied THEN
 raise_application_error (-20000, 'Access denied!');
END
/

Figure	
 13.	
 Transformed	
 Delete	
 authorisation	
 constraint	

-- Imported common-sql.vtl
CREATE OR REPLACE TRIGGER Meeting_sec_insert_trg
 INSTEAD OF INSERT ON Meeting_v
 REFERENCING NEW AS NEW
 FOR EACH ROW
DECLARE
 ex_denied EXCEPTION;
BEGIN
 IF sec.is_role('MeetingInitiator') = 'Y' AND
 sec.InitiatorAuthConstraint(self.id) = 'Y'
 THEN
 INSERT INTO Meeting (place , TIME)
 VALUES (:NEW.place , :NEW.time);
 ELSE
 RAISE ex_denied;
 END IF;
EXCEPTION
 WHEN ex_denied THEN
 raise_application_error (-20000, 'Access denied!');
END;
/

Figure	
 14.	
 Transformed	
 Insert	
 authorisation	
 constraint	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

4	
 In relational databases, table columns can be complemented with default values, which will be used when the
value of the column is not specified in the insert statement; however, this is not supported in the current
transformation templates.

 15	

3.2.4. Update authorisation constraint

The Update authorisation constraint (Figure 15) specifies which data a User, assigned to a

valid Role, can change. Changing the data does not include inserting new (as defined in Section
3.2.3) or deleting existing (see Section 3.2.2) data. The constraint also calls the selection action
(see Section 3.2.1), because before updating the targeted date, these need to be selected from the
data table.

-- Imported common-sql.vtl
CREATE OR REPLACE TRIGGER Meeting_sec_update_trg
 INSTEAD OF UPDATE ON Meeting_v
 REFERENCING NEW AS NEW OLD AS OLD
 FOR EACH ROW
DECLARE
 self Meeting%ROWTYPE;
 ex_denied EXCEPTION;
BEGIN
 SELECT * INTO self FROM Meeting res WHERE res.ID = :OLD.ID;
 IF util.null_eq (:NEW.place, self.place) != 'Y'
 THEN
 IF sec.is_role('MeetingInitiator') = 'Y' AND
 sec.InitiatorAuthConstraint(self.id) = 'Y'
 THEN
 self.place := :NEW.place;
 ELSE
 RAISE ex_denied;
 END IF;
 END IF;
 IF util.null_eq (:NEW.time, self.time) != 'Y'
 THEN
 IF sec.is_role('MeetingInitiator') = 'Y' AND
 sec.InitiatorAuthConstraint(self.id) = 'Y'
 -- Permission from InitiatorPermission
 THEN
 self.time := :NEW.time;
 ELSE
 RAISE ex_denied;
 END IF;
 END IF;

 UPDATE Meeting res SET ROW = self WHERE res.ID = :OLD.ID;
EXCEPTION
 WHEN ex_denied THEN
 raise_application_error (-20000, 'Access denied!');
END;
/

Figure	
 15.	
 Transformed	
 Update	
 authorisation	
 constraint	

	

The Update authorisation constraint is implemented through an instead	
 of	
 update trigger
(e.g., Meeting_sec_update_trg) on the secured resource. Execution of the trigger results in a
success (if there is no security violation and if the new values for the updated data are valid) or in
a failure (otherwise).

Like previous constraints, Update is also created on the view (e.g., Meetign_v) of the
secured resource. Checking the data (that are to be changed) values is performed of this view (for
example, variables self and :NEW refer to the data values before and after the update is

A
A

 16	

performed), thus, securing the actual data before the security action is finished. When the check
(see, util.null_eg(
 :NEW.place,	
 self.place)	
 !=	
 ‘Y’) for self and :NEW values give positive answer,
then the check for the implicit (see, sec.is_role(‘Meeting’)=’Y’) and explicit (e.g.,
sec.InitiatorAuthConstraint(self.id)=’Y’) expressions takes part. Both implicit and explicit
constraints are captured from the SecureUML model. Satisfying all these conditions results in the
value change for the attribute of the secured resource (e.g., self.time	
 :=	
 :NEW.time). After the
success of the update action on the view, the actual values are updated as well (see, UPDATE	

Meeting	
 res	
 SET	
 ROW=self	
 WHERE	
 res.ID	
 =	
 self.ID).

3.3. Tool Support

Nowadays there exist different software tools5 to support model-driven development (MDD)
using UML at the different level of abstraction for various modelling goals. To illustrate and
implement our proposal we have selected MagicDraw

6
. This selection was influenced by the

facts that, in addition to covering UML 2.0 diagrams, MagicDraw supports database modelling,
business process modelling, and various XML standards. For instance, MagicDraw supports a
comprehensible and systematic translation of the logical data representation into the physical
data representation, and then a generation of the database SQL code, as described in Section 3.1.

Our proposal focusses on the transformation rules to translate the security model expressed
in SecureUML to the security authorisation constrains. To generate these transformation rules
adapted to the transformation templates, we use a report generation mechanism implemented in
MagicDraw. It supports capturing, every entity of the UML (SecureUML) model through the
Velocity template language. Although originally Velocity template language is created to
reference objects from the Java code and to embed their dynamic context into the websites, the
Velocity engine was adapted for the MagicDraw tool to capture information from the UML
diagrams. In our case we capture security related entities and transform them into database views
and instead-of triggers, as illustrated in Section 3.2 for insert (Figure 12), select (Figure 13),
delete (Figure 14), and update (Figure 15) actions.

As the final step, the generated SQL (i.e. data model and security authorisation constraints)
code could be intertwined together executing them on the database management system, such as
SQL*Plus

7
 developed by Oracle.

4. A CASE STUDY

In order to validate the performance of our proposal, we have performed a case study, where we
compare a quality of two security models. In the first case the developers have coded the security
constraints manually. In the second case designers have created a SecureUML model, which was
translated to the security authorisation constraints using our proposal. This case study is reported
in (Matulevičius et al., 2010; 2011). In this paper we provide the summary of the major findings.

In order to compare both security models we have applied the semiotic quality framework
(SEQUAL) developed by Krogstie (1998, 2001) that defines the assessment of the model quality

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

5 http://www.objectsbydesign.com/tools/umltools_byProduct.html
6	
 http://www.magicdraw.com/
7	
 http://download.oracle.com/docs/cd/B19306_01/server.102/b14357.pdf

 17	

by distinguishing between quality goals and means to achieve these goals. More specifically we
have analysed the following quality types:
• Semantic (i.e., correspondence between the model and its semantic domain) quality was

considered with respect to semantic completeness, semantic correctness, traceability,
annotation, and modification;

• Syntactic (correspondence between a model and modelling language) was defined in terms
of syntactic validity and syntactic completeness; and

• Pragmatic (correspondence between a model and its technical and social interpretation)
quality was expressed through cross-referencing, organisation, understandability, and
executability.

The case study findings are summarised in Table 2. We observe that the SecureUML model is
better evaluated than then the PL/SQL security model, especially along the qualitative properties
that characterise the validity (e.g., semantic completeness, semantic correctness, annotation, and
especially understandability) of the model. Regarding the model verification (e.g., executability
and syntactic completeness), we found both models rather assessed at the same level. The design
and precise details of the case study are provided in (Matulevičius et al., 2010; 2011).

Within this case study we certainly acknowledge that we have assessed both security
models using a certain set of qualitative properties (and their appropriate measures). This might,
however, affect the conclusion validity, because if any other qualitative properties were applied,
it might result in different outcome. But this threat is rather limited since these qualitative
properties are theoretically sound and their selection is based on the previous experience.

Table 2. Assessment Results of the Semantic Quality (the higher score is in bold)

SEQUAL
quality types

Qualitative
property

Measure PL/SQL
security model

SecureUML
security model

Semantic
completeness

Percentage of the RBAC
domain coverage 42,86% 100%

Semantic
correctness

Percentage of security related
statements 7,69% 100%

Traceability Number of traced links 0 0
Annotation Number of annotation elements 0 8

Semantic
quality

Modifiability Time spent to modify Not-known 5-10 minutes
Syntactic validity Number of syntactically invalid

statements
0 2 Syntactic

quality
Syntactic
completeness

Number of syntactically
incomplete statements

0 0

Understandability Number of explanations More than 45
minutes

10-15 minutes

Organisation Number of elements for model
organization

2 4

Cross referencing Number of cross-reference links 1 3

Pragmatic
quality

Executability Tools to execute the model Yes Yes

5. DISCUSSION and FUTURE WORK

In this paper we have presented an approach for the model-driven RBAC for the SQL databases.
We illustrate how the SecureUML model could be translated to the database views and instead-
of triggers implementing the security authorisation constraints following the transformation
templates developed in the Velocity language. We observe that our approach facilitates

A
A

 18	

comparatively easier modification, understandability and communication of the security
solutions. In this section we conclude our discussion by situating our work into the state of the
art and by highlighting the future work.

5.1. Model-driven Security

The literature reports on a number of case studies (de Miguel et al., 2002; Staron, 2006; the
Middleware, 2003) analysing different characteristics of the model-driven development. Mostly
these studies focus on the benefits and on the infrastructure needed for the model-driven
development. Similarly to (Clavel el al., 2008; MacDonald et al., 2005; the Middleware, 2003)
we observe that security models facilitate automatic code generation. We also argue that the
security models should be prepared with the high-quality modelling language (de Miguel et al.,
2002) that ensures the model semantic completeness, and tools (MacDonald et al., 2005) that
guarantee model syntactic validity and syntactic completeness. Only then one could expect that
model-driven security could yield a higher productivity with respect to a traditional development
(the Middleware, 2003).

We identified one case study performed by Clavel et al. (2008), reporting on the
SecureUML practical application. It was observed that although the security models are
integrated with the data models, the security design remains independent, reusable and
evolvable. In our case study we note that semantic correctness of SecureUML is comparatively
high since the representation is oriented only to the security concerns. We also observe that the
SecureUML model is easier modifiable, which leads to the model evolvability. Like in (Clavel el
al., 2008) we identify that the SecureUML models are understandable at least to readers who are
familiar with UML. This might ease communication of security solutions to project stakeholders
(MacDonald et al., 2005).

5.2. RBAC and Security Modelling Languages

In (Bandara et al., 2009) the survey of security modelling languages shows that SecureUML
does not explicitly model security criteria (such as confidentiality, integrity, and availability), but
it focusses on modelling the security solutions applying the RBAC technique. With SecureUML,
a modeller can define assets; however, the language does not allow expressing attacks or harms
to these assets. Jayaram and Mathur (2005) investigate how the practice of software engineering
blends with the requirements of secure software. The work describes a two-dimensional
relationship between the software lifecycle stages and modelling approaches used to engineer
security requirements. A part of the study is dedicated to the RBAC modelling using
SecureUML. Authors indicate SecureUML is suggested as the means to specify access control
policies; however it cannot describe protected resources (system design), thus, it has to be used
in conjunction with a base modelling language; similarly as we illustrate in Section 3.
Furthermore we go beyond the scope of these surveys by developing the transformation
templates to implement the RBAC solutions.

5.3. RBAC for SQL Databases

Oh and Park (2001) propose a model-driven approach to manage RBAC policies on top of SQL
databases. The paper specifically focusses on a task-RBAC model, whereby permissions are

 19	

assigned to tasks and tasks are assigned to roles. In contrast, our approach does not require a
notion of task – which may or may not be relevant depending on the application domain. Our
approach is based on an established security modelling language, namely SecureUML, whereas
the approach in (Oh and Park, 2001) is based on a combination of non-standard diagram types,
namely organisation diagrams, information object diagrams and task diagrams. Thus, it can be
argued that our approach is more generally applicable.

Temporal RBAC models (Bertino et al, 2001) allow designers to capture time-sensitive
access control policies, such as the fact that a user only has access to certain resources during a
specified period of time. Barker et al (2003) sketch a method to transform temporal RBAC
policies, specified in a logic-based notation, into PL/SQL code, but their code generation method
is incomplete – it only deals with specific types of temporal RBAC constraints. Our approach
differs from the above one in that it takes as input SecureUML models. Extending SecureUML
with temporal constraints and enhancing the PL/SQL generation method accordingly is a
direction for future work.

Other related work has addressed the issue of generating code for RBAC models in the
context of data warehouses. Blanco et al (2008) present a QVT transformation for generating
code for the Microsoft SSAS platform from RBAC models defined in terms of an ad hoc security
meta-model. This and other similar works on secure data warehouses do not deal with data
updates as these updates are done offline. Also, the security models differ from those that we
deal with, since their models deal with features specific to data warehouses such as dimensions
and measures. Finally, their code generation methods do not target SQL platforms.

5.4. Future Work

Staron (2006) identifies five conditions for the successful adoption of the model driven
development technology. He stresses the maturity of the modelling technology and maturity of
the related methods. He also speaks about the process compatibility and the necessity for the
core language-engineering expertise. Finally, he stresses the importance of the goal-driven
adoption process.

Following Staron (2006) we see necessary improvement for our proposal. For example, a
mature security modelling method needs to be introduced in order to guide discovery of the
security requirements and to support security quality assurance through project planning. A
possible candidate could be adoption of the security risk management methods, e.g., ISSRM
(Dubois et al., 2010). This would improve traceability, also record rationales for security
decisions.

Another concern is development of the modelling tools (e.g., MagicDraw and Velocity
interpreter) that would support a translation of the design models (e.g., SecureUML) to the
implementation code (e.g., database views and instead-of triggers). For instance, we need to
define guidelines and transformation rules for the OCL-based authorisation constraints.

 Model driven security analysis should be compatible with the working processes. We plan
to perform another case study where we would investigate quality of processes to develop
security models at the design stage (e.g., using SecureUML or other modelling language) against
quality of processes to develop security models at the implementation stages.

Oracle databases support fine-grained access control using Virtual Private Database
(Nishida and Duvvuri, 2009) (VPD), which enables data access control by users with the
assurance of physical data separation. The next step for the transformation is to take advantage of

A
A

 20	

the VPD and compare the performance of the two approaches (i.e. using views with instead-of
triggers and using VPD).

Finally, we need to support a goal-driven process, where we would define goals to
introduce security model-driven development systematically. In this paper we specifically
focussed on the security policy for the data model. Our future goal is to develop transformation
rules that would facilitate implementation of the security concerns at the system and software
application and presentation levels.

ACKNOWLEDGMENT

This research was started while the first author was at the Software Technology and Applications
Competence Centre and the second author was at Logica Estonia. The work was funded by
ERDF via Enterprise Estonia and by Logica Estonia. We thank Prof. Marlon Dumas for the
discussion, his advises and support.

REFERENCES

1. Anaya V., Berio G., Harzallah M., Heymans P., Matulevičius R., Opdahl A. L., Panetto H.,
Verdech M. J. (2010) The Unified Enterprise Modelling Language – Overview and Further Work,
Computers in Industry, Elsevier Science Publication, Vol 61, No 2, 99-111

2. Bandara, A., Shinpei, H., Jurjens, J., Kaiya, H., Kubo, A., Laney, R., Mouratidis, H., Nhlabatsi,
A., Nuseibeh, B., Tahara, Y., Tun, T., Washizaki, H., Yoshioka, N., Yu, Y. (2009) Security
Patterns: Comparing Modelling Approaches. Technical Report No 1009/06, Department of
Computing Faculty of mathematics, Computing Technology, The Open University

3. Barker S., Douglas P., Fanning T. (2003) Implementing RBAC Policies. In Gudes E., Shenoi S.
(eds) Research Directions in Data and Applications Security, Kluwer Academic Publishers Group, pp.
27-36

4. Basin, D., Doser, J., Lodderstedt, T. (2006) Model Driven Security: from UML Models to Access
Control Infrastructure. ACM Transactions on Software Engineering and Methodology (TOSEM), 15
(1), 39--91.

5. Bertino E., Bonatti P. A., Ferrari E. (2001) TRBAC: A Temporal Role-based Access Control
Model. In Transactions on Information and Security Systems (TISSEC), ACM, 4 (3), 191-233

6. Blanco C., de Guzman I. G.-R., Fernandez-Medina E., Trujillo J., Piattini M. (2008) Automatic
Generation of Secure Multidimensional Code for Data Warehouses: an MDA Approach. Proceedings
of the OTM 2008 Confederated International Conferences, CoopIS, DOA, GADA, IS, and ODBASE
2008. Part II on On the Move to Meaningful Internet Systems, pp. 1052-1068

7. Bresciani P., Perini A., Giorgini P., Giunchiglia F., Mylopoulos J. (2004) Tropos: An Agent-
Oriented Software Development Methodology, Autonomous Agents and Multi-Agent Systems,
Springer.

8. Chen P. P. (1976). The Entity-Relationship Model: Towards a Unified View of Data. ACM
Transactions on Database Systems, 1(1), 9-36.

9. Clavel, M., Silva, V., Braga, C., Egea, M. (2008) Model-driven Security in Practice: an Industrial
Experience, In Proceedings of the 4th European Conference on Model Driven Architecture:
Foundations and Applications, Springer-Verlag, pp. 326--337

10. Dardenne A., van Lamsweerde A., Fickas S. (1993) Goal-Directed Requirements Acquisition.
 Science of Computer Programming Vol. 20, North Holland, 1993, pp. 3-50.

11. de Miguel M., Jourdan J., Salicki S. (2002) Practical Experiences in the Application of MDA. In
Proceedings of the 5th International Conference on The Unified Modeling Language, Springer-
Verlag, 128--139

 21	

12. Dubois, E.; Heymans, P.; Mayer, N.; Matulevičius, R. (2010) A Systematic Approach to Define
the Domain of Information System Security Risk Management. Nurcan, S.; Salinesi C.; Souveyet C.;
Ralyte, J. (Eds.). Intentional Perspectives on Information Systems Engineering, 289-306, Springer
Heidelberg, ISBN: 978-3-642-12543-0

13. Elahi, G., Yu, E. (2007) A Goal Oriented Approach for Modeling and Analyzing Security Trade-
Offs, In: Parent et al. (eds.), Proceedings of the 26th International Conference on Conceptual
Modelling

14. Feather, M. S., Fickas, S., Finkelstein, A. and van Lamsweerde A. (1997) Requirements and
Specification Exemplars. Automated Software Engineering, 4, 419-438.

15. Ferraiolo D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R. (2001) Proposed NIST
Standard for Role-based Access Bontrol. ACM Transactions on Information and System Security
(TISSEC), 4(3), 224--274

16. Feuerstein, S., Pribly, B. (2005) Oracle PL/SQL Programming. O'Reilly Media Inc, 4th edition
edition

17. Firesmith D. G. (2007) Engineering Safety and Security Related Requirements for Software
Intensive Systems, ICSE 2007 tutorial, Minneapolis

18. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N. (2005) Modeling Security Requirements
Through Ownership, Permision and Delegation. In Proceedings of the 13th IEEE International
Conference on Requirements Engineering, IEEE Computer Society

19. Jayaram, K.R., Mathur, A.P. (2005) Software Engineering for Secure Software – State of the Art: a
Survey. Technical report CERIAS TR 2005-67, Department of Computer Sciences & CERIAS,
Purdue University

20. Jurjens J. (2005) Secure Systems Development with UML, Springer-Verlag Berlin Heidelberg
21. Krogstie, J. (2001) A Semiotic Approach to Quality in Requirements Specifications. In Proceedings

of IFIP 8.1 working Conf. on Organisational Semiotics, 231--249.
22. Krogstie, J. (1998) Using a Semiotic Framework to Evaluate UML for the Development for Models

of High Quality. In: Siau, K., Halpin, T. (eds.) Unified Modelling Language: System Analysis,
Design and Development Issues, IDEA Group Publishing, pp. 89--106

23. van Lamsweerde, A. (2004) Elaborating Security Requirements by Construction of Intentional Anti-
models. In Proceedings of the 26th International Conference on Software Engineering, IEEE
Computer Society 148--157

24. van Lamsweerde A. (2009) Requirements Engineering: From System Goals to UML Models to
Software Specifications, Wiley

25. Li N., Mao Z. (2007) Administration in role-based access control. In Proceedings of the 2nd ACM
Symposium on Information, Computer and Communications Security, ASIACCS '07, ACM, 127--
138

26. Lin, L., Nuseibeh, B., Ince, D., Jackson, M. (2004) Using Abuse Frames to Bound the Scope of
Security Problems. In Proceedings of the 12th IEEE International Conference on Requirements
Engineering, IEEE Computer Society 354--355

27. Lodderstedt, T., Basin, D., Doser, J. (2002) SecureUML: A UML-based Modeling Language for
Model-driven Security. In Proceedings of the 5th International Conference on The Unified Modeling
Language, LNCS, vol. 2460 Springer-Verlag, 426--441

28. MacDonald, A., Russell, D., Atchison, B. (2005) Model-driven Development within a Legacy
System: An Industry Experience Report. In Proceedings of the 2005 Australian Software Engineering
Conference (ASWEC’05). IEEE Computer Science

29. Matulevičius, R., Dumas, M. (2010) A Comparison of SecureUML and UMLsec for Role-based
Access Control. In: Databases and Information Systems: The 9th Conference on Databases and
Information Systems; Riga, Latvia; July 5-7, 2010. (Eds.) Barzdins, J.; Kirikova, M.. Latvia:
University of Latvia Press, Riga, Latvia, 2010, 171 - 185.

A
A

 22	

30. Matulevičius, R., Dumas, M. (2011) Towards Model Transformation between SecureUML and
UMLsec for Role-based Access Control. Barzdins, J., Kirikova, M. (Eds.). Databases and Information
Systems VI (339 - 352). IOS Press

31. Matulevičius, R.; Lakk, H.; Lepmets, M., Sisask, A., (2010) Comparing Quality of Security
Models: a Case Study, Proceedings of the ADBIS 2010 workshop MDASD 2010, University of Novi
Sad Press, Serbia

32. Matulevičius, R.; Lakk, H.; Lepmets, M. (2011) An Approach to Assess and Compare Quality of
Security Models. Computer Science and Information Systems, ComSIS Consortium, 8 (2), 447 - 476.

33. McDermott, J., Fox, C. (1999) Using Abuse Case Models for Security Requirements Analysis. In
Proceedings of the 15th Annual Computer Security Applications Conference

34. The Middleware Company (2003) Model Driven Development for J2EE Utilizing a Model Driven
Architecture (MDA) Approach: Productivity Analysis, MDA Productivity case study

35. de Miguel, M., Jourdan, J., Salicki, S. (2002) Practical Experiences in the Application of MDA. In
Proceedings of the 5th International Conference on The Unified Modeling Language, Springer-
Verlag, 128--139

36. Mouratidis, H. (2006) Analysing Security Requirements of Information Systems using Tropos. In
Proceedings 1st Annual Conference on Advances in Computing and Technology 55--64

37. Nanda A., Feuerstein S. (2005) Oracle PL/SQL for DBAs. O'Reilly Media, Inc.
38. Nishida K. and Duvvuri S. (2009) Row Level Security with BI Publisher Enterprise. An Oracle

white paper, Oracle Communications, URL (last check 28.12.2011): http://www.oracle.com/
technetwork/middleware/bi-publisher/overview/wp-oracle-bip-row-level-security-132091.pdf

39. Oh S., Park S. (2001) Enterprise Model as a Basis of Administration on Role-based Access Control.
In Proceedings of the 3rd International Symposium on Cooperative Database Systems for advanced
Applications (CODAS 2001), pp. 150-158

40. OMG (2005) Unified Modeling language: Superstructure, version 2.0, format/05-07-04
41. Sandhu R. S., Coyne E. J. (1996) Role-based Access Control Models, Computer, 38-47
42. Sindre, G. (2007) Mal-activity Diagrams for Capturing Attacks on Business Processes. In

Proceedings of the Working Conference on Requirements Engineering: Foundation for Software
Quality, Springer-Verlag Berlin Heidelberg 355--366

43. Sindre G., Opdahl A. L. (2001) Template for Misuse Case De- scription. In Proceedings of the
International Workshop Re- quirements Engineering: Foundation for Software Quality (REFSQ
2001)

44. Sindre G., Opdahl A. L., (2005) Eliciting Security Requirements with Misuse Cases. Requirements
Eng. 10 (1), Springer-Verlag.

45. Staron, M. (2006) Adopting Model Driven Software Development in Industry – A Case Study at
Two Companies. In the 9th International Conference on Model Driven Engineering Languages and
Systems (MoDELS 2006). Springer-Verlag 57--72

46. Warner, J., Kleippe, A. (2003) The Object Constraint Language, second edition, Getting Your
Models Ready for MDA. Addison-Wesley

47. Yu E. (1997) Towards Modeling and Reasoning Support for Early-phase Requirements Engineering,
Proc. RE’97, IEEE Computer Society, pp. 226

Appendix A
All functions in this appendix are part of a package named sec. This package contains security
related functions needed by the views and instead-of triggers. As our templates do not yet
support OCL the authorisation constraints in A.1 and A.2 are written by hand in order to simplify
the security model. The function is_role (See A.3) is used in the generated virews and instead-of
triggers to limit access to users in the specified roles, but the implementation is not limited to the
given example.

 23	

A.1 sec.InitiatorAuthConstraint
The InitiatorAuthConstraint shown in Figure A1 is an authorisation constraint, which is placed
on MeetingInitiator	
 actions (i.e. Insert, Update and Delete) on the Meeting resource. It
corresponds to the OCL-defined authorisation constraints – AC#1, AC#2, and AC#3 – presented
in Section 2.2.

FUNCTION InitiatorAuthConstraint (
 pi_organisedBy IN Meeting.organisedby%TYPE
)
 RETURN VARCHAR2
IS
 s_user_name Users.NAME%TYPE;
BEGIN
 -- Select the orgeniser's name
 SELECT Users.NAME
 INTO s_user_name
 FROM Users
 WHERE Users.ID = pi_organisedBy;

 -- Is the current user the organiser?
 IF s_user_name = sec.get_username
 THEN
 RETURN 'Y';
 ELSE
 RETURN 'N';
 END IF;
END InitiatorAuthConstraint;

Figure	
 A1.	
 PL/SQL	
 constraint	
 InitiatorAuthConstraint	

A.2 ParticipantAuthConstraint

The ParticipantAuthConstraint shown in Figure A2 is an authorisation constraint, which is
placed on MeetingParticipant	
 action Select on the Meeting resource. It corresponds to the OCL-
defined authorisation constraint AC#4, presented in Section 2.2.
FUNCTION ParticipantAuthConstraint (
 pi_meetingId IN Meeting.ID%TYPE
)
 RETURN VARCHAR2
IS
 i_participation NUMBER;
BEGIN
 -- If count = 1 then the user is a participant
 SELECT COUNT (*)
 INTO i_participation
 FROM Users, MeetingParticipant
 WHERE Users.ID = MeetingParticipant.isOrganisedBetween
 AND Users.NAME = sec.get_username
 AND MeetingParticipant.invitedToParticipateAt = pi_meetingId;

 IF i_participation = 1
 THEN
 RETURN 'Y';
 ELSE
 RETURN 'N';
 END IF;
END ParticipantAuthConstraint;

Figure	
 A2.	
 PL/SQL	
 constraint	
 ParticipantAuthConstraint	

A
A

 24	

A.3 is_role
The is_role constraint shown in Figure A3 is an authorisation constraint, which is implicitly
placed on resources and on their actions. This constraint limits access to only one specified role.
The implementation given here is presented only as an example and the actual implementation is
not limited in any way, as it is usable inside the generated views and instead-of triggers. The
function uses Oracle database context demo_context, which stores the user’s role. If they match
the letter ‘Y’ for “Yes” is returned, otherwise letter ‘N’ for “No” is returned.

FUNCTION is_role(
 p_role VARCHAR2)
 RETURN VARCHAR2
IS
BEGIN
 IF upper(sys_context('demo_context', 'role')) = upper(p_role)
 THEN
 RETURN 'Y';
 ELSE
 RETURN 'N';
 END IF;
END is_role;	

Figure	
 A3.	
 PL/SQL	
 constraint	
 is_role	

Appendix B

In this Appendix we present four transformation rules for Insert, Update, Delete, and Select
security actions that help translating the SecureUML model to the PL/SQL code. All these rules
are written in Velocity template languages and are used to generate PL/SQL security constraints
from the SecureUML model. For the readability purpose the layout of the rules is slightly
modified. The templates are allowed only for academics and research purpose.

B.1 Transformation Rules for Insert Action

#parse("common-sql.vtl")##
#foreach($resource in $Class)
 #if($report.containsStereotype($resource,"secuml.resource"))
 CREATE OR REPLACE TRIGGER #if($secureSchema.length>0)${secureSchema}.#end##if
${resource.name}_sec_insert_trg
 INSTEAD OF INSERT
 ON #if($secureSchema.length>0)${secureSchema}.#end##if
${resource.name}_v
 REFERENCING NEW AS NEW
 FOR EACH ROW
 DECLARE
 ex_denied EXCEPTION;
 BEGIN
 #set($prefixClause="IF")
 #foreach($permission in $report.getRelationship($resource))
 #if($report.containsStereotype($permission,"secuml.permission"))
 #getPermissionAssignedRole($permission)
 #if($assignedRole)
 #foreach($attribute in $permission.ownedAttribute)
 #if ($attribute.type.name == "Insert")
 $prefixClause #hasRole($assignedRole) ##
 #set($prefixClause="OR")
 #getParsedPermissionConstraints($permission,":NEW") -- From
$permission.name

 25	

 #end##if Insert
 #end##foreach attribute
 #end##if hasCorrectRole
 #end##if secuml.permission
 #end##foreach permission
 #if($prefixClause!="IF")
 THEN
 INSERT INTO ${resource.name} (
 #countColumns($resource)
 #set($columnsDoneCount=0)
 #foreach($column in $resource.ownedAttribute)
 #if(!$column.getAssociation())
 ${column.name}##
 #set($columnsDoneCount=$columnsDoneCount+1)
 #if($columnsDoneCount < $columnCount)##
 ,
 #else

 #end##if hasMore
 #end##if !association
 #end##foreach column
) VALUES (
 #set($columnsDoneCount=0)
 #foreach($column in $resource.ownedAttribute)
 #if(!$column.getAssociation())
 :NEW.${column.name}##
 #set($columnsDoneCount=$columnsDoneCount+1)
 #if($columnsDoneCount < $columnCount)##
 ,
 #else

 #end##if
 #end##if !association
 #end##foreach column
);
 ELSE
 RAISE ex_denied;
 END IF;
 EXCEPTION
 WHEN ex_denied
 THEN
 #end##if
 raise_application_error (-20000, 'Access denied!');
 END;
 /
 #end##if
#end##foreach class

B.2 Transformation Rules for Update Action

#parse("common-sql.vtl")##
#foreach($resource in $Class)
 #if($report.containsStereotype($resource,"secuml.resource"))
 CREATE OR REPLACE TRIGGER #if($secureSchema.length>0)${secureSchema}.#end##if
${resource.name}_sec_update_trg
 INSTEAD OF UPDATE
 ON #if($secureSchema.length>0)${secureSchema}.#end##if
${resource.name}_v
 REFERENCING NEW AS NEW OLD AS OLD
 FOR EACH ROW
 DECLARE
 self #if($protectedSchema.length>0)${protectedSchema}.#end##if
${resource.name}%ROWTYPE;
 ex_denied EXCEPTION;

A
A

 26	

 BEGIN
 SELECT *
 INTO self
 FROM #if($protectedSchema.length>0)${protectedSchema}.#end##if
${resource.name} res
 WHERE res.ID = :OLD.ID;

 #countColumns($resource)
 #set($columnsDoneCount=0)## -- not used at the moment
 #foreach($column in $resource.ownedAttribute)
 #if(!$column.association)
 IF util.null_eq (:NEW.${column.name}, self.${column.name}) != 'Y' --
$column.name updated
 THEN
 #set($prefixClause="IF")
 ###getPermissions($resource,"Update", "self")
 #findImmediatePermissions($resource, "Update", "res", $prefixClause)
 ## -- BEGIN Find all resource views
 #foreach($dep in $Dependency)##
 #foreach($target in ${dep.target})##
 #set($isTarget=false)##
 #if($target == $resource)##
 #set($isTarget=true)##
 #end## -- if
 #if($isTarget)##
 ## -- BEGIN Find all resource view select permissions
 #foreach($resourceView in ${dep.client})##
 #if($report.containsStereotype($resourceView,"secuml.resourceView"))##
 #set($isStillTarget = false)##
 #foreach($viewAtt in $resourceView.ownedAttribute)##
 #if ($viewAtt.name == $column.name)##
 #set ($isStillTarget = true)##
 #end##-- if
 #end##-- foreach owned attribute
 ## --if still is target
 #if($isStillTarget)##
 ## --all permissions for the resource view
 #foreach($permission in $report.getRelationship($resourceView))##

#if($report.containsStereotype($permission,"secuml.permission"))##
 #getPermissionAssignedRole($permission)##
 #if($assignedRole)##
 #foreach($attribute in $permission.ownedAttribute)##
 #if($attribute.type.name == "Update")##
 $prefixClause #hasRole($assignedRole)
#getParsedPermissionConstraints($permission,"res")##
 #set($prefixClause="OR")
 #end##-- if Update
 #end##-- foreach attribute
 #end##-- if hasCorrectRole
 #end##-- if secuml.permission
 #end##-- foreach permission
 #end##-- is still a target
 ## -- END Find all resource view select permissions
 #end##-- isTarget #2
 #end##-- if secuml.resourceView
 #end##-- foreach resourceView
 #end##-- foreach target
 #end##-- foreach dep
 ## -- END Find all resource views
 #if($prefixClause!="IF")
 THEN
 self.${column.name} := :NEW.${column.name};
 ELSE
 #end##if

 27	

 RAISE ex_denied;
 END IF;
 END IF;
 #set($columnsDoneCount=$columnsDoneCount + 1)## -- not used!
 #end##if !association
 #end##foreach

 UPDATE #if($protectedSchema.name.lenght>0)${protectedSchema.name}.#end##if
${resource.name} res
 SET ROW = self
 WHERE res.ID = :OLD.ID;
 EXCEPTION
 WHEN ex_denied
 THEN
 raise_application_error (-20000, 'Access denied!');
 END;
/

 #end##if
#end##foreach resource

B.3 Transformation Rules for Delete Action

#parse("common-sql.vtl")##
#set($secumlResource="secuml.resource")##
#set($secumlPermission="secuml.permission")##
#foreach($resource in $Class)
 #if($report.containsStereotype($resource,$secumlResource))
 CREATE OR REPLACE TRIGGER #if($secureSchema.length>0)${secureSchema}.#end##if
${resource.name}_delete_trg
 INSTEAD OF DELETE
 ON #if($secureSchema.length>0)${secureSchema}.#end##if
${resource.name}_v
 REFERENCING OLD AS OLD
 FOR EACH ROW
 DECLARE
 self #if($protectedSchema.length>0)${protectedSchema}.#end##if
${resource.name}%ROWTYPE;
 ex_denied EXCEPTION;
 BEGIN
 SELECT *
 INTO self
 FROM #if($protectedSchema.length>0)${protectedSchema}.#end##if
${resource.name} res
 WHERE res.ID = :OLD.ID;

 #set($prefixClause="IF")
 #foreach($permission in $report.getRelationship($resource))
 #if($report.containsStereotype($permission,$secumlPermission))
 #getPermissionAssignedRole($permission)
 #if($assignedRole)
 #foreach($att in $permission.ownedAttribute)
 #if ($att.type.name == "Delete")
 $prefixClause #hasRole($assignedRole) ##
 #set($prefixClause="OR")
 #getParsedPermissionConstraints($permission, ":OLD")
 #end##if Delete
 #end##if assignedRole
 #end##if
 #end##foreach
 #end
 #if ($prefixClause!="IF")
 THEN
 DELETE FROM #if($protectedSchema.length>0)${protectedSchema}.#end##if

A
A

 28	

${resource.name} tbl
 WHERE tbl.ID = :OLD.ID;
 ELSE
 RAISE ex_denied;
 END IF;
 EXCEPTION
 WHEN ex_denied
 THEN
 #end##if
 raise_application_error (-20000, 'Access denied!');
 END;
 /
 #end##is secuml.resource
#end##resource

B.4 Transformation Rules for Select Action

#parse("common-sql.vtl")##
#foreach($resource in $Class)##
 #if($report.containsStereotype($resource,"secuml.resource"))
 CREATE OR REPLACE VIEW #if($secureSchema.lenght>0)${secureSchema}.#end##if
${resource.name}_v
 AS
 SELECT
 ## -- BEGIN find own attributes
 #countColumns($resource)
 #set($columnsDoneCount=0)
 ## -- END find own attributes
 #foreach($column in $resource.ownedAttribute)##
 #set($initialKeyword="CASE WHEN")
 #if(!$column.getAssociation())
 #findImmediatePermissions($resource, "Select", "res", $initialKeyword)
 #if($initialKeyword=="CASE WHEN")
 -- No immediate permissions
 #end##if
 ## -- BEGIN Find all resource views
 #foreach($dep in $Dependency)##
 #foreach($target in ${dep.target})##
 #set($isTarget=false)##
 #if($target == $resource)##
 #set($isTarget=true)##
 #end## -- if
 #if($isTarget)##
 ## -- BEGIN Find all resource view select permissions
 #foreach($resourceView in ${dep.client})##
 #if($report.containsStereotype($resourceView,"secuml.resourceView"))##
 #set($isStillTarget = false)##
 #foreach($viewAtt in $resourceView.ownedAttribute)##
 #if ($viewAtt.name == $column.name)##
 #set ($isStillTarget = true)##
 #end##-- if
 #end##-- foreach owned attribute
 ## --if still is target
 #if($isStillTarget)##
 ## --all permissions for the resource view
 #foreach($permission in $report.getRelationship($resourceView))##

#if($report.containsStereotype($permission,"secuml.permission"))##
 #getPermissionAssignedRole($permission)##
 #if($assignedRole)##
 #foreach($attribute in $permission.ownedAttribute)##
 #if($attribute.type.name == "Select")##
 $initialKeyword #hasRole($assignedRole) ##
 #set($initialKeyword="OR")

 29	

 #getParsedPermissionConstraints($permission,"res")##
 #end##-- if Insert
 #end##-- foreach attribute
 #end##-- if hasCorrectRole
 #end##-- if secuml.permission
 #end##-- foreach permission
 #end##-- is still a target
 ## -- END Find all resource view select permissions
 #end##-- isTarget #2
 #end##-- if secuml.resourceView
 #end##-- foreach resourceView
 #end##-- foreach target
 #end##-- foreach dep
 ## -- END Find all resource views
 #if($initialKeyword!="CASE WHEN")
 THEN self.${column.name}
 ELSE CAST (NULL AS #getOracleSqlType($column))
 END
 #set($columnsDoneCount=$columnsDoneCount+1)
 #else
 CAST (NULL AS #getOracleSqlType($column))
 #end##if
 AS ${column.name}##
 #if($columnsDoneCount<$columnCount)##
 ,
 #else

 #end##if
 #end##-- if not associatioin
 #end##-- foreach column

 FROM #if($protectedSchema.lenght>0)${protectedSchema}.#end##if
${resource.name} self
 #getPermissions($resource,"Select", "res", "WHERE");
/
 #end##-- if secuml.resource
#end##-- foreach resource

A
A

A
B

Comparing Quality of Security

Models: A Case Study

Publication:
Raimundas Matulevi£ius and Henri Lakk and Marion Lepmets and An-

dreas Sisask, Comparing Quality of Security Models: a Case Study, Pro-
ceedings of the ADBIS 2010 workshop MDASD 2010, University of Novi Sad
Press, Serbia, 2010

97

Comparing Quality of Security Models: A Case Study

Raimundas Matulevičius1, 2, Marion Lepmets1, 3, Henri Lakk4, and Andreas Sisask4

1 Software Technology and Application Competence Center,
Ülikooli 8, 51003 Tartu, Estonia

2 Institute of Computer Science, University of Tartu,
J. Liivi 2, 50409 Tartu, Estonia

rma@ut.ee
3 Institute of Cybernetics, Tallinn University of Technology,

Akadeemia 21, Tallinn, Estonia
marion.lepmets@ttu.ee

4 Logica, Sobra 54, Tartu, Estonia
{henri.lakk,andreas.sisask}@logica.com

Abstract. System security is an important artefact. However security is
typically considered only at an implementation stage nowadays in industry.
This makes it difficult to communicate security solutions to the stakeholders
earlier and raises the system development cost, especially if security
implementation errors are detected. In this paper we compare the quality of two
security models, which propose a solution to the industrial problem. One model
is created using PL/SQL, a procedural extension language for SQL; another
model is prepared with SecureUML, a model driven approach for security. We
result in significantly better quality for the SecureUML security model: it
contains higher semantic completeness and correctness, it is easier to modify
and understand, and it facilitates a better communication of security solutions to
the system stakeholders than the PL/SQL model.

Keywords: Model-driven security development, Modelling quality, PL/SQL,
SecureUML

1 Introduction

Nowadays, computer software and systems play an important role in different areas of
human life. They deal with different type of information including the one (e.g., bank,
educational qualification, and health records) that must be secured from the
unintended audience. Thus, ensuring system security is a necessity rather than an
option. Security analysis should be performed throughout the whole system
development cycle starting from the early stages (e.g., requirements engineering and
system design) and leading to the late stages (e.g., implementation and testing).
However this is not the case in practice [7] [20], where security is considered only
when the system is about to be implemented (e.g., at implementation stage) or
deployed (e.g., at installation stage). This is a serious limitation to the secure system
development, since the early stages are the place where security requirements should
be discovered and communicated among stakeholders, security trade-offs should be

A
B

96 R. Matulevičius, M. Lepmets, H. Lakk, and A. Sisask

considered, and security concerns should be clearly differentiated among different
system aspects (e.g., data, functionality, and etc).

In this work we report a case study carried out at the Software Technology and
Application Competence Centre in Estonia, where quality of two security models is
compared following the semiotic quality framework [8] [9]. One security model is
created using PL/SQL [18], a procedural programming language, another –
SecureUML [1] [11], a language for the model-driven security development. Both
models define a role-based access control [5] on the data model provided to us by our
industrial partner. The following research question is considered:

Which security model – PL/SQL or SecureUML – is of a better quality?

Our study results in a high quality of the SecureUML security model, which is
typically created at the requirements engineering and design stages of the systems
development. The structure of the paper is as follows: in Section 2 we introduce the
general RBAC model and the quality framework used to evaluate security models. In
Section 3 we present our case study design. Section 4 presents the evaluation of the
security models. In Section 5 we discuss the results, conclude our study, and present
some future work.

2 Theory

The security models analysed in this paper present the security policy expressed
through the role-based access control (RBAC) mechanism. In this section we briefly
present the RBAC domain. Then we introduce and instantiate the framework used to
assess the quality of the security models.

2.1 Role-based Access Control

The standard RBAC model is provided in [5]. Its basic concepts are illustrated in Fig.
1. The main elements of this model are Users, Roles, Objects, Operations, and
Permissions. A User is typically defined as a human being or a software agent. A
Role is a job function within the context of an organisation. Role refers to authority
and responsibility conferred on the user assigned to this role. Permissions are
approvals to perform one or more Operations on one or more protected Objects. An
Operation is an executable sequence of actions that can be initiated by the system
entities. An Object is a protected system resource (or a set of resources). Two major
relationships in this model are User assignment and Permission assignment. User
assignment relationship describes how users are assigned to their roles. Permission
assignment relationship characterises the set of privileges assigned to a Role.

Two security models described in Section 3, define a security policy based on the
RBAC domain. Thus, we will analyse model correspondence to the RBAC domain,
when considering their quality in Section 4.

Comparing Quality of Security Models: A Case Study 97

Fig. 1. Role-based access control model (adapted from [5])

2.2 Modelling Quality

Evaluations of a model quality [19] could be performed (i) using detailed qualitative
properties or (ii) through general quality frameworks. A systematic survey of these
approaches could be found in [17]. In this study we combine both approaches: firstly,
we follow guidelines of the semiotic quality (SEQUAL) framework [8], [9] to select
the quality types of interest. Secondly, we identify a set of qualitative properties that
are used to compare two security models.

The SEQUAL framework (Fig. 2) is an extension of the Lindland et al, (1994)
quality framework [10], which includes discussion on syntax, semantics and
pragmatics. It adheres to a constructivistic world-view that recognises model creation
as part of a dialog between participants whose knowledge changes as the process
takes place. The framework distinguishes between quality goals and means to achieve
these goals. Physical quality pursues two basic goals: externalisation, meaning that
the explicit knowledge K of a participant has to be externalised in the model M by the
use of a modelling language L; and internalisability, meaning that the externalised
model M can be made persistent and available, enabling the stakeholders to make
sense of it. Empirical quality deals with error frequencies when reading or writing M,
as well as coding and ergonomics when using modelling tools. Syntactic quality is the
correspondence between M and the language L in which M is written. Semantic
quality examines the correspondence between M and the domain D. Pragmatic
quality assesses the correspondence between M and its social as well as its technical
audiences’ interpretations, respectively, I and T. Perceived semantic quality is the
correspondence between the participants’ interpretation I of M and the participants’
current explicit knowledge KS. Social quality seeks agreement among the participants’
interpretations I. Finally, organisational quality looks at how the modelling goals G
are fulfilled by M. In the second case the major quality types include physical,
empirical, syntactic, semantic, pragmatic, social and organisational quality.

2.3 Quality Framework Application

Although SEQUAL provides fundamental principles to evaluate model quality, it
remains abstract. We need to adapt it in order to evaluate two security models
analysed in our case study. Although being influenced by the overall theoretical
background of the SEQUAL framework, in our study we specifically focus only on
three quality types, namely semantics, pragmatics, and syntax. Furthermore, based on

A
B

98 R. Matulevičius, M. Lepmets, H. Lakk, and A. Sisask

our experience of assessing the requirements engineering tools [13], development
guidelines [6], goal modelling languages and models [14], we select a set of
qualitative properties, that instantiates SEQUAL for the security model assessment.

Fig. 2. The SEQUAL framework (adapted from [8][9])

Semantic quality is a correspondence between a model and its semantic domain. We
define that the model should be:
 Semantically complete. It means that everything that the software is supposed to

do is included in the model. With respect to the security domain, we say that the
security model should include concepts corresponding to the RBAC domain.

 Semantically correct. It means that a model should represent something that is
required to be developed. With respect to the security domain this qualitative
property requires separation between data- and security-related concerns – only
the security-related knowledge is required in the security model.

 Traced. It requires that the origin of the model and its content should be
identifiable. The security model should clearly present the rationale why different
security solutions are included in the model.

 Achievable. It determines that there exists at least one implementation/application
that correctly implements the model.

 Annotated. It means that a reader is easily able to determine which elements are
most likely to change. This is especially important in the security model because
system security policy might be often changed.

 Modifiable. It means that the structure and the content are easy to change. When
security policies change it should be easy to change the security concerns quickly
in the model.

Comparing Quality of Security Models: A Case Study 99

The last two qualitative properties are important when new system security policies
are introduced. Knowing the place and being able to implement the new security
concerns quickly might substantially reduce the overall system maintenance cost.

Syntactic quality is a correspondence between a model and a modelling language.
The major goal of the syntactic quality is syntactic correctness. Thus, the model
should be:
 Syntactically valid. It means that the grammatical expressions used to create a

model should be a part of the modelling language;
 Syntactically complete. It means that all grammar constructs and their parts are

present in the model.
To test the syntactic correctness of the security models we need to investigate the
concrete syntax of the languages used to create these models.

Pragmatic quality is a correspondence between a model and an interpretation of
social and technical audience. With respect to the social actors we say that the model
should be:
 Cross-referenced. It means that different pieces of model content are linked

together;
 Organised. It means that the model content should be arranged so that a reader

could easily locate information and logical relationships among the related
information;

 Understandable. It means that a reader is able to understand the model with
minimum explanations.

The social audience of security model are typically security engineer, but it also
includes the system analysts, software developers, stakeholders (actors who pay for
the development of the secure system), and even direct users, who should also be
involved in the security requirements definition process.

For the technical model interpretation we define that the model should be
executable, meaning that there should exist technology capable of inputting the model
and resulting in its implementation.

3 Research method

In this section we will introduce a case study carried out to compare two security
models. We will define a case study design. Next, we will present our research
subjects – the two security models.

3.1 Design

Our research method presented in Fig. 3, is pretty straightforward. Firstly, we
formulated the research question (see Section 1). Then two researchers experienced in
modelling quality analysis, system and security modelling, performed the
investigation of two security models presented using PL/SQL and SecureUML

A
B

100 R. Matulevičius, M. Lepmets, H. Lakk, and A. Sisask

languages. The researchers applied the qualitative properties following the SEQUAL
framework (Section 2.3), and recorded their observations on the model quality. The
results were communicated to the model developers in order to verify the correctness.
Finally, the results are summarised.

Fig. 3. A case study design

3.2 Research Subject

As mentioned above the research subject includes two security models; one created
with PL/SQL, another – with SecureUML. Both models were prepared to solve the
same problem. The actual data and security models used in this case study could not
be presented here due to the privacy concerns of our industrial partner. But here we
include an extract of a meeting management subsystem [4]. This example closely
corresponds to the industry model used in the assessment. Our observations are the
same for both cases.

In our example users are allowed adding information about new meetings and
viewing information about all existing meetings. But one can delete or change
meeting information if and only if he/she is an owner (e.g., meeting initiator) of this
meeting. We will present the PL/SQL and in SecureUML models for this problem.

PL/SQL Security Model. The first security model is created using PL/SQL [18],
which is an Oracle Corporation's procedural extension language for SQL and the
Oracle relational database. The model was prepared using the EditPlus1 tool. In order
to receive a running application one needs to compile the PL/SQL source code.

In the industrial case the security description included two text-based (PL/SQL
code) pages. In Fig. 4 we illustrate a procedure that describes a permission defined on
the meeting. Here we see that if a certain condition (e.g., a user is a meeting owner

1 http://www.editplus.com/

Comparing Quality of Security Models: A Case Study 101

and the meeting end date has not yet passed) holds, it is possible to edit meeting
attributes (e.g., start, end, location, and owner); otherwise editing is not allowed.

Fig. 4. Excerpt of the PL/SQL security model

SecureUML Security Model. The second security model is created in SecureUML
[1], [11], which is a model-driven security approach that follows RBAC guidelines.
The model was prepared using MagicDraw2. The overall SecureUML model (the
industrial case) included around eight permissions on the secured resource for each
security action (e.g., update, select, delete, and insert of information). In Fig. 5 we
present an excerpt related to the meeting management subsystem.

Fig. 5. Excerpt of the SecureUML security model

Here two security permissions (e.g., UserSelectAllMeetings and
UserUpdateOwnMeeting) are defined for the role User over the resource Meeting.

2 http://www.magicdraw.com/

A
B

102 R. Matulevičius, M. Lepmets, H. Lakk, and A. Sisask

Similarly like in the PL/SQL model, an authorisation constraint
UserOwnDataConstraint defines that only an owner is allowed to update or delete
meeting information if the meeting date has not yet passed.

In order to receive an executable application, the SecureUML model is
automatically transformed to the PL/SQL code. For example, Fig. 6 illustrates the
example of a new owner assignment before the update action is executed. The
assignment is performed if the security condition (defined under
UserOwnDataConstraint in Fig. 5) holds. The transformed PL/SQL code is compiled
to a running application.

Fig. 6. Excerpt of the SecureUML model transformation to PL/SQL code

In the case study we have selected to analyse the model created using SecureUML,
but not its PL/SQL transformation. The reason is that we intend to analyse the model,
which is editable by system engineers directly.

4 Evaluating Security Models

This section presents our analysis of two security models introduced in Section 3.2.
We address syntactic, semantic and pragmatic quality types through the qualitative
characteristics, presented in Section 2.3. But first we discuss threats to the result
validity.

4.1 Threats to Validity

In our case study only two evaluators assessed the security models according to their
knowledge and experience. This certainly raises the level of subjectivity and
influences the internal validity of the case study. To mitigate this threat the evaluation
results were communicated to the model developers.

In our case the SEQUAL framework was instantiated with a certain set of
qualitative properties. This certainly affects the conclusion validity, because if any
other qualitative properties were applied, it might result in different outcome. But this
threat is rather limited because these qualitative properties are theoretically sound and
the selection is based on the previous experience as presented in Section 2.3.

We applied the ordinal scale (e.g., high, partial, and low) to assess the qualitative
properties of the models. This influences construct validity because different readers

Comparing Quality of Security Models: A Case Study 103

might interpret the assigned property values differently. On another hand we could
use the interval scales for each qualitative property (also reducing some subjectivity).
For example, semantic completeness could be expressed as a ratio between the
number of RBAC concepts that are possible to present using the modelling language,
and the total number of RBAC concepts (see Section 2.1). Similarly, annotation could
be addressed through counting annotated elements in the model. However, the
construction of the interval scale was not the purpose of our case study – we rather
were concerned about the feasibility to assess the security model quality and to learn
about the quality of PL/SQL or SecureUML security models in general.

In this case study we analysed only two different security models and these
models were quite limited in their size. This might influence the external validity by a
fact, that different results might be received if some other security models (created
either using PL/SQL, SecureUML, or any other modelling language) would be
analysed. However our research subject is a solution to an industry problem; thus we
believe that our analysis is generalisable in similar situations.

Finally we try to avoid a use of single type of measuring that might affect the
construct validity. As shown in the case study design (Fig. 3) the evaluation of the
security models is followed with the communication of the received results to the
models developers. This certainly reduces a risk of the mono-interpretation.

4.2 Quality of the PL/SQL Model

Semantic quality. Semantic completeness is assessed through a model
correspondence to the RBAC domain (see Section 2.1). The PL/SQL model focuses
primarily on the presentation of the security permissions, which are defined as the
attributes of objects that need to be secured. However it does not explicitly define on
which operations the security permissions are placed. In addition the PL/SQL model
does not express explicitly objects themselves, users, and their roles. This knowledge
is defined in the data model and not in the security model. This results in partial
semantic completeness.

The semantic correctness of the PL/SQL model is low, because it does not
separate the data and programmable concerns from the security concerns. For
example in the PL/SQL model we can observe assignment of different programmable
variables and definition of the user interface components (e.g.,
DO.item_enable(‘meeting.new_meeting’) is enabling the item of the user interface).

The PL/SQL model is not traced – this means that origin and rationale for the
security decisions are not provided in the model. We were not able to check
achievability property of the PL/SQL model. The reason is that it was not possible to
get the security requirements in order to confront its application correctness. The
PL/SQL model is not annotated, thus it is difficult to determine which elements are
most likely to change. The model is also difficult to modify because the same security
concern is addressed in several places of the model.

Syntactic quality. The PL/SQL model is of high syntactic validity and completeness,
because the model is created using the PL/SQL language, a programmable language.

A
B

104 R. Matulevičius, M. Lepmets, H. Lakk, and A. Sisask

Syntactically this model is correct because otherwise it would not be possible to
compile it to the application.

Pragmatic quality. We found the PL/SQL model of low understandability. In fact
we asked model developers to explain us different security solutions presented in this
model. The organisation of the model is also low, because there are no means that
would support finding security information or defining relationships between related
security solutions. The PL/SQL model is presented as a plain-text source code, thus it
does not contain any hyperlinks that would cross-reference related security concerns
(but also see Section 5.1). Finally, the executability of the PL/SQL model is high. It is
possible to compile this model through the Oracle database management system
resulting in a running application.

4.3 Quality of the SecureUML Model

Semantic quality. SecureUML is developed to design the RBAC-based solutions [5].
This means that SecureUML fully corresponds to the semantic domain, thus resulting
in high semantic completeness. We also identify high semantic correctness, because
only security solutions are presented in the SecureUML model.

In the SecureUML model we did not observe any rationale for security decisions,
thus it results in a low traced property. Like in the PL/SQL model, we were not able
to check the achievability of the SecureUML model because the security requirements
are not available. On another hand the achievability of the SecureUML model is high
with respect to its implementation. This model is automatically transformed to the
PL/SQL code thus resulting in the direct correlation between design and
implementation.

The Secure UML model is partially annotated. This annotation is achieved
through SecureUML stereotypes (e.g., <<secuml.permission>>, <<secuml.role>>,
etc.) and class names given to the permissions (e.g., UserSelectAllMeetings and
UserUpdateOwnMeeting) and the authorisation constraints (e.g.,
UserOwnDataConstraint). These class names are not directly used in the
transformation of the model to code, but they provide additional information to the
model reader. They also identify the places in the model where security policy is most
likely to be changed.

The SecureUML model is modifiable. The model implies a certain presentation
pattern – Role-Permission-Resource, which facilitates the changing of the model.

Syntactic quality. In the current model of the SecureUML we can identify a case of
syntactic invalidity. For instance the SecureUML documentation [1] [11] identify that
authorisation constraints need to be written in OCL. However in this model the SQL-
based authorisation constraints are used (e.g., see class UserOwnDataConstraint
constraint {owner=sec.get_username(), end>SYSDATE}). On another hand the model
is syntactically complete – it includes only UML extensions and their relationships
proposed by the authors of SecureUML [1] [11].

Comparing Quality of Security Models: A Case Study 105

Pragmatic quality. The Secure UML model is well understood by those readers
familiar with the UML modelling notation. This also opens the way to communicate
this model to a larger audience, including various project stakeholders, potential direct
users of the system, systems analysers, and developers. Our personal experience is
that this model is quite intuitive and did not require big effort to understand it.

The SecureUML model consists of several diagrams. It is also supported by a
modelling tool, which simplifies managing the model itself. For example the tool
provides the content table where the model diagrams and all model elements are
listed. In addition it is possible to prepare a navigation map diagram (see Fig. 7) that
assembles the logical relationship between different diagrams, thus keeping this
model both organised and cross-referenced.

Fig. 7. SecureUML content diagram

The SecureUML model is executable: there exists a number of the transformation
rules defined using the Velocity3 language (interpretable by MagicDraw tool) that
transform the model to PL/SQL code, which could be executed through Oracle
database management system.

4.4 Comparison

Table 1 summarises the assessment results for both PL/SQL and SecureUML models.
We see that three qualitative properties (i.e., model properties of being traced,
syntactically complete, and executable) score equally. One property – syntactic
validity – is found to be better in the PL/SQL model. The eight remaining properties
(i.e., semantic completeness, semantic correctness, achievability, annotation,
modifiability, understandability, organisation, and cross-referencing) are evaluated to
be higher in the SecureUML model.

5 Discussion and Conclusion

Our case study results in a higher quality for the SecureUML security model. In this
section we present a discussion on these results. Firstly, we communicate our finding

3 http://velocity.apache.org/engine/devel/user-guide.html

A
B

106 R. Matulevičius, M. Lepmets, H. Lakk, and A. Sisask

with the developers of the security models. Next, we situate our findings into the state
of the art. Finally, we present the future work.

Table 1. Quality of the security models. Quality is evaluated as High, Partial, and Low. NA
means – assessment is not available due to the lack of data

PL/SQL model SecureUML modelQuality types and
qualitative property Score Comments Score Comments

Semantically
complete

Partial

It focuses on security
permissions.

Presentation of other
RBAC constraints is

limited.

High

SecureUML is based on
the RBAC model.
Semantically it is

possible to present all
RBAC concepts.

Semantically
correct

Low
Data, programming and

security concerns are
intermixed.

High
He security and data

modelling concerns are
separated.

Traced Low Rationale is not given. Low Rationale is not given.

Achievable NA
Security requirements

were not obtained.
NA //
High

Security requirements
were not obtained // No
errors were observed in
the transformed PL/SQL

code

Annotated Low Nothing observed. Partial

SecureUML stereotypes,
Class names given to

permissions and
authorisation constraints

S
e

m
a

n
ti

c
q

u
a

li
ty

Modifiable Low

Changing one security
concern requires

several changes in the
model.

High

Model contains a
structured way to

express and change
security concerns.

Syntactically
valid

High
The model is compiled

to the application.
Partial

SQL (and not OCL) is
used for authorisation

constraints

S
y

n
ta

ct
ic

q
u

a
li

ty

Syntactically
complete

High
The model is compiled

to the application.
High

The model includes the
UML extensions for the

SecureUML.

Understandable Low
The model had to be

explained by
developers.

High

The model is intuitive
and could be used for

the communication
purpose among various

stakeholders.

Organised Low
Search for the related

security concerns is not
supported.

High
Content table supported

by a tool.

Crossed-
referenced

Partial

Plain text does not
contain any hyperlinks.

Procedure definition
might be seen as

textual cross-
references.

High

A diagram – navigation
map, containing cross-

referenced links
between different

diagrams.

P
ra

g
m

a
ti

c
q

u
a

li
ty

Executable High
Oracle database

management system.
High

Transformation
templates supporting
model translation to

PL/SQL code.

Comparing Quality of Security Models: A Case Study 107

5.1 Communicating Results to Developers

A result review was performed together with the developers of the security models.
Firstly, the developers noted that the overall quality of both models could be
improved if to take into account these evaluation results. For example the traceability,
annotation, and understandability of the PL/SQL model could be easily improved
using code comments. However, the developers acknowledged that this is not the case
in the common practice or the code comments, even if they are present, are not
sufficient. On another hand to improve syntactic validity of the SecureUML model we
could write the authorisation constraints in OCL instead of SQL.

Secondly, developers provided few remarks regarding some qualitative properties.
For instance, semantic completeness could be improved by presenting concrete
instances in the models. This means hard coding in the PL/SQL model and object
presentation in the SecureUML model. However, this neglects the principle of
generosity in modelling.

On one hand, a tool used to make the PL/SQL model, does not support hyper-
linking. Although there exist several PL/SQL editing tools (e.g., Oracle
SQLDeveloper or Quest Software Toad for Oracle, actually used by our industrial
partner) that supports cross-references between various model elements, but these
were not used in this case study. On another hand, developers also indicated that
PL/SQL grammar principles, the ones, which allow expressing procedures (e.g.,
PROCEDURE meeting_permissions in Fig. 4) and referring to them from the main
code, could also be seen as textual cross-referencing. Thus, we estimate this
qualitative property as partial for the PL/SQL model.

5.2 Related Work

We found none studies that would compare quality of (security) models prepared
using different modelling approaches. However, the literature reports on a number of
case studies [12] [15] [16] analyzing different characteristics of the model-driven
development. Mostly these studies focus on the benefits and on the infrastructure
needed for the model-driven development. Similarly to [2] [12] [15] we observe that
SecureUML model facilitates automatic code generation – the SecureUML security
model is executable through its generation to PL/SQL code (see Section 3.2). We also
argue that the security models should be prepared with the high-quality modelling
language [16], ensuring the model semantic completeness, and tools [12],
guaranteeing model syntactic validity and syntactic completeness. Only then one
could expect that model-driven security could yield a higher productivity with respect
to a traditional development [15].

We identified only one case study performed by Clavel et al [2], reporting on the
SecureUML application in practice. Here authors observe that although security
models are integrated with the data models, the security design remains independent,
reusable and evolvable. In our work we also observe that semantic correctness of
SecureUML model is high, because only security aspect are described in this model.
We also observe that SecureUML model is modifiable, which means the first step
towards model evolvability. Like in [2] we identify that the SecureUML model is

A
B

108 R. Matulevičius, M. Lepmets, H. Lakk, and A. Sisask

understandable at least to readers who are familiar with UML. This might ease
communication of requirements and design solutions to project stakeholders [12].
Finally, Clavel et al [2] identify that SecureUML is expressive enough to model the
RBAC policy defined in the requirements document. However, we were not able to
analyse achievability property because our industrial partner did not provide us
security requirements documents.

5.3 Future Work

Our future work includes a definition of a framework that would facilitate the
adoption of the model-driven security approach in practice [21]. For instance an
organisation should have modelling tools (e.g., MagicDraw and Velocity interpreter)
that would support developing and applying security model transformation rules. Also
the organisation should adopt a mature security modelling method that should include
the early security requirements discovery, security quality assurance, and overall
project planning.

For the successful adoption, organisation’s working processes should also be
compatible with model-driven security. Our future work includes performing another
case study where we would compare quality of processes to develop security models
using PL/SQL and SecureUML.

The organisation should have an expertise for security language engineering. This
includes knowledge about how to combine the existing software tools and security
modelling approaches together. For instance we need to define guidelines and
transformation rules for the OCL-based authorisation constraints. This would also
improve the syntactic validity of the SecureUML model.

Finally an organisation should follow a goal-driven process for defining goals to
introduce security model-driven development. Examples of this paper focuses on the
security policy for the data model. Our next goal is to develop transformation rules
that would facilitate implementation of the security concerns at the system application
and presentation levels.

Acknowledgments. This research is funded by Logica and the European Regional
Development Funds through the Estonian Competence Centre Programme and
through the Estonian Center of Excellence in Computer Science, EXCS.

References

1. Basin, D., Doser, J., Lodderstedt, T.: Model Driven Security: from UML Models to Access
Control Infrastructure. ACM Transactions on Software Engineering and Methodology
(TOSEM), 15 (1), 39--91 (2006)

2. Clavel M., Silva V., Braga C., Egea M.: Model-driven Security in Practice: an Industrial
Experience, In: Proceedings of the 4th European conference on Model Driven Architecture:
Foundations and Applications, Springer-Verlag, pp. 326--337, (2008)

3. Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid, G.,
Ledeboer, G., Reynolds, P., Srimani, P., Ta, A., Theofanos, M.: Identifying and Measuring

Comparing Quality of Security Models: A Case Study 109

Quality in a Software Requirements Specification. In: Proceedings of the 1st International
Software Metrics Symposium, pp. 141--152 (1993)

4. Feather, M.S., Fickas, S., Finkelstein, A., van Lamsweerde A.: Requirements and
Specification Exemplars. Automated Software Engineering, 4: 419--438 (1997)

5. Ferraiolo D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed NIST
Standard for Role-based Access Bontrol. ACM Transactions on Information and System
Security (TISSEC), 4(3), 224--274 (2001)

6. Hakkarainen S., Matulevičius R., Strašunskas D., Su X. and Sindre G.: A Step Towards
Context Insensitive Quality Control for Ontology Building Methodologies. In Proceedings
of the CAiSE 2004 Open INTEROP-EMOI Workshop, pp. 205--216, (2004)

7. Jurjens. J.: Secure Systems Development with UML. Springer-Verlag Berlin Heidelberg,
(2005)

8. Krogstie, J.: A Semiotic Approach to Quality in Requirements Specifications. In: Proc. IFIP
8.1 working Conf. on Organisational Semiotics, pp. 231--249 (2001)

9. Krogstie, J.: Using a Semiotic Framework to Evaluate UML for the Development for
Models of High Quality. In: Siau, K., Halpin, T. (eds.) Unified Modelling Language: Sys-
tem Analysis, Design and Development Issues, IDEA Group Publishing, pp. 89--106
(1998)

10. Lindland O. I., Sindre G., Sølvberg A.: Understanding Quality in Conceptual Modelling.
IEEE Software, 11(2), pp. 42--49 (1994).

11. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-based Modeling Language for
Model-driven Security. In: Proceedings of the 5th International Conference on The Unified
Modeling Language, LNCS, vol. 2460, pp. 426--441. Springer-Verlag (2002)

12. MacDonald A., Russell D., Atchison B.: Model-driven Development within a Legacy
System: An Industry Experience Report. In: Proceedings of the 2005 Australian Software
Engineering Conference (ASWEC’05). IEEE Computer Science (2005)

13. Matulevičius, R.: Process Support for Requirements Engineering: A Requirements Engi-
neering Tool Evaluation Approach. PhD theses. Norwegian University of Science and
Technology (2005)

14. Matulevičius R., Heymans P.: Comparison of Goal Languages: an Experiment. In
Proceedings of the Working Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ 2007), Trondheim, Norway, Springer-Verlag, pp 18--32 (2007)

15. The Middleware Company: Model Driven Development for J2EE Utilizing a Model Driven
Architecture (MDA) Approach: Productivity Analysis, MDA Productivity case study
(2003)

16. de Miguel M., Jourdan J., Salicki S.: Practical Experiences in the Application of MDA. In:
Proceedings of the 5th International Conference on The Unified Modeling Language,
Springer-Verlag, pp. 128--139 (2002)

17. Moody D.L.: Theoretical and Practical Issues in Evaluating the Quality of Conceptual
Models: Current State and Future Directions. Data and Knowledge Engineering 55 (3):
243--276 (2005)

18. Morris-Murthy L.: Oracle9i: SQL, with an Introduction to PL/SQL. Course Technology,
(2003)

19. Piattini, M., Genero, M., Poels, G., Nelson J.: Towards a Framework for Conceptual
Modelling Quality. In: Genero, M., Piattini, M., Calero, C. (eds.) Metrics for Software
Conceptual Models, pp. 1--18. Imperial College Press, London (2005)

20. Sindre, G., Opdahl, A.L.: Eliciting Security Requirements with Misuse Cases.
Requirements Engineering Journal 10(1) pp. 34--44 (2005)

21. Staron M.: Adopting Model Driven Software Development in Industry – A Case Study at
Two Companies. In: 9th International Conference on Model Driven Engineering Languages
and Systems (MoDELS 2006), pp. 57--72. Springer-Verlag (2006)

A
B

A
C

An Approach to Assess and

Compare Quality of Security

Models

Publication:
Raimundas Matulevicius, Henri Lakk, and Marion Lepmets, An Approach

to Assess and Compare Quality of Security Models. Computer Science and
Information Systems, ComSIS Consortium, 2011.

115

DOI:10.2298/CSIS101231014M

An Approach to Assess and Compare

Quality of Security Models

Raimundas Matulevičius1, Henri Lakk
1
, and Marion Lepmets

2

1 Institute of Computer Science, University of Tartu,
J. Liivi 2, 50409 Tartu, Estonia

rma@ut.ee, henri.lakk@gmail.com
2 Centre for Public Research Henri Tudor – SSI

29 Av. John F. Kennedy, L-1855 Luxembourg,
Marion.Lepmets@tudor.lu

Abstract. System security is an important artefact. However security is
typically considered only at implementation stage nowadays in industry.
This makes it difficult to communicate security solutions to the
stakeholders earlier and raises the system development cost, especially
if security implementation errors are detected. On the one hand
practitioners might not be aware of the approaches that help represent
security concerns at the early system development stages. On the other
hand a part of the problem might be that there exists only limited support
to compare different security development languages and especially
their resulting security models. In this paper we propose a systematic
approach to assess quality of the security models. To illustrate validity of
our proposal we investigate three security models, which present a
solution to an industrial problem. One model is created using PL/SQL, a
procedural extension language for SQL; another two models are
prepared with SecureUML and UMLsec, both characterised as
approaches for model-driven security. The study results in a higher
quality for the later security models. These contain higher semantic
completeness and correctness, they are easier to modify, understand,
and facilitate a better communication of security solutions to the system
stakeholders than the PL/SQL model. We conclude our paper with a
discussion on the requirements needed to adapt the model-driven
security approaches to the industrial security analysis.

Keywords: model-driven security development, modelling quality,
PL/SQL, secureUML, UMLsec.

1. Introduction

Nowadays, computer software and systems play an important role in different
areas of everyday life. They deal with different type of information including
the one (e.g., bank, educational qualification, and health records) that must be
secured from the unintended audience. Thus, ensuring system security is a
necessity rather than an option. Security analysis should be performed

A
C

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 448

throughout the whole system development cycle starting from the early stages
(e.g., requirements engineering and system design) and leading to the late
stages (e.g., implementation and testing). However this is not the case in
practice [13], [32] where security is considered only when the system is about
to be implemented (e.g., at implementation stage) or deployed (e.g., at
installation stage). This is a serious limitation to the secure system
development, since it is the early stages where security requirements should
be discovered and communicated among stakeholders, security trade-offs
should be considered, and security concerns should be clearly differentiated
among different system aspects (e.g., data, functionality, and etc).

One possible suggestion to solve the above problem is an approach called
model driven architecture (MDA). MDA provides a solution for the system
development process based on models [5] that are the simplified
representations of reality. Although MDA is certainly useful for the general-
purpose system and software development [14], [20], [33], [34], the current
state of the art gives little evidence (we identified only one study – [3]) on how
model driven security (MDS) could help developers to improve the security
definition and implementation process.

A part of the problem could be a lack of the systematic support to assess
the security development languages both at the systems modelling and
system implementation stages. In this paper we have proposed a systematic
approach to evaluate quality the security models following the instantiation of
the Semiotic Quality (SEQUAL) framework [15] [16]. To validate our proposal
we have performed a case study (carried on at the Software Technology and
Application Centre in Estonia), where we compare quality of the security
model prepared using PL/SQL [9] (a procedural programming language), and
quality of the security model prepared using MDS approaches, namely
SecureUML [2], [19] and UMLsec [11]. All the security models define a role-
based access control [8] on the data model provided to us by our industrial
partner. Our case study results in a higher quality for the security models,
created at the requirements engineering and design stages of the systems
development. However we also highlight a set of requirements that are
necessary to fulfil in order the MDS approaches were applicable in practice.

The structure of the remaining paper is as follows: in Section 2 we
introduce the background of our research. We present the general RBAC
model, the quality framework, and the approaches that help express system
security concerns. In Section 3 we introduce an approach to assess quality of
the security models. Next in Section 4 we illustrate the application of our
proposal to evaluate quality of three languages, namely PL/SQL, SecureUML
and UMLsec. Hence, we list our observations regarding model semantic,
syntactic and pragmatic quality types. Finally, in Section 5 we discuss the
results against the related work, and we also conclude our study.

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 449

2. Background

In this section we provide the background for our study. Firstly, we discuss the
principles of the role-based access control. Secondly, we survey an
evaluation framework that helps to assess model quality. Finally, we discuss
development languages to represent system security.

2.1. Role-based Access Control

In this work we adapt the core role-based access control (RBAC) model [8].
This model defines a minimum set of concepts and relationships in order to
define a role-based access control system. The basic concept of RBAC is that
users are assigned to roles, permissions are assigned to roles, and users
acquire permissions by being members of roles. The same user can be
assigned to many roles and a single role can have many users. Similarly, for
permissions, a single permission can be assigned to many roles and a single
role can be assigned to many permissions.

The basic concepts of the RBAC model are illustrated in Fig. 1. The main
elements of this model are Users, Roles, Objects, Operations, and
Permissions. A User is typically defined as a human being or a software
agent. A Role is a job function within the context of an organisation. Role
refers to authority and responsibility conferred on the user assigned to this
role. Permissions are approvals to perform one or more Operations on one or
more protected Objects. An Operation is an executable sequence of actions
that can be initiated by the system entities. An Object is a protected system
resource (or a set of resources). Two major relationships in this model are
User assignment and Permission assignment. User assignment relationship
describes how users are assigned to their roles. Permission assignment
relationship characterises the set of privileges assigned to a Role.

Fig. 1. Role-based Access Control Model (adapted form [8])

In Section 3 we propose an assessment of the quality for security models.
There, the RBAC model suggests the criteria that help to judge about the
model semantic properties as we illustrate in Section 4.

A
C

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 450

2.2. Modelling Quality

Evaluations of a model quality [30] could be performed (i) using detailed
qualitative properties or (ii) through general quality frameworks. A systematic
survey of these approaches could be found in [28]. In this study we combine
both approaches: firstly, we follow guidelines of the semiotic quality
(SEQUAL) framework [15], [16] to select the quality types of interest.
Secondly, we identify a set of qualitative properties that are used to compare
two security models.

The SEQUAL framework (Fig. 2) is an extension of the Lindland et al,
(1994) quality framework [18], which includes discussion on syntax, semantics
and pragmatics. It adheres to a constructivistic world-view that recognises
model creation as part of a dialog between the participants whose knowledge
changes as the process takes place. The framework distinguishes between
quality goals and means to achieve these goals. Physical quality pursues two
basic goals: externalisation, meaning that the explicit knowledge K of a
participant has to be externalised in the model M by the use of a modelling
language L; and internalisability, meaning that the externalised model M can
be made persistent and available, enabling the stakeholders to make sense of
it. Empirical quality deals with error frequencies when reading or writing M, as
well as coding and ergonomics when using modelling tools. Syntactic quality
is the correspondence between M and the language L in which M is written.
Semantic quality examines the correspondence between M and the domain
D. Pragmatic quality assesses the correspondence between M and its social
as well as its technical audiences’ interpretations, respectively, I and T.
Perceived semantic quality is the correspondence between the participants’
interpretation I of M and the participants’ current explicit knowledge KS. Social
quality seeks agreement among the participants’ interpretations I. Finally,
organisational quality looks at how the modelling goals G are fulfilled by M. In
the second case the major quality types include physical, empirical, syntactic,
semantic, pragmatic, social and organisational quality.

2.3. System Security

In order to define the system security policy in a systematic way it is important
to understand the need for security within an organisation. One of the possible
ways is to apply the security risk management process [26]. This process
begins with the identification of the secure assets and the determination of the
security objectives (in terms of confidentiality, integrity, and availability).
During the next step security risks and their harm to the secured assets and
their security objectives, are identified. Once the risk assessment is
performed, risk treatment decisions (e.g., risk avoidance, risk reduction, risk
transfer or risk retention) are taken. Following these decisions, the developers
formulate the security requirements in order to mitigate the identified risks.
Security requirements are, finally implemented into the security controls.

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 451

Fig. 2. The SEQUAL framework (adapted from [15], [16])

In order to support security modelling various research groups have
proposed a variety of different approaches. For instance abuse frames [17]
suggest means to consider security during early requirements engineering
stage. Secure i* [6] addresses security trade-offs. KAOS’ extension to security
[35] was augmented with anti-goal models designed to elicit attackers’
rationales. Tropos has been extended with the notions of ownership,
permission and trust [10]. Another version of Secure Tropos [29] defines
security through the security constraints. Abuse cases [27], misuse cases [32]
and mal-activity diagrams [31] are the extensions for the modelling languages
from the UML family. Another UML extension (through the stereotypes,
tagged values and constraints) towards security is UMLsec [13]. This
language is, basically, used to address the security concerns during the
system design stage. Although the majority of those approaches contribute to
a proper definition of the security requirements, but they discuss little on how
these security requirements should be implemented into the security controls.

Furthermore there is little support to assess these languages before their
actual application to solve problems of system and software development.
Thus, in this paper we propose a systematic approach, which could guide
evaluation of the security languages through the hands-on testing. To
illustrate application of the approach we have executed a case study where
we have selected three languages – PL/SQL [9], SecureUML [2], [19],
UMLsec [13]. We have investigated how these languages could contribute to
the implementation of the security controls. More specifically we use these
three approaches to define a role based access control (RBAC) policy for the
data that needs to be secured.

A
C

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 452

3. An Assessment of Quality for Security Models

In this paper we introduce a systematic and hands-on-based approach to
assess and compare quality of the security models. Our proposal consists of
six steps as illustrated in Fig. 3. During the first step one needs to define the
evaluation goal. With respect to the security models, the assessment goal
could be understanding of the nature of the security needs, learning about the
scope of the security models, learning about the quality of the security
models, comparing different security models according to the quality criteria
identified in the second step and similar.

Fig. 3. An Assessment of Quality for Security Models

The second and the third steps of our proposal could be executed in
parallel. The second step is identification of the quality evaluation criteria.
Although, as illustrated in Section 2.2, the SEQUAL framework provides
fundamental principles to evaluate model quality, firstly, it remains abstract,
and, secondly, it is dedicated to the models of the general purpose, but not to
the security models. As we show in Section 4.2, we select a set of qualitative
properties that instantiates SEQUAL for the security model assessment based
on the literature [4], [15] and on our experience of assessing the requirements
engineering tools [21], development guidelines [11], goal modelling languages
and models [24].

As discussed in Section 2.3, the security concerns could be represented
using different languages. Thus, depending on the goal defined in the first

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 453

step, one needs to select or to create security models, which quality will be
executed assessed in the subsequent steps.

The fourth step is about performance of the evaluation of the
selected/created (in step 3) security models. This includes the investigation of
the models and assignment of the subjective and objective values to the
predefined (in step 2) model measures.

Expressing security quality is not an easy task. Thus we introduce the fifth
step where evaluators have to validate the quality evaluation results. This
typically means consultation of the received measures to the experts or to the
model developers (see for instance Section 4.5.2). The final step of the
security model assessment is the summary and report on the evaluation
results.

In Section 4 we are reporting on a case study where we use our proposal
to assess quality of three security models, created using PL/SQL [9],
SecureUML [2] [19] and UMLsec [13].

4. A Case Study

Two researchers have followed the steps of the assessment of the quality for
security models. They have defined the evaluation goals, identified the quality
evaluation criteria and created the security models for evaluation. The model
assessment results were communicated to the model developers in order to
validate their correctness. The overall application of the method is illustrated
in the following subsections.

4.1. Defining the Evaluation Goals

The goal of this case study is twofold:

 Firstly, we are interested in learning about the quality of the security
models created using different languages. More specifically we will
compare the models created at the software system design stage and
software system implementation stage. In both cases our model will
be defining the role-based access control polity for the system data.

 Secondly, we are interested in performance and feasibility of the
method introduced in Section 3. Through the case study we will
record our observations on the method application.

4.2. Identifying the Quality Evaluation Criteria

Although being influenced by the overall theoretical background of the
SEQUAL framework, in our study we specifically focus only on three quality
types, namely semantics, pragmatics, and syntax. Hence we will introduce a

A
C

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 454

set of measures in order to understand the quality of the security models. In
fact in [25] we have already defined a set of subjective measures that helped
us to address the model quality by its relative level (there we applied the
ordinal scale consisting of Low, Partial, and High values). In this work we
extend the quality model by introducing measures that allow developers to
estimate quality quantitatively. The instantiation of the SEQUAL framework for
the security model is illustrated in Fig. 4 and presented below.

Fig. 4. Instantiation of the SEQUAL framework

Semantic quality is a correspondence between a model and its semantic
domain. We assess semantic quality through the following qualitative
properties and their measures:
Semantic completeness. It means that everything that the software is

supposed to do is included in the model. With respect to the security
domain, we say that the security model should include concepts
corresponding to the RBAC domain, which is presented in Section 2.1. The
Percentage of the RBAC domain coverage is calculated as a division
between the number of RBAC concepts presented in the model and the
number of RBAC concepts.

Semantic correctness. It means that a model should represent something that
is required to be developed. With respect to the security domain this
qualitative property requires separation between data- and security-related
concerns – only the security-related knowledge is required in the security
model. Percentage of security related statements describe the degree of
security statements with respect to the overall model is.

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 455

Traceability. It requires that the origin of the model and its content should be
identifiable. The security model should clearly present the rationale why
different security solutions are included in the model. We define a measure
Number of traceability links, which characterise a count of links traced to
the origin of the model.

Annotation. It means that a reader is easily able to determine which elements
are most likely to change. This is especially important in the security model
because system security policy might be changed often. A measure of
Number of annotation elements gives the count of annotations used in the
model.

Modifiability. It means that the structure and the content are easy to change.
When security policies change it should be easy to change the security
concerns quickly in the model. To estimate modifiability we define a
measure of Time spent to modify. It indicates how long it takes to change
security policy in the system.
The last two qualitative properties are important when the new system

security policies are introduced. Knowing the place and being able to
implement the new security concerns quickly might substantially reduce the
maintenance cost of overall system.

Syntactic quality is a correspondence between a model and a modelling
language. The major goal of the syntactic quality is syntactic correctness. The
following qualitative properties and their measures are defined:
Syntactic validity. It means that the grammatical expressions used to create a

model should be a part of the modelling language. The measure defined for
this qualitative property is a Number of syntactically invalid statements. If
the value for this measure is higher the syntactical validity of the model is
worse.

Syntactic completeness. It means that all grammar constructs and their parts
are present in the model. We define a measure Number of syntactically
incomplete statements. Similarly to syntactic validity measure, the syntactic
completeness estimates high if Number of syntactically incomplete
statements results in null.
To test the syntactic correctness of the security models we need to

investigate the concrete syntax of the languages used to create these models.
Pragmatic quality is a correspondence between a model and an

interpretation of social and technical audience. The social audience of security
model is typically security engineer, but it also includes the system analysts,
the software developers, the stakeholders (actors who pay for the
development of the secure system), and even the direct users, who should
also be involved in the security requirements definition process. With respect
to the social actors we define the following qualitative properties and their
measures:
Understandability. It means that a reader is able to understand the model with

minimum explanations. To estimate the understandability of the security
model we can count number of the explanations needed for the social
audience. On the other hand here we define a measure Time spent to
understand the model.

A
C

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 456

Cross-referencing. It means that the different pieces of model content are
linked together. A measure of Number of cross-reference links provides a
count of cross-referenced links between model components.

Organisation. It means that the model content should be arranged so that a
reader could easily locate information and logical relationships among the
related information. This could be done by the table of content, division of
the model to different sections/chapters, inclusion of the glossary and
similar. A measure of Number of organisation elements returns a count for
the elements, which could help in arrangement of the logical information.
For the technical model interpretation we define that the model should be

estimated according to executability property, meaning that there should exist
technology capable of inputting the model and resulting in its implementation.
The existence of technology is characterised by a measure Technology
capable to execute the model.

4.3. Selecting / Creating Security Models

In order to understand the quality of the security models we have selected
three languages: PL/SQL [9], SecureUML [2] [19], and UMLsec [13]. We have
applied these languages to create the models following the RBAC policy. In
fact in our models we were solving the industrial problem; however the actual
data and security models could not be presented here due to the privacy
concerns of our industrial partner. But here we include an extract of a meeting
scheduling system [7]. This example closely corresponds to the industry
models used in the assessment. Our observations are the same for the
industrial problem and for the meeting scheduler system.

Security problem. Meeting scheduling system [7] is described as follows:
there is a need to organise a top-secret meeting in the way that only intended
users would know when the meeting starts and ends, what meeting owner
and location are. In our example users are allowed adding information about
new meetings and viewing information about all existing meetings. But one
can delete or change meeting information if and only if he/she is an owner
(e.g., meeting initiator) of the meeting. We will present solutions to this
problem in the PL/SQL, SecureUML and UMLsec security models.

PL/SQL. Oracle PL/SQL is a procedural language extension [9] to the
standard query language (SQL). PL/SQL was introduced by Oracle
Corporation to overcome some limitations of SQL and to provide a more
complete implementation solution to develop the mission-critical applications,
which run on the Oracle database. PL/SQL is an embedded language and
could not be used as a standalone language. The language ensures that the
programs can stay entirely within the operating-system independent Oracle
environment. One of the important aspects of the language is its tight
integration with SQL. This means the programs do not rely on intermediate
software (e.g. Open Database Connectivity (ODBC) or Java Database
Connectivity (JDBC)) in order to run SQL statements. Among other features,

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 457

PL/SQL deals with control flows, exception handling, and advanced data
types.

Fig. 5. Excerpt of the PL/SQL security model

The PL/SQL security model is prepared using the EditPlus1 tool. In general
the security model consists of the library that accumulates different security
procedures written in PL/SQL. In our example this library contains three
procedures that define different security policies for three RBAC roles –
Admin, SuperUser, and User. For example in Fig. 5 we illustrate a procedure
of meeting_permissions that describes a set of permissions, which are
defined on the meeting for one RBAC role, called User (e.g., the role is
checked through the condition if sec.is_role(‘User’)). Here we see that if a
certain condition (e.g., a user is a meeting owner and the meeting end date
has not yet passed) holds, it is possible to edit meeting attributes (e.g., start,
end, location, and owner); otherwise editing is not allowed. In order to receive
a running application one needs to compile the PL/SQL source code.

1 http://www.editplus.com/

A
C

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 458

SecureUML. The SecureUML modelling language [2] [19] adapts the
RBAC model. At the concrete syntax level SecureUML is a “lightweight
extensions” of the UML, namely through stereotypes, tagged values and
constraints. It introduces the concepts and the stereotypes for User, Role, and
Permission as well as the relationships between them (RoleAssignment and
PermissionAssignment). Here the secured objects and the operations are
expressed through the protected objects, which are modelled using the
standard UML elements.

The semantics of Permission is defined through ActionType elements used
to classify permissions. Here every ActionType represents a class of security-
relevant operations (e.g., specific security actions: select, change, insert, and
delete) on a particular type of protected resource. An AuthorisationConstraint
is a part of the access control policy. It expresses a precondition imposed to
every call to an operation of a particular resource. This precondition usually
depends on the dynamic state of the resource, the current call, or the
environment. The authorisation constraint is attached either directly or
indirectly, via permissions, to a particular model element representing a
protected resource.

The SecureUML security model was prepared using MagicDraw2. The
overall model consists of five diagrams. A top-level diagram is a content
diagram as shown in Fig. 6. Other four diagrams present four aspects of the
security model. For instance, diagram SecurityResource-Views describes the
data, which need to be secured, diagrams RolePermissions-Admin,
RolePermissions-SuperUser, and RolePermissions-User present the security
permissions with respect to the roles Admin, SuperUser, and User.

Fig. 6. SecureUML content diagram

In Fig. 7 we present an excerpt of the Meeting Scheduling system (User

permissions). Here two security permissions (e.g., UserSelectAllMeetings and
UserUpdateOwnMeeting) are defined for the role User over the resource
Meeting. Similarly like in the PL/SQL model, an authorisation constraint
UserOwnDataConstraint defines that only an owner is allowed to update or
delete meeting information if the meeting date has not yet passed.

2 http://www.magicdraw.com/

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 459

In order to receive an executable application, the SecureUML model is
automatically transformed to the PL/SQL code (see illustration in the
Appendix of this paper). The transformed PL/SQL code is then compiled to a
running application.

In our case study we have selected to analyse the model created using
SecureUML, but not its PL/SQL transformation. The reason is that we intend
to analyse the model, which is editable by the system developers directly.

Fig. 7. Excerpt of the SecureUML security model

UMLsec. The UMLsec modelling language [13] is defined as a UML profile
extension using stereotypes, tagged values and constraints. Constraints
specify security requirements. Threat specifications correspond to actions
taken by the adversary. Thus, different threat scenarios can be specified
based on adversary strengths.

A subset of UMLsec that is directly relevant to this study is the role-based
access control stereotype – <<rbac>> – its tagged values and constraints.
This stereotype enforces RBAC in the business process specified in the
activity diagram. It has three associated tags {protected}, {role}, and {right}.
The tag {protected} describes the states in the activity diagram where the
access to the activities should be protected. The {role} tag may have a list of
pairs (actor, role) as its value, where actor is an actor in the activity diagram,
and role is a role. The tag {right} has a list of pairs (role, right) as its value,
where role is a role and right represents the right to access a protected
resource. The associated constraint requires that the actors in the activity
diagram only perform actions for which they have the appropriate rights.

In Fig. 8 we define an activity diagram, which describes an interaction
between User and Meeting. The diagram specifies that User can Insert data
(e.g., meeting start- and end-dates, meeting owner, and meeting location).
Next, User is able to Select data in order to check if data are correct. If these
are not OK User is able to Update data. After the meeting is over, User is able
to Delete data about this meeting.

A
C

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 460

Fig. 8. Meeting Scheduler with UMLsec

This diagram carries an <<rbac>> stereotype, meaning that the security
policy needs to be applied to the protected actions. For instance, the User’s
actions lead to the secured actions executed by the Meeting. For example,
Insert data is executed if and only if there exists an associated tag that
defines the following: (i) Insert data is a protected action, (ii) there exists a
user (e.g., Bob) who plays role User, and (iii) User enforces the action Insert
data. In the activity diagram this associated tag is defined as follows:
 {protected = Insert data}

 {role = (Bob, User)}

 {right = (User, Insert data)}

Similarly, the sets of associated tags are defined for other three protected
actions Select data, Update data, and Delete data. Like in the SecureUML
model, using UMLsec we need to define activity diagrams (with the models
<<rbac>> stereotype) for other two actors – Admin and SuperUser.

4.4. Performing Evaluation of the Security Models

In this section we will subsequently discuss the results of our assessment of
the security models. We will see the results on semantic, syntactic and
pragmatic quality types.

4.4.1. Assessment of Semantic Quality

Our analysis of the semantic quality for the security models is summarised in
Table 1. As defined in Section 4.2 we considered semantic quality according

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 461

to semantic completeness, semantic correctness, traceability, annotation, and
modifiability.

Table 1. Semantic quality of the security models

Qualitative
property

Measure PL/SQL
security
model

SecureUML
security
model

UMLsec
security
model

Semantic
completeness

Percentage of the
RBAC domain
coverage

42,86%
71,43%
(100%)

85,71%

Semantic
correctness

Percentage of
security related
statements

7,69% 100% 33%

Traceability
Number of traced
links

0 0 0

Annotation
Number of
annotation elements

0 5 1

Modifiability
Time spent to
modify

Not-known 5-10 minutes 5-10 minutes

PL/SQL security model. Semantic completeness is assessed through a

model correspondence to the RBAC domain (see Section 2.1). In the first
condition the PL/SQL model explicitly defines the role (e.g., User in Fig. 5) for
which security permission is defined. Next the PL/SQL model focuses partially
on the presentation of the security permissions (e.g., see the second condition
expression in Fig. 5), which are defined for the attributes of secured objects
(e.g., statements like meeting.start, meeting.end, and others shown in Fig. 5).
However it does not define on which operations the security permissions are
placed. Also the PL/SQL model does not express users and user assignment
relationships. We estimate 42.86% (expresses 3 RBAC concepts out of 7) of
the RBAC domain coverage.

The semantic correctness of the PL/SQL model is low, because it does not
separate the data and programmable concerns from the security concerns. In
PL/SQL diagram we found only two statements that are defining security
concerns (see two conditions defined in Fig. 5). All other 24 statements are
defining different programmable variables or user interface components (e.g.,
DO.item_enable(‘meeting.new_meeting’) is enabling the item of the user
interface). We estimate only 7,69% (2 statements out of 26) of the security
related statement in the diagram presented in Fig. 5.

The PL/SQL model is not traced. This means that origin and rationale for
the security decisions are not provided in the model and we did not observe
any traceable links in this model. The PL/SQL model is not annotated, thus it
is difficult to determine which elements are most likely to change.

Modifiability is estimated by the time used to modify different aspects of the
model. To estimate this characteristic it was rather difficult because it directly
correlates to the understandability property (see discussion below). However
we acknowledge that, once the model is understood, time spent to modify the
model might depend on the scope of the changes and skills of the developer.

A
C

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 462

SecureUML security model. SecureUML is developed to design the
RBAC-based solutions. This means that SecureUML could fully correspond to
the semantic domain, thus resulting in high semantic completeness. However
in our analysed diagram (see Fig. 7) we did not identify RBAC concept of
User and relationship User assignment. Thus we result in 71,43% of the
RBAC domain coverage (however we should note that definition of User and
User assignment is not a problem using SecureUML, thus possibly resulting in
100% of semantic completeness).

We identify high semantic correctness, because only security solutions are
presented in the SecureUML model. We assess percentage of security
related statements as 100%.

Like in the PL/SQL security model, in the SecureUML model we did not
observe any rationale for security decisions, thus it results in a low traced
property.

The Secure UML model is partially annotated. This annotation is achieved
through SecureUML stereotypes (e.g., <<secuml.permission>>,
<<secuml.role>>, etc.) and class names given to the permissions (e.g.,
UserSelectAllMeetings and UserUpdateOwnMeeting) and the authorisation
constraints (e.g., UserOwnDataConstraint). These class names are not
directly used in the transformation of the model to code, but they provide
additional information to the model reader. They also identify the places in the
model where security policy is most likely to be changed. We counted 5
annotation examples in the SecureUML model.

The SecureUML model is modifiable. The model implies a certain
presentation pattern – Role-Permission-Resource, which facilitates the
changing of the model. Like for the PL/SQL model we acknowledge that
modifiability much depends on the change requirements and on the skills of
the developer, but we also observe that the average time of one change might
vary from 5 to 10 minutes.

UMLsec security model. The RBAC principles are expressed through the
activity diagram using UMLsec. Using UMLsec the majority of the RBAC
concepts are defined in the associated tags. For example, User and Roles are
associated in the {role} tag, thus, expressing the RBAC user association link),
Roles and Operations are combined in the {right} tag, thus, defining the RBAC
Permission association link. The only RBAC concept that is not expressed in
the UMLsec model is Permission, i.e., what the Roles are allowed to do with
the secure Objects. We result in 85,71% (6 concepts out of 7) of the RBAC
domain coverage.

Regarding semantic correctness, in the UMLsec diagram we can observe
actions related to business/work description (e.g., Create new meeting, Check
if meeting information is correct, Correct meeting information, and Erase
information after the meeting) and actions that needs to support the
business/work actions (e.g., ones executed by Meeting – Insert data, Select
data, Update data, and Delete data). The later ones each needs security-
related treatment defined through the association tags. Thus we result in 33%
of security related statements (actions and association tags) in the UMLsec
model.

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 463

In the UMLsec model we find only one annotation element, i.e., the
<<rbac>> (see Fig. 8) stereotype that the modelled security aspect. Similar
like in the SecureUML model, we observed no traceability from/to the UMLsec
model. In addition, we identify, that depending on the needs for changes, we
can modify the UMLsec model in 5-10 minutes.

4.4.2. Assessment of Syntactic Quality

Syntactic quality is expressed through syntactic validity and syntactic
completeness, as defined in Section 4.2. We summarise our analysis of the
security models in Table 2.

Table 2. Syntactic quality of the security models

Qualitative
property

Measure PL/SQL
security
model

SecureUML
security
model

UMLsec
security
model

Syntactic
validity

Number of
syntactically invalid
statements

0 1 0

Syntactic
completeness

Number of
syntactically
incomplete
statements

0 0 0

PL/SQL security model. The PL/SQL model is of high syntactic validity

and syntactic completeness, because the model is created using the PL/SQL
language, a programmable language. We did not observe any syntactically
invalid or syntactically incomplete statements. Syntactically this model is also
correct because otherwise it would not be possible to compile it to the
application.

SecureUML security model. In the current model of the SecureUML we
can identify a case of syntactic invalidity. For instance the SecureUML
documentation [2] [19] identify that authorisation constraints need to be
written in OCL (Object Constraint Language). However in our model (see Fig.
7) the SQL-based authorisation constraints are used (e.g., see class
UserOwnDataConstraint constraint {owner=sec.get_username(),
end>SYSDATE}). On the other hand the model is syntactically complete – it
includes only UML extensions and their relationships proposed by the authors
of SecureUML, thus we did not observe any syntactically incomplete
statements.

UMLsec security model. We did not observe any syntactically invalid or
syntactically incomplete statements in the UMLsec model. However we
should note that this model was checked only manually. For the UMLsec
model investigated by us, we were not running any transformations to the
application code (like we did with the PL/SQL or SecureUML models).

A
C

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 464

4.4.3. Assessment of Pragmatic Quality

We summarise the analysis of the pragmatic quality for the security models in
Table 3. Pragmatic quality is defined in terms of understandability,
organisation, cross-referencing, and executability, as presented in Section
4.2.

Table 3. Pragmatic quality of the security models

Qualitative
property

Measure PL/SQL
security
model

SecureUML
security
model

UMLsec
security
model

Understand
a-bility

Number of
explanations

More than
45 minutes

10-15
minutes

10-15
minutes

Organisation
Number of elements
for model
organisation

2 4 4

Cross
referencing

Number of cross-
reference links

1 3 3

Executability
Tools to execute the
model

Yes Yes No

PL/SQL security model. We found the PL/SQL model of low

understandability. We were not able to understand the PL/SQL model without
a proper explanation provided by the model developers. All together it took us
more than 45 minutes to grab some security concerns defined in the PL/SQL
model. On the one hand the reason might be that we as the evaluators, were
not the experts in the PL/SQL language. But, on the other hand, taking into
account that the security models should be used to communicate with the
users of the software systems (who are not familiar with PL/SQL neither), the
time spent to understand security concerns could be even longer.

As presented in Section 4.3, the PL/SQL model is organised into the library
that accumulates different security-oriented procedures. Thus, this model
contains a structure, which could guide finding the relevant security concerns.

Furthermore the PL/SQL model is presented as a plain-text source code,
thus it does not contain any hyperlinks that would cross-reference related
security concerns (but also see Section 4.5.2). On the other hand the library
structure could be used to follow from one security procedure to another (in
our case between three procedures, defined regarding to the user role).
However these links could be used only manually; no tool support for them is
provided.

Finally, regarding the PL/SQL model executability, it is possible to compile
this model using the Oracle database management system resulting in a
running application.

SecureUML security model. The Secure UML model is well understood
by those readers familiar with the UML modelling notation. This also opens
the way to communicate this model to a larger audience, including various
project stakeholders, potential direct users of the system, the systems
analysts, and the developers. Our personal experience is that this model is

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 465

quite intuitive and did not require a big effort (around 10-15 minutes) to
understand it.

As described in Section 4.3, the SecureUML model consists of several
diagrams. It is also supported by a modelling tool (in our case – MagicDraw),
which simplifies managing the model itself and support the model
organisation. The tool provides the containment view and zoom means (see
Fig. 9), which developer could use to find the relevant model elements,
navigate between and within the model diagrams. As illustrated in Fig. 6 the
navigation map diagram helps to navigate from the content diagram to
diagrams presenting different security concerns.

Fig. 9. Means to support SecureUML model organisation provided by the tool

Model cross-references includes links between the navigation map and
separate diagrams, between the containment views and separate diagrams
and model elements. It is also possible to define cross-references between
the separate model diagrams (however this possibility was not used in our
case).

The SecureUML model is executable: there exists a number of the
transformation rules defined using the Velocity3 language (interpretable by the
MagicDraw tool).These rules define how to transform the model to PL/SQL
code, which could be executed through Oracle database management
system.

UMLsec security model. Regarding the social actor interpretation, we
result in the same assessment of the UMLsec model as for the SecureUML
model. For instance, we found that both models can be understood in 10-15
minutes. The UMLsec contains 4 elements for its organisations (since it is

3 http://velocity.apache.org/engine/devel/user-guide.html

A
C

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 466

created using MagicDraw, the same modelling tool as the SecureUML
security model). Similarly it includes three means to cross reference inter-
related parts.

However we were not able to execute the UMLsec model – there are no
means to generate the PL/SQL code from this model (at least using the
MagicDraw tool). Thus there exist a potential field for improvement regarding
the technical interpretation aspect.

4.5. Validating the Evaluation Results

After performing the evaluation of the security models, next step is to validate
the received results. In this section we will characterise the potential threats to
validity. We will also describe what feedback we received from the models
authors regarding our evaluation scores.

4.5.1. Threats to Validity

In our case study only two evaluators assessed the security models according
to their knowledge and experience. This certainly raises the level of
subjectivity and influences the internal validity of the case study. To mitigate
this threat the evaluation results were communicated to the model developers.

In our case the SEQUAL framework was instantiated with a certain set of
qualitative properties (and their measures). This certainly affects the
conclusion validity, because if any other qualitative properties were applied, it
might result in different outcome. But this threat is rather limited because
these qualitative properties are theoretically sound and the selection is based
on the previous experience (i.e., [4], [11], [15], [21], [24]).

In this case study we analysed only three different security models and
these models were quite limited in their size. This might influence the external
validity by a fact, that different results might be received if some other security
models (created either using PL/SQL, SecureUML, UMLsec or any other
language) would be analysed. However our research subject is providing a
solution to an industry problem; thus, we believe that our analysis is
generalisable in similar situations.

Finally, we try to avoid a use of single type of measuring that might affect
the construct validity. The evaluation of the security models is followed with
the communication of the received results to the models developers (see
Section 4.5.2). This certainly reduces a risk of the mono-interpretation.

4.5.2. Communicating Results to Developers

We reviewed our results together with the developers of the security models.
Firstly, the developers noted that the overall quality of both models could be
improved if these evaluation results were taken into account. For example, the

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 467

traceability, annotation, and understandability of the PL/SQL model could be
easily improved using code comments. However, the developers
acknowledged that this is not the case in the common practice; or the code
comments, even if they are present, are not sufficient.

Secondly, developers provided few remarks regarding some qualitative
properties. For instance, semantic completeness could be improved by
presenting concrete instances in the models (similarly as done in [2] and [19]).
This means hard coding in the PL/SQL model and object presentation in the
SecureUML model; however, doing so we would neglect the principle of
generosity in modelling.

In order to improve syntactic validity of the SecureUML model we could
write the authorisation constraints in OCL instead of SQL. However the
current approach to transform the SecureUML model does not have rules for
the OCL interpretation. Further, it is not possible to perform transformation
from the UMLsec security model to the executable code. Certainly the
targeted transformation templates (as they are provided for the models
created in SecureUML) could improve the executability of UMLsec.

On the one hand, a tool used to make the PL/SQL model, does not support
hyper-linking. Although there exist several PL/SQL editing tools (e.g., Oracle
SQLDeveloper or Quest Software Toad for Oracle, actually used by our
industrial partner) that supports cross-references between various model
elements, these were not used in this case study. On the other hand,
developers also indicated that PL/SQL grammar principles, the ones, which
allow expressing procedures (e.g., PROCEDURE meeting_permissions in
Fig. 5) and referring to them from the main code, could also be seen as
textual cross-referencing. We took this in mind when scoring for the Number
of cross-reference links.

4.6. Reporting on the Quality of the Security Models

Table 4 shows the summary of the overall comparison of the security models.
We found that three qualitative properties (i.e., traceability, syntactic
completeness, and executability) score equally for the PL/SQL and
SecureUML models. One qualitative property – syntactic validity – is found to
be better in the PL/SQL model. The seven remaining qualitative properties
(i.e., semantic completeness, semantic correctness, annotation, modifiability,
understandability, organisation, and cross-referencing) are evaluated to be
higher in the SecureUML model.

Regarding models in PL/SQL and UMLsec, we see that PL/SQL was
scoring better for executability qualitative property. Three qualitative
properties – traceability, syntactic validity and syntactic completeness – are
assessed equally. The remaining seven qualitative properties (semantic
completeness, semantic correctness, annotation, modifiability,
understandability, organisation, and cross-referencing) are evaluated better
for the security model created in UMLsec.

A
C

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 468

Table 4. Summary of quality assessment for the security models

Model A
created in

Model B
created in

Model A
is better in

Two models score
equal in

Model B
is better in

PL/SQL SecureUML

Syntactic validity Traceability,
syntactic
completeness,
executability

Semantic completeness,
semantic correctness,
annotation, modifiability,
understandability,
organisation, and cross-
referencing

1 qual. property 3 qual. properties 7 qual. properties

PL/SQL UMLsec

Executability Traceability,
syntactic validity,
syntactic
completeness

Semantic completeness,
semantic correctness,
annotation, modifiability,
understandability,
organisation, cross-
referencing

1 qual. property 3 qual. properties 7 qual. properties

SecureUML UMLsec

Semantic
completeness,
semantic
correctness,
annotation,
executability

Traceability,
modifiability,
syntactic
completeness,
understandability,
organisation, cross-
referencing

Syntactic validity

4 qual. properties 6 qual. properties 1 qual. property

Six qualitative properties, namely traceability, modifiability, completeness,

understandability, organisation, and cross referencing – are evaluated equally
both for the SecureUML and for the UMLsec security models. One qualitative
property – syntactic validity – is found better for the UMLsec model. The
remaining four qualitative properties (semantic completeness, semantic
correctness, annotation, and executability) are evaluated better for the
SecureUML security model.

5. Discussion

In this section we finalise our work. Firstly, we discuss the related work
regarding the link between the RBAC, security languages and the model-
driven security. Next, we conclude our paper and highlight few future research
directions.

5.1. RBAC and Security Languages

In [1] the BRAC0 pattern is applied for comparison of security modelling
approaches. The survey shows that, on the one hand, SecureUML does not
explicitly model security criteria (such as confidentiality, integrity, and
availability) but it focuses on modelling the solutions to security problems
guided by the RBAC nature. With SecureUML, a modeller can define assets,
however, the language does not allow expressing attacks or harms to the
assets. On the other hand, UMLsec is guided by security criteria, however it

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 469

does not have means to model them explicitly. The UMLsec application is
driven by analysis of system vulnerabilities: (i) once security vulnerabilities
have been identified, the system design is progressively refined to eliminate
the potential threats; (ii) the refinement of the design might be continued until
the system satisfies the security criteria. Although UMLsec was analysed
based on the BRAC0 pattern, authors does not specifically indicate how well
this approach is suitable for the RBAC modelling.

In [12] Jayaram and Mathur investigate how the practice of software
engineering blends with the requirements of secure software. The work
describes a two-dimensional relationship between the software lifecycle
stages and modelling approaches used to engineer security requirements. A
part of the study is dedicated to the RBAC modelling using SecureUML and
UMLsec. Authors indicate that UMLsec is rather general approach than
specific, thus it cannot be used to model access control policies solely. On the
other hand SecureUML is suggested as the means to specify access control
policies. However SecureUML cannot describe protected resources (system
design), thus, it has to be used in conjunction with a base modelling language.

Elsewhere in [22] [23] the SecureUML and UMLsec are compared in order
to determine the transformation points between models of these languages. It
was noticed the limitation of SecureUML to indicate security criteria, but this
language is well suited to engineer security controls after the security
decisions are done. It was also observed that the UMLsec application follows
the standard security modelling methods [26] and it could provide means for
the RBAC modelling: it helps defining the dynamic characteristics of the
secure system. The analysis suggests that both SecureUML and UMLsec can
complement each other and result in more complete specifications of secure
information systems (where both static and dynamic system characteristics
are understood).

Although the identified works are useful regarding their timely comparison
of the modelling languages against the RBAC model, these studies remain
theoretical. It is suggested that such an approach could be used at the initial
stage of the languages selection, but for the deeper understanding one needs
more fine-grained analysis of the development means. Thus our current
proposal – an approach to assess the quality of the security models –
suggests the means for the hands-on testing of the modelling and
development languages for security. Using our proposal the developers are
encouraged to apply the modelling and development languages in order to
understand the quality of the resulting security models.

5.2. Model-driven Security

We found none empirical studies that would compare quality of security
models prepared using approaches from different development stages. The
literature reports on a number of case studies [5], [33], [34] analysing different
characteristics of the model-driven development. Mostly these studies focus
on the benefits and on the infrastructure needed for the model-driven

A
C

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 470

development. Similarly to [3], [20], [34] we observe that security model
facilitates automatic code generation, i.e., the SecureUML security model is
executable through its generation to PL/SQL code. We also argue that the
security models should be prepared with the high-quality modelling language
[5] that ensures the model semantic completeness, and tools [20] that
guarantee model syntactic validity and syntactic completeness. Only then one
could expect that model-driven security could yield a higher productivity with
respect to a traditional development [34].

We identified only one case study performed by Clavel et al [3], reporting
on the SecureUML application in practice. Here authors observe that although
the security models are integrated with the data models, the security design
remains independent, reusable and evolvable. In our work we also observe
that semantic correctness of SecureUML and UMLsec models is high,
because the representation is oriented to the security aspects. We also
observe that SecureUML and UMLsec models are modifiable, which means
the first step towards model evolvability. Like in [3] we identify that the
SecureUML and UMLsec models are understandable at least to readers who
are familiar with UML. This might ease communication of requirements and
design solutions to project stakeholders [20].

5.3. Conclusion and Future Work

In this paper we have developed a systematic approach to compare quality of
security models. Our approach is based on the instantiation of the SEQUAL
framework [15] [16]. To illustrate the performance of our proposal we have
executed a cases study, where we have compared quality of three security
models. One model is prepared at the implementation stage using PL/SQL
[9]; other two models are developed at the system design stage using
SecureUML [2] [19] and UMLsec [13]. We resulted in (i) a higher quality for
the SecureUML security model regarding UMLsec and PL/SQL; and (ii) higher
quality for the UMLsec security model regarding PL/SQL. Thus, it suggests
that practitioners should consider security analysis at the earlier stages (at
least design or maybe even requirements engineering) of the software system
developing. However we also note that executability of the UMLsec model is
worse than executability of the PL/SQL model. Thus, if one wishes to create
executable models he would prefer PL/SQL (or SecureUML) instead of
UMLsec.

Our comparison also identifies important directions [33] for improvement of
the security analysis at the early stages. For example, a mature security
modelling method needs to be introduced in order to guide discovery of the
early security requirements and to support security quality assurance through
overall project planning. This would allow improving the traceability qualitative
property, also facilitating recording of the rationales for security decisions.

Another concern includes development and improvement of the modelling
tools (e.g., MagicDraw and Velocity interpreter) that would support the
translation of the design models (e.g., SecureUML) to the implementation

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 471

code (e.g., PL/SQL). For instance, we need to define guidelines and
transformation rules for the OCL-based authorisation constraints. This would
also improve the syntactic validity of the SecureUML model. On the other
hand executability of the UMLsec security model is not supported at all – this
might result in that practitioners would select the PL/SQL language instead.

For the successful adoption by practitioners, model driven security analysis
should be compatible with the working processes. We plan to perform another
case study where we would investigate quality of processes to develop
security models at the system design stage (e.g., using SecureUML, UMLsec
or other modelling language) against quality of processes to develop security
models at the system implementation stages (e.g., using PL/SQL).

Finally, we need to support a goal-driven process [33], where we would
define goals to introduce security model-driven development systematically. In
this paper we specifically focused on the security policy for the data model.
Our future goal is to develop transformation rules that would facilitate
implementation of the security concerns at the system application and
presentation levels.

Acknowledgment. This research was conducted while the first and third authors were
at the Software Technology and Applications Competence Centre (STACC) and the
second author was at Logica Estonia. The research is partly funded by the EU
Regional Development Funds via Enterprise Estonia. We also thank the anonymous
referee for the helpful comments and suggestions.

References

1. Bandara, A., Shinpei, H., Jurjens, J., Kaiya, H., Kubo, A., Laney, R., Mouratidis,
H., Nhlabatsi, A., Nuseibeh, B., Tahara, Y., Tun, T., Washizaki, H., Yoshioka, N.,
Yu, Y.: Security Patterns: Comparing Modelling Approaches. Technical Report No
1009/06, Department of Computing Faculty of mathematics, Computing
Technology, The Open University (2009)

2. Basin, D., Doser, J., Lodderstedt, T.: Model Driven Security: from UML Models to
Access Control Infrastructure. ACM Transactions on Software Engineering and
Methodology (TOSEM), 15 (1), 39--91. (2006)

3. Clavel, M., Silva, V., Braga, C., Egea, M.: Model-driven Security in Practice: an
Industrial Experience, In Proceedings of the 4th European Conference on Model
Driven Architecture: Foundations and Applications, Springer-Verlag, pp. 326--337.
(2008)

4. Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid,
G., Ledeboer, G., Reynolds, P., Srimani, P., Ta, A., Theofanos, M.: Identifying and
Measuring Quality in a Software Requirements Specification. In Proceedings of
the 1st International Software Metrics Symposium, pp. 141--152. (1993)

5. de Miguel, M., Jourdan, J., Salicki, S.: Practical Experiences in the Application of
MDA. In Proceedings of the 5th International Conference on The Unified Modeling
Language, Springer-Verlag, 128--139, (2002)

6. Elahi, G., Yu, E.: A Goal Oriented Approach for Modeling and Analyzing Security
Trade-Offs, In: Parent et al. (eds.), Proceedings of the 26th International
Conference on Conceptual Modelling (2007)

A
C

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 472

7. Feather, M.S., Fickas, S., Finkelstein, A., van Lamsweerde A.: Requirements and
Specification Exemplars. Automated Software Engineering, 4: 419--438. (1997)

8. Ferraiolo D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST Standard for Role-based Access Bontrol. ACM Transactions on Information
and System Security (TISSEC), 4(3), 224--274. (2001)

9. Feuerstein, S., Pribly, B.: Oracle PL/SQL Programming. O'Reilly Media Inc, 4th
edition edition (2005)

10. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling Security
Requirements Through Ownership, Permision and Delegation. In Proceedings of
the 13th IEEE International Conference on Requirements Engineering, IEEE
Computer Society (2005)

11. Hakkarainen S., Matulevičius R., Strašunskas D., Su X. and Sindre G.: A Step
Towards Context Insensitive Quality Control for Ontology Building Methodologies.
In Proceedings of the CAiSE 2004 Open INTEROP-EMOI Workshop, 205--216.
(2004)

12. Jayaram, K.R., Mathur, A.P.: Software Engineering for Secure Software – State of
the Art: a Survey. Technical report CERIAS TR 2005-67, Department of Computer
Sciences & CERIAS, Purdue University (2005)

13. Jurjens, J.: Secure Systems Development with UML. Springer-Verlag Berlin
Heidelberg, (2005)

14. Knodel, J., Anastasopolous, M., Forster, T., Muthig, D.: An Efficient Migration to
Model-driven Development (MDD). Electronic Notes in Theoretical Com puter
Science 137 17--27. (2005)

15. Krogstie, J.: A Semiotic Approach to Quality in Requirements Specifications. In
Proceedings of IFIP 8.1 working Conf. on Organisational Semiotics, 231--249.
(2001)

16. Krogstie, J.: Using a Semiotic Framework to Evaluate UML for the Development
for Models of High Quality. In: Siau, K., Halpin, T. (eds.) Unified Modelling
Language: Sys- tem Analysis, Design and Development Issues, IDEA Group
Publishing, pp. 89--106. (1998)

17. Lin, L., Nuseibeh, B., Ince, D., Jackson, M.: Using Abuse Frames to Bound the
Scope of Security Problems. In Proceedings of the 12th IEEE International
Conference on Requirements Engineering, IEEE Computer Society 354--355.
(2004)

18. Lindland, O. I., Sindre, G., Sølvberg, A.: Understanding Quality in Conceptual
Modelling. IEEE Software, 11(2), pp. 42--49. (1994)

19. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-based Modeling
Language for Model-driven Security. In Proceedings of the 5th International
Conference on The Unified Modeling Language, LNCS, vol. 2460 Springer-Verlag,
426--441. (2002)

20. MacDonald, A., Russell, D., Atchison, B.: Model-driven Development within a
Legacy System: An Industry Experience Report. In Proceedings of the 2005
Australian Software Engineering Conference (ASWEC’05). IEEE Computer
Science. (2005)

21. Matulevičius, R.: Process Support for Requirements Engineering: A Requirements
Engineering Tool Evaluation Approach. PhD theses. Norwegian University of
Science and Technology. (2005)

22. Matulevičius, R., Dumas, M.: A Comparison of SecureUML and UMLsec for Role-
based Access Control, Proceedings of the 9th Conference on Databases and
Information Systems, 171--185. (2010)

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 473

23. Matulevičius, R., Dumas, M.: “Towards Model Transformation between
SecureUML and UMLsec for Role-based Access Control,” Databases and
Information Systems VI, IOS Press, 339--352. (2011)

24. Matulevičius, R., Heymans, P.: Comparison of Goal Languages: an Experiment. In
Proceedings of the Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ 2007), Trondheim, Norway, Springer-
Verlag, 18--32. (2007)

25. Matulevičius, R., Lepmets, M., Lakk, H., Sisask, A.: Comparing Quality of Security
Models: a Case Study. In Local Proceedings of the 14th East-European
Conference on Advances in Database and Information Systems. University of Novi
sad, Serbia, 95 - 109. (2010)

26. Mayer N.: Model-based Management of Information System Security Risk. PhD
Thesis, University of Namur (2009)

27. McDermott, J., Fox, C.: Using Abuse Case Models for Security Requirements
Analysis. In Proceedings of the 15th Annual Computer Security Applications
Conference (1999)

28. Moody, D.L.: Theoretical and Practical Issues in Evaluating the Quality of
Conceptual Models: Current State and Future Directions. Data and Knowledge
Engineering 55 (3) 243--276. (2005)

29. Mouratidis, H.: Analysing Security Requirements of Information Systems using
Tropos. In Proceedings 1st Annual Conference on Advances in Computing and
Technology 55--64. (2006)

30. Piattini, M., Genero, M., Poels, G., Nelson, J.: Towards a Framework for
Conceptual Modelling Quality. In: Genero, M., Piattini, M., Calero, C. (eds.)
Metrics for Software Conceptual Models, Imperial College Press, London 1--18.
(2005)

31. Sindre, G.: Mal-activity Diagrams for Capturing Attacks on Business Processes. In
Proceedings of the Working Conference on Requirements Engineering:
Foundation for Software Quality, Springer-Verlag Berlin Heidelberg 355--366.
(2007)

32. Sindre, G., Opdahl, A.L.: Eliciting Security Requirements with Misuse Cases.
Requirements Engineering Journal 10 (1) 34--44. (2005)

33. Staron, M.: Adopting Model Driven Software Development in Industry – A Case
Study at Two Companies. In the 9th International Conference on Model Driven
Engineering Languages and Systems (MoDELS 2006). Springer-Verlag 57--72.
(2006)

34. The Middleware Company: Model Driven Development for J2EE Utilizing a Model
Driven Architecture (MDA) Approach: Productivity Analysis, MDA Productivity
case study. (2003)

35. van Lamsweerde, A.: Elaborating Security Requirements by Construction of
Intentional Anti-models. In Proceedings of the 26th International Conference on
Software Engineering, IEEE Computer Society 148--157. (2004)

Appendix

In order to get the impression on how the SecureUML security model (e.g.,
see Fig. 7) is transformed into the PL/SQL code, we included a sample of the
transformation outcome with respect to the Update security action. Similarly
the PL/SQL code is generated for other three security actions – Select, Insert
and Delete.

A
C

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 474

-- Imported common-sql.vtl
CREATE OR REPLACE TRIGGER Meeting_sec_update_trg
 INSTEAD OF UPDATE ON Meeting_v
 REFERENCING NEW AS NEW OLD AS OLD
 FOR EACH ROW
DECLARE
 self Meeting%ROWTYPE;
 ex_denied EXCEPTION;
BEGIN
 SELECT *
 INTO self
 FROM Meeting res
 WHERE res.ID = :OLD.ID;
 IF util.null_eq(:NEW.start, :OLD.start) != 'Y' -- start updated
 THEN
 IF 1 != 1 OR sec.is_role('User') = 'Y' AND
 self.owner = sec.get_username() AND
 self.end > SYSDATE -- Permission from UserUpdateOwnMeeting
 THEN
 self.start := :NEW.start;
 ELSE
 RAISE ex_denied;
 END IF;
 END IF;
 IF util.null_eq(:NEW.end, :OLD.end) != 'Y' -- end updated
 THEN
 IF 1 != 1 OR sec.is_role('User') = 'Y' AND
 self.owner = sec.get_username() AND
 self.end > SYSDATE -- Permission from UserUpdateOwnMeeting
 THEN
 self.end := :NEW.end;
 ELSE
 RAISE ex_denied;
 END IF;
 END IF;
 IF util.null_eq(:NEW.owner, :OLD.owner) != 'Y' -- owner updated
 THEN
 IF 1 != 1 OR
 sec.is_role('User') = 'Y' AND
 self.owner = sec.get_username() AND
 self.end > SYSDATE -- Permission from UserUpdateOwnMeeting
 THEN
 self.owner := :NEW.owner;
 ELSE
 RAISE ex_denied;
 END IF;

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 475

 END IF;
 IF util.null_eq(:NEW.location, :OLD.location) != 'Y' -- location updated
 THEN
 IF 1 != 1 OR
 sec.is_role('User') = 'Y' AND
 self.owner = sec.get_username() AND
 self.end > SYSDATE -- Permission from UserUpdateOwnMeeting
 THEN
 self.location := :NEW.location;
 ELSE
 RAISE ex_denied;
 END IF;
 END IF;

 UPDATE Meeting res
 SET ROW = self
 WHERE res.ID = :OLD.ID;
EXCEPTION
 WHEN ex_denied THEN
 raise_application_error(-20000, 'Access denied!');
END;
/

Dr. Raimundas Matulevičius received his PhD diploma from the Norwegian
University of Science and Technology, Norway in the area of computer and
information science. Currently Matulevičius holds an associated professor
position at the Institute of Computer Science, University of Tartu, in Estonia.
Matulevičius’ research interests cover information systems and requirements
engineering, system and software development processes, model-driven
development, system and software security, and security risk management.
Currently, the publication record includes more than 50 articles published in
the peer-reviewed international journals, conferences and workshops.
Matulevičius was invited for multiple times to co-review papers for the
international journals (e.g., REJ, TOSEM, SoSyM, COSE). Few years in a row
he is invited to be a program committee member at the international
workshops and conferences (e.g., CAiSE, REFSQ, PoEM and other).

Henri Lakk is a master’s degree student at University of Tartu, where he is
also giving labs and lectures. His study and research interest includes model
driven security of information system. Lakk is working also in Webmedia
Estonia as a PL/SQL programmer.

A
C

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 476

Dr. Marion Lepmets is a recognised researcher on software and IT service
quality, process improvement and assessment. She is currently a Post-
Doctoral fellow in Public Research Centre Henri Tudor conducting research
on IT service quality measurement and process improvement impact on IT
service quality. She is a technical program committee member at SPICE,
EuroSPI and Baltic IT&DB conferences, and Luxembourgish representative to
ISO/IEC JTC1 SC7 (software and systems standards subcommittee).

Received: December 31, 2010; Accepted: April 29, 2011.

	Introduction
	I Background
	Model-Driven Development
	Model-Driven Architecture
	Model-Driven Development
	Model-Driven Security
	Conclusion

	Security Modelling Languages
	Misuse Cases
	UMLSec
	MAL Activity
	SecureUML
	Conclusion

	Tools
	Modelling Tools
	Obeo Acceleo
	IBM Rational Rose Data Modeler
	Sparx Enterprise Architect
	NoMagic MagicDraw
	Comparison

	Oracle DBMS
	Oracle PL/SQL
	Data access control in DBMS
	DBMS Role Based Access Control

	Fine-Grained Access Control
	Using Virtual Private Database
	Using Views

	Velocity
	Conclusion

	Modelling Guidelines
	Defining Stereotypes
	Using separate diagrams
	Defining a Secure Resource
	Defining Roles
	Permissions
	Defining Constraints
	Conclusion

	II Contribution
	Contribution
	A Model-driven Role-based Access Control for SQL Databases
	Comparing Quality of Security Models: A Case Study
	An Approach to Assess and Compare Quality of Security Models
	Conclusion

	III Conclusions
	Conclusions and Future Work
	Limitations
	Conclusions
	Future Work

	Resümee
	Bibliography
	IV Publications
	A Model-driven Role-based Access Control for SQL Databases
	Comparing Quality of Security Models: A Case Study
	An Approach to Assess and Compare Quality of Security Models

