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Laostumistõenäosuse lähendamine faas-tüüpi jaotuste abil
Magistritöö

Kirill Smirnov

Lühikokkuvõte. Käesoleva magistritöö eesmärk on leida laostumistõenäosuse lähend,
mis on täpsem, kui hästituntud De Vylderi meetod, aga samal ajal on matemaatiliselt
lihtne. Töös esitatud uus lähendusmeetod kaustab ära De Vylderi meetodi idee, kuid
eksponetjaotuse asemel kasutab faas-tüüpi jotusi. Töö teoreetilises osas antakse ülevaade
riskiprotsessidest, faas-tüüpi jaotustest ja De Vylderi meetodist ning tuletatakse valemid
faasi-tüüpi lähendjaotuse parameetrite arvutamiseks. Töö praktilises osas võrreldakse
kuue uudse lähendusmeetodi täpsust De Vylderi meetodi täpsusega. Võrdlemine toimub
numbriliselt nelja erinevate riskiprotsessi põhjal ning tulemused näitavad uute meetodite
suuremat täpsust võrreldes De Vylderi meetodiga.
CERCS teaduseriala: P160 Statistika, operatsioonanalüüs, programmeerimine, finants-
ja kindlustusmatemaatika.
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nentjaotus, De Vylderi meetod.

Approximation of Ruin Probability using Phase-Type Distributions
Master’s thesis
Kirill Smirnov

Abstract. The purpose of this master’s thesis is to find an approximation of ruin proba-
bilities that is more accurate than well-known De Vylder’s method, but at the same time
is mathematically simple enough. This new approximation method is based on the idea
of De Vylder’s approximation, but instead of exponential distribution of claims some
more complicated phase-type distributions are used. In theoretical part of the thesis an
overview of main concepts of risk theory, the notion of phase-type distribution and De
Vylder’s approximation is given. In practical part accuracy of six approximations of ruin
probability based on phase-type distributions are compared with De Vylder’s method.
The comparison is based on numerical examples of four different risk processes. Accord-
ing to the results, new methods are more accurate than De Vylder’s approximation.
CERCS research specialisation: P160 Statistics, operation research, programming,
actuarial mathematics.
Keyword: Risk theory, ruin probability, phase-type distribution, risk process, exponen-
tial distribution, De Vylder’s approximation.
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Introduction

The main question of classical risk theory is the calculation of the ruin probability of
an insurance company. One of the factors affecting the probability of ruin is the claim
distribution. There is a whole list of distributions fitting claim sizes depending on the
type of insurance. Unfortunately, it is not possible to evaluate the exact formula of the
ruin probability for most of claim distributions. One possibility to estimate the ruin
probability, if the exact formula is not available, is using of approximations.

One of the most famous and successful approximations is De Vylder’s approxima-
tion. The idea of this method is very simple. Assume that it is not possible to calculate
the exact ruin probability for some distribution of claims. Than it is needed to replace
initial distribution with well-fitting exponential one and calculate the ruin probability
using the exact formula for exponentially distributed claims.

Exponential distribution is the simplest case of phase-type distributions and exact for-
mula of the ruin probability for exponentially distributed claims can be expanded for
all phase-type distributions. Hence, an idea has sparked to modify De Vylder’s approxi-
mation by using phase-type distributions instead of exponential distribution. Intuitively,
more complicated phase-type distribution will give more accurate estimation of the ruin
probability. From here follows the main goal of the thesis: to find more accurate but
at the same time mathematically simple enough approximation of the ruin probability
based on phase-type distribution using the idea of De Vylder’s method.

The main part of this thesis is divided into four chapters. In Chapter 1 we study the main
basic concepts of the classical risk theory that are needed in the future research. Chapter
2 is devoted to De Vylder’s approximation. Here is given a brief explanation of the
method’s idea and shown its application based on three numerical examples. In Chapter
3 we meet up with the notion of phase-type distributions, consider main special cases of
this class of distributions and modify De Vylder’s method using six different phase-type
distributions. In the last chapter we apply received modifications of De Vylder’s methods
on the examples from the Chapter 2.

Most of the calculations in the thesis are done using software: RStudio 3.3.1; Max-
ima 5.42.2.
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1 Main concepts and results of classical risk theory

In this chapter we will give a brief explanation of main concepts of classical risk theory,
such as stochastic processes, ruin probability and classical risk model. This chapter is
mainly based on [1] and [2].

1.1 The classical risk model

Let’s consider the main cash-flows of an insurance company. The finance operations of
insurer can be presented as a series of inflows and outflows (Figure 1). The main source
of income for this business segment is selling of premiums. Also, insurer receive money
through reinsurance recoveries, investments, etc. The main outflows are claims payout,
reinsurance premiums, dividends paid to shareholders and bonuses paid to policyholders.
The most important component of an insurance company’s expenses is usually payout of
claims.[5]

Figure 1. Main cash-flows of an insurance company

The number of claims arriving during the time interval and their sizes are usually un-
known and can take different values i.e. they are stochastic. That is why the amount of
outflows is changeable and at different moments of time can exceed the inflows amount
or not.
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From the changeability of the outflows follows the main classical question of the risk
theory - to study the ruin probability of a company, i.e. the probability that company’s
balance will become negative at some point of time.

Definition 1.1. Stochastic process is defined as a family of random variables {X(t) :

t ∈ T}, where t is time parameter and T is the set of possible values of t. The set T can
be discrete (T = {1, 2, . . . }) or continuous (T = [0,∞)).

Counting process is a special case of stochastic processes. Let us consider an event A
that happens at random time points S1, S2, . . . The number of occurrences of A within
the time interval [0, t] is called a counting process:

N(t) = #{i : Si ∈ [0, t]}.

So the number of claims N(t) arriving within the time interval [0, t] is a counting process.
Now we can formulate the definition of the standard risk model.

Definition 1.2. Risk process is a stochastic process defined as

X(t) = ct−
N(t)∑
k=1

Zk, (1)

where

• c - positive real constant meaning gross premium rate i.e. company receives c
money units per time unit;

• N(t) - counting process with N(0) = 0, interpreted as the number of claims
arrived within the time interval (0, t];

• {Zk}∞k=1 - sequence of independent and identically distributed random variables
with mean value µ, and variance σ2. Zk means the size of k−th claim.

This is the standard risk model of an insurance company, which is interpreted as follows.
An insurer receives c money units per time unit and loses random amounts of money Z1,
Z2, . . . , ZN(t) at time points S1, S2,. . . , SN(t) ∈ (0, t]. Hence, risk process X(t) means
the profit of a company within the time period (0, t].

The most famous special case of counting processes is Poisson process. Let’s define
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waiting times Ti of the events as time difference between current and previous occurrence
of the event:

Ti = Si − Si−1.

Definition 1.3. A counting process N(t) is called Poisson process if its waiting times
T1, T2, . . . are independent random variables from the same exponential distribution
with rate parameter α. The parameter α is called the intensity of the Poisson process.

The classical risk theory is based on the Poisson process.

Definition 1.4. Risk process X(t) is called classical risk process if counting process
N(t) is Poisson process.

Further in this thesis we consider only classical risk processes.

Assume that N has intensity α. It means, E (N(t)) = αt. Hence, expected profit
of the company within time period (0, t] is

E (X(t)) = E(ct)− E (N(t)) · E (Zk)) = ct− αµt = (c− αµ) t.

The ratio c−αµ
αµ

is called relative safety loading, denoted by ρ. If relative safety loading
is positive (ρ > 0), then the risk process X(t) has a drift to +∞ and it is said that the
company is profitable.

Usually, the company starts its activities having some starting capital u. Now we
can define the main concept of classical risk theory - ruin probability - for an insurance
company with the risk process X(t) described by equation (1) and starting capital u.

Definition 1.5. The ruin probability of an insurance company with initial capital u
and risk process X(t) is a probability, that at some time point t > 0 company’s balance
u+X(t) will be negative.

Ψ(u) = P {u+X(t) < 0 for some t > 0} .

From here follows the definition of non-ruin probability Φ(u) which is defined as
1−Ψ(u).
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Figure 2. Illustration of a risk process’s trajectory

The concept of the risk process is clearly illustrated in Figure 2. Starting with initial
capital u at time t = 0 the company receives c money units per time unit. In this way
company’s balance is equal to u + c · S1 at the time point S1, before the first claim’s
arrival. Paying out the claim company’s balance decreases by Z1. So the profit of the
company within the time interval (0, S1] is equal to c · S1 − Z1. After that the process
repeats. At the time point S4 the fourth claim Z4 arrives. The size of claim is greater than
the current balance of the company. Hence, paying out of this claim leads to reserve’s
drop below zero. It means that at the time S4 accrues ruin of observed company.

1.2 Exact formula of the ruin probability for exponentially distributed
claims

As it was mentioned in the previous section, the main classical question of the theory
of risks is the calculation of the ruin probability. The ruin probability depends on the
starting capital, the intensity of Poisson process and the distribution of claims. In this
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section we consider the risk process with exponentially distributed claims and derive the
exact formula of the ruin probability for this case.

Theorem 1.1. If claim sizes Zk of the classical risk process X(t) are exponentially
distributed, i.e. Zk ∼ Exp(σ), then the ruin probability Ψ(u) can be calculated by the
following formula:

Ψ(u) =
1

1 + ρ
· exp

(
− ρu

µ(1 + ρ)

)
,

where µ = 1
σ

is mean value of exponential distribution and ρ = c−αµ
αµ

is relative safety
loading.

In order to prove this theorem, we need to derive some other important results of the
classical theory of risks.

Let’s consider the classical risk processX for a company with an initial capital equal to u.
Suppose that the first claim Z1 arrives at the time moment S1, then X(S1) = c · S1 − Z1.
In this way, at time S1 starts, so say, a "new" risk process X with an initial capital equal
to u+ c · S1 − Z1.
Since we assume, that ruin can not happen within time interval (0, S1):

Φ(u) = E (Φ(u+ c · S1 − Z1)) =

∫ ∞
0

∫ ∞
0

Φ(u+ cs− z)dF (z)dFS1(s),

where FS1(s) and F (z) are distribution functions of S1 and Z1 respectively.

As we consider classical risk process, S1 is exponentially distributed with intensity
α. Hence, dFS1(s) = α · e−αsds.

Φ(u) =

∫ ∞
0

α · e−αs
∫ ∞

0

Φ(u+ cs− z)dF (z)ds.

If the claim size is greater or equal to u + cs, occurs ruin of the company at time S1.
Assuming that, we get

Φ(u) =

∫ ∞
0

α · e−αs
∫ u+cs

0

Φ(u+ cs− z)dF (z)ds.

Let’s apply the change variable x := u+ cs. It follows, that ds = ds
c

.

Φ(u) =
α

c
· e

αu
c

∫ ∞
u

α · e−α·
x
c

∫ x

0

Φ(x− z)dF (z)dx.
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Differentiating of Φ by u we get

Φ′(u) =
α2

c2
·e

αu
c

∫ ∞
u

α·e−α·
x
c

∫ x

0

Φ(x−z)dF (z)dx−α
c
·e

α·u
c ·e−

α·u
c

∫ u

0

Φ(u−z)dF (z).

The first term of the right side is equal to α
c
Φ(u). Then we get

Φ′(u) =
α

c
Φ(u)− α

c

∫ u

0

Φ(u− z)dF (z). (2)

Integration of the received equation over (0, û) leads to

Φ(û)− Φ(0) =
α

c

∫ û

0

Φ(u)du+
α

c

∫ û

0

∫ u

0

Φ(u− z) · (1− F (z))du =

α

c

∫ û

0

Φ(u)du+

α

c

∫ û

0

(
Φ(0) · (1− F (u))− Φ(u) +

∫ u

0

Φ′(u− z)d(1− F (z))dz

)
du =

α

c
Φ(0)

∫ û

0

(1− F (u))du+
α

c

∫ û

0

(1− F (z))dz

∫ û

z

Φ′(u− z)du =

α

c
Φ(0)

∫ û

0

(1− F (u))du+
α

c

∫ û

0

(1− F (z))dz(Φ(û− z)− Φ(0))dz.

From here we get the final integral equation for non-ruin probability:

Φ(u) = Φ(0) +
α

c

∫ u

0

Φ(u− z) · (1− F (z))dz. (3)

Assume now that initial capital tends to infinity (u→∞) and the company is profitable
(ρ > 0). It is possible to show using Monotone Convergence Theorem that in this case
equation 3 leads to

Φ(∞) = Φ(0) +
αµ

c
Φ(∞). (4)

If ρ is positive, then limt→∞X(t) = +∞ a.s. Hence there is time T , such that for all
time moments t > T profit of the company is positive (X(t) > 0). It means that ruining
of the company can not occur after the time T . Consider the time period [0, T ]. Within
this time interval arrives finite number of claims (N(T ) is Poisson process) and the size
of each claim is finite too. These facts lead to conclusion that total sum of expenses
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(
∑N(T )

k=1 Zk) is finite. Therefore, having infinite initial capital, company can not ruin in
period [0, T ]. We have shown that the ruin probability of the company in this case is
equal to zero in time interval [0, T ] and for all t > T . From here follows that Φ(∞) = 1.
Substituting this result into equation (4) we get

1 = Φ(0) +
αµ

c
.

As Ψ(u) = 1− Φ(u) and using the definition of relative safety loading ρ we get

Ψ(0) =
αµ

c
=

1

1 + ρ
.

Now we have got all needed results to prove the theorem 1.1.

Proof of the Theorem 1.1:
Let’s find the ruin probability of a company with an initial capital u, assuming that claims
are exponentially distributed with the mean value µ.

Distribution function of exponential distribution F (z) is 1 − e−
z
µ . It follows that

dF (z) = 1
µ
e−

z
µdz. Substituting this result into the equation 2 we get

Φ′(u) =
α

c
Φ(u)− α

cµ

∫ u

0

Φ(u− z) · e−
z
µdz.

Let’s apply change variable v := u− z. It follows dz = −dv.

Φ′(u) =
α

c
Φ(u)− α

cµ

∫ u

0

Φ(z) · e−
u−z
µ dz.

Differentiation and simplification of this equation leads to

Φ′′(u) =
α

c
Φ′(u) +

1

µ

(
α

µ
Φ(u)− Φ′(u)

)
− α

cµ
Φ(u) =

=

(
α

c
− 1

µ

)
· Φ′(u) = − ρ

µ(1 + ρ)
· Φ′(u).

Now we need to solve received second order differential equation. Note that ln(Φ′(u))′ =
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Φ′′(u)
Φ′(u)

= − ρ
µ(1+ρ)

. Hence,

ln Φ′(u) = − ρ

µ(1 + ρ)
· u+ C1,

Φ′(u) = eC1 · exp

(
− ρ

µ(1 + ρ)
· u
)

= C2 · exp

(
− ρ

µ(1 + ρ)
· u
)
,

Φ(u) = C3 · exp

(
− ρ

µ(1 + ρ)
· u
)

+ C4.

We have proved above that Φ(∞) = 1 and Φ(0) = 1− 1
1+ρ

. Using these results we can
find C3 and C4 values:1− 1

1+ρ
= C3 · exp

(
− ρ
µ(1+ρ)

· 0
)

+ C4

1 = C3 · exp
(
− ρ
µ(1+ρ)

· ∞
)

+ C4

.

From the second equation of the system follows:

1 = C3 · 0 + C4,

C4 = 1.

Substituting C4 into first equation of the system we get:

1− 1

1 + ρ
= C3 · 1 + 1,

C3 = − 1

1 + ρ
.

Therefore,

Ψ(u) = 1− Φ(u) =
1

1 + ρ
exp

(
− ρu

µ(1 + ρ)

)
.

In many scientific articles it is customary to assign gross premium rate c equal to
one for simplicity. It means that c is taken as money unit and all other quantities
(including claims sizes) are measured in this units.[3] Assume that we have a risk process
X(t) = c · t −

∑N(t)
k=1 Zk with c 6= 1. We can define a new risk process X̂(t) = X(t)

c

which has gross premium rate ĉ = 1:

X̂(t) =
ct

c
−

N(t)∑
k=1

Zk
c

= 1 · t−
N(t)∑
k=1

Zk
c
.
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According to the definition of ruin probability is easy to show that ψ(u) = ψ̂(u). Thus,
we can present the risk process with any gross premium rate, as a new risk process with
c = 1, which has the same ruining probabilities as initial process. Using this property we
can simplify the result of Theorem 1.1.

Ψ(u) =
1

1 + 1−αµ
αµ

· exp

(
−

1−αµ
αµ
· u

µ(1 + ρ)

)
= αµ · exp

(
−
(

1

µ
− α

)
· u
)
. (5)

Further in this thesis we assume that gross premium rate is equal to one, c = 1.

Example 1.1. Let’s consider an insurance company with initial capital u = 0.1 and
gross premium rate c = 1. Assume that claims are exponentially distributed with mean
value µ = 0.5 and intensity of Poisson process α = 1.

In this case we can calculate the probability of ruining using equation (5).

Ψ(0.1) = 1 · 0.5 · exp

(
−
(

1

0.5
− 1

)
· 0.1

)
= 0.5 · exp (−0.1) ≈ 0.45242

Thus, starting with 0.1 money units on its balance the company will ruin with probability
0.45. Obviously, increasing initial capital of the company the ruin becomes less likely.
This process is shown in Figure 3. For example, if the company increases its starting
capital up to 1.9 money units, the ruining probability will be 0.0748.
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Figure 3. Ruin probability for different values of initial capital

The exact formula of the ruin probability in case of exponentially distributed claims
is very simple and convenient in application. But the risk process with exponentially
distributed claims is just one rare example of risk processes where an exact formula exists.
For example, Cramer-Lundberg approximation (6) does not work in case of heavy-tailed
distributions.

lim
u→∞

Ψ(u) · e−Ru =
ρu

h′(R)− c
α

, (6)

where R is positive constant (Lundberg exponent) and h(r) =
∫∞

0
erzdF (z)− 1.
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2 De Vylder’s approximation for the ruin probabilities

As it was shown in the previous chapter, it is possible to calculate exact ruin probabili-
ties of risk processes with exponentially distributed claims, occurring according to the
Poisson process. But exponential distribution is not the only possible distribution used
to describe sizes of claims. There is a whole list of distributions - that fit the data much
better in different situations. For example, in non-life insurance exponential distribution
is considered to be not enough realistic for using in real life models and preferences are
given to other distributions, such as Gamma, Weibull and Lognormal.[5]

There are some other claim’s distributions besides exponential one, where exact formula
of the ruin probability can be derived, for example, class of phase-type distributions.
But in most case of claim distributions the ruin probability can be calculated only via
simulation process or using some approximations.

Several approximations to the ruin probability have been proposed. The most famous
of them are Cramer-Lundberg’s, Beekman-Bowers’s and De Vylder’s approximations.
Futher we will focus on the De Vylder’s method of finding of ruin probabilities. This
chapter is mostly based on [1], [2] and [6].

2.1 Concept of De Vylder’s method

De Vylder’s approximation (1978), is the most successful and mathematically simple
approximation of the ruin probability. Consider the risk process X(t) having such
distribution of claims, that it is not possible to calculate exact ruin probability of it.
Assume that the intensity of Poisson process is α, and the gross premium rate is c. De
Vylder’s method is based on the idea to replaceX(t) with a new risk process X̂(t) having
exponentially distributed claims, such that the first three moments of X(t) match with
the first three moments of X̂(t). It means

E[Xk(t)] = E[X̂k(t)] for k = 1, 2, 3.

The number three comes from the fact that the risk process with exponentially distributed
claims has three parameters: the premium gross rate ĉ, the rate of exponential distribution
σ̂ and the intensity of Poisson distribution α̂.
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When parameters of X̂(t) are estimated, it is possible to calculate the ruin probabil-
ity of this process, which is approximately equal to the ruin probability of X(t)

ΨX̂(t)(u) ≈ ΨX(t)(u).

To derive the first three moments of X(t) the characteristic function is used.

Definition 2.1. [8] For a scalar random variable X the characteristic function is
defined as the expected value of eivX , where i is the imaginary unit, and v ∈ R is the
argument of the characteristic function:

ϕ(v) = E
[
eivX

]
.

For simplicity of the calculations we take the logarithm of characteristic function (or
characteristic exponent) of X(t):

log
(
E
[
eivX(t)

])
= log

(
E

[
e
iv
(
ct−
∑N(t)
k=1 Zk

)])
= t
(
icv + α

(
E
[
e−ivZk

]
− 1
))
.

According to the Taylor series ex =
∑∞

n=0
xn

n !
. Hence,

e−ivZk =
3∑

n=0

(−ivZk)n

n !
+ o(v)3

= 1 +
(−ivZk)

1
+

(−ivZk)2

2
+

(−ivZk)3

6
+ o(v)3

= 1− ivZk −
v2Z2

k

2
+
iv3Z3

k

6
+ o(v)3.

Hence,

E
[
e−ivZk

]
= 1− ivζ1 −

v2ζ2

2
+
iv3ζ3

6
+ o(v)3,

where ζ1, ζ2, ζ3 are the first three moments of claim distribution Zk respectively.

Then

log
(
E
[
eivX(t)

])
=

= t

(
icv + α

(
1− ivζ1 −

v2ζ2

2
+
iv3ζ3

6
+ o(v)3 − 1

))
=

= t

(
iv(c− αζ1)− v2ζ2α

2
+
v3iαζ3

6
+ o(v)3

)
.
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Taking exponent of both sizes of the last equation we get characteristic function of the
risk process X(t).

ϕX(t)(v) = E
[
eivX(t)

]
=

= exp

(
t

(
iv(c− αζ1)− v2ζ2α

2
+
v3iαζ3

6
+ o(v)3

))
.

Property 2.1. [8] If a random variable X has moments up to k-th order, then the
characteristic function ϕX is k times continuously differentiable on the entire real line.
In this case

E
(
Xk
)

= i−k · ϕ(k)(0).

Using Property 2.1 we can derive expressions of the first moments of X(t) :

E [X(t)] = i−1ϕ′(0) = i−1t

(
i(c− αζ1)− vζ2α +

v2iαζ3

2

)
ϕX(t)(v)

∣∣∣∣
v=0

=

= i−1 · i · t(c− αζ1)e0 = t(c− αζ1).

Same result was obtained in the section 1.1. The second and the third moments of X(t)

can be derived in the same way. As a result, we get

E [X(t)] =t(c− αζ1),

E
[
X2(t)

]
=αζ2t+ (c− αζ1)2t2,

E
[
X3(t)

]
=− αζ3t+ 3(c− αζ1)(αζ2)t2 + (c− αζ1)3t3.

Since the claims of X̂(t) are exponentially distributed, the n-th moment of Zk can be
found as follow:

E [Zn
k ] =

n !

σ̂n
.

Hence,

ζ̂1 =E [Zk] =
1

σ̂
,

ζ̂2 =E
[
Z2
k

]
=

2

σ̂2
,

ζ̂3 =E
[
Z3
k

]
=

6

σ̂3
.
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Thus, to match the first three moments of X(t) and X̂(t) parameters σ̂, ĉ, α̂ must satisfy
the next system of equations. 

c− αζ1 = ĉ− α̂ 1
σ̂

αζ2 = 2α̂ 1
σ̂2

αζ3 = 6α̂ 1
σ̂3

. (7)

Dividing the third equation by the second one we can find the estimation of the parameter
σ̂ :

αζ3

αζ2

=
6α̂ 1

σ̂3

2α̂ 1
σ̂2

,

ζ3

ζ2

=
3

σ̂
,

σ̂ =
3ζ2

ζ3

.

Substitution received σ̂ into the second equation of the system leads to the estimation of
α̂ :

αζ2 = 2α̂
ζ2

3

9ζ2
2

,

α̂ =
9ζ3

2

2ζ2
3

α.

Assuming that c = 1 and substituting σ̂ and α̂ into the first equation of the system we get
the estimation of ĉ :

1− αζ1 = ĉ− 9ζ3
2

2ζ2
3

· ζ3

3ζ2

α,

1− αζ1 = ĉ− 3ζ2
2

2ζ3

α,

ĉ =
3ζ2

2

2ζ3

α− αζ1 + 1.

Letting α∗ := α̂
ĉ

we can calculate an approximate ruin probability of a company with the
risk process X(t) by De Vylder’s approximation using formula 5.

Ψ(u) ≈ α∗

σ̂
e−(σ̂−α∗)·u.
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2.2 Application of De Vylder’s approximation

De Vylder’s method for estimation of the ruin probability is considered to be one of the
most accurate approximations. Numerical calculations demonstrate that De Vylder’s
approximation outperforms other theoretically justified approximations of ruin probabil-
ity like so called "diffusion approximation" and Beekman-Bower’s approximation [2]
(however, we do not discuss these methods in details in this thesis). In this section De
Vylder’s method is applied on three examples.

Example 2.1. [2] Consider risk process X(t) with gross premium rate c = 1, claim sizes
are from Gamma distribution, Zk ∼ Gamma

(
α′ = 1

100
, β′ = 1

100

)
, and an intensity of

the Poisson process is α = 10
11

. Using De Vylder’s approximation we will find the ruin
probability of X(t) in case of starting capital u = 300, 600, . . . , 3000.

First of all, let’s the first three moments of observed Gamma distribution. The n-th
moment of random variable Y ∼ Gamma(α′, β′) can be found as follow

E (Y ) =
(α′ + n− 1) · · · · · α′

(β′)n
. [9]

Hence in our case

ζ1 = E (Zk) =
α′

β′
= 1,

ζ2 = E
(
Z2
k

)
=

(α′ + 1) · α′

(β′)2
= 101,

ζ3 = E
(
Z3
k

)
=

(α′ + 2) · (α′ + 1) · α′

(β′)3
= 20301.

Now using relations derived above we can calculate estimations of parameters ĉ, α̂, σ̂.

ĉ =
3ζ2

2

2ζ3

· α− αζ1 + 1 = 0.7761194,

σ̂ =
3ζ2

ζ3

= 0.01492537,

α̂ =
9ζ3

2

2ζ2
3

· α = 0.01022702,

α∗ : =
α̂

ĉ
= 0.01317712.
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According to formula 5 the ruin probability of a company with the risk process X(t) by
De Vylder’s approximation is

Ψ(u) ≈ 0.8828671 · e−0.001748252·u.

Comparison of results obtained by De Vylder’s approximation with exact ruin probability
of a company with the risk process X(t) is presented in Table 1.

Table 1. Accuracy of De Vylder’s method in case of Gamma distributed claims (excerpt
from Table 1 in [2]).

u Exact Ψ(u) ΨDV (u) Relative error of DV
300 0.52114 0.52254 0.4%
600 0.30867 0.30927 0.3%
900 0.18287 0.18305 0.1%

1200 0.10834 0.10834 0.0%
1500 0.06418 0.06412 -0.1%
1800 0.03803 0.03795 -0.3%
2100 0.02253 0.02246 -0.4%
2400 0.01335 0.01329 -0.6%
2700 0.00791 0.00787 -0.8%
3000 0.000468 0.00466 -0.9%

From Table 1 we can see that De Vylder’s approximation gives very accurate estimation
of the probability of ruining of the company with the risk process X(t) with Gamma
distributed claims. In case of observed u values absolute relative errors of the estimation
do not increase 0.9%.

Example 2.2. [2] Consider risk process X(t) with gross premium rate c = 1, relative
safety loading ρ = 0.05 and claims’ sizes are from mixed exponential distribution with
distribution functions F (z).

F (z) = 1− 0.0039793 · e−0.014631·z − 0.1078392 · e−0.190206·z − 0.8881815 · e−5.514588·z.

Using De Vylder’s approximation we calculate the ruin probability of X(t) if company’s
inintal capital u = 10, 100, 1000.

The n-th moment of random variable Y ∼MixedExp with distribution function

F (z) = 1− w1 · e−σ1·z − w2 · e−σ2·z − w3 · e−σ3·z
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can be found as follow

E [Y n] = n ! ·
3∑

k=1

wk
σnk
. [10]

Hence in our case, the first three moments of claims’ distribution Zk are

ζ1 = E (Zk) =
3∑

k=1

wk
σk

= 1,

ζ2 = E
(
Z2
k

)
= 2 ·

3∑
k=1

wk
σ2
k

= 43.19817,

ζ3 = E
(
Z3
k

)
= 6 ·

3∑
k=1

wk
σ3
k

= 7717.235.

From the definition of the relative safety loading we calculate the intensity of Poisson
process α of risk process X(t):

ρ =
c− αζ1

αζ1

=
1

αζ1

− 1,

α =
c

ζ1(ρ+ 1)
= 0.9523831.

Using relations derived in section 2.1 we can calculate estimations of parameters ĉ, α̂, σ̂.

ĉ =
3ζ2

2

2ζ3

· α− αζ1 + 1 = 0.3930586,

σ̂ =
3ζ2

ζ3

= 0.01679287,

α̂ =
9ζ3

2

2ζ2
3

· α = 0.005800922,

α∗ : =
α̂

ĉ
= 0.01475841.

According to formula 5 the ruin probability of a company with the risk process X(t) by
De Vylder’s approximation is

Ψ(u) ≈ 0.87885 · e−0.002034456·u.

Comparison of results obtained by De Vylder’s approximation with exact ruin probability
of a company with the risk process X(t) is presented in Table 2
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Table 2. Accuracy of De Vylder’s method in case of Mixed Exponential distribution of
claims (excerpt from Table 2 in [2]).

u Exact Ψ(u) ΨDV (u) Relative error
10 0.8897 0.86115 -3.21%

100 0.7144 0.71706 0.37%
1000 0.1149 0.11491 0.01%

From Table 2 we can see that De Vylder’s approximation works well in case of mixed
exponential distribution of claims if initial capital is big enough. In case of small values
of u absolute relative error is much bigger.

Example 2.3. [2] Consider risk process X(t) with gross premium rate c = 1, relative
safety loading ρ = 0.05 and claims’ sizes are from lognormal distribution with variance
σ2
L = 3.24 and mean value µL = −1.62. Using De Vylder’s approximation we will

calculate the ruin probability of X(t) if company’s initial capital u = 100, 1000.

The n-th moment of random variable Y ∼ LN(µL, σ
2
L) can be found as follow

E [Y n] = exp

(
n · µL +

1

2
· n2 · σ2

L

)
. [2]

Hence in our case the first three moments of claims’ sizes distribution are

ζ1 = E (Zk) = exp

(
µL +

1

2
· σ2

L

)
= 1,

ζ2 = E
(
Z2
k

)
= exp

(
2 · µL + 2 · σ2

L

)
= 25.53372,

ζ3 = E
(
Z3
k

)
=

(
3 · µL +

9

2
· σ2

L

)
= 16647.24.

Similarly to the mixed exponential distribution’s example α = c
ζ1(ρ+1)

= 0.9523831.
Using relations derived in section 2.1 we can calculate estimations of parameters ĉ, α̂, σ̂.
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ĉ =
3ζ2

2

2ζ3

· α− αζ1 + 1 = 0.1035654,

σ̂ =
3ζ2

ζ3

= 0.004601432,

α̂ =
9ζ3

2

2ζ2
3

· α = 0.0002574435,

α∗ : =
α̂

ĉ
= 0.002485806.

According to formula 5 the ruin probability of company with risk process X(t) by De
Vylder’s approximation is

Ψ(u) ≈ 0.5402243 · e−0.002115627·u.

Comparison of results obtained by De Vylder’s approximation with exact ruin probability
of company with risk process X(t) is presented in Table 3.

Table 3. Accuracy of De Vylder’s method in case of lognormally distributed claims
(excerpt from Table 3 in [2]).

u Exact Ψ(u) ΨDV (u) Relative error
100 0.55074 0.43721 -20.6%

1000 0.04199 0.06512 55.1%

In case of lognormally distributed claims De Vylder’s approximation gives poor results.
The reason is that lognormal distribution is heavy tailed distribution and exponentially
decreasing approximations (suggested by Cramer-Lundberg approximation formula)
can not fit it well. More precisely, in [2] p.23, right asymptotic of ruin probability for
lognormal claims is described, which significantly differs from exponential asymptotic.
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3 Approximation of the ruin probabilities using phase-
type distributions: theoretical aspects

As it was shown in section 1.2, there is exact formula for calculating the ruin probability
of a company if its claims are exponentially distributed. Exponential distribution is the
simplest non-trivial example of phase-type distributions’ class and formula 5 proved for
exponential distribution can be extended for all phase-type distributions.[3]

Since that fact, an idea has sparked to modify De Vylder’s approximation which is
based on exponential distribution and to use instead of it one of phase-type distributions.
Intuitively more complicated phase-type distribution will give even more accurate esti-
mation of the ruin probability than usual exponential distribution.

In this chapter we will get to know the concept of phase-type distribution and mod-
ify De Vylder’s method by using some cases of phase-type distributions. Theoretical
background in this chapter is mainly based on [3] and [4].

3.1 Concept of phase-type distribution

The concept of phase-type distribution is based on the notion of Markov process which
is a continuous-time version of Markov chain.

Definition 3.1. [12] Consider continuous-time stochastic process {X(t) : t ≥ 0} on
some countable state space S. Letting FX(s) denote all the information pertaining to
the history of X up to time s and letting j ∈ S and s ≤ t, we say that X(t) satisfies
Markov property, if

P{X(t) = j|FX(s)} = P{X(t) = j|X(s)}.

In other words, Markov property means that future outcome X(t) depends on present
outcome X(s) but does not depend on the past path of stochastic process. It is said that
continuous-time stochastic process is Markov process if it has Markov property.

Definition 3.2. Markov process is called time homogeneous if for any s ≤ t and any
state j ∈ S

P {X(t) = j|X(s)} = P {X(t− s) = j|X(0)} .
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Conditional probability pi,j = P{next state is j| current state is i} is called transition
probability from the state i to the state j. If probability that process will remain in the
state i is equal to one (pi,i = 1), then we say that state i is absorbing state, otherwise it is
transient.

Another important notion is the transition matrix T = (ti,j), where i, j ∈ S. The
element ti,j of T is parameter of exponential distribution which determines the time
within which the Markov process reaches the state j starting from the state i.

Definition 3.3. Consider time homogeneous Markov process {J̄} = {X(t) : t ≥ 0} with
n+ 1 states, such that n states are transient and one state is absorbing. The distribution
of the time within Markov process reaches its absorbing state ∆ is called phase− type

distribution.

The transition matrix Q of this Markov process {J̄} can be presented in block-partitioned
form.

Q =

(
T t
0 0

)
,

where T is transition matrix of n transient states and column vector t = −T ·e (e is n×1

column vector with all elements equal to one) is exit rate vector, i.e. the i-th component
of t gives the intensity that state i is followed by the absorbing state ∆.

The distribution of probabilities that Markov process with n transient states starts from
any concrete state is given by row vector p = {p1, p2, . . . , pn}, such that

∑n
i=1 pi = 1,

where pi means the probability that the process starts from the i-th state. The vector p is
called the initial distribution.

The simplest special case of phase-type distribution is exponential distribution. As-
sume that Markov process has one transient state and one absorbing state ∆. Then
p = {p1} = 1. Let transition rate from the transient state to the absorbing state is t1 := λ.
Hence, intensity that process stays in the transient state is t1,1 := −λ. In this case the
time within observed Markov process reaches its absorbing state ∆ is exponentially
distributed with rate parameter λ. Graphically this process is presented in Figure 4.
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Figure 4. The phase-diagram of exponential distribution with rate parameter λ
.

Consider now the classical risk process X(t). If claims’ sizes have phase-type distribu-
tion, it is possible to calculate exact ruin probability of observed risk process.

Theorem 3.1. Consider risk process X(t) with c = 1, intensity of Poisson process α and
phase-type distributed claims with transition matrix T and initial distribution p. Exact
ruin probability of X(t) can be found as follow

Ψ(u) = p+e
T+tp+e,

where p+ = −αpT−1 and e is column vector with all elements equal to one.

Let’s consider one numerical example to illustrate the process of calculation of the ruin
probability of a company with phase-type distributed claims.

Example 3.1. Suppose that company’s main cash-flows can be described by risk process
X(t) with c = 1 and intensity of Poisson distribution α = 3 and claims are phase-type
distributed with parameters in Figure 5. The first moment of this distribution is equal to
0.265. Using the outcome of Theorem 3.1 let’s find the ruin probability of the company if
its initial capital is u.
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Figure 5. Markov chain generating a phase-type distribution

The distribution has three transient states. Hence, the transition matrix T has the
following form.

T =

−σ1 0 0

0 −σ2 0

0 σ3 −σ3

 =

−4 0 0

0 −5 0

0 2 −2

 .

Therefor the exit rate vector t = −Te is

t =

σ1

σ2

0

 =

4

5

0

 .

From Figure 5 we can see that it is possible to reach absorbing state ∆ directly form
states 1 and 2 but not from the state 3.That is why the third element of vector t is equal
to zero and the first two elements are σ1 and σ2 respectively.

Initial distribution of probabilities form which state the Markov process starts p is
given by the vector

p =
(

0.3 0.6 0.1
)
.

Application of Theorem 3.1 requires positive relative safety loading ρ. Let’s check if this
condition fulfilled:

ρ =
c− αµ
αµ

=
1− 0.265 · 3

0.265 · 3
= 0.258 > 0.
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Let’s now calculate the vector p+ = −αpT−1. Substitution of the values into the
expression of p+ leads to

p+ = −3
(

0.3 0.6 0.1
)−0.25 0 0

0 −0.2 0

0 −0.2 −0.5

 =
(

0.225 0.42 0.15
)
.

Next we calculate the matrix T + tp+ =: Q (needed in Theorem 3.1):

Q =

−4 0 0

0 −5 0

0 2 −2

+

4

5

0

(0.225 0.42 0.15
)

=

−3.1 1.68 0.6

1.125 −2.9 0.75

0 2 −2


By Theorem 3.1 we need to find exponential of matrix Qu .

Property 3.1. [7] Exponential form of n×n matrix Qu can be found by the next equation

eQu = φ(u) · φ(0)−1,

where φ(u) is n× n matrix which can be presented in block-partitioned form as follow

φ(u) =

(
v1e

λ1u, v2e
λ2u . . . , vne

λnu
)
, (8)

where λ1, . . . , λ2 are eigenvalues of matrix Q and v1, . . . vn are respective right eigen-
vectors.

In our case matrix Q (3×3) has three eigenvalues: λ1 = −4.479969, λ2 = −2.885753,
λ3 = −0.634278.

Respective right eigenvectors are v1 =

 0.5593054

−0.6452714

0.5203867

, v2 =

 0.5236681

0.3449783

−0.7789491

, v3 =

0.5050592

0.4867147

0.7127581

.

By its definition (8) matrix φ(u) has the following form.

φ(u) =

 0.5593054e−4.479969u 0.5236681e−2.885753u 0.5050592e−0.634278u

−0.6452714e−4.479969u 0.3449783e−2.885753u 0.4867147e−0.634278u

0.5203867e−4.479969u −0.7789491e−2.885753u 0.7127581e−0.634278u

 .
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Hence, φ−1(0) is

φ−1(0) =

0.7052368 −0.8650708 0.09099351

0.8047468 0.1532572 −0.67489563

0.3645851 0.7990803 0.59899548

 .

According to Property 3.1, we have

eQ·t =e−4.479969t

 0.3944427 −0.4838388 0.05089316

−0.4550691 0.5582055 −0.05871551

0.3669959 −0.4501714 0.04735181

+

+ e−2.885753t

 0.4214202 0.08025592 −0.3534213

0.2776202 0.05287042 −0.2328244

−0.6268568 −0.11937957 0.5257093

+

+ e−0.634278t

0.1841370 0.4035828 0.3025282

0.1774489 0.3889241 0.2915399

0.2598609 0.5695509 0.4269389

 .

By Theorem 3.1

Ψ(u) = p+e
T+tp+e,

which in our case gives

Ψ(u) = 0.004620044 ·e−4.479969u+0.041298121 ·e−2.885753u+0.749081835 ·e−0.634278u.

The dependence of the ruin probability on the value of initial capital u is visualised in
Figure 6.
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Figure 6. Ruin probability of phase-type distribution for different values of initial capital

As it was shown in Example 3.1, evaluating process of exact formula of the ruin prob-
ability for a risk process with phase-type distributed claims is not very difficult, but
calculations are more complicated in comparison with exponentially distributed claims.
Hence, in what follows, for the calculation of the ruin probability self-written R-script is
used (Appendix 1).

An important property of phase-type distributions is the formula for the calculation
of moments.

Property 3.2. Consider the phase-type distribution B with the states space E, the tran-
sition matrix T and the initial distribution p. Then n-th moment of B is (−1)nn !pT−ne

, where e is n× 1 column vector with all elements equal to one.

In the next sections we modify De Vylder’s approximation by replacing exponential
distribution with some special cases of phase-type distributions.

29



3.2 Erlang distribution

Erlang distribution Ep is a special case of Gamma distribution with parameter p meaning
the number of phases. This corresponds to the convolution of p exponential densities
with the same rate σ1. The phase-diagram of Ep is presented in Figure 7.

Figure 7. Phase-diagram of Erlang distrbution with p phases

Let’s consider a risk process X(t) with claim distribution for which it is not possible to
calculate exact ruin probability. Using the idea of De Vylder’s method we replace initial
risk process X(t) with a new risk process X̂(t) which has Erlang-distributed claims.
Risk process with claims having Ep distribution (with fixed p) can be described by three
parameters: gross premium rate c, intensity of Poisson process α and rate of Erlang
distribution σ1. It is sufficient to match the first three moments of X(t) and X̂(t) (like in
case of exponential distribution). In other words we need to solve the following system
of three equations. 

c− α · ζ1 = ĉ− α̂ · E[Z]

α · ζ2 = α̂ · E[Z2]

α · ζ3 = α̂ · E[Z3]

(9)

where Z is the size of claims having Erlang distribution with p phases and rate σ1.

3.2.1 Erlang distribution with two phases

Firstly, assume that claims of the risk process X̂(t) have Erlang distribution with two
phases (E2). The transition matrix T and initial distribution vector p in case of E2 have
the following forms:

T =

(
−σ1 σ1

0 −σ1

)
,
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p =
(

1 0
)
.

The first three moments of Erlang distribution with two phases and rate σ1 can be found
by Property 3.2.

E[Z] = −1 · pT−1e,
E[Z2] = 2 · pT−2e,
E[Z3] = −6 · pT−3e,

where e is

(
1

1

)
.

Substitution of p and T of E2 leads to

E[Z] =
2

σ1

,

E[Z2] =
6

σ2
1

,

E[Z3] =
24

σ3
1

.

Hence, the system of equations (9) in case of E2 is the following:
c− α · ζ1 = ĉ− α̂ · 2

σ1

α · ζ2 = α̂ · 6
σ2
1

α · ζ3 = α̂ · 24
σ3
1

.

Solving this system of equations analogically to the system (7) in Section 2.1 we get

σ̂1 =
4ζ2

ζ3

,

α̂ =
8ζ3

2

3ζ2
3

· α,

ĉ =
4ζ2

2

3ζ3

· α− αζ1 + 1.

We will apply these formulas in Chapter 4.

3.2.2 Erlang distribution with three phases

In the same way, we can estimate parameters ĉ, α̂, σ̂1 of the risk process ˆX(t) in case
when the claims have E3 distribution.

31



The transition matrix T and initial distribution p for the Erlang distribution with three
phases are the following:

T =

−σ1 σ1 0

0 −σ1 σ1

0 0 −σ1

 ,

p =
(

1 0 0
)
.

Substituting this matrices into the outcome of Property 3.2 the first three moments of E3

are

E[Z] =
3

σ1

,

E[Z2] =
12

σ2
1

,

E[Z3] =
60

σ3
1

.

Hence, the estimation of parameters of risk process ˆX(t) with E3-distributed claims is
possible to be found from the following system of three equations.

c− α · ζ1 = ĉ− α̂ · 3
σ1

α · ζ2 = α̂ · 12
σ2
1

α · ζ3 = α̂ · 60
σ3
1

.

As a result, we get

σ̂1 =
5ζ2

ζ3

,

α̂ =
25ζ3

2

12ζ2
3

· α,

ĉ =
5ζ2

2

4ζ3

· α− αζ1 + 1.

We will apply these formulas in Chapter 4.
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3.3 Hypoexponential distribution with two phases

A generalization of the Erlang distribution is so called hypoexponential distribution.
Hypoexponential distribution with p phases is a convolution of p exponential densities
with the intensity rates σ1,. . . ,σp. This is graphically presented in a phase-diagram
(Figure 8)

Figure 8. Phase-diagram of hypoexponential distribution with p phases

The number of parameters describing risk process X̂(t) with hypoexponentially dis-
tributed claims varies depending on the number of phases of the distribution. For
example, if there is only one phase, X̂(t) can be described by three parameters, hence
in this case hypoexponential distribution turns into simple exponential distribution. But
if the number of states is equal to two, X̂(t) is described by four parameters: gross
premium rate ĉ, intensity of Poisson process α̂, transition intensities from state "1" to
state "2" and from state "2" to absorbing state, σ̂1 and σ̂2, respectively. Further we
consider a risk process X̂(t) with two-phases hypoexponentially distributed claims.

Suppose now that the risk process X(t) has a claim distribution, for which there is
no exact formula for ruin probability. Analogically to previous section we use the idea
of De Vylder’s method to replace initial risk process X(t) with a new risk process X̂(t)

which has two-phases hypoexponentially distributed claims. As it was mentioned above,
X̂(t) can be described by four parameters. So in this case, it is necessary to match the
first four moments of X(t) and X̂(t) to find the estimation X̂(t) parameters.

The first three moments of classical risk process are evaluated in Section 2.1. The
fourth moment can be found analogically by Property 2.1( adding fourth term into Taylor
series of e−ivZk).

E[X(t)4] = 2αζ4t+ (c− αζ1)4t4 + 6α(c− αζ1)2ζ2t
3 − 4α(c− αζ1)ζ3t

2 + 3α2ζ2
2 t

2.
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Hence, to match the first four moments of X(t) and X̂(t), it is sufficient to solve the
following system of equations

c− α · ζ1 = ĉ− α̂ · E(Z)

α · ζ2 = α̂ · E(Z2)

α · ζ3 = α̂ · E(Z3)

α · ζ4 = α̂ · E(Z4)

. (10)

The transition matrix T and initial distribution p of hypoexponential distribution with
two phases are the following

T =

(
−σ1 σ1

0 −σ2

)
,

p =
(

1 0
)
.

By Property 3.2 the first four moments of this distribution are

E(Z) =
1

σ1

+
1

σ2

,

E(Z2) = 2 ·
(

1

σ1σ2

+
1

σ2
1

+
1

σ2
2

)
,

E(Z3) = 6 ·
(

1

σ2
1σ2

+
1

σ1σ2
2

+
1

σ3
1

+
1

σ3
2

)
,

E(Z4) = 24 ·
(

1

σ3
1σ2

+
1

σ2
1σ

2
2

+
1

σ1σ3
2

+
1

σ4
1

+
1

σ4
2

)
.

Substitution of the moments of hypoexponential distribution into the system (10) leads to

c− α · ζ1 = ĉ− α̂ ·
(

1
σ1

+ 1
σ2

)
α · ζ2 = 2 · α̂ ·

(
1

σ1σ2
+ 1

σ2
1

+ 1
σ2
2

)
α · ζ3 = 6 · α̂ ·

(
1

σ2
1σ2

+ 1
σ1σ2

2
+ 1

σ3
1

+ 1
σ3
2

)
α · ζ4 = 24 · α̂ ·

(
1

σ3
1σ2

+ 1
σ2
1σ

2
2

+ 1
σ1σ3

2
+ 1

σ4
1

+ 1
σ4
2

) .

It is not mathematically easy to solve this system manually. So, to estimate parameters
of X̂(t) Maxima software was used (Appendix 2). The relations obtained between the
parameters of X(t) and X̂(t) are too long and complex, thus they are not presented in
the text. We will apply obtained formulas in Chapter 4.
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3.4 Hyperexponetial distribution with two phases

Another popular case of phase-type distributions is hyperexponential distribution Hp

with p phases. It is defined as a mixture of p exponential distributions with rates
σ1, σ2, . . . , σp. The phase-diagram of Hp is presented in Figure 9. Weights p1, . . . , pp of
hyperexponential distribution Hp are such that

∑p
k=1 pk = 1. In the framework of this

thesis we consider two-phases hyperexponential distribution.

Figure 9. Phase-diagram of hyperexponential distrbution with p phases

Analogically to the previous section, let us assume that it is not possible to calculate exact
ruin probability for the risk process X(t). Our aim is to replace X(t) with a suitable risk
process X̂(t) which has two-phases hyperexponenntially distributed claims. Such risk
process can be described by six parameters: weights p̂1 and p̂2, transition intensities σ̂1

and σ̂2, gross premium rate ĉ and intensity of Poisson distribution α̂. Since the sum of
the weights of hyperexponential distribution is always equal to one, it is sufficient to
know only one of the weights. For example, if estimation of the first weight is p̂1, then
estimation of the second one is p̂2 = 1− p̂1. Hence, it is sufficient to match the first five
moments of X(t) and X̂(t).

The fifth moment of classical risk process is evaluated by Property 2.1 ( adding fifth term
into Taylor series of e−ivZk).

E[X(t)5] = (c− αζ1)5t5 + 10a(c− αζ1)3ζ2t
4 − 10α(c− αζ1)2ζ3t

3

+ 15α2(c− αζ1)ζ2
2 t

3 + 10α(c− αζ1)ζ4t
2 − 10α2ζ2ζ3t

2 − αζ5t.
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Hence, to match the first five moments of X(t) and X̂(t) it is needed to solve the
following system of equations

c− α · ζ1 = ĉ− α̂ · E(Z)

α · ζ2 = α̂ · E(Z2)

α · ζ3 = α̂ · E(Z3)

α · ζ4 = α̂ · E(Z4)

α · ζ5 = α̂ · E(Z5)

(11)

The transition matrix T and initial distribution p in case of H2 distributions are

T =

(
−σ1 0

0 −σ2

)
,

p =
(
p1 1− p1

)
.

By Property 3.2 the first five moments of hyperexponential distribution with two phases
are the following:

E(Z) =
p1

σ1

+
1− p1

σ2

,

E(Z2) = 2 ·
(
p1

σ2
1

+
1− p1

σ2
2

)
,

E(Z3) = 6 ·
(
p1

σ3
1

+
1− p1

σ3
2

)
,

E(Z4) = 24 ·
(
p1

σ4
1

+
1− p1

σ4
2

)
,

E(Z5) = 120 ·
(
p1

σ5
1

+
1− p1

σ5
2

)
.

Substitution of the moments of hyperexponential distribution into the system (11) leads
to 

c− α · ζ1 = ĉ− α̂ ·
(
p1
σ1

+ 1−p1
σ2

)
α · ζ2 = 2 · α̂ ·

(
p1
σ2
1

+ 1−p1
σ2
2

)
α · ζ3 = 6 · α̂ ·

(
p1
σ3
1

+ 1−p1
σ3
2

)
α · ζ4 = 24 · α̂ ·

(
p1
σ4
1

+ 1−p1
σ4
2

)
α · ζ5 = 120 · α̂ ·

(
p1
σ5
1

+ 1−p1
σ5
2

)
.
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This system was solved using Maxima software (Appendix 2). The relations obtained
between the parameters of X(t) and X̂(t) are too long and complex, thus they are not
presented in the text. We will apply obtained formulas in Chapter 4.

3.5 Coxian distributions

Coxian distribution is very popular class of phase-type distributions in applied literature.
This distribution has the following form of the phase-diagram (Figure 10).

Figure 10. Phase-diagram of Coxian distrbution with p phases

Coxian distribution is a generalization of hypoexpoential distribution. Instead of only
being able to reach the absorbing state from the final phase p it can be reached from any
phase. Parameters t1, . . . , tp−1 ∈ [0, 1]. If all ti are equal to one, then Coxian distribution
is exactly hypoexponential distribution.

Analogically to the previous sections we calculate the ruin probability for risk pro-
cess X(t) by replacing initial risk process X(t) with a new risk process X̂(t) with
Coxian distribution of claims. In this section we will consider two cases of Coxian
distribution.

3.5.1 Simplified two-phases Coxian distribution

First of all, let’s assume that the risk process X̂(t) has two-phases Coxian distibution of
claims, such that σ1 = σ2, i.e. its phase-diagam has the form presented in Figure 11.
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Figure 11. Phase-diagram of simplified Coxian distribution with two phases

This risk process can be described by four parameeters: transition intensity σ̂1 and t1,
gross premium rate ĉ, intensity of Poisson distribution α̂. Hence, in order to estimate all
unknown parameters of this special case of Coxian distribution it is needed to match the
first four moments of X(t) and X̂(t).

The transition matrix T and initial distribution p in case of considered case of Coxian
distributions are the following:

T =

(
−σ1 σ1 · t1

0 −σ1

)
,

p =
(

1 0
)
.

By Property 3.2 the first four moments of simplified Coxian distribution with two phases
are the following:

E(Z) =
t1 + 1

σ1

,

E(Z2) = 2 ·
(

2t1 + 1

σ2
1

)
,

E(Z3) = 6 ·
(

3t1 + 1

σ3
1

)
,

E(Z4) = 24 ·
(

4t1 + 1

σ4
1

)
.
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Hence, in order to match the first four moments of initial risk process X(t) and new
risk process X̂(t) with Coxian distribution of claim, parameters of X̂(t) must satisfy the
following system of equations:

c− α · ζ1 = ĉ− α̂ ·
(
t1+1
σ1

)
α · ζ2 = 2α̂ ·

(
2t1+1
σ2
1

)
α · ζ3 = 6α̂ ·

(
3t1+1
σ3
1

)
α · ζ4 = 24α̂ ·

(
4t1+1
σ4
1

) . (12)

This system has two solutions:

t̂1 =
3− 9ζ2ζ4

4ζ23
±
√

1− 3ζ2ζ4
4ζ23

27ζ2ζ4
4ζ23
− 8

,

σ̂1 =
4ζ3(1 + 4t̂1)

ζ4(1 + 3t̂1)
,

α̂ =
ζ3σ̂

3
1

6(1 + 3t̂1)
· α,

ĉ = 1− αζ1 + α̂ ·
(
t̂1 + 1

σ̂1

)
.

We will apply these formulas in Chapter 4.

3.5.2 General two-phases Coxian distribution

Now let us assume that claims of the risk process X̂(t) have general Coxian distribution
with two phases i.e. there is no assumption that σ1 = σ2. In this case X̂(t) has five
unknown parameters: σ̂1, σ̂2, t̂1, ĉ, α̂. Hence, it is needed to match the first five moments
of X(t) and X̂(t) to find the estimations of unknown parameters.

The transition matrix T and initial distribution p for general Coxian distributions are
defined as follow

T =

(
−σ1 σ1 · t1

0 −σ2

)
,

p =
(

1 0
)
.

39



By Property 3.2 the first four moments of simplified Coxian distribution with two phases
are the following:

E(Z) =
t1
σ2

+
1

σ1

,

E(Z2) = 2 ·
(

t1
σ1σ2

+
t1
σ2

2

+
1

σ2
1

)
,

E(Z3) = 6 ·
(

t1
σ2

1σ2

+
t1
σ1σ2

2

+
t1
σ3

2

+
1

σ3
1

)
,

E(Z4) = 24 ·
(

t1
σ3

1σ2

+
t1
σ2

1σ
2
2

+
t1
σ1σ3

2

+
t1
σ4

2

+
1

σ4
1

)
,

E(Z4) = 120 ·
(

t1
σ4

1σ2

+
t1
σ3

1σ
2
2

+
t1
σ2

1σ
3
2

+
t1
σ1σ4

2

+
t1
σ5

2

+
1

σ5
1

)
.

The estimation of the parameters of X̂(t) can be found from the following system of
equations. 

c− α · ζ1 = ĉ− α̂ ·
(
t1
σ2

+ 1
σ1

)
α · ζ2 = 2 · α̂ ·

(
t1
σ1σ2

+ t1
σ2
2

+ 1
σ2
1

)
α · ζ3 = 6 · α̂ ·

(
t1
σ2
1σ2

+ t1
σ1σ2

2
+ t1

σ3
2

+ 1
σ3
1

)
α · ζ4 = 24 · α̂ ·

(
t1
σ3
1σ2

+ t1
σ2
1σ

2
2

+ t1
σ1σ3

2
+ t1

σ4
2

+ 1
σ4
1

)
α · ζ5 = 120 · α̂ ·

(
t1
σ4
1σ2

+ t1
σ3
1σ

2
2

+ t1
σ2
1σ

3
2

+ t1
σ1σ4

2
+ t1

σ5
2

+ 1
σ5
1

)
This system of equations was solved using Maxima software (Appendix 2). We will
apply obtained formulas in Chapter 4.
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4 Numerical comparison of De Vylder’s approximation
and phase-type approximations

The goal of this chapter is numerical comparison of the accuracy of ruin probability’s
approximations based on De Vylder’s method and phase-type distributions considered
in the previous chapter. In Section 2.2 De Vylder’s approximation was applied on three
examples: Gamma distribution (Example 2.1), mixed exponential distribution (Example
2.2) and lognormal distribution (Example 2.3). In this chapter we calculate ruin probabil-
ities for the same examples using phase-type approximations and compare relative errors
of all methods.

Sometimes claims of risk processes have complicated, high-order phase-type distri-
butions with many states. It is not technically simple to calculate the ruin probability
in such cases, even when exact formula is known. Hence, we got an idea to check if it
is possible to estimate accurately the ruin probability in such cases using claims with a
simple, low-order phase-type distributions. In order to research this question, one more
numerical example is considered.

4.1 Gamma distribution

Consider the risk process X(t) described in Example 2.1. It means claims are having
Gamma distribution with parameters α′ = 1

100
and β′ = 1

100
, intensity of the Poisson

process α = 10
11

, relative safety loading ρ = 5% and gross premium rate c is assumed to
be equal to 1.

As it was shown in Section 2.2 (Table 1), de Vylder’s approximation works well in
case of claims having Gamma distribution. The summary of absolute relative errors
for all considered methods is presented in Figure 13. Here and in the next sections the
following notations are used:

• De Vylder - De Vylder’s approximation

• Erlang2 - approximation based on two-phases Erlang distribution, described in
Section 3.2.1.

• Erlang3 - approximation based on three-phases Erlang distribution, described in
Section 3.2.2.
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• Hypo2 - approximation based on two-phases hypoexpontial distribution, described
in Section 3.3.

• Hyper2 - approximation based on two-phases hyperexponential distribution, de-
scribed in Section 3.4.

• Coxian1 - approximation based on simplified two-phases Coxian distribution,
described in Section 3.5.1.

• Coxian2 - approximation based on general two-phases Coxian distribution, de-
scribed in Section 3.5.2.

Table 4. Absolute relative errors (Gamma distributed claims)

In case of Gamma distributed claims the most accurate approximation is given by
hyperexponential (Hyper2) and general Coxian distributions (Coxian2). As can be seen
from Table 4, these approximations gives exactly the same absolute relative errors.
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Figure 12. Estimation of parameters of general Coxian distribution

Figure 13. Estimation of parameters of hyperexponential distribution

Estimated rate parameters of these two distributions are equal (σ1Coxian2 = σ2 Hyper2 and
σ2Coxian2 = σ1 Hyper2). As a result, Coxian2 and Hyper2 give exactly the same formula of the
ruin probability in case of Gamma distributed claims.

Ψ(u)H2 = Ψ(u)Coxian2 = 0.01970989e−0.019107186u + 0.87942839e−0.001745007u

There is a clear theoretical reason for such a coincidence. Namely, it is known phase-type
distribution that has no cycles in the phase-diagram can equivalently be represented as a
Coxian phase-type distribution.[11] The reader can notice the same phenomena in the
following examples too.
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Simplified Coxian (Coxian1) and hypoexpontial (Hypo2) distributions give very ac-
curate results too. Absolute relative errors are slight greater than in case of Hyper2 and
general Coxian2 but still smaller than errors of De Vylder’s approximations for most of
the values of initial capital u. Erlang distributions with two (Erlang2) and three (Erlang3)
phases give the worst approximations compare to other methods, but still work well and
relative errors do not exceed 1%. The plot of relative errors for all seven approximations
is presented in Figure 14

Figure 14. Relative error of ruin probabilities of approximations (Gamma distribution)

4.2 Mixed exponential distribution

Assume now that the sizes of the claims of the risk process X(t) have mixed exponential
(hyperexponenial) distribution with the distribution function F (z).

F (z) = 1− 0.0039793 · e−0.014631z − 0.1078392 · e−0.190206z − 0.8881815 · e−5.514588z.

We consider ρ = 5%; 10%; 15%; 20%; 25%; 30%; 100%. Gross premium rate c is taken
to be equal to one.
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Table 5. Absolute relative errors (Mixed exponentially distributed claims)

The results of approximations are analogical to the previous example with Gamma
distribution. The smallest absolute relative errors are obtained by approximations with
hyperexponential and general Coxian distributions. Note that these two approximations
give almost perfect result (errors do not exceed 0.083%). In this example such result is
not surprising. Initial distribution of claims is hyperexponential distribution with three
phases. Moreover the weight of the first state is small enough (w1 = 0.0039793). Hence
distribution of claims of X(t) is close to two-phases hyperexponential distribution. That
is why Hyper2 and hence Coxian2 give almost perfect approximation.
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Figure 15. Relative errors for different values of ρ (u = 10).

Let’s compare relative errors of the approximations depending on the values of the relative
safety loading. From Figure 15 it is seen that Hyper2 and Coxian2 approximations are
stable and give almost perfect approximation independently on ρ, but for all other
methods there is the same trend in case of ρ ∈ [5%, 30%]. All methods underestimate
the ruin probability and increasing the value of relative safety loading absolute relative
errors of approximations are logarithmically increasing. Comparing relative errors in
case of ρ = 30% and ρ = 100%, we can see that Coxian1 and Hypo2 approximations
give a bit more exact estimation of ruin probability for higher value of relative safety
loading, while errors of others approximations continue increasing.

4.3 Lognormal distribution

As it was shown in Example 2.3 (Section 3.2), De Vylder’s method can not precisely
estimate ruin probability of a risk process if claims have lognormal distribution. Consider
the same risk processX(t) with lognormally distributed claims (σ2

L = 3.24, µL = −1.62)
and compare the accuracy of phase-type approximations.
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Table 6. Absolute relative errors (Lognormal distribution)

From Table 6 we can see, that absolute relative errors are big in most of the cases. Risk
process with any phase-type distribution of claims has exponentially decreasing ruin
probability. Hence, it is not surprising that considered methods can not estimate ruin
probability in case of lognormally distributed claims. Hence, relatively good estimation
of the ruin probability, for example, in case of ρ = 25% and u = 100 can be considered
as accidental.

Interesting is the fact that in case of Hypo2 and Coxian1 methods estimation of pa-
rameters do not give an adequate result. For example, one of the rate parameters of
two phases hypoexponential distribution is complex number with negative real part
(σ̂2 = −6.419022 · 10−4 + 8.972437 · 10−4i). Complex number as an estimation of
parameters of a risk process X̂(t) has been already met in case of hypoexponentialy
distributed claims in previous examples but the real part of the number was positive and
as result, it does not affect the estimation of ruin probability. In this example negativity
of the real part of parameter estimation causes non-adequate ruin probability formula
(probability is increasing if initial capital increases).

Two-phases hypoexponential and simplified Coxian distributions are, of course, gen-
eral cases of two-phases Erlang distribution and that is why the question arises: why
Hypo2 and Coxian1 can not adequately estimate the parameters if Erlang2 can handle it.
The nature of the problem is based on the number of restrictions in case of each claim
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distribution. As it was mentioned before risk process X̂(t) with Erlang distribution of
claims has three parameters. Hence, to estimate them it is needed to match the first three
moments of initial risk process and X̂(t). In case of two-phases hypoexponential and
simplified Coxian distributions there are four and five parameters respectively. Hence,
because of greater number of restrictions it is not mathematically possible to obtain same
result as in case of Erlang2.

4.4 Phase-type distribution with many states

Assume now that claims of a risk process X(t) has phase-type distribution with many
states. The goal of this section is to study if it possible to accurately estimate the ruin
probability of X(t) using approximations considered in Chapter 3.

Example 4.1.

Let distribution of claims of a risk process X(t) is phase-type with ten states. Phase-
diagram of this distribution is presented in Figure 16

Figure 16. Phase-diagram of considered distribution
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Assume that p1 = 0.6; p2 = 0.4; σ1,3 = 1.3; σ2,4 = 2.4; σ3,5 = 3.5; σ3,6 = 3.6;
σ4,6 = 4.6; t4,6 = 0.2; σ5,7 = 1.7; σ6,8 = 3.8; σ6,9 = 2.9; σ7,10 = 1.10; σ8 = 0.8;
σ9 = 0.9; σ10 = 0.10. Then we can estimate ruin probabilities of the risk process X(t)

by considered in the previous chapter methods.

Table 7. Absolute relative errors (Phase-type distribution with many states, example 4.1)

As we can see from Table 7, the hyperexponential and general Coxian distributions with
only two phases perfectly fit the high-order phase-type distribution for all values of initial
capital and relative safety loading. Hypo2 is also very accurate approximation but it
works worse in case of small initial capital when ruin probability is higher. De Vylder’s
approximation, Erlang2, Erlang3 and Coxian1 give really poor results in case of small
ruin probability (high ρ and big u). To conclude, we can say that all approximations give
relatively accurate estimations of the ruin probability of X(t). This depends, of course,
on the values of parameters of claim distribution.

49



Example 4.2.

Consider now same type of claim distribution, but with another values of parameters.
Assume that p1 = 0.6; p2 = 0.4; t4,6 = 0.2 and σ1,3 = σ2,4 = σ3,5 = σ3,6 = σ4,6 =

σ5,7 = σ6,8 = σ6,9 = σ7,10 = σ8 = σ9 = σ10 = 1.

In this case Hypo2 approxiamtion can not adequately estimate parameters and give
incorrect formula of the ruin probability (probability is increasing if initial capital in-
creases). Hence, the only approximations which work correctly in this case are De
Vylder’s approximation, Erlang2, Erlang3, Hyper2, Coxian1 and Coxian2.

Table 8. Absolute relative errors (Phase-type distribution with many states, example 4.2)

From Table 8 we can see that working approximation methods give very accurate results
in most of cases. Hyper2 and Coxian2 with only two phases perfectly fit the high-order
phase-type distribution for all values of initial capital and relative safety loading. Since
all transition rates of this phase-type distribution are equal, Erlang3 also returns very
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accurate estimation of the ruin probability. The worst approximation (in comparison
with other approximations) is De Vylder’s method. Note that in case of high ρ and big u
(ruin probability is small in this case) De Vylder’s method returns very poor result. For
example, if ρ = 100% and c = 200 absolute relative error is 274, 33%.

To conclude, approximation based on low-order phase-type distribution can accurately
estimate the ruin probabilities of a risk process, in case if its claims have complicated,
high-order phase-type distributions with many states. De Vylder’s approximation returns
an accurate estimation of the ruin probability based on considered examples, but absolute
relative errors of this method are several times bigger than errors of Hyper2 and Coxian2.
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Conclusion

The main goal of the thesis was to find a method of approximation of the ruin probabil-
ity that is more accurate than famous De Vylder’s method but at the same time is not
technically too complicated. In the framework of this thesis six approximations were
considered based on phase-type distributions for calculation of the ruin probability. Ac-
curacy of each approximation were compared based on four examples of risk processes
with different distributions of claims.

In this thesis we examined mostly approximations based on phase-type distributions
with two phases. The number of parameters describing a risk process with Coxian,
hypoexponential or hyperexponential distribution of claims depends on the number of
phases. Even in case of two phases these approximations need to solve systems of four or
five equations which are much more difficult than in case of De Vylder’s approximation.
Hence, the number of phases was limited by two for these distributions. Three-phases
case was considered for Erlang distribution, since the number of unknown parameters
describing a risk process with Erlang distribution is always three and does not depend on
the numbers of phases.

Comparison of absolute relative errors of ruin probability’s estimations showed that
hyperexponential and general Coxian distributions give the most accurate results based
on examples of risk process with Gamma and mixed exponentially distributed claims. In
these cases named approximations fit the ruin probability perfectly and relative errors are
negligible. The biggest errors are seen if approximation is based on two- or three-phases
Erlang distribution. Their absolute relative errors are even higher than in case of De
Vylder’s method. Moreover, increasing of the number of phases of Erlang distributions
worsens the result.

Risk processes with lognormally distributed claims are badly fitted by De Vylder’s
approximation. It is well understood since in lognormal case the ruin probability follows
the asymptotic which significantly differes from exponential asymptotic. In this thesis
it was shown that phase-type distributions can not correctly describe it too, since they
return exponentially decreasing ruin probability.

To conclude, our new approximation methods based on simple phase-type distribu-
tions (such as hyperexponential and general Coxian) almost always give more accurate
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ruin probabilities than well-known De Vylder’s method. At the same time, the price for
the increased accuracy is only minimal, since ruin probabilities for phase-type distributed
claims can still be calculated via explicit formulas, without any time consuming iterations.
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Appendixes

Appendix 1.

R-script calculating the ruin probability for a risk process with phase-type distributed
claims.

toenausus2<-function(T,alpha,betha){

t <- -rowSums(T)

T.inverse <- solve(T)

alpha.plus <- -betha*alpha%*%T.inverse

T.plus <- T+t%*%alpha.plus

lambd<-eigen(T.plus)$values

vect<-eigen(T.plus)$vectors

f0<-vect

f01<-solve(f0)

kordaja<-c()

for(i in 1:length(lambd)){

Values<-matrix(ncol = length(lambd),nrow = length(lambd))

for(row in 1:length(lambd)){

for(col in 1:length(lambd)){

vector<-f0[row,]*f01[,col]

Values[row,col]<-vector[i]

}

}

kordaja<-c(kordaja,sum(alpha.plus%*%Values))

}

result<-cbind(lambd, kordaja)

colnames(result)<-c("power","multiplier")

return(result)

}
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Appendix 2.

Maxima script estimating the parameters of the risk process X̂(t) with two-phases
hypoexponential distirbution of claims from Section 3.3.

k1:1/s1;

k2:1/s2;

Solver:solve([1-b*e1=c1-b1*(k1+k2),

b*e2=2*b1*(k1*k2+k2^2+k1^2),

b*e3=6*b1*(k1^2*k2+k1*k2^2+k2^3+k1^3),

b*e4=24*b1*(k1^3*k2+k1^2*k2^2+k1*k2^3+k2^4+k1^4)

],[c1,b1,k1,k2]);

Maxima script estimating the parameters of the risk process X̂(t) with two-phases
hyperexponential distirbution of claims from Section 3.4.

Solver:solve([1-b*e1=c1-b1*(p/s1+(1-p)/s2),

b*e2=2*b1*(p/s1^2+(1-p)/s2^2),

b*e3=6*b1*(p/s1^3+(1-p)/s2^3),

b*e4=24*b1*(p/s1^4+(1-p)/s2^4),

b*e5=120*b1*(p/s1^4+(1-p)/s2^4)

],[c1,b1,p,s1,s2]);

Maxima script estimating the parameters of the risk process X̂(t) with two-phases Coxian
distirbution of claims from Section 3.5.2

k1:1/s1;

k2:1/s2;

Solver:solve([1-b*e1=c1-b1*(p*k2+k1),

b*e2=2*b1*(p*k1*k2+p*k2^2+k1^2),

b*e3=6*b1*(p*k1^2*k2+p*k1*k2^2+p*k2^3+k1^3),

b*e4=24*b1*(p*k1^3*k2+p*k1^2*k2^2+p*k1*k2^3+p*k2^4+k1^4),

b*e5=120*b1*(p*k1^4*k2+p*k1^3*k2^2+p*k1^2*k2^3+p*k1*k2^4+p*k2^5+k1^5)

],[c1,b1,p,k1,k2]);
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