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ABSTRACT

A particularly elusive flaw in shared-memory concurrent systems is the data race,

a situation where multiple threads may simultaneously access the same memory

location, and at least one of the accesses is a write. This dissertation contends

that static analysis can be used to verify the absence of data races in real world

systems, especially operating system modules like Linux device drivers. The dif-

ficulty in analyzing such code is that both data structures and locks protecting the

data are created at run-time. This naturally poses a problem for static analysis;

indeed, most commercial race detection tools are based on run-time analysis. In

this dissertation, we present three key innovations that together enable static data

race analysis of heap-manipulating C programs.

First, in order to deal with fine-grained locking, a scheme in which each data

structure contains its own dedicated lock, we present an abstract domain to in-

fer must-equalities between address expressions. Second, we address medium-

grained locking schemes, such as having a common list lock protecting elements

of a linked list, by associating accesses into the heap with static owners of the re-
gion in which an element resides. This allows the application of the techniques for

fine-grained locking to now correlate the locks with the owners of regions. Third,

in order to deal with migrating elements and unsharing, we refine the global in-

variant approach of Seidl, Vene and Müller-Olm to deal with temporary violations

of heap invariants within critical sections, and we provide a shape analysis capa-

ble of determining whether elements have been removed from embedded linked

list structures, as used in the Linux kernel.

We have implemented these techniques in the Goblint analyzer and used it to

experimentally validate the contention that verification of race-freedom in real-

world systems is possible by means of static analysis.
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CHAPTER 1

INTRODUCTION

Writing and debugging concurrent programs is notoriously difficult: due to the

non-deterministic nature of thread scheduling, a system may contain latent flaws

which are not detected by conventional approaches to quality assurance. In the

classic example of the Therac-25 radiation therapy machine, only experienced

practitioners could elicit the murderous race condition because testers were not

“quick-fingered” enough to trigger the underlying concurrency flaw.

Given the increasing prevalence of multi-core architectures, tools and pro-

gramming languages are needed to support the development of concurrent soft-

ware systems. Most safety-critical systems, the programs whose correctness we

most urgently need to verify, are written in low-level languages that are extremely

hard to reason about. These programming languages give the programmer com-

plete control over the synchronization mechanisms to more efficiently manage the

limited resources of an embedded system. The drawback to such fine-grained

control is that the programmer must use the low-level concurrency primitives cor-
rectly in order to avoid concurrency hazards. The two main sources of problems

specific to low-level concurrent programming are race conditions and deadlocks.

This thesis is concerned with race detection for low-level C code.

More precisely, this thesis is concerned with sound, static and fully automatic

race detection. Static race detection means we attempt to detect flaws without

executing the program. Just as structural engineers can predict how a construction

will support and resist imposed loads, we approximate the run-time behaviour of

a program by solving a system of data flow equations. Soundness implies that we

approximate this behaviour conservatively, thus when successful, we certify that

the program is free from data races. Finally, our approach is fully automatic and

can in principle be run on a raw piece of C code by pressing a big red button.

Our primary goal is the verification of system modules, such as Linux device

drivers, without analyzing the rest of the system. Thus we make certain worst-

case assumption about the environment. When we succeed in verifying a module,
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we can be sure the module under analysis is safe; that is, the current module is not

to blame for any potential race occurring due to external code disrespecting the

synchronization protocol of the analyzed module. For this application domain, we

need techniques to analyze modules of up to ten thousand lines of code precisely

enough to verify absence of races. Thus, we are interested in comparatively small

programs, rather the challenge is that the code is fairly complicated and low-level.

1.1 Race conditions

A race condition is a general term which refers to any flaw in a concurrent soft-

ware system where the result of a computation may depend on the scheduling of

the threads in a way not anticipated by the developers. Netzer and Miller [65] dis-

tinguish between general races, which introduce undesired non-determinism in

programs intended to be deterministic, and data races, which lead to data incon-

sistency in (intentionally non-deterministic) programs because sections manipu-

lating shared data are not executed atomically.

Most work on automated data race detection is concerned with an even nar-

rower condition, namely the multiple access data race. This is a specific condition

that excludes many atomicity flaws, and it is a necessary condition to avoid poten-

tial data corruption; however, there are atomicity violations, such as stale-value

concurrency errors [2], which are not captured by this notion of a data race. Nev-

ertheless, in this thesis (and in most papers on race detection), when we speak of

race conditions and data races, we mean the following.

Definition 1 (Data Race). A multiple access data race is a condition in multi-

threaded programs where different threads may simultaneously access the same

shared memory location, and at least one of the accesses is a write.

We now dissect this definition into the three key requirements for two accesses

to qualify as a race. First, the definition requires that the access statements are

executed by different threads. If a shared memory location is only accessed by a

single thread, it is thread-local and cannot be subject to a data race. By default,

local variables are thread-local and global variables are shared. However, local

variables may escape the confines of a single thread, for example, when a parent

thread passes a reference to one of its locals as argument to a spawned thread.

Conversely, global data may be used by just a single thread; in particular, dy-

namically allocated memory, which in principle belongs to the shared heap, may

actually be thread-local. Deciding which shared memory locations are exclusively

accessed by a single thread increases precision; failing to detect if a child thread

may access a local variable of its parent would be entirely unsound.
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Second, the definition requires the accesses to occur simultaneously. Strictly

speaking, concurrent computing does not necessarily require a parallel architec-

ture. When we speak of simultaneous accesses, we mean that there are no con-

straints on how the scheduler may order the machine instructions which realize the

two access statements. Thus, if the scheduler is free to interleave the execution of

two statements, we think of these accesses as occurring simultaneously.

There are a number of different ways to ensure that statements do not occur

simultaneously. For example, there may be temporal constraints induced by the

program logic which ensure that one access will always happen before the other.

The most common method for enforcing that accesses do not occur simultane-

ously is to ensure that critical segments of code are mutually exclusive. Posix C

provides mutexes (mutual excluders) for the programmer to delimit the section

of code which may access the same shared memory location by the locking and

unlocking of a common mutex. The system allows at most one thread to hold any

given mutex, thereby ensuring that accesses will not be simultaneous, provided

the programmer correctly uses the same mutex to guard the two accesses.

Finally, the definition requires that the threads access the same memory loca-
tion. Identifying the memory location that a given program statement may access

is complicated due to the use of pointers. When dynamically allocated data struc-

tures are accessed indirectly through pointers into the heap, determining whether

two access statements may refer to the same location requires precise information

about the locations that pointer variables may point to.

1.2 Challenges in static race detection for C

The basic technique in static data race detection is to ensure the following con-

dition: for each shared memory location, there exists (at least) one lock which

is held whenever a thread accesses that memory location. In order to determine

whether a common lock exists, one may compute the set of locks that are held

by the executing thread at each program point. As execution may reach a given

program point along different execution paths, a sound analysis only takes into

account those locks which are held across all paths reaching that point. Having

computed the sets of definitely held locks, one checks for each shared memory

location the intersection of the locksets at the points where that memory location

is accessed. If the intersection is non-empty, one can conclude that there is no race

at that given memory cell; otherwise, the analysis warns that there is a potential

data race.

In order to apply the above basic idea to analysing real C programs, one has

to address the following challenges.
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int x; mutex m1 = MUTEX_INIT;
int y,z; mutex m2 = MUTEX_INIT;

void munge(int *v, mutex *m) {
lock(m); (*v)++; unlock(m); }

thread t1() { thread t2() {
munge(&x, &m1); munge(&x, &m1);
munge(&y, &m2); munge(&y, &m1);
munge(&z, &m2); } munge(&z, &m2); }

Figure 1.1: Illustrating the need for context-sensitive pointer analysis [68].

Context-sensitive alias analysis. Determining statically the memory locations

that are being accessed is not a trivial task. Even without dynamic memory alloca-

tion, pointers to static global variables need to be resolved. If two distinct pointers,

p and q, may alias, i.e., point to the same memory location, then syntactically dis-

tinct accesses, e.g., p→data and q→data, may participate in a data race. What

makes this particularly challenging is that the locking and unlocking operations

of C are not lexically scoped, hence the information about pointers needs to be

tracked context-sensitively, as is illustrated through the following example.

Figure 1.1 contains a simple program with two threads that execute calls to a

munge() function. This function increments a shared variable while acquiring

and releasing a mutex; both the variable and the mutex are given through pointer

parameters. The effect of the function depends on the parameters with which it

is called. If these calling contexts are conflated, the analysis will fail to deduce

anything sensible about the program: v may point to of the three shared variables,

while m may point to any of the two locks. As such functions commonly occur in

real programs, context-sensitive propagation of pointer values is critical.

Races in the heap. It should come as no surprise that dynamic memory alloca-

tion is extremely difficult for static analyzers. Since many serious program errors

relate to memory safety, the analysis of the heap is currently a highly active area

of research. When it comes to race detection tools, most of them still rely on sum-

marizing all data allocated at a given program point into a single representative

blob; that is, a single static name, such as “alloc@file.c:38”, is used to represent

all elements created at a given allocation site.

The problem with summarization for race detection is that on the one hand,

we have to treat an accesses to a blob as an access to all the objects it represents;
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on the other hand, we must consider the locking of a blob as taking none of the

locks. This asymmetry is a consequence of having to ensure that if two threads

may access the same element, they must lock the same lock. This problem can

be illustrated even without dynamic memory. It is quite natural for an object to

contain a dedicated lock which ensures mutually exclusive access to its data fields,

as in the following example:

struct { int datum; mutex mtx; } A, B;
if (test) p = &A; else p = &B;
lock(&p→mtx); p→datum++; unlock(&p→mtx);

After the non-deterministic branching the pointer p may point to either A or B,

so when we acquire the lock p→mtx we may hold either one of them, and thus

neither of them is definitely held. Although most sound race detection tools will

raise a false alarm for this example, it is perfectly clear that the code is safe; after

all, the same pointer is used for both the access and for the locking. The situation

is analogous when p points to a blob of dynamically allocated memory.

Temporary violations of invariants. While most approaches to race detection

attempt to infer invariants on the heap that hold throughout the entire program

execution, dynamically allocated objects often have a life cycle: initialization,

consumption, and destruction. A freshly allocated object is only accessible by

the thread that allocated it until the thread publicizes the element by connecting

it to the rest of the heap, e.g., by adding it to a shared linked list. Similarly, near

the end of an objects life-time, it may be privatized, i.e., removed from the data

structure where it resided, so that it is only accessible by a single thread.

Discovering when a freshly allocated object becomes shared is much easier

than dealing with privatization. Escape analysis is a common technique to dis-

cover when a freshly allocated object escapes the thread and becomes accessible

to other threads. Once an object has escaped and is part of the heap, one can

only discover its removal through careful analysis of the heap because one has to

ensure that the element is no longer reachable from any shared heap element.

Conditional locking and variations on locking. A program may check a con-

dition to determine if it needs to acquire a lock, and then based on a related condi-

tion decide if an access should occur. Path-sensitivity is the ability of the analysis

to distinguish feasible paths from infeasible ones:

if (do_work) lock(&mtx); ...; if (do_work) work++;

There are 4 paths in the above code, but only two are valid paths. This is also

an issue when thread creation and mutex locking operations may fail, such as

pthread’s trylock and the kernel’s lock_interruptible. The return value
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must then be used to correlate the different locksets that result from potentially

failing locking operation with the values of program variables.

Synchronization-sensitivity. Even in a multi-threaded program, a thread may

not be running in parallel with all other threads at all times. There are many

mechanisms to achieve lock-free synchronization, but these are often very hard

to analyze. Something can be done by attempting to track thread identities and

inferring which threads may possibly run in parallel. As this has not been the

focus of our work, we will discuss this in the conclusion as an area of future

work.

1.3 An overview of our solution

Since the static analysis of multithreaded software is notoriously difficult [72],

most race detection tools are either based on dynamic analysis, which cannot

prove the absence of bugs, or use type-based approaches, which rely on time-

consuming programmer annotations [31]. More recently, however, some impres-

sive static data race analyzers have been presented [47, 61, 68]. In contrast to

these race detection methods, we track the values of program variables. This al-

lows us to solve the path-sensitivity problem by using a technique called property-
simulation [23]. This technique analyzes the state of the program for each config-

uration of the relevant property, namely locksets. However, tracking the values of

variables comes with a price. As we are dealing with multi-threaded programs, the

price could be very high: the number of possible interleavings of threads grows

exponentially with the size of concurrently executable code. Many researchers

have tackled this problem, and one promising approach is the design of thread-
modular analyses [30]. The idea is to compute the influence of each thread on

the rest of the program, and then use this information to analyze each thread in

isolation.

Seidl, Vene and Müller-Olm [76] propose a sound framework for thread-

modular analysis based on computing global invariants. Posix threaded applica-

tions communicate through global variables and heap allocated data. Hence, they

compute the side-effects of each thread on the global state, and use this informa-

tion for the sequential analysis of each thread. These two computations are per-

formed simultaneously using a demand-driven fix-point solving algorithm [29].

This has been implemented in the Goblint analyzer and the benefits and details of

the approach are discussed in Chapter 2.

The key contributions of this thesis are the techniques for race detection of

heap-manipulating programs based on combining may and must-alias informa-

tion. As a general approach, we use pointer must-equality analysis to reason about
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the access and the lock relative to a root pointer (e.g., p→datum is accessed while

holding p→mtx) and then instantiate the found invariant to all elements that p
may point to, including blobs. In the example above, we would instantiate the in-

ferred invariant to obtain that A.datum is accessed holding A.mtx and B.datum
is accessed holding B.mtx because the root pointer p has the may point-to set

{&A,&B}. For this one needs to primarily reason about must-equalities between

pointer expressions, which is the subject of Chapter 3.

The above method also works for a summarized blob of memory if the locking

scheme is fine-grained, i.e., each element allocated at a program point has its

own lock. Then, an existentially quantified invariant can be associated with the

entire blob of memory. However, the locking granularity is often slightly more

coarse. Linked list data structures may have a list-lock which protects access to

all elements in the list. We can deal with this by associating dynamically allocated

elements not with their allocation site, but rather with the list head into which they

are placed. The list head is then a static owner of the disjoint portion of the heap

reachable from it. If we can infer disjoint regions in the heap, we know that

pointers into different regions may not alias, hence an access through a pointer

can be associated with the owner of the region into which it points. The must-

equality information can then be used to infer correlations between the owners

and held locks. This approach to medium-grained locking is explained in full

detail in Chapter 4.

While these techniques work well for the analysis of simpler device drivers,

for more complicated modules, the heap abstraction is too static. In our region-

based analysis, once an element is inserted into a list, it is part of that region and

cannot be moved out. If an element is moved from one list to another, we conser-

vatively collapse the two regions. In Chapter 5, we relax the condition that global

invariants must hold at all times during the program execution. We allow a re-

gion for which a thread has obtained exclusive access to be analyzed sequentially

using shape analysis techniques. If we can then ensure that an element has been

removed from a list, we would no longer need to flag a warning when a privatized

element is accessed nor collapse regions when the element is inserted into another

list.

Deciding whether an element has truly been removed from a data-structure

is easier said than done. The embedded linked list data structure used, e.g., in

operating system code makes this even harder because an element may reside

simultaneously in multiple linked lists. In Chapter 6, we describe the problem

with overlapping structures and present shape analysis techniques for low-level

C which can infer whether an element has been removed from such complicated

data structures.
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1.4 Publications used in this thesis

This thesis is based on the original publications listed on page 7. The papers

covered in Chapters 2–4 are co-authored with my supervisors, Prof. Varmo Vene

and Prof. Helmut Seidl. For the two most recent papers with additional co-authors,

my contribution is clarified below.

Chapter 2 is based on our first paper about the Goblint analyzer [87], presented

in 2007 at the Finno-Ugric Symposium on Programming Languages and Software

Tools in Hungary with post-proceedings two years later for which we updated the

paper significantly [88]. For this thesis, the text has been extended with additional

background on the side-effecting approach implemented in the Goblint analyzer

and discussions of other approaches to race detection for C.

Chapter 3 is based on a paper presented at the Formal Methods Symposium

in Eindhoven [78]. It has been extended to include discussion of how it may be

implemented in our analyzer which uses a different approach to inter-procedural

analysis than the original paper.

Chapter 4 is based on a paper presented at the Static Analysis Symposium in

Los Angeles [77]. I have since worked out the correctness proof in more detail,

and found that we need to refine our definition of the abstraction relation. This is

not a serious flaw because the analysis itself is correct, but the reason it works is

slightly more subtle than we originally thought.

Chapter 5 is based on our most recent work with co-authors Kalmer Apinis

and Jörg Kreiker. My contribution is the underlying framework for side-effecting

with atomic section. Kreiker has worked out the concrete shape instance and

Apinis evaluated the technique on real code.

Chapter 6 is based on a paper presented at the Conference on Verification,

Model Checking, and Abstract Interpretation in Madrid [52]. Here, Jörg Kreiker is

primary author and did the implementation work, while my contribution is limited

to the writing; however, our paper is largely motivated by the problems I identified

when analyzing the Linux kernel.
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CHAPTER 2

GLOBAL INVARIANTS FOR RACE
DETECTION

Of the challenges discussed in the previous chapter, the most fundamental is

the need for context-sensitive pointer alias analysis. The approach to context-

sensitivity influences the entire design of the race detection tool. In this chapter,

we discuss the approach used in our analyzer, Goblint, as well as three other so-

lutions used in recent static race detection tools. As stated in the introduction,

Goblint is unique among these race detection tools in relying on a sound inter-

procedural constant propagation and points-to analysis.

The immediate benefit of building our race detection on top of more traditional

analyses is that tracking the values of integer variable allows the analysis of condi-

tional locking schemes and possibly failing locking operations. More importantly,

the pointer analysis and the region-based heap abstractions of subsequent chapters

rely on the framework for inter-procedural analysis of multi-threaded programs

based on partial global invariants explained in this chapter. This is worth keep-

ing in mind as we here illustrate this idea in the simple, though practically less

compelling, case of integer variables.

2.1 Programming model

We begin by presenting a concrete semantics of thread interleavings. This will

allow us to formalize the notion of a data race and thereby express very clearly

what race analysis is supposed to compute. Our programming model is inspired

by open systems, such as device drivers, operating within an environment. Each

module contains an initialization function where execution of the module begins.

This function will eventually register a set of call-back functions and interrupt

handlers with the environment which can then call these exported functions when

required. From the moment these functions are registered, they can potentially
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run in parallel. Thus, in our formal model, we assume that after execution of

some initialization code, we have a set of threads T running in parallel. Since this

thesis focuses exclusively on lock-based synchronization, we do not include in our

formalism any constructs for spawning new threads, joining with child threads, or

any such facilities for threads to wait for each other (except when waiting for a

lock to be released.)

The code of each thread is given as a control flow graph (N,E) where each

edge (u, s, v) is labelled with an elementary instruction s. These instruction are

either assignments, conditional guards, or primitive operations related to locking.

We shall gradually extend the language constructs as we proceed through this

thesis. We begin with the following grammars for integer and address expressions:

e ::= n | x | ∗a a ::= p | &x | &m

An integer-valued expression e is either a constant n, a variable x, or the deref-

erencing of an address expression a. An address expression is either a pointer

variable p, or the address of an integer variable x or a mutex m. The complete

grammar for edges in our flow graphs are then defined as follows:

s ::= x := e | p := a | ∗p := e (assignments)

| true(e) | false(e) (conditional guard)

| lock(a) | unlock(a) (locking primitives)

This minimal language is sufficient to illustrate the key features and some of the

challenges in static race detection.

Assume G is a set of global variables shared among threads, while L contains

thread-local variables. Let M denote the set of mutexes. We are interested in

mappings of global variables DG = G → N ∪ A where A = M∪ L ∪ G, and

for each thread, similar mappings of local variables DL = L → N ∪ A. Here,

we only consider two types of values: integers and addresses. As we extend our

approach to deal with dynamic memory, it is primarily by means of extending

the kinds of address values we consider. In our most simple setting, we do not

consider dynamically allocated memory at all: legitimate targets of pointers are

mutexes and integer variables.

The state of executing a multi-threaded program is represented in our model as

the 4-tuple d = 〈�u, �μ, �σ, ϕ〉 where �u ∈ T → N maps each thread to the program

point it is about to execute, �μ ∈ T → 2M indicates the set of mutexes held by

each thread, �σ ∈ T → DL contains the state of local variables for each thread,

and ϕ ∈ DG is the state of the shared globals.

In order to evaluate expressions, we need to look up variables in the environ-

ment. First, we introduce a convenient notations for “updating” a function, which
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we will use throughout this thesis:

f [x : n](y) =

{
n if y = x

f(y) otherwise

In addition, we want to apply and update a pair of functions 〈σ, ϕ〉 such that the

first component pertains to local variables, while the second relates to globals:

〈σ, ϕ〉 (x) =
{
σ(x) if x ∈ L
ϕ(x) if x ∈ G

〈σ, ϕ〉[x : n] =

{
〈σ[x : n], ϕ〉 if x ∈ L
〈σ, ϕ[x : n]〉 if x ∈ G

With this machinery, we can give a concrete semantics to the programming model.

We begin with an intra-thread semantics for only assignments and guards, and

then lift this to an interleaving semantics for multi-threaded execution. For intra-

thread execution, the distinction between shared and thread-local variables is not

relevant, hence we can define the semantic functions using only a single mapping

ϕ as argument. In the multi-threaded setting, however, these functions operate

on the pair 〈σ, ϕ〉 by relying on the above definitions to view the pair as a single

mapping. First, we need to evaluate expressions:

�n�(ϕ) = n �p�(ϕ) = ϕ(p)

�x�(ϕ) = ϕ(x) �&x�(ϕ) = x

�∗a�(ϕ) = ϕ(�a�(ϕ)) �&m�(ϕ) = m

Note that this function is partial; for example, dereferencing mutexes is not de-

fined by our semantics because ϕ(m) is undefined. We can now define the effect

assignments and conditional guards:

�x := e�(ϕ) = ϕ[x : �e�(ϕ)]

�p := a�(ϕ) = ϕ[p : �a�(ϕ)] �∗p := e�(ϕ) = ϕ[ϕ(p) : �e�(ϕ)]

�true(e)�(ϕ) = ϕ if �e�(ϕ) �= 0 �false(e)�(ϕ) = ϕ if �e�(ϕ) = 0

Again we emphasize that this is a partial function; in particular, the conditional

guards do not update the program state, rather they make sure flow is propagated

to either the true- or the false-branch.

In our formal model, the set of initial configurations D0 can be characterized

as follows. A configuration d0 = 〈�u0,�∅, �σ, ϕ0〉 is an initial configuration if �u0
maps each thread to an entry of a function,�∅maps all threads to the empty lockset,

σ is arbitrary since uninitialized locals can take any value, and ϕ0 is the global

state after running the initialization code.

The transition rules for the interleaving semantics is given in Figure 2.1. Note

that despite the grammar specifying commands s, here the locking operations are
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COMMAND〈
�u(i), s, u′

〉
∈ E �s� 〈�σ(i), ϕ〉 =

〈
σ′, ϕ′〉

〈�u, �μ, �σ, ϕ〉 →
〈
�u[i : u′], �μ, �σ[i : σ′], ϕ′〉

LOCK

〈�u(i), lock(a), u′〉 ∈ E �a� 〈�σ(i), ϕ〉 = m m �∈ ⋃
j∈T �μ(j)

〈�u, �μ, �σ, ϕ〉 →
〈
�u[i : u′], �μ[i : �μ(i) ∪ {m}], �σ, ϕ

〉
UNLOCK〈
�u(i), unlock(a), u′

〉
∈ E �a� 〈�σ(i), ϕ〉 = m m ∈ �μ(i)

〈�u, �μ, �σ, ϕ〉 →
〈
�u[i : u′], �μ[i : �μ(i) \ {m}], �σ, ϕ

〉

Figure 2.1: Interleaving semantics of regular commands and locking operations.

treated separately. For all edges other than (un)locking edges, any thread i which

can execute a statement, i.e., there is an outgoing edge 〈�u(i), s, u′〉 from its current

program counter �u(i) to some other node u′ such that the intra-thread semantics

for the edge label s is defined, a transition is made which updates the global state

and the local state of the given thread. The most significant transition rule is the

locking operation, where the rightmost side condition only permits the acquisition

of a lock if no thread already holds it. This ensures non-interleaving execution

of sections protected by the same lock. The unlocking transition requires that a

thread holds the lock it attempts to release. In Posix C, requesting the reacquisition

of a lock one already holds or the release of a lock one does not hold both result

in failures.

In order to define a race condition within this formalism, we require the notion

of accessed global variables. Here, we do not distinguish between read or write

accesses. This distinction, though practically important, is neither conceptually

interesting nor difficult, but introduces tedious additional notation. Thus, we de-

fine a function �s�acc : DL × DG → 2G which returns the globals accessed in

the statement s. The definitions are straightforward, hence we only give the more

interesting cases:

�&x�acc(ϕ) = ∅ �∗a�acc(ϕ) = {�a�(ϕ)} ∪ �a�acc(ϕ)

�p�acc(ϕ) = {p} �e1 := e2�acc(ϕ) = �e1�acc(ϕ) ∪ �e2�acc(ϕ)

Note that nothing within an address computation constitutes a memory access,

whereas dereferencing an address expression requires both reading the pointer

variable as well as accessing the destination. With these definitions in place, we

formalize the notion of a race condition as follows.
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Definition 2 (Race condition). There is a race in configuration 〈�u, �μ, �σ, ϕ〉 at vari-

able x ∈ G if distinct threads i and j may execute edges 〈�u(i), s, _〉 ∈ E and

〈�u(j), s′, _〉 ∈ E both with possible accesses to x, i.e., x ∈ �s�acc 〈�σ(i), ϕ〉 and

x ∈ �s′�acc 〈�σ(j), ϕ〉.

We say there is a race at variable x ∈ G if there exists a configuration d such

that there is a race in configuration d and the configuration is reachable from a

starting state, i.e., ∃d0 ∈ D0 : d0 →∗ d. Computing whether there exist races in

a program based on the above semantics is naturally infeasible. The number of

interleavings grows exponentially with lines of code even for just two threads. In

what follows, our goals is to provide efficient analyses which can detect for each

variable x ∈ G, and more generally, each memory location, whether there is a

race at that memory location.

2.2 Static data race analysis

We formulate the basic algorithm for data race analysis in the framework of ab-

stract interpretation [21]. Facts about the state of the program are represented by

elements from a lattice (D,�). We conventionally order x � y if the fact x im-

plies y. Let us assume until Section 2.4 that we do not care about the values stored

in shared global variables; we only want to ensure the coherence of whatever is

written in shared memory. Then, our abstract domain need only track the values

of local variables D = L → 2N∪A. For each variable, these sets represent the set

of all values that the variable may take whenever execution reaches a given pro-

gram point. Further abstraction is required to effectively analyze programs, but as

the specific choice of value domain is currently irrelevant, we illustrate the ideas

using the powerset domain.

For each basic statement s, the analysis specification should define a transfer

function �s�� : D→ D describing how the abstract state ρ ∈ D is modified by the

statement. Although operating on sets of values, the abstract semantics of expres-

sions is similar to the definitions in the concrete semantics. When dereferencing

pointers, one has to consider all possible targets of the pointer:

�n��(ρ) = {n} �p��(ρ) = ρ(p)

�x��(ρ) = ρ(x) �&x��(ρ) = {x}
�∗a��(ρ) =

⋃
{ρ(y) | y ∈ �a�(ρ)} �&m��(ρ) = {m}

The abstract transfer functions for assignments then only differ from the concrete
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semantics when it comes to pointer assignments, where we have:

�∗p := e��(ρ) =

{
ρ[y : �e�(ρ)] if ρ(p) = {y}
ρ[y : ρ(y) ∪ �e�(ρ)]y∈ρ(p) otherwise

where the notation f [x : n]x∈X updates a set of values. The point is that unless

we are certain what the pointer target may be, we have to conservatively assume

all destinations may have been updated. Thus, we cannot truly update any of the

variable, but must retain the old value as well. This is an important concept, called

weak update, and is a major cause of imprecision in static analysis.

The conditional guards are nearly identical to the concrete semantics, but in-

volve a minor approximation:

�true(e)��(ρ) = ρ if �e�(ρ) �⊆ {0} �false(e)��(ρ) = ρ if 0 ∈ �e�(ρ)

However, these functions should not be partial, rather it is more convenient to

extend these functions so that when the conditions are not met, the least element

of our lattice ⊥, which maps all variables to the empty value-set, is returned.

For race detection, we are interested in a mapping Λ: G → 2M assigning to

each variable x ∈ G the set of mutexes always held when accessing this variable.

To compute this mapping, we need to know for each program point u, the set of

locks λu definitely held whenever execution reaches that point. Thus, the abstract

domain is the powerset of locks (2M,⊇), where the ordering is reversed, i.e.,

x � y iff x ⊇ y and the least element ⊥ = M. The ordering is reversed so that

x ⊇ y whenever x implies y: while the set of values that a variable may take is

ordered by subset inclusion, the set of mutexes that must be held at a program

point is ordered by superset inclusion.

Finally, let �s��acc ∈ D → 2V approximate the set of variables that may be

accessed by the statement s. Its definition is identical to the concrete version,

except relying on the above abstract definitions to evaluate expressions. We may

now specify the transfer functions for the lockset analysis. If the operations that

manipulate the lockset only use explicit named locks, the analysis is nearly trivial:

a lock operation adds its argument to the lockset and an unlock operation removes

it. As we saw in the munge example from Figure 1.1, however, locks and shared

variables may be accessed indirectly. Thus, we have the following definitions:

�lock(a)� 〈λ, ρ〉 =
{
〈λ ∪ {m}, ρ〉 if �a��(ρ) = {m}
〈λ, ρ〉 otherwise

�unlock(a)� 〈λ, ρ〉 = 〈λ \ �a��(ρ), ρ〉

Consider the first line of the munge function: lock(m). If the target of the

pointer variable m can be ascertained by our pointer analysis; that is, if we know
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the location it must point to, then we can add it to the lockset. The next line,

(*v)++, requires that we constrain the lockset Λ(x) for all variables x that v may
point to. The unlock operation, unlock(m), should remove all possible locks

that could be pointed to by m. To do this computation, we set up the following

constraint system:

Λ(x) � (x ∈ �s�acc(ρu)) ? λu : ⊥ for (u, s, v) ∈ E and x ∈ G
〈λv, ρv〉 � �s�� 〈λu, ρu〉 for (u, s, v) ∈ E

where the ternary conditional operator (c) ? e1 : e2, present in languages like C

and Java, is defined as follows:

(true) ? e1 : e2 = e1 (false) ? e1 : e2 = e2

Thus, the first constraint will, for every possibly accessed variable x, induce the

constraint Λ(x) � λu, which in this reversed ordering means Λ(x) ⊆ λu. The

second constraint requires that the information at a given node takes into account

the information from all incoming nodes. Now, let Λ be the least solution to the

above constraint system, i.e., the largest locksets that satisfy the constraints. Then,

a global variable x is safely accessed if Λ(x) �= ∅. When the associated lockset is

empty, there may be a race and a warning is emitted.

This is naturally a simplification. In practice, we accumulate information

about the usage of global variables and determine the races in a separate post-

processing phase based on additional information, such as abstract thread identity

and whether the access is a read or a write. Thus, Λ(x) will return a complete list

of all accesses to the variable x with information about the abstract state during

the access. This information is then used to determine whether there is a race and

to generate sensible error messages pointing out the lines in the source code which

may be guilty in producing a data race.

2.3 Analyzing procedures

Recall that it is crucial to propagate information context-sensitively. Assume now

that our program comprises a finite set Proc of procedures. Execution starts with

a call to the distinguished procedure main ∈ Proc. Each procedure q ∈ Proc is

given through a CFGGq = (Nq, Eq, eq, rq) which consists of a setNq of program
points; a set of edges Eq ⊆ Nq× (Stmt∪Proc)×Nq annotated with assignments

or procedure calls; a special entry point eq ∈ Nq; and a special return point
rq ∈ Nq. We currently use the so-called functional approach to inter-procedural

analysis [79]. For an abstract domain D, consider the function space F = D→ D.

If we can effectively represent elements in F and compute compositions and least

23



upper bounds of these elements, we can compute the effect of a procedure once

and for all, and then use this summary as a transfer function for call edges of the

summarized procedure.

This computation proceeds thus in two steps. One first requires an abstraction

of the effect of running each individual procedure. In the presence of recursive

procedures, care must be taken to only consider same-level executions, i.e., all

recursive calls need to be balanced in the following sense. Let the sequence of

instruction π denote an execution trace of the program. In the sequence π, we

delimit the instructions executed due to a call of a procedure f within brackets (f
and )f . A same-level execution is an execution trace of the program which can be

assembled through the following context-free grammar:

π ::= (f π1 )f π2 for each procedure f

| ε

The effect of all same-level runs of a procedure q can be captured as the least

solution to the following constraint system.

S[eq] � Id

S[v] � �s��� ◦ S[v] if (u, s, v) is an assignment edge

S[v] � S[rq] ◦ S[v] if (u, q, v) is a call edge

The first constraint makes sure the entry state is at least an identity function, and

unless there is a loop back to the entry node, the effect of executing statements

from the beginning of the procedure to the entry node is indeed only the identity

function. The second constraint then composes the effect of a single edge with

the computed summary at the predecessor. Note that for this on needs to spec-

ify functional transfer functions for each statement. The third constraint handles

function calls, and in this setting the effect of a single function is not of a different

type than the effect of a statement. The entire effect of a procedure is accumulated

at the return node.

This information can be used to compute the abstract value at a given program

point as follows:

R[emain ] � d0

R[eq] � R[u] if (u, q, _) is a call edge

R[v] � �s��(R[u]) if (u, s, v) is an assignment edge

R[v] � S[rq](R[u]) if (u, q, v) is a call edge

Here, we start with a predefined entry state for the main function. For other pro-

cedures, their entry nodes join information from all their call sites. Although
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information is joined when pushed into procedure bodies, the analysis is context-

sensitive because the summary of the procedure is used to update the state of the

callee.

This approach is ideally suited for domains with compact representation of

the function space, such as linear equalities, copy-constants, or classical bit-vector

analyses. When such representation is not available, Sharir and Pnueli [79] pro-

vide a tabulating algorithm that analyzes procedures for each relevant call context,

and here we consider this approach as implemented in the Goblint analyzer.

For this, we use a general purpose constraint solver [29], so that we are free to

redefine what constitutes a variable in the constraint system. For intra-procedural

analysis it suffices to take constraint variables to be the nodes of the control flow

graph; however, by attaching some context information to each node, one can

effectively compute partial function summaries:

R〈eq, d〉 � d for entry node eq and d ∈ D

R〈v, d〉 � �s�(R〈u, d〉) for edge (u, s, v) and d ∈ D

R〈v, d〉 � 〈rf ,R〈u, d〉〉 for edge (u, f(), v) and d ∈ D

As there is (at least) one instance of each constraint for each element d ∈ D, the

above system is infinite. However, not all variables in the constraint system need

to be solved in order to obtain a meaningful analysis result. As we are interested

in the analysis result at the end of program execution, we can use local constraint

solving to only solve those constraint system variables required to obtain a mean-

ingful analysis result at the end of the program.

In order to deal with local program variables and parameter passing, we rely

on the two functions

enter : D→ D combine : D× D→ D

where enter prepares the entry state by initializing the local variables and passing

parameters and combine integrates the result of calling the function with the local

state of the callee. Thus, the constraint for function call, for an edge (u, f(), v)
takes the following form:

R〈v, d〉 � combine(R〈u, d〉,R〈rf , enter(R〈u, d〉)〉)

The tabulating approach can be extended to deal with widening/narrowings. More

importantly, it can be extended to a multi-threaded setting, as we shall now see.

2.4 Analysing multithreaded C

As we saw by the end of Section 2.2, data race analysis requires information

about, at the very least, pointer variables. The difficulty lies in dealing with mul-
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int global;
void race() { global++; }
void nice() { printf("mu"); }
void (*f)() = nice;
void tfun() { f(); }

int main() {
spawn(tfun);
f = race;
global++;
return 0; }

Figure 2.2: A simplified example of storing function pointers in shared data structures.

tithreaded code. Consider the example in Figure 2.2. This is a simplification of

a fairly common scenario in low-level code where call-back functions are stored

in shared heap data structures. The program starts by spawning a thread which

executes the function tfun. This thread makes an indirect call through the func-

tion pointer f. This pointer is at the beginning of the program initialized to the

harmless function nice(). However, by the time the pointer is dereferenced, the

main thread might have already updated it, so that instead the dangerous func-

tion race() is called. A sound analyzer must assume the worst and take such

interleavings of thread execution into account.

The problem, as mentioned in the introduction, is that considering all possi-

ble interleavings is computationally unfeasible. Instead, we analyze each thread

in isolation by identifying the effect it has on the rest of the program. As the

communication between threads in Posix C is through shared memory location,

we accumulate the updates to shared memory cells. This information can then be

used to analyse each thread in isolation. The updates to shared memory are thus

tracked flow-independently, while the analysis of the local state is flow-sensitive.

More concretely, let DL and DG denote the abstract domains for the local and

global states, respectively. In addition to the locksets, the analysis now tracks for

each program point u an abstract value ρu ∈ DL and a single global invariant

Ψ ∈ DG which over-approximates the state of the shared memory for the entire

program execution. The set of variables accessed by a statement now depends

on the state of the program, and the transfer function also operate these abstract

values:

�s�acc : DL × DG → 2G �s�� : 2M × DL × DG → 2M × DL × DG

We then seek the least solution to the following constraint system:

Λ(x) � (x ∈ �s��acc 〈ρu,Ψ〉) ? λu : ⊥ for (u, s, v) ∈ E and x ∈ G
〈λv, ρv,Ψ〉 � �s�� 〈λu, ρv,Ψ〉 for (u, s, v) ∈ E

This constraint system is intra-procedural, and it can be solved with any iterative

fix-point solver. Taking procedures into account is somewhat tricky for consider

the following procedures which read and write to a global x:
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void write(int p) { x = p; }
int read() { return x; }

The effect of the write function depends on the context in which it is called,

whereas the summary for the read function must take into account the value of

the global variable. Therefore, the tabulating constraint system cannot really be

written in the simple form:

〈R〈v, d〉,Ψ〉 � �s��〈R〈u, d〉,Ψ〉 for edge (u, s, v) and d ∈ D

This would imply the global invariant should be constrained by all possible entry

states in D. We would prefer to only constrain the global invariant based on those

call contexts reached during the partial tabulation approach. This is the essence

of partial global invariants, which was developed for the Trier analyzer [76], the

grandfather of Goblint.

In general, solving systems with partial global invariants require finding a

nested fix-point: one has to solve a system of control flow equations for the local

state, but whenever the global state changes, one must recompute the analysis with

respect to a new global invariant. However, when the global state is such that it

maps each global variable to a certain abstract value, we can use a more efficient

algorithm that tracks dependencies between globals and the nodes that use them.

Thus, we re-evaluate as few nodes as possible, while still remaining sound.

In the example, we would start by analysing the main function, but as a thread

is spawned, the solver first looks into the execution of the thread code. This is

initially analysed such that only the call to nice() is considered, but the solver

records that the call depends on the value of the global function pointer. As the

solver returns to the analysis of the main function, the pointer is updated. This

triggers the re-evaluation of all nodes depending on the variable f. Since it may

now also point to race(), this function is therefore analyzed as well and the

result of its call is joined with the previously analyzed function.

2.5 Three other approaches

Before discussing our approach to conditional locking, it is worth exploring other

solutions to the problem of context-sensitive pointer analysis. This section con-

sists of a detailed technical review of three existing systems. First, we consider

the type-based label flow used by LOCKSMITH. Then, we turn to bootstrapping

to speed up pointer analysis in the CoBE framework. Finally, we look at relative

locksets which enable RELAY to scale to millions of lines of code.
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2.5.1 Type-based flow analysis

The LOCKSMITH analyzer [68] annotates the program with a type and effect sys-

tem which computes everything needed for sound race detection. Type-based

program analysis is an interesting topic which is extensively studied in its own

right. Formulating an analysis as a type system allows the application of many

techniques from type theory to reason about properties of the analysis. For race

detection, polymorphism allows the context-sensitive propagation of points-to in-

formation into functions, such as munge in Figure 1.1, without needing to clone

the body of the function [28]. Instead, a polymorphic function can be given a

parametric type which is instantiated at each call site. As type systems are for-

mulated for languages with higher-order functions, context-sensitive handling of

function pointers comes for free.

The general approach of the LOCKSMITH analyzer is to accumulate access-

lock correlation constraints. The analyzer collects for each access to a memory

location ρ with the set of held locks L a correlation constraint ρ 	 L. Due to

indirect accesses via pointers and parameter passing, other forms of constraints

are also required, as will be explained below. Given a set of constraints C, the

notation C � ρ 	 L indicates that the correlation ρ 	 L can be derived from the

constraints in C. The set S(C, ρ) = {L | C � ρ 	 L} denotes the set of all

locksets that were held when accessing ρ. The location ρ is safely protected by

a mutex, whenever the intersection of all locksets is non-empty:
⋂
S(C, ρ) �= ∅.

The accessed data is then said to be consistently correlated with the lockset. For

the example program of the introduction (Figure 1.1), the following correlation

constraints are inferred:

t1 : ρx 	 {m1} ρy 	 {m2} ρz 	 {m2}
t2 : ρx 	 {m1} ρy 	 {m1} ρz 	 {m2}

The locations ρx and ρz are consistently correlated with the locks m1 and m2,

respectively. As the intersection for ρy is empty, LOCKSMITH reports a race on

the variable y. In order to obtain such information, one has to compute the set of

held locks, generate all the constraints, and solve them.

As the focus of this survey is on the context-sensitive propagation of pointer

information, we will first briefly discuss a few other features of the analyzer. The

set of definitely held locks are computed flow-sensitively, meaning the control flow

of the program is taken seriously; in contrast, pointer information is propagated

flow-insensitively, meaning the analysis computes an over-approximation of all

assignments within the body of a function independent of the order in which the

assignments may be executed. Consider the following example:
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void f() { int *p;
p = &x; lock(&m1); *p = 41; unlock(&m1);
p = &y; lock(&m2); *p = 42; unlock(&m2); }

LOCKSMITH will infer that p may point to either x or y all over this function.

On the other hand, it computes the set of locks for each program point: when

assigning 41 to x it is {m1}, and when assigning 42 to y it is {m2}. Due to flow-

insensitivity, LOCKSMITH will infer the false constraints ρx	{m2} and ρy	{m1},

which lead to a false alarm being reported. However, the coding style in this

example, traversing the same pointer over different stack-allocated variables, is

not that common, hence it is becoming increasingly popular in static analysis to

ignore the flow within functions.

The flow-sensitive computation of the locksets is essentially achieved through

a data flow analysis over the control flow graph of the program. In the type-based

approach this amounts to using state variables to achieve flow-sensitive analysis.

This allows the use of instantiation constraints for context-sensitive propagation

of locksets, and there is additional cleverness with respect to function calls.

The flow-insensitive propagation of pointers within a function is achieved

through sub-typing [69]. The idea is that each location has a type which asso-

ciates it with a location label ρ; for example, the type of &x is ref ρx (int), a cell

ρx containing an integer. Whenever there is a read or write to a variable of type

ref ρ(τ), one generates the constraint ρ 	 L where L is the current lockset. The

question is how to deal with indirect accesses through pointers.

Figure 2.3 contains the relevant rules for intra-procedural pointer analysis.

These are here “translated” to C syntax, while the original paper develops a typed

lambda-calculus. The auxiliary function loc assumes that addresses are assigned

unique labels, whereas in the original setting locations are introduced at let-binding.

The rule for assignment states that a value of type τ can be stored into a memory

cell of the same type ref ρ(τ). Thus, in order to type the statements p = &x;
p = &y;, we need &p to be of type ref ρp(τ) where τ is equal to ref ρx(int) as

well as ref ρy(int). This is only possible using the sub-typing rules, with which

we can give the type C; Γ � &p : ref ρp(ref ρxy(int)) if C � ρx ≤ ρxy and

C � ρy ≤ ρxy for a freshly generated location label ρxy. Inferring the type of the

program thus requires that we generate such constraints. Then, these constraints

are resolved using resolution rules such as the following:

C ∪ {ρ ≤ ρ′} ∪ {ρ′ 	 L} ∪ ⇒ {ρ 	 L}

where X ∪⇒ Y is short-hand for X ⇒ X ∪ Y . This rule propagates an access

through a pointer to all its sub-types, so that from {ρxy	L, ρx ≤ ρxy, ρy ≤ ρxy},

we also have ρx 	 L and ρy 	 L.
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REF

C; Γ � e : τ ρ = loc(Γ, e)

C; Γ � &e : ref ρ(τ)

ASSIGN

C; Γ � &e1 : ref
ρ(τ) C; Γ � e2 : τ

C; Γ � e1 := e2 : τ

SEQ

C; Γ � e1 : τ1 C; Γ � e2 : τ2
C; Γ � e1; e2 : τ2

SUB

C; Γ � e : τ1 C � τ1 ≤ τ2

C; Γ � e : τ2

SUB-REF

C � ρ ≤ ρ′ C � τ ≤ τ ′ C � τ ′ ≤ τ

C � ref ρ(τ) ≤ ref ρ
′
(τ ′)

Figure 2.3: Selection of monomorphic (intra-procedural) typing rules.

We now consider how adding polymorphism to the type system enables the

context-sensitive treatment of function calls. The traditional approach to poly-

morphic type inference universally quantifies all type variables that do not occur

freely in the environment when a function is defined. Polymorphic types are then

instantiated at each usage site by generating fresh variables and substituting in

the type all occurrences of universally quantified types with the newly generated

ones. In the context of constraint-based type inference, this involves the copying

of the constraint sets, which can be quite large. Furthermore, copying the set of

constraints for each call site would not constitute a significant gain over the brute

force approach of analyzing a separate copy of the function at each call. Instead,

the flow of parameters into and out of a function can be captured as instantiation
constraints τ1 �i

p τ2 where p is the polarity (direction of flow) and i is the unique

identifier for each call-site. Note that this is a true instantiation in the sense that

for each call site, there must exist a substitution φi such that φi(τ1) = τ2; addi-

tionally, it expresses flow of information through the use of polarities.

It may be helpful to look at the two critical constraint resolution rules to un-

derstand the use of instantiation constraints.

C ∪ {ρ1 �i
− ρ0} ∪ {ρ1 ≤ ρ2} ∪ {ρ2 �i

+ ρ3} ∪⇒ {ρ0 ≤ ρ3} (2.1)

C ∪ {ρ �i
p ρ

′} ∪ {ρ 	 L} ∪ {L �i L′} ∪⇒ {ρ′ 	 L′} (2.2)

The first rule propagates flow information in and out of a function, while the

second propagates location and lock information into the function such that corre-

lations constraints within the function are related to the values of parameters that

went in. Locks do not need polarities because locks are unified as soon as there is

flow between two lock labels. Polarities must take care of the flow in the presence
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of higher-order functions. Consider first the case where we have the following

definitions:1

int *bar () { return &x; }
int foo (int *(*fp)()) { return *fp(); }

When we now apply foo(bar), we need to register that the location ρx has

flowed into the function foo from the parameter bar. On the other hand, for the

following definitions we have flow in the opposite direction:

int bar (int *p) { return *p; }
int foo (int (*fp)(int *)) { return fp(&x); }

Here, when we apply foo(bar), the location ρx flows from foo into bar. We

can summarize the two cases in a table and then generalize.

type of foo type of bar constraint

∀ρ.(void → ref ρ(int))→ int void → ref ρx(int) ρ �i
− ρx

(ref ρx(int)→ int)→ int ∀ρ.ref ρ(int)→ int ρx �i
+ ρ

In general, we obtain constraints between the quantified variables in the func-

tion and the type variables generated for each application instance by positively

correlating the types as shown in the first rule below, and then we propagate the

instantiation constraints by flipping the polarity of the function argument, denoted

with p̄, according to the second rule:

INST

C � τ �+ τ ′

C; Γ, f : ∀�l.τ � f i : τ ′

INST-FUN

C � τ1 �i
p̄ τ2 C � τ ′1 �i

p τ
′
2

C � τ1 → τ ′1 �i
p τ2 → τ ′2

The rule for instantiation is simplified to ignore the free variables that could not

be universally quantified when the function was defined.

We now return to the motivating example of Figure 1.1. The type of the

munge() function is C; Γ � ∀ρv,m . ref ρv(int) × lock(m) → void where

C � ρv 	 {m}. We consider the instantiation constraints generated in order to

type thread t1:

ref ρv(int)× lock(m)→ void �1
+ ref ρx(int)× lock(m1)→ void

ref ρv(int)× lock(m)→ void �2
+ ref ρy(int)× lock(m2)→ void

ref ρv(int)× lock(m)→ void �3
+ ref ρz(int)× lock(m2)→ void

We resolve the first one to ref ρv(int)×lock(m) �1
− ref ρx(int)×lock(m1) which

(by obvious rules omitted here) simplifies to {ρv �1
− ρx, m �1 m1}. When this

1Definitions in C are read from the inside out; () has a higher priority than *. The parameter

int *(*fp)() is a pointer to – a function that returns – a pointer to – an integer.
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is conjoined with the correlation constraint ρv 	 {m}, the constraint resolution

rule (2) allows us to infer C � ρx 	 {m1}. Analogously, we obtain all the other

constraints required to check for races.

This is almost the whole story; a very prominent feature of the type system

has been deliberately ignored in this presentation and eradicated from the typing

rules. LOCKSMITH uses an effect system to enforce linearity among locks. This

is required for sound analysis because a dynamically allocated lock might be re-

allocated:

mutex *m = malloc(); mutex_init(m);
lock(m); x++; unlock(m);
m = malloc(); mutex_init(m);
lock(m); x++; unlock(m);

Here, the lock pointer m refers to multiple locks. A sound analyzer should con-

sider this, even if it rarely occurs in real programs. Unfortunately, LOCKSMITH

does not terminate on certain device drivers with linearity turned on. The authors

claim this could be fixed with improvements to their unification algorithm.

2.5.2 Bootstrapping pointer analyses

Kahlon et. al [47] present a technique for fast must-alias analysis of lock pointers

and a shared variable discovery algorithm. Unfortunately, it is unclear how the

ideas presented in that paper apply to the example of Fig 1.1, where may-aliasing

of pointers to shared variables and must-aliasing of lock pointers are to be jointly

propagated context-sensitively.

The general approach is to first identify shared variables and the location

where these shared variables are accessed. If the same shared variable can be

accessed by two different threads simultaneously and the set of locks they hold

are disjoint, a race warning is emitted. The second step is, therefore, to iden-

tify the set of held locks. Here, a sophisticated must-alias analysis is proposed

based on bootstrapping and procedure summarization. Finally, warning reduction

techniques are applied.

The suggested method for shared variable discovery is somewhat puzzling.

The idea seems to be that one should conservatively consider all global variables

and pointers passed to external functions as shared. Thus much makes sense,

but in order to deal with local aliases to shared data, aliased pointers are also

considered as shared (with the minor refinement that only those pointers are added

which are instrumental in resulting in a true access rather than just propagating

address information.) This is surprising because when there is an indirect access

to a shared variable through a pointer, we would expect an attempt to resolve

the pointer, rather than register the access with the pointer and then ensure that
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accesses to the pointer are safe.

The must-alias analysis of pointers is based on the idea of bootstrapping alias

analyses [44]. This is an approach marketed by Vineet Kahlon to “leverage the

combination of divide and conquer, parallelization and function summarization.”

The key idea is to use a succession of alias analyses of increasing precision such

that the rough partitioning of the first alias analysis allows the more precise ones

to run on a much smaller problem instances. Thus, each subsequent analysis is

“bootstrapped” by the previous one. This only works if one can prove that the

equivalence classes computed by the more coarse-grained analyses and the slices

of programs that one considers for each cluster suffice to correctly compute the

refined alias information at the next stage.

One suitable pointer analysis to begin the bootstrapping process is Steens-

gaard’s alias analysis [83]. This is nearly identical to the flow-insensitive pointer

analysis from Section 2.5.1, except instead of introducing sub-typing when a

pointer p may refer to two distinct locations, the locations are unified, i.e., con-

sidered as a single abstract location. This results in a partitioning of pointers into

equivalence classes. Practically, the partitioning means that one only need to deal

with a single equivalence class at a time, and for locks this typically involves 2–3

pointers.

Having clustered the set of pointers, a more expensive must-alias analysis can

be applied. The analysis proposed in the article is based on Maximally Complete
Update Sequences which can be used to characterize aliasing. These can then be

used to compute a procedure summary, as discussed in Section 2.3. Recall that a

summary is computed once and for all and then applied whenever the function is

called, achieving context-sensitivity without the cost of cloning, as was previously

achieved through polymorphism. We begin with the notion of update sequences

which are central to this approach. The goal is to characterize must-aliasing in

terms of chains of assignment: two pointers p and q must alias precisely when

there exists some location a and chains of assignments π1 and π2 that are seman-

tically equivalent to p = a and q = a. This idea is formalized as follows.

Definition 3 (Complete Update Sequence [44]). Let Π: u0, . . . , um be a sequence

of successive program points and let π be the following sequence of pointer as-

signments along Π:

ui1 : p1 = a0; ui2 : p2 = a1; . . . uik : pk = ak−1;

Then π is called a complete update sequence from p to q leading from program

points u0 to um if the following conditions hold: a0 is semantically equivalent

to (i.e., evaluate to the same value as) p at program point u0; pk is semantically

equivalent to q at u0; for each j, aj is semantically equivalent to pj at uij ; and

for each j, there does not exist any (semantic) assignment to pointer aj between
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1 int main() {
2 int *a, *b, *c, **x, **y;
3 b = c;
4 x = &a;
5 y = &b;
6 *x = b; }

Figure 2.4: Complete complete update sequence.

locations uij and uij+1 , to a0 between u0 and ui1 , and to pk between uik and um
along Π.

Thus, a complete update sequence from p to q (leading from u0 to um) means

that executing the code snippet between u0 and um has an effect on q which is

equivalent to performing the assignment q = p at location um.

Consider the example shown in Figure 2.4 to illustrate the idea. We can see

that line 6 by itself is a complete update sequence from b to a (leading from 3 to

6) because executing the snippet will result in assigning b to a though the indirect

assignment on line 4. Note that the sequence is effectively equivalent to a = b
being performed at the end, but the single assignment does not adequately capture

the effect of these lines on the variable a because b has obtained its value from c in

the first line, which we have ignored. In contrast, the update sequence 3, 6 is also

a complete update sequence leading from 3 to 6, but it is from c to a. This update

sequence really captures what happens to the pointer a when executing lines 3 to

6. Such update sequences are called maximally complete.

Formally, the maximally complete update sequence for a pointer q leading

from location u0 to um along Π is the complete update sequence π of maximum

length, over all pointers p, from p to q (leading from locations u0 to um) occur-

ring along Π. We can now characterize aliasing as follows: pointers p and q must

alias at program point u if and only if there exists a pointer a with maximally

complete update sequences to both p and q. Since the goal is to obtain an effi-

cient summary of a procedure’s effect on aliasing, the summaries track maximally

complete update sequences.

The summary of a function f is a set of triples of the form (p, u,A), where p
is the pointer of interest, u is an (important) program point, and A is the set of all

pointers q such that there is a complete update sequence from q to p along every

path leading from the entry of the function to the program point u. This sum-

mary is computed through a process that is reminiscent of weakest pre-condition

computation: we start with the summary (p, u, {p}) and work backwards in the

control flow graph so that an assignment p = q has the effect of replacing p with
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q in the set A giving us (p, u, {q}). When we reach the entry point of the function

we have computed the summary for the aliases of p at location u. The effect of

applying a function on the pointer p is the summary for that pointer at the exit

location. Thus, when the analysis needs to consider the effect of a function call,

it looks up the summary for each pointer in A. It would be interesting to apply

the algorithm to the example in Figure 2.4, but unfortunately the algorithm, as

described in the paper, does not consider the case of indirect updates.

A more serious problem is that this approach does not handle the running ex-

ample from the introduction: although pointers are updated context-sensitively at

each call site, the different calling contexts are not distinguished within the body

of the function. The may-aliasing of shared variables are not really discussed in

the paper. In a more recent paper, Kahlon et al. [46] propose a Context Sensi-

tive Call-Graph construction, but in order to deal with our motivating example,

the must- and may-alias information need to be propagated into functions to infer

correlations context-sensitively. In the next section, we will study a summariza-

tion approach which achieves this goal by summarizing locksets together with

guarded accesses.

2.5.3 Relative locksets

The RELAY analyzer [89] provides a very simple and elegant solution to the prob-

lem of context-sensitive pointer analysis. It relies on the concept of a relative
lockset to describe the changes in the locksets relative to the function entry point.

It also accumulates accessed memory locations relative to the entry point, thus ob-

taining a set of guarded accesses which are expressed in relation to the parameters

of the function. This summarizes the effect of the function, which is then used at

call sites by plugging in the values of the parameters at any given calling context.

Consider the following function.

void foo(struct node *x) {
lock(&x→mtx1); x→f = 7; unlock(&x→mtx2); }

Its summary would consist of two components: first, the relative lockset at the end

of the call, which is obtained by adding x→mtx1 and removing x→mtx2 from

the set of mutexes of the caller; and second, a list of relative accesses, which in

this case is only the access to x→f together with the relative lockset at access,

again obtained by adding x→mtx1 to set of mutexes of the caller.

Functions are processed bottom-up in the call graph. Any function whose

callees have been summarized can be analyzed in separation; this allows paral-

lelization of the analysis. For each function, three analyses are performed: sym-

bolic execution, relative lockset analysis, and guarded access analysis. The foun-

dation for the other analyses is laid by the symbolic execution which aims to
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express the values of program variables in terms of the “incoming” values of the

function’s parameters. The analysis tracks for each program point a symbolic map

Σ : O→ V from symbolic L-values to symbolic R-values defined as follows.

o ::= x | p | o.f | ∗o L-values

v ::= ⊥ | � | i | init(o) | may{o1 , o2 , . . .} R-values

R-Values include ⊥ (unassigned), � (unknown), integers, the incoming (initial)

value of some L-Value, and a may-points-to set of L-Values. For the symbolic

L-Values, the meta-variable x ranges over program variables, while p ranges over

representative summary nodes computed by an external flow-insensitive (hence

very fast) points-to analysis. This is primarily to ensure termination. Consider the

following example:

void foo(struct node *x) {
struct list *y = x→first;
while (y) { y→data = 5; y = y→next; } }

Before executing the loop the mapping is [x �→ init(x), y �→ may{x→first}],
where we use o→f , which is not part of our language describing L-values, as

a synonym for (∗o).f . After executing the loop, the pointer p may now point

to a possibly infinite set {x→first, x→first→next, x→first→next→
next, . . . }, which one may want to simply replace with a single summary node.

The main idea of relative locksets is independent of the precise symbolic execu-

tion analysis.

The second step is the computation of relative locksets using the information

from the symbolic execution to evaluate lock expressions. A relative lockset L
is the pair (L+, L−) of definitely acquired and possibly released locks since the

beginning of the function. The ordering is as expected with a must- and may-set:

(L+, L−) � (L′
+, L

′
−) ⇐⇒ L+ ⊇ L′

+ and L− ⊆ L′
−

The relative lockset at the exit of a function f is the summary lockset Lf which

is used whenever the function is invoked. The analysis treats everything as func-

tion calls with lock(&l) and unlock(&l) being simulated as functions with

summaries ({l}, ∅) and (∅, {l}), respectively. Summaries are applied according

to the following scheme: rebind the formals in Lf to the values of the argu-

ments computed by the symbolic execution and update the lockset before the

call L with the effect of the summary Lf . The effect of a call f(a), where a
is the argument list and p is the list of formal parameters of f , is computed as

update(L,Lf [p �→ �a�(Σ)]) using the symbolic map Σ and the function

update((L+, L−), (L
′
+, L

′
−)) = ((L+ ∪ L′

+) \ L′
−, (L− ∪ L′

−) \ L′
+)
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This updates the lockset by adding the effect of the summary and then removing

any lock that may have been released from the set of definitely held locks as well

as removing any lock that the called function definitely ends up holding from the

set of released locks.

Finally, the set of guarded accesses are computed for each function. A guarded

access is a triple a = (o, L, k), where o ∈ O is an L-value being accessed, L
is the relative lockset and k indicates whether the access was a read or a write.

The propagation of guarded accesses by using summaries is very similar to the

relative locksets, although computing the set of accesses does not need to be flow-

sensitive, but can simply traverse assignments in any order.

Let us return to the example program from the introduction. The guarded

access for munge is {(∗v, ({m}, ∅),write)}which at each instantiation is rebound

to the arguments and the lockset is updated with the relative lockset of the caller,

which in this case is empty. Instantiating the arguments requires resolving the

may-points-to sets, e.g., �∗v�(Σ) = x when the argument is &x because then

Σ(v) = may{x}. This is a singleton points-to set, but in principle, a guarded

access of a function may need to be instantiated to multiple accesses if the caller

gave an ambiguous pointer as parameter. In our simple example, we obtain for t1
and t2:

t1 : {(x, ({m1}, ∅), write), (y, ({m2}, ∅), write), (z, ({m2}, ∅), write)}
t2 : {(x, ({m1}, ∅), write), (y, ({m1}, ∅), write), (z, ({m2}, ∅), write)}

Race warnings are generated by considering pairs of thread entry points (here

there is only one such pair: t1 and t2) and identifying whether there exists a pair

of accesses a1 and a2 that conflict, i.e., their L-values alias, but the locksets are

disjoint (and at least one is a write). In the example, there is a conflict between

accesses {(y, ({m2}, ∅), write) and {(y, ({m1}, ∅), write), hence the correct

warning is flagged.

2.6 Path-sensitive data race analysis

The techniques of the previous section preform race detection without caring

deeply about the value of integer variables. In this section, we give one good

reason to care: path-sensitivity. This feature is needed to deal with possibly fail-

ing locking operations, non-blocking primitives, as well as conditional locking

schemes. In general, path-sensitivity is the ability to distinguish between real ex-

ecutable paths in the control flow graph and imaginary paths that are unreachable

due to logical constraints. The gcc manual has the following example, where it

states that “GCC is not smart enough” to see that the code is bug free:
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int save_y;
if (change_y) save_y = y, y = new_y;
...
if (change_y) y = save_y;

Being “smart enough” would in this case require detecting the relationship be-

tween the conditional guards. Among the four possible paths in the CFG, one

should only analyse the two logically possible paths.

For race detection, path-sensitivity is important because we cannot assume

that Posix locking operations will always succeed. The standard practice in POSIX

threaded C is to always check the returning value of the locking function:

status = lock(m);
if (status != 0)

err_abort(status, "Lock mutex");

Sound and precise analysis of this situation requires that we be path-sensitive, so

that when the user checks the status variable, the body of the conditionals are

analyzed with the correct lockset. We will now consider how to be path-sensitive

in an efficient way. Consider the simplified example in Figure 2.5, which will

raise a false alarm on line 6, unless the analysis is path-sensitive.

The problem, again, is that there are now eight potential paths, but only two

logically possible paths, and we must eliminate the false paths. We want to do this

inter-procedurally, and without sacrificing the soundness of the analysis. Engler

and Ashcraft [26] propose what they call “unlockset analysis” to achieve path-

sensitive analysis of locked mutexes. This was needed to deal with the compli-

cated control flow in FreeBSD code and although practical, it is an ad-hoc solution

that does not aim to be sound.

1 void foo (int do_work) {
2 if (do_work)
3 lock(&mtx);
4 ...
5 if (do_work)
6 work++;
7 ...
8 if (do_work)
9 unlock(&mtx); }

Figure 2.5: Example of conditional locking.
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In order to treat this in a sound way, we could use a powerset domain 2D, but

this is not feasible since the constant propagation domain is infinite. One could

limit the number of paths that are distinguished with some arbitrary constant, and

just merge any further branching. Early experiments showed that this is not a

feasible approach either, and one really must decide which paths to distinguish.

We denoted with DL the domain used by our base analysis and with 2M the

lockset domain. If we combine them trivially using the product domain DL ×
2M, then information is lost, and the eight paths are mixed together. In order to

discriminate different paths, we need to track the state of the conditional variables

on lines 2, 5 and 8 because their correlation logically prohibits all but the two real

executions (assuming the omitted code does not modify the do_work variable).

The immediate idea would be to track the lockset for each value of the condi-

tional variables DL → 2M, but since the base domain is essentially infinite, this

is no improvement over the powerset domain. Instead, the domain 2M → DL

yields as much precision as needed to solve the problem at hand without creat-

ing a potentially infinite domain (assuming the sets of locks used by the program

are finitely represented). As one simulates the execution of the program for each

relevant set of facts, this approach has been called property simulation [23].

The analyzer can use this information to distinguish the paths by performing

a Conditional Constant Propagation [91]: when reaching conditionals with an

unknown guard (line 2), the true-branch is analyzed assuming the conditional

is true resulting in the domain element [{&mtx} �→ [do_work �→ true]] and

assuming the opposite for the false-branch, which in the current example trivially

results in [∅ �→ [do_work �→ false]]. By merging in the domain 2M → DL we

keep the states separated when exiting a branch, if they contain different locksets,

as is currently the case:

[∅ �→ [do_work �→ false], {&mtx} �→ [do_work �→ true]]

When the relevant states are kept separate, subsequent conditional guards can be

evaluated as constants and the wrong paths will be considered dead code for the

states with irrelevant locksets. Thus, when analyzing line 5, the true-branch is

considered dead code in the state [∅ �→ [do_work �→ false]], and line 6 is only

analyzed with the correct mutex set. The false alarm is therefore avoided.

The integer value domain we use in our analyzer is specifically designed to

deal with heavily branching code. It is similar to the commonly used Kildall

domain, but it is topped by finite exclusion sets rather than a single unknown.

Thus, it can embed the boolean domain (it can express true as the exclusion set

containing zero) and it can also express some other conditions that are useful when

analysing switch-constructions.

More formally, values in this abstract domain D = {⊥,�} ∪ Z ∪ 2Z are

either top/bottom, a known specific number, or an exclusion set. These elements
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are ordered in the way that respects the following concretization to the powerset

domain 2Z:

γ(�) = Z γ(⊥) = ∅
γ(n) = {n} γ(X) = Z \X

Note that we use no special notation for the sets in the abstract domain, although

these are interpreted as exclusion sets, i.e., their concretization is the set of all

integers that excludes the given set. The least upper bound is defined as follows

for the non-trivial cases:

X � n = X \ {n}
X1 �X2 = X1 ∩X2

n1 � n2 =

⎧⎪⎨
⎪⎩
n1 if n1 = n2

� if n1 = 0 or n2 = 0

{0} otherwise

The special treatment of zero is to support the embedding of the boolean domain.

Although this domain contains infinite descending chains, these exclusion sets

only come into play when evaluating boolean guards hence the analysis always

terminates.

2.7 The Goblint analyzer

We now have a brief look at Goblint, the static analyzer where most of the ideas

of this thesis have been implemented. The analyzer is based on the multithreaded

inter-procedural framework by Seidl et al. [76], which we briefly discussed earlier

in this chapter. Goblint consists of three parts, a user interface component, an

analysis module and a C frontend (Figure 2.6). The frontend uses CIL [63] to

parse and simplify C into an intermediate form that can easily be turned into our

representation of a control flow graph. Based on specifications of the analyses,

we generate a constraint system that we solve using a general purpose constraint

solver [29]. The result is then mapped back to the original program and warnings

about potential bugs are reported.

The data race analysis itself can also be roughly divided into three separate

components. As outlined in the previous section, we perform a base analysis to

Eclipse

(GUI)

Goblint

(analyzer)

CIL

(C frontend)

C file C file

CFGXML

Figure 2.6: The Components of Goblint
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Figure 2.7: A screenshot of Goblint

deal with the complications of C control flow. Simultaneously with the base anal-

ysis, and drawing heavily on the information it provides, we perform the lockset

analysis, where we register what mutexes are held when a global variable is ac-

cessed. When this is done, we post-process the information about the globals and

determine any potential races, and then report this information and display it on

the Goblint User Interface.

The Goblint analyzer itself is a command line tool with many options for

displaying the output. Goblint can present the result of the analysis as an XML

file, which can be parsed by the Eclipse plug-in. This leverages on all the benefits

that a proper IDE has to offer, such as easy navigation to warnings and much more

(see Figure 2.7). When the user views the program and clicks on a line, the state of

the analysis at that program point is displayed. This process is not entirely trivial,

as one has to map the result from the CFG back to lines in the program code while

distinguishing different calling contexts. The current user interface is reasonably
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Benchmark Size (kloc)
Goblint LOCKSMITH

Races
Time Warn. Time Warn

aget 1.2 0.3 5 1.0 4 4

knot 1.3 0.3 7 9.1 8 7

pfscan 1.3 0.1 2 0.6 2 0

ctrace 1.4 0.3 2 3.0 2 0

smtprc 5.7 12 2 8.2 0 0

Table 2.1: Summary of Experimental Results

successful at these tasks.

When Goblint was being developed, we experimented with Goblint on a set

of open-source programs of up to 25 thousand lines of code. In order to compare

more easily with the state of the art at the time, we used the same benchmarks as

were used by the authors of LOCKSMITH. We ran these experiments on an Intel

Core 2 Duo @ 1.83GHz PC with 2GB of RAM. The latest benchmarking results

on our complete set of test programs are available on the Goblint homepage, and

subsequent chapters of this thesis includes more recent benchmarking. Here, our

interest was to compare with the LOCKSMITH tool. This evaluation was obtained

using version 0.9.3 of Goblint and version 0.4 of LOCKSMITH.

The following is a description of the test programs that we used: aget is a

multithreaded download accelerator; pfscan is a multithreaded parallel file scan-

ner; knot is a multithreaded web server distributed with the Capriccio threads

package; ctrace is a fast, lightweight trace/debug C library containing a sample

program with many data races; smtprc is a fully configurable, multithreaded open

mail relay scanner.

We compared the number of warnings generated by Goblint with the num-

ber of warnings generated by LOCKSMITH under two restrictions. We did not

consider at this point any dynamically allocated memory and our analysis was

field-insensitive. The latter means that we failed to distinguish locks that are cor-

related to particular fields, but rather we saw the entire struct as a single memory

location. To be fair to LOCKSMITH, we turned (its forms of) these features off,

since they have a negative impact on its performance.2

The results are summarized in Table 2.1, where we indicate for each program

the runtime in seconds for its analysis and the number of warnings raised by the

different analyzers. We also indicate what we believe is the correct number of

real races. This number is based on our manual analysis of the programs and is

therefore completely subjective.

The analysis of aget and smtprc were more accurately handled by LOCK-

2We ran LOCKSMITH with the flags no-linearity, no-existentials, and field-insensitive.
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SMITH. We had a couple of false alarms due to our more naive treatment of

dynamic data structures at that time; the pointer analyses of subsequent chapters

were not yet implemented. The test-program knot is more interesting from our

perspective, because it has many global configuration options, and one of them is

to turn caching on or off. Goblint can see this difference, and therefore it does not

warn on two caching related data races. There is also a potential race over the set-

ting of a global thread attribute, which we correctly warn about but LOCKSMITH

fails to detect.

Similarly, for ctrace the initialization function has a parameter to determine

whether its tracing is asynchronous or not. In the code we analyze, tracing is not

performed by a separate server thread, so the two races reported by LOCKSMITH

can not occur in the code we are analyzing. If we change the code to make trac-

ing asynchronous, then Goblint does raise the corresponding warnings for such a

program. Unfortunately, we give two other warnings for this program. These are

false alarms because the variables are protected by semaphores, which we do not

handle, yet.

2.8 Conclusions

We have reviewed the underlying framework of the Goblint analyzer as well as

a few other race detection tools. Unlike the other analyzers discussed in this

chapter, we perform a sound inter-procedural abstract interpretation of the state

of the program. This admits a straightforward solution to path-sensitivity, which

is important for sound race detection. Locking operations that may possibly fail,

non-blocking and probing primitives, and conditional locking all introduce depen-

dencies between integer variables and the locksets. Our experimental evaluation

at the time indicated that in spite of our additional precision with respect to the

values of program variables, the run-time of our analyzer is comparable to the

LOCKSMITH tool.

More importantly, perhaps, relying on a generic abstract interpretation frame-

work has enabled us to conveniently extend the analyzer with more powerful alias

analyses. In the following chapters, we consider the additional analyses which

take Goblint beyond the competition when it comes to finding races in the heap.
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CHAPTER 3

HERBRAND AND AFFINE EQUALITIES
FOR MUST-ALIAS ANALYSIS

As discussed in the introduction, we analyze races in the heap by first using must-

equality analysis to infer correlations between access expressions and correspond-

ing lock expressions. This access pattern is then instantiated for some set of shared

memory locations based on may points-to information. The success of this ap-

proach depends on the precision of the must-equality information used to infer

correlations between address expressions.

In this chapter, we consider an abstract domain for analyzing the required

must-equalities between addresses. The domain is a smooth combination of Her-

brand and affine equalities which enables us to describe field accesses and array

indexing. While the full combination of uninterpreted functions with affine arith-

metics results in intractable assertion checking algorithms, our restricted domain

allows us to construct an analysis of address must-equalities that runs in polyno-

mial time. We indicate how this analysis can be applied to infer access patterns in

programs manipulating arrays and structs.

3.1 Introduction

In order to verify absence of data races in multi-threaded programs, accesses to

memory locations need to be correlated with locks that guard them. However,

inferring address equalities is more generally applicable. Consistent correlations

between memory locations used by a program lies at the heart of many safety

properties. In a language with pointer variables, correlating address expressions

requires knowing when two expressions must alias, i.e., evaluate to the same mem-

ory location. In general, techniques for verifying the correct use of interface meth-

ods (e.g., [13]) can be refined with must-alias information to check that calls in

a syntactically correct sequence consistently refer to the right data elements: a
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sequence such as open(e1); ...; close(e2); should access the same file

handle when referring to the address expressions e1 and e2.

More recently, program-specific correlations have been studied: the length of

a list is, perhaps, maintained in a separate variable which is thus semantically

correlated. Lu et al. [53] apply statistical techniques to detect plausible multi-

variable correlations of this kind. Their methods, although successful in detecting

real bugs, are flow-insensitive and essentially syntactic; hence not ideal for formal

verification. As the precise control flow as well as equalities between variables in

the program are ignored, syntactically similar expressions may not represent the

same semantic correlation, while syntactically different expressions could very

well be correlated. In order to enable sound inference of semantic correlations

between addresses, we propose a novel analysis of must-equalities.

Our analysis is able to interprocedurally relate address expressions which use

array indexing and field selection in structs. An access to a nested struct consists

in the base address of the data element followed by sequences of selectors, such

as A.person.name. Two such expressions are definitely equivalent if they are

textually identical. This corresponds to the Herbrand interpretation of the binary

operator “.” and the selector labels. In order to deal with arrays as well, we en-

hance this base domain by affine expressions for indexed accesses. Two index

expressions are equivalent iff they are equivalent w.r.t. the arithmetic interpreta-
tion. We show that the resulting combination of theories allows to infer all valid

address equalities in polynomial time.

3.2 The programming model

One key abstraction on which our method relies is that we only track the values of

int variables and pointers. Thus, we ignore the values stored in arrays or structs.

To simplify our setting, we make the additional assumption that the tracked vari-

ables themselves are never accessed indirectly through pointers; a common coding

practice when developing safety-critical code [42]. Programs to be analyzed are

modeled by systems of flow graphs as in Figure 3.1. Recall (from page 23) that

a program comprises a finite set Proc of procedure names. Execution starts with

main ∈ Proc, and each procedure q ∈ Proc is given through a control flow graph
Gq = (Nq, Eq, eq, rq), consisting of program points, edges, the entry and the

return node, respectively.

Let X = {x1, . . . ,xk} denote the set of int-variables and A = {a1, . . . ,am}
the set of pointer variables used by the program. For the moment, we assume all

variables to be global, but we will present methods for local variables in Section

3.7. In addition, we assume that we are given a set of names C denoting the

global static data-structures of the program. Each of these data-structures is built
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1

main

2

3

4

5

x1 := 0

a1 := c.(x1)

x1 := x1 + 1

update

6

update

7

8

9

lock(a1.m)

access(a1.d)

unlock(a1.m)

Figure 3.1: Example flow-graph for a main-function.

up by forming structs and arrays from a set of base types, such as int, float or

mutex. In the presence of dynamic memory allocation, we infer must-equality

relationships between pointer variables while also relying on may-alias pointer

analysis, as further explained in Section 3.9; until then, we only deal with static

data structures.

As we are only interested in assignments to integer and pointer variables, the

set of statements Stmt at edges of programs in our model consists of:

• Affine assignments of the form xj := t0 +
∑k

i=1 tixi (with ti ∈ Z and

xi ∈ X).

• Address assignments of the form aj:= adr where adr is an address expres-

sion possibly involving variables from X and A in a way we will specify

below.

• Non-deterministic assignments, xj := ? and aj := ?, which are used to

abstract assignments that our analysis cannot handle.

An address expressions adr is constructed from constants B ∈ C and address

variables ai according to the grammar:

adr ::= B | ai | adr.b | adr.(l)

where b is a field selector and l is an index expression of the form l ≡ t0+ t1x1+
. . . + t1xk. We assume that address expressions are well-typed. In particular, a
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selector b can only be applied to an address expression denoting a pointer to a

struct with component b; likewise, only a pointer to an array can be indexed.

Every address pointing into the global data-structures can be uniquely repre-

sented by an expression B.s1. . . ..sr where B is the base address of a global

data-structure and each si is either a field selector or an array index in Z. Since

we consider addresses in fixed global data-structures only, the length r is bounded

by some global constant d. Let A denote the set of all these addresses. Since

we ignore the values stored in the global data-structures, a program state can be

represented by a pair 〈x, a〉 where x ∈ Zk and a ∈ Am describe the values of

the int variables and the address variables, respectively. We denote the set of all

states by S = Zk × Am. Throughout this chapter, we use k and m to denote the

number of the (global) integer and address variables, and we use d to denote the

maximal depth of data structures!

For an affine combination t = t0 + t1x1 + . . .+ tkxk and a state σ = 〈x, a〉,
we write �t�σ for the value t0 + t1x1 + . . .+ tkxk ∈ Z. Likewise, for an address

expression adr we write �adr�σ to denote the address obtained from adr by sub-
stituting the address variables in adr (if there are any) with their values in σ and

by evaluating all affine index expressions w.r.t. the values of the int-variables in

σ. Thus, the semantics of assignments for sets of states S is defined by:

�xj := t�S = {〈(x1, . . . , xj−1, �t� 〈x, a〉 , xj+1, . . . , xk), a〉 | 〈x, a〉 ∈ S}
�xj :=?�S = {〈(x1, . . . , xj−1, z, xj+1, . . . , xk), a〉 | 〈x, a〉 ∈ S, z ∈ Z}

�aj := adr�S = {〈x, (a1, . . . , aj−1, �adr� 〈x, a〉 , aj+1, . . . , ak)〉 | 〈x, a〉 ∈ S}
�aj :=?�S = {

〈
x, (a1, . . . , aj−1, a

′
j , aj+1 . . . , ak)

〉
| 〈x, a〉 ∈ S,

a′j ∈ A of appropriate type}

Every program execution π can be considered as a transformation �π� : 2S → 2S

of the set of states before the execution into the set of states after the execution.

Here, we find it convenient to define the semantics as the transformation R[u] :
2S → 2S that describes which program states can be attained at program point u
when program execution starts in a given set of states. Given the transformation

R[u], we can recover the collecting semantics of u, i.e., the set of all program

states possibly attained during program execution when reaching u, as the set

R[u](S).
In order to define the transformations R, we additionally consider for every

procedure q, the transformation of a set of program states before a call to q into

the set of program states after the call. Therefore, we introduce for every program

point u of q, the auxiliary transformation S[u] which collects the transformation

induced by the executions from u to the end point rq of q at the same level, i.e., all
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recursive calls on its path towards the end of the procedure have returned. Then,

the transformation of q is given by S[eq] for the start point eq of q, and we have:

[S1] S[rq] ⊇ Id

[S2] S[u] ⊇ S[v] ◦ �s� if (u, s, v) is an assignment edge

[S3] S[u] ⊇ S[v] ◦ S[eq] if (u, q, v) is a call edge

[R0] R[emain ] ⊇ Id

[R1] R[eq] ⊇R[u] if (u, q, _) is a call edge

[R2] R[v] ⊇ �s� ◦R[u] if (u, s, v) is an assignment edge

[R3] R[v] ⊇ S[eq] ◦R[u] if (u, q, v) is a call edge

Here, the ordering “⊇” on transformers f, g : 2S → 2S is defined by f ⊇ g iff for

every set of states S, f(S) ⊇ g(S).

Example 1. Our example program from Figure 3.1 has only one integer variable

and one address variable. Hence a program state is a pair 〈x, a〉 ∈ Z×A, and we

have for program points 1 through 4 and S �= ∅:

R[1](S) = S R[2](S) = {〈0, a〉 | 〈_ , a〉 ∈ S} ∪R[5](S)

R[3](S) = {〈n, c.(n)〉 | n ≥ 0} R[4](S) = {〈n, c.(n− 1)〉 | n ≥ 1}

As the sub-procedure does not change the program state, its same-level transform-

ers are all equal to identity, and thus, R[i] = R[4] (i = 5, 6, . . . , 9).

3.3 Address equalities

Our goal is to detect equalities between address expressions. In order to do so,

we additionally need to track affine equalities between int variables. An affine

equality is an assertion t0+ t1x1+ . . .+ tkxk =̇ 0 for t0, . . . , tk ∈ Q. An address

equality is an assertion of the form: adr =̇ adr ′ of address expressions adr , adr ′.
Here, “ =̇ ” serves as a formal equality symbol. A program state σ satisfies the

affine equality t =̇ 0 iff the left-hand side evaluates to zero: �t�σ = 0. Likewise,

the state σ satisfies the address equality adr =̇ adr ′ iff �adr�σ = �adr ′�σ. This

means that we consider the Herbrand interpretation for the operator “.” as well as

for base addresses and field selectors, but use an arithmetic interpretation for index

expressions. The latter allows us to identify semantically equal index expressions,

such as x1 + 5 + 2x1 and 5 + 3x1.

The state σ satisfies a finite conjunction E of affine and address equalities iff

σ satisfies every equality in E. In this case, we write σ |= E. Likewise for a set
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S of states, we write S |= E iff σ |= E for all σ ∈ S. The conjunction E is valid
at a program point u, if E is satisfied by all states possible at u, i.e., R[u] |= E.

Example 2. In the program from Figure 3.1, we are interested in the equalities

which hold at program point 4. The set of states possible at this point is given by

R[4] = {〈n, c.(n− 1)〉 | n > 0}, and thus the equality a1 =̇ c.(−1 + x1) is

valid at this program point.

Given this notion of satisfiability, we say that a conjunction of equalitiesE implies

another conjunction of equalities E′, iff for all states σ ∈ S, σ |= E implies

σ |= E′. Thus, the conjunctions of address and affine equalities can be ordered

by implication “⇒”. The greatest element � w.r.t. this ordering is the empty

conjunction or true, as it is satisfied by all states. The bottom element ⊥ in the

ordering is false, denoting an unsatisfiable conjunction of equalities.

Consider a finite conjunction E with affine equalities ti0 + ti1x1 + . . . +
tikxk =̇ 0, i = 1, . . . , h. Assume that the conjunction E is satisfiable. Then, we

say that it is in canonical form iff the following conditions are satisfied:

1. the affine equalities — more precisely, the corresponding coefficient matrix

(tij) — is in row echelon form;1

2. the left-hand sides in the address equalities of E are pairwise distinct vari-

ables; and

3. no variable that is on the left-hand side of an address equality in E occurs

in any of the right-hand sides.

By these restrictions, any conjunction in canonical form comprises at most k affine

equalities as well as at most m address equalities.

Example 3. Take the conjunction (a1.d =̇ c.(2x1).d)∧(a1.m =̇ c.(x1).m).
An equivalent conjunction in canonical form is (a1 =̇ c.(2x1)) ∧ (x1 =̇ 0).

Lemma 1. For every finite conjunction of equalities E, a finite conjunction in
canonical form which is equivalent to E can be constructed in polynomial time.

Proof. Assume that the conjunction is of the form E = Ea ∧ Ex where Ea is a

conjunction of address equalities and Ex is a conjunction of affine equalities. We

proceed in three steps. First, we replace every index expression t occurring in the

conjunction Ea with the expression xt for a fresh variable xt. Let E′
a denote the

resulting conjunction of address equalities.

1A matrix is said to be in row echelon form if all zero rows are at the bottom, the leading entry

of each non-zero row except the first occurs to the right of the leading entry of the previous row,

and the leading entry of any non-zero row is 1.
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In the second step, we compute a most general unifier σ for E′
a w.r.t. the

Herbrand interpretation. If unification succeeds, then due to the specific form of

address expressions, the substitution σ will map each auxiliary variable xt either

to a field selector or to another auxiliary variable xt′ . If there exists an xt, such

that σ(xt) is a field selector, then the conjunctions are inconsistent and the whole

conjunction is equivalent to false.

Otherwise, let E′
x denote the conjunction of all equalities t1 − t2 =̇ 0 for

which the corresponding auxiliaries xti were unified, i.e., σ(xt1) = σ(xt2). Then

Ea is equivalent to the conjunction of E′
x with E′′

a =
∧

i(ai =̇ adr i) where the

address expressions adr i are obtained from σ(ai) by substituting back the affine

index expressions t for the auxiliary variables xt.

Thus, a canonical form of the conjunction E is given by E′′
a ∧ E′′

x , where

E′′
x is the echelon form for the conjunction Ex ∧ E′

x. Using a linear unification

algorithm [66] for computing σ, we conclude that the canonical form of E can be

computed in time O((|Ex| + |E′
x|) · k2) = O((s + r · d) · k2) if E consists of s

affine equalities and r address equalities.

Note that we give the complexity estimates under the uniform cost measure, i.e.,

we assume a constant cost for arithmetic operations.

Lemma 2. Assume E is a satisfiable conjunction of equalities in canonical form
with k int-variables, and addresses of length at most d. Then the following holds:

1. For every affine combination t,E ⇒ (t =̇ 0) can be decided in timeO(k2).

2. For every address expression adr , E ⇒ (ai =̇ adr) can be decided in time
O(d · k2).

Proof. As the first statement is immediate from linear algebra, we only prove

the second. Let us assume that adr ≡ A.s1. . . ..sh, i.e., adr does not con-

tain an address variable. Then the implication holds iff E contains an equality

ai =̇ A.s′1. . . ..s
′
h, and for each λ = 1, . . . , h, the access expressions sλ and s′λ

are equal under E: either both sλ and s′λ are field selectors and identical, or both

sλ and s′λ are index expressions and E ⇒ (sλ − s′λ =̇ 0).
Now assume that adr ≡ aj.s1. . . ..sh for some address variable aj . Unless

adr ≡ ai, the implication can only hold if E also contains an equality for ai.
Moreover, this equality is of the form ai =̇ a.s′1. . . ..s

′
h+l for some l ≥ 0 where

a is either an address constant A or an address variable ar. Then the implication

holds iff E also contains an equality aj =̇ a.s′′1. . . ..s
′′
l where for λ = 1, . . . , l,

the accesses s′λ and s′′λ are equal underE, and for λ = l+1, . . . , h, the accesses s′λ
and sλ−l are equal underE. Assuming that the address equality inE for particular

address variables can be retrieved in constant time, at most d affine equalities must

be checked for subsumption by E — giving us the stated complexity bound.
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Thus, both logical implication and equivalence between satisfiable conjunctions

E,E′ in canonical form can be decided in time O((m2 · d+ k) · k2).
Let E denote the set of equivalence classes of finite conjunctions ordered by

implication. The greatest lower bound of (the equivalence classes of) two con-

junctions E,E′ ∈ E is (the equivalence class containing) the conjunction of all

the equalities in E and E′. The partial order E thus is a complete lattice — given

that all descending chains are finite.

Corollary 1. Every chain E0 ⇒ . . .⇒ Ep of pairwise inequivalent conjunctions
Ej using k int variables and m address variables has length p ≤ m+ k + 1.

This follows because any two inequivalent conjunctions Ei and Ej have counter-

parts in canonical form, E′
i and E′

j , respectively. The implication E′
i ⇒ E′

j can

only hold, if E′
i contains strictly more equalities than E′

j . Therefore, all chains in

the lattice will eventually stabilize after at most m+ k + 1 steps.

In summary, we have proven that the set of equivalence classes of conjunctions

of address equalities ordered with implication (E,⇒) is a complete lattice.

3.4 Weakest pre-conditions

We compute all valid equalities through weakest pre-condition computation. For

a conjunction of equalities E, the weakest pre-condition for an assignment and a

non-deterministic assignment is given by substitution and universal quantification,

respectively:

�xi := t�
T(E) = E[t/xi] �ai := a�

T(E) = E[a/ai]

�xi := ?�T(E) = ∀xi. E �ai := ?�T(E) = ∀ai. E

While our domain is closed under substitution, it does not directly support uni-

versal quantification. We are rescued by the fact that in the sub-domain of linear

arithmetic, determining the weakest pre-condition for a non-deterministic assign-

ment to an int variable xi, it suffices to consider the conjunction of the weakest

pre-conditions of the assignments xi := 0 and xi := 1 [57]. On the other hand,

∀ai. E for a conjunction E in canonical form involving the address variable ai
is necessarily false, if ai can range over at least two addresses [60]. For simplic-

ity of presentation, let us assume there are no singleton types. Thus, the weakest

pre-conditions for non-deterministic assignments can be simplified:

�xi := ?�T(E) = E[0/xi] ∧ E[1/xi]

�ai := ?�T(E) =

{
false if ai occurs in E

E otherwise
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Note that these results do not hold for the general combination of linear arithmetic

with uninterpreted functions. Consider the following equality, which is ruled out

in our restricted combination of theories:

a1.(0) + a1.(1) =̇ a1.(x1) + a1.(1− x1)

Here, the operator “+” is applied to address expressions. As an arithmetic opera-

tor, “+” is commutative. Hence, the above equality is true when x1 is substituted

by 0 and 1, but not for other integers.

We now set up a constraint system to characterize the weakest pre-condition

transformers RT[v], which transform conjunctions of equalities at the program

point v into the weakest pre-condition for their validity at program start. The

constraint system uses auxiliary transformers ST[v], which transform the post-

condition of a procedure q into the weakest pre-condition at the program point v
of the same procedure q.

[S1T] ST[rq] ⇒ Id

[S2T] ST[u] ⇒ �s�T ◦ ST[v] (u, s, v) an assignment edge

[S3T] ST[u] ⇒ ST[eq] ◦ ST[v] (u, q, v) a call edge

[R0T] RT[emain ]⇒ Id

[R1T] RT[eq] ⇒RT[u] (u, q, _) a call edge

[R2T] RT[v] ⇒RT[u] ◦ �s�T (u, s, v) an assignment edge

[R3T] RT[v] ⇒RT[u] ◦ ST[eq] (u, q, v) a call edge

Here, the ordering “⇒” on transformers f, g : E → E is defined by f ⇒ g iff

for all conjunctions of equalities E, f(E) ⇒ g(E). The greatest solution to the

system will be the weakest pre-condition transformers. We state this as a theorem.

Theorem 1. For every program point u, set of states S ⊆ S, and conjunction of
equalities E ∈ E,

S[u](S) |= E ⇐⇒ S |= ST[u](E) and R[u](S) |= E ⇐⇒ RT[u](E) = true

Proof. The identity and weakest pre-condition transformers for individual edges

are defined in a standard way. Relating the least fixed point of the system S with

the greatest fixed point of the system ST, we are only required to show that the

following conditions are satisfied:

f(S) ∪ g(S) |= E ⇐⇒ S |= fT(E) ∧ gT(E)

(f ◦ g)(S) |= E ⇐⇒ S |= (gT ◦ fT)(E).
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These follow from the properties of weakest pre-condition transformers. The sec-

ond equivalence follows from an analogous fixed-point induction and the fact that

S |= E only if true⇒ E.

Example 4. In our example program, the weakest predicate transformers for pro-

gram points 2, 3 and 4 are given by the constraints:

RT[2]⇒ [0/x1] RT[2]⇒ RT[4]

RT[3]⇒ RT[2] ◦ [c.(x1)/a1] RT[4]⇒ RT[3] ◦ [x1 + 1/x1]

Using methods described below, we find that RT[2] maps the post-condition

a1 =̇ c.(−1 + x1) to the pre-condition a1 =̇ c.(−1).

Solving such constraint systems requires effective computation of function com-

parisons, greatest lower bounds and compositions. Thus, we need an finite and

effective representation of these predicate transformers.

3.5 Finite representation

Inspired by order-theory, let us call single address equalities ai =̇ adr and affine

equalities t =̇ 0 atomic. Let EA denote the set of atomic equalities. According

to Lemma 1, every conjunction has a canonical form, which is a conjunction of

atomic equalities. Hence, every transformer f : E → E, which is completely

distributive, i.e., preserves true and distributes over conjunctions, is uniquely de-

termined by its restriction f |EA
to atomic equalities.

This observation, though, does not yet provide a finite representation of weak-

est pre-condition transformers because the number of single equalities is still in-

finite. The second idea, therefore, is not to track weakest pre-conditions for each

equality separately, but to consider generic equalities. Every generic equality

serves as a template which covers a range of equalities of similar form simultane-

ously.

In order to infer weakest pre-conditions for all affine equalities, we consider

the generic post-condition p ≡ p0 + p1x1 + · · · + pkxk =̇ 0, where p0, . . . ,pk

are fresh variables not occurring in the program. The weakest pre-conditions for

p can be represented as conjunctions of equalities

k∑
i=0

ci0pi +

k∑
i=0

k∑
j=1

cijpixj =̇ 0 (3.1)

for constants cij ∈ Q.

53



Example 5. Since our running example has just one int variable, the generic

affine post-condition is eaff ≡ p0 + p1x1 =̇ 0. The parametric pre-condition for

eaff w.r.t. the assignment x1 := x1 + 1 is then p0 + p1 + p1x1 =̇ 0.

A generic address post-condition is of the form ai =̇ a.s1. . . ..sr (for some

r ≤ d) where a is either an address constant in C or another address variable in

A, and each sl is either a field name or an indexing pattern pl0 + pl1x1 + · · · +
plkxk. Weakest pre-conditions for such a generic address post-condition will

be conjunctions of parametric affine equalities and parametric address equalities.

The generic coefficients to be considered in the parametric affine equalities now

are elements from the set Pr = {pli | l ∈ [1, r], i ∈ [0, k]}. Thus, the affine

equalities are of the form:

c000 +
k∑

j=1

c00jxj +
r∑

l=1

k∑
i=0

cli0pli +
r∑

l=1

k∑
i=0

k∑
j=1

clijplixj =̇ 0 (3.2)

for constants clij ∈ Q. Also, the parametric address equalities will be address

equalities where index expressions are of the same form as left-hand sides in (3.2).

Example 6. For the address variable a1, a generic post-condition is of the form

eadr ≡ a1 =̇ c.(p10 + p11x1). The parametric pre-condition for eadr w.r.t. the

assignment a1 := c.(x1) is given by c.(x1) =̇ c.(p10 + p11x1), whose canon-

ical form is −x1 + p10 + p11x1 =̇ 0.

The conjunction of parametric equalities forms a lattice Ed, which has the same

structure as the lattice E – except that the set of int variables is now extended with

the set of parameters pl0 and products plixj of parameters and int variables. The

height of the complete lattice Ed therefore is bounded by O(d · k2 +m).
In our application, generic post-conditions suffice to arrive at a finite specifica-

tion of weakest pre-condition transformers. Let T denote the set of all well-typed

generic address equalities between pointer variables in the program. Then the set

T is finite and of cardinalityO(m2 ·t ·d), where t is the maximal size, i.e., number

of fields, of a global data structure’s type. This set T is complete in the sense that

for any concrete atomic equality e ∈ EA, there exists a substitution σ : Pd → Q

and a generic post-condition e′ ∈ T such that e = e′σ. Any function f : T → Ed

can be extended to a completely distributive function ext (f) : E → E defined by

(ext (f))(e) = (f(e′))σ for all atomic equalities e = e′σ where e′ is some generic

equality, and σ a substitution.

Example 7. The only type-compatible generic post-condition in our example is

eadr . However, if we were to add an address variable a2 pointing to mutexes, the

set of generic post-conditions T = {eaff , eadr}would additionally include the set

{a2 =̇ c.(p10 + p11x1).m, a2 =̇ a1.m}.
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We now show that the weakest predicate transformers that occur in our con-

straint system can indeed be obtained as extensions of functions from T → Ed.

In order to do so, we set up a new constraint system R� over functions from

T → Ed. This is obtained from the constraint system RT by replacing all op-

erations by their parametric counterparts. Thus, implication “⇒�” and greatest

lower bounds ∧� are now defined according to the domain Ed. Also, the transfer

functions for assignments are lifted to parametric equalities. It remains to define

composition ◦� for functions f �, g� : T → Ed.

First, we observe that every parametric equality can be obtained from one

of the generic post-conditions by a transformation σ of the parameters. Therefore

assume that e′ is a generic post-condition and g�(e′) = e1∧· · ·∧er where el = e′lσl
for generic post-conditions e′l and linear transformations σl. Then we define

(f � ◦� g�)(e′) = (f �(e′1))σ1 ∧ · · · ∧ (f �(e′r))σr .

If e′ is the generic affine equality, this amounts to computing the canonical form of

a conjunction of O(k4) parametric equalities. If e′ is a generic address equality,

the canonical form must be computed for a conjunction of O(m2) parametric

address equalities andO(d2 ·k4) parametric affine equalities whose normalization

may at worst consume time O(m2 · d4 · k8).
Example 8. Let f = �x1 := ?�T and g = �a1 := c.(x1)�

T. We then compute

the composition (f ◦ g)(eadr ) as follows:

(f ◦ g)(eadr ) = f(−x1 + p10 + p11x1 =̇ 0)
= (f(eaff ))σ for σ = [p10/p0, (−1 + p11)/p1]
= ((p0 =̇ 0) ∧ (p0 + p1 =̇ 0))σ
= ((p0 =̇ 0) ∧ (p1 =̇ 0))σ = (p10 =̇ 0) ∧ (−1 + p11 =̇ 0)

This computation occurs during the analysis of our running example, because the

while-loop has the same effect as the non-deterministic assignment of f .

Theorem 2. For any program point u, RT[u] = ext (R�[u]).

Proof. We proceed by fixpoint induction. A crucial step is to show that not only

“∧”, but also composition commutes with ext, i.e., that

ext (f) ◦ ext (g) = ext (f ◦� g)
To see that, we calculate:

(ext (f) ◦ ext (g))(e′σ) = ext (f)(ext (g)(e′σ)) = ext (f)(g(e′))σ)
= ext (f)((

∧
e′iσi)σ) = ext (f)(

∧
e′i(σiσ))

=
∧
(f(e′i))(σiσ) = (

∧
(f(e′i))σi)σ

= ((f ◦� g)(e′))σ = (ext (f ◦� g))(e′σ)
where g(e′) =

∧
e′iσi as above.
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Example 9. We can now compute the solution to the constraint system by fix-

point iteration starting from true. The computation stabilizes after three iterations,

giving the following pre-conditions for the address post-condition:

RT[2](eadr ) = (a1 =̇ c.(p10)) ∧ (p10 + p11 =̇ 0) ∧ (−1 + p11 =̇ 0)

RT[3](eadr ) = (p10 =̇ 0) ∧ (−1 + p11 =̇ 0)

RT[4](eadr ) = (p10 + p11 =̇ 0) ∧ (−1 + p11 =̇ 0)

For the affine post-condition eaff , the pre-condition (p0 =̇ 0) ∧ (p1 =̇ 0) is ob-

tained, meaning no non-trivial affine equalities hold at these points.

3.6 Computing all valid equalities

Given the weakest pre-condition transformer RT[v] for program point v, com-

puting all equalities which are valid at v then boils down to solving a suitable

inhomogeneous system of equations. We have:

Theorem 3. The equalities that hold at each program point can be computed in
polynomial time.

Proof. Let e′ denote a generic post-condition and e = e′σ an atomic equality

for some substitution σ of the parameters occurring in e′. By Theorem 1, e
holds at program point u iff RT[u](e) = true, which, by Theorem 2, means that

(R�[u](e′))σ = true. The latter means that R�[u](e′) does not contain non-trivial

address equalities, but is a conjunction of at mostO(d ·k2) affine equalities t =̇ 0
where tσ =̇ 0 is valid for all values x ∈ Zk.

Assume that p′
1, . . . ,p

′
r are the parameters occurring in t, the affine combina-

tion t is of the form: t ≡ c00 +
∑k

i=1 (c0i +
∑r

l=1 clip
′
l)xi for suitable cli ∈ Q.

Then tσ =̇ 0 is valid for all values x ∈ Zk iff c00 = 0 and σ is a solution of each

of the equations c0i+
∑r

l=1 clip
′
l =̇ 0 (i = 1, . . . , k).We conclude that finding all

substitutions σ such that e′σ is valid at program point u can be reduced to solving

a system of O(k · d · k2) = O(d · k3) inhomogeneous equations over Q where

the number of unknowns is bounded by d · (k + 1). The latter task can be done

with a polynomial number of arithmetic operations. By repeating this procedure

for every possible generic post-condition, we obtain a finite representation of all

equalities which are valid at program point u.

Example 10. As we saw in Example 9, at all points in the loop the parametric pre-

condition for eaff has p0 = p1 = 0 as its solution. The parametric pre-condition

for the generic post-condition eadr , on the other hand, is given by:

RT[4](a1 =̇ c.(p10 + p11x1)) = (p10 + p11 =̇ 0) ∧ (−1 + p11 =̇ 0)
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As no int-variables xi are involved here, this pre-condition is true iff p11 = 1 and

p10 = −1. Therefore, the only non-trivial equality which holds at program point

4 is a1 =̇ c.(−1 + x1).

To summarize, the set of all equalities, which hold at a given program point, can

be compactly represented by a polynomially sized set of triples 〈e, σ, V 〉 — each

consisting of a generic post-condition e together with one particular solution for

the conjunction of parametric affine pre-conditions of e and a basis V of the vector

space of solutions of the corresponding homogeneous system. Assuming that the

basis V is in (column) echelon form, we can determine if a given equality holds

at a certain program point in time O(d2 · k2).

3.7 Local variables

All program variables have so far been considered global. Along the lines of [59],

we now extend the analysis to possibly recursive programs with local variables

as well. From the k integer variables, we consider the first k′ ≤ k variables

x1, . . . ,xk′ as local and the remaining ones as global. Similarly for pointers, the

first m′ ≤ m variables a1, . . . ,am′ denote local variables while the remaining

ones denote global pointer variables.

For passing of parameters, we adopt w.l.o.g. the convention that all locals of

the caller are passed by value into the locals of the callee. This enables us to

reason about equalities involving local variables of the caller.

We extend the concrete semantics with an extra operator H which transforms

the effect of a procedure body into the effect of a procedure call:

H(f)(S) = {〈(x1, . . . , xk′ , x′k′+1, . . . , x
′
k), (a1, . . . , am′ , a′m′+1, . . . , a

′
m)〉 |

〈x, a〉 ∈ S, 〈x′, a′〉 ∈ f({〈x, a〉})}

The constraint system for computing weakest pre-conditions of procedure calls is

modified accordingly by introducing the operator HT:

[S1T] ST[rq]⇒ Id

[S2T] ST[u] ⇒ �s�T ◦ ST[v] (u, s, v) an assignment edge

[S3T] ST[u] ⇒ HT(ST[eq]) ◦ ST[v] (u, q, v) a call edge

Here, the operator HT must be defined such that the first statement of Theorem 1

holds for the new constraint system. Given the concrete transformer f of a proce-

dure and the corresponding weakest pre-condition transformer fT, the following

condition must hold for all sets of states S and conjunctions of equalities E:

H(f)(S) |= E ⇐⇒ S |= HT(fT)(E)

57



Consider an arbitrary post-condition E for a procedure call to f . This post-

condition may not only speak about globals, but also about locals of the caller as

well as any local variable further down in the call-stack. All these locals, however,

are inaccessible during the execution of the procedure f and thus can temporarily

be considered as constants. In order to deal with these temporary constants, we

introduce place holders •τ for every possible type of local pointer variables aj or

constant addresses.

Accordingly, we consider the following set of parametric post-conditions E′:

(1) ai =̇ aj.s (2) ai =̇ •τ.s
(3) •τ =̇ ai.s (4) •τ1 =̇ •τ2.s

for global pointer variables ai, aj and type-compatible parametric sequences of

selectors s, where each parametric index is of the form pl0 + pl(k′+1)xk′+1 +
· · ·+ plkxk. Furthermore, we consider the parametric affine post-condition:

(5) p0 + pk′+1xk′+1 + · · ·+ pkxk =̇ 0

for global variables xk′+1, . . . ,xk. Assume now that we are given the weakest

pre-conditions fT(E′) of the called procedure for all these post-conditions E′

speaking about global variables (and perhaps •τ ).

We now define the weakest pre-condition HT(fT)(E). In each case, we de-

compose E = E′σ for a generic post-condition E′ of one of the types (1) through

(5) and a suitable substitution σ. Then, we define

HT(fT)(E) = (fT(E′))σ .

It only remains to explain the decomposition of E. We first consider a post-

condition E of the form ai =̇ aj.s for global variables ai,aj . Then E′ is of

the parametric post-condition of format (1). For every index expression sl =
t0 + t1x1 + · · ·+ tkxk in s, σ maps pl0 to the affine combination consisting of t0
together with all occurring multiples of locals, i.e., to t0 + t1x1 + · · ·+ tk′xk′ .

If E is of the form ai =̇ X.s where ai is a global variable and X either is

a local of the caller, a constant address or a place holder •τ all of the type τ ,

we choose E′ of the parametric format (2) and σ is constructed as before, but

moreover maps the place holder •τ to X . (When X = •τ no substitution is

required for X .)

The case where E is of the form X =̇ ai.s is treated analogously. In case

where E is of the form X1 =̇ X2.s and each Xi is a local of the caller, constant

address or place holder, then we choose the appropriate generic post-condition E′

now of type (4). The substitution σ treats index expressions as before, but now

maps •τ1 to X1 and •τ2 to X2.
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Finally, if E is an affine equality t0 + t1x1 + · · ·+ tkxk =̇ 0, then we choose

E′ to be of format (5) where the substitution σ maps p0 to t0+t1x1+ · · ·+tk′xk′ ,

and pi to ti for i > k′.

Example 11. Consider the post-condition a1 =̇ a2.(p10+p11x1+p12x2), where

a1, a2, and x1 are local, but x2 is global and may be changed during the procedure

call. Assume that the callee only performs the statement x2 := ?. Since the post-

condition is of the type (4), we compute the pre-condition as follows:

�x2 =̇ ?�T(•τ1 =̇ •τ2.(p10 + p12x2)) =

(•τ1 =̇ •τ2.(p10)) ∧ (•τ1 =̇ •τ2.(p10 + p21)) =

(•τ1 =̇ •τ2.(p10)) ∧ (p21 =̇ 0)

To obtain the weakest pre-condition of a1 =̇ a2.(p10+p11x1+p12x2), we apply

the substitution σ, which maps p10 to p10+p11x1 and replaces the place-holders

with the local address variables: a1 =̇ a2.(p10 + p11x1) ∧ p21 =̇ 0.

The second part of our analysis applies the weakest pre-condition transform-

ers of procedures, as defined through the first part of the constraint system, to

construct a constraint system for the weakest pre-condition transformers for post-

conditions at program points v:

[R0T] RT[emain ]⇒ Id

[R1T] RT[eq] ⇒RT[u] (u, q, _) a call edge

[R2T] RT[v] ⇒RT[u] ◦ �s�T (u, s, v) an assignment edge

[R3T] RT[v] ⇒RT[u] ◦ HT(ST[eq]) (u, q, v) a call edge

This time, however, the post-conditions for the weakest pre-condition transformer

RT[v] for a program point of a procedure f need not use •-variables to refer

to variables deeper down in the call-stack. Instead, they may refer to the locals
of f . Accordingly, occurring transformers are described by their weakest pre-

conditions for the generic affine post-condition together with the generic address

post-conditions ai =̇ aj.s for local or global address variables ai, aj and suitable

selector sequences s.

3.8 Intra-procedural forward analysis

Currently, the above analysis cannot be directly implemented in the Goblint frame-

work. We do plan to extend the framework to support different approaches to

inter-procedural analysis such that one could combine the procedure summary

approach for the must-equality analysis with the other analyses used in the tool.
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In the meantime, we can rely on a forward formulation of the analysis which can

be directly implemented in the analyzer. This analysis is intra-procedural and

relies on the analysis framework to apply the generic functional approach to inter-

procedural analysis, as described in Section 2.4.

For computing with abstract values from the lattice E, we require an effective

algorithm for computing the least upper bound E = E1 � E2 of two satisfiable

conjunctionsE1, E2. For this, we need a different representation. The conjunction

E is complete if the affine equalities inE are in row echelon form, andE contains

exactly one equality for every pair of address variables ai and aj for which some

equality is implied by E, as well as one equality for every address equality aj and

every global data-structure A for which some equality is implied.

Lemma 3. The least upper bound of two complete conjunctions E1 and E2 can
be computed in polynomial time.

Proof. Assume that for i = 1, 2, Ei is of the form: Ei = Ei,a ∧ Ei,x where Ei,x

and Ei,a collect the affine and address equalities in Ei, respectively. Then the

least upper bound E is of the form E = Ea ∧ Ex where Ex is a conjunction of

affine equalities which span the intersection of the affine spaces spanned by the

conjunctions E1,x and E2,x. By standard methods from linear algebra, this can be

computed in time O(k3).
It remains to determine the conjunction Ea of address equalities implied both

by E1 and E2. For that, we consider each address equality ai =̇ X.s1 occurring

in E1. In order to put an equality for ai and X into Ea, we must find a similar

equality ai =̇ X.s2 in E2 where both selector strings have the same structure,

i.e., contain index expressions t
(i)
1 , . . . , t

(i)
d′ at the same positions in si as well as

the same field selectors at the remaining positions. Furthermore for λ = 1, . . . , d′,

affine equalities r
(i)
λ =̇ 0 must exist with Ei,x ⇒ (r

(i)
λ =̇ 0) such that

t
(1)
λ + r

(1)
λ = t

(2)
λ + r

(2)
λ

If this is the case, we add the equality ai =̇ aj.s to Ea where the selector s is

obtained from s1 by replacing the λ-th index expression t
(1)
λ with t

(1)
λ + r

(1)
λ .

Note that the necessary linear algebra calculations can be performed in timeO(d ·
k3).

Example 12. Consider the conjunctions

E1 = (x1 − x3 =̇ 0) ∧ (a1 =̇ a2.(x1))

E2 = (x2 − 5 =̇ 0) ∧ (x3 − 5 =̇ 0) ∧ (a1 =̇ a2.(x2))

Since Ex,1 ⇒ (−x1 + x3 =̇ 0) and Ex,2 ⇒ (−x2 + x3 =̇ 0), we see that x1 +
(−x1 + x3) = x2 + (−x2 + x3), and therefore conclude E ⇒ (a1 =̇ a2.(x3)).
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As before, we provide the abstract effects of the four types of assignments (see

page 47) onto abstract values from E. Each non-⊥ abstract value can be consid-

ered as a conjunction Ea ∧Ex where Ex is a conjunction of affine equalities, and

Ea is a complete conjunction of address equalities. On the affine equalities, our

analysis proceeds precisely like Karr’s analysis of affine equalities [48], while the

treatment of conjunctions of address equalities is new. We begin with assignments

to integer variables. For a non-deterministic assignment, we define:

�xi := ?��E = ∃�xi.E

where ∃�xi.E is the conjunction of all equalities implied by E that do not contain

xi. To compute this, assume E = Ea ∧ Ex as described above. Then ∃�xi.E =
E′

a ∧ E′
x with E′

a and E′
x defined as follows.

If xi does not occur in Ex, then E′
x = Ex and E′

a is obtained from Ea by

removing all address equalities which contain xi. Otherwise, let Ex = (t =̇ 0) ∧
E1 where t ≡ t0 + t1x1 + . . . + tkxk and ti �= 0. We construct the arithmetic

expression t′ = −t−1
i (t − tixi) which no longer contains xi, and substitute it

in Ea and E1 for all occurrences of xi, i.e., we define: E′
a = Ea[t

′/xi] and

E′
x = E1[t

′/xi].
Now consider an assignment s ≡ xi := t to the variable xi where t ≡ t0 +

t1x1 + · · ·+ tkxk. If xi does not occur in t, then:

�xi := t�
�E = ∃�xi.E ∧ (xi =̇ t)

If xi does occur in t, i.e., ti �= 0, then we construct t′ = −t−1
i (t − tixi), which

we use to substitute all occurrences of xi in the pre-condition E before we add

the new equality xi =̇ t. Thus, in this case, we define:

�xi := t�
�E = E[t′/xi] ∧ (xi =̇ t)

We now consider assignments to an address variables. The abstract effect of a

non-deterministic assignment is given by

�aj := ?��E = ∃�aj .E

where ∃�aj .E is the conjunction of all equalities implied by E that do not contain

the address variable ai. In order to get an explicit construction, let E = Ea ∧ Ex

as before, then ∃�aj .E = E′
a ∧ Ex where E′

a is obtained from Ea by simply

removing all equalities containing ai.
Finally, consider an assignment s ≡ aj := adr to the address variable aj . If

adr = aj , then we have the following definition.

�aj := adr��E =

{
E if adr = aj
∃�aj .E ∧ (aj =̇ adr) otherwise

For all these assignments, we find:
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Lemma 4. Assume s is a non-deterministic or deterministic assignment to an
integer or address variable. Then we have:

1. For every set S of states, S |= E iff �s�(S) |= �s��E.

2. The abstract effect �s�� is distributive, i.e., commutes with ⊥ and preserves
least upper bounds.

3. The abstract effect �s�� can be computed in polynomial time.

Given the abstract effects of assignments, we now obtain a constraint system for

the conjunctions of equalities that are valid at every program point by taking the

constraint system for the collecting semantics R and replacing the complete lat-

tice of sets of states with the abstract lattice E and the concrete transformations

�s� induced by assignments s with the abstract transformations �s��. Thus, we

consider the following constraint system R�:

[R0]� R�[emain ] � true

[R1]� R�[eq] �R[u]� if (u, q, _) is a call edge

[R2]� R�[v] � �s��(R�[u]) if (u, s, v) is an assignment edge

[R3]� R�[v] �R�[u] if (u, q, v) is a call edge

Since the right-hand sides of this constraint system are monotonic in their argu-

ments, the system has a least solution. This solution is also precise because the

right-hand sides are composed from distributive functions:

Theorem 4. Assume for all program points v, R�[v] is the least solution of the
constraint system R�. Then for every program point v and every equality e,

R[v] |= e iff R�[v]⇒ e

Moreover, the least solution of R� can be computed in polynomial time.

The first statement of the theorem follows from ordinary fixpoint induction whereas

the second holds since the value at every program point may increase onlym+k+
1 times, wherem is the number of address variables and k is the number of integer

variables, and every right-hand side of the constraint system can be evaluated in

polynomial time.

3.9 Application: race detection

In order to avoid race, we ensure the following condition for every pair of ac-

cesses in the program: if the two access expressions may alias, then the acquired
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lock expressions must alias [62]. We ensure this condition by inferring access cor-

relations using the must-equality analysis and associating these correlations with

may-alias equivalence classes, as we will illustrate through the following example.

Example 13. Assume the address variables aacc and alock represent an access

expression and a lock expression that need to be correlated, and our must-alias

analysis provides the following information:

(aacc =̇ a1.d.(x1)) ∧ (alock =̇ a1.m.(x1))

These equalities imply that the access to the data array of the structure pointed to

by a1 is protected by a corresponding element in the mutex array.

The access pattern we can infer in the above example depends on the information

we have about a1. If the analysis can infer that a1 is definitely equal to some

statically allocated structure c, a pattern for access to the elements of c is obtained.

Otherwise, may-alias analysis [41] is called upon to divide the set of all pointer

variables into equivalence classes. The simplest such approach, which suffices for

some applications [53], equates all pointers of the same type. Then our method

allows to infer access patterns for data structures of a given type. A more refined

analysis distinguishes heap objects depending also on their allocation sites, in

which case our analysis derives more refined patterns.

Note that must-equality information complements may-aliasing by ensuring

that aacc and alock are referring to the same object within the equivalence class

of a1. This is crucial in order to verify per-element locking schemes, where each

element in, e.g., a linked list has its own lock. Pratikakis et al. [67] describe a

technique based on existentially typed label-flow to address this issue with the aid

of programmer annotations; must-equality information allows one to infer per-

element correlations automatically.

We now sketch a general method to infer linear correlations between accesses

to shared variables and the mutexes associated with them. Assuring mutual ex-

clusion requires that there exist for all accesses to a shared variable at the very

least a consistent relationship between the field names of the accessed data and

those of the locked mutex. Checking this is straightforward because the set of

field names is finite. If the fields names are consistent, then in the presence of

array indexing we must also detect whether the relationship between the indices

are consistent across all accesses. Here, we show how linear relationship between

integer indexes can be detected automatically.

Assume a data structure is accessed at p different locations. For each such

access, we register the alock and aacc variables, as well as (the matrix representa-

tion of) the affine equalities T . In order to relate the access and lock variables, we

associate indexing matrices with the access paths. Let an address be given in the
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following form

aacc =̇ c.s1. . . ..sd, where si+1 = a0i + a1ix1 + · · · akixk.

This defines the indexing matrix A = (aij), where for each j, the j-th column of

the matrix corresponds to the indexing expression sj . If this expression is a field

access, then the j-th column is zero. We denote with L the same construction for

the indexing occurring in the lock variable alock .

For each of the p accesses, we construct the two matrices A and L as above

and we record the equalities T which held at the time of that access. There exists

a linear access relationship between data and locks, if one can find a solution C
together with auxiliary matrices Ci to the following system of equations:

AkC + TkCk = Lk (for k = 1, . . . , p).

The matrix C gives the correlation, while the matrices Ci, take into account the

equalities between integer variables that hold during different accesses.

The system can be conveniently solved by Gauss-Jordan elimination on the

following matrix equation.

⎡
⎢⎢⎣
A1 T1 0 · · · 0
A2 0 T2 · · · 0
. . . . . . . . . . . . . . . . . . . . .
Ap 0 0 · · · Tp

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎢⎣
C
C1

C2

. . .
Cp

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎣
L1

L2

. . .
Lp

⎤
⎥⎥⎦

Example 14. Assume we have a program with an array of locks protecting a ma-

trix of data. This is accessed by two threads and we find that during the accesses

the following equalities held:

aacc =̇ data.(x1).(x2) aacc =̇ data.(x3).(x2)

alock =̇ lock.(5x1 + x3) alock =̇ lock.(x1 + x2)

0 =̇ x2 − x3 0 =̇ x1 − 5x3

The system to solve would then be as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
1 0 0 0
0 1 1 0
0 0 −1 0
0 0 0 0
0 0 0 1
0 1 0 0
1 0 0 −5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣
C
C1

C2

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
5 0
0 0
1 0
0 0
1 0
1 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This system has a solution with C = ( 5 0
1 0 ), where the auxiliary matrices C1 =

(−1 0) and C2 = (1 0). Thus, the lock and data are consistently correlated.
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3.10 Related work

Detecting affine equalities in programs was pioneered by Karr [48]. This algo-

rithm was extended to the inter-procedural case by Müller-Olm and Seidl [57]. A

long line of research has provided methods for intra-procedurally detecting Her-

brand equalities precisely [36, 50, 56, 84] — while the inter-procedural case still

remains unsolved. A precise analysis algorithm is known for functions without

side effects [60] and for arbitrary procedures if only unary operator symbols are

considered [39].

When it comes to combining affine and Herbrand equalities, the basic ap-

proach is inspired by methods of combining decision procedures [64]. However,

Gulwani and Tiwari [37] have shown that assertion checking over the full com-

bined domain is coNP-hard. Hence, they subsequently present a highly expres-

sive domain that allows sound analysis of pointer arithmetic and recursive data-

structures in the style of Deutsch [24], but their algorithm is no longer complete

w.r.t. their chosen abstraction [38]. Our domain construction, based on a suffi-

ciently restricted sub-class of Herbrand terms carefully enhanced with fragments

of linear arithmetic, enables sound and complete analysis in polynomial time.

3.11 Conclusion

We have presented a must-alias analysis which infers all equalities between ad-

dress expressions and can be proven to be sound and complete w.r.t. the cho-

sen abstraction. In this abstraction, conditional branching is replaced with non-

deterministic branching and pointers stored in the shared data-structures are not

tracked. We indicated how these equalities can be used to infer correlations be-

tween locks and accesses.

For simplicity, we have assumed that index expressions are evaluated over the

integral domain Z. Instead, we could have chosen Z2w , i.e., integers modulo a

suitable power of 2, by replacing the linear algebra methods for vector spaces of

affine equalities with the corresponding methods for modules over the principal

ideal ring Z2w [58]. However, if the programs to be analyzed only employ simple

forms of index expressions, it might be sufficient to replace tracking of affine

equalities with tracking of variable equalities alone [59].

This analysis infers relevant must-equality information for dynamically allo-

cated data which combined with may-alias information allows one to infer ac-

cess patterns for fine-grained locking schemes, i.e., when the lock and the data

it protects are within the same struct or array. We address this restriction in the

following chapter.
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CHAPTER 4

REGIONS AND STATIC OWNERS FOR
MAY-ALIAS ANALYSIS

While must-equalities are important for fine-grained locking schemes, we now

need to consider dynamically data structures, such as linked lists, where a single

lock protects all the elements it contains. In this chapter, we present a region-based

pointer analysis which seeks to identify disjoint regions of dynamically allocated

objects to ensure that write accesses to the same region are always protected by

the same mutexes. Our approach has been implemented in the Goblint analyzer

and we have successfully applied it on code from the Linux kernel, such as the

access vector cache. This code relies on a synchronized hash table where an array

of doubly linked lists is protected by an array of locks.

4.1 Introduction

Writing multi-threaded code which both is correct and manipulates complicated

data-structures can be cumbersome. Programmers of low-level software there-

fore mostly adhere to simple and conservative programming styles. Accord-

ingly, dynamic shared data-structures are avoided whenever possible, and when

dynamic allocation of memory is inevitable, one common idiom is to rely on non-
overlapping data-structures and protect each of these memory regions by a dedi-

cated lock. This occurs naturally when resources are maintained in hash-table-like

data-structures, i.e., arrays of linked lists where each list is protected by its own

lock as illustrated in Figure 4.1.

There are different levels of granularity at which locking schemes for shared

data-structures operate: at one extreme, an individual mutex is maintained for

each data element separately, known as per-element locking [67]; at the other

extreme, coarse-grained locking schemes use a single mutex to protect all data

nodes allocated at a given point in the program. In between, there are subtler
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locks slots t

Figure 4.1: Memory regions

cases of medium-grained locking where certain dynamically allocated elements

protect a bunch of other elements (not quite per-element), or elements allocated at

a given point are not all protected by the same mutex (not quite coarse-grained).

Here, we are concerned with the latter case. In many applications, we found that

the dynamic data-structures protected by one mutex are disjoint from the data-

structures protected by other mutexes. The number of protected disjoint data-

structures, however, can be large. This is the case, e.g., for synchronized hash-

tables where each bucket is protected by an individual mutex.

Consider the two-bucket hash-table in Figure 4.2 where elements allocated

by the insert function end up in two distinct lists. The correctness of the locking

scheme in this program hinges on the fact that the expressions t1→data and

t2→data can never evaluate to the same address, i.e., they can never alias. We

can be sure of this because the two lists are disjoint and thus closed under pointer

reachability.

We call an analysis a region analysis if it infers a safe partitioning of the heap

into disjoint regions. For region analysis, one could use sophisticated analyses to

infer shapes of data-structures. Another approach would be to summarize dynam-

ically allocated objects as blobs of memory associated with finitely many abstract

locations such as allocation sites. While the first approach has difficulties scaling

to larger programs, the second approach fails when elements allocated at the same

program point end up in distinct data-structures protected by distinct mutexes, as

in the above example.

We present a region analysis which is reasonably fast, yet sufficiently precise

to deal with programs that manipulate disjoint heap regions. It identifies the set of

static globals within the region accessed by local pointers. It also deals with arrays
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typedef struct node { int data; struct node *next;} node;
node *even_list, *odd_list;

void insert(int data) {
node *t = new(data);
if (even(data)) { t→next = even_list; even_list = t; }
else { t→next = odd_list; odd_list = t; } }

void even_worker() { void odd_worker() {
node *t1 = even_list; node *t2 = odd_list;
while (t1 != NULL) { while (t2 != NULL) {

lock(even_mutex); lock(odd_mutex);
access(t1→data); access(t2→data);
t1 = t1→next; t2 = t2→next;
unlock(even_mutex); } } unlock(odd_mutex); } }

Figure 4.2: Elements placed into linked lists

of regions by allowing regions to be indexed with symbolic index expressions. For

the example above, the analysis would maintain that the two lists are disjoint, t1
is pointing into the region of even_list, and t2 is pointing into the region of

odd_list.

Our region analysis can be extended to a race detection method by adding two

components. First, a must alias analysis which provides information on which

global address are definitely pointed to by a pointer variable, e.g., provided by

[59]. Second, a symbolic lock set analysis which determines for every program

point a representation, which may involve symbolic address expressions, of the

set of definitely held locks when reaching this program point.

4.2 Region inference

For the theoretical exposition, we spell out our approach for a minimalistic pro-

gramming model which is just rich enough to exhibit the key ideas of our analysis

of multi-threaded programs using dynamic data-structures and arrays. At first,

we restrict ourselves to programs which consist of only a single procedure rep-

resented by a finite control-flow graph where each edge is labeled with a basic

operation; in Section 4.3, we will extend the approach to an interprocedural set-

ting. We only track the values of local variables pointing into the global memory.

The global memory is shared between different processes and consists of blocks,

which either may be statically allocated at program start or dynamically allocated
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during program execution through some operator new τ (for some type τ ). For

the moment, we rule out pointers into the stack as well as pointer arithmetic and

assume that pointers always point to the beginning of blocks. In Section 4.5, we

will add global arrays, and in Section 4.6, we indicate how the basic approach

can be extended to work also in presence of (well-behaved) pointer-arithmetic as

required for the analysis of, e.g., the Linux kernel API for doubly linked lists.

We assume that the frontend provides us with a normalized representation of

assignments. For the beginning, we consider the following forms of expressions

and assignments:

adr ::= y local pointer variable

| &a static global address

pexp ::= y → b dereferencing of pointers

val ::= adr | null pointer value

| new(τ) memory allocation

pass ::= pexp= val ; memory write

| y= val ; | y= pexp; variable assignment

Let L and G denote the set of local pointer variables and the set of addresses

of static global memory cells, respectively. Region analysis aims at inferring

potential reachability between elements from G ∪ L. Our analyzer therefore

maintains for every program point an equivalence relation π on globals. Two

elements x1, x2 ∈ G are put into the same equivalence class when some mem-

ory cell is jointly reachable from both x1 and x2 through iterated field selection

and dereferencing. Additionally, we maintain for every program point a function

ρ : L → 2G∪{•} mapping each local y to a set of globals identifying the region

into which y may possibly point. The bullet • identifies the region of all thread-

local dynamically allocated memory cells. When a thread allocates an object and

initializes its fields, the object is seen as residing within this thread-local region

until it is reachable from, or can itself reach, one of the global regions.

Equivalence relations have also been used for may-alias analysis [41]. There,

two expressions are considered equivalent if they may denote the same address.

May-alias equivalence classes do not collapse when one is reachable from the

other. On the other hand, while non-reachability implies non-equality, we cannot

extract definite non-reachability information from non-equality. Thus, ensuring

that pointers which traverse complicated structures may not alias is extremely

difficult without the explicit notion of disjointness: one must precisely express

the aliasing relationship, or all information about non-reachability is lost.

Here, an equivalence relation π is represented by the set of two-element sub-

sets {x, y} with (x, y) ∈ π — implying that the trivial equivalence relation is

represented by the empty set. Let P and R denote the set of all equivalence rela-

tions on G and the set of all maps from L to 2G∪{•}, respectively. Both sets form
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complete lattices for the ordering induced by the subset orderings on the set of

two-element subsets ofG andG∪{•}, respectively. In particular, for equivalence

relations π1, π2 ∈ P, the greatest lower bound π1�π2 is given by the intersection

of the sets of unordered pairs corresponding to π1 and π2, respectively; whereas

the least upper bound π1 � π2 is the least equivalence relation containing all pairs

from π1 and π2.

Using a suitable data-structure for partitions, the operations “�” and “�” on

elements of P can be executed in polynomial time. Consider a pair T = 〈π, ρ〉
describing the current program state. We assume that all sets ρ(y) are closed
under π. We call a set X closed under the equivalence relation π, if x ∈ X and

{x, x′} ∈ π implies that also x′ ∈ X . For an arbitrary pair 〈π, ρ〉, let clπX denote

the least set X ′ with X ⊆ X ′ which is closed under π, and clπρ the closure of the

function ρ by lifting the closure operation pointwise: (clπρ)(x) = clπ(ρ(x)).
We now specify how a pair T = 〈π, ρ〉 describing the program state before an

assignment s is transformed into a pair 〈π′, ρ′〉 describing the program state after

the assignment, i.e., we define the abstract meaning �s�� of the statement s. First,

consider statements where local pointers are set:

�y = &a�� T = 〈π, ρ[y : clπ{&a}]〉
�y = y′�� T = �y = y′ → b�

�
T = 〈π, ρ[y : ρ(y′)]〉

�y = null�� T = 〈π, ρ[y : ∅]〉
�y = new(τ)�� T = 〈π, ρ[y : {•}]〉

where ρ[yi : Xi]i∈I is the function obtained from ρ by updating the image of yi

to Xi for all i ∈ I . Now, consider a write to memory through local pointers. In

case either null or a pointer to a fresh memory block is written, the abstract state

does not change:

�y → b = null�� T = �y → b = new(τ)�� T = T

Finally, consider a write to memory of the form y → b = y′. Let X = ρ(y) ∪
ρ(y′) denote the owners involved in the assignment. If • �∈ X , we join the equiv-

alence classes of y and y′:

�y → b = y′�� T = 〈π′, clπ′ρ〉 where

π′ = π � {{x, x′} | x �= x′, x, x′ ∈ ρ(y) ∪ ρ(y′)}

If the bullet is involved but no globals,X ⊆ {•}, then simply �y → b = y′�� T =
T ; however, when {•} � X , we additionally must consider all pointers that may

point into the thread-local region denoted by the bullet. Letting Y = {y,y′} ∪
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{y′′ ∈ L | • ∈ ρ(y′′)}, we join all globals from X into one equivalence class into

which all variables from Y may now additionally point:

�y → b = y′�� T = 〈π′, clπ′ρ′〉 where

π′ = π � {{x, x′} | x �= x′, x, x′ ∈ X}
ρ′ = ρ[y′′ : (ρ(y′′) \ {•}) ∪X]y′′∈Y

Since we have associated global owners with the freshly allocated objects, we

remove the bullet from ρ.

For proving the soundness of the analysis, we rely on a small-step operational

semantics of heap-manipulating programs. Since we have currently ruled out pro-

cedures, the concrete program state when reaching a program point u consists of

a pair σ = 〈μ, λ〉 where λ maps the local pointers to the start addresses of blocks

and μ describes the current global memory. We represent the memory μ by a map

which assigns a value to every address-field pair (l, b). Type-safety requires that l
is the address of a block in the global memory of struct type τ which has a field

b. For convenience, we assume that every field of pointer type which has not yet

been initialized, holds the value null.
In μ, the address l1 is reachable from the address l2 iff l2 can be obtained

from l1 by repeated field selection and dereferencing. A region in μ is a set R of

addresses in μ such that every l1 ∈ R satisfies the condition: l2 ∈ R whenever

μ(l1, b) = l2 for some field name b of the struct at address l1. This definition

implies that the set of regions of μ form a partition of the addresses in μ. In

particular, no address in the region R is reachable from any address outside the

region R.

Assume that the concrete program state σ = 〈μ, λ〉 induces a partition Π =
{R1, . . . , Rm} of the addresses in μ. Then σ is in the concretization of the abstract

state T = 〈π, ρ〉, i.e., σ ∈ γ(T ), iff the following holds:

1. If {x, x′} �∈ π for global static addresses x �= x′, then x and x′ are not in

the same region of μ.

2. If x �∈ ρ(y), then x and λ(y) are not in the same region of μ.

3. If ρ(y)∩ρ(y′) = ∅, for local variables y �= y′, then λ(y) and λ(y′) are not

in the same region of μ.1

4. If ρ(y) = ∅, then λ(y) equals null.

It follows that if ρ(y) = {•}, then all memory cells reachable from λ(y) are

definitely not reachable from globals and thus not accessible from other threads.

1The third condition does not follow from the previous two when ρ(y) ∩ ρ(y′) = {•}.
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Accordingly, write accesses through y need not be protected. If on the other

hand, ρ(y) contains a global static address, the address of y must be considered

as published, i.e., possibly accessible for other threads. The set of static global

addresses occurring in ρ (and π) can be considered as the set of possible owners
of a region for which locks should be provided. The following theorem states

that our definitions of the abstract transformers for basic program statements are

sound.

Theorem 5 (Soundness of Transfer Functions). Let s denote a program statement
and T denote an abstract state. If σ ∈ γ(T ) and σ′ denotes the concrete program
state obtained from σ by the execution of s, then σ′ ∈ γ(�s��T ).
Proof. We consider only the assignment y → b = y′ where the region structure

changes. The concrete semantics for this assignment updates the heap mapping

as follows:

�y → b = y′� 〈μ, λ〉 =
〈
μ′, λ

〉
where μ′ = μ[〈λ(y), b〉 : λ(y′)]

In terms of the heap graph, this introduces an edge between the block pointed to

by y to the block pointed to by y′. We verify that the four conditions for our ab-

straction are preserved by the abstract transfer function �y → b = y′�� 〈π, ρ〉 =
〈π′, ρ′〉.

First, assume distinct globals x and x′ are in the same region of the updated

heap μ′. If there was an (undirected) path in μ which connected x and x′, then

{x, x′} ∈ π ⊆ π′. If they were not weakly connected in π, but are so in π′,
the field λ(y).b must have connected them, hence there must have been a path

in μ from one of these globals, say x, to λ(y) and a path from the other, x′,
to λ(y′). Then, from the second concretization condition, we have x ∈ ρ(y)
and x′ ∈ ρ(y′), and as the transfer function collapses the region for all pairs of

elements in ρ(y) ∪ ρ(y′), we have {x, x′} ∈ π′.
Second, assume a global x and local variable y0 are in the same region of

μ′. Again, either x ∈ ρ(y0) \ {•} ⊆ ρ′(y0), or x and λ(y0) are connected

through the field λ(y).b, hence we have the paths in μ from say x to λ(y) and

from λ(y0) to λ(y′). We conclude x ∈ ρ′(y) as before, and consider the pointer

y0. Assume first that y0 �= y′, then from the third concretization condition, we

have ρ(y′) ∩ ρ(y0) �= ∅. Therefore, ρ(y0) either contains the bullet or one of the

globals in ρ(y′). Since all globals in ρ(y′) are joined together with ρ(y) into an

equivalence class containing x and all instances of the bullet in ρ′ are replaced by

this class, we conclude x ∈ ρ′(y0). Now, if y0 = y′, the same argument applies,

but we instead rely on the fourth concretization condition to ensure that ρ(y0)
contains something which is merged with the equivalence class of x.

Third, assume local variables y1 and y2 are in the same region of μ′. Then,

as before, the condition is either trivially preserved, or through the field λ(y).b,
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hence we have λ(y1)∩λ(y) �= ∅ and λ(y2)∩λ(y′) �= ∅. Then, λ(y1)∩λ(y2) �= ∅
again follows because all globals in λ(y)∪λ(y′) are in the same equivalence class

in π′ and all bullets in ρ′ are substituted by this class.

Finally, assume λ(y0) �= null for some y0. Then, ρ(y0) �= ∅ and since ∀y :
ρ(y) ⊆ ρ′(y), we have ρ′(y0) �= ∅.

4.3 Interprocedural analysis

In this section we present an interprocedural formulation of the region analysis.

We model communication between procedures by assuming that every function

has the same set L of local variables and that all locals of the caller are passed

by value to the callee; however, in our simplified setting, we only pass locals

into procedures but do not return them back. Thus, the effect of a procedure call

is limited to possible collapses within the partition of globals and the possible

joining of thread-local data structures with some global regions. As the state

of the heap is shared between all threads, the partitioning is part of the global

invariant and accumulated flow-insensitively as described in Section 2.4. In order

to deal with the thread-local fresh region, we extend the points-into map ρ for

local pointer variables with an extra variable � representing the thread-local data

structures before the call. The abstract transformer enter� initializes the abstract

state at procedure entry based on the abstract state before the call:

enter�(ρ) = ρ[� : •]

While analyzing a procedure q, updates through pointers into thread-local memory

may result in globals being added to the region tracked by � (just as for any other

variable with • in its points-into set). At procedure exit, the local variables of the

called procedure q are removed, while the points-into information accumulated

by � are added to every local y of the caller which before the call may have

pointed into the thread-local region. Assume that T1 = 〈π1, ρ1〉, T2 = 〈π2, ρ2〉
are the abstract states before the call and at procedure exit, respectively. Then this

combination is achieved by the function combine�:

combine�(ρ1, ρ2) = clπ2ρ where

ρ = ρ1[z : ρ1(z) ∪ ρ2(�)]z∈L∪{�},•∈ρ1(z)

The abstract functions enter� and combine� allow us to the general frameworks

for interprocedural analysis from Section 2.3. To recapitulate briefly, the analyzer

solves a constraint system for the abstract values returned by the summary func-

tion for f when called on abstract values a. Given a complete lattice L of abstract
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values, abstract transformers �s�� for basic statements, and abstract transform-

ers enter� and combine� for parameter passing and function return, the constraint

system was set up as follows:

〈ef , a〉 � a for an entry node ef

〈π, 〈v, a〉〉 � �s�� 〈π, 〈u, a〉〉 for edge (u, s, v)

〈v, a〉 � combine�(〈u, a〉, 〈rf , enter�〈u, a〉〉) for edge (u, f(), v)

where a ∈ L, f denotes functions with return point rf , and u, v are program

points. For a program point v of a function g, the variable 〈v, a〉 of the constraint

system represents the abstract value attained at v in a call to g where evaluation

of the body of g starts with the abstract value a. The region partition is here a

global invariant, i.e., Ψ = π, and handled through the side-effecting framework

described in Section 2.4. The soundness of the least solution of this constraint sys-

tem instantiated to our region analysis follows from Theorem 5 and the soundness

results for the inter-procedural multi-threaded analysis framework [22, 51, 76]:

Theorem 6 (Soundness of Region Analysis). Assume that ϕ〈v, a〉, for program
point v of a procedure f and abstract state a, is the least solution of the con-
straint system over the complete lattice L. Let ϕ〈v, ae〉 = 〈π, ρ〉, and assume
that the pair σe = 〈μe, λe〉 of a heap μe and assignment λe of locals is in the
concretization of ae, i.e., σe ∈ γ(ae). Moreover, assume that Re is the set of
thread-local memory cells at procedure entry, i.e., the set of addresses which can
only be reached from the locals in σe.

Then every same-level execution starting in σe at the entry point of f and
reaching program point v in state σ = 〈μ, λ〉 satisfies the following properties:

• σ ∈ γ(〈π, ρ〉);

• For every global x, if x is reachable from an address in Re (w.r.t. μ), or an
address in Re is reachable from x (w.r.t. μ), then &x ∈ ρ(�).

The given constraint system may be huge depending on the complete lattice of the

analysis. Local fixpoint iteration is a general technique to partially explore large

(or possibly infinite) systems of constraints [29]. Starting from a subset Y of

interesting unknowns, local fixpoint iteration explores only those other unknowns

which may contribute to the values of unknowns from Y . This technique is well-

suited if the interesting values can be computed by consulting only a small (though

possibly unknown) fraction of the constraint variables. This is the case in our

application. Here, fixpoint iteration starts with the set Y = {〈rmain, enter
� a〉}

if main is the start function of the thread currently under consideration, and the

abstract value a describes the program state before program execution [29]. Local
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fixpoint iteration then will trigger the evaluation of all pairs 〈v, enter�a′〉 where

v is the program point of a procedure which (during fixpoint iteration) is called

for the abstract program state a′. In our experiments with the analyzer Goblint,

we found that the number of different calls of the same procedure is for most

programs quite small.

4.4 Relating locks and regions

In order to relate accessed regions of the global memory with acquired locks,

we rely the analysis providing must-alias information for static global addresses

from the previous chapter. For clarity of presentation, however, we will not use the

full Herbrand and affine equalities, but consider the simplest instance of such an

analysis, which tracks conjunctions of equalities of the form y =̇ x where y ∈ L
is a local pointer variable and x ∈ L ∪ G is either a local pointer variable or a

global static address. Such a domain has been suggested in [59] where efficient

algorithms for the basic operations have been presented.

Let E denote the lattice of equalities. Technically, each element φ ∈ E either

is equivalent to false or is equivalent to a satisfiable finite conjunction of equalities.

We write φ |= (x =̇ x′) if the equality x =̇ x′ is logically implied by φ. The

ordering on E is given by logical implication, i.e., φ � φ′ iff either φ = false or

both φ and φ′ are different from false, and φ |= (x =̇ x′) for every equality x =̇ x′

in φ′. Thus, the greatest lower bound of φ1, φ2 is given by their conjunction

φ1 ∧ φ2, whereas the least upper bound of two satisfiable conjunctions φ1, φ2 is

equivalent to the conjunction of all equalities x =̇ x′ which are both implied by φ1
and φ2. Here, we consider the abstract functions for procedure calls. According

to our assumption, all locals are passed as actual parameters to called procedures.

The locals of the caller, on the other hand, are not affected by the changes to

locals of the callee. This means that the abstract functions enter�E , combine�E for

procedure calls are defined by:

enter�E φ = φ combine�E(φ1, _) = φ1

As a third component, our analysis requires information about the set of locks

which are definitely held when reaching a program point. For the moment, every

lock is identified by static addresses or addresses pointed at by local pointers. For

every reachable program point u (in every analyzed invocation of a procedure),

our analysis therefore identifies a finite subset S of descriptions of locks which

are definitely held when reaching u (in the given invocation). Let M denote the

set of finite subsets of global static addresses of locks. Since we are interested

in definite information, finite sets of lock address expressions are ordered by the

superset relation.
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While region and must-alias analysis are independent, the analysis of sets of

definitely held locks may profit from the results of both. The must-alias analy-

sis is applied to identify all address expressions which denote the acquired lock,

the may-alias information which we infer from the region information, helps to

narrow down the set of locks which may no longer be held after releasing a lock.

More precisely, assume that T = 〈π, ρ〉 is an abstract description of memory

regions. We infer non-equality information as follows. If {x, x′} �∈ π for two

pointer expressions x, x′, then x �= x′ for every program state 〈μ, λ〉 in the

concretization of π. Likewise, if x �∈ ρ(y), then also λ(y) �= x. Finally, if

ρ(y) ∩ ρ(y′) = ∅ while ρ(y) ∪ ρ(y′) �= ∅, then also λ(y) �= λ(y′). We denote

these facts by T |= (x �= x′), T |= (y �= x) and T |= (y �= y′), respectively.

Assume that the current program state T = 〈π, ρ, φ, S〉 consists of the parti-

tion of globals π, the points-into information ρ, the conjunction of must-equalities

φ, and the lock set S. Then the sets of definitely held locks after operations lock
and unlock for locks inside static structs are defined by:

�lock(&(z → b)��ST = S ∪ {&(x→ b) | x ∈ G,φ |= z =̇ x}
�unlock(&(z → b))��ST = S \ {&(x→ b) | ¬(π |= z �= x)}

for z ∈ L ∪ G, respectively. When entering or leaving a procedure, the set of

definitely held locks does not change. Therefore, we have:

enter�L S = S combine�L(_, S2) = S2

4.5 Extension with arrays

So far, our analysis is able to deal with dynamic data structures and a fixed finite

set of mutexes. In the next step, we extend this base approach to global data

structures which may contain arrays and thus also arrays of mutexes.

Example 15. Figure 4.3 shows a simplified version of the insert-function from

the access vector cache of Security Enhanced Linux.2 At every program point, at

most one lock is held which is taken from a possibly large set of locks contained

in the array locks. For a sound data-race analysis of the function insert, it

does not suffice to verify that some lock from this array is held when the hash map

is modified. Instead, it also must check the (statically unknown) index of the lock

coincides with the index of the list in slots.

2The most notable simplification is the use of singly linked lists instead of the doubly linked

lists from the Linux kernel; however, since our technique is based on a conservative partitioning of

the heap into disjoint regions, dealing with doubly linked lists and even structured use of pointer

arithmetic poses no significant further challenge.
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struct list { int key; int data; struct list *next; };
struct list *slots[512];
spinlock_t locks[512];

struct list *insert(int key, int data) {
struct list *t; int hv = hash(key);
spin_lock(&locks[hv]);
t = slots[hv];
if (t == NULL) {

slots[hv] = new_list(key, data); goto fd; }
while(1) {

if (t→key == key) {
t→data = data; goto fd; }

if (t→next == NULL) {
t→next = new_list(key, data); goto fd; }

t = t→next; }
fd: spin_unlock(&locks[hv]);

return t; }

Figure 4.3: Simplified insert-function.

We now extend our core language by additionally allowing arrays within global

shared data structures. Here, we consider non-nested arrays only. The address of

a memory cell from a static global data structure with arrays is identified by &a[i]
where i is an index. Accordingly, we consider address expressions of the form

&a[e] where e is a side-effect free index expression depending on int-variables

only. We assume each thread has a unique set of variables. Furthermore, we

extend our notion of abstract heap partitions π and points-into maps ρ. Besides

sets of two-element sets, we now also allow singleton sets {&a} in partitions.

Such a singleton indicates that different entries of the array &a may belong to the

same memory region. We thus consider the set P of abstract heap partitions π
with the following properties:

1. If {x, y}, {y, z} ∈ π for x �= z, then {x, z} ∈ π.

2. If {&a, x} ∈ π, then also {&a} ∈ π.

3. If {&a} ∈ π, then &a[e] does not occur in π.

4. For the same array &a, π may have at most one address expression e with

&a[e] occurring in π.
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We could have allowed multiple index expressions ei referring to the same array

&a as long as all ei definitely evaluate to distinct values. In our experiments, the

restriction to a single expression, however, has always been sufficient. The partial

ordering on P is given by π1 � π2 iff the following holds:

1. If {&a[e], x} ∈ π1 then {&a[e], x} ∈ π2 or {&a}, {&a, x} ∈ π2.

2. If {x, y} ∈ π1 where neither x nor y contains an index expression, then also

{x, y} ∈ π2.

Thus, e.g., for π1 = ∅, π2 = {{p,&a[i]}}, π3 = {{&a}, {p,&a}}, π1 � π2 �
π3.

Accordingly, we now consider points-into maps ρ where a set X occurring as

the image of a local (or �) satisfies the following additional restrictions:

1. If &a[e],&a[e′] ∈ X , then e ≡ e′;

2. If &a ∈ X then for every e, &a[e] �∈ X

where the ordering on two such sets is the natural extension of ∅ � {x} for all x,

and {&a[e]} � {&a}.

Also, we extend the closure operation clπ such that clπX for a set X of global

static address expressions or •, now additionally replaces an indexed expression

&a[e] with &a whenever {&a} ∈ π. Likewise, we extend the domain of must

equalities and finite lock sets to address expressions containing indexing. The oc-

curring index expressions may depend on int-variables; however, we here ignore

definite equalities between int-variables. Thus, we consider two index expres-

sions e1, e2 as definitely equal only if they are syntactically equal. Technically,

this allows us to use a similar domain for must equalities and lock sets as in sec-

tion 4.4 — only that we now additionally consider indexed static addresses &a[e]
instead of static addresses &a alone.

This simplistic setting is still able to deal with increments or decrements of

int-variables. Accordingly, our analysis will track assignments to int-variables

i of the form i= i + c for c ∈ Z whereas all other assignments to i are approxi-

mated by the non-deterministic assignment i=? which is meant to assign to i an

unknown value. The effect of the assignment i= i+ c on a triple T = 〈π, ρ, φ, S〉
consists in substituting i in all index expressions occurring in T with i − c. The

effect of the assignment i=? on the other hand, assigns an unknown value to i
and thus must remove all occurrences of i from T . For a partition π, delete(π, i)
replaces all expressions &a[e] where i occurs in e with &a (if there are any) and

adds the set {&a} (given that there are any). For a points-into map ρ, delete(π, i)
replaces in every image ρ(z) elements &a[e] where i occurs in e with &a. For
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component φ, delete(φ, i) removes all equalities involving i. Likewise for S,

delete(S, i) removes all lock expressions &a[e].b where i occurs in e.

�i= i+ c��T = T [i− c/i]

�i=?��T = 〈delete(π, i), delete(ρ, i), delete(φ, i), delete(S, i)〉

The effects of assignments involving local pointers and global memory, are de-

fined componentwise on the first three components, while the set of definitely held

locks remains unchanged. We omit the details but instead apply the technique to

a typical example.

Example 16. Assume we start the execution of the insert-function from Figure 4.3

with the abstract value T0 = 〈∅, {� �→ {•}, t �→ ∅}, true, ∅〉. After having called

spin_lock() and reaching the while-loop, we have:

T1 = 〈∅, ρ1, φ1, S1〉 where

ρ1 = {� �→ {•}, t �→ {&slots[hv]}}
φ1 = t =̇ &slots[hv]

S1 = {&locks[hv]}

although the precise value of hv is unknown. Inside the loop the must-equality

t =̇ &slots[hv] is lost, while the region information as well as the lock set are

preserved. Unlocking resets the set of held locks to ∅.

Our analysis can be enhanced by jointly performing constant propagation or, more

generally, any analysis of int variables which provides us with more precise in-

formation about how index expressions are related. Such information is provided

by analysis from the previous chapter.

While the complete lattice for the combined analysis of regions, must equali-

ties and abstract lock sets in presence of arrays is no longer finite, it still satisfies

the ascending chain condition. In order to apply the interprocedural framework

from Section 4.3, we generalize the functions enter� and combine� for abstract pa-

rameter passing and procedure return from the last sections. Additionally, we now

must track the values of local int variables. We could do so by additionally main-

taining, e.g., affine must equalities between these, and apply the same technique

bullet trick from Section 3.7. Here, for simplicity and to avoid an over-reliance on

bullets, we prefer a simpler analysis which just tracks the set of local int variables

which may have changed their values since procedure entry.

Assume that before the call, we have the abstract state T = 〈π, ρ, I, φ, S〉
where π, ρ, φ, and S are as before and I now denotes a set of int variables whose

values have possibly changed since procedure entry. When entering a newly called
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procedure, we initialize this set to ∅. Recall that the π-component is handled

through side-effecting, so for the other components, we define

enter�〈ρ, I, φ, S〉 = 〈ρ1, ∅, φ, S〉 where

ρ1 = ρ[� : •]

Likewise, at procedure exit, the local variables of the called procedure q must be

removed. Also all equivalences {x,&a[e]} in the returned must be collapsed to

{x,&a} for index expressions e depending on int-variables which have changed

their values. This is achieved by:

combine�(〈ρ1, I1, φ1, S1〉, 〈ρ2, I2, _, S2〉) = 〈clπρ, I1, φ1, S〉 where

ρ = ρ1[z : ρ1(z) ∪ ρ2(�)]z∈L∪{�},•∈ρ1(z)
S = delete(S2, I2)

Here, the calls to delete() for a set I of int variables abbreviate repeated applica-

tion of delete() for each element i ∈ I .

Example 17. Consider the insert-function from Figure 4.3. Assume that at the

program point before the call to this function we have the abstract state: T0 =
〈{�, t �→ {•}}, ∅, true, ∅〉, where we omit the π-component since it does not

change in this example. Then enter�(T0) = T1 is the abstract value for the start

point of the corresponding abstract call to the function insert() where:

T1 = 〈ρ1, ∅, φ1, ∅〉
ρ1 = {� �→ {•}, t �→ {&slots[hv]}}
φ1 = t =̇ &slots[hv]

At the program point before the lock operation, we have T2 = 〈ρ1, {hv}, φ1, ∅〉.
After locking, we thus have T3 = 〈ρ1, {hv}, φ1, {&locks[hv]}〉 — implying

that the elements accessed through the pointer t belong to the region slots[hv]
and that these accesses are protected by the corresponding lock locks[hv]. At

function exit, we finally arrive at T4 = 〈ρ1, {hv}, φ1, ∅〉. Combining this state

with the state T0 before the call will recover the set of possibly modified int vari-

ables as well as the must equalities before the call. In the example, we just recover

the abstract state T0.

4.6 Analyzing the Linux kernel

We have implemented our analysis in the Goblint analyser and applied it to Linux

kernel modules such as device drivers. One challenge in analyzing device drivers
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File Size (merged) Time Verified Warnings

atmel_tclib 1317 lines 0,07 s 1 0

hwmon 1434 lines 0,23 s 1 0

enclosure 1510 lines 0,19 s 1 1

scsi_dh 4370 lines 0,57 s 2 0

dmaengine 4449 lines 0,83 s 3 0

scsi_rdac 4744 lines 0,81 s 1 0

usb_hcd 7340 lines 3,32 s 3 2

avc 7466 lines 1,68 s 2 1

ppp_generic 10818 lines 4,70 s 4 1

Table 4.1: Result of analysing kernel modules

is how to model the rest of the kernel. Goblint uses a driver harness that assumes

the worst possible interleavings of the device’s file operations and interrupt han-

dlers. Starting from the module initialization code, we track function pointers that

are held in structs. Pointers passed to library functions are assumed to be potential

call-backs and are analyzed as separate threads. These may interleave with each

other as well as with the rest of the initialization code.

In the implementation, we also extended the basic approach to deal with

nested static global data-structures such as structs containing arrays as well as

well-behaved pointer arithmetic within structs. This is necessary for the analysis

of the Linux API for doubly linked lists. This API provides macros which, e.g.,

calculate the start address of a struct from the address of a component. While these

macros have a clean semantics, their implementation makes extensive use of type

casts, and addition and subtraction of pointers. Therefore, our implementation

allows application of the address operator to arbitrary expressions evaluating to

global addresses. Thus, pointers may no longer point to the beginnings of blocks.

Moreover, a pointer variable whose value is obtained from the value of the pointer

variable q by means of such kind of pointer arithmetic is put into the same region

as q.

The results of running our analyzer on a number of different modules from

the kernel is summarized in Table 4.1. We use the CIL analysis framework [63]

as a front-end to parse and process these files. The sizes of the files in the table

are the sizes of CIL’s outputs after merging the modules with included headers

and removing unused definitions. We ran these experiments on an Athlon 64 X2

3800+ machine under Kubuntu.3

For all these benchmarks, we are successful in automatically inferring the cor-

relations between elements of lists and their corresponding locks and to verify that

3The goblint website, http://goblint.at.mt.ut.ee, has detailed instructions on repro-

ducing these benchmarks.
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all accesses are protected. The numbers of shared variables for which we could

verify a consistent locking scheme as well as those for which conflicting accesses

were found are listed in the table. The analyzer registers accesses to each element

in a region separately; thus, if k linked lists have collapsed into a single region

and there is a conflicting access through a pointer into this region, the number

of warnings would be k and not one. The false alarms for these benchmarks are

mostly due to our imprecise harness. We will comment here only on two in-

teresting benchmarks. The file avc is the access vector cache code of Security

Enhanced Linux which served as the inspiration for the examples in this chapter.

The analyzer’s output is the following:

Found correlation: avc_cache.latest_notif is guarded by
lockset {notif_lock}

Found correlation: avc_cache.slots is guarded by
lockset {avc_cache.slots_lock[*]}

Datarace over avc_callbacks:
write in some thread with lockset: {} (avc.c:6953)

The asterisk in the second lockset is the analyzer’s modest way of indicating that

it has verified the correlation between the index expressions used when accessing

list elements in the array of slots and the index expressions used to acquire a mutex

from the array of locks. The analyzer warns about a “race” for avc_callbacks.

While this is indeed a race in the context of this module alone, the function for

registering callbacks are only used in the initialization code by the files using this

module.

The file dmaengine is part of the hardware-neutral interface to the DMA

subsystem. The programmers have commented in the source file: “The subsystem

keeps two global lists, dma_device_list and dma_client_list. Both of

these are protected by a mutex, dma_list_mutex.” Our analyzer succeeds in

verifying this.

4.7 Related work

Regions and ownership types have been used for compile-time garbage collec-

tion [85] or to ensure encapsulation in object-oriented languages [17]. More re-

cently, analyzers have been developed for checking correct usage of region-based

memory management APIs [9, 90]. Note, however, that the regions there need

not be closed under reachability. For analyzing pointers, Gulwani and Tiwari [38]

present a domain of quantified may- and must-equality pairs which can express

similar invariants to ours. This analysis, while being extremely precise, has prob-

lems with dealing with doubly linked lists. Reachability in the presence of pointer

82



Test Goblint Locksmith Coverity DDVerify

static +/+ +/+ +/+ −/+
single list +/+ +/− −/+
shared lists +/+ +/− −/+
simple array +/+ +/− −/+
shared array +/+ +/− −/+

Table 4.2: Summary of comparison. For each idiom, “+” indicates success, while “–”

indicates the existence of a False Negative / False Positive.

arithmetic has been studied by Chatterjee et al. [15] who provide an annotation

language for reasoning about the linked list API of Windows device drivers.

Precise abstractions of the heap have been provided by separation logic [71]

and shape analysis [75]. Gopan et al. [33] present a shape analysis which al-

lows reasoning about dynamic memory and the values of array elements, Gulwani

et al. [35] present a set cardinality analysis which combines shape and numeric

abstractions to reason about sizes of data-structures. Hackett and Rugina [40]

present a shape analysis which is built on top of a partitioning of the heap into

disjoint regions. These regions are derived from a standard points-to analysis and

are again not necessarily closed under reachability. Recent work has also provided

methods for making shape analysis scale better [11, 55, 93] — at a certain loss in

precision, e.g., by no longer tracking arrays.

Our main interest has been to provide efficient methods which are precise

enough for analyzing data races in presence of dynamic data-structures and ar-

rays. Rugina and Rinard [74] present techniques to avoid races by analyzing dis-

jointness of accessed memory blocks. Naik and Aiken [62] propose conditional
must-not aliasing to deal with locking schemes of various levels of granularity

in Java. They introduce disjoint reachability analysis for dealing with medium-

grained locking; however, their notion of disjointness is based on allocation sites,

which is not helpful in cases such as Figure 4.2. We have experimented with some

analyzers that perform race detection for C. We compared the following analyz-

ers: Locksmith, a sound race detection tool based on type-based label-flow [68];

Coverity Prevent, a commercial bug-detection tool based on meta-compilation

techniques [27]; and DDVerify, a device driver model-checker that checks for

proper use of the kernel API [92].

We compared the tools on small test programs. For each test, there is a version

with a race and one without races. The test static is the simplest possible race

example, has a static global variable that should be protected by a static lock;

single list contains a linked list where access to its nodes are protected by a single

lock; shared lists has two lists that are protected by their own locks; still, there
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might be races due to sharing between elements in the lists; simple array contains

an array of locks and an array of linked lists where the accesses should be properly

correlated as in the examples of this chapter; shared array is like the previous test,

except there might be sharing between the linked lists of different array elements,

hence there may be a race although the correct lock is acquired. The summary of

this comparison is shown in Table 4.2.

It seems that DDVerify checks other properties related to mutexes, e.g., double-

acquisition of locks, but not whether accesses to globals are protected by the

same locks. Locksmith and Coverity Prevent pass the first test, but already the

simple linked list example is beyond their current capabilities. Locksmith com-

plains on all tests, even when the program is perfectly safe; Coverity remains

completely silent, even in the presence of races. Naturally, these analyzers have

their advantages: Coverity checks a host of other properties, Locksmith deals with

per-element locking, and DDVerify has an extremely precise automatic device

driver harness mechanism; nevertheless, for medium-grained locking, Goblint is

the clear winner.

4.8 Conclusion

We have presented a general approach to certify absence of data-races in C. In

order to deal with dynamic data-structures, we provided a simple region analysis

which allows to analyze reachability through field selection and dereferencing.

We also indicated how this method can be extended to deal with arrays of regions

and (well-behaved) pointer arithmetic. Our methods have been implemented in

the efficient interprocedural data-race analyzer Goblint allowing us to verify lock-

ing schemes for dynamic data structures and arrays in the Linux kernel.

While we have analyzed benchmarks without modifying the original kernel

code, in four of the benchmarks we only considered conflicts between write ac-

cesses. Read accesses are often protected by reader/writer locks, or more recently,

the Read-Copy-Update mechanism. This poses a problem when the read accesses

are protected at a coarser level of granularity than that of the write accesses. Thus,

our failure to distinguish these would generate false alarms. Another challenge

is to combine our technique here with methods dealing with per-element lock-

ing [67] in order to verify programs where some dynamically allocated structures,

such as the per-device structure, contain linked lists and associated mutexes.
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CHAPTER 5

HEAP INVARIANTS THAT ARE NOT

Elements migrating from a region of the heap protected by one mutex to another

region is frequent in low-level C code. So far we have presented abstractions of

the heap required to hold globally during the entire program execution. These

techniques break down when elements migrate, since the invariant is temporarily

violated. Therefore, we now consider a shape analysis which allows to jointly

infer the shape of regions together with the locks by which they are protected, and

we show that this analysis is able to deal with element migration. In addition, we

propose a scheme to combine this expensive analysis with the light-weight region

analysis to identify the sections of code where the full precision of shape analysis

is required.

5.1 Introduction

In many practical applications, the global invariant required for proving absence

of data-races is temporarily violated. This leads to false alarms for our analyzer

because we rely on a single heap abstraction to over-approximate the state of the

shared memory throughout the concurrent program execution.

We identified migration as a particularly common source of such temporary

violations. Migration happens when an object is extracted from one protected

resource and afterwards either accessed without locking or added to another pro-

tected resource. Probably the most common instance of migration is moving ob-

jects to and from a free-list. Migration is related to the problem of unsharing,

which was identified as source of false alarms for the Relay analyzer by Voung et

al. [89].

In order to remove these false alarms, one could apply a full-fledged concur-
rent shape-analysis, like [6, 34, 55]. Such analyses are designed to deal with local

violations, but are at the same time prohibitively expensive for larger programs.
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1 void generate() {
2 p = malloc();
3 lock(A_lock);
4 list_add(p,&A);
5 unlock(A_lock);
6 }

7 void process() {
8 lock(A_lock);
9 q = A→next;

10 lock(B_lock);
11 list_move(q,&B);
12 unlock(B_lock);
13 unlock(A_lock);
14 }

15 void dispose() {
16 lock(B_lock);
17 r = B→next;
18 list_del(r);
19 unlock(B_lock);
20 free(r);
21 }

Figure 5.1: Moving an element from one list to the other.

In this work, we present a light-weight techniques to prove race freedom for pro-

grams with migration between resources which is significantly more scalable than

concurrent shape analyses for applications such as Linux device drivers written in

C.

Challenging example. The example in Fig 5.1 illustrates migration issues. The

program contains a generator thread, which adds elements into a shared linked

list A. The processing thread takes elements out of the work list, processes them

in private, and inserts them into another list. The portion of code shown for each

thread should be thought of as part of a loop. We have also omitted checks of

emptiness from the code. The list macros used are taken from list.h of a stan-

dard Linux distribution.

The program is perfectly safe and race-free: An element is produced by the

generator thread while acquiring a lock for list A. The processing thread acquires

both locks and moves an element to the free-list B for disposal. The clean-up

thread acquires the lock for B and removes and frees elements.

The challenge is to prove race freedom for similar programs with migration.

Complications arise when a thread maintains a persistent pointer into the global

structures, i.e., a pointer variable which is live at the end of an atomic section.

For example, if the generator thread after line 5 would re-acquire lock_A and

undo the addition of the element with list_del(p). The program would be

unsafe because the element pointed to by p may have already been moved to list

B. Another challenge is sharing which is accidentally introduced between the

two lists, e.g., when line 11 is replaced with list_add(q,&B). Then, one can

no longer be certain that traversing list A will only lead to accesses of elements in

A. Acquiring the lock for A is therefore not enough to ensure mutual exclusion,

as the same elements may be accessed by a thread traversing list B.

We want to stress, that, for this work, we are not concerned with properties

like memory safety, but focus on race detection only.
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Contributions. When programs communicate through global variables, one ef-

ficient approach to thread-modular analysis is the side-effecting discussed in Sec-

tion 2.4. Here, we refine the side-effecting scheme to take into account mutually

exclusive accesses. When a thread has ensured exclusive access to a variable, the

entire sequence of changes to the variable can be considered as a single effect

rather than having to accumulate and join each update with other threads individ-

ually. To that end, in Section 5.2, we refine the side-effecting framework to allow

non-relational value domains to violate the global invariant within an atomic sec-

tion. A key feature of the framework is that it simultaneously infers invariants on

shared variables as well as the locks that definitely protect them. This is crucial

since race-freedom may depend on an invariant to hold, while at the same time

the invariant only holds if the program is free from races (see example in Sec-

tion 5.2). Simultaneous inference sets us apart from approaches like [16, 34] that

exploit a-priori computed lock sets.

In Section 5.3, we adapt the underlying idea to allow side-effecting of disjoint

portions of the heap. The technique is parametric on the actual shape analysis used

to describe each weakly connected component in the heap graphs. In Section 5.5

we present a suitable shape domain, which allows us to prove race freedom for

the motivating example, and for migration in general. However, this instance is

rather close to concurrent shape analysis and has the well-known scalability is-

sues. Therefore, in Section 5.6, we identify two methods – cheap heap domains

and on-demand shape analysis – that make our approach more scalable for the

programs we consider. The second method relies on the observation that code

sections, where cheap race detection tools may fail to detect distinct locks guar-

anteeing mutual exclusion, e.g., due to migration, may be significantly smaller

than the actual programs of interest. Only there, expensive shape domains need

be applied.

Section 5.7 provides experimental evidence of this claim; the remaining sec-

tions describe related work and conclude.

5.2 Side-effecting with atomic sections

Before we discuss migration in the heap, we work through a much simpler but

analogous instance of side-effecting with atomic sections where we only track the

values of integer variables. Consider the program in Fig. 5.2. The main thread sets

the global variable x to one and starts two threads. Globally, the shared variable x
has value 1. This invariant, however, is locally violated by the first thread while it

holds the lock. The other thread relies on the invariant to hold whenever it acquires

the lock. Otherwise, it sets x to an error value. Verifying that this program is free

from races requires the inference of the invariant, but the invariant can only be
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Figure 5.2: Invariant for global variable x is broken within atomic sections.

soundly deduced if the program can be shown to be free from races.

We now refine the global invariant approach from Section 2.4 to take atomic

sections into account. Recall the original constraints:

Λ(x) � (x ∈ �s�acc 〈ρu,Ψ〉) ? λu : ⊥ for (u, s, v) ∈ E and x ∈ V
〈λv, ρv, ψ〉 � �s�� 〈λu, ρv, ψ〉 for (u, s, v) ∈ E
〈λn, ρn, ψ〉 � 〈�,�, ψ0〉 for start nodes n ∈ �st

where we have added a constraint for the start nodes, since we intend to here

prove that this refined semantics is still sound w.r.t. the interleaving semantics of

Section 2.1. In contrast to the interleaving semantics, however, we have the global

lockset mapping Λ and the global invariant ψ, and for each program point, only a

single lockset and mapping of the locals. Also recall that the lockset ordering is

reversed, since we track must-sets of locks, hence � = ∅ and ⊥ =M.

The refinement required for atomic sections is allowing the value of globals

to be temporarily stored within a localized version of the global state ψ during the

atomic section. For this, we need an operator that determines the set of globals

protected by some lockset λ according to the global lockset map Λ:

protΛ(λ) = {x ∈ G | λ ∩ Λ(x) �= ∅}
The constraint system for atomic section also maintains for a program point u, the

localized version of the global state ψu.

Λ(x) � (x ∈ �s�acc 〈ρu, ψu〉) ? λu : ⊥ for (u, s, v) ∈ E and x ∈ V
〈λv, ρv, ψv〉 � �s�� 〈λu, ρu, ψu〉 for (u, s, v) ∈ E
〈λn, ρn, ψn〉 � 〈�,�, ψ0〉 for start nodes n ∈ �st

Ψ(x) � (x �∈ protΛ(λu)) ? ψu(x) : ⊥ for u ∈ N, x ∈ G
ψu(x) � (x �∈ protΛ(λu)) ? Ψ(x) : ⊥ for u ∈ N, x ∈ G
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u ψu(x) λu Λ(x) Ψ(x) comment

1 1 ∅ M 1 Starting from ψ0 and λ(X) =M
2 1 {m} M 1 lock is acquired

3 2 {m} {m} 1 protected access to x
4 1 {m} {m} 1 x is still protected

5 1 ∅ {m} 1 only now ψ5(x) � ψ(x)

6 1 ∅ {m} 1 Start from ψ0, but also ψ(x) � ψ6(x)
7 1 {m} {m} 1 lock is acquired

8 ⊥ M {m} 1 condition x �= 1 is false

9 ⊥ M {m} 1 dead code: not a race!

10 1 {m} {m} 1 condition x = 1 may be true

11 1 ∅ {m} 1 lock is released

1 1 ∅ {m} 1 re-compute first thread

2 1 {m} {m} 1 λ2(x) ∩ λ(x) �= ∅ still holds

3 2 {m} {m} 1 Fixpoint!

Figure 5.3: Fix-point computation of the program in Fig. 5.2.

The two additional constraints synchronize the localized information with the

global invariant ψ on the portion of the shared state that may not be protected

at a given program point.

Note that for locksets λ � λ′, we have λ ⊇ λ′, hence these constraints will be

distinct from bottom for more variables in the case of λ′ than for λ. As the same

holds for Λ, the right-hand sides of these constraints are monotonic. Hence, we

can solve the system by iterating from the least element as shown in the following

example.

Example 18. The constraint solving would proceed as follows on the example

from Fig. 5.2. We begin analyzing the main thread in single-threaded mode, which

we could simulate as having all locks at all program points. The fix-point compu-

tation proceeds as shown in Fig. 5.3.

In order to relate the invariant-based semantics with the interleaving semantics, let

D[u] = 〈λu, ρu, ψu〉 and let S = (D,Λ,Ψ) be the least solution to the above con-

straint system. And let for all concurrent program points �u, the set C(�u) denote all

reachable configurations according to the interleaving semantics. For a given con-

current program location �u, we define the concretization γ�u(S). This set should

include all the configuration reaching the concurrent point �u. A concurrent con-

figuration 〈�μ, �σ, ϕ〉 ∈ γ�u(S) iff the following conditions hold. First, the locksets

for these program points must be valid and over-approximate the locksets in �μ,
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i.e., ∀i ∈ T : λui ⊆ μi. Also, all local states must satisfy the concretization for

maps defined above: ∀i ∈ T : σi ∈ γ(ρui).
The global state must be represented by the global invariant together with the

localized states. Each thread i has a localized version of the global variables for

which it has acquired the associated mutex, hence the values for these variables

should be taken from the localized mappings, while the unprotected variables are

taken from Ψ. We define the auxiliary function ψ�u:

ψ�u(x) =

{
ψui(x) if ∃i ∈ T : x ∈ protΛ(λui)

Ψ(x) otherwise

We then require ϕ ∈ γ(ψ�u). Note that this function is ambiguous if there exist

more than a single i which satisfies the condition. This can realistically happen

if the Λ sets are non-singleton. For now, let us assume these sets are singleton.

We believe the following result hold in general because holding partial locksets

would not allow a thread to update the invariant. However, the formal argument

is not entirely trivial, hence we leave it as future work to generalize this result to

non-singleton locksets.

Theorem 7 (Soundness). Let S and C be the invariant-based and the interleaving
semantics, respectively, of a program. Then, for each concurrent program location
�u, we have γ�u(S) ⊇ C(�u).

Proof. Let C∗ be the concretization of the invariant solution, i.e., C∗(�u) = γ�u(S).
We show that C∗ satisfies the constraint system for the interleaving semantics. For

this, we show that when a transition can be made from �u to �v, using some edge

(ui, s, vi), if a concurrent configuration 〈�μ, �σ, ϕ〉 ∈ C∗[�u], then �s�i 〈�μ, �σ, ϕ〉 =
〈�μ′, �σ′, ϕ′〉 ∈ C∗[�v].

By definition 〈�μ, �σ, ϕ〉 ∈ C∗[�u] implies 〈μi, σi, ϕ〉 ∈ γ 〈λui , ρui , ψ�u〉. If only

∀x ∈ G : ψ�u(x) ⊆ ψui(x), we could conclude from the soundness of the transfer

functions that 〈μ′i, σ′i, ϕ′〉 ∈ γ(�s�� 〈λui , ρui , ψui〉) and since this constrains the

triple 〈λvi , ρvi , ϕvi〉, we would be done if ∀x ∈ G : ϕvi(x) ⊆ ϕ�v. Due to

the localization by other threads, the heap at program point ui may not contain

values which are exclusively held by other threads. For any other global x, i.e.,

those protected by the current thread i and those not protected at all, we do have

ψ�u(x) ⊆ ψui .

The first constraint limits the lockset of all variables accessed by the statement

s to the currently held set of locks λui . Since our lockset must be valid, λui does

not overlap with any other lockset. If a thread were to access a variable protected

by another thread, we would have disjoint locksets. Therefore, the current state-

ment cannot access any variable protected by other threads, so the effect of the
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statement does not depend on the values which are different. Thus, at least the

lockset and local state are safe.

For the global state, we verify for each x ∈ G, whether ϕ(x) ∈ ψ�u(x) implies

that ϕ′(x) ∈ ψ�v(x). We consider all cases:

1. ∃j �= i : x ∈ protΛ(λuj ). Since uj = vj , the lockset does not change,

hence ψ�u and ψ�v both take their value from ψuj . By the above reasoning

ϕ(x) = ϕ′(x), hence the implication holds.

2. x ∈ protΛ(λui) ∩ protΛ(λvi). Then, the ψ�u and ψ�v both take the value of

x from the ψui and ψvi , respectively. The implication holds based on the

soundness of the transfer function.

3. x �∈ protΛ(λui) ∪ protΛ(λvi). Then, the ψ�u and ψ�v both take the value of

x from the global invariant Ψ. The last two constraints guarantee that this

works correctly, as in the next two cases.

4. x ∈ protΛ(λui), but x �∈ protΛ(λvi). If a lock has been released, then we

rely on the information being propagated from the local state to the global

invariant to infer ϕvi(x) ⊆ ϕ�v.

5. x �∈ protΛ(λui), but x ∈ protΛ(λvi). When a lock is acquired we rely on

the last constraint to infer ψ�u(x) ⊆ ψui(x).

This concludes the proof.

Corollary 2 (Data Race freedom). Let S = (g, �d,Λ) be the invariant-based se-
mantics of a program. For a resource r ∈ R, if Λ(r) �= ∅, then there is no data
race on r at any configuration.

Proof. For there to be a race at variable x for concurrent program point �u, there

would need to be an admissible lockset �μ at �u and two different threads i and

j having the transfer functions from points ui and uj which access the same re-

source. From theorem 7 λui ⊆ μi and λuj ⊆ μj . For the lockset at �u to be

admissible μi and μj cannot overlap, hence also λui) and λuj have no locks in

common. Assuming the correctness of acc, these both constrain the lockset Λ(x)
resulting in Λ(x) = ∅.

5.3 Privatization of heap regions

In this section, we adapt the underlying method to shape domains in order to deal

with migration. In this case, the domain tracks local variables as part of the shape

graph. For the concrete semantics, we assume threads execute their dedicated
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code, hence all local variables are distinct and the heap and local variables of all

threads can be represented by a huge shape graph. In the invariant-based seman-

tics, we join portions of the localized heap with the global invariant. For these

constraints to be monotonic, the domain of shape graphs must be closed with re-

spect to Cartesian products of disjoint sub-graphs. Thus, we cannot express in

our abstract domain that two linked lists are either both empty or both non-empty.

Such properties may be critical for proving memory safety, but it is hard to imag-

ine such correlations between different data structures playing any significant role

in race detection.

Formally, let h be a shape graph. As for the region analysis, we are interested

in disjoint portions of the heap associated with global owners. For a subgraph h′ ⊆
h, we let globs(h′) denote the set of global variables in h′. For two disjoint graphs

h1 and h2 with globs(h1) ∩ globs(h2) = ∅, we write h1 � h2 for the juxtaposition

of the heap graphs, i.e., the (disjoint) union of the graph nodes and edges. For

a graph h, let wcc(h) = {h1, · · · , hp} denote its weakly connected components,

and similarly for a set of graphs g, we define wcc(g) =
⋃{wcc(h) | h ∈ g}.

Then, the closure of a set of graphs g is defined as all compatible and complete

juxtapositions of the weakly connected components of g:

cl(g) = {h1 � · · · � hp | hi ∈ wcc(g), partition{h1, . . . , hp}}

where the predicate partition(g) holds for the set of (sub-)graphs g, if there exists

an equivalence relation π onG such that the owners partition the globals according

to π, i.e., {globs(h) | h ∈ g} = G/π.

Our abstract domain DL is the set of all closed sets of graphs ordered by subset

inclusion. The least upper bound is the closure of the union. The juxtaposition

operator � can be lifted to sets of heap graphs with disjoint owners. For globs(g) =⋃{globs(h) | h ∈ g} and globs(g1) ∩ globs(g2) = ∅, we can compute g1 � g2 =
{h1 � h2 | h1 ∈ g1, h2 ∈ g2}. The operation is only defined for sets where all

pairwise juxtapositions are possible. Furthermore, require that our shape domain

supports the following operations.

• restrict : 2G × DL → DL. The restriction of a graph to the portion of the

graph weakly connected to the variables in r. The local variables pointing

outside the preserved region is set to a poison value.

• extract : DL → DG. The elimination of local pointer variables from the

shape graph. The domain DG ⊆ DL is the set of shape graphs without local

pointers. We use this for the global invariant.

Making the implicit assumption that we always apply the closure operation to

each right-hand side, the constraint system for the invariant-based semantics can
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be defined similar to before:

Λ(x) � (x ∈ �s�acc 〈ψu〉) ? λu : ⊥ for (u, s, v) ∈ E and x ∈ V
〈λv, ψv〉 � �s�� 〈λu, ψv〉 for (u, s, v) ∈ E
〈λn, ψn〉 � 〈�, ψ0〉 for start nodes n ∈ �st

Ψ � restrict(r,Ψ) � extractr̄(ψu) for u ∈ N , r = protΛΨ
(λu)

ψu � restrict(r, ψu) � restrict(r̄,Ψ) for u ∈ N , r = protΛΨ
(λu)

where we use the abbreviation extractr(ψ) = restrict(r, extract(ψ)). The lockset

mapping Λ tracks accesses for individual region owners. When a region collapses

it will associate an access with all associated owners; however, the current locksets

based on previous accesses should be intersected immediately.

The right-hand sides are monotonic because the unprotected portion of the

heap increases when we lose information about the locksets. Assume locksets

λ � λ′, and as ordering is inversed λ′ protects either the same or a smaller portion

of the heap. If we need to propagate a larger portion of the heap for λ′, we know it

must be disjoint, e.g., ψprev � ψnow , and since we keep only closed sets of shapes,

ψprev will be juxtaposed with elements in Ψ producing all the heaps that would

be produced when only ψprev is propagated.

For the soundness proof, the critical observation is that the lockset map en-

sures that regions are checked in and out in such a way the juxtaposition will

always succeed. Then, the same concretization strategy can be applied as in the

previous chapter. To more clearly see the parallel, one could regard the closed sets

of heap graphs as consisting of the generator sets of the weakly connected compo-

nents which form the closure. Then, the constraints for propagating unprotected

sections of the heap can be expressed more similarly to the integer constraints:

Ψ ⊇ (x �∈ protΛ(λu)) ? region(ψu, x) : ∅ for u ∈ N, x ∈ G
ψu ⊇ (x �∈ protΛ(λu)) ? region(Ψ, x) : ∅ for u ∈ N, x ∈ G

where region(ψ, x) returns all the weakly connected components containing the

global x. The formalization of these intuitions remains as future work.

5.4 Brief introduction to TVLA

We express a proof-of-concept implementation of these ideas in the Three-valued

Logic Based Shape Analysis (TVLA) formalism [75]. This setting is particularly

suitable to our work, since TVLA naturally supports reasoning about reachability

and disjointness, which will be the basis of our �-separation. TVLA builds on

the notion of logical structures over a certain signature P . A logical structure
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S = (U, ι) over P is a pair of a set of individuals U ranged over by u and an

interpretation, ι. Each predicate symbol p/k ∈ P of arity k is mapped by ι to

a boolean-valued function ι(p/k) : Uk → B. The set of all structures over a P
is written S[P]. We evaluate formulas of first-order logic with transitive closure,

FO(TC), on logical structures. Formulas are defined by:

ϕ = 0 | p(v1, . . . , vk) | ¬ϕ | ϕ ∧ ϕ | ∃v : ϕ | TC(v1, v2 : ϕ)(v′1, v′2)

where v ∈ Var is a logical variable.

The transitive closure operator, TC(v1, v2 : ϕ) defines a binary relation by

taking a formula ϕ using free variables v1 and v2. The transitive closure of this

relation may then be applied to v′1 and v′2. The evaluation of a formula ϕ in

structure S and assignment Z (of free variables to individuals) is written [[ϕ]]S(Z).
Logical structures are used to encode heap graphs. Traditionally, an individual

corresponds to a record and a binary predicate s holds of individuals u and u′, if

there is a pointer-valued component s of the record modeled by u which points

to (the head of) the record modeled by u′. The predicates used to encode a heap

are essentially the binary selectors, Sel, and the unary program variables, Id, that

hold of records pointed to by the corresponding variables. These predicates are

called core predicates, the set of which is denoted by C.

The semantics of an assignment st is a mapping [[st]] : S[C] → S[C]. This

is given in terms of predicate update formulas that update the value of predicates

affected by the statement. Given for each k-ary predicate p ∈ C an update formula

ϕst
p with free variables v1, . . . , vk, the semantics of st is defined as [[st]](S) =

(U ′, λp.λu1, . . . , uk.[[ϕst
p ]]

S(Z)) where Z = [v1 �→ u1, . . . , vk �→ uk] and the

universe U ′ is either the same as before or (in the case of memory allocation)

extended with fresh individuals.

Abstract states in the TVLA framework are three-valued logical structures
based on Kleene’s three-valued logic. Abstract states are obtained by canonical
abstraction, an abstraction that summarizes individuals that are indistinguishable

under a set of abstraction predicates to summary nodes. Due to summarization,

knowledge about certain predicates may become indefinite, in which case the log-

ical value 1/2 is introduced. To avoid serious loss of precision, instrumentation
predicates are employed; these are additional predicates defined through formu-

las of FO(TC) using the core predicates C. Instrumentation predicates allow to

better distinguish abstract nodes by annotating logical structures with additional

information such as reachability, sharing, or cyclicity. Update formulas for instru-

mentation predicates can be automatically inferred using differencing [70].

As abstract states are still logical structures, the concrete semantics in terms

of predicate update formulas is easily lifted to three-valued logical structures, too.

As a consequence, it is sufficient to specify predicate update formulas and a set of
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instrumentation predicates to define a program analysis in the TVLA framework.

Soundness then is immediate.

5.5 Dealing with migration

To deal with our running example we focus on cyclic doubly-linked lists, which

are ubiquitous in the Linux kernel and device drivers. Therefore, we present the

instance of DL able to deal with these lists. DL is the powerset of the set of shape
graphs, DL = 23−STRUCT(P), where each graph S is a three-valued logical struc-

ture (U, ι) over predicates P . Here, U is the set of individuals (each representing

a kernel list struct), ι maps predicates to their three-valued interpretation.

To deal with kernel lists we provide a new, concrete instance of the TVLA

framework. Despite being novel, it employs mostly standard predicates found in

almost all TVLA instances. Concretely, we employ predicates P:

• unary predicates X = {z/1 | z ∈ G∪L} that hold for memory cells pointed

to by a local or global variable; and

• binary predicates Sel = {next/2, prev/2} to encode dereferenced forward

and backward pointers.

The sets X and Sel make up the set of core predicates, which are needed to encode

heaps consisting of kernel lists. In addition, we employ the following instrumenta-

tion predicates needed to maintain more precise information in abstract structures.

Instrumentation predicates are defined in terms of core predicates using first-order

logic with transitive closure:

• Unary predicates R = {rs,z/1 | s ∈ Sel, z ∈ X} to hold for heap cells

reachable from a variable z following s selectors only. They are defined as

rs,z(v) = ∃v′.z(v′)∧s∗(v′, v) where ∗ denotes reflexive, transitive closure.

• Unary predicates C = {cnext/1, cprev/1} to hold for heap cells lying on a

next (prev) cycle, defined as cs(v) = ∃v′.s(v, v′) ∧ s∗(v′, v). This is a

standard instrumentation in the treatment of possibly cyclic singly-linked

lists.

• Unary predicates C′ = {cs1,s2/1 | s1 �= s2 ∈ Sel} to require that an

element v has an s1 neighbor v′ with an s2 edge back to v: cs1,s2(v) =
∃v′.s1(v, v′) ∧ s2(v

′, v). This deviates from a similar predicate used in

TVLA analyses of doubly-linked lists, which is defined by ∀v′.s1(v, v′)→
s2(v

′, v). Here we need a stronger property, which, due to cyclicity holds

for the last element of a kernel list as well.
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Finally, there are a few more auxiliary instrumentation predicates to capture

sharing, binary transitive reachability and summary information (a summary el-

ement in an abstract shape represents one or more than one concrete elements).

Figure 5.4 shows the two-element set dAker = {S0
A, S

1
A} of shape graphs obtained

from running the generate thread of our running example in isolation. These shape

graphs represent an empty and a non-empty kernel lists, respectively, pointed to

by A. The instrumentation predicates that hold for a node are written inside a

node. Due to these predicates, we can infer that we are actually facing a proper,

cyclic, doubly-linked kernel list.

Defining the operations required for the side-effecting framework of the pre-

vious section is straightforward provided the reachability information is correctly

computed. Extracting global information g ∈ DG from local information d ∈ DL

is described in terms of a single shape graph h ∈ d and lifted elementwise to

d. Let h be (U, ι), then extract(h) is obtained by setting ι(p) to λx.0 for each

p ∈ PL. This is effectively the composed effect of the transfer functions nullify-

ing all local variables. See Figure 5.4 for an example of extraction. Furthermore,

restricting a shape graph to only those elements reachable from a set of globals is

straightforward computation on the graphs.

A major benefit of the TVLA framework is the uniform treatment of concrete

and abstract transformers. This is possible because both concrete and abstract

states are logical structures over the same set of predicates. The semantics of

a statement is a set of predicate transformers. Also, in most cases it suffices to

provide update formulas for core predicates only, while the update formulas for

instrumentation predicates can be derived automatically [70]. The predicate up-

date formulas needed for our instance are mostly standard, hence we omit their

details here; in the next chapter, where we consider shape analysis for system

code, we provide update formulas.

We now briefly describe how the shape instance of our framework handles the

running example and the list migration problem. We assume that the initialization

phase simply initializes A and B to empty kernel lists, that is, g0 = {S0
A, S

0
B},

where S0
A is given in Figure 5.4(a) and S0

B is analogous forB. Moreover, we have

G = {A,B}, M = {lA, lB}, and L = {p, q, r}.

Running the generator thread accesses only A with lock lA (called A_lock
in the program). So due to the first constraint when A is accessed at line 4, we

constrain Λ(A) to be contained in {lA}, the lock set held at line 4. At that line,

our shape analysis runs completely sequentially, adding one element at a time to

A. The last two constraints simply update information on the disjoint B at this

point. We will obtain dAker � {S0
B} after iterating over generate.

Let us now iterate over the processor thread. The critical part is program line

11. Here we introduce sharing between A and B, however, both resources are
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Figure 5.4: The element dAker = {S0
A, S

1
A} ∈ DL consisting of shape graphs representing

empty and non-empty kernel lists pointed to by A, respectively. Nodes with double lines

represent summary nodes. Shape graph (c) is obtained after list_move at program line

11 of the running example.
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protected since we hold both locks, λ11 = {lA, lB}. Note that conservative race

detection tools are now lost and will not be able to re-establish separation between

A and B. Using shape analysis, however, we obtain d12 = {Sq} � dAker where Sq
is given in Figure 5.4(c). It shows that q has been correctly inserted immediately

after B, as well as that A and B are disjoint. Only now do we release the lock on

B, hence we need to compute extract{B}(d12). We obtain S1
B , which is exactly

Sq without local variable q.

At this point Λ(B) = {lA, lB}, because B has only been accessed under

protection of both locks. It will be constrained to {lB} at line 17, when B is

accessed under protection of lB only. This is essentially all we need to do, and

the final global result will be g = {dAker, dBker}, Λ(A) = {lA}, and Λ(B) = {lB}.

According to Corollary 2, this proves race-freedom for this migration example.

5.6 Going practical

The shape instance of the previous section is fairly general. If we decide on a more

precise shape domain, for example, one that can reason about trees or any other

data structure of interest, we obtain a thread-modular shape analysis; however, the

simultaneous inference of lock sets, requires for the sake of monotonicity that we

lose precision. Nevertheless, the cost of this analysis is still comparable to other

thread-modular shape analyses [34].

Here, we have a particular interest in proving absence of races for device

drivers. In this section, we exploit two key observations for that application do-

main that facilitate scalability in practice. Numbers supporting this claim are

presented in Section 5.7.

1. Kernel lists are the ubiquitous data structure in device drivers. The only in-

formation that we really need is whether at non-protected sections of code,

these are well-formed. This allows for a very cheap heap domain G.

2. While migration is a common phenomenon, it happens only on small por-

tions of the analyzed code. Without these portions efficient race detec-

tion techniques used in Goblint could prove race-freedom. We propose

on-demand shape analysis that employs expensive shape domains only on

these exact portions and cheap domains otherwise.

Cheap heap domains. In our tentative implementation described in Section 5.7,

we use DL as provided in Section 5.5. However, as invariant capturing domain,

we use DG = 2Π. Π = 2G × B is a partition of the globals, like the one used

in the region analysis, except each element has an extra bit. This extra bit is

simply information about whether or not we are dealing with a well-formed kernel
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list. For example, {({A,B}, 1), ({C}, 0)} represents a heap, where A and B are

aliases and point to a well-formed kernel list. C points to an unspecified (but

separate) portion of the heap. It is effectively an additional layer of abstraction.

However, it is practically important that as soon as we set the extra bit to 0, no

more shape analyses will be carried out for this portion of heap. Most likely this

corresponds to race condition, because we have an unstable, non-well-formed,

non-protected shared state. So we conservatively give up at this point potentially

saving a lot of extra shape analysis computations.

This cheap domain approach can be taken even further and generalized to

other data structures. Instead of B we take a flat lattice, where 0 is replaced with

� and 1 with a set of incomparable elements such as tree, list-of-list, or other

well-formed structures.

This lattice could even be inferred automatically based on initialization code

which build up internal data structures. One could then perform a standard se-

quential shape analysis of the initialization and take the resulting shapes as target
graphs to be put into the flat lattice. The implementation and evaluation of the

latter method is ongoing work.

On-demand shape analysis. The region analysis of Chapter 4, can be used as

an initial analysis. It infers a preliminary analysis result Λ : G→M based upon

which we can define

G0 =
⋃
{x ∈ G | Λ(x) = ∅} G1 =

⋃
{x ∈ G | Λ(x) �= ∅}

Then we know that all accesses to heap elements reachable from globals G1 are

protected by some lock, while accesses through globals from G0 are endangered

to be non-exclusive. We can use this information to start the more refined analysis

using DL.

In this case, it can be accelerated by starting the fixpoint iteration with

g = g1 � {(x, 0) | Λ(x) = ∅}
where g1 with globs(g1) = G1 is the G1 reachable part of the heap obtained from

initialization.

This analysis will be as imprecise on the heap cells reachable from globals

G1 as the region analysis and, hopefully, more precise on the heap cells reachable

from G0. In the next section, we give experimental evidence, that, in practice, G0

tends to be much smaller than G1, effectively leading to a much faster analysis.

5.7 Empirical evaluation

Our implementation builds upon the region analysis of Goblint combined with the

precise shape domain DL of Section 5.5 implemented in the TVLA analyzer [75].
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Name LoC Slice

warnings

before

warnings

after

char-ipmi 3113 440 16 8

ieee1394-raw 3938 294 7 5

infiniband-ucma 980 78 5 3

sound-core-timer 1689 318 9 5

ssb-main 1635 82 8 4

usb-gadget-serial 776 106 10 8

infiniband-ulp 1754 137 15 3

move 79 26 2 0

direct 76 23 2 0

Table 5.1: Experimental results.

We are currently implementing a shape domain tailored for cyclic doubly linked

lists in Goblint, but for our preliminary experiments we needed to interface semi-

automatically. This is why we do not state any running times. We can, however,

say that the combined running time of the tools was well under a minute for all

but the first of the examples of Table 5.1. There it was a few minutes. These small

running times are caused by rather small and easy shape analysis problems (due

to the on-demand approach) as well as by the fact that we give up early within the

cheap heap domain.

We followed the on-demand approach outlined in Section 5.6; that is, running

region analysis first and then extracting a slice of the program: a set of global

variables where region analysis produced warnings. The table indicates that the

section of code, where we needed a precise shape analysis amounts to 10 percent

on average.

The warnings columns indicate how many warnings could be dismissed due

to precise handling of migration. The larger values are the number of warnings

produced by region analysis, the smaller number results from using on-demand

shape analysis. On average, the number of warnings could be reduced by 50

percent. In particular, we could prove race-freedom for the running example,

move.

The best results could be obtained for the InfiniBand SCSI RDMA Protocol

initiator module, called infiniband-ulp in the table. It features a constant number

of request structures. Requests may reside in a work queue or in a free-list. New

requests are taken from the free-list, populated with data and added to the work

queue. Requests move from the work queue to the free-list if they have been

processed and their substructures have been freed. These two lists use different

protection. The corresponding locking scheme perfectly matches the algorithmic
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patterns whose correctness can be verified by our method.

The remaining warnings are either actual races or due to intricate features like

overlapping structures, where data is organized in a number of structures at the

same time. We shall present a shape domain capable of reasoning about overlap

in the next chapter; however, it is not yet implemented within this framework.

5.8 Related work

Static analysis of heap-manipulating programs, sequential or concurrent, is a very

active field of research. In this discussion, we focus on a few representative anal-

yses based on either separation logic [71] or three-valued logic based shape anal-

ysis [75].

In sequential settings, such analyses can be remarkably scalable [11, 93]. The

situation is obviously different in a concurrent setting. The un-optimized shape in-

stance of our framework presented in Section 5.5 resembles thread-modular shape

analysis by Gotsman et. al [34]. They designed concurrent shape analysis based

on resource invariants, where portions of the heap protected by a lock are sep-

arated. However, they rely on a-priori race-detection and lock set computation

to enable sequential shape analysis of concurrent programs, whereas we use on-

demand shape-analysis to enable race detection of heap-manipulating programs.

More recent concurrent shape analyses algorithms have been introduced, e.g.

[3,12,55,86], but they focus mainly on proving properties such as memory safety,

data structure invariants, and linearizability for small but complex concurrent data

structure implementations. Data-structure wise, our problem is much simpler,

since the ubiquitous data-structure in drivers and kernel code are cyclic, doubly-

linked lists.

In general, one can observe that different notions of heap decomposition and

separation [54, 71, 73] are key to achieve thread- and heap-modularity for shape

analyses. Our work is no different, except we require a stronger notion of separa-

tion, more similar to that used in type-based approaches to enforce isolation [82].

While such shape analysis techniques are potentially capable of dealing with

race-free migration, they have difficulties in scaling to thousands of lines of code.

We have proven that the heavy machinery of full-fledged concurrent shape anal-

ysis is not required to verify race-freedom of many list manipulating programs,

even including migration. Indeed, we view our work more in line with cheap,

scalable static race detection methods, such as [47, 61, 68, 89]. None of these

methods, however, is able to deal with migration in a sufficiently precise way.
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5.9 Conclusion

We identified the problem of migration to be a common source of imprecision

for scalable race detection. Instead of resorting to expensive concurrent shape

analyses methods, we solved the problem by integrating as little shape reason-

ing as possible into existing and scalable methods in a demand-driven fashion.

To that end we provided a general framework of side-effecting with atomic sec-

tions, which is parametric in the notions of resources and resource separation. A

unique feature of the framework is the simultaneous inference of global invari-

ants, which may be temporarily violated, and the set of locks that protect them.

Suitably instantiated the framework allowed to prove race-freedom for a prototyp-

ical migration example, list move, which is frequently found in device drivers and

kernel code. In addition, we illustrated two methods, cheap heap domains and

on-demand shape analysis, that make the approach scale to thousands of LoC.

Experimental evidence supports our key observation: shape analysis can be used

parsimoniously to discover data-races in realistic code at high precision and little

cost. Clearly, in the future, we need a tighter tool integration or even a new tool,

to fully put our technique to work. Also we are working on automatic inference of

cheap heap domains by careful (shape) analysis of initialization code to maximize

automation and applicability.
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CHAPTER 6

SHAPE ANALYSIS OF LOW-LEVEL C

In the previous chapter, we relied on a shape analysis to detect whether a node has

been completely removed from a data structure. Unfortunately, low-level C pro-

grams require more fine-grained view of the heap than used in off-the-shelf shape

analyzers. Device drivers often keep data in multiple data structures simultane-

ously while embedding list or tree related records into the records containing the

actual data; this results in overlapping structures. Shape analyses have tradition-

ally relied on a graph-based representation of memory where a node corresponds

to a whole record and edges to pointers. As this is ill-suited for encoding overlap-

ping structures, we propose and formally relate two refined memory models. We

demonstrate the appropriateness of these models by implementing shape analy-

ses based on them within the Three-valued Logic Based Shape Analysis (TVLA)
framework [75]. The implementation is exemplified using code extracted from

cache managing kernel modules.

6.1 Introduction

Shape analysis of heap-manipulating programs is a very active field of research;

however, the focus of most work has been devoted to Java-like data-structures,

where pointers are not as heavily manipulated and computed with as in low-level

C. While shape analyses addressing pointer arithmetic in a broad sense have re-

cently been designed, e.g., [5, 10, 14, 15, 25, 35, 38], we address a related and par-

ticularly difficult problem: overlapping structures. The term was coined in [5],

where the shape analysis of such structures was stated as an open problem.

Overlap is often found in device drivers where data is kept in several data-

structures at the same time by means of embedding list or tree related records

into the records containing the actual data. An example of such code is shown

in Figure 6.1, where a node record (we shall consequently use the more general
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struct hlist_head { struct hlist_node *first; };
struct hlist_node { struct hlist_node *next, **pprev; };
struct list_head { struct list_head *next, *prev; };

struct node { int data; struct hlist_node list;
struct list_head queue; };

struct hlist_head ht[512]; mutex hlock;
struct list_head cq;

void cleanup_task(void *arg) {
struct hlist_head garbage; struct node *pos;
lock(&hlock);
list_for_each(pos, &cq) {

hlist_del(&pos→list);
list_del(&pos→queue);
hlist_add(&pos→list, &garbage); }

unlock(&hlock);
hlist_for_each(pos, &garbage, list) {

access(pos→data);
hlist_del(&pos→list); } }

Figure 6.1: Overlapping data-structures from the Linux kernel.

term record to denote C structs) contains data as well as two list-related compo-

nents. The first, hlist_node, is the record type which embeds the forward and

backward pointers of an hlist (see below) into a node; the second, list_head,

is a record type which serves both as the list head and as the record that embeds

standard cyclic doubly-linked lists into nodes.

Hlists (or pprev lists) are in themselves quite tricky data-structures. In order

to save memory while maintaining efficient implementation of insertion and dele-

tion, Linux developers use these doubly linked lists with a pointer to the next
component of the previous element rather than to the element itself. (This is vi-

sualized in a memory snapshot in Figure 6.2, where the edges from pprev boxes

end at the smallest boxes rather than at the medium-sized ones as is the case for

edges originating in prev boxes.) Hlists are used in hash-tables where having only

a single pointer in the list head can be a significant gain.

The code given in Figure 6.1 shall serve as a basis for our case study. We use

a syntax close to the original code, but abbreviate function names and eliminate

some of the parameters to the list-traversal macros. These macros expand into for-
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Figure 6.2: Overlapping Structures.

loops and use pointer-arithmetic to move from a record embedded within a node

to the containing record. The example is based on code for maintaining a cache

where the least recently used items are tagged and added to the cleanup queue.

This queue is processed asynchronously by a cleanup task whose code is given

in the figure. As this task may be executing concurrently with code that accesses

the cache, elements in the queue are moved to the thread-local list garbage for

statistical processing before being deallocated. This minimizes the time that the

cleanup task must keep the lock on the cache.

When an object is removed from all thread-shared data-structures, the sub-

sequent post-processing of the privatized object no longer requires protection

through the acquisition of locks. However, if an element resides in two lists si-

multaneously, traversing these distinct lists may cause a race when accessing the

data of the shared element. To prove absence of races in the example, we must

infer that an element is in the queue but no longer in the list, although both queue-

and list-related records are embedded into the same node.

Shape analyses often rely on graph-based representations of memory where

a node corresponds to a whole record and edges to pointers. For these, it is not

immediate how to encode pointers between components. Therefore, we propose

two refined memory models which exhibit the low-level details required to reason

about overlapping structures. Both memory models are formulated in terms of the

TVLA framework. Using the TVLA framework is not necessary but allows for

a quick prototype implementation. Since our refinement is conservative, we can

also benefit from knowledge and developments in the TVLA realm.

The model of Section 6.2 uses a one-node-per-component approach, i.e., each

box of Figure 6.2 becomes a single node in the shape graph, and the hierarchy

induced by the box nesting is translated into a tree structure. We design a pro-

gram analysis based on this model and demonstrate its potential on a list element
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deletion procedure that uses unorthodox pointer manipulations.

Alternatively in Section 6.3, we propose a coarser and possibly more effi-

cient model that employs a one-node-per-outermost-record paradigm. This ap-

proach annotates edge dereferences with access paths into the finer structure of

the records, making sources and targets of dereferencing explicit. We exemplify

shape analyses based on this coarser semantics by verifying deletion from an hlist.

In Section 6.4, we characterize the relationship between the two models.

In Section 6.5, we revisit our motivating example of Figure 6.1. The analy-

sis is conducted w.r.t. the coarse-grained semantics and enables us to verify race

detection properties for it. Sections 6.6 and 6.7 present related work and conclude.

6.2 Fine-grained semantics

We begin by introducing the syntax of the C subset under consideration. Our

aim is to cover the part of the C language crucial to most low-level programs like

kernel code and drivers. We support arbitrarily nested named records and pointers

to named types only; integers are not considered. This implies that we have both

records and pointers as values. We use the domain Id of variables ranged over by

x, y, and z, and the domain Sel of component selectors ranged over by s. Type

names are ranged over by t. We consider the following languages of types τ and

pointer expressions e:

τ ::= struct t {τ1 s1, . . . , τk sk} | τ ∗
e ::= null | x | ∗e | &e | e→ s |malloc(t) | up(x, t, s)

We omit arbitrary pointer arithmetic, unions, and type-casts; rather, we restrict

pointer manipulation to component selection and the expression up(x, t, s) used

as a primitive to model the container_of macro which computes the address

of a record of type t from a pointer x to its s component. Since recent versions of

the Linux kernel rely on built-in support by the compiler to implement this macro,

a primitive treatment of the container-of idiom is sensible.

In the presence of overlap the up()-operator is crucial to change views. For

instance, in the example of Figure 6.1 one could traverse the cleanup queue, use

the operator up() to jump to the data component of a node, and then continue

traversing the list components.

As for statements we only consider assignments between pointer expressions.

We assume that programs are compiled into a control-flow graph where assign-

ments are attached to edges and where pointer comparisons may serve as guards.

We now present our first refinement of the one-node-per-record paradigm by

adopting a one-node-per-component representation. More precisely, a record of

type struct t {τ1 ∗ s1, . . . , τk ∗ sk} is represented by k + 1 nodes, one being
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the head and one for each pointer component. If the component types are records

again, additional nodes for the subcomponents are introduced, until finally pointer

types are reached. This corresponds to transforming the hierarchy of boxes in Fig-

ure 6.2 into a tree.

This memory model is both more explicit and more abstract than that of real C.

While in C the address of a record and the address of its first component coincide,

they are considered as different here. On the other hand, we do not model the

order of components or padding between each two of them. In our model, the

operation up() amounts to moving from a component node to the head of its

enclosing record.

Since we rely on the TVLA framework, as outlined in Section 5.4, we aim at

encoding a state as a logical structure. Here we use the signature

C = {x/1 | x ∈ Id} ∪ {s/2 | s ∈ Sel} ∪ {∗/2}

In order to reason about expressions of the form &x, the corresponding predicate

x holds of an individual representing the stack location where x’s value is stored.

In standard TVLA the predicate x holds of the element pointed to by x.

The key predicate in our formulation is the binary ∗ for dereferencing. In

particular, it holds between the location of a pointer variable and the value the

variable points to. An interesting feature of our model is that the only predicate

that is affected by assignments is the ∗ predicate: once allocated, the nodes repre-

senting a record and its components do not change and neither does the location

of a variable.

We now formalize the semantics of our programming language. Each basic

statement gives rise to an update formula. The update formulas, except for alloca-

tion, are given in Table 6.1. As is often done, we consider only one pointer opera-

tion per assignment, and we assume that pointers which are assigned to are always

explicitly nullified before-hand, so that updates for assignments only introduce a

single new points-to relationship. For example, in the case of x = up(y, t, s), we

have that ∗(u1, u2) holds after the assignment if it either held before, or if u1 is

the individual hosting x and u2 has an s-component which is pointed to by the

individual hosting y.

As for memory allocation, we expand the universe by a set of new individuals

depending on the type of the record to be allocated. Recall that we require one

individual per (sub)component of each non-pointer type. To this end, we introduce

the notion of an access path. Such paths are not to be confused with access paths

found in storeless semantics [24,43]. Here, they merely reflect the static structure

of a (possibly nested) record. Intuitively, there is a path for each component of a

record. Formally, we define the set Π of access paths to be a union over all record
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st ϕst
∗ (v1, v2) =

x = null ∗(v1, v2) ∧ ¬x(v1)
∗x = null ∗(v1, v2) ∧ ¬∃ v′ : x(v′) ∧ ∗(v′, v1)
x→ s = null ∗(v1, v2) ∧ ¬∃ v′, v′′ : x(v′) ∧ ∗(v′, v′′) ∧ s(v′′, v1)
x = y ∗(v1, v2) ∨ x(v1) ∧ ∃ v′ : y(v′) ∧ ∗(v′, v2)
x = ∗y ∗(v1, v2) ∨ x(v1) ∧ ∃ v′, v′′ : y(v′) ∧ ∗(v′, v′′) ∧ ∗(v′′, v2)
x = &y ∗(v1, v2) ∨ x(v1) ∧ y(v2)
x = &y → s ∗(v1, v2) ∨ x(v1) ∧ ∃ v′, v′′ : y(v′) ∧ ∗(v′, v′′) ∧ s(v′′, v2)
x = y → s ∗(v1, v2) ∨ x(v1) ∧ ∃ v′, v′′, v′′′ :

y(v′) ∧ ∗(v′, v′′) ∧ s(v′′, v′′′) ∧ ∗(v′′′, v2)
x = up(y, t, s) ∗(v1, v2) ∨ x(v1) ∧ ∃ v′, v′′ : y(v′) ∧ ∗(v′, v′′) ∧ s(v2, v′′)
∗x = y ∗(v1, v2) ∨ ∃ v′, v′′ : x(v′) ∧ ∗(v′, v1) ∧ y(v′′) ∧ ∗(v′′, v2)
x→ s = y ∗(v1, v2) ∨ ∃ v′, v′′, v′′′ :

x(v′) ∧ ∗(v′, v′′) ∧ s(v′′, v1) ∧ y(v′′′) ∧ ∗(v′′′, v2)

Table 6.1: Predicate update formulas for nullification and assignments. The latter assume

that ∗x, x, and x→ s have been nullified.

types t occurring in the program, Π =
⋃

tΠ(t), where

Π(τ ∗) = {ε}
Π(struct t {τ1 s1, . . . , τk sk}) =

⋃k
i=1{si}.Π(τi) ∪ {si}

As t ranges over record types, ε �∈ Π; we write Πε = Π ∪ {ε}.

Using the access paths from Π, we define the semantics of malloc as [[x =
malloc(t)]](U, ι) = (U ′, ι′) where U ′ = U ·∪{uπ | π ∈ Πε(t)} and

ι′(s)(u1, u2) =

⎧⎪⎨
⎪⎩
ι(s)(u1, u2) if u1, u2 ∈ U
1 if u1 = uπ ∧ u2 = uπ.s

0 otherwise

ι′(∗)(u1, u2) =

⎧⎪⎨
⎪⎩
ι(∗)(u1, u2) if u1, u2 ∈ U
1 if ι(x)(u1) ∧ u2 = uε

0 otherwise

Analysis. As first example which goes beyond the one-node-per-record memory

model, we consider a program which iterates over a singly-linked list pointed to

by x using a pointer, lpp, to the next component of list elements, rather than to

the elements themselves. The iteration is driven by the loop
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Figure 6.3: Shape graph during list traversal with indirect pointer. Double lines indicate

summary nodes, solid arrows indicate definite edges, and dotted ones 1/2-edges. Predi-

cates within a node do hold for this node.

for (lpp = &x; *lpp != NULL; lpp = &(*lpp)→next)

In the beginning lpp points to the address of x. It is advanced by dereferencing

and taking the address of the next component of the next element. Once an ele-

ment to be deleted is found, the assignment *lpp = (*lpp)→next removes it

from the list. This routine is quite elegant in that it needs only one iterator and no

check whether the iterator points to the first element or not. Also it uses pointers

to components of records.

We implemented the creation of a fine-grained singly-linked list, the itera-

tion over it, and the deletion of an element from it as outlined above in TVLA.

The encoding of the fine-grained model into TVLA amounted in representing the

∗ predicate together with its update formulas for the basic statements. Through

this encoding, we could re-use instrumentation predicates like sharing and reach-

ability (r[z]: reachability from program variable z) to make the analysis go

through and prove memory safety and well-formedness. Essentially, these come

for free from TVLA. Additional instrumentation that we had to provide concerned

type information (lnode, lnodep), the location to which pointer variables point

(ptr[z]), and the fact that each record always has a next component (hasn).

In Figure 6.3, we show a sample shape graph, where summary nodes are de-

noted by double lines, definite edges by solid arrows, and 1/2 edges, which may or

may not be there, by dotted arrows. Variable t points to an element in the middle

of the list and is to be deleted using the code above. The snapshot is taken after

the first iteration of the loop, where lpp was advanced once. The two pairs of

summary nodes (double circles) represent any number (at least 1) of list elements

before and after t. Each pair would be a single node in the standard TVLA mem-

ory model. Also observe, that lpp indeed points to the n component of the list
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element pointed to by x.

6.3 Coarse-grained semantics and analysis

The fine-grained model from the last section has a very explicit view of the heap

and allows for very detailed modelling. The number of individuals, though, in a

logical structure is a multiple of the number occurring in standard TVLA based

analyses because each component of a record is modeled by a separate individual.

On top of that, care must be taken that individuals belonging to the same record

— encoded as the outermost boxes in Figure 6.2 — are kept together, something

not supported by standard TVLA.

Fortunately, we can atone for these drawbacks by exploiting the fact that the

structure of a record is completely static. Once allocated, the interpretation of

predicates in Sel never changes, only the ∗ predicate does. This observation sug-

gests an encoding of records as single nodes after all, rather than representing

them explicitly through a linked set of nodes — as in the one-node-per-record

paradigm. Still, pointers to the head of a record need be distinguished from point-

ers to components. We do so by parameterizing the ∗ predicate. For example,

if ∗[p, n] is true of two individuals u and u′, it means that the p-component of

the record modeled by u holds a pointer to the n-component of the record mod-

eled by u′. Analogously, we parameterize the unary predicates encoding pointer

variables: if x[n] holds of individual u, it means that x holds a pointer to the n-

component of the record modeled by u. In the special case (which in practice is

the most common) of a pointer to the head of a record, we write x[ε].
Addresses of variables can be handled by adding one individual per variable

exactly like in the fine-grained model. In order to simplify the presentation,

though, we here omit addresses of pointer variables. Unlike in the fine-grained

semantics, the unary predicate x[ε] now holds for the individual pointed to by the

pointer x, rather than for the location of x itself. Hence, taking address of pointers

local pointers is not directly supported in this model, but can be simulated if tem-

porary variables are introduced to denote the locations of pointer variables. Thus,

the standard TVLA model is obtained from this version of the coarse-grained

model by restricting predicates to the forms ∗[s, ε] and x[ε], i.e., all pointers point

to the heads of records.

Recall the notion of an access path of the previous section. Using access paths,

we define coarse-grained states as logical structures over the following signature,

D, serving as our set of core predicates.

D = {x[π]/1 | x ∈ Id, π ∈ Πε} ∪ {∗[π1, π2]/2 | π1 ∈ Π, π2 ∈ Πε}

110



st ϕst
p

x = null ϕst
x[π](v) =0

∗x = null ϕst
∗[π,π′](v1, v2) = ∗[π, π′](v1, v2) ∧ ¬x[π](v1)

x→ s = null ϕst
∗[π.s,π′](v1, v2) = ∗[π.s, π′](v1, v2) ∧ ¬x[π](v1)

x = y ϕst
x[π](v) = y[π](v)

x = ∗y ϕst
x[π](v) = ∃ v′ : ∨

π′∈Π y[π
′](v′) ∧ ∗[π′, π](v′, v)

x = &y not supported

x = &y → s ϕst
x[π.s](v) = y[π](v)

x = y → s ϕst
x[π](v) = ∃ v′ : ∨

π′∈Π y[π
′](v′) ∧ ∗[π′.s, π](v′, v)

x = up(y, t, s) ϕst
x[π](v) = y[π.s](v)

∗x = y ϕst
∗[π,π′](v1, v2) = ∗[π, π′](v1, v2) ∨ x[π](v1) ∧ y[π′](v2)

x→ s = y ϕst
∗[π.s,π′](v1, v2) = ∗[π.s, π′](v1, v2) ∨ x[π](v1) ∧ y[π′](v2)

Table 6.2: Predicate update formulas. Here, ϕx[π] and ϕ∗[π,π′] denote rule schemes and

stand for one rule per instance of π.

In order to complete the coarse-grained semantics, we provide the predicate up-

date formulas for the predicates in D. The update formulas shown in Table 6.2

constitute the state transformers both for the concrete and for the abstract seman-

tics. These formulas are more concise than those of the fine-grained model. The

update for the up() operation, e.g., only requires updating the predicates x[π] to

be true whenever the corresponding y[π.s] used to be true. In the case of memory

allocation, the effect of x = malloc(t) is to extend the universe with one fresh

individual for which only the predicate x[ε] holds.

Analysis. As for the fine-grained semantics, we implemented the coarse-grained

transformers inside TVLA. As an example, we analyzed a program that first gen-

erates an hlist using the expanded hlist_add macro, which was already used in

Figure 6.1, then iterates to some arbitrary point, and then deletes the element there

using the hlist_del macro. The concrete C code of these macros is available

from the list.h file of the current Linux distribution.

Being able to handle hlists is mandatory for verifying absence of races in

programs such as in Figure 6.1. In our TVLA implementation, we parameter-

ized the ∗ predicate with source and target components as described in the se-

mantics. Other than that, we could migrate existing analysis specifications for

doubly-linked lists to hlists. The analysis of doubly linked lists uses, e.g., the

instrumentation predicate which says that first following the pointers n and then
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c[n, p], c[p, n]
rl [t], rl [x], rr [x]

head

x[ε]
c[n, p], c[p, n]
rl [t], rr [x]

node

c[n, p], c[p, n]
rl [t], rr [t], rr [x]

node

t[ε]t[ε]

c[n, p], c[p, n]
rr [t], rr [x]

node

∗[first , ε] ∗[n, ε] ∗[n, ε]

∗[p, n]∗[p, n]∗[p,first ]

∗[n, ε]

∗[p, n]

∗[n, ε]

∗[p, n]

Figure 6.4: Shape graph obtained during hlist traversal.

p yields the same element. This predicate now is migrated to a predicate c[n, p]
stating that following ∗[n, ε] and then ∗[p, n] results in the same individual.

The sample shape of Figure 6.4 shows a situation where t points to the mid-

dle of an hlist. Note that there are two sorts of reachability: forward (tr, rr[z])

and backward (tl and rl[z]). This shows that t is indeed in the middle, well-

formedness follows from the c[] predicates. Finally, observe that the back point-

ers either point to the first component of the head x, *[p,first], or to the n
component of a predecessor element (*[p,n]). In contrast, the forward pointer

always points to the head of a record (*[n,ε]).

We successfully verified well-formedness and memory safety for the hlist ex-

ample. Before we proceed to the example program of Figure 6.1, we investigate

the formal relation between the fine-grained and the coarse-grained model in terms

of expressiveness.

6.4 Fine-grained versus coarse-grained

Since the fine-grained model is more detailed, it is able to simulate the coarser

one in a sense to be made explicit now.

We start by defining a mapping g from a coarse-grained structure Sc = (Uc, ιc)
into a fine-grained structure g(Sc) = (Uf , ιf ). The set of individuals of g(Sc) is

given by

Uf = Id ∪ {uπ | u ∈ Uc, π ∈ Πε(type(u))}
The interpretation function ιf then is given by:

ιf (∗)(uπ, u′π′) iff ιc(∗[π, π′])(u, u′)
ιf (∗)(x, uπ) iff ιc(x[π])(u)

ιf (x)(v) iff v = x
ιf (s)(v, v

′) iff ∃uπ.s ∈ Uf . v = uπ ∧ v′ = uπ.s
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where type(u) = t if u was created by malloc(t). Also we assume that Sc
respects types, i.e., there are no pointers from or to a π component of node u if

π �∈ Π(type(u)).
Since we deal with two different vocabularies, C andD, on top of the mapping

g between structures, a mapping T is required which translates formulas. Let ϕ be

a FO(TC) formula overD. The translation T commutes with boolean connectives

and additionally is defined by:

T (∗[π1, π2](v1, v2)) = ∃v′1, v′2, v : π1(v1, v
′
1) ∧ π2(v2, v′2) ∧ ∗(v′1, v′2)

T (x[π](v)) = ∃v′, v′′ : x(v′) ∧ π(v, v′′) ∧ ∗(v′, v′′)
T (∃v : ϕ) = ∃v : head(v) ∧ T (ϕ)

T ((TC v1, v2 : ϕ)(v3, v4)) = (TC v1, v2 : head(v1) ∧ head(v2) ∧ T (ϕ))(v3, v4)

where for π = s1. · · · .sk ∈ Π, the formula π(v0, vk) is given by

∃v1, . . . , vk−1 : s1(v0, v1) ∧ . . . ∧ sk(vk−1, vk)

and where head holds for heads of records in a fine-grained structure only. A

node is a head, if it is not the location of a variable and if it has no incoming Sel
edge. The following theorem states that this translation preserves the valuation of

formulas and that it commutes with state transformers, i.e., with predicate update

formulas.

Theorem 8. Let Sc be a type-respecting, coarse-grained logical structure and
Sf = g(Sc) the corresponding fine-grained structure. Then we have:

1. For every closed FO(TC) formula ϕ over D, [[ϕ]]Sc = [[T (ϕ)]]Sf .

2. For every basic statement st, g([[st]]c(Sc)) = [[st]]f (Sf ).

Proof. For an induction argument, we prove the statement for open formulas. Let

Zc : Var → Uc be an assignment of logical variables to individuals in the coarse-

grained universe; we define Zf = g(Zc) : Var → Uf as an assignment selecting

the head uε for each record u. We show [[ϕ]]Sc(Zc) = [[T (ϕ)]]Sf (Zf ) by induction

on ϕ. For the core predicates, we compute for u = Zc(v):

[[x[π](v)]]Sc(Zc) = ιc(x[π])(u) = ιf (∗)(x, uπ)
= ∃u′ ∈ Uf : π(uε, u

′) ∧ ιf (∗)(x, u′)
= [[T (x[π](v))]]Sf (Zf )

And analogously for the binary predicates. We need to further consider cases for

∧, ∃, ¬, and TC (as the rest follows from DeMorgan’s Laws). Conjunction and
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negation are obvious, while existential quantification and transitive closure rely

on the restriction of quantification to heads of records. We consider existential

quantification, for which we observe:

[[∃v : ϕ]]Sc(Zc) = ∃u ∈ Uc : [[ϕ]]
Sc(Zc[v �→ u])

= ∃u ∈ Uc : [[T (ϕ)]]Sf (Zf [v �→ uε])

= ∃u′ ∈ Uf : head(u′) ∧ [[T (ϕ)]]Sf (Zf [v �→ u′])

= [[∃v : head(v) ∧ T (ϕ)]]Sf (Zf ) = [[T (∃v : ϕ)]]Sf (Zf )

This completes the proof of the first statement. For the second statement, let

Sc = (Uc, ιc) denote a coarse-grained logical structure. We do a case distinction

on the form of basic statements.

Consider, e.g., the statement st given by x = up(y, t, s). If it exists, let

u ∈ Uc denote the unique individual for which ιc(y[π.s]) holds for some access

path π. Then [[st]]c(Sc) = S′
c = (U ′

c, ι
′
c) where U ′

c = Uc and ι′c equals ιc up to the

predicate x[π], which is updated such that ι′c(x[π])(u
′) holds iff u′ = u. Let Sf =

g(Sc) denote the fine-grained structure corresponding to Sc. This generates for

u ∈ Uc the head uε ∈ Uf as well as its components, including uπ and uπ.s. Since

we assumed that ιc(y[π.s])(u) is true in Sc, we know that ιf (∗)(y, uπ.s) must hold

in Sf . Thus, [[st]]f (Sf ) = S′
f = (U ′

f , ι
′
f ) where the set of individuals are the same

as Sf and ι′f equals ιf up to the predicate ∗ which now additionally holds for the

pair (x, uπ). Ultimately, the only change to Sf and Sc is that ι′c(x[π])(u) holds

in S′
c and ι′f (∗)(u, uπ) holds in S′

f . As this is in accord with the definition of g,

we conclude that g(S′
c) = S′

f . This holds also if ιc(y[π.s]) is false everywhere, in

which case S′
c = Sc and S′

f = Sf .

The theorem effectively constitutes a simulation result between fine-grained

and coarse-grained semantics. Notice that the restriction of quantified variables to

heads of records in the translation T is an important one. It also demonstrates ex-

actly how fine-grained structures are finer: they can talk about record components

explicitly and quantify over them, while components occur only implicitly in the

coarse-grained model.

Part 1 of Theorem 8 can be lifted to abstract states as well. Assume an

abstract, three-valued coarse-grained structure S3
c and any two-valued coarse-

grained structure S2
c such that S2

c � S3
c using the embedding order of [75]. Then

any formula ψ of FO(TC) that holds for S3
c also holds for S2

c by the Embedding

Theorem. By Theorem 8, T (ψ) holds in Sf = g(S2
c ). If S3

c was obtained by the

set A of abstraction predicates, then ψ will also hold in the canonical abstraction

of Sf using T (A) as abstraction predicates. Lifting part 2 of Theorem 8 is far

more involved, because it needs to take materialization strategies into account.
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r[hash]
rl [hash]
rr [hash]

hash[ε]

r[cq ]
rl [cq ]
rr [cq ]

cq [ε]

rr [hash]
node

r[cq ]
rr [hash]

node

∗[list .pprev ,first ]

∗[first , list ]
∗[list .pprev ,first ]

∗[next , queue] ∗[queue.next , queue]
∗[list .pprev , list .next ]
∗[list .next , list ]

∗[queue.next , queue]
∗[list .pprev , list .next ]
∗[list .next , list ]

∗[queue.next , queue]
∗[list .pprev , list .next ]
∗[list .next , list ]

Figure 6.5: Shape graph obtained while analyzing overlapping data-structure.

6.5 Application

Let us finally consider the motivating program from the Introduction. Its code is

shown in Figure 6.1 and a typical memory configuration in Figure 6.2. In order to

argue about data races in the presence of privatization, reachability information is

crucial. In particular, one must reason about reachability along different embed-

ded lists. For instance, in Figure 6.2, only the first and the third node are in the

queue, whereas all three are in the list.

In order to find out if the techniques are worth implementing in the Goblint

analyzer, we wanted to find out if the techniques work for our motivating example.

Jörg Kreiker therefore implemented the analysis in the dedicated shape analysis

framework TVLA.1 However, the TVLA tool does not natively support computa-

tions on predicates as necessary to conveniently express the string manipulation

on access paths as used in the update formulas of Table 6.2. This makes the im-

plementation cumbersome and look clumsy in places. Also, it introduces a lot

of superfluous predicates and coercion constraints greatly slowing down the tool.

This, however, is not a principal restriction of our memory model but the lack of

tool support. Therefore, we had to settle for a proof of concept implementation

where the cleanup queue is actually a singly-linked list.

First, we analyzed a program creating a structure like that of Figure 6.2 from

scratch. This amounts to iterating the code

n = malloc(sizeof(node));
hlist_add_head(&n→list,&hash);
if (?) list_add(&n→queue, &cq);

1The precise definitions can be found at http://www7.in.tum.de/~joba/overlap.
tgz.
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After this loop, four shapes are obtained, the most general of which is shown in

Figure 6.5. It shows that (i) all nodes are reachable from hash, which is the head

of the hlist component, a fact indicated by rr[hash]; and (ii) only some nodes

are reachable from cq, indicated by r[cq]. This is the arbitrary subset of nodes

added to the cleanup queue. Also it shows the ∗ predicates with parameters like

list.pprev, denoting the pprev component of the hlist component of a node.

Recall that rr[x] (rl[x]) means reachability from x along forward (backward)

pointers in a doubly-linked list, while r[x] is just singly-linked list reachability

— which is how we implement the cleanup queue.

Subsequently, the elements of the queue are to be removed from the hlist

component using

list_for_each_entry(n, &cq, queue) {
hlist_del(&n→list); }

Here, the challenge for the analysis is the change of views implied by traversing

the queue and then removing from the hlist. A lot of reachability information

is lost; in fact, properties like absence of memory leaks cannot be guaranteed

by this analysis. Still, we are able to prove that an element is deleted from the

queue using the very same routine that was used in a non-embedded record in

Section 6.3. Thus, we can infer that the element is no longer reachable from the

thread-shared data.

Again, the analysis specifications are available online. Even in this most com-

plicated scenario, the analysis time was just a few seconds.

6.6 Related work

The body of work on shape analysis is too large to do equal justice to all tech-

niques. Approaches based on regular model checking [7], symbolic backwards

reachability analysis [1], or decision procedures such as [8] seem not to have dealt

with the analysis of low-level system code, much less with overlapping records.

There are a number of approaches that make use of numeric reasoning to deal

with pointer arithmetic. While pioneered by Deutsch [24], who used numeric do-

mains to constrain access paths, Gulwani and Tiwari [38] provide a C semantics

which perhaps is even more explicit about blocks and offsets as ours. However,

it is unable to deal with structures such as doubly-linked lists. Recent work [35]

combines numeric and shape domains. It is focused on tracking partition sizes

to prove memory safety and sometimes even termination in presence of arrays

of dynamically allocated structures. So far, however, none of the above treats

overlapping records.

More direct approaches to shape analysis are based on either TVLA [75] or

separation logic [71]. As stated before, most work in the TVLA setting focuses on
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higher-level programming languages; however, Dor’s thesis [25] and subsequent

work provided a semantics of low-level C similar to our fine-grained semantics

and program analyses based on this semantics. These analyses are mostly con-

cerned with string manipulations.

As for separation logic based approaches which deal with a low-level C se-

mantics and with pointer arithmetic, one early work is [10], which however specif-

ically targets the data-structure of multiword lists. Berdine et al. [5] present

a shape analysis of composite data-structures which can reason about lists of

lists. They explicitly identify shape analysis of overlapping or embedded struc-

tures as presented here as a limitation to their approach. Also, Chang and Ri-

val [14] present a shape analysis based on separation logic and user-specified

data-structure specifications called checkers. It also treats combinations of nu-

merical and shape domains, but overlapping records are not considered. Despite

some impressive improvements recently [11,93], in particular concerning scalable

shape analyses of real code, a formal treatment of overlapping records has yet to

be reported. In addition, most of that work focuses exclusively on memory safety

rather than on subtle reachability problems as we face.

Separation logic is also used in the broader context of modular verification

and extended static checking. There, one relies on specifications of components,

and the analysis operates under the assumption that other components behave as

specified [4, 20, 32]. The fine-grained memory model we use for shape analysis

is also used by the VCC C verifier [18]; in particular, it uses an implicit type-

system to verify that distinct pointers do not reference overlapping objects [19].

In the HAVOC verifier [15], a particular reachability predicate is employed which

also works on a semantics resembling ours, but is much more numeric in nature,

focused on pointer arithmetic. Other techniques exist for dealing with the heap

in modular verification, including ownership [17], which is used by Spec# and

Java/JML; dynamic frames [49, 80], which is used by VeriCool 1 and Dafny; and

implicit dynamic frames [81], which are used in VeriCool 3 and Chalice.

Our interest in shape analysis of overlapping records is derived from attempts

to verify absence of data races in low-level C. In static race detection, dynamic

memory is treated at a fairly superficial level by blobbing together objects into

static allocation sites. There are techniques for verifying mutually exclusive ac-

cess to heap objects when each record contains its own dedicated lock [67]; and

analyses relying on reachability information, such as disjoint reachability analy-
sis [62] and the region analysis of Chapter 4, have been employed to ensure correct

synchronization of accesses to disjoint regions of dynamically allocated memory.

These analyses, however, cannot deal with object privatization and overlapping

structures as occur in our example. On the other hand, by virtue of not tracking

the state of the heap at each program point, such analyses can be directly used
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in a concurrent setting, while our approach requires adaptations of the TVLA ap-

proach to handle concurrency [6, 55].

6.7 Conclusion

We presented a shape analysis for overlapping data-structures, which are ubiqui-

tous in low-level systems code. Using our prototype implementation we were able

to establish subtle reachability properties as required, e.g., for reasoning about

data races in system code with overlapping records.

For that, we introduced two refinements of existing memory models. This

enabled us to implement both approaches within the TVLA framework. While

this was a proof-of-concept implementation, having the shape analysis performed

by a dedicated shape analysis tool would allow us to benefit from any future im-

provements of the TVLA tool. However, as dynamic manipulation of predicates

is not natively supported by the TVLA tool, we would like to directly implement

this shape analysis, or a simplified version tailored to cyclic doubly linked lists,

directly in Goblint.

The step from fine-grained to coarse-grained semantics is essentially a tech-

nique of encoding statically known parts of graph structures like the internal struc-

ture of records into syntax. Somehow similar, separation logic based approaches

rely on inductively defined predicates capturing data-structures. This connection

might be exploited to enable the use of different formalisms for different parts of

the heap in a common setting.
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CHAPTER 7

CONCLUSIONS

We have provided methods to address the most significant challenges in race de-

tection for heap-manipulating low-level C programs. In order to deal with fine-

grained locking idioms, we provided a must-alias analysis which allows reasoning

about field and index correlations. We then tackled problems of medium-grained

locking by introducing a region analysis. The key idea was to move away from

allocation site abstraction and instead associate accesses into the heap with static

owners of the region into which an element belongs. Thus, the same techniques

can be applied as for fine-grained locking to associate the locks with the owners

of regions. Finally, in order to deal with migrating elements and privatization, we

refined the global invariant approach to deal with temporary violations of heap

invariants within critical sections. Using a low-level shape analysis, we were able

to show when some element has been removed from the Linux kernel’s embedded

list structures.

While these techniques are sufficient to deal with many difficult situations that

occur in kernel code, putting these techniques together into a coherent analysis

framework is still ongoing work. Many of the experimental results were on fairly

small code sections that precisely exhibited the behaviour we were interested in

analyzing. Currently, we are targeting a more significant piece of the Linux kernel,

the USB subsystem, with the aim of analyzing it fully. In addition to generalizing

the current techniques, there are a number of issues we need to solve before we

can claim victory.

One important area we have so far neglected is synchronization sensitivity.

Consider, as an example [68], the scenario where we have a main thread with k
worker threads. The main thread maintains an array A with k elements, one for

each thread, such that A[i] is manipulated by thread i. Furthermore, suppose the

main thread initializes the array before spawning worker threads and processes

the array after all workers have terminated. Although there is no locking, the pro-

gram is free from races because the main thread may only access the array when
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the workers do not and the workers follow a convention that ensures mutually

exclusive access.

There are distinct temporal phases in a program, such as initialization, pro-

cessing, and post-processing. An analyzer must, therefore, determine not only

which threads may run in parallel, but whether two given accesses may actually

conflict, taking into account which threads accesses what data at what time. In

the example, the main is still running when the worker threads start, but it no

longer touches the array. The conventional approach is to attempt to partially

order statements when it is clear that something must happen before another oper-

ation. A race can then only occur on two accesses that lack ordering constraints.

This is exploited by many dynamic analyzers, such as the Intel Thread Checker.

For static analysis of C, acquisition histories, proposed by Kahlon et al. [45], is

an interesting approach to improving synchronization-sensitivity. Although some

progress has been made in this regard [46], much of the practical synchronization

in programs are based on deeper properties of the program logic, or rely on var-

ious complicated synchronization primitives, like signals, conditional variables,

wait-queues, etc.

Once we are satisfied with our race detection tool, we plan on extending the

analyzer to deal with additional concurrency problems such as dead-locks and

atomicity problems. There is also significant interest from our industrial partners

to adapt our race detection techniques for specific concurrency frameworks, such

as the Autosaar/OSEK operating system, used in the automotive domain.
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DÜNAAMILIST MÄLU TÖÖTLEVATE
C PROGRAMMIDE STAATILINE
ANDMEJOOKSUDE ANALÜÜS

Mitmelõimeline programmeerimine võimaldab kirjutada programme, mis sama-

aegselt lahendavad mitut ülesannet. See on vajalik, et programmerida interaktiiv-

set kasutajaliidest või jagada arvutusi mitme protsessori vahel. Paraku on mit-

melõimeline programmeerimine äärmiselt vigadealdis, eriti kui mitu lõime ma-

nipuleerivad samu ressursse. Erinevalt järjestikulisest programmeerimisest, ei ole

programmis kirjeldatud käskude täitmisjärjekord rangelt fikseeritud, vaid sõltub

juhuslikest teguritest ja väliskeskkonnast. Seetõttu on traditsioonilise testimise

tõhusus mitmelõimeliste programmide puhul küllaltki tagasihoidlik. Mis veelgi

olulisem, testimisega on küll võimalik näidata vigade olemasolu, aga mitte anda

garantiisid, et süsteemi rohkem vigu ei jäänud.

Kõrget usaldusväärsust nõudvate süsteemide korral on rangelt matemaatiliselt

põhjendatud formaalsete meetodide kasutamine hädavajalik. Nagu ehitusinsene-

rid saavad ligikaudses mudelis simuleerida, kuidas ehitis peab vastu füüsilistele

survetele, on võimalik arvutiprogrammi põhjal püstitada andmevoogu kirjeldavad

võrrandid ning neid lahendades saada kindlaid garantiisid programmi käitumise

kohta. Abstraktsel interpretatsioonil põhinev staatiline analüüs võimaldab seega

ilma programmi käivitamata arvutada välja programmi kõigi võimalike käitumis-

te ülemhulga.

Andmejooks (data race) on olukord mitmelõimelises süsteemis, kus mitu lõi-

me üritavad samaaegselt ühele ja samale jagatud ressursile ligi pääseda. Prob-

leemide vältimiseks, kasutatakse sünkroniseerimismehhanisme, mis garanteerivad,

et programmi kriitilistesse sektsioonidesse saab siseneda ainult üks lõim korraga.

Programmerija ülesandeks on olukorras, kus kaks lõime püüavad samale jaga-

tud ressursile ligi pääseda, tagada, et mõlemad lõimed lukustaksid sama luku.

Staatilise andmejooksude analüüsi eesmärgiks on kindlaks teha, kas kõigi jagatud

ressursside jaoks on ülaltoodud tingimus korrektselt täidetud, millest järeldub, et

programmis andmejookse ei esine.
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Käesolev doktoritöö uurib andmejooksude tuvastamist programmides, kus ja-

gatud ressursiks on dünaamiliselt (programmi täitmise ajal) allokeeritud mälu

ning ka sünkroniseerimiseks kasutatavad lukud luuakse alles programmi täitmise

ajal. Täpse ja efektiivse staatilise analüüsi teeb selliste programmide korral raskeks

just see, et kõik analüüsi pidepunktid luuakse dünaamiliselt. Töö põhitulemustena

on välja töötatud kolm uudset meetodit, et lahendada dünaamilist mälu manipu-

leerivate programmide analüüsiga seotud küsimusi.

1. On esitatud viitade analüüsi meetod, mis võimaldab vastata päringutele aad-

ressavaldiste võrduste kohta. Sellega saab korrektselt analüüsida lukusta-

mist peene granulaarsusega lukustamisskeemide puhul, s.t., kui lukud asu-

vad jagatud ressurssides endas.

2. Välja on töötatud dünaamiliselt allokeeritud mälu regioonabstraktsioon, mil-

le abil saab eelmist meetodit laiendada jämedama lukustusgranulaarsusega

programmidele. Meetodi põhiidee on seostada täitmisajal loodud objektid

staatiliselt kirjeldatavate omanikega.

3. On esitatud uudne meetod teatud invariantsustingimusi lokaalselt rikkuvate

progammide staatiliseks analüüsiks. See võimaldab korrektselt analüüsida

näiteks programme, kus üldiselt eeldatakse, et sama ressurssi kaitstakse ala-

ti sama lukuga, kuid lühiajaliselt (näit. objektide migreerimisel või eemal-

damisel jagatud andmestruktuuridest) võib see tingimus mitte kehtida.

Kõik töös vaadeldud meetodid on realiseeritud mitmelõimeliste C programmi-

de analüsaatorite raamistikus Goblint. Meetodite efektiivsust ja praktilisust testiti

edukalt mitmete vabavaraliste programmide ja operatsioonisüsteemi Linux tuu-

mamoodulite analüüsiga.
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