DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS

ITERATIVELY DEFINED
TRANSFINITE TRACE SEMANTICS
AND PROGRAM SLICING
WITH RESPECT TO THEM

HARMEL NESTRA

TARTU 2006

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS

ITERATIVELY DEFINED
TRANSFINITE TRACE SEMANTICS
AND PROGRAM SLICING
WITH RESPECT TO THEM

HARMEL NESTRA

TARTU 2006

Faculty of Mathematics and Computer Science, Universitfaofu, Estonia

Dissertation accepted for public defense of the degree atdd®f Philosophy
(PhD) on June 30, 2006 by the Council of the Faculty of Math@saand Com-
puter Science, University of Tartu.

Supervisor:

PhD, associate professor Varmo Vene
Tartu Ulikool, arvutiteaduse instituut
Tartu, Estonia

Opponents:

PhD, professor Helmut Seidl
Technische Universitat Minchen, Institut fir Informatik
Munich, Germany

PhD, senior researcher Tarmo Uustalu
Tallinna Tehnikaltlikool, Kiiberneetika Instituut
Tallinn, Estonia

The public defense will take place on Oct 13, 2006.

The publication of this dissertation was financed by Insittf Computer Science,
University of Tartu.

(© Harmel Nestra, 2006 Tartu Ulikooli Kirjastuse triikikoda
Tiigi 78, 50410 Tartu
Tellimus nr. 460

1

CONTENTS

Introduction 7
1.1 ProgramsSlicing e

1.2 Transfinite Trace Semantics
1.3 Outline and Structure ofthe Thesis 0

Preliminaries from Graph Theory 13
2.1 DirectedGraphs e
2.2 Postdominance
23 Dependence

Theory of Transfinite Trace Semantics 22
3.1 Ordinalnumbers,
3.2 TransfiniteLists
3.3 Transfinite Iteration
3.4 Transfinite Corecursion,
3.5 Non-Deterministic Transfinite Corecursion. 39
3.6 Connections between Two Corecursions 4,

Program Slicing with respect to Transfinite Semantics 47
4.1 Configuration Trace Semantics
4.2 Transfinite Control Flow Graphs

4.3 Augmented Configuration Trace Semantics 5 5

4.4 Data Flow Approximation
4.5 Program Approximation 0.
4.6 Semantic Correctness of Program Approximation 72
4.7 Program Simplification
4.8 Correctness of Program Slicing

5 Discussion of Related Issues 96

5.1
5.2
5.3
5.4
5.5
5.6

Undecidability Results 96
Fractional Semantics 97
Triploids 103
RelatedWork 106
Conclusion of the Thesis and Suggestions of Further Wotk. . 107
Acknowledgements oL 108

Program slicing is a kind of program transformation where dim is to find an
executable subset of the set of atomic statements of a pnogtsch is respon-
sible for computing all the values important to the usergPam slicing was in-
troduced and its significance was explained first by Weidg}, Rummaries of its
techniques and applications can be found in Tip [18] and nkBly and Gallagher

2].

Example 1.1.1A standard example of program slicing is the following:

CHAPTER 1

INTRODUCTION

1.1 Program Slicing

(The small numbers are short notations of program pointse flrst program
computes both the sum and the product of the firgbsitive integers (where

is the initial value ofn). The second program computes the sum; all statements
concerning the product only asticed away If sum is the only interesting value,

7

sum:= 0; Osum:= 0;
Iprod := 1;

2i = 0; 2i = 0;

while 3 <n do (while 3 <n do (
i oz o+ 1; i oz o+ 1;
Ssum:= sum+ i ; Ssum:= sum+ i ;
®prod := prod * i

););

7 7

the two programs are equally good.

The specification of which variables are important at whichgpam points is
called slicing criterion It can be given mathematically as a binary relation be-

7

tween program points and variables. The essential promdrgtice — being
equally good to the original program in computing the valogsiser’s interest
— is then more precisely formulated as follows: for arbigrarogram pointp and
variable X related by the criterion and for arbitrary initial valuesvafiables, the
sequence of values df occurring when control of the execution of the original
program goes through program pojnequals to the sequence of valuesXdbc-
curring when control of the execution of the slice goes tgtothe program point
corresponding t@ in the slice.

The slice in Example 1.1.1 has been found with respect terwit {(7,sum}
saying that the user is interested in the value of variahieat program point
7. As control reaches program poiAtjust once (at the end of execution) and,
when this happened, the value imcomputed by both programs is the same,
the crucial property is met. If the criterion wefé5, sum}, the property would
mean that the sequence of values aquired bgnat point5 be the same in both
programs. This is also true since both programs computes@ja, 3, . . . , @

for sumat 5. These observations together imply the property also fiberan
{(5,sum, (7,sum}.

If our concern is to prove correctness of slicing algorithme need a formal-
ization of the important property. Clearly this must invela trace semanticS.
Assume thatS takes a program and an initial state of variables as argusmaert
provides a computation trace as value whereby the compntatices are mod-
elled by sequences of configurations, each consisting afitirent program point
and variable state. Then the straightforward formalizatsmuld be as follows.
For all programsP and slicing criteriong”, a slice of P w.r.t. C' is any program
Q for which the following holds:

1. @ is obtained fromP by deletion of statements.

2. Let(p, X) € C' ands € State. Let p be the program point @) correspond-
ingtopin P. Then

map(val X)(filter(at p)(S(P)(s))) (1.2)
= map(val X)(filter(at p)(S(Q)(s))) (1.2)

where

e val X cis the value of variableX in the state of configuration

e atp is the predicate which is true just for configurations witbhgrmam
point p,

e map andfilter are the list functions known from functional program-
ming carried over to traces (i.map f [appliesf to every configuration

8

of tracel andfilter p [forms the list of elements dfsatisfyingp (keep-
ing the order)).

It has been noticed earlier that standard semantics areongiletely satisfactory
for formalizing the notion of slice because slicing can proel terminating pro-
grams from nonterminating ones which implies that the @ogpoints of interest
can be reached more times in the slice than in the originararo and the later
reachings correspond to computation never undertakenebgriginal program.

Example 1.1.2.The second program is a slice of the first w.r.t. criter{¢® x)}:

while %rue do ;
Ix :=0; — |Ix 1= 0;
2 2

The loop is sliced away since no influencext@at point2 can be detected. This
causes the program poitto be reached once during the run of the slice while
being reached no times during the run of the original program O

This phenomenon is callessemantic anomalyl3, 5]. It is a fundamental issue
since no slicing algorithm can decide whether a loop tertemarherefore non-
trivial slicing algorithms, the standard ones based on Hate analysis in par-
ticular, cannot be correct w.r.t. standard semantics icadkes. (Reps and Yang
[14] prove correctness of their notion of slice w.r.t. siartisemantics under the
restriction that the original program terminates.) Herioe pbtaining a working
version of the notion of correctness here, one must abstanttermination.

One possibility to handle the semantic anomaly is to modhigydefinition slightly,
allowing Eq. 1.1 to be a prefix of Eq. 1.2 in condition 2 and igqg them to be
equal only for cases when both programs terminate [2, 5]s Thialso not an
ideal solution since, if the original program loops, one dafete any collection
of statements from the part of a slice following the infinibep and the result is a
slice again. This makes the notion of slice too wide.

A better solution is to reinterpret the original equationcontext of transfinite
semantics.

1.2 Transfinite Trace Semantics

Standard semantics consider computations doing at mageps (i.e. computa-
tions whose any proper initial part is finite). This choice baen artless since no
real computation process can ever do more.

By transfinite semantic®ne means a semantics according to which computation
may continue after an infinite number of steps from some Igt@te determined
somehow by the infinite computation performed. Transfimiéed semantics of

a program is basically a set of transfinite lists of statesomfigurations satisfy-
ing certain conditions. Transfinite list is a function whaesmain is a downward
closed set of ordinals (i.e. a s@tcontaining all elements less than any element
belonging to0).

The first study of transfinite semantics has been done fotiturad programming,
see [7]. The necessity arises from the fact that there aifitejfexpressions whose
value is an infinite data structure which can not be reachedwmy standard
reduction strategy with the firsb reductions.

Giacobazzi and Mastroeni [5] investigate transfinite sdiosrwith the aim of

solving the problem of semantic anomaly; the idea has bempoped already by
Cousot [3]. The principle of transfinite semantics is thagrgthing observed in
the code should be reflected by the semantics. A loop follduwyean assignment
in the code should be a loop followed by an assignment aldeeisémantics, ir-
respectively of whether the loop terminates. The assigh@aiger an infinite loop

being never reached during real processes only shows tlogetefy of our imple-

mentation and is not a reason for omitting the assignment fhe semantics.

In transfinite semantics, changing a nonterminating stateé$) to a terminating
one does not necessarily cause the problem considered almaweecontrol can
reach the statements following statem&ranyway.

In [11], we showed the naturalness of transfinite semantjcexpressing both
standard and transfinite trace semantics of a simple staegcttanguage in a uni-
form way (more to the point, in fixpoint form) so that the cholmetween standard
and transfinite semantics comes up from the values of a febagfmrameters of
the semantics definition schema.

However, transfinite semantics works well only if there acerecursive proce-
dures. Looping caused by infinitely deep recursion resuibfimitely long call
stack. There is no obvious way to define limits of such infindenputations. The
most natural way to escape from infinitely deep recursiomisading the infinite
call stack level by level starting from infinity. This wouléquire infinitely long
backward subsequences of traces which is impossible viimsfinite semantics
since infinite decreasing sequences of ordinals do not exist

1.3 Outline and Structure of the Thesis

In this thesis, we find out a class of transfinite semanticd.wvhich standard
slicing algorithms turn out to be correct. This assuressfiiaite semantics being

10

a way to overcome “semantic anomaly”. The correctness ahgliof terminating
programs w.r.t. standard semantics, proven earlier by Regs’ang [14], can be
deduced as a corollary from the correctness w.r.t. tratsfag@mantics.

The theory is developed for control flow graphs to keep thatitnent abstracted
from any concrete programming language. One of the purpafselsoosing this
approach has been the desire to capture also slicing ofugtisted control flow.
Therefore, our results hold uniformly for a wide range ofedetinistic impera-
tive languages without recursion. Programs written inddagh programming lan-
guages with structured control flow are among those to whichteory applies.

We find that transfinite semantics enable one to prove comsstof slicing via
correctness of a cognate transformation where the irnefestatements are re-
placed with other irrelevant ones rather than removed. Welga program ap-
proximation. As replacing witlski p (a statement doing nothing) is a special
case of it, program approximation is roughly a generaliratf program slicing.
We can treat slicing as a two-step process: first replaciagrtelevant statements
with ski p, thereby not affecting the control structure, and then rengpthe new
statements, thereby not affecting the data flow, and stuelgdirectness of these
steps separately.

Program approximation can produce termination from nomitgation like pro-
gram slicing but also nontermination from termination. Tgrecess of slicing
away a loop can consist of replacing all the statements @bitly withski p, so
introducing nontermination, followed by removing the lpajbolishing this non-
termination. Consequently, this kind of correctness prwofild not be possible
within the standard (i.e. not transfinite) semantics frapréveven for terminating
programs.

A noteworthy part of the thesis is devoted to studying traitsfisemantics in
their own. As standard trace semantics are usually defieeatiitely, we develop
a transfinite counterpart of iteration and investigate progs of transfinite iter-
ation. Our transfinite iteration does not coincide with thidely used transfinite
recursion but is a special case of it. The difference is foatlefining a function
by transfinite iteration, the iteration step does not haveetgiven for initial parts
of arbitrary length like in traditional recursion but onlgrfsome possible lengths
(e.g.1, w, w? etc.). We define two different variants of transfinite corsmn
as analogues to the traditional stream corecursion and findections between
transfinite iteration and transfinite corecursion.

The thesis is structured as follows.

In Chapter 2, we provide a brief introduction to the part atgr theory we need
in the thesis. This chapter does not pretend to containimgrasults.

Chapter 3 contains abstract theory of transfinite trace stosalt starts with a ba-

11

sic introduction to ordinals (Section 3.1) followed by a hehatical framework
for handling transfinite sequences (Section 3.2). Themsfisite iteration and
two variants of transfinite corecursion are defined and t@inections are stud-
ied (Sections 3.3-3.4). We prove that, under certain ciomdif a given transfinite
corecursion schema determines a unique function withfirateslists as values.
So one can define deterministic transfinite trace semarsiog these schemata.
Furthermore, we prove an analogous theorem for definingdederministic trans-
finite trace semantics and investigate the connectionsdaetthe corecursions for
deterministic and non-deterministic case (Sections 3@-—&1ost of the content
of Sections 3.1-3.4 has been published in [9, 10], the naiafrSections 3.5-3.6
can be found in [9]. Up to the author’s knowledge, the contéi@ections 3.3-3.6
is fully original. The author also has met no theory of tramdi lists like that
developed in Section 3.2 before.

Chapter 4 contains the main contribution of the thesis the.proof of correct-
ness of two standard slicing algorithms w.r.t. a class aidfiaite semantics. In
Sect. 4.1, an introduction to the field together with a fewnegkes are given. In
Sections 4.2-4.5, the mathematical framework is develgpedmany auxiliary
lemmas are proven. In Sect. 4.6, semantic correctness gfgmoapproximation
— the first step of the schema described above — is proven.dn &&, the sec-
ond step which we call program simplification is studied. 8tiS4.8, semantic
correctness of program slicing is deduced as a corollarhesemantic correct-
ness of program approximation and program simplificatidme fwo algorithms
whose correctness we obtain are also briefly described. thibeecontent of this
chapter is mostly unpublished but fragments of Sectiong#ddl4.3 can be found
in [10].

Chapter 5 contains discussion on various related issu&edh 5.1, it is realized
that several undecidability results which are widely kndvave been stated and
proved in principle w.r.t. standard semantics and the groot necessarily apply
to transfinite interpretation. We give proofs for transBritse. Most of this study
can be found in [10]. In Sect. 5.2, we discuss a promisingctor of further
work where transfinite semantics are replaced by fractiesaailantics, meaning
that items of computation traces are indexed by rationalbarsrather than ordi-
nals. This framework overcomes the principal inability m@frisfinite semantics to
model unloading infinitely deep recursion. This approacls m&roduced in our
latest paper [11]. In Sect. 5.3, we point out a common trgiteapng in some
definitions of operations on transfinite lists given eardind discuss the nature of
it. The other sections refer to related work and conclude.

12

CHAPTER 2

PRELIMINARIES FROM GRAPH
THEORY

This chapter contains definitions of some notions and probf®me basic facts
concerning control flow graphs. It is likely that all this cha found in the lit-
erature but we provide this chapter for easy reference ohtiation and exact
meaning of terms of graph theory used throughout the thafligefinitions and
theorems have been put into words by the author; all proafs been constructed
by the author without using any reference material; alsatiwce of the notions
and facts has been done by the author.

In Sect. 2.1, directed graph is defined (we do not use otheid)same basic
properties mainly concerning subgraphs and reachabii@ypeoved. Section 2.2
studies postdominance order and Sect. 2.3 studies demnddich, in context
of control flow graphs, is usually called control dependeim@&finitions of post-
dominance and control dependence in context of control flaplgs and program
slicing can be found in Tip [18].

2.1 Directed Graphs

Definition 2.1.1. A directed graphs a triple G = (V, E, (o, 7)) whereV and E
are sets whose elements are calleriticesand arcs respectively, and € E —
V, t € E — V are functions giving thénitial and terminalvertex for any arc,
respectively.

For generality, we do not assume that an arc is a pair of it®lirind terminal
vertex. This enables us to keep the graphs with multiple amdgr consideration.

Definition 2.1.2. LetG = (V, E, (o, 1)) be any directed graph.

13

(i) Awalk in G is any sequence = (vg, e1,v1,-.., €, v;) Wheree; € E for
ali=1,...,l,v; € Vforalli =0,...,l ando(e;) = v;_1, (e;) = v; for all
i=1,...,1. Thereby, the numbéiis called thelengthof walk w.

(i) For any walkw = (vq, e1, v1, ..., €, v{), denotec(w) = vo and t(w) = v,
and callw a walkfrom vq to v;. For anyw € V/, say that walku passes through
w iff w = v, for somei = 1,...,[; for any d € E, say that walkw usesd iff
d=e¢e;forsomei=1,...,1.

(i) If w = (Vo, e, Vi, .-, e, vy andv = (v, en1, Visl, - - - €4k, Vl+k) are
walks inG then denotevv = (vg, e1, v1, - - -, €14k, Virk) — the joined walk.

(iv) Letv, w be vertices inG. If there exists a walkv in G from v to w thenw
is calledsuccessor of andv is calledpredecessor ab. If, thereby, the length of
w is 1, i.e. there exists an are in G such thato(e) = v and t(e) = w, then the
successomw of v is calledimmediate likewise the predecesserof w is called
immediate The latter situation is denoted by— w.

Note that, according to Definition 2.1.2(ii), a walkalways passes througitw)
but generally does not pass througfw).

Proposition 2.1.3. LetG be a directed graph.
(i) Letw be a walk fromx to y in G. Then there exists a walk frorito y in G
which does not pass through

(i) Letw, v be walks such thai(w) = o(v). If wv passes througls then either
w passes throughk or v passes through.

Proof.

() Letw = (vo,e1,v1,-..,e,Vvy); thenx = vq. Leti be the largest integer for
which x = v;. Then(v;, €;41, vii1, - - -, €1, v;) is a walk fromx to y which does
not pass througk.

(i) Let w = (Vo, ey, Vvi,--., e, vy andv = (Vl, €141, Vitls - - -5 €lak, Vitk)- BY
assumptiony; = x forsomei = 1,...,l + k. If i > [thenv passes througk;
otherwisew passes througk. a

Proposition 2.1.4. LetG = (V, E, (o, 7)) be adirected graph. Let C V,AC E
be such that, for every € E,

ecA = oe)eX N te)e X .
Then(X, A, (o|,, 7| ,)) is a directed graph.

Proof. Straightforward. O

14

Definition 2.1.5. LetG = (V, E, (o, 1)) be a directed graph. LeX C V, AC E
such that, for every € E,

ecA = oge)eX AN tle)e X .

Then the directed grapkX, A, (c|,,7|,)) is called subgraph ofG. If, for all
e € E,also

oe)e X Ntle)e X = ec A
then this subgraph is calletiduced

Proposition 2.1.6. Let G be a directed graph and{ its subgraph. Lelk, y be
vertices ofH. If w is a walk fromx to y in H thenw is a walk fromx to y in G.

Proof. Straightforward. O

Definition 2.1.7. LetG = (V, E, (o, 1)) be a directed graph.
(i) Letx € V. For everyy € V, call y reachable fromx iff there exists a

walk w = (vg,e1,vq,...,€e, vy such thatvg = x andv; = y for somei =
0,...,l. For everya € E, call a reachable fromx iff there exists a walkv =
(vo, e1,v1,---,€, vy suchthatyg = x ande; = aforsomei =1, ... 1.

(i) LetS C V. For every vertex or arc ofs, call it reachable fron® iff it is
reachable from some vertexc S.

Proposition 2.1.8. LetG = (V, E, (o, 1)) be a directed graph. Le§ C V. LetX
and A be the set of all vertices and arcs, respectivelyzdieing reachable from
S.Then(X, A, (o] ,,7|,)) is an induced subgraph «f.

Proof. Taked € E arbitrarily.

If d € Athen there exists a walk = (vg, e1, v1, ..., e, v;) such thaty € S and
d =¢; forsomei =1,...,l. Obviouslyo(d) = v;,_1 € X andt(d) = v; € X.

If o(d) € X then there exists a walk = (vq, e1, v1,..., €, v;) such thatyy € S
ando(d) = v; forsomei = 0,...,l. Then(vg, e1, v1,...,e;, v;)(v;, d, 7(d)) is a
walk in G starting fromvy € S. Consequentlyd € A. O

Definition 2.1.9. Let G = (V, E, (o, 7)) be a directed graph. LeX C V. De-
note byG|5 the induced subgraph @F consisting of all vertices and arcs 6f
reachable fromS.

Proposition 2.1.10.Let G = (V, E, (o, 1)) be a directed graph and C V. Let
w be awalk inG such thato(w) € S. Thenw is a walk inG\S.

Proof. Letw = (vq, e1, v1,. .., €, v;). By assumption, there is a walkn G from
somes € S to o(w) = vy. Concatenatingy to the end ofv, we see that alv; and
e; are reachable from. Thereforew is a walk inG|5. O

15

2.2 Postdominance

Definition 2.2.1. A flow graphis any pair(G, f) whereG = (V,E, (o, 7)) is a
directed graph with both/ and E being finite andf € V is a vertex calledinal
being reachable from every vertex@h

Definition 2.2.1 is dual to Weiser's definition [20] which téced the existence of
aninitial vertex from which there is a walk to every vertex. As we do negch
Weiser’s variant, we can adopt this notion to our contexhia slightly different
form.

Definition 2.2.2. Let (G, f) be a flow graph. For arbitrary verticeg and w, the
vertexw is called apostdominatoof v in G iff every walk fromv to f in G passes
throughw. If w is a postdominator of then one also says that postdominates
V.

Clearly f postdominates every vertex excéptself.

Proposition 2.2.3. Let(G, f) be a flow graph witlG = (V, E, (o, 7)). LetS C V
be non-empty.

(i) Then(G|,, f)is aflow graph.

(i) For arbitrary verticesx, y ofG\S, y postdominates in G|5 if and only ify
postdominatex in G.

Proof.

(i) By assumptions, there is a vertexe S andf is reachable frons in G.
Thereforef is a vertex ofGG | s
Take arbitrary vertex of G\S. By assumption, there is a walk in G from x to
f. By Proposition 2.1.10yp is a walk inG|5. Consequentlyf is reachable fronx
in G,

(i) By part (i), f is a vertex ofG|5. By Propositions 2.1.6, 2.1.8 and 2.1.10,

is a walk fromx to f in G iff w is a walk fromx to f in G\S. Hence the claim
follows. O

Theorem 2.2.4. The postdominance relation is a strict order in any flow graph

Proof. For antireflexivity, suppose thatpostdominates in some flow graph. By
Definition 2.2.1, there is a walk fromto . By Proposition 2.1.3(i), there exists a
walk from x to f which does not pass through This contradicts the supposition.
For transitivity, suppose botp postdominating« and z postdominating/. Con-
sider any walkw = (vq, e1,v1,...,€e, v;) from x to f. It passes through asy

16

postdominates, sov; = y for somei > 0. Then(v;, ;,1, vii1,---, €, vy) is a

walk fromy to f, so passing throughasz postdominateg, thusv; = z for some

j > > 0. Consequently, passes through which impliesz postdominatingk.
O

In the following, letx < y denote thaty postdominatesc. Let < denote the
corresponding non-strict order (i< y means thay postdominates orx = y).

Lemma 2.2.5. Letx, y, z be vertices in a flow graph.

() If x < zandy < z then every walk fronx to y passes through.

(i) If x < z and there exists a walk fromto y which does not pass through
theny < z.

Proof.

(i) Let f be the final vertex. Sincg £ z, there exists a walkw from y to f
which does not pass throughLet v be any walk fromx to y. Thenvw is a walk
from x to f. As z postdominates, this walk passes through By Proposition
2.1.3(ii), eitherv or w passes through. Hencev passes through. Consequently,
every walk fromx to y passes through.

(i) The contrapositive of Lemma 2.2.5(i). a

Theorem 2.2.6. The vertices postdominating one fixed vertex are lineadgad
W.LL. <.

Proof. Suppose thay and z both postdominate while y # z. We must prove
thaty < zorz < y. For this, assumg £ z. By Lemma 2.2.5(i), every walk from
x to y passes through.

By Definition 2.2.1, there exists a walk = (v, e1, v1,..., e, v;) from x to f.
As y postdominates, it must pass through. Let i be the least positive integer
such thatv; = y. By the last paragraph, the walk, e1, v1, - .., €;, v;) from x to

y passes through, sov; = z for somej > 0, j < i (j # i sincey # z).

By construction, the walk = (vo, e1,v1,...,e;, v;) from x to z does not pass
throughy. So, by Lemma 2.2.5(ii)z < y. a

Definition 2.2.7. Let x and y be vertices of a flow graph with < y. Then post-
dominatory of x is calledimmediateiff any other postdominator of postdomi-
natesy.

In other wordsy immediately postdominatesiff y is the least element w.r&
in the set of all verticeg > x.

17

Theorem 2.2.8.In every flow graph(G, f), every vertex excepthas the imme-
diate postdominator.

Proof. By Theorem 2.2.6, the set of all vertices> x is linearly ordered w.r.t.
<. By Definition 2.2.1, this set must be finite and hence it hasl¢fast element
whenever it is non-empty. Every vertex# f is postdominated by at leagt Thus
the claim follows. a

Theorem 2.2.9. Letw be a walk starting from vertex in a flow graph. Let both
y, z be postdominators of and assumev passing througte. Then the following
are equivalent:

1. y<z

2. w passes througly and the first occurrence of in w is before the first
occurrence ot.

Proof. Letw = (vg, e1,v1,..., ¢, v;) and leti be the least index for which; = z.
Supposey < z. Thenz £ y andz # y. Lemma 2.2.5(i) gives every walk from
to z passing through. So(vg, e1, v1, .. ., €;, v;) passes through before reaching
z. This implies statement 2.

Suppose now statement 2. It mednsg, e1, v1, - - ., €, v;) passing througly be-
fore reachingz; thus there is a walk from to y without passing through. Lemma
2.2.5(i) givesy < z. a

This theorem states that every walk reaches the postdamninat the starting
vertex in their postdominance order.

Corollary 2.2.10. Letx andy be vertices withx < y.
(i) Letw be awalk fromx to y which passes through no vertices postdominating
x excepty. Theny is the immediate postdominator xof

(i) If y is an immediate successor ofthen it is the immediate postdominator
of x.

Proof.

(i) Supposez being the immediate postdominatoraflf z < y then Theorem
2.2.9 givesw reachingz beforey. This contradicts the assumption abautHence
z=y.

(i) By assumption, there is an attfrom x to y. So(x, d, y) is a walk fromx to
y. Therebyy is the only vertex postdominatingthrough which this walk passes.
Thus Proposition 2.2.10(i) gives the desired result. O

18

Corollary 2.2.11. Among the immediate successors of a vexeat most one
postdominates.

Proof. By Corollary 2.2.10(ii), all the immediate successors @fhich postdom-
inatex are immediate postdominators . afBy Theorem 2.2.8x has at most one
immediate postdominator. Consequently, there can be atanespostdominator
of x among the immediate successorsof a

2.3 Dependence

This section investigates abstractly the relation knoweocedrol dependence.

Definition 2.3.1. Let(G, f) be a flow graph.

(i) Letx andy be arbitrary vertices of~. Theny is said to bedependent ot
iff x £ y and there exists an immediate successof x in GG such thatz < y.

(i) We denote byep the relation in which vertices andy are if and only ify
is dependent oR.

Theorem 2.3.2. Letx andy be vertices in a flow graph. Thendep y iff x £ y
and there exists a non-empty waidlkfrom x to y such thatw < y for every vertex
w through whichw passes.

Proof. Supposex dep y. Thenx £ y by Definition 2.3.1. Also, there exists an
immediate successarof x such thatz < y. Let d be an arc going fronx to z.

If z = ythen(x,d,y) is a walk satisfying the desired property. So assume that
z < y. By Definition 2.2.1, there exists a walk = (vg, e1, v1,. .., e}, v;) from z

to f; it must pass through. Let: be the least number for whiah = y. We show
that the walk(x, d, z)(vg, e1, v1, - - ., €;, v;) from x to y has the desired property.
Clearly it is non-empty. Furthermore, for evejy< i, j > 0, Lemma 2.2.5(ii)
implies v; < y since(vo, e, v1,...,ej,v;)is a walk fromz to v; which does

not pass througlr andz < y. This proves the “only if” part.

For the other part, suppose that{ y and there exists a non-empty walk =

(vo,e1,v1,---,e;, vy fromxtoy such that, < yforeveryi=1,...,l. Aswis
non-empty,v; exists and is an immediate successoxk shtisfyingv; < y. Thus
x dep y. O

The criterion for dependence provided by Theorem 2.3.2esl @s definition in
[18].

Lemma 2.3.3. Letx, y be vertices of a flow graph. ¥ dep y then there exists a
walk fromx to y which passes through no postdominatotxof

19

Proof. Assumex dep y. By Theorem 2.3.2x £ y and there exists a walk

w = (vp, €1, Vv1,..., €, vy fromxtoy such that; < yforeveryi=1,... 0 If
x < v; forsomei =1, ...,1, the transitivity of< would give a contradiction. So
w is the desired walk. O
Theorem 2.3.4.Letw = (vg, €1, v1,-.., €1, v), Il > 0, be a walk fromx to y in

a flow graph. Ifw passes through no vertex postdominatintpen there exists an
i < I suchthatv; dep y andv;,; <.

Proof. Leti be the least number such that; < y. If i > 0thenv; = v(;_1),1 £
y implying v; £ y. If i = 0thenv; = x £ y by assumption. As; — v;q, it
givesy; dep y. O

We denote bylep” the reflexive transitive closure afep and bydep™ the tran-
sitive closure ofdep, i.e.,

dep*= | dep” and dep'= |J dep”
el g

wheredep” denotes the-times composition oflep.

Theorem 2.3.5. Letx andy be vertices in a flow graph. Thendep”® y iff there
exists a walk fronx to y which passes through no postdominatoixof

Proof. Assumex dep” y. Then there exists a chainy dep wy dep ... dep wy,
wherewg = x, wi, = y. Proceed by induction oh. In the case: = 0, the claim
holds trivially (take the empty walk from to x). Assume the claim holding for
k and consider a chain with length+ 1. By induction hypothesis, there exists a
walk w from x to wy, which passes through no postdominatorxoBy Lemma
2.3.3, there exists a walkfrom w;, to y which passes through no postdominator
of wg. Suppose the walkv passes through some postdominatasf x. Then

v passes through and sow, £ z. Lemma 2.2.5(i) now states that every walk
from x to wy, passes through. This leads to a contradiction sineedoes not pass
throughz. Consequentlyv is a walk with the desired property.

For the other direction of the equivalence, assume thae thgists a walky =
(vo, €1, v1,-- ., €, vi) from x to y passing through no postdominator>ofArgue
by induction onl. If [= 0 thenx = y, sox depO y. Assume now > 0 and the
claim holding for naturals less thénBy Theorem 2.3.4, there exists ar: [such
thatv; dep y. By the induction hypothesis, dep™ v;. Altogether,x dep™ y. O

Proposition 2.3.6.

() Any immediate successor of a vertek a flow graph either postdominates
x or is dependent on.

20

(i) For any vertexx in a flow graph, at most one of the immediate successors of
x is not dependent or.

Proof.

(i) Lety be any immediate successorofSuppose is not dependent ox. By
Definition 2.3.1, eithex < y or z < y for no immediate successoiof x. Asy is
an immediate successor efandy < v, the latter is not the case. Consequently,
x<y.

(ii) By Corollary 2.2.11, at most one of the immediate susoes ofx postdom-
inatesx. By Proposition 2.3.6(i), all the others are dependent.on O

Definition 2.3.7. Let A = ((V, E, (o, 1)), f) be a flow graph. Call a se§ C V
dependence system dfiff both following conditions hold:

1. feS;

2. foreveryx,y € V,if y € Sandx dep y thenx € S.

Theorem 2.3.8.Let A = (G, f) be a flow graph. Lef be a dependence system
of A. Letw be a walk fromx to y such thatx ¢ S and the only vertex o passed
through byw is y. Thenx < y.

Proof. Letw = (vo, e1,v1,-.., e, v;) and leti be the least index for which; =

y.

Suppose the contrary, i.e. £ y. Asx ¢ Sandy € S, we havex # y, so
x £ y. Letj < i be the largest index for which < v;. By transitivity of <, the
verticesvy, for j < k < i do not postdominate;. By Theorem 2.3.5y; dep” y.

By Definition 2.3.7, we get; € S which contradicts the choice of Hence the
claim follows. O

21

CHAPTER 3

THEORY OF TRANSFINITE TRACE
SEMANTICS

A trace semantics of a program expresses its execution ioeinatep by step. It
is basically a set of sequences of elements representimgitexe states. In stan-
dard trace semantics, the sequences are finite lists onstréheir components
therefore correspond to natural numbers. In the case cifinéte trace semantics,
the sequences are transfinite, i.e. the components cong$p@rdinal numbers.
We call themtransfinite lists

3.1 Ordinal numbers

In this section, we give a short introduction to ordinalse Wefinitions and facts
listed here are generally those we need in this thesis. Tdrerenany books giv-
ing profound introductions to ordinal theory; [8, 15] repeat just two different
approaches.

The notion of ordinal is obtained as a generalization of Wtgon of natural num-
ber by adding infinite elements. So we have all the naturalbmuie?, 1,2, ...,
as well asw and a lot of greater elements, among ordinals. This notifferdi
from the notion of cardinal in that ordinals can be distirstpeid by the order of
elements in set while cardinals express only the size.

Being precise, aordinal is an isomorphism class of well-ordered sets.wall-
ordered sefs an ordered set whose every non-empty subset has a leasrle
As all the well-orders of a fixed finite set are isomorphic,réhexists just one
ordinal for any size of a finite set. For countable sets, fetance, there are many
(actually uncountably many) in principle different welders. The standard order
of natural numbers (representing is among them; one of the others is the order
of NU {oo} whereoo is greater than any natural number.

22

There is a natural ordet on ordinals:o < = iff, for any well-ordered setsl and
B corresponding to andm, respectivelyA is isomorphic to a cut oB. (A cutof a
well-ordered sef’ is a subseD of it containing all elements af' being less than
any given element oD. Cuts are also calledownward closedubsets.) Every
set of ordinals is well-ordered w.r&. Clearly0 is less than any other ordinal.
The set of all ordinals less thanis denoted by0,; it turns out tha{O,; <)is a
representative af.

Any ordinalo has a unigue immediate successor w;twe denote iv’. If Ais a
well-ordered set representinga set representing is obtained by adding a new
greatest element td.

If an ordinal has an immediate predecessor, i.e. if it is @ss&or of some ordinal,
it is called successor ordinalOtherwise it is calledimit ordinal. However,0 is
often considered as a neither successor nor limit ordinal.

For example, all naturals bQtare successor ordinals while — the least infinite
ordinal — is a limit ordinal (the least greater th@n Then there are countably
many successor ordinals’, w” etc., followed by the next limit ordinal which of
course is followed by countably many successor ordinals.

Let o, w be ordinals. Letd, B be some well-ordered sets representingnd ,
respectively. An ordinap is calledsumof o and iff it corresponds to the well-
ordered set obtained fros and B by finding their disjoint union and considering
every element ofd less than every element &f. The sum ob and~ is denoted
by o + 7. Obviouslyo’ = o + 1 for any ordinalo. The operation+ is associative
and, for any, o+0 = 0+ 0 = o. For ordinalso andr, o < 7 iff 0+ o = 7 for some
ordinal . If 0 < o’ andr < 7’ then always + 7 < o + 7’ (addition is monotone
w.r.t. both its arguments).

For examplew + 1 corresponds to the well-order BfU {co} introduced before.
The ordinalw + w corresponds to the limit of the sequencew’, w”, ..., be-
ing the least limit ordinal greater than. We can construct the infinite sequence
w,w+w,w+w+ w,...of limit ordinals. There exists a limit of this sequence,
followed by its successor etc. Ordinals form a “very infihilome in the sense
that no set of ordinals can ever be complete.

If o+ 7 =0+ pthen alwaysr = p. This allows to definsubtractionof ordinals.

If o < wthennt — ois the ordinalp such thab + ¢ = 7.

In the following, we assume the reader having a solid knogdeon elementary
ordinal theory.

23

3.2 Transfinite Lists

We treat transfinite lists ovet as functions which take ordinals intband whose
domain is downward closed. So a transfinite list adas a functionl € O, — A
for somep; in this casey is calledlengthof [and denoted by/|. Denote the empty
list — the only list of lengthD) — by nil.

For a transfinite list anda < |I|, I(«) (or I,) is the ath componenof [. For
simplicity, we allow writing i(«) also fora > |I| and counti(a) = L ¢ A
in this case. The first componer(0), is also denoted bitead /. All operations
considered in the theory are strict, i.e. a subexpressidh value L turns the
value of the whole expression to.

A transfinite list is typically defined using transfinite resion. This means that
every element of the list is expressed in terms of all pregpeiements. For the
case of semantics, this is unnecessarily general. In andigiistic standard trace
semantics, every execution state is completely deternbgéts single predeces-
sor and carrying all preceding states along in the definitmuid be burdening or
misguiding. In other words, semantics are defined by i@natrhich is a special
case of recursion.

The desire to express every computation state in terms gfréh@éous one could
be called “locality principle”. It requires the behaviourevery atomic statement
not depending on the computation occurred before reachiagtatement, i.e. all
information for performing the computation step being efemblocally in the last
state. In transfinite case, defining every element in terniis sfngle predecessor
is generally impossible since if the number of precedingest#s a limit ordinal
then there is no last element among them. Analogously tottimaia step case,
the locality principle now requires that limit state readhtie to an infinite loop
should be determined by the computation during this loog. &k would like to
have a transfinite iteration schema generalizing the ugeraltion and respecting
the locality principle.

Our main results are proven for semantics where the limié staes not depend
on the exact place where we start counting the final part oétitdess computa-
tion. This restriction is natural as the rest of the thesmash (Note that this final

part definitely containes an infinite repetition of the bodyhe loop causing the
endless computation but a finite number of first runs of theyhmaksibly have

remained outside.) In this case, the locality principleiemjently demands that
every state during a computation is determined by a propal figrt of the com-

putation performed so far which is as short as it is possibkxtract. This length

is determined solely by the ordinal index of the componeimddefined.

For example, if one is defininkjw) thenw elements backward must be taken into
account. In defining(w + k) for a positive natural numbé, it suffices to consider

24

the last element only. But when definif@v + w), there is no last element again;
w elements backward must be studied.

This consideration leads to our notion of selfish ordina[1B1, these ordinals are
calledadditive principal numberswe like our shorter term more.

Definition 3.2.1. We call an ordinaly > 0 selfishif v — o = « for everyo < 7.

In other words;y is selfish iff the well-order of the part remaining when qudti

out any proper initial part from the well-ordér representingy is isomorphic to

I' itself. One more characterization is as follows:>> 0 is selfish iff it cannot

be expressed as the sum of two ordinals less thére. the set of ordinals less
than+ is closed under finite sums). Definition 3.2.1 implies tha kbngths of

the possible final parts having to be considered backwardshwlefining a new
element of a transfinite list by recursion are precisely #igsh ordinals.

For examplew is selfish. If one cuts out any proper initial part of the waltier
representingu (see figure), the remaining part represantgself.

The ordinalsw + w, w + w + w etc. are not selfish because removing the initial
w leads to a smaller number. However, the limit of this sequence is selfish.
Similarly, the limit w3 of the sequencev?, w? + w?, w? + w? + w?, ... is self-
ish. This observation can be continued infinitely. We obtaininfinite sequence
w, w?, w3, ... of selfish ordinals. The limit of this sequenceu$’ which is also
selfish. Now we can construct the sequeace, w® + w®, w® + W + WY, ...
whose limit isw®*!, again selfish.

Note thatl is selfish — the least, the only finite and the only successdinakr
among them.

Proposition 3.2.2.
(i) Every ordinalo > 0 is uniquely representable in the foron= « + v where
~ is selfish andv is the least ordinal for whicle — « is selfish.

(i) Every ordinalo > 0 is uniquely representable in the foron= \ + 3 where
A is selfish and? < o.

Proof.

(i) If ois selfish, the representation= 0+ o obviously meets the requirements.
Suppose not being selfish. Themcan be represented as the sum of two ordinals
both less thaw. For any such representation, both ordinals are non-zerause
otherwise the other would equaldoLet~ be the least non-zero ordinal for which
o = «a + vy is possible. Ify = m + p for somer and o both less thany then

25

0o =a+(m+0) = (o + 7 + e contradicts the choice of. Thus~ is selfish.
Minimize « for this~. We state that this results in the desired representation. F
that, it suffices to prove that— «, even for varyingy, can evaluate to at most one
selfish ordinal.

Assumeo = a1 +y1 = ap + 2 with selfishvy, 7. W.l.0.9.,71 < 72. Suppose
v1 < . It is easy to see that; > ap (supposinga; < «ap would giveo =
a1 +7 < ag+91 < ag + 92 = o, a contradiction). Sa; = ap + ¢ for some
e.Nowap + e + 91 = 0 = ap + 7 implying € + y1 = 2, a contradiction with
selfishness of; and~,. Hencey; = v, and the result follows.

(i) Let X be the least ordinal for which = A + 5 for someS < o; then > 0.
If A\ =7+ o for somer andp both less thark theno = (7 + 0) + 3 = 7+ (0 + ().
Theno + 8 = o by the choice ofA which gives a contradiction with the choice of
A. Hence) is selfish.

Now assume» = A\ + B1 = A + (B with selfishAq, A and8; < o, B < o.
W.I.o.g., A1 < Ap. Supposer; < Ax. Then), = A + § for somed; actually,
0 = Ay since); is selfish. NowA| + By =o= A+ + G giving 81 = o+ =0
which contradicts?; < 0. SO\ = A\, implying alsops; = 5. a

Proposition 3.2.2 implies that every ordinal can be unig@sipressed as the sum
of the elements of a finite non-increasing list of selfishimats. This fact can also
be deduced from the classical theorem of ordinal theory tatepuesentations on
base since it can be proven that an ordinal is selfish if angibitlis a power of
w; the representation on bageis also calledCantor normal forn{12, 15].

In the rest, we call the representatios « + v wherevy being selfish and: min-

imized (the representation of Prop. 3.2.2(i)) gre1cipal representatiorof o. For

example, the principal representationcwfis 0 + w; the principal representation

of w + k£ with any positive natural numbeér is (w + (kK — 1)) + 1; the princi-

pal representation ab - £k = w + ... + w with any positive natural number is
N————

w - (k — 1)+ w. If the Cantor no]FmaI form ob is written as a sum of powers
of w like in [15] then adding all summands but the last of this suvegthe first
component of the principal representatioro@nd the last summand equals to the
other component.

Principal representations classify ordinals accordingpécssecond summand: suc-
cessor ordinals arel“ordinals” while w, w + w etc. are tw-ordinals”, w? is
“w?-ordinal” etc.

Suppose we are definirifp) in terms of elements preceding it in listThe selfish
ordinal in the principal representation @toincides with the number of elements
inevitable to study backward in the listEven if (o) is represented in terms of
this selfish number of preceding elements, the length ofgheaming initial part

26

not necessarily coincides with the other number in the palaepresentation;
the length can be larger. However, the principal repretientprovides a way to
formalize uniformly the kind of recursion we desire.

There is no set of all ordinals and hence also no set of alttiraite lists over a
non-empty set. Lek be a fixed selfish ordinal “large enough” andTétist A de-
note the set of all transfinite lists ovdrof length not exceeding. LetSTList A
denote the subset dflist A consisting of lists by which next elements are de-
fined, i.e. lists of length being both selfish and less thdfists of lengthoc cannot

be continued). So

TListA= | J(©@, — 4) , STListA= [(@, — 4) .

o< x y<x
~ selfish

For every transfinite listando < ||, lettake ol anddrop o! denote the transfi-
nite list which is obtained froni by taking and dropping, respectively, the fiost
elements from it. So, for any ordinal

(take o 1)(r) = { lff) gtgefw (I)Se} ., (dropol)m) =l(0+7) .

Thereby,| takeol| = o and|dropol| = |I| —o. If o > || orlis not a list (because
of its domain not being a cut) theakeol! = 1 = dropol.

Lemma 3.2.3. Let! be any transfinite list.
(i) Forordinalso and, (o +) = (drop ol)().
(if) For ordinal o, I(0) = head(drop ol).
(iif) For ordinalso and, drop(o + 7) [= drop m(drop o1).
(iv) Forordinalso and, take m(drop ol) = drop o(take(o +) [).
(v) Forordinalso and, if 7 < o < [I| thentake 7 [= take w(take o).

Proof.
(i) Trivial because ifo + 7 > |I| theni(o + w) = L = drop o l(r).
(i) We havehead(drop ol) = (drop 01)(0) = I(0 + 0) = l(0).
(iii) For any ordinalc,
(drop m(drop ol))(a) = (dropol)(m + @) = l(o + 7 +)
= (drop(o +))(c) .

(iv) If o+ > ||, both sides of the desired equality are Otherwise, both are

27

defined giving, for any ordinat,
(drop o(take(o + m) 1))(a) = (take(o + 7){)(0 +)
_ {l(0+a) ifo+ta< O+7T}
1 otherwise
_ { (dropol)(a) if o< ﬂe}
1 otherwis
= (takem(drop ol))(cv) .

(v) For any ordinaky,

(take n(take o))(a) = { (ke T a =7 |

{l(a) if o < manda < 0}
1 otherwise

= {l(a) if a < WE} = (take 7w) () .

1 otherwis

a

The claims of Lemma 3.2.3 are rather intuitive and we are gdmuse them
without any reference.

For arbitraryl, k € TList A4, let! + k denote the transfinite list which is obtained
by concatenating to the end of. So, for any ordinatr,

(l+k:)(7r)={l(ﬂ.) if m < i

k(m —|l|) otherwis
Thereby,|l + k| = |I| + |k|.

Lemma 3.2.4. Let!, k£ be transfinite lists.

(i) { =k iff takeol = take ok anddrop ol = drop o k for some ordinab with
o< |l], 0 < |K|.
(i) take|l|(l + k) = anddrop |I|(+ k) = k.

Proof.

(i) Consider the “if” part (the other is trivial). Suppose< ||, o < |k| and
takeo! = takeok, drop ol = drop o k. Take any ordinatv. If o < o then

l(a) = (take ol)(a) = (take o k)(a) = k(c) .
If @« > othen
l(a) = (dropol)(a — 0) = (drop o k)(a — 0) = k() .

Hencel = k.

28

(i) Let « be any ordinal. lfx < |I| then
(take |[|(0 + F))(@) = (L + K)(@) = I(a) |,
otherwise both sides of the desired equality aréf « < |k| then
(drop 1|1 + k))(@) = (1 + K)(|I] + a) = k(|l] + o — |1]) = K(a)
otherwise both sides of the desired equality are O

Let T = {tt, ff} be the set of truth values. We will denote hyap € (A —
B) — (TList A — TList B) andfilter € (A — T) — (TList A — TList A)
the transfinite counterparts of the namesake functions kritemn functional pro-
gramming. More precisely, if € A — B while! € TList A then|map f | = |{|
and(map f{)(o) = f(l(0)) for everyo < |l|. If p € A — T while ! € TList A
then| filter p | = x and(filter p)(o) = l(o,) for all o < x where(o, : 0 < k) is
the ascending family of all indices corresponding to congmis ofl satisfyingp.

Denote function composition by(function in the left is applied first). Lemma
3.2.5 states properties afap andfilter which will be used later. They are easy
to prove and, in the case of finite lists and streams, alsokmellvn.

Lemma 3.2.5. Let A4, B, C be sets.

() If fe¢ A— Bandg € B — C thenmap f ; map g = map(f ; g).

(iiy If p,q € A — T thenfilter p ; filter ¢ = filter(\a. p(a) A g(a)).
(i) If p e A — T andl € TList A such that is constantly true on components
of [thenfilterpl = [.

(iv) If fe A — Bandp € B — T thenmap f ; filterp = filter(f ; p) ;
map f.

(v) If pe A — T andl € TList A then|filter pi| < ||.

3.3 Transfinite Iteration

Transfinite iteration based on principal representatisrgefined as follows.

Definition 3.3.1. Let X, A be sets. Assumg € X — 1+ A =AU {L} and
1 € STList A — X. We say that a functioh € X — TList A is iterative ony
andy iff, for eachz € X, the following two conditions hold:

1. n(2)(0) = ¢(x);

2. h(z)(0) = p(y(take y(drop a(h(x))))) for everyo < o< with principal rep-
resentatioro = « + 7.

29

This notion captures the desire described abetlecomponent of a lisk(z) is
defined in terms ofy preceding components wheteis the selfish ordinal from
the principal representation of As 1 is one particular selfish ordinal, the iteration
schema handles finite and infinite steps uniformly.

Call a transfinite list with limit ordinal lengthstabilizing tow iff there is ano < ||
such that(w) = v for everyr satisfyingo < = < |I|. Note that is stabilizing to

v iff drop al is stabilizing tov for everya < |I|.

Example 3.3.2TakeA =N, X = Z. Forz € Z andl € STListN, define

v ffreN head! if|l|=1
_ ’ D =) .
©(x) {L otherwis (1) {n +1 ifl staplllzes tcn}
-1 otherwise
Then
(z,z,..,c+1L,z+1,..;20+2,x+2,...,......) ifzeN
——
h(w) — w w w
w .
nil otherwis
is iterative ony and) (providedoc > w?). O

Theorem 3.3.3.Let X, A be sets. Forevery ¢ X — 1+ A =AU{L}and
1 € STListA — X, there exists a unique functidn € X — TList A being
iterative onyp andq.

Proof. The conditions in Definition 3.3.1 serve as transfinite rsicur schema
sinceh(x)(o) is expressed in terms of values of functibfx) on arguments less
thana + v = o only. Hence there exists a uniqhec X — O, — AU {L}
satisfying these conditions.

It remains to make clear tha{z) € TList A for everyz. Let h(x)(w) = L and
m < o. Sinceo > 0, there is a principal representatiors= o + «y. As

take y(drop a(h(z))) = drop a(take o(h(x))) = L ,

we geth(z)(o) = L by the definition ofh. Thus the domain ok(x) is a cut and
h(x) € TList A. O

Theorem 3.3.3 asserts that, for defining a transfinite seosafity iteration”, it
suffices to provide jusp andi.

30

3.4 Transfinite Corecursion

Standard deterministic trace semantics have the nice pyoihat the part of the
computation starting from an intermediate statis independent of the compu-
tation performed before reaching This is because statealone uniquely de-
termines all the following computation, it is not relevanhether there was any
computation before reachingor was it the initial state. For transfinite semantics,
even if defined by transfinite iteration, this property neethold.

However, there exists a similar weaker condition holdirspdibr iterative transfi-
nite semantics. Furthermore, it is possible to put a natesdtiction ony in case
of which the corresponding transfinite semantics satisfssthe desired stronger
property. We call the two conditions weak corecursivity antecursivity, respec-
tively. We choosed such word because the conditions arene satent analogous
to traditional stream corecursion (the analogy will be aikpd below).

Definition 3.4.1. Let X, A be sets.

(i) If+y € STList A — X is such that)(l) = ¢(drop A!) for all selfish ordinals
A Y, A <y <, andl € TList A with || = ~, then we calk) limit operator

(i) Assumep € X — 1+ A, € STListA — X andh € X — TList A.
Consider the following properties:
1. if p(z) = a € A thenhead(h(z)) = a, and

if o(x) € 1thenh(z) = nil,

2. if |h(x)] = X and)\, p are consecutive selfish ordinals with< p < o then,

for every ordinalo < p,
drop A(h(x))(0) = h(v(take A(h(2))))(0) ;
3. if |[h(z)] > A and X\ < « is selfish then

drop A(h(z)) = h(y(take A(h(x)))) .

We say that € X — TList A isweakly corecursive op andy iff the conditions
1 and 2 hold. We say that € X — TList A is corecursive onp and iff the
conditions 1 and 3 hold.

Limit operators are analogous to limits in calculus by darfaoperties (the limit
of a sequence equals to the limit of its every subsequenicee@lences obtained
as a final part of a diverging sequence also diverge). In tee ch semantics,
1 being a limit operator means that the limit state, into whioch computation
falls after an infinite computation , does not depend on theahstarting point

31

of the final part of selfish length. This implies that one neetduse the principal
representation to determine the final part to rely on but ngayvalently use any
final part of the same length (as every ordinal has a Cantonaloform, every
function of formdrop o can be expressed as a finite composition of functions
of form drop A with selfish)). Example 4.6.4 will show the inevitability of it in
context of our approach. In Sect. 4.1, we will provide alsaregles of deriving
transfinite semantics for programs with unstructured coritow where need

not be a limit operator.

Condition 3 of Definition 3.4.1(ii) obviously implies conitin 2 (2 requires some-
thing to hold for every < p while 3 requires essentially the same thing to hold
for all 0), hence corecursivity implies weak corecursivity.

Like recursion, corecursion in general is a special way tmddunctions. When
one has to define functions whose values are streams, csi@tus often the
neatest choice.

Consider an example from number theory of defining continsactions. The
functionc which takes real numbers to their representations as e@difractions
satisfies the corecurrent equation

c(x>=LxJ;{c(é—>) ifxwe}

nil otherwis

where: andnil are the cons and empty-list constructor, respectively,|and(z)
denote the integral and fractional partxgfrespectively. Obviously, this equation
determines the functionuniquely despite containingon the right-hand side. In
number theory books, continued fractions are usually defreeursively rather
than corecursively, resulting in a more complicated fomtioh because the length
of the result is not known a priori, it clears up as the comjortereaches the end.

The soundness of both recursive and corecursive definitiotise case of their
simplest forms is obvious; however, proving it is surpmggynhard. There are
works trying to give proofs of corecursion theorems at a \gageral level; the
reader being interested in is recommended to study [1].

When defining a standard trace semantics of a programmiggdae, one usually
gives a plenty of elementary transition rules to be usedifterdnt syntactic con-
structions. In other words, one has a transition functignf @ non-deterministic
semantics is desired, a transition relation. It is triviahtgue by stream coinduc-
tion that a transition function gives rise to a unique deteistic semantics, i.e. it
determines the unique function from initial states to streaf states such that the
first state of the result is the initial state and any follogvittiate is obtained from its
predecessor by applying the transition function. In theeagdsnon-determinism,
the circumstances are similar.

32

The corecursion theorems being proved in this chapter pkigndar role in the
case of transfinite trace semantics. In this case, one haditedransfinite lists
rather than usual streams. While the corecurrent equatibansual kind relate a
list with its tail, tail of tail etc. only, the form of corecrgnt equations must enable
to relate transfinite lists with their arbitrarily (trangfely) deep substructures.
Usual corecursion is called corecursion because it is dualdursion [6]. We have
not found such kind of connection between transfinite résorand our transfinite
corecursions. The name “transfinite corecursion” has beensed solely by the
analogy with usual corecursion where one writes equatiefesing a (possibly
infinite) structure with its substructures which are expeglsas values of the same
function.

Taking A = 1 in Definition 3.4.1(ii) gives a construction similar to stra core-
cursion in the sense that the result list is defined by givimiéad and expressing
its tail as the value of the same function which is being defig€onditions 2 and
3 are equivalent in stream case sirnce= 1 implies p = w so both conditions
apply to the whole stream). In transfinite corecursion, tleaking point can be
after any initial part of selfish length rather than after bead only. Unlike in
the traditional corecursion, any component of any list gervalue of a function
corecursive in our sense determines all the following camepts uniquely.

Theorem 3.4.2(i) states the equivalence of iterativity @edk corecursivity.

Theorem 3.4.2.Let X, A be sets. Letp €¢ X — AU{Ll} =1+ A4, ¢ €
STList A — X andh € X — TList A.
(i) Thenh is iterative ony and iff h is weakly corecursive o and).

(i) If his iterative ony and« and is a limit operator therh is corecursive
ony and.

Proof.

(i) Consider the “only if” part first. Leh be iterative onp andq.
We havehead(h(z)) = h(x)(0) = ¢(z); thereby, ifp(x) ¢ A thenh(z)(0) = L
implying h(x) = nil. Thus condition 1 of Definition 3.4.1(ii) holds.
It remains to prove condition 2. Take and A, ;. consecutive selfish ordinals
such that\ < p < o and|h(z)] > A. We are going to show by transfinite
induction thath(x)(\ + 0) = h(i(take A(h(z))))(o) for every ordinalo < . As-
sume the equality being valid for all ordinats< o, sotake o(drop A(h(x))) =
take o(h(y(take A(h(x))))).
If o =0, we get

h(z)(A +0) = h(x)(0 + X) = p(y(take A(drop 0(h(x)))))

= p(y(take A(h(x)))) = h(y(take A(h(x))))(0) .

33

If o > 0, leto = a + ~ be the principal representation. Ther< o < u, implying
~ < A. Using the induction hypothesis, we get
take y(drop(A + a)(h(x))) = takey(drop a(drop A(h(x))))
= drop a(take o(drop A(h(x))))
= drop a(take o(h(y)(take A(h(z))))))
= take y(drop a(h(y(take A(h(z)))))) .
T

By Lemma 3.4.5(i)){\ + a) + ~ is the principal representation af+ o. Thus

h(@)(A +0) = p(i(take y(drop(A + a)(h(z)))))
= p(¢(take y(drop a(h(y (take A(h(x))))))))
= h(y(take A(h(x))))(0) .
Thush is weakly corecursive o andq).

For the “if” part, supposé: being weakly corecursive op and+. Let & be the
function iterative onp ands. It suffices to show: = h.

By the “only if” part, & is weakly corecursive op and. We are going to prove
that

Vz € X (h(z)(0) = h(z)(0)) (3.1)
for everyo < . Argue by transfinite induction. Fer= 0, one obtains
h(x)(0) = head(h(z)) = ¢(z) = head(h(z)) = h(x)(0) .

Consider now any non-zem < « and assume Eq. 3.1 for ail < o. Takeo =
A+ S with X selfish and3 < o. The induction hypothesis impliés(z)| > \ <
|h(z)| > A, as well agake A(h(z)) = take A(A(z)), as well ash(y)(3) = h(y)(3)
for everyy € X. Using these, we get
hz)(0) = Mx)(X + 5) = (drop A(h(2)))(B) = (h(v(take A(h(x)))))(5)
= (h(y(take A(h(2)))(B) = (A(v(take A(A(x)))))(5)
= (drop A(h(2)))(B) = h(z)(A + B) = h(z)(0) -
(i) Our his weakly corecursive by part (i). It remains to prove coiodit3 from

Definition 3.4.1(ii). Prove by transfinite induction erthat

VA < oV € X (drop A(h(z))(0) = h(v(take A(h(x))))(0))

(where\ ranges over selfish ordinals only).dt= 0 then the claim holds by weak
corecursivity. Ifo > 0, leto = k+ with selfishx and3 < o (possible by Proposi-
tion 3.2.2(ii)). FixA and lety be the next selfish ordinal. if > xtheno = k+3 <

1 (because otherwise > p implying 6 = k+ 3 = 0) and the claim holds again by

34

weak corecursivity. Hence assume< k. SO\ < k and\ + x = k. The induction
hypothesis impliesake x(drop A(h(z))) = take x(h(i)(take A\(h(z))))), as well
asdrop k(h(y))(5) = h(y(take k(h(y))))(B) for all y € X. Using this knowledge
together with the assumption thatis a limit operator, we obtain
drop A(h(x))(x + B) = Mx)(A + £ + () = Mx)(k + 3) = drop x(h(x))(5)

= h(y(take r(h(x))))(5) = h(y(drop A(take r(h(2)))))(5)

= h(y(drop A(take(A + r)(h(x)))))(5)

= h(y(take r(drop A(h(x)))))(5)

= h(y(take r(h(y(take A(h(2)))))))(5)

= drop x(h(y(take A(1()))))(5)

= h(y(take A(h()))(x + B) .

0

Theorem 3.4.2(ii) can be proven also without the referencEheorem 3.4.2(i),
simply supplementing the proof of the “only if” part of thettier with the case
o > p. It suffices to consider the case = 0 together withA < ~ (this is the
case in which the argumentation given in the proof fails)this case, using the
assumption that is a limit operator together with the induction hypothesis,
would get

¢ (take ~y(drop 0(h(x)))) = 1(take y(h(x)))
= ¢(drop A(take y(h())))
= ¢(drop A(take(A +7)(h(x))))
= 1p(take~(drop A(h(x))))
= y(take y(h(y(take A(n(x))))))
= ¢(take y(drop 0(h(¢(take A(h(2))))))) -

Note that0 + ~ is the principal representation of battand A + o. Thus

Mx)(A +0) = p(i(take y(drop 0(h(x)))))
= p(y(take y(drop O(h(y (take A(h(x))))))))
= h(y(take A(h(x))))(0)

and we would have done.

Functiomy of Example 3.3.2 in Sect. 3.3 is a limit operator. Hence omedealuce

by Theorem 3.4.2(ii) thak defined in that example is corecursive. It is also easy
to check this directly.

As Proposition 3.4.3(ii) together with Example 3.4.4 shdwmeorem 3.4.2(ii)
would break down without the assumption tljais a limit operator.

35

Proposition 3.4.3. Let X, A be sets. Lep € X — 1+ Aandy € STList A —
X. Assume thaf € X — TList A is corecursive orp and. Let), v be selfish
ordinals less thanx and taker € X.

() Then
drop (drop A(f(2))) = f(¢(take y(drop A(f(2))))) -

(i) Moreover, ifA < ~then

f((take ~(f(x)))) = f (4 (drop Atake 1(f(x)))))

Proof.
() If [f(x)] = A+~ then
drop y(drop A(f(2))) = drop y(f(:/(take A(f(x)))))
= f((take y(f (¢ (take A(f(2)))))))
= f(¥(take~(drop A(f(x))))) .
If | f(x)] < A+~ then both sides of the equality ate
(i) Note that + v = v sincey is selfish. If| f(x)| > ~ then
f((takey(f(x)))) = dropy(f(x)) = drop(A + 7)(f(x))
= drop y(drop A(f(x)))
= f(y(take ~(drop A(f()))))
= f((drop A(take(A +7)(f(2)))))
= f(i(drop A(take y(f(2))))) -
If | f(x)| < ~ then both sides of the equality ate O

Example 3.4.4TakeX = A = {0,1}, ¢(x) = for bothz € X, and

_J1 if|l|=TorYo < |l|(l(0) =1)
v = {0 otherwise } '

Suppose thaf is corecursive orp andq. It is easy to see that
takew(f(0)=0:1:1:1:... .
Thus the equality stated by Proposition 3.4.3(ii) is broken
head(f()(0:1:1:1:...))) = head(f(0)) = p(0)=0
7 1=(1) = head(f(1))

= head(f((1:1:1:...))
= head(f(y(drop1(0:1:1:1:...)))) .

36

Before ending this section, we prove some facts we needdatar the thesis.

Lemma 3.4.5. Leto be an ordinal with principal representation= o + +.

(i) If A > v and X is selfish then the principal representation o o is (A +
a) + 7.

(ii) If « > 0or~ =1 then, for arbitrary ordinalr, the principal representation
oft+ois(m+a)+.

Proof.

(i) For the “if” part of the lemma, assume that> 0 or A > ~ holds. Take an
arbitrary 6 such that\ + o = 8 + v (suchg exists since\ + o = A + a +).
Showg > A by contradiction. If3 < AthenA = G+ A, leading toG+ A+ a+~v =
0+, thus also\ + « + v = y and A + « < «. In the casex > 0, we have
«a > v (otherwisea + v = v = 0 + v which contradicts the minimality o), a
contradiction with\ + « < ~. The case\ > ~ contradicts the same inequality.
LetG=A+e. Then\+a+y=A+ec+yandthusx+v=c+~.Asthelhsisa
principal representation, this implies< . SoA + a < A +¢ = 3. Consequently,
(A + a) + v is the principal representation af+ o.

For the “otherwise” case, assume= 0 and\ < . ThenA+a+y=A+y =7 =
0 + v where the last sum is a principal representation.

(ii) Take 8 such thatr + 0 = 3+~ (it is possible sincer + 0 = 7 + o + 7). We
have to show that + o < . Suppose the contrary, i.8.< 7 + a.

If 8 < wthenm = 3 +¢ for somes. We obtainG+~v = 7+ 0 = 8 +¢+ o, implying
v = € + 0. Henceo = ~ (as~ is selfish ant # 0), giving « = 0 and therefore
~ =1. Sowe haver + 1 = § + 1 which leads tar = 3, a contradiction.

If 6> wtheng =mx+¢cforsomes. Asw+e =0 <7+ a, we haves < a. Then
T+o=L0+y=m+e+,implyingo = ¢ +~. Hencea < ¢, a contradiction. O

Theorem 3.4.6.Let X, A be sets. Letp ¢ X — AU{L} =1+ A4, ¢ €
STList A — X and leth € X — TList A be iterative onp and. Leto < x be
an arbitrary ordinal with principal representation = o + ~.

() Letu be the selfish ordinal next tp Then, for every ordinat < u,
h;dropo;takem = h;dropa ;takevy ;¢ ; h; taken .

(ii) If ¢ is a limit operator then
h;dropo=nh;dropa;takevy ;v ;h .

Proof. Both statements are proved by induction@ror o = 0, the claims are
true vacuously. So assume that the claims hold for ordiesls thar.

37

(i) Weak corecursivity implies
h ;drop~y ; takem = h ; takey ;¢ ; h; taker .

Hence the desired claim follows for the case 0.

Assume nowx > 0, leta = 3 + § be the principal representation.df< ~ then
o=a+v=0+0d+v=p0+~y— acontradiction sinc& < a. Thusd > ~. As
v+7 < v+ pu = p, this implies thaty + 7 does not exceed the selfish ordinal next
to 4. Note furthermore thatke 7 ; take 7 = take 7. Now compute

h;dropo ;takem = h ; drop(a +) ; taken
= h;dropa; drop~; taker ; taken
= h ; drop « ; take(y + 7) ; drop v ; take 7
= h;dropf;taked ;¢ ; h; take(y + m) ; dropy ; take 7
= h;drop 3 ; taked ;¢ ; h; drop~ ; taker ; taker
= h;dropf;taked ;¢ ; h;take~y ;1 ; h;taker ; taker
= h;dropa;takey ;v ; h;takerw .

(i) Corecursivity implies
h;dropy=nh;takevy ;¢ ; h .

Hence the desired claim follows for the case: 0.
Assume nowx > 0, leta = 8 + § be the principal representation. Now compute
h ;dropo = h ; drop(a +y) = h ; drop « ; drop v
= h;dropf;taked ;¢ ; h; dropy
= h;drop 3 ; taked ;¢ ; h;takevy ;v ; h
= h;dropa;takey;v; h .
O

Corollary 3.4.7. Let X, A be sets. Letp €¢ X — AU{L} =1+ A, ¢ €
STList A — X and leth € X — TList A be iterative onp and. Let A, u be
consecutive selfish ordinals with< i < . Then, for every natural number
and ordinalm < p,

h ; drop(X - n) ; taken = (h ; take X ; ¥)" ; h ; taken .

Proof. Argue by induction om. If n = 0, both sides of the desired equation
reduce toh ; take w. Assume now that the claim holds far As the principal

38

representation of-(n+1) is A\-n+ A, Theorem 3.4.6(i) together with the induction
hypothesis give

h; drop(A - (n+1)); taken = h ; drop(\ - n); take X ; ¢ ; h ; takew
= (h;take X ;)" ; h;take A ;Y ; h; takew
= (h; take X ;)" ; h; take T .

a

Corollary 3.4.8. Let X, A be sets. Letp €¢ X — AU{L} =1+ A, ¢ €
STList A — X and leth € X — TList A be iterative onp and. Leta < |h(x)|
for somexr € X. Then there exists an element X such that all the following
holds:

1. h(@)(@) = ¢(2);

2. if vy is such thatx + +y is a principal representation then

take y(drop a(h(x))) = take y(h(2)) ;
3. ify is alimit operator therdrop a(h(x)) = h(2).

Proof. If a = 0 then takez = z. By iterativity, h(z)(0) = ¢(x), so the first
statement follows. The other two hold becadsep 0 is the identity.

Consider the casa > 0; let & = 8 + 0 be the principal representation. Define
z = 1(take é(drop B(h(z)))) € X. By iterativity, h(x)(a) = ¢(z). To prove the
second equality, note that < v would givea ++v = 8+ +v = 8 + v with

8 < «, contradicting the assumption that+ ~ is a principal representation.
Hencey < § which impliesy < p wherey is the selfish ordinal next . Thus,
by Theorem 3.4.6(i)ake y(drop a(h(z))) = take y(h(z)). If ¢ is a limit operator
then Theorem 3.4.6(ii) immediately givdsop a(h(z)) = h(z). a

3.5 Non-Deterministic Transfinite Corecursion

We start with providing a new definition of corecursion whistthe counterpart
of Definition 3.4.1(ii) in the case where functions with sefdransfinite lists as
values are considered. Denote the set of all subsessf 5. We use the set
comprehension syntax of the well-knowhnotation [17].

Definition 3.5.1. Let X, A be sets. Take € X — 1+ Aand¥ € STList A —
pX. We say that a functio” ¢ X — p(TList A) is corecursive orp andV iff
the following twocorecursion conditionkold:

39

1. if o(x) = a € Athen, for every € F(zx), head! = a, and
if o(z) € 1thenF(x) = {nil};

2. for any selfis’\ < « and transfinite list € (0, — A) such that there
exists anm € F'(x) for whichtake Am =1,

{m € F(z) | take A\m =ledropAm} = |J F(z) .
zeW(l)

Lemma 3.5.2. Let X, Abesets. Lep € X — 1+ Aand¥ € STList A — pX.
Assume that’ € X — p(TList A) is corecursive orp and¥. Suppose being
an ordinal with principal representation++. Letx € X andl € TList A, |I| = o
such that there exists an € F'(x) such thattake om =1[. Then

{m € F(z) | takeom =l edropom} C U F(z) .
zeW(drop al)

Proof. If « =0, the claim follows directly from the premises. So suppase 0.
Proceed by induction on As~ > 0, we havex < o, so the induction hypothesis
holds fora. Let 8 + § be the principal representation @f

Then, for arbitraryk € TList A,

k€ {m € F(z) | takeom =l edropom}
<= dm € F(z) (takeom =1 A dropom = k)
< dm € F(x)(
take a(take om) = take ! A
drop a(takeom) = drop ol A
drop y(drop am) = k
)
< dm € F(z)(
takeam = takeal A
takey(dropam) = dropal A
drop y(drop am) = k
)
<= 3d € {m € F(x) | takeam = takea ! ® drop am}
(takeyd =dropal A dropvyd = k)
= 3d e U F(z)
zeW(drop SB(take a 1))
(takeyd =dropal A drop~vyd=k)

40

<= dz € ¥(drop f(take al)) 3d € F(z)
(takeyd =dropal A dropvyd=k)
<= dz € ¥(drop [(take al))
(k € {d € F(2) | takeyd = drop ol e drop v d})
= 3z € U(drop f(takeal) (ke |] F(w)
wew(drop al)

= ke |J Fw).
we¥(drop al)

This completes the proof. a

Theorem 3.5.3 claims the existence daegestfunction meeting certain condi-
tions rather than a unique function like it was in TheoremZij. The order of
functions is defined componentwise, being based on thedasian order.

Theorem 3.5.3.Let X, Abe sets.Lep € X — 1+Aand¥ € STList A — pX.
Assume/(l) = ¥(drop A1) for all selfish ordinals), v with A < v < o and
transfinite listsl € (0, — A). Then there is a largest functioh ¢ X —
p(TList A) being corecursive op and¥.

Proof. Let functionH € X — p(TList A) be defined with

_ [{nil} if p(z) ¢ A
Hz) = { {l € TListA | headl=a A P()el} if pz)=ac A}

whereP(l) means that

for all o < |I| with principal representation = « + -,
Jdz € ¥(drop a(take ol)) (p(z) = (o))
and,
with principal representatiofi| = « + v,
Jdz e U(drop al) (p(z) ¢ A) .

We are going to show thdf is the largest function being corecursive gandv.
The proof is divided into many cases and subcases.

1. Show thatH is corecursive orp and¥.

1.1. Corecursion condition 1.

If p(x) =a € Aandl € H(z) thenhead ! = a by definition of H. If p(x) ¢ A
then H (z) = {nil} by definition of H.

1.2.Corecursion condition 2.

41

Letz € X. Fix a selfish ordinalh < « and a transfinite list € (0, — A) such
thattake A\m = [for somem € H(z). ThenH(z) # &, hencep(z) = a € A.
Take an arbitrarye € TList A. We are going to show that

ke {me H(zx)|take A\m =ledropAm} <= Jz e ¥()(k € H(2)) .

1.2.a.The casék| = 0, i.e.k = nil.

1.2.a.€). Assumenil = drop Am for m € H(x) with take Am = [. Thenl =
m € H(z). By P(l), we gety(z) ¢ A for somez € ¥(drop0l) = ¥(l). Then
H(z) = {nil} > k for the same:.

1.2.a.0). Assumenil € H(z) for somez € ¥(l). Theny(z) ¢ A. Choose
m € H(x) such thattake A\m = [. Thenhead! = head m = a by definition
of H. Take an arbitrary ordinal < || with principal representation = « + ~.
Asm € H(x) ando < |m|, there exists av € ¥(drop a(take om)) such that
p(w) = m(o). Asm(o) = (o) andtake om = takeol, we have shown the first
part of P(l). The other part follows fronp(z) ¢ A andz € ¥(l).

1.2.b.The casek| > 0.

1.2.b.€). Fix m € H(z) such that = take A\m andk = drop Am. Then\ <
|m| with principal representation = 0 + A, so we havep(z) = m()) for some
z € W(take Am) = ¥(l). It suffices to showk € H(z). As p(z) = m(A) €
A, we must shovwhead k& = m(A) and P(k). The former comes frorhead k& =
(drop Am)(0) = m(\ + 0). We now proveP (k).

1.2.b.€).1. Takeo < |k| with o = a + y being its principal representation. Then

¥ (drop a(take o k)) = ¥(take y(drop o k))
= Y (take y(drop a(drop A m)))
= ¥(take y(drop(A + o) m))
= U(drop(X + a)(take(X + 0)m)) .
Note thatA + o < A+ |k| = |m|. If @ > 0 or A > ~ then, usingP(m), we
getk(o) = m(A + o) = p(w) for somew € ¥(drop(A + a)(take(A + o) m)) =
Y (drop a(takeok)). If « = 0 and A < ~ then, usingP(m) together with the

restriction imposed oW, we getk(o) = k(v) = m(y) = o(w) for somew €
V(take ym) = ¥(take v k). The first clause oP (k) follows.

1.2.b.€).2. Take|k| = a + +, the sum being a principal representation. Then
¥ (drop a k) = ¥(drop a(drop A m)) = ¥(drop(A + a)m) .

Note that) + |k| = |m|. If &« > 0 or A > ~ then, usingP(m), we getp(w) ¢ A
for somew € ¥(drop(A + a) m) = ¥(drop a k). If o = 0 and\ < ~ then, using

42

P(m) together with the restriction imposed d@n we getyp(w) ¢ A for some
w € ¥(m) = ¥(k). The second clause @t(k) follows.

1.2.b.0). Assumek € H(z) for somez € W¥(l). Fix m € H(x) such that
take Am = [. It suffices to show + k£ € H(x). As p(z) = a € A, we have
to checkhead(l + k) = a and P(I + k). The former comes frorhead(l + k) =
head ! = head m = a. We now proveP(l + k).

1.2.b.0).1. Leto < |l + k| = |I| + | k| with principal representation = 3 + 4.

If o < Athen, asm € H(z), we havep(w) = m(o) = (o) = (I + k)(o) for
w € ¥(drop B(take om)) = ¥(drop S(take ol)) = ¥(drop S(take o(l + k))).

Assumeo > X now; leto = A+ «. If 7 = 0 then, ask € H(z), we havey(z) =
k(0) = (I + k)(0). In this casefs = 0 ando = A, so

Y (drop fB(takeo(l + k))) =¥() > = .

It remains to consider the case> 0. Letm = o+ be the principal representation.
If « >00r\>~thens =X+ aandd =~. Note that

¥ (drop a(take 7 k)) = ¥(drop a(take m(drop A(l + k))))
= Y(drop a(drop A(take o(l + k))))
= YU(drop(X + a)(take o(l + k)))
= YU(drop S(take o(l + k))) .

Thus we havep(w) = k(1) = (I + k)(o) for w € ¥(drop B(take o(l + k))). If
a =0and) < ytheng =0 andé = . Note that

U(takey k) = ¥(takey(drop A(l + k))) = ¥(drop A(take y(I + k)))
= U(takey(l + k)) = ¥(takeo(l + k)) .

Thus we havep(w) = k() = k(v) = (I + k)(v) = (I + k)(o) for somew €
V(take o(l + k)).

In all cases, we have proven the first conditionRgf + k).

1.2.b.0).2. Let |k| = a + ~ be the principal representation. df > 0 or A >
v then, sincek € H(z), we havep(w) ¢ A for somew € ¥(dropak) =
U(drop(A + a)(l + k)). If « = 0 and\ < ~ then analogously we havg(w) ¢ A
for somew € ¥(k) = ¥(drop A\(l + k)) = ¥(I + k). In both cases, the second
clause ofP(l + k) follows.

2. Show that if somé’ is corecursive orp andV¥ thenF C H (i.e. F(z) C H(z)
for everyx € X).

If o(z) ¢ AthenF(z) = {nil} = H(z). Letnowp(x) = a € Aandtakd € F(z).
Thenhead ! = a by corecursion condition 1.

43

Takeo < |I| with principal representation + . By Lemma 3.5.2,

{m € F(z) | takeom = takeol e dropom} C U F(z) .
zeW(drop a(take ol))
Thusdrop ol € F(z) for somez € ¥(drop a(take ol)).
If o < |I| then obviouslydrop ol # nil. ThusF(z) # {nil} implying ¢(z) = b €
A. Now head(drop ol) = b, i.e. p(2) = l(0). If 0 = |I|, we getz € ¥(drop «l)
andnil € F(z). Theny(z) € A would contradictF’ satisfying corecursion condi-
tion 1, hencep(z) ¢ A. Altogether, this giveg’(l). Consequently, € H(x). O

To finish this section, we show that the functiéh constructed in the proof of
Theorem 3.5.3 is not the only one being corecursiveo@mdy .

Note that the corecursion conditions hold trivially whesev
Fz) = {nil} if p(x) ¢ A
1%} otherwise

foreveryr € X.LetX ={0,1}, A= {0} andp(0) =0, (1) ¢ A. Let¥(l) = X
for everyl. ThenF'(0) = @ while H(0) > 0 : nil.

3.6 Connections between Two Corecursions

The corecursion theorems (Theorems 3.4.2(ii) and 3.5.3% weoven indepen-
dently on each other. Nevertheless, the two corecursi@aralogous. This sec-
tion points out the relation between them.

The following result states that using our corecursion efgbcond type for defin-
ing one-element sets is equivalent to the corecursion dirbteype.

Theorem 3.6.1.Let X, A be sets. Takew € X — 1+ A, as well asy €
STList A — X and¥ € STList A — X such that¥(l) = {¢(l)} for every
I € STList A. Assume thaf € X — TList A is corecursive orp and. Then
F(x) = {f(z)} is the largest function corecursive gnand¥.

Proof. We show first that" is corecursive orp and?. Take an arbitrary € X.
If o(z) € A then, for everyl € F(x), obviouslyhead! = head(f(x)) = o(z).
If p(x) ¢ AthenF(z) = {f(z)} = {nil}. Take now a selfish and a transfinite
list! € (05, — A) such thatake A m = [for somem € F'(x). This obviously
impliestake A(f(x)) = [and
{m € F(z) | take A\m =l e drop Am} = {drop A(f(z))}
= {f(¥(take A(f ()} = {f (D)}
=FeM) = |J F@) .

zew(l)

44

SoF is indeed corecursive apandv.

LetnowG € X — p(TList A) be any function corecursive gnand?. We show
by transfinite induction o that

Ve € X VI e G(x) (f(x)(o) = 1(0)) 3.2

for every ordinab < . Firstly, we obtain

x) ifplx)e A
£(2)(0) = head(f(x)) = {‘j() ot:]pér\avise } = head1=1(0)
foreveryr € X andl € G(x). Consider now any non-zero< o and assume Eq.
3.2 holding for allt < o. Takeo = v + 8 with v selfish and3 < o. Fixz € X and
[€ G(x) arbitrarily. The induction hypothesis impli¢d > v <~ |f(x)| > 7,
as well agake v(f(x)) = take vy, as well asf(z)(5) = k(73) for everyz € X and
k € G(z). By corecursiveness @f,

U ¢@

z€W¥(take v 1)

G(y(takev1)) .

{m € G(z) | takeym = takey [e dropym}

Sodrop v! € G(y)(take v1)). Hence

f(@)(0) = f(x)(y +) = (drop~(f(2)))(B) = (f (¢ (takey(f(x)))))(5)
= (f(i(takey1)))(B) = (dropy 1)(B) = I(y +) = I(0) .

This shows thaf'(z) = { f(z)} 2 G(x) for everyz € X,i.e.GC F. 0
There is also a result of more general kind relating the tweaarsions.

Lemma 3.6.2. Let X, A be sets. Take € X — 1+ A, as well as¥q,¥, €
STList A — X such thattn C ¥, (i.e. ¥1(I) C ¥,(l) for everyl € STList A).
Assume botl# (1) = ¥1(drop A1) and¥, (1) = ¥, (drop A1) for all selfish ordinals
Ay with A < v < « and transfinite listd € (0, — A). LetF; €¢ X —
p(TList A) be the largest function corecursive gnand ¥, and f, € X —
w(TList A) be the largest function corecursive grand¥,. ThenF; C F5.

Proof. Let P, and P, denote the conditiorP from the proof of Theorem 3.5.3
defined for; andy,, respectively. Lefi; and H, be the corresponding functions
H defined in the same proof. The proof shows that= H; andF, = H,. So it
suffices to checl;(x) C Hy(zx) for all x € X which is an easy case study by the
definition of H using the assumptio#n, C ¥,. O

45

Theorem 3.6.3.Let X, A be sets. Takew € X — 1+ A, as well asy €
STList A — X andV¥ € STListA — pX such thaty(l) € ¥(l) for every
| € STList A. Assume both)(l) = ¢(drop A1) and¥(l) = ¥(drop A!) for all
selfish ordinals), v with A < v < oc and transfinite listd € (0, — A). Let
f € X — TList A be the function corecursive opandy and F' € X —
p(TList A) be the largest function corecursive grand¥. Thenf(x) € F(z) for
everyx € X.

Proof. Define?’(l) = {¢(l)} for all I € STList A. By Theorem 3.6.1F"(x) =
{f(z)} is the largest function corecursive gnand¥’. Since¥’(l) = {y(l)} =
{(drop A1)} = ¥'(drop A1) for all selfish ordinals\, vy with A\ < v < o and
lists! € (0) — A), Lemma 3.6.2 applies and gives the desired result. O

Theorem 3.6.3 made all the assumptions which are neededve any of the two
corecursion theorems. In contrast to it, Theorem 3.6.1msswonly the corecur-
sivness off ony andy, no further assumptions except the special shapeare
needed.

46

CHAPTER 4

PROGRAM SLICING
WITH RESPECT TO TRANSFINITE
SEMANTICS

As the main contribution of the thesis, this chapter corstain expansion of the
mathematical framework of transfinite trace semantics gmaf of correctness
of standard algorithms of program slicing w.r.t. a clasgafisfinite semantics.
The theory is developed for control flow graphs to keep thatitnent abstracted
from syntactic details and to drop the need for assumingtstred control flow.
We generalize the traditional notion of control flow graphtriansfinite control
flow graph which is obtained from traditional one by addingafisfinite arcs”
representing possible escaping from infinite loops.

4.1 Configuration Trace Semantics

We work as much as possible on control flow graphs to obtaifotmiresults for
a wide class of programming languages. Just say we have amatiye language
Prog whose programs are all finite and involve neither recursebre¢t or mu-
tual) nor non-determinism. In examples, we use ubiquitgudastic constructs
belonging to the most popular imperative programming |laggs.

To describe program slicing, the first demand to semantitisaisit must trace
movement of control, as well as changing of evaluation ofaldes. Program
points of a programsS' are potential locations of control during executionsSof
To achieve iterative semantics, locations of control in@pdure must be distin-
guished by call string (e.g. the starting point of a procedtirvhen called from@)
and when called fronR # @ are different program points). As there is no recur-
sion, the set of all program points of a fixed program is fifliteere is one special

a7

program pointf calledfinal corresponding to the empty (or finished) computa-
tion. For every prograny, there is a program poirit among the program points
of S — the initial point.

A configurationis a pair of a program point andsdate the latter containing an
evaluation of variables. LePP, State and Conf denote the set of all program
points of all programs, the set of all states, and the setlafoafigurations, re-
spectively; saConf = PP x State. The configuration with program poiptand
states is denoted by(p | s). Let Var be the set of all variables arichl denote the
set of all possible values of variables.

This section copes with semantics where the meaning of agmog a function

whose values are sequences of configurations expressistefivby-step compu-
tation process. Hence the states of Chapter 3 are actuatyaations of config-
urations. This principle holds also in the remaining sewiwvith the difference
that the configurations are a little more complicated.

As transfinite configuration trace semantics differ froonderd configuration
trace semantics only by the occurrence of “transfinite §f@gsconcentrate to the
latter in our discussion here. For ordinary steps, just sahave fixed a transition
functionnext € Conf — 1+ Conf = Conf U { L} such thanhext(p | s) = L iff

p = f. Applying next represents making an atomic computation step and just the
final program point enables no further computation.

Consider the following way to define transfinite semantigsaf@rogram which
contains a while-loop. One has to provide principles forifigdimit configura-
tions of endless sequences of them. It means that one mustlsith the limit
program point and the limit state. As explained in Sect. i 8Jffices to provide
rules for lists of selfish length (in terms of Definition 3.2uid Theorem 3.3.3, we
are definingy).

For the limit program pointim p of a transfinite lisjp coming up as the sequence
of program points visited during a repetition of the body of/laile-loop for w
times, take the program point where the control would goefhedicate on top
of this loop would evaluate téf. For other transfinite lists of program points,
define the limit point to be constantly

This ensures that, after executing the body of a loopdiotimes, we reach a
configuration where we have “overcome” the loop. Alogpi | e B do T'in
this semantics means “whilB holds, doI’, but never more thaw times”.

In the limit statdim s of a state lisk, a variableX has value if the transfinite list
of the values ofX during the transfinite computation representedsIsyabilizes
to v; if the list does not stabilize then the value &f is ambiguous T). This
choice is to some extent arbitrary; some non-stabilizirgueaces of values may
possess limits of some other kind being natural to use idstéd . Giacobazzi

48

and Mastroeni [5] have an example where the limit of the nabibzing sequence
1,2,3,...is taken to bev.

Now for every transfinite configuration list= ({p, | so) : 0 < =) with selfish
length~, define

We) = {next(head c) if vy=1 e} @.1)

(imp | lims’) otherwis

wheres’ is the transfinite list obtained fromby keeping only those states which
occur when control passes through the beginning of the viddp which causes
the infinite computatior. Then we have) € STList Conf — 1 + Conf.

By Theorem 3.3.3, there exists a functibne 1 + Conf — TList Conf being
iterative onid € 1 + Conf — 1 + Conf andt. The desired transfinite semantics
7T € Prog — State — TList Conf is achieved by defining (S)(z) = h(is |)
for every progrant and initial state. It is easy to verify that) is a limit operator;
hence the semantics is even corecursive.

Definition 4.1.1. Let C' be a set of configurations such thak | i) € C for
everyS € Prog andi € State. (We do not requireC’ C Conf since, in the
following sections, we use a wider kind of configurationsenbte the function
being iterative orid € 1+ C — 1+ C andy € STListC — 1+ C byiter and,

for all S € Prog andi € State, define transfinite configuration trace semantics
corresponding ta) by

TH(S)(i) = iter v (is | i) .

Being strict, applying Theorem 3.3.3 needs fixing an ordiahich is an upper
bound of lengths of all transfinite lists obtained as valdesioiterative functions.
We can choosex arbitrarily; Theorem 4.3.8 shows that taking= w® ensures
any program being executed to the end of its code.

In this semantics, the execution of the program in Exam@dlewith initial state
{x — 1} goes as follows:

O {x=1} =0 {x—=1}H =0 {x=1})—_....

w steps

— 1| {x—=1}) =2 {x—=0}).

So it reaches program poiRnce just like the slice and computes the same value
(0) for x. Semantic anomaly has disappeared.

Note that replacing’ with s in the definition ofy) (Eg. 4.1) would cause another
kind of trouble.

49

Example 4.1.2.The second program is a slice of the first w.r.t. crite{¢® i)}:

while %rue do (while %rue do (
=1,
2 =2 — 2 =2

));

3 3

Having s at place ofs’ in Eg. 4.1 means that the sequence of values whose sta-
bilization determines the value of a variable after the lomplves all values this
variable has during the infinite execution, not only the galobserved at top of
the loop. In the example, this would mean that the valué at 3 is T in the

first program bu® in the second. Hence the essential property of slicing lis sti
not met. Usings’ in Eq. 4.1 ensures the value bfat 3 being?2 also in the first
program. O

The problem observed here arises because the intuitive inmderstanding slic-
ing, followed also by the standard slicing algorithms, asssi that the values of
variables immediately after a loop are computable accgrttiriheir values at the
head point of while-loop. Transfinite semantics must folttwg principle.

In the case of while-loops, defining limit configurations so®t make much trou-
ble. The choice of the limit program point is particularlyasghtforward because
there is just one natural way to escape from the loop — goirigdgoint where

control would fall if the predicate evaluated to false.

If the control flow is unstructured, such an obvious choicedhrot exist. Ob-
scurity can arise also in the case of structured control ffowexample, with
statements likdor eak in C as, in the presence of such statements in the loop,
more than one natural way to leave the loop exists. But if angliage allows a
priori infinite loop constructions liké oop .S, there is no natural ways to leave
at all. The intuition tells us that one should choose the @wgpoint lexically
following the loop, taking the structure of the program imicount (e.qg., if the
loop-construct is the only statement in another loop thershauld fall to the
beginning of the outer loop).

The latter intuition is based on the following general pifite. To ensure a trans-
finite semantics being in harmony with program slicing, tinatl program point
should be the point where control would fall if the loop wesenoved.

We illustrate this principle on two examples on unstruaiucentrol flow. We use
our abstract program point notation in goto-statementsesiine code is primarily
intended to be illustrative rather than strictly followisgme syntax rules of a
fixed language. Each if-statement incorporates only ondmdhe program.

50

Example 4.1.3.

‘read a; ‘read a;

if 'a <0 then 2goto 8; if la < 0 then ?goto §;
if 3a = 0 then *goto 6; if a = 0 then *goto 6;
Sgoto 8; —

a :=a + 1;’goto 9; ba :=za + 1;

8goto 5; 8

9

Suppose the slicing criterion {89, a)}. The loop consisting of statemeriisand

8 does not affect the value af, therefore it is sliced away. As a result of this
transformation, control reaches program pa@iso in the case > 0 (wherea

is the input value o8). If a < 0, control bypasses this program point.

To be consistent with such way of slicing, a transfinite sdainarmf the original
program must jump té after the infinite loop if it started & (the case: > 0)
and to9 if it started at8 (the casex < 0). This way, the limit point of the loop
depends on how far backward we observe it. Thus if the seosaistiof form7,,
then is not a limit operator and the semantics is not corecursive. O

Example 4.1.4 Consider the following modification of Example 4.1.3:

read a;lread b; Oread a;

if 2a < 0 then 3goto 13; if 2a < 0 then 3goto 13;
if “a = 0 then ®goto 11; if “a = 0 then °goto 11;
égoto 9;

if 7o =0 then 8goto 7; |—
% :=b - 1;%oto 13;

Ha :=a + 1;?goto 14; Hg -z a + 1;
Bgoto 7; 13
14 14

Some stuff concerning a new varialiiehas been added in comparison with Ex-
ample 4.1.3 (the new stuff is at pointsand 6-9). If the slicing criterion is still
{(14,a)} then our aim is to slice this away resulting in the same progaa in
Example 4.1.3.

Denote bya the initial value ofa again. To justify this slicing with transfinite
semantics, control still must reach program pdimtduring the transfinite run
of the left-hand program it > 0 and bypasd1 if « < 0. Things are more
complicated than in Example 4.1.3 because of the new lodp-&into which
control falls wheneves + 0.

51

What should the limit point of this new loop be? The most retahoice seems

to be9. But then, after control has reachgdit starts looping between program
points7, 9-10, 13, and the entire sequence of lengthof the program points

visited during this looping does not depend on whethisrpositive or negative.

There are two imaginable ways out from this trouble. Oneasttire limit program
point of the loop aF—8 depends on the program points through which control has
reached it — even if these program points are visited onlyefimiimber of times.
Then we can declare that the limit point9sif control came to the loop via
and14 otherwise. Another approach is that the limit program pofrthe second
loop (including7, 9, 10, 13) depends on some information embedded into the
computation which occurred before control even reached ghit of lengthw.
This would mean that the semantics is not even iterativedrsémse of Definition
3.3.1.

None of these solutions are captured by our theory developé#us thesis. To
obtain a semantics to which our theory would apply, prograimtpl0 must be
added into the slice and the limit point of the loop7at9, 10, 13 must bel4
irrespective of. a

4.2 Transfinite Control Flow Graphs

To go on, we take a slightly different view to transfinite gaemantics. Firstly,
we must describe the transition in termsyofather thany in terms of the transi-
tion like in Sect. 4.1. This enables one to formulate all aaperties of semantics
in terms of properties of). Secondly, we must augment our configurations with
additional information about the atomic computation stgpceted just before
reaching this configuration. In particular, this holds foe tonfigurations reached
via jumping out from an endless computation. Explicit eringdf such “trans-
finite steps” into the semantics simplifies formalizatiorsofme useful properties
later.

We will define the augmented configurations formally in thetreection; this
section introduces the appropriate context for doing it. @aphs are all directed;
many well-known notions of graph theory are used, the nacgsiefinitions and
properties were given in Chapter 2.

Let PP be a set of formal objects callgnlogram pointswhere one poinf € PP

is calledfinal. This in principle coincides with that of Sect. 4.1. Additally, let
AS be a set of formal objects encoding all conceivable atommemgdation steps,
e.g. assignments, predicate tests etc., including thsfiréte steps seceding from
loops. The transfinite steps form a subdét,, of AS.

We require eacle € AS incorporating also information about the program point

52

to which control reaches after making this step; call thisgpam pointtarget of
e and denote it by(e). Hence the elements &S cannot be just code fragments,
they must enable one to locate the code in terms of our progmants.

Assume that eacl € AS determines also th&ourcepoint of e which we denote
by o(e). For ordinary steps, it is the program point from which stepstarts. For
transfinite stepg, the source ot is meant to be the program point at which the
values of variables are recorded for finding limit state wHeimg the transfinite
stepe. Relying on Example 4.1.2, the source point of the transfisiép escaping
from a while-loop should be the head point of this loop.

This way, the systenrTCFG = (PP, AS, (o, 1)) forms a (possibly infinite) di-
rected graph (Definition 2.1.1). We call global transfinite control flow graph
and the elements AS,, transfinite arcs This graph is a formal object like code.
The explanations in the preceding paragraphs take intauat@iso the purpose
the vertices and arcs can obtain via associating with a sgrean

Assume further thaf is reachable from every program pointTi€FG while no
arc starts fromf. The former means that transfinite arcs must in principlevall
to escape from any place the computation has driven andeefinishing the run.
So(TCFG, f) forms a flow graph in the sense of Definition 2.2.1.

Denote byCFG the directed graph obtained froffCFG by removing transfinite
arcs; call itglobal control flow graph The word ‘global’ is used in both cases
with the aim of reflecting the property of the graph to incogte all programs. To
handle control flow graphs of specific programs, we introdhegparallel notions
of local flow graphs.

Call local transfinite control flow graplany systemG, /) whereG is any sub-
graph of TCFG being closed w.r.t. finding reachable vertices and arcs,/asd
any vertex ofGG. The vertex is calledinitial. A graph is calledocal control flow

graphif can be obtained from a local transfinite control flow gragtrémoving

all transfinite arcs.

Note that any local transfinite control flow graph contafnand forms a flow
graph of Definition 2.2.1 together with Any local control flow graph also must
containf but not necessarily forms a flow graph in the sense of Defm@i@.1.
The initial vertex can be different for different local flowagphs while the final
vertexf is common for all.

For every progrant € Prog, let tcfg S be a local transfinite control flow graph
calledtransfinite control flow graph of. Let cfg .S, the control flow graph ofS,
be the local control flow graph obtained frantg S by removing transfinite arcs.
The initial point oftcfg S is denoted byig; call it the initial point of S. The set
of all program points of a prograrfi can therefore be denoted bi(tcfg S) (or,
equivalently, byl (cfg .5)).

53

The treatment may seem mysterious at first glance since we fired control
flow graphs for programs before fixing a semantics. The commiowl tells that
finding control flow graph of a program cannot be done withadvking the se-
mantics of this program.

The idea is that we take a big graph (the global transfinitathvnfolds all pos-
sible transition systems ever needed, define semanticsmis tef this graph and
then programs can get their semantics via an appropriat@ingg — tcfg S. In

our theoretical study, we just say that some mapping is fieedtting the details
of its definition, and are therefore able to introduce it meledently of semantics.

Another reason for this approach is that control flow gratike,they are tradi-
tionally computed according to the code, are not semaktigakcise, they are
conservative approximations. Finding a semanticallyipeecontrol flow graph is
not decidable because a program doing it would decide whatkest statement
really involves branching or whether a while-loop can teraté normally. To ob-
tain results about slicing algorithms, the theory must wagptdecidable control
flow graphs. In particular, this holds for transfinite arcsahhalso must be decid-
able because the analyses being preformed in order to foebgiiust be able to
follow them.

Definition 4.2.1. Let S be any program.

(i) Call S finiteiff tcfg S contains only a finite number of vertices and arcs.

(if) Call S regulariff S'is finite and, for every transfinite akcin tcfg .S, t(e) is
the immediate postdominator efe) in tcfg S.

The notion of finiteness of programs places the traditiométieiness of programs
into the context of control flow graphs. The definition of riagity refers to the
postdominance order which is well-known but also explaibgdis in Sect. 2.2
for abstract flow graphs. Informally, a program pagnpostdominates a program
point p if control definitely reacheg whenever it has reacheal (provided the
computation finishes at). The immediate postdominator pfis the least w.r.t.
postdominance order point postdominatimgThe notion of regularity is not in-
tended to be a counterpart of any standard notion. It sthwdransfinite arcs
respecting some order in the global graph. This conditianbdeen formed keep-
ing the treatment of while-loops from Sect. 4.1 in mind. Ehehe limit program
point of a while-loop was defined in such a way that it coindigéth the imme-
diate postdominator of the head point of the while-loop.

54

4.3 Augmented Configuration Trace Semantics

Augmented configurationare pairs of form(a | s) wherea € PP + AS and

s € State. If e € AS, the configuratione | s) encodes the situation where state
s has been obtained by performing atomic steporp € PP, the configuration
(p |) means that computation startgatith initial statei. To achieve uniformity,
the left components of augmented configurations which lgetonPP may be
calledentrance steps

Denote the set of all augmented configurationsA®onf, so AConf = (PP +

AS) x State and takingC' = AConf in Definition 4.1.1 satisfies its conditions.
Denote also

st(a | =5,
_ {r if aec AS
a otherwis
arc(a | s) = {a if ac AS
1 otherwis

confc = (ppc| ste) .

Sost € AConf — State, pp € AConf — PP, arc € AConf --» AS,
conf € AConf — Conf (with --, we denote partial functions).

In the rest of this chapter, we deal with transfinite semarndfdorm7,, for oper-
atorsy € STList AConf — 1+ AConf. Not everyy gives rise to a reasonable
semantics, because different augmented configurations in one lisedooter-
lapping information which can be contradictory. To be refmydefining sound-
ness of a given operatar, we at first have to be able to make clear for every
looping computation which program points the loop causiig ¢omputation ac-
tually consists of. The following definition states it.

Definition 4.3.1. Letl € TList AConf\ {nil}. We call a program poinp looping
in [iff, for every ordinalo < ||, there exists an ordinad, o < ¢ < |I|, such that
pp(l(0)) = p. The set of all program points looping ins denoted byoop .

Clearly a computatior contains looping program points only/|if is a limit or-
dinal. Note that not necessarily all program points of amitdly running while-
loop are looping in this infinite computation (there can kenlohes of conditionals
in the body of the loop being used a finite number of times orfigwever, the
head point of an infinitely running while-loop (meaning tredp being executed
infinitely many times) definitely is looping.

The writing (0 — ¢) denotes the transfinite list of lengthwhose single element
is c.

55

Definition 4.3.2. Lety € STList AConf — 1+ AConf.

(i) Call the operatoryy soundiff, for everyc € AConf, both following condi-
tions hold:

1. if (0 — ¢) # L thenarc(y¥(0 — ¢)) ¢ AS and o(arc(y»(0 — c¢))) =
pp(c) # f, otherwisepp(c) = f;
2. for everyé¢ € AConf, conf ¢ = conf ¢ impliesy(0 — ¢) = (0 — c¢).

(i) Call the operatory transfinitely soundff it is sound and, for every €
AConf and selfish ordinaly satisfying bothl < v < |iter c¢| andy < «, if we
denotel = take «(iter ¢ ¢) then both following conditions hold:

1. ¢(l) # L, arc(y(l)) € ASo and o(arc(y(1))) € loopl;
2. for everyl € STList AConlf, map confl = map conf [implies(l) = ¥(0).

(i) For everyc € AConf, definenexty, ¢ = ¥(0 — c).

Soundness of guarantees that the program point of any component of alist r
resenting a computation according«ocoincides with the source of the atomic
step of the next component (provided it exists). Soundnisssssates thaf cor-
responds to the finished computation. Transfinite soundiatess that every end-
less initial part of any computation can be continued wittaagfinite step and the
source of this step is looping in the computation observéas€ and some other
facts are more precisely stated and proven in Lemma 4.308vbel

It is also required that ordinary steps use ordinary arcdewtnansfinite steps
use transfinite arcs. This is a matter of simplicity. In theecaf constructs like
| oop S discussed in Sect. 4.1, it is obvious that escaping the loagt imvolve
a new arc, but it is semantically neat to demand that actadllipfinite loops use
some special kind of arcs for transfinite escapement evédmeittexists an ordi-
nary arc between the same vertices. Hence an ordinary atingten a program
point of predicate test is still used only if the predicataleated to the truth value
corresponding to this arc. For while-loops, it means thatdtdinary arc from the
beginning point to the point immediately after the loop iblded with a transfinite
arc between the same program points.

The second conditions of soundness and transfinite soundogsther demand
that the additional information in configurations in compan to Sect. 4.1 have
no influence on the computation process. The meaning ofibmaext,, is the
same as in Sect. 4.1. It is indexed witlto emphasize the dependenceyan

By p — g, we denote thaf is an immediate successor pfi.e. there is an arc
from pto g, in TCFG.

Lemma 4.3.3. Lety € STList AConf — 1+ AConf.

56

(i) Letl =iter cfor somec € AConf. Take an ordinab < |I| and leto = a+
~ be the principal representation. Thésop (take ol) = loop (take y(drop «1)).
(i) Let! = itervyc for somec € AConf. For everyo < |[l|, (o +1) =
nexty,(((0)).
(iif) Assume) being sound. For every € AConf, next, c= Liff ppc=f.
(iv) Assume) being sound. Let € AConf be arbitrary. Ifpp(next, c) = g and

pp ¢ = p thenarc(nexty, c) goes fromp to g in TCFG. Moreover, ifp € V(cfg S)
for some progran®' thenq andarc(next,, c) belong tocfg S.

(v) Assumey being sound. Let = iter ¢ for somec € AConf. For every
ordinal o with o + 1 < |l|, arc(l(o + 1)) goes frompp(l(0)) to pp(l(o + 1)) in
TCFG.

(vi) Assumaey) being transfinitely sound. Lét= iter vy ¢ for somec € AConf
wherebyjl| < . Then|l| = 0o+ 1 andpp(i(o)) = f for some ordinab.

(vii) Assume) being transfinitely sound. Lét= iter« ¢ for somec € AConf
whereby|l| < . LetA < [I| be a limit ordinal. Them\ < |I|, arc(I(\)) € AS
ando(arc(l()))) € loop (take A 1).

Proof.

(i) Assumep € loop (takeol). Take arbitraryr < |take~(dropal)| = 7.
Thena + m < a + v = o and there exists a satisfyinga + 7 < ¢ < o such that
(takeol)(0) = p. Thenm < o — a < v and

(take y(drop al))(¢ —) = (drop al)(¢ — a) = I(¢) = (takeol)(¢) = p .

Assume nowp € loop (takey(drop al)). Take arbitraryr < |takeol| = o.
Define® = 7 — «aif 7 > o and7 = 0 otherwise. Therr < ~ and there exists a
satisfying@ < ¢ < v such thaftake y(drop a))(¢) = p. Thena < o+ p < 0
and

(take ol)(a + p) = (drop a(take 01))(0) = (takey(drop a1))(0) = p .

(ii) By iterativity and Definitions 4.1.1 and 4.3.2(iii),
l(o+1) = id(¢)(take 1(drop o1))) = ¢(take 1(drop ol))
= (0 — (drop 0!)(0)) = (0 — I(0)) = nexty(l(0)) .
(i) Straightforward by Definitions 4.3.2(i) and 4.3.4Jii
(iv) Denotee = arc(nextyc) = arc(y(0 — c)). AS (0 — c) = nextyc #
1, soundness gives(e) = ppc = p ande ¢ AS.,. We also haver(e) =
t(arc(nexty c)) = pp(nexty c) = gq. Thereforep — g, implying together with
p € V(cfg S) thatqg andarc(nexty, c) both are incfg S.

57

(v) Straightforward by parts (ii) and (iv).
(vi) Let || = a + ~ be the principal representation.if> 1 then, by iterativity
and transfinite soundness used together with Corollarg 3nke obtain

I(|1]) = (take y(drop al)) # L

which contradicts the concept of length. Hence 1 and, taking = o, we obtain
the desired form. Using part (i), we get

L =1U(l]) =l(o+1) = nexty((0)) ,

hence, by part (iii)pp(l(0)) = f.

(vii) By (vi), |I| is a successor ordinal, so = |I| cannot be the case. Lat =

« + ~ be the principal representation; then> 1. By transfinite soundness and
Corollary 3.4.8,e = arc(l{()\)) = arc(y(takey(drop al))) € AS ando(e) is
looping intake y(drop 1), hence, by (i), also itake A [. O

Traditionally, any computation with a program redounds agkk in its control
flow graph. Lemma 4.3.4 states that, in the case of transBeiteantics based on
a transfinitely sound operator, a similar property holds &bs transfinite control
flow graphs: any transfinite computation according to a fipitggram.S can be
traced by a walk irtcfg S.

Lemma 4.3.4. Lety € STList AConf — 1 + AConf be transfinitely sound and
let S € Prog be finite. Let = 7,,(S)(¢) for ani € State and leto, m be ordinals,
o < m < |l|. Denotep = pp(l(0)) and g = pp(I(7)). Thenp and g are vertices in
tcfg S; furthermore, there exists a watk = (vp, e1,v1,..., ey, vy,) frompto g
in tcfg S such that the following holds:

1. there exist ordinal®y, . .., ¢, such thato < o1 < ... < 9, < 7 and, for
everyi =1,...,n, arc(l(o;)) = e; andpp(l(0i)) = vi;

2. for every ordinalp with o < ¢ < 7, there exists an = 1,...,n such that
arc(l(o)) = &;.

Proof. Argue by transfinite induction ofv,) ordered lexicographically.

If o=m =0thenp = q = ig and the desired result follows trivially (one can take
the empty walk fromig to itself).

If 0 < o = 7 then applying the induction hypothesis ok 0, 7 <+ o gives that

p is a vertex intcfg S. Thus the empty walk frormp to p works.

Letfinally be0 < o < 7. Letm—o0 = a+~y be the principal representationof- o
and letr = 8 + v be the principal representation of By iterativity, [(7) = 1(m)
wherem = take y(drop 31).

58

If v =1 then, by the induction hypothesis, find a walkom pp(i(0)) to pp(i(o +
«)) in tefg S which meets the two properties. By soundness,

ofarc(I(m))) = ofarc(i/(m))) = pp(head m) = pp(head(drop 1)) = pp(i(3)) -

By Lemma 3.4.5(ii),5 = o+ «. Thus the desired walk can be obtained by append-
ing arc(I(m)) andpp(l(r)) to the end of.

Consider the case > 1 now. Let M be the set of all arcs used by computation
drop(o + 1)(take 7 [). The induction hypothesis implies that every aréunis in

tcfg S. By assumptions)M is finite. For everye € M, let &, be the least ordinal
such thatirc((drop(o + 1)(take 7 1))(£e)) = e. By transfinite soundness,

o(arc(l(m))) = o(arc(yp(m))) € loopm .

Findo > 3, 0 > maxeem(o + 1 + &) such thato(arc(l(r))) = pp(m(e — B)).
As o < o < m, the induction hypothesis implies that there is a walkrom
pp(l(0)) to pp(l(0)) meeting the two properties. The desired walk can be obtained
by appendingirc({()) andpp(i()) to the end ofv. O

Lemma 4.3.4 implies that all executions of any fixed finitegoean in a trans-
finitely sound semantics use only finitely many program poartd atomic steps
altogether. The Lemma 4.3.5 states that, under similangssons, every endless
computation has a non-empty final part during which it vi&isping program
points only.

Lemma 4.3.5. Lety € STList AConf — 1 + AConf be transfinitely sound and
let S € Prog be finite. Letl = 7,(S)(:) for ani € State. For every ordinal
o satisfying0 < o < ||, there exists an ordinalr < o such thatpp(l(o)) €
loop(take o) for everyp satisfyingr < o < o.

Proof. Let P be the set of all program poingsbeing reachable fromy in TCFG
and satisfyingp ¢ loop(take ol). For everyp € P, choose&, < o in such a way
that pp(i(0)) = p for no p satisfyingé, < ¢ < o. This definition is sound for
everyp asp is not looping intake ol and0 < o.

As P C V(tcfg S), itis finite and we can fing = max,cp £, < 0. Choose any
such thatr < ¢ < o. By constructionpp(i(o)) ¢ P. By Lemma 4.3.4pp(l(0))
is reachable fronpp(1(0)) = is in TCFG. Thuspp(l(0)) € loop(takeol). O

We introduce some more restrictions to be imposed on secsanti.t. which we
are going to work. Like soundness and transfinite soundtiesg are formulated
as properties of semantics.

Irrespective of the possible universal rules for choosimit boints, we can notice
a natural property desired in probably all situations. Nigriee limit point must

59

be outside the loop causing non-termination as the ideanfi¢hansfinite seman-
tics is to be able to overcome non-terminating parts of ogy. This observation
leads to the kind of transfinite semantics we call escaping.

Definition 4.3.6. Call a transfinitely sound operatap € STList AConf — 1 +
AConf escapingiff, for everyc € AConf and selfishy satisfyingl < v <
|iter ¢ |, if we denotd = take ~(iter ¢ c¢) thenpp(y(1)) ¢ loop L.

After any infinite computation according to a finite progranan escaping seman-
tics, control reaches a program point which it has not \dsikering an infinite final
part of this computation. The transfinite semantics for eddlops considered in
Sect. 4.1 is obviously escaping by the definitiorliafi p for program point lists
p.

Next we are going to prove thai® is an upper bound of the lengths of transfinite
computation in escaping semantics, irrespective of thguage. This is achieved
by Theorem 4.3.8. AImost the same result{"!) was obtained by Giacobazzi
and Mastroeni [5] for 1P programs.

Denote the set of all program points visited by computatity occur c.

Lemma 4.3.7. Lety : STList AConf — 1+ AConf be an escaping operator.
For every natural numbek and arbitrary ¢ € Conf,

litery ¢| > w® = |loop (take wk(iterwc)> | >k,
literp ¢| > w* = |occur <take(wk +1)(iterypc)) | > k .

Proof. Prove by induction ort. The casé = 0 is trivial.

Suppose that the claim holds fbrand assume
literi ¢| > WP = wF - w=wF+wh ..
—_—
w
Thus the listake w**1(iter ¢ c) divides intow subparts, each of length”*. Each
subpart is of forntake w*(drop(w* - n)(iter v c)) for a natural numben.
Apply Corollary 3.4.7 withh, = iter), A = w¥, = w**! (note that being selfish
is equivalent to being a power af), andr = w**1. We obtain

take wk”(drop(wk -n)(iter ¢ ¢)) = take w**!(iter ¢ d) 4.2)

whered = (itery ; take w® ; ¥)"(c). Both sides of (4.2) are different from
since our assumptidriter ¢ c| > w**! implies| drop(w* - n)(iter ¢ c)| > wk*1.
This allows to concludgiter ¢ d| > w**! > w* and

take o(drop(w* - n)(iter 1 ¢)) = take ofiter 1 d)

60

for all o < wF*1. Now the induction hypothesis gives

| occur (take(wk + 1)(drop(w* - n)(iter v c))) |

= | occur (take(wk + 1)(iter¢d)) | >k . (4-3)

Let m = |loop (take w**1(iter ¢ c)) |. It is possible to finch such that the com-
putationdrop(w* - n)(take w**!(iter ¢ c)) visits thesen looping program points
only. Thereforen > k+1 since, by (4.3), the firsb” +1 steps of this computation
visit more thank program points.

Finally, if |iter v c| > w**! thenw**! < . The representatiow**! = 0+ wr*!
is principal, hence, by iterativity and escapement,
pp((iter 1 c)(w"*1)) = pp(¥(take w**!(drop O(iter ¢ c))))
= pp(¢(take w**(iter ¢ c)))
¢ loop (take w (iter c))

Therefore| occur (take(w**! + 1)(itertp c)) | > k + 1. O

Theorem 4.3.8.Let ¢y € STList AConf — 1+ AConf be an escaping oper-

ator and letS be a finite program. For every € State, we have|7,(S5)(i)] <
WV ~ Hw,

Proof. By conditions,! = 7,,(S)(s) = itery(is | s) for some states. Suppose
1] > w!V(89l Then Lemma 4.3.7 implies thatvisits more program points
than there is irefg S which is impossible. Hence the first inequality follows. By
finiteness|V (cfg S)| < w, implying the second inequality. O

For everyn € N, the length of the transfinite computation of the program

while true do whil e true do

is w™. The least common upper bound of the numhefds w®. Hence Theorem
4.3.8 achieves the best conservative estimation commdhpmgrams (provided
our language is powerful enough to enable arbitrary finifgluef nested loops).
The following definitions refer to control dependence. Triosion is well-known;
however, itis also explained in Sect. 2.3 for abstract floapbs; it is called simply
dependence there.

Informally, a program poing is control dependent o if there is a computation
starting atp and finishing af which avoidsg but, after some possible atomic com-
putation step, it reaches a program point where it is alresaghpssible to avoid

61

q later. (Note that, in the case of transfinite semantics,Hings computation is
not the same as terminating computation since also noriftatimg computations
can finish.)

For everyP C PP, we denote byt P the predicate being true on configurations
cwith ppc € P. For everyX € Var andc € AConf, the value ofX at statestc

is denoted byal X c.

Definition 4.3.9. Let € STList AConf — 1+ AConf.

(i) Call the operatory regulariff « is transfinitely sound and, for everye
AConf and selfishy satisfyingl < v < |itert c|, if I = take~y(iter ¢ c) then
there is exactly one program poipt € loop! with transfinite arc fromp to
pp(¥(1)) andpp(¢(1)) postdominates all program points inop /.

(i) Call the operatory intuitive iff both following conditions hold:

1. for everyc,d € AConf, selfish ordinalsy, § satisfyingl < v < |iterv ¢|,
1 < § < |iterypd| and X € Var, if we denote = take~(itery c), k =
take d(iter ¢ d) then

map(val X)(filter(at { o(arc(y'(1)))}))
= map(val X)(filter(at { o(arc(y)(k))) }) k)
impliesval X (1(1)) = val X (1(k));

2. foreveryc € AConf, selfish ordinaly satisfyingl < v < |iter¢ ¢|, X € Var
andv € Val, if we denotd = take~(iter ¢ ¢) then if there exists an < ||
such thatval X (I(7)) = v for everyr > o, m < [l|, thenval X (¢/(I)) = v.

By construction of the transfinite semantics of while-loapsSect. 4.1, that se-
mantics is regular. Note that every regular operator ispsgasince all postdom-
inators of a vertex differ from it (Theorem 2.2.4).

The notion of intuitivity (Definition 4.3.9(ii)) formalizetwo natural desires about
limits of endless sequences of states. The first is that thi¢ lialue of every
variable depends only on the values this variable possaspesgram point where
the transfinite arc escapes the loop. This is what Exampl@ 41iggested and
what we demanded in our semantics for while-loops in Sett. Phe second is
that if the sequence of values of a variable stabilizes therimit equals to this
stable value — again a condition demanded for while-loopsather words, it
states that, if the value of a variable is changed, this mestaused by a finite
atomic step.

This way, all the properties of operatafsdefined in this section have been cho-
sen having in mind the transfinite semantics for while-loopsstructed in Sect.
4.1. The facts proven about semantics possessing theserfiesmpply to other
semantics inasmuch as they behave similarly.

62

Lemma 4.3.10. Let) : STList AConf — 1+ AConf be an operator.

(i) Lete be regular andl = itervy c for ac € AConf. For every limit ordi-
nal A < |l|, there is exactly one program poipt € loop(take \[) with transfi-
nite arc fromp to pp(l(A\)) and pp(I(\)) postdominates every program point in
loop(take A 1).

(i) Let be intuitive and = iter ¢ c for ac € AConf. For every limit ordinal
A < |l|and X € Var, if map(val X)(take () stabilizes tov thenval X (I(\)) =
V.

(i) Letw be an intuitive limit operator and = iter ¢, k = itervy d for ¢, d €
AConf. For everyX € Var, limit ordinals A\ < |I|, » < |k|, and ordinalsc, (3
such that\ — o and x — @ both are selfish limit ordinals, if

map(val X)(filter(at { o(arc({(\))) })(drop a(take A 1)))
= map(val X)(filter(at { o(arc(k(x))) })(drop [(take & k)))

thenval X (I(\)) = val X (k(x)).

Proof.

(i) Straightforward by regularity and Corollary 3.4.8.

(i) Straightforward by intuitivity and Corollary 3.4.8.
N(iii) Denotey = A — , § = k — B andl = drop a(take \ 1) = take y(drop a),
k = drop (B(take k [) = take 6(drop 3 k). By Corollary 3.4.8~dr0p al=iteryx
anddrop S k = itery y for somez,y € AConf, thereforel = take v(iter ¢)
andk = take é(iter ¢ y). Thus

I(A) = (drop al)(y) = (iter ¢ z)(7) = Y(take y(iter ¢y x)) = (D) ,

k(r) = (drop B k)(6) = (iter v y)(0) = (take d(iter ¢ y)) = P(k) .
Hence, by intuitivity,val X (/(1)) = val X ()(k)), implying the desired claim. O
By p < g, we denote tha postdominatep in TCFG. By Theorem 2.2.4< is
a strict order on program points. The corresponding ndatstrder is denoted by
<.

Lemma 4.3.11. Lety € STList AConf — 1+ AConf be transfinitely sound and
let S € Prog be finite. Letl = 7,,(5)(7) for ani € State and letpp(l(0)) = p €
PP for an ordinalo. Letgq, r be postdominators gf both visited byn = dropol.

If g < r then the first visit of by m occurs before the first visit of

Proof. Let p be the least ordinal for whichp(m(e)) = r; then
r = pp((drop ol)(¢)) = pp(l(o + 0)) .

63

By Lemma 4.3.4, there exists a walk from p to r in TCFG using only the
arcs occurring in the listirop(o + 1)(take(o + o + 1)1). As g < r and bothqg
andr postdominatep, walk w passes through (Theorem 2.2.9). Thus we find an
ordinalm such thatr+1 < | drop(o + 1)(take(o + ¢ + 1) 1)| = (0+0+1)—(0+1) =
o+l1—-1=p—1+1and

q = pp((drop(o + 1)(take(o + 0 + 1)))(7))
= pp((take(o + o+ 1)))(0 + 1 + 7))

= pp(l(o+1+m))
= pp((dropol)(1 + m))
= pp(m(1 +m)) .

Hencem visits g beforerasm+1 < p—1+1givest < p—landl+w < p. O

Lemma 4.3.12. Lety € STList AConf — 1+ AConf be regular and letS €
Prog be regular. Letl = 7,(S)(i) for ani € State. Taker < |I| and assume
arc(l(m)) going fromp to g. Then every program point ifoop (take 7) is tran-
sitively control dependent gn

Proof. If 7 is a successor ordinal, the result holds vacuouslpag (take 7 1) =

@. Assume thereforer being a limit ordinal. Then, by transfinite soundness,
arc(l(m)) € AS andp € loop (take 7w [).

By Lemma 4.3.5, there exists an< m such thatpp(i(0)) = p andpp(l(0)) €
loop (take 7 1) for every o satisfyingo < o < 7. By Lemma 4.3.4, find a walk
from p to g containing precisely the arcs useddwop(o + 1)(take(m + 1)).

As S is regular,q immediately postdominates. As v is regular,qg postdom-
inates all program points itbop (take 7 /), i.e. the program points visited by
drop o(take 7 [). Thusq does not occur inv except at the end. Seo is a walk
from point p to its immediate postdominator whereby no intermediateyzmm
points postdominate. Thus all intermediate program points are transitively-con
trol dependent op (Theorem 2.3.5). By constructiom; passes through all pro-
gram points inoop (take 7 /). Hence the claim follows. a

4.4 Data Flow Approximation

Definition 4.4.1. Letvy € STList AConf — 1+ AConf be a sound operator.
For every arce € AS, letdef,, e C Var be given by

X cdefye
<= Jc € AConf (arc(nexty c) = e A val X(nextyc) #val X c) .

64

Informally, the setdef,, e consists of all variables whose value can be affected
by the atomic computation step The definition implies that it € AS, then
defw e=d.

Lemma 4.4.2. Lety € STList AConf — 1+ AConf be a sound intuitive op-
erator. Letl = iter ¢ for somec € AConf and let ordinalso, = be such that
o< 7 <|l]. LetX € Var be such thatX e def,(arc(i(o))) for no ordinal ¢ sat-
isfyingo < o < w. Thenval X (I(p)) = val X (I(0)) for every ordinalp satisfying
o< oS T.

Proof. Suppose the contrary. Letbe the least ordinal not less tharsuch that
val X (I(p)) # val X(I(0)). Clearlyo < p.

Consider the case= « + 1 for somea. Theno < «, giving
val X (nexty (I(«))) = val X (I(0)) # val X (I(0)) ,

henceX € defy(arc(nexty(l(a)))) = defy(arc(i(0))). Aso < o < m, this con-
tradicts the assumption.

It remains to study the casebeing a limit ordinal. By the choice af, the se-
guence of values oK in computationtake o stabilizes tov = val X (I(0)). By
intuitivity, val X (I(p)) = v. This contradicts the choice of a

Denote bydep the control dependence relationTiFG, i.e.r dep g means that
q is control dependent onin TCFG.

For a binary relationP on a set4, denote byP* the reflexive transitive closure
of P. For a binary relatior? between setsl andB, let P~ € A — p(B) be the
function defined byp € P"(a) <= a P b. The part of state incorporating
only variables in se’ C Var is denoted by;|X.

Next we define the approximating def-sets and ref-sets ajrpro points. Our
treatment is more scrupulous than usual ones: we take iotmat, for example,
that computation of the values of different variables atthme program point
may refer to different sets of variables.

Definition 4.4.3. Lety € STList AConf — 1+ AConf be a sound operator. We
call a pair (defy, ref) data-flow approximation system fgriff

def, € AS — p(Var) and ref € | Y defye+ Y dep(p) | — p(Var)
ecAS pePP

satisfy the following conditions:

65

1. for everye € AS,

def, e C defy e A (e € AS = defye=0) ;

2. for everye € AS, X < defy e andc,d € AConf with arc(nexty c) =
arc(nexty, d) = e,

=std | = val X(nexty c) = val X (nexty, d) ;

st C‘ref(e,X) ref(e,X)

3. foreveryp € PP, q € dep™(p) andc¢,d € AConf withppc =ppd = p,

stc‘ = std‘ = (pp(next¢ c) < g <= pp(nexty d) < q) .

ref(p,q) ref(p,q)

The seidef, p is an upper approximation tef,, p for everyp. These are needed
because, in real situation, we are able to compute consenabproximations
only. Checking whether the value of a variable can changecattain program
point is generally undecidable. The statem&nt def, e could be read asZ
may be updated by the atomic computation stép

The domain ofref, >, s defy e + > pp dep™(p), consists of pairge, X)
with e € AS, X € defy e and pairs(p, q) with p € PP, g € dep™ (p). The
statementZ < ref(e, X) can be read as “the value gf may influence the value
of X in the atomic computation stey. The condition in the definition tells that
if the differences between statesaéit) remain outsideef(e, X) then they do not
affect the value o after the atomic computation sten these states. Similarly,
Z € ref(p, q) can be read as “the value af at p may decide whether control
reaches;”. It is defined for branching program poingsonly as no program point
can be control dependent on a non-branching point. The tiondi the definition
tells that if the differences between given states main outsideref(p, g) then
control, when starting fronp, certainly reacheg either in both cases or in no
case.

Example 4.4.4.
A Cnb—Xq
Zp—:: 7 N X
Zg— 7" 2

e

This figure illustrates an atomic stepwhich refers to variableg;, Z,, Z3 and
updates variableX;, X5, whereby the new value of; is computed byZ; and
Z» only and the new value of, is computed by, andZ3 only. In this situation,
one may takeef(e, X1) 2 {Z1, Z»} andref(e, X) 2 {7, Z3}. a

66

Lemma 4.4.5. Lety € STList AConf — 1+AConf be a sound operator and let
(defy, ref) be a data flow approximation system for it. leet AS and taker, d €
AConf such thatarc(nexty, c) = arc(nexty, d) = e, stc‘ref(e’ X) std‘ref(e x fo
everyX ¢ def, e, and stc\Var\ defu e Thenval X (nexty, c) =
val X (next,, d) for everyX € Var.

= st d‘ Var\defy e"

Proof. If X ¢ def, e thenstc\ref(e x) = std|ref(e x) by assumption and, by Defi-
nition 4.4.3,val X (nexty, c¢) = val X (nexty, d). If X ¢ def, e then, by Definition
4.4.1,val X (nexty c) = val X ¢ = val X d = val X (nexty, d). O

Lemma 4.4.6. Lety € STList AConf — 1+ AConf be a sound operator and
let (def\,, ref) be a data flow approximation system for it. lpdte a program point

and takec,d € AConf such thatppc = ppd = p andste| ;. = std|

for everyq € dep™ (p) with p — g. Thenpp(nexty, ¢) = pp(nexty d).

ref(p,q)

Proof. Denoter; = pp(next, c) andr, = pp(nexty d). Clearlyp — ri and
p — rp. If neither ofry andr; is control dependent omthenr; = r, (Proposition
2.3.6(ii)).

Consider the case where one of them, sayis control dependent op. Then
stc| o = std\ref ., by assumption and; < r, by Definition 4.4.3. It
foIIows tﬁat alsory |s control dependent op since otherwisep < r; <
(Proposition 2.3.6(i)) contradicting the assumptdep rj. ThUSStc|

std|

ref(p,ri)
by assumption ang, < ri by Definition 4.4.3. Consequently;, = r.
0

ref(p,r1)

4.5 Program Approximation

In the rest, we often need the notion of isomorphism for floapips.

Definition 4.5.1. Let (G, ig), (H, ig) be local flow graphs (either transfinite or
not). A bijection~ both between vertices 6f and H and between arcs aF and
H is calledisomorphisniff all the following holds:

1. o(e) = o(€) and (e) = () for everye € E(G);
2. f=f;
3. ig=im;

4. transfinite arcs and only these are mapped to transfinits.ar

67

Denote this situatiorr € (G, ig) — (G, ig). In the case an isomorphism exists,
the graphs are calleésomorphic

For any progranb, denote byaconf S the set of all augmented configurations of
form (a | s) with eithera € V(tcfgS) ora € E(tcfg S). If f is any operator
on vertices and arcs ofCFG then we extend it to vertex sets and augmented
configurations naturally by letting(A) = {a|ac Ae f(a)} and f(a | s) =
(f@@)]s).

Definition 4.5.2. Letvy € STList AConf — 1 + AConf be a transfinitely sound
operator and letD = (defy, ref) be a data flow approximation system for it. Let
S be a program.

(i) Apair(S,rel)is calledrelevance system ¢f w.r.t. D iff S C V(tcfg S) and
rel € V(tcfg S) — p(Var) such that the following holds:

1. fes;
2. rel g \ defy e C rel p for everye € E(tcfg S), p = o(e), g = t(e);

3. if p € V(tcfgS) and X € def, e Nrelq for e € E(tcfg S) and p = o(e),
q = t(e), thenp € S andref(e, X) C rel p;

4. if p € V(tctg S), g € S andp dep q thenp € S andref(p, q) C rel p.

(i) TakeS C V(tcfg S) and letS be a program. We say th&t approximatess
on baseS and D iff there exists an isomorphism € tcfg .S — tcfg S such that
the following holds:

1. for everyc € aconf S, if ppc € S thennext,, ¢ = nexty c;

2. for everye € E(tcfg S), alwaysdef, € C def, e and if o(e) € S then also
def\/ e C def\/ e.

Aclaim Z € rel p can be read asZ' is relevant ap”. A relevance system consists
of a possible result of Relevant Sets analysi$’dagether with the corresponding
slice of S; this analysis forms the basis of a classic way of automatigram
slicing (see, e.g., Binkley and Gallagher [2] or Sect. 4.&haf thesis).

Program approximation, i.e. finding a program approxinga#irgiven program, is
the transformation we consider as the first step in prograrimglwhere irrelevant
statements have been replaced with other irrelevant staisnilrrelevance” of a
statement is equivalent to starting from a point outsidesre. Iltem 2 of Definition
4.5.2(ii) requires that a stepmay update only variables potentially updated also
by e, hence the irrelevance of the updates éoymplies the irrelevance of the
updates be.

68

Proposition 4.5.3. Lety € STList AConf — 1+AConf be atransfinitely sound
operator and letD = (defy, ref) be a data flow approximation system for it. Let
(5, rel) be a relevance system for a prograw.r.t. D.

(i) S approximatesS on baseS and D.

(i) LetS approximateS on baseS and D with isomorphisnt. For everye ¢
E(tcfg S), if o(e) € S thendef,, & = defy, e.

Proof.

(i) Takep = p ande = e for eachp € V(tcfgS) ande € E(tcfg.S). Then
f =fandig = ig like required. The other two conditions also hold trivially

(i) Let e € E(tcfg S) such thato(e) € S be fixed. Choose an arbitrary €
aconf S such thatpp ¢ = o(e). By condition 1 of program approximation (Def-
inition 4.5.2(ii)), next, ¢ = nexty ¢, hencearc(next, ¢) = arc(nexty c) and
st(next, ¢) = st(nexty c). The former equality givearc(nexty,c) = e <=
arc(nexty ¢) = € and the latter givesal X (next, ¢) = val X(nexty c) for all
X € Var implying furtherval X (next, c¢) = val X ¢ <= val X(next,) =
val X ¢. Altogether, this shows that, for al € Var, the claims

Ve € aconf S (pp ¢ = o(e) Aarc(nexty ¢) = e = val X(nexty,c) =valXc) ,
Ve € aconf S (pp ¢ = o(e) Aarc(next,, ©) =€ = val X(next, ¢) = val X ¢)

are equivalent. Appc = o(e) <= ppc = o(€) and~ is a bijection between
aconf S andaconf S, we obtain that the claims

Ve € aconf S (pp ¢ = o(e) Aarc(nexty ¢) = e = val X(nexty,c) =valXc) ,
Ve € aconf S (pp ¢ = o(€) A arc(nexty ¢) =& = val X(nexty c) = val X ¢)

are also equivalent. Note that, for everg: AConf such thatpp c = o(e), there
exists ad € aconf S such thatpp d = o(e) andstd = st ¢ (we can simply choose
o(e) € AS to be the first component). By soundnessxt,, d = nexty, c in such
case. An analogous observation can be carried o fimdaconf S. It follows
that the claims

Ve € AConf (ppc = o(e) N arc(nexty c) = e = val X(nexty c) = ValXc) ,
Ve € AConf (pp ¢ = o(€) Aarc(nexty, c) =€ = val X(nexty c) = val X ¢)

are equivalent as equivalents to the corresponding claions the previous pair.
Note further that, by soundness,

arc(next,c) =e = ppc=o(e) and arc(nexty,c)=¢e = ppc=o(€) .

So we can omit the left components of the premise conjungtiBy Definition
4.4.1,theresulttells thaf ¢ def, e <= X ¢ def, e Hencedef, e = def, @.
O

69

Lemma 4.5.4. Lety € STList AConf — 1+ AConf be a transfinitely sound
operator and letD = (def,,ref) be a data flow approximation system for it.
Let S be a program andS, rel) be its relevance system w.ib. Let.S approx-
imate S on baseS and D with isomorphism-. Let p,q € V(tcfg.S) and let
w = (vo,e1,V1,...,ep,vy),n >0, beawalkfronptoqgintcfg S. LetX € relq.
Leti € N be the least number such th&t e def, €; fornok withi+1 < k < n.
ThenX e rel v;,1 and: is also the least natural number such thdte def, e,
fornok withi + 1 < k < n. Moreover, ifX ¢ def, e;;1 theny; € S.

Proof. Let j € N be the least number such thdt € def, e, for no k& with
j+1 <k < n.Aneasy induction shows thaf € rel v;,; (using the assumption
X € relv, as base case; the step follows framl vy, \ defy esy1 C relvg
holding for all s by Definition 4.5.2(i)).

For everyk with j + 1 < k < n, we haveX ¢ def, g sincedef, e; O def, e
by Definition 4.5.2(ii). Henceé < j.

If X € def, ej,q thenX € defy e;,1 Nrelv;,g implying v; € S by Definition
4.5.2(i). But thenX c def, ej,1 = def, ;7 by Definition 4.5.2(ii) givingj < .

If X ¢ defy, e;41 then, by constructionj = 0 which also leads tg < i. Alto-
gether,i = j and the claims follow. O

Lemma4.5.5. Lety € STList AConf — 1+ AConf be a transfinitely sound
intuitive operator and letD = (def, ref) be a data flow approximation system
for it. Let S be a finite program ands, rel) be its relevance system w.iD. Let
S approximateS on baseS and D with isomorphisn—. Let! = 7,,(S)(s) for an
s € State and leto,m < |l], o < m be such thapp(i(¢)) € S for no ordinal
gsatisfyingo < o < 7. Letp = pp(l(0)), § = pp(i(n)), X = pp(l(o + 1)),
d =arc(l(o+ 1)) and letX € rel q.

(i) Thenval X(i(o + 1)) = val X(I(7)), X € relx and if X € def, d then
peS.

(i) If val X(I(0)) # val X (I(m)) or X ¢ rel pthenX € def, d andp € S.

Proof.
() Letw = (vo, €1,V1, ..., €n, v,,) be a walk fromp to g in tcfg S such that
€1 = arc(l(o + 1)) = d and(vq, ez, va, . .., e,, vy,) USES precisely the arcs whose

~-image occurs inlrop(o + 2)(take(r + 1)).

Suppose € N is the least number such that € def, & for no k with i + 1 <

k <n.ByLemma4.54X € relv;,. If X € defy e;41 then Lemma 4.5.4 also
givesy; € S which together with our assumptions and construction iegpli= 0.

If X ¢ def, e;;1 theni = 0 by choice. Sa = 0.

70

HenceX € defy € fornok with 1 < k < n. Therefore ifo is any ordinal satisfy-
ingo+1 < p < wthenX ¢ defy (arc(l(p))). ConsequentlyX € defy(arc(i(0)))
for no g satisfyingo + 1 < ¢ < 7. By assumptionsy + 1 < n. So Lemma 4.4.2
applies and givesal X (i(o + 1)) = val X (I(w)).

Furthermore, note that € rel v; andv; = x by construction. The last claim of
this part of the lemma follows directly from the last part afrhma 4.5.4.

(i) Supposeval X (I(0)) # val X (I(w)). Using Lemma 4.5.5(i), we get
val X(l(0)) # val X(I(0 + 1)) = val X (nexty(((0))) .

ConsequentlyX € def,, d C def, d C def, d.

SupposeX ¢ rel p. By Lemma 4.5.5(i) X € rel x. By Definition 4.5.2(i),rel x \
def, d C rel p. HenceX € defy d.

By Lemma 4.5.5(i), we have algpe S. O

Lemma 4.5.6. Lety € STList AConf — 1 + AConf be an escaping operator
with o« > w®. Let D = (def,, ref) be a data flow approximation system for it.
Let (S, rel) be a relevance system of a finite prograhw.r.t. D and letS be an
approximation ofS on baseS and D with isomorphism-. Let/ = %(?)(s) for
somes € State and leto, 7 < ||, o < 7 be such thapp(i(g)) € S for no ordinal
o satisfyingo < o < m butpp(i(r)) € S. Letp = pp(I(0)), § = pp(l(r)).

(i) Letx =pp(l(o+1)); thenx < q.

(i) Letr be the immediate postdominatormfThenr £ g only if p dep q.

Proof. By Theorem 4.3.8 and transfinite soundness, computdti@aches the
final point f since, due tdl| < «, the only way to end is reachinggy Note that
S, by Definition 4.5.2(i), is a dependence system(tafg S,) in the sense of
Definition 2.3.7. Astcfg S andtcfg S are isomorphicS is a dependence system
of (tcfg S, f).

() Finding a walk fromx to g satisfying Lemma 4.3.4, we obtain < g (see
also Theorem 2.3.8), hence the first desired claim follows.

(i) Find awalk frompto f = f satisfying Lemma 4.3.4; it must pass through
sincep < r givesp < 7. Thus there exists an ordinalsuch thapp(l(o)) =T.
If o < « then a train of thought analogous to the one in Lemma 4.508(8s
7 < q. Thusr £ gimpliesw < o.
Finally, find a walkw = (vg, e1, v1, ..., ey, v,) fromp to g such thatv; = x and
(v1,€2,va,..., ey, v,) satisfies Lemma 4.3.4. By < ¢ and Lemma 4.3.11yp
passes through no postdominatorspoflhus there exists &; such thatv; dep
g andv;,; < G (Theorem 2.3.4), the former condition implying € S. By
assumptions; = 0. Hencep dep q giving alsop dep q. O

71

4.6 Semantic Correctness of Program Approximation

In this section, we prove preservation of some semanticautiés under program
approximation (Theorem 4.6.3). The result basically stdiat a prograny and a
programsS approximatingS, when both start running from the same initial state,
compute the same transfinite sequence of values of relemanbles.

The proof idea is transfinite induction using Lemmas 4.6d.46.2.

Lemma 4.6.1. Lety € STList AConf — 1 + AConf be a transfinitely sound
escaping intuitive operator withc > w®. Let D = (def,, ref) be a data flow
approximation system for it. Lé6, rel) be a relevance system of a finite program
S w.rt. D and letS approximateS on baseS and D with isomorphisni—. Let

I = Tp(S)(i) andl = T,(S)(i) for some states, i. Take ordinalso, o such that
conf(l(0)) = (p | s), conf(i()) = (p | 3) for a program pointp and statess,

5 such thats\relp = E‘relp' Let 7 be the least ordinal greater tham such that
pp(l(m)) € S; denoteq = pp(l(7)). Then there exists the least ordiralgreater
thano satisfyingpp(I(7)) = g; thereby, both following conditions hold:

1. pp(l(0)) € S fornogwitho < o <7,
2. val X(I(r)) = val X(I(%)) for everyX c relq.

Proof. Let r be the immediate postdominator @fn TCFG. Letx = pp(l(o+1))
andy = pp(l(+ 1)). Note thatx < r andy < 7 (Lemma 2.2.5(ii)), the latter
giving alsoy < r. Asp € S, Definition 4.5.2(ii) together with soundness gives

¥y = pp(next,(I(0))) = pp(next, (B | 5)) = pp(nexty (p | 5)) . (4.4)

Lemma 4.5.6(i) and Proposition 4.5.3(i) together imph q. If r < g then,
by transitivity, y < g. If r £ g then applying Lemma 4.5.6(ii) and Proposition
4.5.3(i) together givep dep q. Asq € S, the latter impliep € S andref(p, q) C
rel p. Hences\ref(p’q) = §|ref(p’q) by assumptions. Thusp(next, (p | s)) < q iff
pp(nexty(p | 5)) < q by Definition 4.4.3 and soundness. Using Eq. 4.4, we
obtainx < ¢ iff y < g. Thusy < g also in this case.

Let 7 be the least ordinal greater tharsuch thatp(I(7)) = § (the computation
drop(o + 1)l reachegj since it starts frony andy < g). Let be the least ordinal
greater thar such thatpp(I(7)) € S; denotes = pp(I(7)). Thens < 7 since
gcs.

Lemma 4.5.6(i) now impliey < s. If r < s then, by transitivityx < s. If r £ s
then applying Lemma 4.5.6(ii) givgs dep s. Ass € S which is equivalent to

s € S, the latter givep € S andref(p, s) C rel p. Hences|ref(p 5= §|ref(p 5 by

72

assumptions. Thusp(nexty (p | 5)) < s iff pp(nexty(p | 5)) < s by Definition
4.4.3 and soundness. Using Eq. 4.4, we obtaiq s iff ¥ < 3. Thusx < s also

in this case.

Altogether, we have got that bothands are common non-strict postdominators
of x andy. So eitherg < sors < g (Theorem 2.2.6). Ag occurs indrop(o + 1) [
not later thars, Lemma 4.3.11 implieg < s. Henceg < 5 and Lemma 4.3.11
givesT < 7. Consequentlyg = 7 giving alsos = g. This proves the first part of
the lemma.

To prove the second part, chooge € rel g arbitrarily. Assumptions enable
pp((0)) € S for no o with o < o < 7. By the first partpp(i(0)) € S for
no ¢ with @ < ¢ < 7. Lemma 4.5.5(i) together with Proposition 4.5.3(i) give
X e rel(pp(l(o + 1))) = rel x. Denotee = arc(/(o + 1)).

Consider the cas& € defy e. By Definition 4.5.2(i),X € relx givesp € S
andref(e, X) C rel p. So,s\ref(eX = |ref(e x) by assumptions. By soundness,
Definition 4.4.3, and Definition 4. 5 2(ii),

val X (I(0 + 1)) = val X(nexty(l(0))) = val X (nexty(p | s))
= val X (nexty (p | 3)) = val X (nexty,(p | 3))
= val X (nexty (p | 5)) = val X (nexty (1(0)))
—val X(@+1)) .

By Lemma 4.5.5(i) and Proposition 4.5.3(i),
val X(I(m)) =val X(l(o+ 1)) and val X(I(7)) = val X(I(o + 1)) .

Consequentlyyal X (I(r)) = val X (I(%)).

If X ¢ defy, e then, by Lemma 4.5.5(ii) and Proposition 4.5.3¢@] X (I(r)) =
val X (I(0)) andval X (I(7)) = val X (I(2)) wherebyX ¢ rel p. The latter implies
val X (I(0)) = val X(I(0)) by assumptions. Hence the claim follows. a

Lemma 4.6.2. Lety € STList AConf — 1+ AConf be a regular intuitive limit
operator and letD be a data flow approximation system for it. I(6t rel) be a
relevance system for a regular prograshw.r.t. D and let.S approximateS on
base$S and D with isomorphism-. Letl = 7,(S)(¢) and] = 7,(5)(i) for some
statesi, i. LetA > 1 be a selfish ordinal. For each ordingl <), let o¢, o be
ordinals less tharjl| and|/|, respectively. Denotgp, | s¢) = conf(l(o¢)) for each
¢ < \. Assume the following:

1. pp(i(00)) € S, pp(I(00)) € S;

2. forevery with0 < £ < A, o¢ is the least ordinal greater than any ordinal
o, Withn) < & such thatpp(l(og)) € S

73

3. forevery with0 < £ < A, o¢ is the least ordinal greater than any ordinal
0, withn < £ such thatpp(l(o¢)) € S;

4. for eacht <), conf(l(o¢)) = (p¢ | 5¢) with states, such thats§|relp5 =

gﬁ‘rel pe’

Letn be the least ordinal greater than any @f for whichpp(i()) € S; denote
q = pp(l(m)). Then there exists the least ordirmagreater than any of, for which
pp((7)) = g; thereby, both following conditions hold:

1. pp(i(0)) € S for no ¢ < 7 greater than any ofi;
2. val X(I(m)) = val X (I(7)) for everyX < relq.

Proof. Let7 be the least ordinal greater than anygand letr be the least ordinal
greater than any df;. Let7 = o + v and7 = @ + 7 be principal representations.
As a < T, there exists the least ordinalsuch thato, > «. Analogously, let
be the least ordinal such thag > @. As) is selfish, there ar@ many ordinals
o¢ > « and as many ordinalse > @. Hencedrop /[visits at least\ program
points inS, the first of them beingp(i(o.)). Analogouslydrop @ visits at least
A program points irg, the first of them beingp(I(o;)).

Let t = pp(l(7)) andE = pp(I(7)). We claim thatf = t. For proving it, sup-
pose the contrary, i.& # t. As the semantics is regular,postdominates ev-
ery program point ifoop (take 7) and# postdominates every program point in
loop (take71). As S is finite and every non-empty final part efke { visits
program points of, there is at least one program point loop (take71) N S.

By assumptionss € loop (take7). So, in particulars < t ands < f. Hence

t andt are common postdominators ®fAst # %, eithert < T or ¢ < t must
hold (Theorem 2.2.6). Suppose the former; the proof coairanalogously in the
other case.

By regularity, T is the immediate postdominator of a program pgiriboping in
take 7 (see also Corollary 2.2.10(ii)). For arbitrajy< 7, there is a subcomputa-
tion of drop n(take 7) driving control froms tos throughy; find a corresponding
walk w;, from s to s throughy satisfying Lemma 4.3.4.

Let w,, be the last program point on the part of, starting withy such that

y < wy,. Then the program points passed through by the partsifrting with the
last occurrence ofv,, do not postdominatev,, since otherwise they would post-
dominatey contradicting the choice of,,. Therefore all these program points are
transitively control dependent om, (Theorem 2.3.5). In particulaty, dep” s.
Ass € 5, we have alsav,, € S. As S is finite, we have an unbounded set of
ordinalsy for which w,, is the same, say,. Sov € loop (take 71) N S implying

74

v € loop (take7!) N S. Hencey < v < t < {, a contradiction sincé was
supposed to be the immediate postdominatar.of

Consequentlyf = t.

As 7 < m, there is a walk front to g according to Lemma 4.3.4. Thus< g
(Theorem 2.3.8). Lef be the least ordinal greater than or equaftsuch that
pp(l(7)) = g (the computatiorlrop 7 | reacheg since it starts front andt < q).
Let be the least ordinal greater than or equat &uch thapp(I(7)) € S; denote
5 = pp(l(7)). Thens < 7 sinceg € S.

We have als@ < 5 (Theorem 2.3.8). So either < s or s < g (Theorem 2.2.6).
As the first visit ofg occurs not later than the first visit efby drop 7/, Lemma
4.3.11 impliesg < s. Thusg < s and Lemma 4.3.11 gives < 7. Consequently,
@ = T giving alsos = g. This proves the first part of the lemma.

To prove the second part, choo&e € rel g arbitrarily. Letx = o(arc(i(1))) €
loop (take 7). By Lemma 4.3.12x is transitively control depended on by every
program point inoop (take 7 [). As there are program points §famong them, it
follows thatx € S. Thusx € loop (take¥(dropal)). As tcfg S andtcfg S are
isomorphic, there is a transfinite & drom x to t. By regularity, the loopake 7 [
is escaped from using

If t = gthenX € relt; if t # gthent < m, t ¢ S and Lemma 4.5.5(ii) to-
gether with Proposition 4.5.3(i) also imply¥ € relt. HenceX € rel x since
rel t C rel x by Definition 4.5.2(i). Thus by assumptiorxsg,\{x} = 55\{)(} for ev-
ery ordinal§ < A such thaip, = x. This covers all places wheteke v(drop)
visits x andtake ¥(drop @!) visits x. This means

map(val X)(filter(at {x})(drop Omax(c.0)(take T 1))

= map(val X)(filter(at {x})(drop Omax(c.7)(take T) .

Lemma 4.3.10(iii) givesal X (I(7)) = val X(I(7)). As X € rel g, using Lemma
4.5.5(ii) together with Proposition 4.5.3(i) giveal X (I(7)) = val X (I(x)) and
val X (I(7)) = val X(I(7)). Hence the desired claim follows. O

Theorem 4.6.3.Lety € STList AConf — 1+ AConf be an regular intuitive
limit operator withoc > w® and D be a data flow approximation system for
it. Let (S,rel) be a relevance system for a regular progreimw.r.t. D and let

S approximateS on baseS and D with isomorphism-. Let] = 7,(5)(s) and

1 = Ty(S)(s) for somes € State. Denotem = filter(at S) I, m = filter(at S) .
ThenS is regular, map(pp ;) m = mapppm and, for every¢ < |m| and
X € rel(pp(m(€))), the equalityval X (m(£)) = val X (m(€)) holds.

Proof. S is regular asS is regular and the conditions of program regularity are
stated in terms of transfinite control flow graphs and preseby isomorphism.

75

Let (o¢ : £ < |m|) be the increasing family of all ordinals indexing the compo-
nents ofl satisfyingat S; thenm(&) = i(o¢) for every{ < |m|. Analogously, let
(0, : n < |m|) be the increasing family of all ordinals indexing the comguis
of [satisfyingat S. Denotep, = pp(m(¢)).

We start with showing by transfinite induction g@nthat pp(Z(ag)) = p¢ and
val X (I(o¢)) = val X(I(o¢)) for every X € rel Pe¢-

Consider the casé = 0. As pp(((0)) = 5= is = pp((0)) ands = s, we have
0op =0 <= 9y = 0 and the desired claim holdsdfy = 0. If og > 0, the claim is
implied by Lemma 4.6.1 fov < 0,0 < 0, ™ < 0p.

For¢ > 0, assume the claim holding for smaller ordinals and let« + v be the
principal representation.

If v =1, apply Lemma 4.6.1 foo < 04,0 < 0q, ™ < 0¢ = 04+1. The required
assumptions about program points and states, it step hold by induction hy-
pothesis.

If v > 1, apply Lemma 4.6.2 fos,, < 0,4, @ando,, < 0,4, for everyn < v, 7 «
o¢. The required assumptions hold due to construction andtrmuhypothesis.
It remains to showm| = |m|. By Theorem 4.3.8|/| < . By Lemma 4.3.3(vi),
computation/ ends atf. By Definition 4.5.2(i),f € S. So there is & such that

pp(m()) = p; = f. By the proof so farpp(m(¢)) = pp(I(o¢)) = f = f. Thus
|m|=|m|=¢+1. 0

The assumption of Lemma 4.6.2 and Theorem 4.6.3thata limit operator (in
the sense of Definition 3.4.1(i)) is mandatory as shown byniipta 4.6.4.

Example 4.6.4.Consider the following transformation:

Ox := true; Ox := fal se;

i :=0; i = 0;

while 2i >= 0 do (while 2i >= 0 do (
Swhile x do ; Swhile x do ;
ix 1= false; - 4 := fal se;
5 =i+ 1 5 =i o+ 1

););

6 6

TakeS = {1,2,5,6} andrell = rel2 = rel5 = rel6 = {i }. Then(S,rel) is
a relevance system in the original program w.r.t. naturd#jined def-sets and
ref-sets. It can be obtained by computing the slice w.ritergon {(6,i)} in the
traditional way of relevant sets.

76

The transfinite control flow graphs of these two programs k@ly isomorphic;
the isomorphism is reflected by the numeration of progranmtpoiThe second
program differs from the first by the first statement only. As set of variables
assigned is the same, the second program qualifies as axmpgtion of the first
on bases.

The different value assigned toinvolves a significant difference between the
lengths of run of these programs. The first program worksferw + 1 steps (the
inner infinite loop is executed during the first executiontad body of the outer
loop and skipped afterwards) while the second program wfmksv + 1 steps
only (the inner infinite loop is always skipped).

The principal representation af + w is w + w while the principal representation
of w is 0 + w. Hence the state of variables at the final configuration ofuineof
the first program (where the computation reaches afterebptiunning the outer
loop) is determined by the sequence of intermediate stategmng when control
passes through 2, exclusive of the first passing as the tatteins inside the first
w steps. The state of variables at the final configuration ofiheof the second
program is determined by the sequence of all intermediatesbccurring when
control passes through 2.

In the first sequence, variableobtains valueg, 2,3, .. .; in the second sequence,
it obtains value$), 1,2, 3,.... If ¢» were not a limit operator, the limit state given
by ¢ might be different on these two sequences and hence thddnaradion
would not be correct, Theorem 4.6.3 would not hold. O

Example 4.6.4 implies also that the correctness of staralgodithms for program
slicing w.r.t. transfinite semantics (studied in Sect. ©8)ds generally only if
the semantics is corecursive. This conclusion may be doleastt for semantics
whose definition is grounded on principal representatidregdinals.

One may argue, relying on Example 4.6.4, that the way in wttehprincipal
representation splits the computation process is unridteuse this splitting
does not respect the computation intervals correspondiribet composite (i.e.
non-atomic) statements. For languages with structurett@diow, one may for-
sake principal representations and ground on the syntastste only (like in our
recent paper [11]). In the theory developed in this thesesywanted to keep the
theory abstracted from language details, therefore wedgubtind on some other
mechanism of structuring computation processes. If liofifrocesses are always
defined via limit operators then this choice makes no essadifference.

a4

4.7 Program Simplification

After finding a suitable approximation to a program, thel@vant statements must
be safely removed to obtain a slice. We call this step progsiamplification.

First of all, as simplifing means omission of computatiompstand the latter corre-
spond to arcs in control flow graphs in our treatment, the Kiitgtion operation
on control flow graphs must take sets of arcs as argumentsalNsets of arcs
are allowed: one cannot remove a branching structure whalataining the inner
statements of it. The sets of arcs of control flow graphs winesebers may be
removed simultaneously will be called total here. The fdrongerion is given by
Definition 4.7.1(i).

Definition 4.7.1.

(i) Call asetD C E(TCFG) total iff, for every arce € D, all arcs starting
from o(e) in TCFG, as well as from any vertex control dependento6s), belong
to D.

(i) For every totalD C E(TCFG), define a transformatiofallp, € PP — PP
as follows:

Vp € PP (fallp p=min{x € PP | p < x A Ve € D (o(e) # x) @ x})
(minimum is found w.r.t. postdominance order).

Roughly, the idea behind the concept of totality is that a potation step can be
omitted only if all computation steps control dependent toaré also removed.
This condition on control dependence implies the same alstidnsitive control
dependence.

Definition 4.7.1(ii) is correct ag € {x € PP | p < x A Ve € D (o(e) # x) ® x}
and the set of all postdominators pfis finite and linearly ordered for eveny.

It states thatallp p is the least w.r.t. postdominance order program point non-
strictly postdominating from which no arc ofD starts. Particularly, if no arc of
D starts fromp thenfallp p = p. Intuitively, fallp p is the program point where
one falls through fronp when the arcs oD disappear.

Proposition 4.7.2 characterizes the totality property fahidoperator. Proposition
4.7.3(i) tells that a transfinite arc can belong to a totalosdy together with all
arcs used in endless computations from which control escalpag this arc. The
other claims of Proposition 4.7.3 are corollaries of thid.fa

Proposition 4.7.2. Let D be a total set of arcs.

(i) Forevery program point, either all or none of the arcs stagtfrom it belong
to D.

78

(i) Letw be a walk fromp to g in TCFG using arcs ofD only. If no arc ofD
starts fromgqg thenfallp p = g.

(iii) For everyp, there is a walk fronp to fallp p using arcs fromD only.

(iv) For everyp such thatfallp = f, every walk fromp to f uses arcs fronD
only.

(v) Letp, g, s be program points such that bothand g are reachable frons
using arcs ofD only. Thenfallp p = fallp q.

Proof.

(i) By Definition 4.7.1(i), if an arc starting fronp belongs toD then all arcs
starting fromp belong toD.

(i) Show first thatp < g. If g = f then this is the case trivially. Therefore
assumeg # f. Supposep £ g. Let r be the last vertex om before reaching;
such thatr £ g. As there is an arc starting fromnot belonging taD while there
is an arc starting from belonging toD, Definition 4.7.1(i) implies thag is not
transitively control dependent on Hence all walks fronr to g pass through a
postdominator of (Theorem 2.3.5). This must hold also for the part of walk
from r to q. So there is an passed through by that part of such thatr < s.
By the choice ofr, we haves < q. Thereforer < g by transitivity, giving a
contradiction.

Now p < g impliesqg € {x € PP | p < x A Ve € D (o(e) # x) ® x}. Suppose
the desired claim does not hold; then there is a program poitqg such that
tc{x€PP|p<x A Vec D(o(e) #x)ex}.If p=tthenw must be empty
(as no arc oD starts from it), hence = g, giving a contradiction tp = t < gq.
If p < tthenw passes through (Theorem 2.2.9); but then there are arcgof
starting from¢ contradicting the choice af

(iii) Consider a walk fromp to 7. By Proposition 4.7.2(ii), its longest initial part
using arcs fromD only ends afallp p. This is the desired walk.

(iv) Consider arbitrary walko from p to . By Proposition 4.7.2(ii), its longest
initial part using arcs fronD only ends afallp p = f. As no arc starts fronf,
this initial part ofw coincides withw. Hence all arcs ofv belong toD.

(v) There are walks froms to p, from s to g, from p to fallp p, and fromgqg to
fallp g, all of which use arcs oD only. Putting together, we obtain walks from
s to bothfallp p andfallp g using arcs fromD only. By Definition 4.7.1(ii), no
arcs of D start fromfallp p or fallp g. Now by Proposition 4.7.2(ii)fallp p =
fallp s = fallp gq. ad

Lemma 4.7.3. Lety € STList AConf — 1+ AConf be a regular operator with
x > w® and S a regular program. Let = 7,(S)(:) for some: ¢ State. Let
D C E(tcfg S) be total.

79

(i) For every limit ordinalm < ||, all arcs between program points looping in
take 7 [are in D iff arc(l()) € D.

(i) For every limit ordinalmr < |I|, if drop o(take 7) uses arcs outsid® for
everyp < 7 thenarc(l(r)) ¢ D.

(iif) For any ordinalo < |I|, if o is the least ordinal greater than such that
arc(l(0)) ¢ D theno is a successor ordinal. Thereby,df < |/| then we have
fallp(pp(l(0))) = o(arc(l(c))) and otherwiseall p(pp(l(0))) = f.

(iv) For any ordinalo < ||, there exists a largest ordinal such thatarc(l(o)) €
D for everyp satisfyingo < ¢ < m. Therebyfallp(pp(i(0))) = pp(i(7)).

(v) Forevery ordinalr < |I|, there exists a least ordinalsuch thatarc(I(p)) €
D for everyyp satisfyingo < ¢ < ; thereby,arc(i(0)) ¢ D.

(vi) There exists a largest ordinal < |/| such thatarc({(0)) ¢ D. Thereby,
fallp(pp(l(0))) = f.

Proof.

(i) Suppose that all arcs between program points loopingke 7 [are inD.
As o(arc(I(m))) is looping in this computation, an arc starting from it bejerio
D. Hence, using Proposition 4.7.2(i), alsx(l(7)) € D.

Supposearc(i(w)) € D. By Lemma 4.3.12, all program points loopingtirke 7 [
are transitively control dependent eti(r)). By Definition 4.7.1(i), all arcs start-
ing from all these vertices are .

(i) By Lemma 4.7.3(i),arc(I(m)) belonging toD would imply all arcs between
program points which are looping take 7 [belonging toD. By Lemma 4.3.5,
we can findo < 7 such that all program points visited lajtop o(take 7 [) are
looping intake . All arcs arc(i(o)) for o < ¢ < 7 would have to be inD
contradicting the assumption.

(ii) Let o be fixed. Clearlyr < |I|.

Show the first claim. lfo = |I| theno is a successor ordinal and we are done.
Supposer < |I| ando being a limit ordinal. By Lemma 4.7.3(i), there exists an
arc outsideD between program points loopingtiake o I. By Proposition 4.7.2(i),
take o [must use arcs outsidB endlessly which contradicts the choice ®of
Consequentlyy is a successor ordinal.

Prove the second claim now. We have- 7 + 1 for am > o. Find a walkw from
pp(l(0)) to pp(l(m)) using precisely the arcs dirop(o + 1)(take o [). All the arcs

of w belong toD. No arc of D starts frompp(l()) sincearc(i(c)) ¢ D. Hence
fallp(pp(l(0))) = pp(l(r)) by Proposition 4.7.2(ii). I < |I| thenpp(i(7)) =
o(arc(l(0))), otherwisepp(i(m)) = f. This concludes the proof.

(iv) Leto be the least ordinal greater thasuch thatrc(i(o)) ¢ D. By Lemma
4.7.3(iii), c = m + 1 for aw. Thenarc(l(g)) € D for everyp satisfyingo < o < 7
and clearlyr is the largest such ordinal.

80

If o < |I| then Lemma 4.7.3(iii) givefallp(pp(l(0))) = o(arc(i(0))) = pp(l(x)).
If o =|l| then, again by Lemma 4.7.3(iijall p(pp(l(0))) = f = pp(l(~)).

(v) Asarc(l(o0)) € D for everyp satisfyingr < ¢ < 7, the set of ordinals where
the minimal has to be found is non-empty. Hence the first cfaltaws.
For the second, supposec(l(o)) € D.If o = £ + 1 for some¢ thené < o
while arc(l(p)) € D for everyp satisfying < o < w. If ois a limit ordinal then
using Lemma 4.7.3(ii) contrapositively gives thétop £(take ol) does not use
arcs outsideD for somet < o for which we then haverc(i(0)) € D for everyp
satisfyingé¢ < ¢ < . Hence both cases contradict the choice.of

(vi) Let I(o) be the last component éf Defineo to be the least ordinal such
thatarc(i(0)) € D for everyp satisfyingo < o < o. By Lemma 4.7.3(v), this
definition is correct andrc(l(0)) ¢ D. By constructionp is the largest ordinal
less tharjl| such thatrc(l(0)) ¢ D. For the second claim, note that= |/| is the

least ordinal greater thamsuch thatarc(i(7)) ¢ D. Thus, by Lemma 4.7.3(iii),

fallp(pp(i(0))) = f. O

We are going to define program simplification as a relationvbeh two given
programs like we did with program approximation. At placeissfimorphism in
the case of program approximation, we need another type ppima in the case
of program slicing. We call it sliceprojection. Like profams in general, it is a
structure-preserving function losing some facets of igaarent.

Definition 4.7.4. Let (G, i), (H, ig) be local flow graphs (either transfinite or
not). LetD C F(G) be total. Let~p be the least equivalence relation 6f(G)
containing{e € D | o(o(e), t(e))}; for eachv € V(G), denote its equivalence
class byv/ ~p. (The equivalence classes by, are actually the weakly con-
nected components of the graph whose vertices are tiGitaofd arc set i9D.)

A mapping- ° from V(G) to V(H) and fromE(G) \ D to E(H) is calledslice-
projection from(G, i) to (H, igr) w.r.t. D iff all the following holds:

1. for arbitrary p, g € V(G),

p°=q° < p~pgq,;

2. on arcs,- ° is a bijection fromE(G) \ D to E(H);

3. (o(e))° = o(e®) and(z(e))° = t(e°) for everye € E(G) \ D;
4. f°=f,;

5. 0% = iy;

6.

transfinite arcs and only these are mapped to transfinits.ar

81

Note thatE(G) \ D can contain arcs between two program points equivalent by
~p. Such arcs transform to arcs Bfwhose source and target coincide. A practi-
cal example of this situation is removing the subgraph spoading taS of the
graph of aloopwhi | e B do S. The graph ofS contains all program points of
the loop (the top point of the loop is included as it is the eoithpof the flow ofS)

but it does not contain the arc going from the top of the loofhtobeginning of
S. Slicing S away means removing the atomic statementS ahd all branching
constructions insidé; this results in an empty looghi | e B do . When do-
ing this on graphs, all program points of the grapmbf | e B do S become
equivalent, so being transformed to just one program pbirttpone arc remains
and goes from this vertex to the very same vertex.

Proposition 4.7.2(iii) implies that andfallp p always belong to the same equiv-
alence class ofp and therefore°® = (fallp p)°. More turns outfallp actually
works like a canonical instance finder. Proposition 4.7a%est this.

Proposition 4.7.5. Let G, H be local (transfinite) control flow graphs. L&t C
E(QG) be total. Let- ° be a sliceprojection fronds to H. For everyp, g € V(G),

p°=q° < fallpp="fallpqg .

Proof. Supposep® = ¢°. As p and g belong to common equivalence class of
~p, there exists a finite sequeneg s1, t1, - .., su, t, Such thatty = p, t,, = g
and, for eachi = 1,...,n, there are walks frons; to t;_; and t; which use
arcs of D only. Proceed by induction on. If n = 0 thenp = g andfallp p =
fall 5 g follows trivially. Assume the claim forn—1 now. By induction hypothesis,
fallp p = fallp t,,_1. By Proposition 4.7.2(v){allp t,,_1 = fallp g. Altogether,
fallp p = fallp q.

On the other hand, tallp p = fallp g thenp® = (fallp p)° = (fallp q)° = ¢°. O

Definition 4.7.6(i) introduces redundancy condition onsetD requiring that the
computation steps corresponding to the arc® dfave no influence to state. Pro-
gram simplification introduced by Definition 4.7.6(ii) isieally program slicing
on control flow graphs. The criterion of simplification teflsat the action of an
atomic step of the resulting program coincides with theoactif the correspond-
ing atomic step in the original program.

Definition 4.7.6. Letvy € STList AConf — 1+ AConf be a sound operator. Let
S be a program and leD C E(tcfg S) be total.

(i) Call D redundant on basig iff st(nexty (s | s)) = s for everys € V(tcfg S)
ands € State such thatarc(nexty (s | s)) € D.

82

(i) AssumeD C E(tcfg S) being total. For any prorgand®, say thatS° sim-
plifies S by D iff there exists a sliceprojection fromafg S to tcfg S° such that,
for everyp € V(cfg S) ands € State,

nexty (p° | s) = (nexty(fallpp | s))° .

In most cases, we will be restricted to simplifications byuradhnt sets in our the-
ory. This does not lose generality as we assume we can alwaks an approx-
imation step replacing the set of arcs having to be slicedyawith a redundant
set.

Lemma 4.7.7 shows that transfinite sequence of redundarcseundancy.

Lemma 4.7.7. Lety € STList AConf — 1 + AConf be a sound intuitive oper-
ator. LetS be a program and = 7,,(5)(i) for ani € State. LetD C E(tcfg S) be
redundant on basig. Let ordinalso, = be such thabd < 7= < |I| andarc(I(g)) € D
for everyp satisfyingo < ¢ < 7. Thenst(i(0)) = st(I(n)).

Proof. ChooseX € Var arbitrarily. For anye € D, suppose: € AConf being
such thatarc(next,, ¢) = e. Thenst(nexty c) = st(nexty(o(e) | stc)) = ste
by redundancy. Thereforeal X (nexty, ¢) = val X c. By Definition 4.4.1,X ¢
def, e. HenceX € defy(arc(l(p))) for no ordinalp satisfyingo < o < 7. By
Lemma 4.4.2yal X (I(p)) = val X (I(0)) for everyp satisfyingo < o < 7.

Hencest(i(0)) = st(I(p)) for every ordinalp satisfyingo < ¢ < 7. In particular,
st(1(0)) = st(l(m)). O

For anyD C AS, we denote byses D the predicate being true on augmented
configurationsc with arcec € D. Thususes D ; — equals to the predicate being
true on just the other configurations, iuses D ; — can be read “does not ug¥

in English.

The following lemma will be used as an auxiliary result in tieet. Note thak
can be replaced within the claim since we can take= 0, 3 = |I|.

Lemma 4.7.8. Lety € STList AConf — 1+ AConf be a regular intuitive limit
operator withoc > w®. Let.S be a regular program. LeD C E(tcfg S) be
redundant on basig and letR be a set of program points & from which no
arc of D starts. Let: ° be a sliceprojection frortcfg S to some graph w.r.tD. Let
I = Ty(S)(@) and k = drop a(take §1) wherea < § < |I| andarc(l(a) ¢ D,

arc({(f)) ¢ D. Then

map(conf ; - °)(filter(pp ; (€ R)) k)
= map(conf ; - °)(filter(pp ; fallp ; (¢ R))(filter(uses D ; —) k)) .

83

Proof. Leto = | filter(pp ; (€ R))!| and let(o; : ¢ < o) be the increasing trans-
finite sequence of all ordinalg; such thatpp(i(o¢)) € R. For each(, let 7. be
the least ordinal such thatc(/(£)) € D for every¢ satisfyingr, < £ < g¢. This
definition is correct by Lemma 4.7.3(v) whereby newst(l(r¢)) € D.

Suppose; < (> < o. Thengg, < g, by construction. Asarc(l(o¢, +1)) ¢ D and
0¢, + 1 < og,, it must be thabe, +1 < m¢,. Hencern¢, < o¢ < g,

Take an ordinal- < |I| such that bottarc(i(7)) ¢ D andfallp(pp(l(7))) € R
hold. Let(be the least ordinal such that< o. Such(¢ exists since a walk from
pp(l(7)) to f using all arcs ofdrop(r + 1) passes throughallp(pp(i(7))) €
R. Thent < 7 sincearc(l(r)) ¢ D. Letwv be the greatest ordinal such that
arc(l(v)) € D for every¢ satisfyingr < ¢ < v. By Proposition 4.7.3(iv), this
definition is correct anghp(i(v)) = fallp(pp(l(7))) € R leading tog, < v by the
choice of(. This inequality impliest, < 7 sincer < m would givev < m¢.
Hencer = ..

Consequently(r¢ : ¢ < o) is the increasing transfinite sequence of ordinals
such that botharc(l(m¢)) ¢ D andfallp(pp(l(7¢))) € R hold. Filtering maintains
components with indiceg: on the left-hand side and components with indices
on the right-hand side.

Let 1. be the least ordinal larger than eaglsatisfyingm, < «. Let ji be the
least ordinal larger than eachsatisfyingo, < a. Fix a¢ < o. If ¢ < fi then
e < o¢c < o, implying ¢ < p. If ¢ > fi thengs > «; the definition ofr: and the
assumptiorarc(l(a)) ¢ D together giver: > «, implying ¢ > p. Consequently,
(<p <= (< pforeach¢, implying i = fi.

Let v be the least ordinal larger than eaglsatisfyingw. < 3. Analogously,v
equals to the least ordinal larger than egdatisfyingo, < . Thus the sides of
the desired equality are of equal length- 1.

It remains to show thatconf(l(o¢)))” = (conf(l(m)))° for every¢ < o. Since
arc(l(oc + 1)) ¢ D, o is the largest ordinal such thatc((£)) € D for every¢
satisfyingr, < £ < oc. By Lemma 4.7.3(iv) fallp(pp(I(7¢))) = pp(l(o¢)); thus

(pp(l(gc)))o = (pp(l(ﬂ'g)))o. By Lemma 4.7.7st(I(o¢)) = st(I(m¢)). Hence the
desired claim follows. O

Theorem 4.7.9 states the semantic correctness of prograptifstation.

Theorem 4.7.9.Let) € STList AConf — 1 + AConf be a regular intuitive
limit operator withox > w®. Let S be a regular program. LeD C E(tcfg S)
be redundant on basig. Let S° simplify S by D with sliceprojection - °. Let
I = T4(S)(z) for some: € State. Denote

1°=Ty(5°)) , m = map(- °)(filter(uses D ; -)1) .

Theni® = m.

84

Proof. Programs is finite since it is regular; thereforg® is finite by construction.
Hence, by the results obtained so far, bb#mdi° end atf.

Let S = {s € V(tcfg S) | Ve € D (o(e) #s) es}. Thenfallp p € S for every
p € V(tcfg S). Aspp; fallp ; (¢ S) is constantly true, anglp ; -°and-°; pp
work the same way on configurationsatisfyingarc ¢ ¢ D, Lemma 4.7.8 implies

map(pp ; - °)(filter(at S) I) = map(pp ; - °)(filter(uses D ; =) 1)
= map(-° ; pp)(filter(uses D ; —) 1)
= map pp(map(- °)(filter(uses D ; =) 1))
= mapppm .

Program point occurs inl once atits end; aé € S, it occurs also ifilter(at S)
once at its end. Thu§occurs once at the end alsorimap(pp ; - °)(filter(at S))
as - ° is injective on program points df. Hencem visits f only once, at its end.
Now it remains to prove by induction an< |I°| thati®(o) = m/(0).

Consider the case= 0. As the initial configurations do not use arcs, we obtain

1°0) = (ise | i) = (is | 9)° = (U0))° = ((filter(uses D ; =))(0))° = m(0).

Now let o > 0 with principal representation = « + 7. Supposingo > |m|,
with help of the induction hypothesis, leadsdo= |m|, v = 1 andpp(l°(«)) =
pp(m(«)) = f contradictingo < |I°|. Henceo < |m|. Let T be the ordinal such
that therth component of corresponds to theth component ofn. Let o be the
ordinal such that theth component of corresponds to theth component ofn.
Thenm(o) = (I())° andm(a) = (I(0))°.

Supposey = 1. By constructiong = 7 is the least ordinal greater tharsuch that
arc(I(§)) ¢ D. By Lemma 4.7.3(iii),r = o + 1 for a p wherebyfallp(pp(l(0))) =
o(arc(l(7))) = pp(l(0)). Hence, by the induction hypothesis together with simpli-
fication and Lemma 4.7.7,

1°(0) = nexty(1°(a)) = nexty(m(a)) = nexty, ((1(0))°)

nexty ((pp(1(0)))° | st(l(0)))

(nexty (fallp(pp(1(0))) | st(i(o))))°

= (nexty (pp(i(e)) | stl(0))° = (nexty(I(e))” = ((7)° = m(o) -

Suppose at last that> 1. Denotee = arc(I(7)) and let it go froms to t. For every
ordinaln < o, lete, be the ordinal such that thgth component of corresponds
to thenth component ofn. Let v be the least ordinal greater than any=gf By
Lemma 4.7.3(ii)arc(l(v)) ¢ D. Hencev = 7 ande is transfinite. Letr = 5+ §
be the principal representation.

85

Let (m¢ : ¢ < o) be the ascending family of indices ofat which components
correspond to components fofter(uses D ; —)(take 7 1), i.e. also to components
of take o [°. Take¢ > a such that? < 7 < 7 hold; this is possible sincake [
uses arcs outsid® however far.

Denotek = drop m¢(take 71) andk° = drop ((takeol°). It is easy to see that
map(- °)(filter(uses D ; —) k) = drop ((take om) = k°. Lemma 4.7.8 gives

map(conf ; - °)(filter(at S) k) = map(conf ; - °)(filter(uses D ; —) k)
map(-° ; conf)(filter(uses D ; —) k)

map conf(map(- °)(filter(uses D ; —) k))

map conf k° .

By transfinite soundness, is looping ink. Thus, ass € S, program points
occurs endlessly imap pp(filter(at S) k). Hences® is looping ink°, i.e., also in
takeol°. As e° is a transfinite arc frons® to t°, this arc is used by’ to escape
from take o (° by regularity. This meansrc(I°(0)) = e° = arc(m(o)).
Furthermore, ast = conf ; st = - °; st, as well asat {s} = conf ; at {s}, and - °
is injective onS, we obtain

map st(filter(at {s})(take 6 (drop 7¢ 1)))
= map st(filter(at {s}) k)
map st(filter(at {s})(filter(at S) k))
map st(map conf(filter(conf ; at {s})(filter(at S) k)))
map st(filter(at { s })(map conf(filter(at S) k)))
map st(map(- °)(filter(- ° ; at {s°})(map conf(filter(at S) k))))
map st(filter(at {s° })(map(conf ; - °)(filter(at S) k)))

map st(filter(at {s° })(map conf £°))
map st(filter(at {s°}) £°)
= map st(filter(at {s°})(take y(drop ¢ I°))) .

By Lemma 4.3.10(iii) st(1°(0)) = st(i(7)) = st(m(0)).

Altogether,l°(0) = m(o). This concludes the proof. a
4.8 Correctness of Program Slicing

We are now going to account for correctness of two standaihglalgorithms.

These algorithms are classically stated for classicalrobfiow graphs but it is
straightforward to adopt them to take transfinite arcs ictmant.

86

Let S be a fixed program and le&t' be a slicing criterion. In the case of both
algorithms, the crucial point is that there exists a releeasystem(S, rel) of S
where S is the set of program points to be retained by the output slfcthe
algorithm. We show this first and then turn to the correctiesse.

At the first step, we will give informal description of bothicéhg algorithms. Both
make use of classical def-sets and ref-sets which corrdsmamtrasting to our
theory, to program points rather than computation stepse&oh program point
p € cfg S, its classical def-setef p contains at least all variables possibly updated
by a computation step starting fromand the classical ref-seéf p contains at
least all variables whose value is accessed by a computssprstarting fronp.
Firstly, consider the algorithm based on so-called relesats. This approach was
the first in history, it occurred already in Weiser’'s work®[20riginally, the com-
putation process was formulated in rather complex way [8Dwhere the com-
putation consists of iteration of analysis process (jus analysis of traditional
form does not necessarily give the desired result).

More precisely, the domain of the analysis of the origingloathm is o(Var)
(for each program point, a set of “relevant” variables is pated) together with
inclusion order. Initially, every program poimtis associated with séks(p) =
C(p) (the variables declared by the slicing criterion are rai¢vait any step of
the analysis concerning an asdrom p to g in the control flow graph, variables
X that meet either of the following conditions are added tordtevant set op:

1. X is relevant ay while not belonging talef p (i.e. the relevant value at
exists already ap);

2. X e ref p while def p contains a variable already found to be relevant at
g (i.e. the value ofX at p can possibly influence, via the computation step
corresponding te, the value of some relevant variables).

This means that the transition functioffigs(e) of the backward analysis are de-
fined by

ref(o(e)) if def(o(e)) N Z # ®}
o otherwise '

frs(@)(2) = (2 \ def(o(e))) U {

All program pointsp such thatef p contains a variable relevant at some immedi-
ate successay of p in cfg S are taken into the slice, as well as all program points
p such thatC"~(p) # @. This is not the end; then all variables belongingdbp

for any branching poinp for which there is a program poimtcontrol dependent
on it and being in the slice are added to the relevant set ©he analysis together
with this additional step is repeated until no more pointsadded into the slice.

87

It is possible to compute all the information needed with baekward analysis
but control dependence arcs must then be added to the graphicinthe analysis
is performed. The domain of the new analysig){d/ar) x T wherebyff < tt
and the order on pairs is defined componentwise. The trutrevialls for each
program point whether it has to be taken into the slice. The@®mponents are
initialized as in the previous variant of the algorithm; Beolean component is
initially true for f and all program points occurring in the slicing criteriothi§
means that the initial values associated to the programsaie defined by

[t ifC(p) £ orp=Ff
i (p) = (C <p>,{ff O (o) }>.

For each normal are from p to g, the new transition function is defined by

Fre(€)(Z,b) = (2 \ def(a(e)), ff) V { Egig(e»’ W 1 dellele)n Z 7o } .

For any control dependence afcwe have

fR5f<d><z,b>=<{ ref(o(d)) if b= tt e},w .

& otherwis

This way, the information about program points taken intodlice are propagated
around during the analysis process and no repetition ofsisak needed.

Algorithm 4.1 summarizes this briefly.

Input: a programs§.
1. Computetcfg S.

2. Compute control dependences and form a new grefighS obtained fron
tcfg S by adding special arcs fromto g wheneverg is control depender
onp.

—

3. Perform backward analysRS’ defined byizs and frg 0N graphtcfg’ S.

4. Assign toS the set of all program points & for which the analysis con
puted a pair with second componett

Output: The program obtained frofl by omitting all statements whose arc|in

tcfg S does not start from a vertex 6t

Algorithm 4.1: Computing slices via relevant sets

The author developed the latter variant of slicing via refévsets when he was
writing a slicer within the DAEDALUS-project of program dgsis [16]. The

88

advantage was the chance to reuse the modules of progragsiardirectly for
slicing without modifying them (the analysis process wagpammed to work on
abstract graphs; computing control flow graphs was keptragpaso it was easy
to replace the graph).

The idea behind the approach of relevant sets is to computdegance sys-
tem directly. We can define a data flow approximation systeking def, e =
def(o(e)) for everye € E(cfgS), as well asref(e, X) = ref(o(e)) for every

e € E(cfgS) together withX € def, e andref(p, q) = refp for everyp €
V(cfg S) together withg € dep™ p. For example, ife corresponds to the assign-
mentX : =Y + Z then one obtainglef, e = {X} andref(e, X) = {Y, Z}.

For any transfinite are, takedef, e = @.

According to the result of the computation of the relevaitd sad the slice, define
rel p for each program poing to be the set of all variables decided as relevant at
p. Let S be the set of all program points to be included into the slitausive of

f. Itis straightforward to see thé$, rel) is a relevance system w.r.t. the data flow
approximation system whereby < rel p for every(p, X) € C.

The other classical way of slicing is reducing the task tcaahebility problem in
the data and control dependence graph [18] (i.e. the daeptph whose vertices
are program points & and every arc indicates either data or control dependence).
The same classical def-sets and ref-sets as before may & askthe starting
point. Next, data dependence approximations are compditpchgram pointg is
considerediata dependent opiff, for some variableX, the following conditions
hold:

1. X € defp;
2. X erefgor(q,X) € C,

3. there is a walkv = (vq, e1, v1,. .., en, vy,) from p to g in cfg S such that
X € defv; for noi satisfying0 < i < n.

The slice is then obtained as the $etf all program points from which there
exists a directed path in data and control dependence goaphiertex mentioned

in the slicing criterion, together with. (As computation steps correspond to arcs
rather than program points, includirfginto the slice does not mean that some
final statement is always included. The final vertex must blided just because

it corresponds to the finished computation ddingteps.)

To adopt this approach safely to the case of transfinite egptace the third con-
dition of data dependence with the following:

3. there is a walkv = (vo, e1, v1,. .., en, vy) from pto g in tcfg S such that
e1 € E(cfgS) and X € defv; for no 1 satisfying both0 < ¢ < n and
e; € E(cfg S).

89

For walksw laying completely ircfg S, conditions 3’ and 3 coincide.
This method is summarized in Algorithm 4.2.

Input: a programs.
1. Computetcfg S.

2. Compute both control dependences and data dependerares.aFnew
graphpdg S whose vertices coincide with vertices tfg S and arcs go
from p to q iff g is either control or data dependent pn

3. Compute reachability information feidg S.

4. Assign toS the set of all program points & from which some program
point mentioned by criteriod’ is reachable ipdg S.

in

Output: The program obtained frorfi by omitting all statements whose arc
tefg S does not start from a vertex 6t

Algorithm 4.2: Computing slices via data dependences

Define the data flow approximation system according to thesaal def-sets and
ref-sets as before. In this approach, relevance systent isomaputed but it can
abstractly be attached to the result. This can be done, fonple, as follows. For
every program point € S, let

rels =refsuC(s) . (4.5)

For every program point € V(cfg S) \ S, letrel s consist of precisely the vari-
ables for which there is a walle = (vo, e1, v1,...,en, vy) in tcfg S from s to
somer € S such thatX € rel randX € def v; for noi satisfying both) <i < n
ande; € E(cfg 5).

This way, (S, rel) is a relevance system w.r.t. the fixed data flow approximation
system wherebyX < rel p for every(p, X) € C. The latter condition holds by
Eqg. 4.5 because all the program points mentioned'taye inS. In the following

a few paragraphs, we prove th&t rel) is a relevance system.

By construction, we immediately have condition 1 of Defwmiti4.5.2(i).

Consider condition 2. Take arbitragyand g such that there is an aetfrom p
to g in tcfg S. Choose arbitraryX' € rel g \ defy d. If g ¢ S then there exists a
walk w = (vg, €1, v1,...,en, vy) from g to somer € S such thatX € rel r and
X € defv; for no v; satisfying both0 < i < n ande; € E(cfgS).If g € S
then takew = (q) (the empty path frong to g), it satisfies the same property with
r = q.If d € E(cfg S) thendef, d = def p and the walk starting fromp, going

90

to g via d, and continuing along), meets the same property.df¢ E(cfg S) then
v also satisfies this property. Hen&ee rel p.

Consider condition 3. LeX € defy eNrelq. As X € rel g, there exists a walk
w = (vo, e1,V1,...,en, Vy) in tcfg S from g to somer € S such thatX < rel r
and X € def v; for nos satisfying both) < ¢ < n ande; € E(cfg S). Note that
e € E(cfg S) becauselef, e # @. Hence the walk starting from, going toq via
e, and continuing along, makes evident thatis data dependent gn Therefore
p € S by construction of5. Butp € S impliesref p C rel p.

Consider condition 4 now. Suppose we havedep g andq € S. If g # f then
p € S by definition of S. But g = f contradictsp dep g since the final point
cannot be control dependent on any point.pS® S implying alsoref p C rel p.
This concludes the proof.

Both algorithms find a se§ of program points which the slice should consist of.
Of course, the arcs between them are the important part.delags that precisely
the computation steps corresponding to the arcs startmg drvertex ofS are im-
portant. All the other arcs could be eliminated via an appabdg sliceprojection.
Proposition 4.8.1 states that this is possible: all arcsesponding to irrelevant
statements (according to a relevance system) form a tdtal se

Proposition 4.8.1. Lety € STList AConf — 1+AConf be atransfinitely sound
operator. Let(S, rel) be a relevance system fSrw.r.t. a data flow approximation
system forp. ThenD = {e € E(tcfg S) | o(e) ¢ S o e} is total.

Proof. Takee € D arbitrarily. Theno(e) ¢ S, hence all arcs starting from(e)
meet the criterion of belonging tB. Supposey is control dependent oa(e).
Then assuming € S would lead to a contradiction witf$, rel) being a relevance
system. Thug ¢ S and therefore all arcs starting frogrbelong toD. a

In our terms, the slice constructed accordingStas a simplification ofS by
{e € E(tcfg S) | o(e) ¢ S e e}.

Theorem 4.8.2 is a combination of Theorems 4.6.3 and 4.d%authes consec-
utive approximation and simplification where the arcs ofititermediate graph
with changed behaviour w.r.t. the originals form a redundah The point of the
theorem can be given with the words of Reps and Yang [14],gihgrthem a bit
to accommodate to our case: “Slice captures a portion of grano's behaviour
in the sense that, for any initial state, the program andlibe sompute the same
transfinite sequence of values for each element of the’slice.

Theorem 4.8.2. Lety € STList AConf — 1+AConf be a regular intuitive limit
operator withoc > w® and letD be a data flow approximation system forLet
(S, rel) be a relevance system for a regular progrémw.r.t. D. Let S approximate

91

S on baseS and D with isomorphisny. LetD C {e € E(tcfg S) | o(e) ¢ S o €}
be redundant on basig. Let S° simplify S by D with sliceprojection-°. Let
I = Ty(S)(@) and I° = T,(S°)(:) for some: € State. Let R C S and de-
note k = filter(at R)! and k° = filter(at R")(°. Thenmap(pp;~; -°)k =
map pp k° and, for every(< |k| and X € rel(pp(k(¢))), one hasral X (k(¢)) =
val X (k°(()).

Proof. Denotel = 7,,(S)(i) andk = filter(at R) [.
Note that
atR°c® <= 3re R(ppc® =7°)
< dre R((ppo)° =7°)
<= dr € R (fall5(pp c) = fall57)
<= dr e R(fallg(ppc) =7)
< fall5(ppc) €R .

From Theorem 4.7.9,
1° = map(- °)(filter(uses D ; —)1) ,
implying
k° = filter(at R*) I°
= filter(at R”)(map(- °)(filter(uses D ; —)1))

= map(- °)(filter(- ° ; at R°)(filter(uses D ; —)I))
= map(- °)(filter(pp ; fall5 ; (€ R))(filter(uses D ; —)I)) .

Lemma 4.7.8 gives

map(pp ; - °)(filter(at R))
= map(pp ; - °)(filter(pp ; fally ; (€ R))(filter(uses D ; —)1)) ,
map st(filter(at R) [) = map st(filter(pp ; fall5 ; (€ R))(filter(uses D ; =) 1)) .

Let m = filter(at S)I andm = filter(at S)I. DenoteR(¢) = rel(pp(k(C))) for
every(< |k| andQ(n) = rel(pp(m(n))) for everyn < |m|. Theorem 4.6.3 gives

map(pp ; ~)m = mapppm ,
Vn < |m| <St(m(77))|g(n) - St(m(n))|9(n)) '

92

Observe thak = filter(at R) m andk = filter(at R) 7n. We obtain

map(pp ; ~) k = map(~)(map pp(filter(at R) m))
= map(~)(filter(e R)(map pp m))
= filter(€ R)(map(~)(map pp m))
= filter(€ R)(map(pp ; ~)m)
= filter(€ R)(map ppm)
= map pp(filter(at R))
= mapppk .
Let (o : ¢ < |k|) be the increasing transfinite sequence of indices at which
components ofn satisfyat R. Thenk(¢) = m(o¢) andR(¢) = rel(pp(k(())) =

rel(pp(m(o¢))) = Q(oc) for each(< |k|. But map(pp; ~)m = mapppm
implies that components afi which satisfyat R locate at the same positions,

¢ < |k|, hence als&(¢) = m(o¢) for each¢ < |k|. Thus
St(k(C))|R(C) = St(m(OC))|Q(OC) = St(m(OC))|Q(O<) = St(E(C)”R(O .
The first desired claim is now proven by

map(pp ; = ; -°) k = map(-°)(map(pp ; 7) k) = map(- °)(map pp k)

= map(- °)(map pp(filter(at R) 1))
map(pp ; - °)(filter(at R))
map(pp ; - °)(filter(pp ; fally ; (€ R))(filter(uses D ; —)I))
map(-° ; pp)(filter(pp ; fall5 ; (€ R))(filter(uses D ; —)1))
= map pp(map(- °)(filter(pp ; fally ; (€ R))(filter(uses D ; —)I)))
= mapppk° .

The second claim comes from

st(k(Q))] R©O)
= st(k(O)[)
= st((filter(at R) [)(())| RO
= st ((filter(pp ; fally ; (€ R))(filter(uses D ; —)I))(¢)) ‘ RO
= st ((map(- °)(filter(pp ; fally ; (€ R))(filter(uses D ; —)I)))({))
= st (k°()) |R(C) :

|72(()

93

Theorem 4.8.2 seemingly implies the desired semantic cimgss of the two slic-
ing algorithms, so that we have triumphed over the non-testion monster.

Roughly, this is true. However, there is one more concerrciwiie have not
discussed so far. The facts have been proven on flow graphseby from
details of programming languages but slicing is an opanatio programs in a
fixed language. To carry over the results to slicing progtams should show that
the transformations we considered on control flow graphsrateed reflections
of replacements and removals of atomic statements in progaoale. This would
be a kind of result calleteasibility lemmeby Reps and Yang [14].

Feasibility can be problematic in the case of non-standacrpmming lan-
guages, for instance, those involving unstructured cofit. No proof uniform
for all languages can be given. Proving feasibility remains of scope of this
thesis. We are satisfied with claiming that, for simple inapige programming
languages, this is intuitively clear.

Under the assumption that all our transformations of flowplhgsacan be simulated
on programs in a satisfactory manner, proving the desiredcmess of program
slicing algorithms is straightforward. This is done in Qtary 4.8.3(i). Note that

if R = {r} for a program point then the result gives precisely the crucial property
of slicing: computing the same sequence of valuesfat every variable listed by
the criterion as important at

Corollary 4.8.3. Lety € STList AConf — 1 + AConf be a regular intuitive
limit operator withoc > w®. Let S be a regular program and its slice w.r..
criterion C found by one of the algorithms considered above. “LeEnote the
sliceprojection fromkcfg(S) to tcfg(S) w.rt. the set of all omitted arcs. Lét=

Ty (5)(7) andl = %(S)(i) for somei € State.

(i) LetR be arbitrary set of program points &f occurring inC'. Denotem =
filter(at R) [andm = filter(at R) . Thenmap(pp ;) m = map pp 7 and, for
every < |m|and X € C(pp(m(£))), one hasval X (m(€)) = val X (m(£)).

(i) The run ofS° lasts at most as long as the run$fi.e.|l| < |I].

Proof. By the analysis at the beginning of this section, there isevamce system
(5, rel) of S such that the computation steps maintained by the slicingoea-
cisely those corresponding to the arcs which start fromicestof S; thereby,
{peVitcfgS) | C—(p) #oep} C S andC—(p) C rel(p) for everyp €
V(tcfg S). LetD = {e € E(tcfg S) | Vs € S(o(e) ¢ S) e e}.

Find an approximatior of S together with an isomorphisr from tcfg S to
tcfg S such that every arc i stands for a computation step with definitely no
influence to data flow.

94

By Proposition 4.8.1D is total, henceD is redundant. Let ° be the mapping
from tcfg S to tefg S w.r.t. D such that” = = ; -°. Then - ° is a sliceprojection
w.r.t. D.

By the choice ofD, no arc ofD starts from vertices of. Furthermore, if no arc
of D starts from ap € V(tcfg S) then if there exists an arc starting framthen

pe Selsep=1f e S.ThusS = {p € V(tcfgS) | Ve € D (o(e) # p) ® p}. Hence

fallp p € S for everyp € V(tcfg S). Thus, by approximation,

nexty (fallp p | s) = nexty, (fallp p | s) = nexty(fallp p | s)
= nexty (fall5p | s) ,

giving

nexty (p° | s) = nexty(p | s) = nexty(fallp p | s)
(nextw (fallp p | s>)o = (nexty (fall5p | 5))

o

ThusS simplifies S by D.
(i) DenoteR(¢) = rel(pp(m(())) for every(< |m|. By Theorem 4.8.2,

map(pp; *)m =mapppm ,
¢ <] (01O |y = 5O)

As C(p) C rel p for everyp, this implies the desired claims.
(i) By Theorem 4.8.2,

map(pp ; *)(filter(at S) 1) = map pp(filter(at 5) 1) .

Thus| filter(at S) I| = | filter(at 5) I|. By Theorem 4.7.9] = map(- °) T where
m = filter(uses D ;).

Predicateat § = atS° is constantly true of (tcfg S) asfall5 5 € S for every
p € V(tcfg S). Thereforefilter(at S) = . Hence

17| = | filter(at 3) 7| = | filter(at S) | < |{] .
d

Corollary 4.8.3(ii) implies that if the original progranrieinates on an initial state
(i.e. the length of its run is finite) then also the slice tarates on the same initial
state. This means that it is possible to obtain correctniesiécing of terminating
programs (a result like one proven by Reps and Yang [14]) aw@llary from
correctness w.r.t. transfinite semantics. This can be dorsoifar as standard
semantics are extensible to transfinite semantics medtagetjuirements of our
theory.

95

CHAPTER 5

DISCUSSION OF RELATED ISSUES

5.1 Undecidability Results

When slicing programs in practice, our natural desire isotmgute slices having
as few statements as possible. Such slices are cfiéeiment minimal

Weiser [20] has shown that the problem of finding statememinmal slices is
undecidable but he considers slicing w.r.t. standard stéasaihe argumentation
he gives fails for transfinite semantics. Therefore, it isira to ask whether the
minimal slice problem is decidable w.r.t. transfinite setit@of our style.

The answer to this question is also negative. We prove thiwlide-loops, hence
the result holds also in general case. The idea of our proimgar to Weiser’s:
reduce the halting problem to the minimal slice problem.

Let S be an arbitrary program in our language. Assume that no biag@redi-
cate inS has any side-effect. This assumption in no way loses therglyeFor
each loop of shapehi | e B do T occurring inS, replace it with code

X := B;
while X do (T'; X := B);
Z :=if X then true else 7

whereX, Z are variables not occurring ifi. Let the resulting program b

As predicates3 have no side-effect, the change of the loops affects netiedr
termination/nontermination status nor the values asdigoghe variables of.
ThusS’ andS either both terminate or both loop.

If the body of a loop inS” is executed a finite number of times then, before exiting
the loop, X gets value different fronat. If the body is executed faw times then

X has always valuét when control reaches the head of the loop, hence the value
of X after leaving the loop ist. So the value ofX immediately after leaving a
loop is an indicator of its termination/nonterminationtsta

96

By transfinite induction, it is easy to see thatnever takes value. and, once
having valuett, it keeps this value until the end of the run. This way, theing
value of Z tells whether the computation has already looped or not.

Consider finding a minimal slice of the progratn: = f al se ; S’ w.r.t. Z at the
final point. If S’ terminates thet¥ has valudf at the final point, therefor8’ can
be sliced away. Note that there is no other statement in thgrgm which would
alone guarante& having valu€tf at the end, thus a hypothetical solver of minimal
slice problem is required to outpat : = f al se. If S’ does not terminate then
Z has valuett at the final point, therefore the solver must output somgtkise.
Altogether, this solver would decide also the halting peafl Thus the minimal
slice problem is undecidable.

Note that the difficulty actually sits in checking whethereqgmrogram is a slice
of another w.r.t. given criterion. If we were able to perfailmis check, we would

solve the minimal slice problem by checking all subsets efgiven program and
outputting one of the smallest subsets among those whinlotutrto be slices. So
whatever semantics we have, if the programs are finite anismairslice problem

is undecidable then “slice checking” problem is also undizoie.

Note also that the argument we used to prove the undecigabilminimal slice
problem simultaneously proves the undecidability of canspropagation. Con-
stant propagation is the problem of determining, for a givamable X and pro-
gram pointp, whether the value ok at p depends on the way control reaches
and, if not, then finding the constant value. It is known to bdeacidable in con-
text of standard semantics. In the construction abovermaing whether? after
therunofZ : = fal se; S’ is constantlyff would solve the halting problem for
S, so constant propagation is undecidable also for our tratesEemantics.

We can give another proof to undecidability of minimal slfm®blem based on
constant propagation. L&t be a program X a variable inS and p a program
point in S. Let ¢ be a given value which a variable could have. Constsi¢tom

S byinsertingY : = X ;Z := Y directly before program poini whereY, Z
are variables not occurring iff. Consider the task of finding minimal slice of the
programZ : = E ; S’ w.r.t. criterion{(p, Z)} whereF is an expression always
evaluating toc. A hypothetical minimal slice problem solver would decidhe t
constant value of X at pointpin S.

5.2 Fractional Semantics
The essential difference between standard trace semantidsansfinite trace se-

mantics is that the states of traces of standard semantidsecadexed with natu-
ral numbers while those of transfinite semantics are indexgdordinal numbers.

97

Many other kinds of numbers are used in mathematics; one siawhether in-
dexing the states with numbers of some other kind could soresble.

We have argued in [11] that indexing the trace components rattonal numbers
could enable passing by the difficulty to give transfinite astits to recursive pro-
grams. Trace semantics where trace components are indattedational num-
bers are calledractional there. As all countable sets of ordinals can be mapped
order-preservingly into any non-trivial interval of rat@ls, transfinite semantics

in principle can be reformulated as fractional. Rationahbers form increasing,

as well as decreasing infinite sequences, so the princig#hadb of using transfi-
nite semantics for recursion which was pointed out at theogiglibsect. 1.2 does
not appear in fractional semantics.

In [11], we defined a simple imperative language and a familigsofractional
semantics in fixpoint form similar to usual definitions of d&ational semantics.
This family contains both a standard trace semantics andraftnite trace se-
mantics (in fractional form) which can be obtained by givitifferent values to
a few parameters of the definition schema. Thus fractiomabsécs serves as a
uniform framework for both standard and transfinite tracaaics.

The fractional semantics of the family studied in [11], hoesm can be only oc-
casionally applied to recursive programs. Hence this amtrdias not yet been
proved as a solver of the semantic anomaly problem for reeupsograms.

As the work on fractional semantics is in progress yet anceitaet framework
developed in [11] will be more or less changed in the futureksiowve explain the
behaviour of our fractional semantics only through exaspiehe thesis and do
not go into precise details of the definition schema.

The fractional semantics defined in [11] dni@ary in the sense that all traces are
built via interval bisection. As the starting interval[i} 1], this means that only
reduced fractions whose denominator is a powez on occur as an index of a
trace component. Another interesting property of our fomatl semantics is that
it associates the pieces of code statically with intervalationals. To a piece of
code, the same interval of rationals is reserved irrespaygtof the initial state.
This is not so in standard or transfinite trace semanticegime components are
enumerated with numbers without leaving gaps and the nuoflseps used by
a part of a code depends on the initial state. We will obsdrigephenomenon in
the examples following.

In the examples, traces are rational-indexed families ofigarations. All indices
belong to intervall0; 1]. Each configuration is a pair of a program point and a
variable state; we denote them like above. A program poirgtroarrespond to
the rest of the code — the part of the program to be run yet. &terimust entail
the current call-stack, including remainders of every gemgrocedure. Relying
on this observation, let program points be finite lists ofeefgments where list

98

components in order correspond to unfinished proceduresedXdamples use only
the most spread syntactic construetstenotes the empty program.

Example 5.2.1Running an assignment requires just one step. The trace must
have two components: the initial state and the final one. Nttipa of the ini-

tial interval[0; 1] is therefore needed. The following are three examples gheut
meaning of assignment in our fractional semantics:

e the execution oz : = x atinitial state(x — 1,y — 2,z — 0) gives trace

0= (z :=x]|x—=1y—2,2~0),
L= ([l x =1y =2,z =1)) ;

e the execution ok : = y atinitial state(x — 1,y — 2,z — 1) gives

0 (x :=y]l|X—1y—2z—1)),
L= ([e] [(X =2,y —2,2—1));

e the execution of : = z atinitial state(x — 2,y +— 2,7 +— 1) gives

0 (ly 1= 21| (X =2,y 2,2 1)
1= (]| x —2,y—1,z—1)) .
O

Example 5.2.2Here we describe the semantics of sequential compositicthel
trace of a run ofS ; T, the traces of the runs &f andT" occurring within it
are compressed to twice shorter interval and joined togellereby, the code
fragments in the trace df are complemented witf.
This way, using the traces of Example 5.2.1, the executiacetofx : = vy ;
y = z atinitial state(x — 1,y — 2,z — 1) is

O (x :=y;y 1= z]|Xx—=1y—2,z2—1),
1= ly 1= 2]l (x =2,y =22 1)),
= (el | (X =2,y 1,z 1) .

—_

Note that the two compressed traces, the first of them congrited, have a com-
mon member a% This double member fuses to one.

Analogously, the execution trace of the swap progmm= x ; (X := Yy ;
y := z)atinitial state(x — 1,y +— 2,z +— 0) is
O0—(z :=x;x :=y;y :=2)] | x—1,y—2,2—0)),

— ([x y;y = z]|x—1y—22z—1),
— ([y z] | (x — 2,y —2z—1)),
= {[e] | (X — 2,y — 1,2 — 1)) .

s N

99

The assignments : = x,x := yandy := z are run within interval$0; %],
2, 4] and[1], respectively. This is so independently of the initialstat O

Example 5.2.3LetW =while z > 0 do z := z - 1 and consider the
programz := x ; (W ;y := z). This program is obtained from the swap
program of Example 5.2.2 by replacing the second assignmignt!V. Hence
in the case of any execution of this program, the ruz of = x lies in interval
[0,2] that of W in |nterval[2,4] andthatofy := zin [3'1]

We place the run ofV at variable statéx — 1,y — 2,z +— 1) directly to[z, 4]
Running a while-loop consists of a predicate evaluation smething which
depends on the result of this. In our case, the predicateiaes tott; thus the
rest is not empty and thus the test step leads the tr%am midpoint of[z, 4])
The rest of the run of the loop therefore lies wnfﬁ@y]. Furthermore, the rest
consists oftherunaf : = z - 1 followed by a new run ofV'. Thus[g, 4] IS
bisected, therunaf := z - 1iscompressed to mterv{a%, 16] and the run of
W which consists of just one test this time is compresse{@—tp?]

Thus the whole run looks as follows:

0—(z :=x;W;y 1= 2)]|(x—1y—22—0),
e (Wsy 1= 2] (x =1y —2,2—1)),

S lz i=z - 1L;W)y =zl (ke Ly 2,20 1),
%H([W,y::z]|(XH1,y»—>2,z»—>O)>,

3(ly 1= z]|(x =1,y =2,z —0)) ,

1 — (]| (x—1,y+—0,z—0) .

The next two examples describe the semantics of procedndethair calls.
Example 5.2.4.Consider procedure declaration
proc gis x :=Yy.

A run of a procedure always ends with a return step. Therdfpig is bisected,
the run of the body of the procedure is compressed to intabyéﬂ while interval
[%; 1] accommodates the return step. (The entrance step is haodietther with
the call.)

According to this principle, the execution tracecpht initial state(x — 1,y —

100

2,z — 1)is

O~ (x :=y]l|x—1y—22z—1)),
Fe (el (x =2y —2,2—1),

1= (1| xX—2y—22z—1)).

Note that the return step deletes the component corresppimlihe finished pro-
cedure from the program point. O

Example 5.2.5.Consider procedure declaration
proc pis z :=x;(call q;y :=2).

A call consists of the entrance step (lying[ib %]) and run of the callee (com-
pressed tcﬁ% ; 1]). Thereby, all program points of the run of the callee aregem
mented with the rest of the caller to be executed after theneif the callee.

The execution trace g at initial state(x — 1,y — 2,z +— 0), provided the
semantics ofj is as in Example 5.2.4, is

0 —{(z :=x;(call q;y :=2)]|X—1y—22z+—0)),
e (call g;y 1= z]|(x—1ly—2z~—1)),
gy = zx 1=yl x—Ly—22z~1),
plly 1=zl (x—2y—22-1),

s (ly 1= 2l (x =2y —2,21),

3 = (el (x =2y =121,

1= (lx—2y—12z=1).

Note that the comma between the code fragments in the progoams is the
separator of list components rather than sequential catigros a

To contrast the nature of fractional semantics to that afdaed and transfinite
trace semantics, one may call fractional tradegeloping inwardvhile the traces
of standard and transfinite semantics @egeloping outwardA fractional seman-
tics of a hon-base syntactic construct is an operation wigalranges and joins
the traces of all child statements to the same space occbpiedch of these
traces. For looping constructs like while-loop and reansfirst such an opera-
tion is defined and then a fixpoint of this operation is found.

No example so far involved infinity. If infinity arises due tchile-loops only,
there exist fractional semantics of kind defined in [11] W@y transfinite trace
semantics. The set of indices frd®) 1] used by a trace of such fractional seman-
tics can be represented as the image of an order-presenapging of some set
of ordinals into[0; 1].

101

Example 5.2.6. The components of the execution tracentfi | e true do ¢
are numbered by ordinal, 1,2,3,... and w in transfinite semantics and by
0,%.3,Z,...and1l in the fractional semantics under consideration. Therlate
is depicted on the upper axis in the figure below. The compsr&irdouble infi-
nite loopwhi | e true do while true do ¢areindexed by ordinals from
0 to w? in transfinite semantics and by rational numbers shown otother axis
in the fractional semantics.

0 1

O

To handle recursion similarly, unloading infinitely deeguesion must be en-
abled. This involves chains with no least element and thiesause transfinite
semantics do not qualify. We bring two examples of infiniteursion in the case
of which fractional semantics of our kind exists.

Example 5.2.7.The simplest example is obtained by declaration

proc p() is call p() .

The components of the execution tracepare indexed by the rationals shown in

the following picture:
0 1

Two infinite sequences — one ascending and another desgendare both con-
verging to3. 0

Example 5.2.8.Consider the procedure declaration

proc q() is (call qg() ;call qg()) .

The set of indices used by the execution trace @f the limit of the following
step-by-step process:

Each step adds twice more points than the previous sinceutihéer of uninter-
preted calls doubles every level.

The limit set forms a fractal structure. A rational numbetween0 and1 belongs

to it iff its octal representation is finite and each its dajiier octal point is either
1 or 3 except for the last one which can be alsor 4. The set of all possible limits
of converging sequences of rationals in this set is uncailmta O

102

Example 5.2.8 shows that transfinite computations in the oasvhile-loop are
analogues to fractal computations in the case of recursion.

In [11], we gave also example programs having no fractioealantics satisfying
the definition in [11]. The programs in Examples 5.2.7 and®&a2e trivial because
the variable state does not change. In general, we have 0 steovalues of
variables at each point of the computation possibly formanigactal structure.
This is the main difficulty in defining an appropriate fract semantics.

In programming theory, usually an operation is callegy if it not necessarily
leads to the error (a runtime error or nontermination) inalihthe evaluation of
its arguments alone would result. Transfinite semanticgszig in the sense that it
enables overcoming looping computations: a transfiniteasgics whose subcom-
putation is looping can be properly finished itself. The samglies to fractional
semantics studied above. In the light of this, it is not seslllrprising that it is pos-
sible to implement fractional semantics in a lazy functidaaguage like Haskell
by just translating the mathematical definition directlytte language syntax and,
in some cases, it is able to outpute proper results even fopatation points oc-
curring after looping parts or inside a fractal structure.

5.3 Triploids

In Subsect. 3.2, operatodsop, take and alsamap, filter were defined for trans-
finite lists (for finite lists and streams, analogous opesatath the same names
are widely used in functional programming). The reader @owltice from Lem-
mas 3.2.3 and 3.2.5 that operator p&itsop, take) and(map, filter) possess very
similar properties.

By making a few slight changes in definitions, we can makeetpsrs really
instances of one algebraic structure type such that théasiproperties become
special cases of the axioms of it.

Firstly, according to the definition atrop andtake given in Subsect. 3.2, both
drop ol andtake ol equal L whenevew > |I|; change this to returning the empty
list nil and the whole list, respectively. (This makes the behaviourdebp and
take analogous to the behaviour of the namesake functions irutinetibnal pro-
gramming language Haskell.) This change could be impleetealso in the the-
ory of this thesis without having to change the main results.

Secondly, restrict operatanap to type(4 — A) — (TList A — TList A), i.e.
the newmap can not be applied to functions whose domain and codomédier dif

The desired type of algebraic structures is given by Definif.3.1.

103

Definition 5.3.1. Call triploid any3-sorted structure
((4; ,1),(B; +,0),(C; 1); £ F, G)
that satisfies all the following:
1. (4; 1), (B; +,0), (C; ¢, 1) are monoids;
2. #: A x B — B is an action of monoidA4; -,1) on B;

3. F:(4;,1) = (C; D) andG : (B; +,0) — (C; ¢, 1) are monoid homomor-
phisms;

4. 0is the zero of #, i.e.,

Ya e A(a#0=0) ;

5. # distributes ovet, i.e.,

Va € A,bi,by € B (a#(by +bo) = (a#b1) + (a#by)) ;

6. + is both commutative and idempotent, i(&; +,0) is actually a semilat-
tice with the least elemet

7. the following “quasi-commutativity” holds:

Va € A,b € B (F(a) < G(b) = Gla #b) < F(a)) .

The word “triploid” is a simple derivation from “monoid” inhe light of any
triploid consisting of three monoids.

A preliminary glance to the triploid axioms indicates thlagre is a close rela-
tion between triploids and vector spaces. Mongid -, 1) plays the role of the
structure of scalars, semilatti€¢8; +, 0) plays the role of the structure of vectors,
plays the role of multiplication of vectors by scalars. Btior spaces, scalars
form a field and vectors form an Abelian group. The requirasmeout # are
precisely the requirements about multiplication by saalawvector spaces which
can be formulated in terms of operations available in tigfgoln addition, triploid
has one more monoi@'; ¢, I) within which both scalars and vectors can be in-
terpreted vieF andG, respectively, and which satisfies the “quasi-commutstivi
property.

Let o be a fixed selfish ordinal. Consider operatdrep, take which are defined
as suggeste above and such that

drop € Oy — TList A — TList A ,
take € O, — TList A — TList A .

104

In particular, one can take components from a transfinite list but dropping that
many elements is precluded.

Then

(Qu; +,0)

(Ox; min,)

(TList A — TList A; ;,id)
+

drop

Y

)

is a triploid. Both scalars and vectors are ordinal numb&trglace of both mul-
tiplications, there is ordinal addition; at place of vecaaldition, there is binary
minimum operator. Unit scalar i, null vector is the upper limitc. Operators
drop andtake are the interpreting mappings of scalars and vectors, ctsply.

Similarly, if map andfilter are defined as in Subsect. 3.2 together with the re-
striction onmap suggested above then

(

take

(A— A; ;,id)
(A — T; Xpq. ~a. p(a) A g(a), ~a. tt)

(TList A — TList A; ;,id)

map

9

)

is a triploid. This time, scalars are transformationsiaind vectors are predicates
on A. At place of both multiplications, there is function comjtiom; at place of
vector addition, there is conjunction of predicates. Uadtlar is the identity, null

filter

105

vector is the tautology. The interpreting mappings of gsadad vectors armap
andfilter, respectively.

In both triploids, the monoid in which the scalars and vextoere interpreted
was the same, namely the monoid of all transformations obfnaite lists.

5.4 Related Work

Transfinite semantics have been studied first for functiggmabramming, see
Kennaway et al. [7].

A fundamental theoretical study of program slicing in thaeteat of standard se-
mantics has been done by Reps and Yang [14]. They prove taetuence of
values computed by any atomic statement of the slice duisrgi coincides with
the sequence of values computed by the corresponding smatexhthe original
program during its run whenever the initial states are eguodlthe original pro-
gram terminates. They prove it by induction on the structdithe program. They
obtain also a result they call “Feasibility Lemma” whichtetathat slicing oper-
ation on control flow graphs can always be reflected as sliofr@prresponding
programs.

Besides transfinite semantics introduced by Giacobazzivastroeni [5], there
are some more approaches to handle semantic anomaly (seeaR&furnidge
[13], Danicic et al. [4]).

It is worth to note that we define the limit state into which ttwenputation falls
after an infinite number of steps differently from [5]; théieatment could be
achieved by replacing’ with s in our definition ofy) in Sect. 4.1. In other words,
the limit state of [5] depends on all states observed duteginfinite computa-
tion while our limit state depends only on the states obskatd¢he starting point
of the loop which causes the divergence. Therefore, theiragsécs is not com-
pletely appropriate for describing program slicing (searBgle 4.1.2). Théazy
semanticof Danicic et al. [4] does not have this problem as the bodyloba is
an undivided unit in the definition of the semantics of loops.

A predecessor of our Theorem 4.3.8 was proven in [5] for a fstaactured lan-
guage.

A farther aim of [5] besides overcoming semantic anomalyiprovide a de-
notational semantic® with an order relatiori_ on the corresponding semantic
domain which would reflect the relation “being slice of” iretfollowing sence:
if Sis a slice ofS then alway<D(5) C D(S). Unfortunately, the main theorem of
this part (Theorem 6.4) of that paper is incorrect.

The wrong result is caused by making the assumption in thefghat all the
variables of the slice have the same values at the end of ixeaf the slice as

106

they have at the end of execution of the original program erstime initial state.
This does not hold in general.

Example 5.4.1.The right-hand program is a slice of the left-hand programt.w.
criterion {(4,x)}. Note that this slice is to no extent exotic; it can be obtdine
using standard slicing algorithms, in particular via resdlity in the data and
control dependence graph as described in [5] and also in &8abf this thesis.

% :=0; % :=0;

Ix =i ; Ix =i ;

2 =1, —

3 1= x + 1; 3 1= x + 1;
4 4

Variablei occurs in the slice; but at the end of execution of the sliceas value
0 while, at the end of execution of the original program, it kiakiel. O

The authors refer to Venkatesh [19] and Reps and Yang [14jeasdurces of this
assumption but it seems to be a misinterpretation of thdtsesithese papers.

5.5 Conclusion of the Thesis and Suggestions of Further
Work

In this thesis, we presented a proof of correctness of stdnoi@gram slicing
methods w.r.t. a class of transfinite semantics. Using firdtes semantics allows
to omit assumptions about termination. The ground idea opoaof is to repre-
sent slicing as a composition of two transformations: thet famoves the effect of
irrelevant statements to data flow but maintains the costrakcture and the sec-
ond simplifies the control structure by removing the stateeith no influence
to data-flow. The first transformation can produce nonteatitig programs from
terminating ones which implies that such kind of proof wontit be possible in
the case of standard semantics even for terminating pragram

The semantic correctness results of both transformatiare wroven for control
flow graphs. This choice guarantees independence fromcatimtketails. In prin-
ciple, the results can be even applied to languages witlmuatsted control flow.
However, all the assumptions about the nature of the flowhgramd semantics
made in our theorems were chosen so that they would hold ioabe of simple
structured control flow. Hence the results hold for unstrred control flow as far
as it behaves like structured control flow to certain extévg.did not investigate
the possible practical applications of our theory to urtitmed control flow cases.
This might be one direction of further work.

107

Another important limit of our theory is the exclusion of vesion. We made a
step towards generalizing transfinite semantics to invdeerrsion in [11] by in-
troducing fractional semantics. A brief introduction tastlpproach is provided
also in Subsect. 5.2 of this thesis. This preliminary wortvehthat a natural gen-
eralization of transfinite trace semantics to recursiveg@dares would give rise
to fractal computations. Finding out to which extent frantl semantics could be
used for recursive programs, or finding a semantics apigpfor formalizing
slicing of recursive programs, are also possible direstiofifuture work.

There is one more concern about transfinite semantics: hirem@according to
an ambiguous value. All examples of transfinite semantiések so far involve
ambiguous values which are aquired by variables in the fiate sifter an endless
computation where their value did not stabilize. A branghpmedicate may thus
evaluate to the ambiguous value. Which branch should beeahinghis situation?
Our theory holds if the ambiguous value is treated equivglén false (or equiva-
lently to true). There are other reasonable approachesiétging both branches.
The lazy denotational semantics by Danicic et al. [4] is atance of this ap-
proach. Merging branches means that both branches are dapandently and,
when both have finished, the result states are merged (therysdifferent from
both concurrent execution where two threads may interaetdy during their
run and non-determinism where no merging of different obmiare performed).
Defining such trace semantics could be somewhat problematic

5.6 Acknowledgements

This work was partially supported by Estonian Science Fatiod under grant
no 6713.

I thank professor Helmut Seidl for enabling me to join hisegesh group in Trier
for half a year within the DAEDALUS-project. Some ideas whare carried out
in this thesis originate from my work in Trier.

108

[1]

2]

[3]

[4]

[5]

BIBLIOGRAPHY

Barwise, J., Moss, L.Vicious Circles CSLI Lecture Notes No 60. CSLI
Publications (1996)

Binkley, D. W., Gallagher, K. B.: Program Slicind\dvances in Computers
43(1996) 1-50

Cousaot, P.: Constructive Design of a Hierarchy of Sencandf a Transition
System by Abstract Interpretatiottlectronic Notes in Theoretical Com-
puter Sciencé (1997) 25 pp.

Danicic, S., Harman, M., Howroyd, J., Ouarbya, L.: A Lagmantics for
Program Slicing. (Extended abstract. Rroceedings of the 1st International
Workshop on Programming Language Interference and DepmredAvail-
able athttp://profs.sci.univr.it/~mastroen/downl oad/
PLI DY Proceedi ngs/ Proceedi ngs. ht m (2004)

Giacobazzi, R., Mastroeni, I.: Non-Standard Semarfoc®rogram Slicing.
Higher-Order Symbolic Computatid® (2003) 297-339

[6] Jacobs, B., Rutten, J.: A Tutorial on (Co)Algebras and){@duction.

[7]

[8]

[9]

[10]

EATCS Bulletin62 (1997) 222-259

Kennaway, R., Klop, J. W., Sleep, R., Vries, F.-J. dearffinite Reduc-
tions in Orthogonal Term Rewriting Systenisformation and Computation
1191) (1995) 18-38

Moschovakis, Y. N.:Notes on Set TheonjJndergraduate Texts in Mathe-
matics. Springer-Verlag New York etc. (1994)

Nestra, H.: Transfinite CorecursiomWNordic Journal of Computind 2(2)
(2005) 133-156

Nestra, H.: Transfinite Semantics in Program SliciRgoceedings of the
Estonian Academy of Sciences: Engineeriif4) (2005) 313-328

109

[11] Nestra, H.: Fractional Semantics. In Johnson, M., Véhdéeds.):Proceed-
ings of AMAST 20Q@.ecture Notes in Computer Scien$@19(2006) 278—
292

[12] Poizat, B.:A Course in Model Theory: an Introduction to Contemporary
Mathematical LogicSpringer-Verlag New York (2000)

[13] Reps, T., Turnidge, T.: Program Specialization via dgPam Slicing. In
Danvy, O., Glueck, R., Thiemann, P., (ed®)yoceedings of the Dagstuhl
Seminar of Partial EvaluatianLecture Notes in Computer Scien&@10
(1996) 409-429

[14] Reps, T., Yang, W.: The Semantics of Program SlicingRratyram Integra-
tion. Lecture Notes in Computer Sciernd®2(1989) 360-374

[15] Schitte, K.:Proof TheoryGrundlehren der matematischen Wissenschatften.
Springer-Verlag Berlin etc. (1977)

[16] Seidl, H., Vene, V., Miiller-Olm, M.: Global Invarianter Analysing Multi-
Threaded ApplicationsProceedings of the Estonian Academy of Sciences:
Physics; Mathematics2(4) (2003) 413-436

[17] Spivey, M.:TheZ notation: A Reference Manudnd edition, Prentice Hall
International Series in Computer Science (1992)

[18] Tip, F.: A Survey of Program Slicing Techniquekurnal of Programming
Language$(3) (1995) 121-181

[19] Venkatesh, G. A.: The Semantic Approach to Programirg}idn Proceed-
ings of the ACM SIGPLAN’'91 Conference on Programming Lagguae-
sign and ImplementatiotACM SIGPLAN Notices26(6) (1991) 107-119

[20] Weiser, M.: Program SlicingEEE Transactions on Software Engineering
10(4) (1984) 352-357

110

ITERATIIVSELT DEFINEERITUD TRANSFINIITSED
JALITUSSEMANTIKAD JA
PROGRAMMISLITSEERIMINE NENDE SUHTES

Programmislitseerimine on niisugune programmide teigemide, kus antud pro-
grammi jargi konstrueeritakse sliits, st tema elemendagdtest koosnev (loode-
tavasti) vaiksem ja rutem tootav programm, mis teatud mjatgwaartusi teatud
punktides arvutab samamoodi kui originaalprogramm. Rwognislitseerimine
aratas arvutiteadlaste téhelepanu lle 20 aasta tagasndisieti, et see tehnika
on kasulik programmide silumisel. Katsetega tehti isegdkiks, et vilunud pro-
grammeerijad konstrueerivad programmivigade otsimig&l peas sliitse. Hiljiem
on slitseerimisele leitud muidki rakendusi tarkvarat&hnsi

Algoritmide leidmine programmide automaatseks slitseigks on Uldjoontes
lihtne (keeruliseks vdivad asja teha konkreetse prograenmeskeele keeruka-
mad erisused), kuid juba ammu margati, et nende algoritkidesktsuse tdes-
tamine takerdub nn semantilise anomaalia taha, mis ilmualedl j kui originaal-

programm té6tab I6pmatult, kuid tdnu I6pmatu tstkli vdijaserimisele 16petab
sliits t60 18pliku ajaga ja jduab seetbttu koodis kaugerkaleriginaalprogramm.
Tegemist on p&himdttelise probleemiga, kuna teatavadsigkli termineeruvuse
kindlakstegemine algoritmiliselt mittelahenduv.

On vélja pakutud mitmeid lahendusvariante semantilisestrealiast lahtisaami-
seks. Uks neist on transfiniitsete semantikate kasutamiaasfiniitne semantika
on semantika, mille jargi programmi Idpmatu t66 jarel tdSpmogramm mingist
kindlaksmaaratud piirseisundist edasi, taites selléiidite oma koodis jargnevaid
kaske. Programmi taitmise mudel selles semantikas onisilgghst s6ltuv trans-
finiitne seisundite jada.

Kéesoleva doktoritdd Uheks tulemuseks on valjaarendatungfiniitsete seman-
tikate matemaatiline alusteooria. Uuritakse l[ahematistiaiitset iteratsiooni, mis
on erijuht Gldisest tuntud transfiniitsest rekursiooridfineeritakse mitu varianti
transfiniitsest koorekursioonist, mis on analoogid turnistikoorekursioonile, uu-
ritakse seoseid nende vahel ja seoseid transfiniitsesieoai ja transfiniitse koo-
rekursiooni vahel. See osa on autori poolt publitseerittitlides [9, 10] (siin ja
edaspidi antakse kirjandusviited doktorit66 allikaninngkjargi Ik 109).
Doktoritd0 peamiseks tulemuseks on kahe andmevooanhbfifilsneva slitseeri-
misalgoritmi korrektsuse tdestamine teatavate trantfaié semantikate suhtes.
Selleks on vélja arendatud eraldi matemaatiline alustaporilles neid tulemusi
sOnastada ja tBestada. See osa on osaliselt publitsearttkiis [10], Glejaanud
osas aga veel ilmumata (protsess on kdimas).

Lahenemise Uldideeks on vaade slitseerimisele kui kakegsisekoosnevale prot-

111

sessile. Esimesel etapil asendatakse elementaarlauisad]eks vélja slitseerida,
tihjade lausetega, jattes nii juhtvoograafi isomorfisnstgpni puutumata. Teisel
etapil eemaldatakse esimesel sissetoodud laused, jattespata andmevoo. Esi-
mese etapi teisendus on t6ds vaadeldud lldisemalt, kudusansed pole tingi-
mata tiihjad, vaid vbivad olla suvalised sellised laused, enkirjuta Ule ronkem
muutujaid kui asendatav lause. Mdlema etapi semantilimeektsus on analtisi-
tud eraldi. Esimene teisendus vdib termineeruvast proguatrteha mittetermi-
neeruva, mis naitab, et standardsete (st mitte transfitéitssemantikate suhtes
programmide slitseerimise korrektsuse seda laadi td@staenlahe labi.

Lisaks on doktoritéos luhidalt kasitletud ka mdnda pdhaatikaga seonduvat
kisimust. Naiteks on tBestatud nn vahima sliitsi Ulesanieelamhenduvus trans-
finiitsete semantikate suhtes (standardse semantikassoimteastav tulemus tun-
tud). See osa on publitseeritud artiklis [10]. Samuti ¢skse ndidete peal sisse-
juhatus murdsemantikatesse, mis pdhineb autori varskentdikatsioonil [11].
Autori poolt sisse toodud murdsemantika moiste on trantsfesemantika moiste
Uldistus, mis lubab arvutusprotsessi mudelis ka tagudpiinatuid jadasid —
transfiniitse jada puhul on Idpmatus alati ettepoole swdhaui Idpmatu stiga-
vusega rekursiooni transfiniitse semantika defineerimimproblemaatiline see-
tottu, et loomulikul viisil pole vGimalik anda piirseisueaid, siis murdsemantika
vdimaldab rekursiooni tdhendust anda nii, et Ipmata sigjaekursioonist tul-
lakse vélja nagu Ioplikustki tasehaaval. Murdsemantikaib vekursiivse pro-
grammi tahendus olla fraktaalstruktuur. Siiski on murdaetika veel nii vahe
uuritud, et pole selge, millises ulatuses ta lldse saalrefiarsiivsetel program-
midel rakendatav.

112

Name

Position

Date of birth

Education

Languages

Academical
degrees

Professional
experience

CURRICULUM VITAE

HARMEL NESTRA

Researcher of Institute of Computer Science, University of
Tartu, Estonia

19. 03. 1974

1992-1996, University of Tartu, faculty of mathematics

1996-1998, University of Tartu, master studies in computer
science

1998-2004, University of Tartu, doctoral studies in coreput
science

Estonian (the native language), English; a little Russ&ar;
man, Finnish

1998, MSc in Computer Science, theBiglytypic Functional
Programming: from Categorical Groundwork to Practice

1997 University of Tartu, Institute of Computer Science,
programmer

2002-2003 University of Tartu, Institute of Computer Sci-
ence, assistant

2003 University of Trier (Germany), Computer Science De-
partement, co-worker on research

2003- ... University of Tartu, Institute of Computer Sci-
ence, researcher

113

Training

March 1998, the 3rd CIDEC Winter School, Palmse, Estonia
March 1999, the 4th CIDEC Winter School, Palmse, Estonia
August 2000, the 12th ESSLLI, Birmingham, England

March 2001, the 6th CIDEC Winter School, Palmse, Estonia
August 2001, the 13th ESSLLI, Helsinki, Finland

March 2002, the 7th CIDEC Winter School, Palmse, Estonia
March 2004, the 9th CIDEC Winter School, Palmse, Estonia
August 2004, the 5th AFP Summer School, Tartu, Estonia
March 2005, the 10th CIDEC Winter School, Palmse, Estonia
March 2006, the 11th CIDEC Winter School, Palmse, Estonia

114

Nimi
Amet
Sunnikuupaev

Haridustee

Keeleoskus

Akadeemilised
kraadid

Erialane
tbokogemus

Erialane ene-
setaiendus

CURRICULUM VITAE

HARMEL NESTRA

Tartu Ulikooli arvutiteaduse instituudi teadur

19. 03. 1974

1992-1996, Tartu Ulikool, matemaatikateaduskond
1996-1998, Tartu Ulikool, magistridpe informaatika ealal

1998-2004, Tartu Ulikool, doktoriGpe informaatika eriala
eesti (emakeelena), inglise; veidi vene, saksa, soome

1998, MSc informaatika erialal, magistritoBoliitlilipne
funktsionaalne programmeerimine: kategooriateoretdsi
alustest praktikasse

1997 Tartu Ulikool, arvutiteaduse instituut, programnieer
ja

2002—2003 Tartu Ulikool, arvutiteaduse instituut, agsist

2003 Trieri Ulikool (Saksamaa), arvutiteaduse teaduskond
teaduslik kaastootaja

2003— ... Tartu Ulikool, arvutiteaduse instituut, teadur

marts 1998, 3. CIDECi talvekool, Palmse, Eesti
marts 1999, 4. CIDECi talvekool, Palmse, Eesti
august 2000, 12. ESSLLI, Birmingham, Inglismaa
maérts 2001, 6. CIDECi talvekool, Palmse, Eesti
august 2001, 13. ESSLLI, Helsinki, Soome

marts 2002, 7. CIDECi talvekool, Palmse, Eesti
marts 2004, 9. CIDECi talvekool, Palmse, Eesti
august 2004, 5. AFP suvekool, Tartu, Eesti

marts 2005, 10. CIDECi talvekool, Palmse, Eesti
marts 2006, 11. CIDECIi talvekool, Palmse, Eesti

115

LIST OF ORIGINAL PUBLICATIONS

[1] Nestra, H.: Handling Substitution without Inductiom Piliére, C. (ed.):
Proceedings of the ESSLLI-2000 Student Sessioiversity of Birming-
ham (2000) 178-188

[2] Nestra, H.: A Framework for Studying Substitution. Ini@thy, T. (ed.):
Seventh Symposium on Programming Languages and Softwals Uai-
versity of Szeged (2001) 168-182

[3] Nestra, H.: A Framework for Studying Substitution. Acgbernetical5
(2002) 633—-652

[4] Nestra, H.: Transfinite Corecursion. In PetterssonnB."4, W. (eds.)Pro-
ceedings of the 16th Nordic Workshop on Programming Thddppsala
University Technical report 2004-041 (2004) 30-32

[5] Nestra, H.: Transfinite Semantics in Program SlicingVéme, V., Meriste,

M. (eds.):Proceedings of the Ninth Symposium on Programming Language

and Software TooldJniversity of Tartu (2005) 126—-140

[6] Nestra, H.: Transfinite Corecursion. Nordic Journal ain@uting 12(2)
(2005) 133-156

[7] Nestra, H.: Transfinite Semantics in Program Slicingodeedings of the
Estonian Academy of Sciences. Engineerlrig4) (2005) 313-328

[8] Nestra, H.: Fractional Semantics. In Johnson, M., V&héeds.):Proceed-
ings of AMAST 20Q@.ecture Notes in Computer Sciend@19(2006) 278—
292

116

