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CHAPTER 1

INTRODUCTION

1.1 Program Slicing

Program slicing is a kind of program transformation where the aim is to find an
executable subset of the set of atomic statements of a program which is respon-
sible for computing all the values important to the user. Program slicing was in-
troduced and its significance was explained first by Weiser [20]; summaries of its
techniques and applications can be found in Tip [18] and in Binkley and Gallagher
[2].

Example 1.1.1.A standard example of program slicing is the following:

0sum := 0 ;
1prod := 1 ;
2i := 0 ;
while 3i < n do (

4i := i + 1 ;
5sum := sum + i ;
6prod := prod * i

) ;
7

−→

0sum := 0 ;

2i := 0 ;
while 3i < n do (

4i := i + 1 ;
5sum := sum + i ;

) ;
7

(The small numbers are short notations of program points.) The first program
computes both the sum and the product of the firstn positive integers (wheren
is the initial value ofn). The second program computes the sum; all statements
concerning the product only aresliced away. If sum is the only interesting value,
the two programs are equally good. ⊓⊔

The specification of which variables are important at which program points is
called slicing criterion. It can be given mathematically as a binary relation be-
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tween program points and variables. The essential propertyof slice — being
equally good to the original program in computing the valuesof user’s interest
— is then more precisely formulated as follows: for arbitrary program pointp and
variableX related by the criterion and for arbitrary initial values ofvariables, the
sequence of values ofX occurring when control of the execution of the original
program goes through program pointp equals to the sequence of values ofX oc-
curring when control of the execution of the slice goes through the program point
corresponding top in the slice.

The slice in Example 1.1.1 has been found with respect to criterion {(7,sum)}
saying that the user is interested in the value of variablesum at program point
7. As control reaches program point7 just once (at the end of execution) and,
when this happened, the value ofsum computed by both programs is the same,
the crucial property is met. If the criterion were{(5,sum)}, the property would
mean that the sequence of values aquired bysum at point5 be the same in both
programs. This is also true since both programs compute values0, 1, 3, . . . , (n−1)n

2
for sum at 5. These observations together imply the property also for criterion
{(5,sum), (7,sum)}.

If our concern is to prove correctness of slicing algorithms, we need a formal-
ization of the important property. Clearly this must involve a trace semanticsS.
Assume thatS takes a program and an initial state of variables as arguments and
provides a computation trace as value whereby the computation traces are mod-
elled by sequences of configurations, each consisting of thecurrent program point
and variable state. Then the straightforward formalization would be as follows.
For all programsP and slicing criterionsC, a slice ofP w.r.t.C is any program
Q for which the following holds:

1. Q is obtained fromP by deletion of statements.

2. Let(p,X) ∈ C ands ∈ State. Let p̃ be the program point ofQ correspond-
ing top in P . Then

map(valX)(filter(at p)(S(P )(s))) (1.1)

= map(valX)(filter(at p̃)(S(Q)(s))) (1.2)

where

• valX c is the value of variableX in the state of configurationc,

• at p is the predicate which is true just for configurations with program
point p,

• map andfilter are the list functions known from functional program-
ming carried over to traces (i.e.map f l appliesf to every configuration
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of tracel andfilter p l forms the list of elements ofl satisfyingp (keep-
ing the order)).

It has been noticed earlier that standard semantics are not completely satisfactory
for formalizing the notion of slice because slicing can produce terminating pro-
grams from nonterminating ones which implies that the program points of interest
can be reached more times in the slice than in the original program and the later
reachings correspond to computation never undertaken by the original program.

Example 1.1.2.The second program is a slice of the first w.r.t. criterion{(2,x)}:

while 0true do ;
1x := 0 ;
2

−→ 1x := 0 ;
2

The loop is sliced away since no influence tox at point2 can be detected. This
causes the program point2 to be reached once during the run of the slice while
being reached no times during the run of the original program. ⊓⊔

This phenomenon is calledsemantic anomaly[13, 5]. It is a fundamental issue
since no slicing algorithm can decide whether a loop terminates. Therefore non-
trivial slicing algorithms, the standard ones based on dataflow analysis in par-
ticular, cannot be correct w.r.t. standard semantics in allcases. (Reps and Yang
[14] prove correctness of their notion of slice w.r.t. standard semantics under the
restriction that the original program terminates.) Hence,for obtaining a working
version of the notion of correctness here, one must abstractfrom termination.

One possibility to handle the semantic anomaly is to modify the definition slightly,
allowing Eq. 1.1 to be a prefix of Eq. 1.2 in condition 2 and requiring them to be
equal only for cases when both programs terminate [2, 5]. This is also not an
ideal solution since, if the original program loops, one candelete any collection
of statements from the part of a slice following the infinite loop and the result is a
slice again. This makes the notion of slice too wide.

A better solution is to reinterpret the original equation incontext of transfinite
semantics.

1.2 Transfinite Trace Semantics

Standard semantics consider computations doing at mostω steps (i.e. computa-
tions whose any proper initial part is finite). This choice has been artless since no
real computation process can ever do more.
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By transfinite semantics, one means a semantics according to which computation
may continue after an infinite number of steps from some limitstate determined
somehow by the infinite computation performed. Transfinite trace semantics of
a program is basically a set of transfinite lists of states or configurations satisfy-
ing certain conditions. Transfinite list is a function whosedomain is a downward
closed set of ordinals (i.e. a setO containing all elements less than any element
belonging toO).

The first study of transfinite semantics has been done for functional programming,
see [7]. The necessity arises from the fact that there are (finite) expressions whose
value is an infinite data structure which can not be reached using any standard
reduction strategy with the firstω reductions.

Giacobazzi and Mastroeni [5] investigate transfinite semantics with the aim of
solving the problem of semantic anomaly; the idea has been proposed already by
Cousot [3]. The principle of transfinite semantics is that everything observed in
the code should be reflected by the semantics. A loop followedby an assignment
in the code should be a loop followed by an assignment also in the semantics, ir-
respectively of whether the loop terminates. The assignment after an infinite loop
being never reached during real processes only shows the deficiency of our imple-
mentation and is not a reason for omitting the assignment from the semantics.

In transfinite semantics, changing a nonterminating statementS to a terminating
one does not necessarily cause the problem considered abovesince control can
reach the statements following statementS anyway.

In [11], we showed the naturalness of transfinite semantics by expressing both
standard and transfinite trace semantics of a simple structured language in a uni-
form way (more to the point, in fixpoint form) so that the choice between standard
and transfinite semantics comes up from the values of a few global parameters of
the semantics definition schema.

However, transfinite semantics works well only if there are no recursive proce-
dures. Looping caused by infinitely deep recursion result ininfinitely long call
stack. There is no obvious way to define limits of such infinitecomputations. The
most natural way to escape from infinitely deep recursion is unloading the infinite
call stack level by level starting from infinity. This would require infinitely long
backward subsequences of traces which is impossible withintransfinite semantics
since infinite decreasing sequences of ordinals do not exist.

1.3 Outline and Structure of the Thesis

In this thesis, we find out a class of transfinite semantics w.r.t. which standard
slicing algorithms turn out to be correct. This assures transfinite semantics being
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a way to overcome “semantic anomaly”. The correctness of slicing of terminating
programs w.r.t. standard semantics, proven earlier by Repsand Yang [14], can be
deduced as a corollary from the correctness w.r.t. transfinite semantics.

The theory is developed for control flow graphs to keep the treatment abstracted
from any concrete programming language. One of the purposesof choosing this
approach has been the desire to capture also slicing of unstructured control flow.
Therefore, our results hold uniformly for a wide range of deterministic impera-
tive languages without recursion. Programs written in standard programming lan-
guages with structured control flow are among those to which our theory applies.

We find that transfinite semantics enable one to prove correctness of slicing via
correctness of a cognate transformation where the irrelevant statements are re-
placed with other irrelevant ones rather than removed. We call this program ap-
proximation. As replacing withskip (a statement doing nothing) is a special
case of it, program approximation is roughly a generalization of program slicing.
We can treat slicing as a two-step process: first replacing the irrelevant statements
with skip, thereby not affecting the control structure, and then removing the new
statements, thereby not affecting the data flow, and study the correctness of these
steps separately.

Program approximation can produce termination from nontermination like pro-
gram slicing but also nontermination from termination. Theprocess of slicing
away a loop can consist of replacing all the statements of itsbody withskip, so
introducing nontermination, followed by removing the loop, abolishing this non-
termination. Consequently, this kind of correctness proofwould not be possible
within the standard (i.e. not transfinite) semantics framework even for terminating
programs.

A noteworthy part of the thesis is devoted to studying transfinite semantics in
their own. As standard trace semantics are usually defined iteratively, we develop
a transfinite counterpart of iteration and investigate properties of transfinite iter-
ation. Our transfinite iteration does not coincide with the widely used transfinite
recursion but is a special case of it. The difference is that,for defining a function
by transfinite iteration, the iteration step does not have tobe given for initial parts
of arbitrary length like in traditional recursion but only for some possible lengths
(e.g. 1, ω, ω

2 etc.). We define two different variants of transfinite corecursion
as analogues to the traditional stream corecursion and find connections between
transfinite iteration and transfinite corecursion.

The thesis is structured as follows.

In Chapter 2, we provide a brief introduction to the part of graph theory we need
in the thesis. This chapter does not pretend to containing new results.

Chapter 3 contains abstract theory of transfinite trace semantics. It starts with a ba-
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sic introduction to ordinals (Section 3.1) followed by a mathematical framework
for handling transfinite sequences (Section 3.2). Then, transfinite iteration and
two variants of transfinite corecursion are defined and theirconnections are stud-
ied (Sections 3.3–3.4). We prove that, under certain conditions, a given transfinite
corecursion schema determines a unique function with transfinite lists as values.
So one can define deterministic transfinite trace semantics using these schemata.
Furthermore, we prove an analogous theorem for defining non-deterministic trans-
finite trace semantics and investigate the connections between the corecursions for
deterministic and non-deterministic case (Sections 3.5–3.6). Most of the content
of Sections 3.1–3.4 has been published in [9, 10], the material of Sections 3.5–3.6
can be found in [9]. Up to the author’s knowledge, the contentof Sections 3.3–3.6
is fully original. The author also has met no theory of transfinite lists like that
developed in Section 3.2 before.

Chapter 4 contains the main contribution of the thesis, i.e.the proof of correct-
ness of two standard slicing algorithms w.r.t. a class of transfinite semantics. In
Sect. 4.1, an introduction to the field together with a few examples are given. In
Sections 4.2–4.5, the mathematical framework is developedand many auxiliary
lemmas are proven. In Sect. 4.6, semantic correctness of program approximation
— the first step of the schema described above — is proven. In Sect. 4.7, the sec-
ond step which we call program simplification is studied. In Sect. 4.8, semantic
correctness of program slicing is deduced as a corollary of the semantic correct-
ness of program approximation and program simplification. The two algorithms
whose correctness we obtain are also briefly described there. The content of this
chapter is mostly unpublished but fragments of Sections 4.1and 4.3 can be found
in [10].

Chapter 5 contains discussion on various related issues. InSect. 5.1, it is realized
that several undecidability results which are widely knownhave been stated and
proved in principle w.r.t. standard semantics and the proofs not necessarily apply
to transfinite interpretation. We give proofs for transfinite case. Most of this study
can be found in [10]. In Sect. 5.2, we discuss a promising direction of further
work where transfinite semantics are replaced by fractionalsemantics, meaning
that items of computation traces are indexed by rational numbers rather than ordi-
nals. This framework overcomes the principal inability of transfinite semantics to
model unloading infinitely deep recursion. This approach was introduced in our
latest paper [11]. In Sect. 5.3, we point out a common trait appearing in some
definitions of operations on transfinite lists given earlierand discuss the nature of
it. The other sections refer to related work and conclude.

12



CHAPTER 2

PRELIMINARIES FROM GRAPH
THEORY

This chapter contains definitions of some notions and proofsof some basic facts
concerning control flow graphs. It is likely that all this canbe found in the lit-
erature but we provide this chapter for easy reference of thenotation and exact
meaning of terms of graph theory used throughout the thesis.All definitions and
theorems have been put into words by the author; all proofs have been constructed
by the author without using any reference material; also thechoice of the notions
and facts has been done by the author.

In Sect. 2.1, directed graph is defined (we do not use others) and some basic
properties mainly concerning subgraphs and reachability are proved. Section 2.2
studies postdominance order and Sect. 2.3 studies dependence which, in context
of control flow graphs, is usually called control dependence. Definitions of post-
dominance and control dependence in context of control flow graphs and program
slicing can be found in Tip [18].

2.1 Directed Graphs

Definition 2.1.1. A directed graphis a tripleG = (V ,E , (s, t)) whereV andE

are sets whose elements are calledverticesand arcs, respectively, ands ∈ E →
V , t ∈ E → V are functions giving theinitial and terminalvertex for any arc,
respectively.

For generality, we do not assume that an arc is a pair of its initial and terminal
vertex. This enables us to keep the graphs with multiple arcsunder consideration.

Definition 2.1.2. LetG = (V ,E , (s, t)) be any directed graph.

13



(i) A walk in G is any sequencew = (v 0, e1, v 1, . . . , e l, v l) whereei ∈ E for
all i = 1, . . . , l, v i ∈ V for all i = 0, . . . , l ands(ei) = v i−1, t(ei) = v i for all
i = 1, . . . , l. Thereby, the numberl is called thelengthof walkw.

(ii) For any walkw = (v 0, e1, v 1, . . . , e l, v l), denotes(w) = v0 andt(w) = v l
and callw a walk from v 0 to v l. For anyw ∈ V , say that walkw passes through
w iff w = v i for somei = 1, . . . , l; for any d ∈ E , say that walkw usesd iff
d = ei for somei = 1, . . . , l.

(iii) If w = (v 0, e1, v 1, . . . , e l, v l) and v = (v l, e l+1, v l+1, . . . , e l+k, v l+k) are
walks inG then denotewv = (v 0, e1, v 1, . . . , e l+k, v l+k) — the joined walk.

(iv) Let v , w be vertices inG. If there exists a walkw in G from v to w thenw

is calledsuccessor ofv andv is calledpredecessor ofw . If, thereby, the length of
w is 1, i.e. there exists an arce in G such thats(e) = v and t(e) = w , then the
successorw of v is called immediate, likewise the predecessorv of w is called
immediate. The latter situation is denoted byv → w .

Note that, according to Definition 2.1.2(ii), a walkw always passes throught(w)
but generally does not pass throughs(w).

Proposition 2.1.3. LetG be a directed graph.

(i) Letw be a walk fromx to y in G. Then there exists a walk fromx to y in G
which does not pass throughx .

(ii) Letw, v be walks such thatt(w) = s(v). If wv passes throughx then either
w passes throughx or v passes throughx .

Proof.

(i) Let w = (v 0, e1, v 1, . . . , e l, v l); thenx = v 0. Let i be the largest integer for
which x = v i. Then(v i, ei+1, v i+1, . . . , e l, v l) is a walk fromx to y which does
not pass throughx .

(ii) Let w = (v 0, e1, v 1, . . . , e l, v l) andv = (v l, e l+1, v l+1, . . . , e l+k, v l+k). By
assumption,v i = x for somei = 1, . . . , l + k. If i > l thenv passes throughx ;
otherwise,w passes throughx . ⊓⊔

Proposition 2.1.4. LetG = (V ,E , (s, t)) be a directed graph. LetX ⊆ V , A ⊆ E

be such that, for everye ∈ E ,

e ∈ A ⇒ s(e) ∈ X ∧ t(e) ∈ X .

Then(X ,A, (s ∣
∣
A
, t ∣

∣
A

)) is a directed graph.

Proof. Straightforward. ⊓⊔
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Definition 2.1.5. LetG = (V ,E , (s, t)) be a directed graph. LetX ⊆ V , A ⊆ E

such that, for everye ∈ E ,

e ∈ A ⇒ s(e) ∈ X ∧ t(e) ∈ X .

Then the directed graph(X ,A, (s ∣
∣
A
, t ∣

∣
A

)) is called subgraph ofG. If, for all
e ∈ E , alsos(e) ∈ X ∧ t(e) ∈ X ⇒ e ∈ A

then this subgraph is calledinduced.

Proposition 2.1.6. LetG be a directed graph andH its subgraph. Letx , y be
vertices ofH. If w is a walk fromx to y in H thenw is a walk fromx to y in G.

Proof. Straightforward. ⊓⊔

Definition 2.1.7. LetG = (V ,E , (s, t)) be a directed graph.

(i) Let x ∈ V . For everyy ∈ V , call y reachable fromx iff there exists a
walk w = (v 0, e1, v 1, . . . , e l, v l) such thatv 0 = x and v i = y for somei =
0, . . . , l. For everya ∈ E , call a reachable fromx iff there exists a walkw =
(v 0, e1, v 1, . . . , e l, v l) such thatv 0 = x andei = a for somei = 1, . . . , l.
(ii) Let S ⊆ V . For every vertex or arc ofG, call it reachable fromS iff it is

reachable from some vertexx ∈ S .

Proposition 2.1.8. LetG = (V ,E , (s, t)) be a directed graph. LetS ⊆ V . LetX
andA be the set of all vertices and arcs, respectively, ofG being reachable from
S . Then(X ,A, (s ∣

∣
A
, t ∣

∣
A

)) is an induced subgraph ofG.

Proof. Taked ∈ E arbitrarily.

If d ∈ A then there exists a walkw = (v 0, e1, v 1, . . . , e l, v l) such thatv 0 ∈ S and
d = ei for somei = 1, . . . , l. Obviouslys(d) = v i−1 ∈ X andt(d) = v i ∈ X .

If s(d) ∈ X then there exists a walkw = (v 0, e1, v 1, . . . , e l, v l) such thatv0 ∈ S

ands(d) = v i for somei = 0, . . . , l. Then(v 0, e1, v 1, . . . , ei, v i)(v i, d , t(d)) is a
walk inG starting fromv 0 ∈ S . Consequently,d ∈ A. ⊓⊔

Definition 2.1.9. LetG = (V ,E , (s, t)) be a directed graph. LetX ⊆ V . De-
note byG

∣
∣
S

the induced subgraph ofG consisting of all vertices and arcs ofG
reachable fromS .

Proposition 2.1.10. LetG = (V ,E , (s, t)) be a directed graph andS ⊆ V . Let
w be a walk inG such thats(w) ∈ S . Thenw is a walk inG

∣
∣
S
.

Proof. Letw = (v 0, e1, v 1, . . . , e l, v l). By assumption, there is a walkv inG from
somes ∈ S to s(w) = v 0. Concatenatingw to the end ofv, we see that allv i and
ei are reachable froms. Thereforew is a walk inG

∣
∣
S
. ⊓⊔
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2.2 Postdominance

Definition 2.2.1. A flow graph is any pair (G, f ) whereG = (V ,E , (s, t)) is a
directed graph with bothV andE being finite andf ∈ V is a vertex calledfinal
being reachable from every vertex inG.

Definition 2.2.1 is dual to Weiser’s definition [20] which required the existence of
an initial vertex from which there is a walk to every vertex. As we do not need
Weiser’s variant, we can adopt this notion to our context in this slightly different
form.

Definition 2.2.2. Let (G, f ) be a flow graph. For arbitrary verticesv andw , the
vertexw is called apostdominatorof v inG iff every walk fromv to f inG passes
throughw . If w is a postdominator ofv then one also says thatw postdominates
v .

Clearlyf postdominates every vertex exceptf itself.

Proposition 2.2.3. Let (G, f ) be a flow graph withG = (V ,E , (s, t)). LetS ⊆ V

be non-empty.

(i) Then(G
∣
∣
S
, f ) is a flow graph.

(ii) For arbitrary verticesx , y ofG
∣
∣
S
, y postdominatesx in G

∣
∣
S

if and only ify
postdominatesx in G.

Proof.

(i) By assumptions, there is a vertexs ∈ S and f is reachable froms in G.
Thereforef is a vertex ofG

∣
∣
S
.

Take arbitrary vertexx of G
∣
∣
S
. By assumption, there is a walkw in G from x to

f . By Proposition 2.1.10,w is a walk inG
∣
∣
S
. Consequently,f is reachable fromx

in G
∣
∣
S
.

(ii) By part (i), f is a vertex ofG
∣
∣
S
. By Propositions 2.1.6, 2.1.8 and 2.1.10,w

is a walk fromx to f in G iff w is a walk fromx to f in G
∣
∣
S
. Hence the claim

follows. ⊓⊔

Theorem 2.2.4. The postdominance relation is a strict order in any flow graph.

Proof. For antireflexivity, suppose thatx postdominatesx in some flow graph. By
Definition 2.2.1, there is a walk fromx to f . By Proposition 2.1.3(i), there exists a
walk fromx to f which does not pass throughx . This contradicts the supposition.

For transitivity, suppose bothy postdominatingx andz postdominatingy . Con-
sider any walkw = (v 0, e1, v 1, . . . , e l, v l) from x to f . It passes throughy asy
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postdominatesx , sov i = y for somei > 0. Then(v i, ei+1, v i+1, . . . , e l, v l) is a
walk fromy to f , so passing throughz asz postdominatesy , thusv j = z for some
j > i > 0. Consequently,w passes throughz which impliesz postdominatingx .

⊓⊔

In the following, letx < y denote thaty postdominatesx . Let 6 denote the
corresponding non-strict order (i.e.x 6 y means thaty postdominatesx or x = y ).

Lemma 2.2.5. Letx , y , z be vertices in a flow graph.

(i) If x < z andy 6< z then every walk fromx to y passes throughz .

(ii) If x < z and there exists a walk fromx to y which does not pass throughz
theny < z .

Proof.

(i) Let f be the final vertex. Sincey 6< z, there exists a walkw from y to f

which does not pass throughz. Let v be any walk fromx to y . Thenvw is a walk
from x to f . As z postdominatesx , this walk passes throughz . By Proposition
2.1.3(ii), eitherv orw passes throughz. Hencev passes throughz. Consequently,
every walk fromx to y passes throughz .

(ii) The contrapositive of Lemma 2.2.5(i). ⊓⊔

Theorem 2.2.6. The vertices postdominating one fixed vertex are linearly ordered
w.r.t. 6.

Proof. Suppose thaty andz both postdominatex while y 6= z . We must prove
thaty < z or z < y . For this, assumey 6< z . By Lemma 2.2.5(i), every walk from
x to y passes throughz .

By Definition 2.2.1, there exists a walkv = (v 0, e1, v 1, . . . , e l, v l) from x to f .
As y postdominatesx , it must pass throughy . Let i be the least positive integer
such thatv i = y . By the last paragraph, the walk(v 0, e1, v 1, . . . , ei, v i) from x to
y passes throughz, sov j = z for somej > 0, j < i (j 6= i sincey 6= z).

By construction, the walku = (v 0, e1, v 1, . . . , ej , v j) from x to z does not pass
throughy . So, by Lemma 2.2.5(ii),z < y . ⊓⊔

Definition 2.2.7. Let x andy be vertices of a flow graph withx < y . Then post-
dominatory of x is called immediateiff any other postdominator ofx postdomi-
natesy .

In other words,y immediately postdominatesx iff y is the least element w.r.t.6
in the set of all verticesz > x .
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Theorem 2.2.8. In every flow graph(G, f ), every vertex exceptf has the imme-
diate postdominator.

Proof. By Theorem 2.2.6, the set of all verticesz > x is linearly ordered w.r.t.
6. By Definition 2.2.1, this set must be finite and hence it has the least element
whenever it is non-empty. Every vertexx 6= f is postdominated by at leastf . Thus
the claim follows. ⊓⊔

Theorem 2.2.9. Letw be a walk starting from vertexx in a flow graph. Let both
y , z be postdominators ofx and assumew passing throughz. Then the following
are equivalent:

1. y < z ;

2. w passes throughy and the first occurrence ofy in w is before the first
occurrence ofz.

Proof. Letw = (v 0, e1, v 1, . . . , e l, v l) and leti be the least index for whichv i = z .

Supposey < z . Thenz 6< y andz 6= y . Lemma 2.2.5(i) gives every walk fromx
to z passing throughy . So(v 0, e1, v 1, . . . , ei, v i) passes throughy before reaching
z. This implies statement 2.

Suppose now statement 2. It means(v 0, e1, v 1, . . . , e l, v l) passing throughy be-
fore reachingz ; thus there is a walk fromx toy without passing throughz . Lemma
2.2.5(i) givesy < z . ⊓⊔

This theorem states that every walk reaches the postdominators of the starting
vertex in their postdominance order.

Corollary 2.2.10. Letx andy be vertices withx < y .

(i) Letw be a walk fromx to y which passes through no vertices postdominating
x excepty . Theny is the immediate postdominator ofx .

(ii) If y is an immediate successor ofx then it is the immediate postdominator
of x .

Proof.

(i) Supposez being the immediate postdominator ofx . If z < y then Theorem
2.2.9 givesw reachingz beforey . This contradicts the assumption aboutw. Hence
z = y .

(ii) By assumption, there is an arcd from x to y . So(x , d , y ) is a walk fromx to
y . Thereby,y is the only vertex postdominatingx through which this walk passes.
Thus Proposition 2.2.10(i) gives the desired result. ⊓⊔
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Corollary 2.2.11. Among the immediate successors of a vertexx , at most one
postdominatesx .

Proof. By Corollary 2.2.10(ii), all the immediate successors ofx which postdom-
inatex are immediate postdominators ofx . By Theorem 2.2.8,x has at most one
immediate postdominator. Consequently, there can be at most one postdominator
of x among the immediate successors ofx . ⊓⊔

2.3 Dependence

This section investigates abstractly the relation known ascontrol dependence.

Definition 2.3.1. Let (G, f ) be a flow graph.

(i) Let x andy be arbitrary vertices ofG. Theny is said to bedependent onx
iff x 6< y and there exists an immediate successorz of x in G such thatz 6 y .

(ii) We denote bydep the relation in which verticesx andy are if and only ify
is dependent onx .

Theorem 2.3.2. Let x andy be vertices in a flow graph. Thenx dep y iff x 6< y

and there exists a non-empty walkw fromx to y such thatw 6 y for every vertex
w through whichw passes.

Proof. Supposex dep y . Thenx 6< y by Definition 2.3.1. Also, there exists an
immediate successorz of x such thatz 6 y . Let d be an arc going fromx to z .
If z = y then (x , d , y ) is a walk satisfying the desired property. So assume that
z < y . By Definition 2.2.1, there exists a walkw = (v 0, e1, v 1, . . . , e l, v l) from z

to f ; it must pass throughy . Let i be the least number for whichv i = y . We show
that the walk(x , d , z)(v 0, e1, v 1, . . . , ei, v i) from x to y has the desired property.
Clearly it is non-empty. Furthermore, for everyj < i, j > 0, Lemma 2.2.5(ii)
implies v j < y since(v 0, e1, v 1, . . . , ej, v j) is a walk fromz to v j which does
not pass throughy andz < y . This proves the “only if” part.

For the other part, suppose thatx 6< y and there exists a non-empty walkw =
(v 0, e1, v 1, . . . , e l, v l) from x to y such thatv i 6 y for everyi = 1, . . . , l. Asw is
non-empty,v1 exists and is an immediate successor ofx satisfyingv 1 6 y . Thus
x dep y . ⊓⊔

The criterion for dependence provided by Theorem 2.3.2 is used as definition in
[18].

Lemma 2.3.3. Letx , y be vertices of a flow graph. Ifx dep y then there exists a
walk fromx to y which passes through no postdominator ofx .
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Proof. Assumex dep y . By Theorem 2.3.2,x 6< y and there exists a walk
w = (v 0, e1, v 1, . . . , e l, v l) from x to y such thatv i 6 y for everyi = 1, . . . , l. If
x < v i for somei = 1, . . . , l, the transitivity of6 would give a contradiction. So
w is the desired walk. ⊓⊔

Theorem 2.3.4. Letw = (v 0, e1, v 1, . . . , e l, v l), l > 0, be a walk fromx to y in
a flow graph. Ifw passes through no vertex postdominatingx then there exists an
i < l such thatv i dep y andv i+1 6 y .

Proof. Let i be the least number such thatv i+1 6 y . If i > 0 thenv i = v (i−1)+1 66
y implying v i 6< y . If i = 0 thenv i = x 6< y by assumption. Asv i → v i+1, it
givesv i dep y . ⊓⊔

We denote bydep∗ the reflexive transitive closure ofdep and bydep+ the tran-
sitive closure ofdep, i.e.,

dep∗=
⋃

n∈N

depn and dep+=
⋃

n∈N

n>0

depn

wheredepn denotes then-times composition ofdep.

Theorem 2.3.5. Let x andy be vertices in a flow graph. Thenx dep∗ y iff there
exists a walk fromx to y which passes through no postdominator ofx .

Proof. Assumex dep∗ y . Then there exists a chainw0 dep w1 dep . . . dep wk

wherew0 = x , wk = y . Proceed by induction onk. In the casek = 0, the claim
holds trivially (take the empty walk fromx to x ). Assume the claim holding for
k and consider a chain with lengthk + 1. By induction hypothesis, there exists a
walk w from x to wk which passes through no postdominator ofx . By Lemma
2.3.3, there exists a walkv from wk to y which passes through no postdominator
of wk. Suppose the walkwv passes through some postdominatorz of x . Then
v passes throughz and sowk 6< z . Lemma 2.2.5(i) now states that every walk
from x to wk passes throughz . This leads to a contradiction sincew does not pass
throughz . Consequently,wv is a walk with the desired property.

For the other direction of the equivalence, assume that there exists a walkw =
(v 0, e1, v 1, . . . , e l, v l) from x to y passing through no postdominator ofx . Argue
by induction onl. If l = 0 thenx = y , sox dep0 y . Assume nowl > 0 and the
claim holding for naturals less thanl. By Theorem 2.3.4, there exists ani < l such
thatv i dep y . By the induction hypothesis,x dep∗ v i. Altogether,x dep+ y . ⊓⊔

Proposition 2.3.6.

(i) Any immediate successor of a vertexx in a flow graph either postdominates
x or is dependent onx .
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(ii) For any vertexx in a flow graph, at most one of the immediate successors of
x is not dependent onx .

Proof.

(i) Let y be any immediate successor ofx . Supposey is not dependent onx . By
Definition 2.3.1, eitherx < y or z 6 y for no immediate successorz of x . As y is
an immediate successor ofx andy 6 y , the latter is not the case. Consequently,
x < y .

(ii) By Corollary 2.2.11, at most one of the immediate successors ofx postdom-
inatesx . By Proposition 2.3.6(i), all the others are dependent onx . ⊓⊔

Definition 2.3.7. LetA = ((V ,E , (s, t)), f ) be a flow graph. Call a setS ⊆ V

dependence system ofA iff both following conditions hold:

1. f ∈ S ;

2. for everyx , y ∈ V , if y ∈ S andx dep y thenx ∈ S .

Theorem 2.3.8. LetA = (G, f ) be a flow graph. LetS be a dependence system
ofA. Letw be a walk fromx to y such thatx /∈ S and the only vertex ofS passed
through byw is y . Thenx < y .

Proof. Let w = (v 0, e1, v 1, . . . , e l, v l) and leti be the least index for whichv i =
y .

Suppose the contrary, i.e.x 6< y . As x /∈ S and y ∈ S , we havex 6= y , so
x 66 y . Let j < i be the largest index for whichx 6 v j. By transitivity of6, the
verticesvk for j < k 6 i do not postdominatev j. By Theorem 2.3.5,v j dep∗ y .
By Definition 2.3.7, we getv j ∈ S which contradicts the choice ofi. Hence the
claim follows. ⊓⊔
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CHAPTER 3

THEORY OF TRANSFINITE TRACE
SEMANTICS

A trace semantics of a program expresses its execution behaviour step by step. It
is basically a set of sequences of elements representing execution states. In stan-
dard trace semantics, the sequences are finite lists or streams; their components
therefore correspond to natural numbers. In the case of transfinite trace semantics,
the sequences are transfinite, i.e. the components correspond to ordinal numbers.
We call themtransfinite lists.

3.1 Ordinal numbers

In this section, we give a short introduction to ordinals. The definitions and facts
listed here are generally those we need in this thesis. Thereare many books giv-
ing profound introductions to ordinal theory; [8, 15] represent just two different
approaches.

The notion of ordinal is obtained as a generalization of the notion of natural num-
ber by adding infinite elements. So we have all the natural numbers0, 1, 2, . . .,
as well asω and a lot of greater elements, among ordinals. This notion differs
from the notion of cardinal in that ordinals can be distinguished by the order of
elements in set while cardinals express only the size.

Being precise, anordinal is an isomorphism class of well-ordered sets. (Awell-
ordered setis an ordered set whose every non-empty subset has a least element.)
As all the well-orders of a fixed finite set are isomorphic, there exists just one
ordinal for any size of a finite set. For countable sets, for instance, there are many
(actually uncountably many) in principle different well-orders. The standard order
of natural numbers (representingω) is among them; one of the others is the order
of N ∪ {∞} where∞ is greater than any natural number.
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There is a natural order6 on ordinals:o 6 π iff, for any well-ordered setsA and
B corresponding too andπ, respectively,A is isomorphic to a cut ofB. (A cutof a
well-ordered setC is a subsetD of it containing all elements ofC being less than
any given element ofD. Cuts are also calleddownward closedsubsets.) Every
set of ordinals is well-ordered w.r.t.6. Clearly 0 is less than any other ordinal.
The set of all ordinals less thano is denoted byOo; it turns out that(Oo; 6) is a
representative ofo.

Any ordinalo has a unique immediate successor w.r.t.6; we denote ito′. If A is a
well-ordered set representingo, a set representingo′ is obtained by adding a new
greatest element toA.

If an ordinal has an immediate predecessor, i.e. if it is a successor of some ordinal,
it is calledsuccessor ordinal. Otherwise it is calledlimit ordinal. However,0 is
often considered as a neither successor nor limit ordinal.

For example, all naturals but0 are successor ordinals whileω — the least infinite
ordinal — is a limit ordinal (the least greater than0). Then there are countably
many successor ordinalsω′, ω

′′ etc., followed by the next limit ordinal which of
course is followed by countably many successor ordinals.

Let o, π be ordinals. LetA, B be some well-ordered sets representingo andπ,
respectively. An ordinal̺ is calledsumof o andπ iff it corresponds to the well-
ordered set obtained fromA andB by finding their disjoint union and considering
every element ofA less than every element ofB. The sum ofo andπ is denoted
by o + π. Obviouslyo′ = o + 1 for any ordinalo. The operation+ is associative
and, for anyo, o+0 = 0+o = o. For ordinalso andπ, o 6 π iff o+̺ = π for some
ordinal̺. If o 6 o′ andπ 6 π′ then alwayso + π 6 o′ + π′ (addition is monotone
w.r.t. both its arguments).

For example,ω + 1 corresponds to the well-order ofN∪ {∞} introduced before.
The ordinalω + ω corresponds to the limit of the sequenceω,ω′,ω′′, . . ., be-
ing the least limit ordinal greater thanω. We can construct the infinite sequence
ω,ω + ω,ω + ω + ω, . . . of limit ordinals. There exists a limit of this sequence,
followed by its successor etc. Ordinals form a “very infinite” biome in the sense
that no set of ordinals can ever be complete.

If o + π = o + ̺ then alwaysπ = ̺. This allows to definesubtractionof ordinals.
If o 6 π thenπ − o is the ordinal̺ such thato + ̺ = π.

In the following, we assume the reader having a solid knowledge on elementary
ordinal theory.
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3.2 Transfinite Lists

We treat transfinite lists overA as functions which take ordinals intoA and whose
domain is downward closed. So a transfinite list overA is a functionl ∈ Oo → A
for someo; in this case,o is calledlengthof l and denoted by|l|. Denote the empty
list — the only list of length0 — by nil.

For a transfinite listl andα < |l|, l(α) (or lα) is theαth componentof l. For
simplicity, we allow writing l(α) also forα > |l| and countl(α) = ⊥ /∈ A
in this case. The first component,l(0), is also denoted byhead l. All operations
considered in the theory are strict, i.e. a subexpression with value⊥ turns the
value of the whole expression to⊥.

A transfinite list is typically defined using transfinite recursion. This means that
every element of the list is expressed in terms of all preceding elements. For the
case of semantics, this is unnecessarily general. In a deterministic standard trace
semantics, every execution state is completely determinedby its single predeces-
sor and carrying all preceding states along in the definitioncould be burdening or
misguiding. In other words, semantics are defined by iteration which is a special
case of recursion.

The desire to express every computation state in terms of theprevious one could
be called “locality principle”. It requires the behaviour of every atomic statement
not depending on the computation occurred before reaching this statement, i.e. all
information for performing the computation step being encoded locally in the last
state. In transfinite case, defining every element in terms ofits single predecessor
is generally impossible since if the number of preceding states is a limit ordinal
then there is no last element among them. Analogously to the atomic step case,
the locality principle now requires that limit state reached due to an infinite loop
should be determined by the computation during this loop only. We would like to
have a transfinite iteration schema generalizing the usual iteration and respecting
the locality principle.

Our main results are proven for semantics where the limit state does not depend
on the exact place where we start counting the final part of theendless computa-
tion. This restriction is natural as the rest of the thesis shows. (Note that this final
part definitely containes an infinite repetition of the body of the loop causing the
endless computation but a finite number of first runs of the body possibly have
remained outside.) In this case, the locality principle equivalently demands that
every state during a computation is determined by a proper final part of the com-
putation performed so far which is as short as it is possible to extract. This length
is determined solely by the ordinal index of the component being defined.

For example, if one is definingl(ω) thenω elements backward must be taken into
account. In definingl(ω+k) for a positive natural numberk, it suffices to consider
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the last element only. But when definingl(ω + ω), there is no last element again;
ω elements backward must be studied.

This consideration leads to our notion of selfish ordinal. In[15], these ordinals are
calledadditive principal numbers; we like our shorter term more.

Definition 3.2.1. We call an ordinalγ > 0 selfishif γ − o = γ for everyo < γ.

In other words,γ is selfish iff the well-order of the part remaining when cutting
out any proper initial part from the well-orderΓ representingγ is isomorphic to
Γ itself. One more characterization is as follows:γ > 0 is selfish iff it cannot
be expressed as the sum of two ordinals less thanγ (i.e. the set of ordinals less
thanγ is closed under finite sums). Definition 3.2.1 implies that the lengths of
the possible final parts having to be considered backwards when defining a new
element of a transfinite list by recursion are precisely the selfish ordinals.

For example,ω is selfish. If one cuts out any proper initial part of the well-order
representingω (see figure), the remaining part representsω itself.

•— •— •— •— •— •— •— •— . . .

The ordinalsω + ω, ω + ω + ω etc. are not selfish because removing the initial
ω leads to a smaller number. However, the limitω

2 of this sequence is selfish.
Similarly, the limit ω3 of the sequenceω2,ω2 + ω

2,ω2 + ω
2 + ω

2, . . . is self-
ish. This observation can be continued infinitely. We obtainan infinite sequence
ω,ω2,ω3, . . . of selfish ordinals. The limit of this sequence isω

ω which is also
selfish. Now we can construct the sequenceω

ω,ωω + ω
ω,ωω + ω

ω + ω
ω, . . .

whose limit isωω+1, again selfish.

Note that1 is selfish — the least, the only finite and the only successor ordinal
among them.

Proposition 3.2.2.

(i) Every ordinalo > 0 is uniquely representable in the formo = α + γ where
γ is selfish andα is the least ordinal for whicho− α is selfish.

(ii) Every ordinalo > 0 is uniquely representable in the formo = λ + β where
λ is selfish andβ < o.

Proof.

(i) If o is selfish, the representationo = 0 +o obviously meets the requirements.
Supposeo not being selfish. Theno can be represented as the sum of two ordinals
both less thano. For any such representation, both ordinals are non-zero because
otherwise the other would equal too. Letγ be the least non-zero ordinal for which
o = α + γ is possible. Ifγ = π + ̺ for someπ and ̺ both less thanγ then
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o = α + (π + ̺) = (α + π) + ̺ contradicts the choice ofγ. Thusγ is selfish.
Minimize α for this γ. We state that this results in the desired representation. For
that, it suffices to prove thato−α, even for varyingα, can evaluate to at most one
selfish ordinal.

Assumeo = α1 + γ1 = α2 + γ2 with selfishγ1, γ2. W.l.o.g.,γ1 6 γ2. Suppose
γ1 < γ2. It is easy to see thatα1 > α2 (supposingα1 6 α2 would giveo =
α1 + γ1 6 α2 + γ1 < α2 + γ2 = o, a contradiction). Soα1 = α2 + ε for some
ε. Now α2 + ε + γ1 = o = α2 + γ2 implying ε + γ1 = γ2, a contradiction with
selfishness ofγ1 andγ2. Henceγ1 = γ2 and the result follows.

(ii) Let λ be the least ordinal for whicho = λ + β for someβ < o; thenλ > 0.
If λ = π + ̺ for someπ and̺ both less thanλ theno = (π + ̺) + β = π + (̺ + β).
Then̺ + β = o by the choice ofλ which gives a contradiction with the choice of
λ. Henceλ is selfish.

Now assumeo = λ1 + β1 = λ2 + β2 with selfishλ1, λ2 andβ1 < o, β2 < o.
W.l.o.g.,λ1 6 λ2. Supposeλ1 < λ2. Thenλ2 = λ1 + δ for someδ; actually,
δ = λ2 sinceλ2 is selfish. Nowλ1 +β1 = o = λ1 +λ2 +β2 giving β1 = λ2 +β2 = o
which contradictsβ1 < o. Soλ1 = λ2 implying alsoβ1 = β2. ⊓⊔

Proposition 3.2.2 implies that every ordinal can be uniquely expressed as the sum
of the elements of a finite non-increasing list of selfish ordinals. This fact can also
be deduced from the classical theorem of ordinal theory about representations on
base since it can be proven that an ordinal is selfish if and only if it is a power of
ω; the representation on baseω is also calledCantor normal form[12, 15].

In the rest, we call the representationo = α + γ whereγ being selfish andα min-
imized (the representation of Prop. 3.2.2(i)) theprincipal representationof o. For
example, the principal representation ofω is 0 + ω; the principal representation
of ω + k with any positive natural numberk is (ω + (k − 1)) + 1; the princi-
pal representation ofω · k = ω + . . . + ω

︸ ︷︷ ︸

k

with any positive natural numberk is

ω · (k − 1) + ω. If the Cantor normal form ofo is written as a sum of powers
of ω like in [15] then adding all summands but the last of this sum gives the first
component of the principal representation ofo and the last summand equals to the
other component.

Principal representations classify ordinals according tothe second summand: suc-
cessor ordinals are “1-ordinals” while ω, ω + ω etc. are “ω-ordinals”, ω

2 is
“ω2-ordinal” etc.

Suppose we are definingl(o) in terms of elements preceding it in listl. The selfish
ordinal in the principal representation ofo coincides with the number of elements
inevitable to study backward in the listl. Even if l(o) is represented in terms of
this selfish number of preceding elements, the length of the remaining initial part
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not necessarily coincides with the other number in the principal representation;
the length can be larger. However, the principal representation provides a way to
formalize uniformly the kind of recursion we desire.

There is no set of all ordinals and hence also no set of all transfinite lists over a
non-empty set. Let∝ be a fixed selfish ordinal “large enough” and letTListA de-
note the set of all transfinite lists overA of length not exceeding∝. Let STListA
denote the subset ofTListA consisting of lists by which next elements are de-
fined, i.e. lists of length being both selfish and less than∝ (lists of length∝ cannot
be continued). So

TListA =
⋃

o6∝

(Oo → A) , STListA =
⋃

γ<∝

γ selfish

(Oγ → A) .

For every transfinite listl ando 6 |l|, let take o l anddrop o l denote the transfi-
nite list which is obtained froml by taking and dropping, respectively, the firsto
elements from it. So, for any ordinalπ,

(take o l)(π) =
{
l(π) if π < o
⊥ otherwise

}

, (drop o l)(π) = l(o + π) .

Thereby,| take o l| = o and|drop o l| = |l|−o. If o > |l| or l is not a list (because
of its domain not being a cut) thentake o l = ⊥ = drop o l.

Lemma 3.2.3. Let l be any transfinite list.

(i) For ordinalso andπ, l(o + π) = (drop o l)(π).

(ii) For ordinal o, l(o) = head(drop o l).

(iii) For ordinalso andπ, drop(o + π) l = dropπ(drop o l).

(iv) For ordinalso andπ, takeπ(drop o l) = drop o(take(o + π) l).

(v) For ordinalso andπ, if π 6 o 6 |l| thentakeπ l = takeπ(take o l).

Proof.

(i) Trivial because ifo + π > |l| thenl(o + π) = ⊥ = drop o l(π).

(ii) We havehead(drop o l) = (drop o l)(0) = l(o + 0) = l(o).

(iii) For any ordinalα,

(dropπ(drop o l))(α) = (drop o l)(π + α) = l(o + π + α)

= (drop(o + π) l)(α) .

(iv) If o + π > |l|, both sides of the desired equality are⊥. Otherwise, both are
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defined giving, for any ordinalα,

(drop o(take(o + π) l))(α) = (take(o + π) l)(o + α)

=
{
l(o + α) if o + α < o + π
⊥ otherwise

}

=
{

(drop o l)(α) if α < π
⊥ otherwise

}

= (takeπ(drop o l))(α) .

(v) For any ordinalα,

(takeπ(take o l))(α) =
{

(take o l)(α) if α < π
⊥ otherwise

}

=
{
l(α) if α < π andα < o
⊥ otherwise

}

=
{
l(α) if α < π
⊥ otherwise

}

= (takeπ l)(α) .

⊓⊔

The claims of Lemma 3.2.3 are rather intuitive and we are going to use them
without any reference.

For arbitraryl, k ∈ TListA, let l ++ k denote the transfinite list which is obtained
by concatenatingk to the end ofl. So, for any ordinalπ,

(l ++ k)(π) =

{
l(π) if π < |l|
k(π − |l|) otherwise

}

.

Thereby,|l ++ k| = |l| + |k|.

Lemma 3.2.4. Let l, k be transfinite lists.

(i) l = k iff take o l = take o k anddrop o l = drop o k for some ordinalo with
o 6 |l|, o 6 |k|.

(ii) take |l|(l ++ k) = l anddrop |l|(l ++ k) = k.

Proof.

(i) Consider the “if” part (the other is trivial). Supposeo 6 |l|, o 6 |k| and
take o l = take o k, drop o l = drop o k. Take any ordinalα. If α < o then

l(α) = (take o l)(α) = (take o k)(α) = k(α) .

If α > o then

l(α) = (drop o l)(α − o) = (drop o k)(α − o) = k(α) .

Hencel = k.
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(ii) Let α be any ordinal. Ifα < |l| then

(take |l|(l ++ k))(α) = (l ++ k)(α) = l(α) ,

otherwise both sides of the desired equality are⊥. If α < |k| then

(drop |l|(l ++ k))(α) = (l ++ k)(|l| + α) = k(|l| + α− |l|) = k(α) ,

otherwise both sides of the desired equality are⊥. ⊓⊔

Let T = {tt, ff} be the set of truth values. We will denote bymap ∈ (A →
B) → (TListA → TListB) andfilter ∈ (A → T) → (TListA → TListA)
the transfinite counterparts of the namesake functions known from functional pro-
gramming. More precisely, iff ∈ A→ B while l ∈ TListA then|map f l| = |l|
and(map f l)(o) = f (l(o)) for everyo < |l|. If p ∈ A → T while l ∈ TListA
then|filter p l| = κ and(filter p l)(̺) = l(o̺) for all ̺ < κ where(o̺ : ̺ < κ) is
the ascending family of all indices corresponding to components ofl satisfyingp.

Denote function composition by; (function in the left is applied first). Lemma
3.2.5 states properties ofmap andfilter which will be used later. They are easy
to prove and, in the case of finite lists and streams, also wellknown.

Lemma 3.2.5. LetA, B, C be sets.

(i) If f ∈ A→ B andg ∈ B → C thenmap f ; map g = map(f ; g).

(ii) If p, q ∈ A→ T thenfilter p ; filter q = filter(⋋a. p(a) ∧ q(a)).

(iii) If p ∈ A→ T andl ∈ TListA such thatp is constantly true on components
of l thenfilter p l = l.

(iv) If f ∈ A → B and p ∈ B → T thenmap f ; filter p = filter(f ; p) ;
map f .

(v) If p ∈ A→ T and l ∈ TListA then|filter p l| 6 |l|.

3.3 Transfinite Iteration

Transfinite iteration based on principal representations is defined as follows.

Definition 3.3.1. LetX, A be sets. Assumeϕ ∈ X → 1 + A = A ∪ {⊥} and
ψ ∈ STListA → X. We say that a functionh ∈ X → TListA is iterative onϕ
andψ iff, for eachx ∈ X, the following two conditions hold:

1. h(x)(0) = ϕ(x);

2. h(x)(o) = ϕ(ψ(take γ(dropα(h(x))))) for everyo < ∝ with principal rep-
resentationo = α + γ.
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This notion captures the desire described above:oth component of a listh(x) is
defined in terms ofγ preceding components whereγ is the selfish ordinal from
the principal representation ofo. As1 is one particular selfish ordinal, the iteration
schema handles finite and infinite steps uniformly.

Call a transfinite listl with limit ordinal lengthstabilizing tov iff there is ano < |l|
such thatl(π) = v for everyπ satisfyingo 6 π < |l|. Note thatl is stabilizing to
v iff dropα l is stabilizing tov for everyα < |l|.

Example 3.3.2.TakeA = N,X = Z. Forx ∈ Z andl ∈ STList N, define

ϕ(x) =
{
x if x ∈ N

⊥ otherwise

}

, ψ(l) =

{
head l if |l| = 1
n + 1 if l stabilizes ton
−1 otherwise

}

.

Then

h(x) =







(x, x, . . .
︸ ︷︷ ︸

ω

, x + 1, x + 1, . . .
︸ ︷︷ ︸

ω

, x + 2, x + 2, . . .
︸ ︷︷ ︸

ω

, . . . . . .

︸ ︷︷ ︸

ω

) if x ∈ N

nil otherwise







is iterative onϕ andψ (provided∝ > ω
2). ⊓⊔

Theorem 3.3.3. LetX, A be sets. For everyϕ ∈ X → 1 + A = A ∪ {⊥} and
ψ ∈ STListA → X, there exists a unique functionh ∈ X → TListA being
iterative onϕ andψ.

Proof. The conditions in Definition 3.3.1 serve as transfinite recursion schema
sinceh(x)(o) is expressed in terms of values of functionh(x) on arguments less
thanα + γ = o only. Hence there exists a uniqueh ∈ X → O∝ → A ∪ {⊥}
satisfying these conditions.

It remains to make clear thath(x) ∈ TListA for everyx. Let h(x)(π) = ⊥ and
π < o. Sinceo > 0, there is a principal representationo = α + γ. As

take γ(dropα(h(x))) = dropα(take o(h(x))) = ⊥ ,

we geth(x)(o) = ⊥ by the definition ofh. Thus the domain ofh(x) is a cut and
h(x) ∈ TListA. ⊓⊔

Theorem 3.3.3 asserts that, for defining a transfinite semantics “by iteration”, it
suffices to provide justϕ andψ.
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3.4 Transfinite Corecursion

Standard deterministic trace semantics have the nice property that the part of the
computation starting from an intermediate states is independent of the compu-
tation performed before reachings. This is because states alone uniquely de-
termines all the following computation, it is not relevant whether there was any
computation before reachings or was it the initial state. For transfinite semantics,
even if defined by transfinite iteration, this property need not hold.

However, there exists a similar weaker condition holding also for iterative transfi-
nite semantics. Furthermore, it is possible to put a naturalrestriction onψ in case
of which the corresponding transfinite semantics satisfies also the desired stronger
property. We call the two conditions weak corecursivity andcorecursivity, respec-
tively. We choosed such word because the conditions are to some extent analogous
to traditional stream corecursion (the analogy will be explained below).

Definition 3.4.1. LetX, A be sets.

(i) If ψ ∈ STListA→ X is such thatψ(l) = ψ(dropλ l) for all selfish ordinals
λ, γ, λ < γ < ∝, andl ∈ TListA with |l| = γ, then we callψ limit operator.

(ii) Assumeϕ ∈ X → 1 + A, ψ ∈ STListA → X andh ∈ X → TListA.
Consider the following properties:

1. if ϕ(x) = a ∈ A thenhead(h(x)) = a, and
if ϕ(x) ∈ 1 thenh(x) = nil;

2. if |h(x)| > λ andλ, µ are consecutive selfish ordinals withλ < µ 6 ∝ then,
for every ordinalo < µ,

dropλ(h(x))(o) = h(ψ(take λ(h(x))))(o) ;

3. if |h(x)| > λ andλ < ∝ is selfish then

dropλ(h(x)) = h(ψ(takeλ(h(x)))) .

We say thath ∈ X → TListA is weakly corecursive onϕ andψ iff the conditions
1 and 2 hold. We say thath ∈ X → TListA is corecursive onϕ andψ iff the
conditions 1 and 3 hold.

Limit operators are analogous to limits in calculus by certain properties (the limit
of a sequence equals to the limit of its every subsequence; all sequences obtained
as a final part of a diverging sequence also diverge). In the case of semantics,
ψ being a limit operator means that the limit state, into whichthe computation
falls after an infinite computation , does not depend on the actual starting point
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of the final part of selfish length. This implies that one need not use the principal
representation to determine the final part to rely on but may equivalently use any
final part of the same length (as every ordinal has a Cantor normal form, every
function of form dropα can be expressed as a finite composition of functions
of form dropλ with selfishλ). Example 4.6.4 will show the inevitability of it in
context of our approach. In Sect. 4.1, we will provide also examples of deriving
transfinite semantics for programs with unstructured control flow whereψ need
not be a limit operator.

Condition 3 of Definition 3.4.1(ii) obviously implies condition 2 (2 requires some-
thing to hold for everyo < µ while 3 requires essentially the same thing to hold
for all o), hence corecursivity implies weak corecursivity.

Like recursion, corecursion in general is a special way to define functions. When
one has to define functions whose values are streams, corecursion is often the
neatest choice.

Consider an example from number theory of defining continuedfractions. The
functioncwhich takes real numbers to their representations as continued fractions
satisfies the corecurrent equation

c(x) = ⌊x⌋ :

{

c
(

1
〈x〉

)

if x /∈ Z

nil otherwise

}

where: andnil are the cons and empty-list constructor, respectively, and⌊x⌋, 〈x〉
denote the integral and fractional part ofx, respectively. Obviously, this equation
determines the functionc uniquely despite containingc on the right-hand side. In
number theory books, continued fractions are usually defined recursively rather
than corecursively, resulting in a more complicated formulation because the length
of the result is not known a priori, it clears up as the computation reaches the end.

The soundness of both recursive and corecursive definitionsin the case of their
simplest forms is obvious; however, proving it is surprisingly hard. There are
works trying to give proofs of corecursion theorems at a verygeneral level; the
reader being interested in is recommended to study [1].

When defining a standard trace semantics of a programming language, one usually
gives a plenty of elementary transition rules to be used for different syntactic con-
structions. In other words, one has a transition function or, if a non-deterministic
semantics is desired, a transition relation. It is trivial to argue by stream coinduc-
tion that a transition function gives rise to a unique deterministic semantics, i.e. it
determines the unique function from initial states to streams of states such that the
first state of the result is the initial state and any following state is obtained from its
predecessor by applying the transition function. In the case of non-determinism,
the circumstances are similar.
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The corecursion theorems being proved in this chapter play asimilar role in the
case of transfinite trace semantics. In this case, one has to define transfinite lists
rather than usual streams. While the corecurrent equationsof usual kind relate a
list with its tail, tail of tail etc. only, the form of corecurrent equations must enable
to relate transfinite lists with their arbitrarily (transfinitely) deep substructures.

Usual corecursion is called corecursion because it is dual to recursion [6]. We have
not found such kind of connection between transfinite recursion and our transfinite
corecursions. The name “transfinite corecursion” has been choosed solely by the
analogy with usual corecursion where one writes equations relating a (possibly
infinite) structure with its substructures which are expressed as values of the same
function.

Takingλ = 1 in Definition 3.4.1(ii) gives a construction similar to stream core-
cursion in the sense that the result list is defined by giving its head and expressing
its tail as the value of the same function which is being defined. (Conditions 2 and
3 are equivalent in stream case sinceλ = 1 implies µ = ω so both conditions
apply to the whole stream). In transfinite corecursion, the breaking point can be
after any initial part of selfish length rather than after thehead only. Unlike in
the traditional corecursion, any component of any list being a value of a function
corecursive in our sense determines all the following components uniquely.

Theorem 3.4.2(i) states the equivalence of iterativity andweak corecursivity.

Theorem 3.4.2. Let X, A be sets. Letϕ ∈ X → A ∪ {⊥} = 1 + A, ψ ∈
STListA→ X andh ∈ X → TListA.

(i) Thenh is iterative onϕ andψ iff h is weakly corecursive onϕ andψ.

(ii) If h is iterative onϕ andψ andψ is a limit operator thenh is corecursive
onϕ andψ.

Proof.

(i) Consider the “only if” part first. Leth be iterative onϕ andψ.

We havehead(h(x)) = h(x)(0) = ϕ(x); thereby, ifϕ(x) /∈ A thenh(x)(0) = ⊥
implying h(x) = nil. Thus condition 1 of Definition 3.4.1(ii) holds.

It remains to prove condition 2. Takex and λ, µ consecutive selfish ordinals
such thatλ < µ 6 ∝ and |h(x)| > λ. We are going to show by transfinite
induction thath(x)(λ + o) = h(ψ(take λ(h(x))))(o) for every ordinalo < µ. As-
sume the equality being valid for all ordinalsπ < o, so take o(dropλ(h(x))) =
take o(h(ψ(take λ(h(x))))).

If o = 0, we get

h(x)(λ + 0) = h(x)(0 + λ) = ϕ(ψ(take λ(drop 0(h(x)))))

= ϕ(ψ(take λ(h(x)))) = h(ψ(takeλ(h(x))))(0) .
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If o > 0, let o = α + γ be the principal representation. Thenγ 6 o < µ, implying
γ 6 λ. Using the induction hypothesis, we get

take γ(drop(λ + α)(h(x))) = take γ(dropα(dropλ(h(x))))

= dropα(take o(dropλ(h(x))))

= dropα(take o(h(ψ(take λ(h(x))))))

= take γ(dropα(h(ψ(take λ(h(x)))))) .

By Lemma 3.4.5(i),(λ + α) + γ is the principal representation ofλ + o. Thus

h(x)(λ + o) = ϕ(ψ(take γ(drop(λ + α)(h(x)))))

= ϕ(ψ(take γ(dropα(h(ψ(take λ(h(x))))))))

= h(ψ(takeλ(h(x))))(o) .

Thush is weakly corecursive onϕ andψ.

For the “if” part, supposeh being weakly corecursive onϕ andψ. Let h̃ be the
function iterative onϕ andψ. It suffices to showh = h̃.

By the “only if” part, h̃ is weakly corecursive onϕ andψ. We are going to prove
that

∀x ∈ X (h(x)(o) = h̃(x)(o)) (3.1)

for everyo < ∝. Argue by transfinite induction. Foro = 0, one obtains

h(x)(0) = head(h(x)) = ϕ(x) = head(h̃(x)) = h̃(x)(0) .

Consider now any non-zeroo < ∝ and assume Eq. 3.1 for allπ < o. Takeo =
λ+β with λ selfish andβ < o. The induction hypothesis implies|h(x)| > λ ⇐⇒
|h̃(x)| > λ, as well astakeλ(h(x)) = takeλ(h̃(x)), as well ash(y)(β) = h̃(y)(β)
for everyy ∈ X. Using these, we get

h(x)(o) = h(x)(λ + β) = (dropλ(h(x)))(β) = (h(ψ(take λ(h(x)))))(β)

= (h(ψ(take λ(h̃(x)))))(β) = (h̃(ψ(take λ(h̃(x)))))(β)

= (dropλ(h̃(x)))(β) = h̃(x)(λ + β) = h̃(x)(o) .

(ii) Our h is weakly corecursive by part (i). It remains to prove condition 3 from
Definition 3.4.1(ii). Prove by transfinite induction ono that

∀λ < ∝ ∀x ∈ X
(
dropλ(h(x))(o) = h(ψ(takeλ(h(x))))(o)

)

(whereλ ranges over selfish ordinals only). Ifo = 0 then the claim holds by weak
corecursivity. Ifo > 0, leto = κ+β with selfishκ andβ < o (possible by Proposi-
tion 3.2.2(ii)). Fixλ and letµ be the next selfish ordinal. Ifµ > κ theno = κ+β <
µ (because otherwiseβ > µ implying β = κ+β = o) and the claim holds again by
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weak corecursivity. Hence assumeµ 6 κ. Soλ < κ andλ+κ = κ. The induction
hypothesis impliestakeκ(dropλ(h(x))) = takeκ(h(ψ(take λ(h(x))))), as well
asdropκ(h(y))(β) = h(ψ(take κ(h(y))))(β) for all y ∈ X. Using this knowledge
together with the assumption thatψ is a limit operator, we obtain

dropλ(h(x))(κ + β) = h(x)(λ + κ + β) = h(x)(κ + β) = dropκ(h(x))(β)

= h(ψ(takeκ(h(x))))(β) = h(ψ(drop λ(takeκ(h(x)))))(β)

= h(ψ(dropλ(take(λ + κ)(h(x)))))(β)

= h(ψ(takeκ(dropλ(h(x)))))(β)

= h(ψ(takeκ(h(ψ(take λ(h(x)))))))(β)

= dropκ(h(ψ(take λ(h(x)))))(β)

= h(ψ(takeλ(h(x))))(κ + β) .

⊓⊔

Theorem 3.4.2(ii) can be proven also without the reference to Theorem 3.4.2(i),
simply supplementing the proof of the “only if” part of the latter with the case
o > µ. It suffices to consider the caseα = 0 together withλ < γ (this is the
case in which the argumentation given in the proof fails). Inthis case, using the
assumption thatψ is a limit operator together with the induction hypothesis,we
would get

ψ(take γ(drop 0(h(x)))) = ψ(take γ(h(x)))

= ψ(dropλ(take γ(h(x))))

= ψ(dropλ(take(λ + γ)(h(x))))

= ψ(take γ(dropλ(h(x))))

= ψ(take γ(h(ψ(take λ(h(x))))))

= ψ(take γ(drop 0(h(ψ(take λ(h(x))))))) .

Note that0 + γ is the principal representation of botho andλ + o. Thus

h(x)(λ + o) = ϕ(ψ(take γ(drop 0(h(x)))))

= ϕ(ψ(take γ(drop 0(h(ψ(take λ(h(x))))))))

= h(ψ(takeλ(h(x))))(o)

and we would have done.

Functionψ of Example 3.3.2 in Sect. 3.3 is a limit operator. Hence one can deduce
by Theorem 3.4.2(ii) thath defined in that example is corecursive. It is also easy
to check this directly.

As Proposition 3.4.3(ii) together with Example 3.4.4 show,Theorem 3.4.2(ii)
would break down without the assumption thatψ is a limit operator.
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Proposition 3.4.3. LetX, A be sets. Letϕ ∈ X → 1 + A andψ ∈ STListA →
X. Assume thatf ∈ X → TListA is corecursive onϕ andψ. Letλ, γ be selfish
ordinals less than∝ and takex ∈ X.

(i) Then

drop γ(dropλ(f (x))) = f (ψ(take γ(dropλ(f (x))))) .

(ii) Moreover, ifλ < γ then

f (ψ(take γ(f (x)))) = f (ψ(dropλ(take γ(f (x))))) .

Proof.

(i) If |f (x)| > λ + γ then

drop γ(dropλ(f (x))) = drop γ(f (ψ(takeλ(f (x)))))

= f (ψ(take γ(f (ψ(takeλ(f (x)))))))

= f (ψ(take γ(dropλ(f (x))))) .

If |f (x)| < λ + γ then both sides of the equality are⊥.

(ii) Note thatλ + γ = γ sinceγ is selfish. If|f (x)| > γ then

f (ψ(take γ(f (x)))) = drop γ(f (x)) = drop(λ + γ)(f (x))

= drop γ(dropλ(f (x)))

= f (ψ(take γ(dropλ(f (x)))))

= f (ψ(dropλ(take(λ + γ)(f (x)))))

= f (ψ(dropλ(take γ(f (x))))) .

If |f (x)| < γ then both sides of the equality are⊥. ⊓⊔

Example 3.4.4.TakeX = A = {0, 1}, ϕ(x) = x for bothx ∈ X, and

ψ(l) =

{

1 if |l| = 1 or ∀o < |l| (l(o) = 1)
0 otherwise

}

.

Suppose thatf is corecursive onϕ andψ. It is easy to see that

take ω(f (0)) = 0 : 1 : 1 : 1 : . . . .

Thus the equality stated by Proposition 3.4.3(ii) is broken:

head(f (ψ(0 : 1 : 1 : 1 : . . .))) = head(f (0)) = ϕ(0) = 0

6= 1 = ϕ(1) = head(f (1))

= head(f (ψ(1 : 1 : 1 : . . .)))

= head(f (ψ(drop 1(0 : 1 : 1 : 1 : . . .)))) .

⊓⊔
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Before ending this section, we prove some facts we need lateron in the thesis.

Lemma 3.4.5. Leto be an ordinal with principal representationo = α + γ.

(i) If λ > γ andλ is selfish then the principal representation ofλ + o is (λ +
α) + γ.

(ii) If α > 0 or γ = 1 then, for arbitrary ordinalπ, the principal representation
of π + o is (π + α) + γ.

Proof.

(i) For the “if” part of the lemma, assume thatα > 0 or λ > γ holds. Take an
arbitraryβ such thatλ + o = β + γ (suchβ exists sinceλ + o = λ + α + γ).
Showβ > λ by contradiction. Ifβ < λ thenλ = β +λ, leading toβ +λ+α+γ =
β + γ, thus alsoλ + α + γ = γ andλ + α < γ. In the caseα > 0, we have
α > γ (otherwiseα + γ = γ = 0 + γ which contradicts the minimality ofα), a
contradiction withλ + α < γ. The caseλ > γ contradicts the same inequality.
Let β = λ + ε. Thenλ + α + γ = λ + ε + γ and thusα + γ = ε + γ. As the lhs is a
principal representation, this impliesα 6 ε. Soλ+α 6 λ+ ε = β. Consequently,
(λ + α) + γ is the principal representation ofλ + o.

For the “otherwise” case, assumeα = 0 andλ < γ. Thenλ+α+ γ = λ+ γ = γ =
0 + γ where the last sum is a principal representation.

(ii) Takeβ such thatπ + o = β + γ (it is possible sinceπ + o = π + α + γ). We
have to show thatπ + α 6 β. Suppose the contrary, i.e.β < π + α.

If β < π thenπ = β + ε for someε. We obtainβ +γ = π+ o = β + ε+ o, implying
γ = ε + o. Henceo = γ (asγ is selfish ando 6= 0), giving α = 0 and therefore
γ = 1. So we haveπ + 1 = β + 1 which leads toπ = β, a contradiction.
If β > π thenβ = π + ε for someε. Asπ + ε = β < π + α, we haveε < α. Then
π + o = β + γ = π + ε + γ, implying o = ε + γ. Henceα 6 ε, a contradiction. ⊓⊔

Theorem 3.4.6. Let X, A be sets. Letϕ ∈ X → A ∪ {⊥} = 1 + A, ψ ∈
STListA→ X and leth ∈ X → TListA be iterative onϕ andψ. Leto < ∝ be
an arbitrary ordinal with principal representationo = α + γ.

(i) Letµ be the selfish ordinal next toγ. Then, for every ordinalπ 6 µ,

h ; drop o ; takeπ = h ; dropα ; take γ ; ψ ; h ; takeπ .

(ii) If ψ is a limit operator then

h ; drop o = h ; dropα ; take γ ; ψ ; h .

Proof. Both statements are proved by induction ono. For o = 0, the claims are
true vacuously. So assume that the claims hold for ordinals less thano.
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(i) Weak corecursivity implies

h ; drop γ ; takeπ = h ; take γ ; ψ ; h ; takeπ .

Hence the desired claim follows for the caseα = 0.

Assume nowα > 0, let α = β + δ be the principal representation. Ifδ < γ then
o = α + γ = β + δ + γ = β + γ — a contradiction sinceβ < α. Thusδ > γ. As
γ + π 6 γ + µ = µ, this implies thatγ + π does not exceed the selfish ordinal next
to δ. Note furthermore thattakeπ ; takeπ = takeπ. Now compute

h ; drop o ; takeπ = h ; drop(α + γ) ; takeπ

= h ; dropα ; drop γ ; takeπ ; takeπ

= h ; dropα ; take(γ + π) ; drop γ ; takeπ

= h ; dropβ ; take δ ; ψ ; h ; take(γ + π) ; drop γ ; takeπ

= h ; dropβ ; take δ ; ψ ; h ; drop γ ; takeπ ; takeπ

= h ; dropβ ; take δ ; ψ ; h ; take γ ; ψ ; h ; takeπ ; takeπ

= h ; dropα ; take γ ; ψ ; h ; takeπ .

(ii) Corecursivity implies

h ; drop γ = h ; take γ ; ψ ; h .

Hence the desired claim follows for the caseα = 0.

Assume nowα > 0, letα = β + δ be the principal representation. Now compute

h ; drop o = h ; drop(α + γ) = h ; dropα ; drop γ

= h ; dropβ ; take δ ; ψ ; h ; drop γ

= h ; dropβ ; take δ ; ψ ; h ; take γ ; ψ ; h

= h ; dropα ; take γ ; ψ ; h .

⊓⊔

Corollary 3.4.7. Let X, A be sets. Letϕ ∈ X → A ∪ {⊥} = 1 + A, ψ ∈
STListA → X and leth ∈ X → TListA be iterative onϕ andψ. Letλ, µ be
consecutive selfish ordinals withλ < µ 6 ∝. Then, for every natural numbern
and ordinalπ 6 µ,

h ; drop(λ · n) ; takeπ = (h ; takeλ ; ψ)n ; h ; takeπ .

Proof. Argue by induction onn. If n = 0, both sides of the desired equation
reduce toh ; takeπ. Assume now that the claim holds forn. As the principal
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representation ofλ·(n+1) isλ·n+λ, Theorem 3.4.6(i) together with the induction
hypothesis give

h ; drop(λ · (n + 1)) ; takeπ = h ; drop(λ · n) ; takeλ ; ψ ; h ; takeπ

= (h ; takeλ ; ψ)n ; h ; takeλ ; ψ ; h ; takeπ

= (h ; takeλ ; ψ)n+1 ; h ; takeπ .

⊓⊔

Corollary 3.4.8. Let X, A be sets. Letϕ ∈ X → A ∪ {⊥} = 1 + A, ψ ∈
STListA→ X and leth ∈ X → TListA be iterative onϕ andψ. Letα 6 |h(x)|
for somex ∈ X. Then there exists an elementz ∈ X such that all the following
holds:

1. h(x)(α) = ϕ(z);

2. if γ is such thatα + γ is a principal representation then

take γ(dropα(h(x))) = take γ(h(z)) ;

3. if ψ is a limit operator thendropα(h(x)) = h(z).

Proof. If α = 0 then takez = x. By iterativity, h(x)(0) = ϕ(x), so the first
statement follows. The other two hold becausedrop 0 is the identity.

Consider the caseα > 0; let α = β + δ be the principal representation. Define
z = ψ(take δ(dropβ(h(x)))) ∈ X. By iterativity, h(x)(α) = ϕ(z). To prove the
second equality, note thatδ < γ would giveα + γ = β + δ + γ = β + γ with
β < α, contradicting the assumption thatα + γ is a principal representation.
Henceγ 6 δ which impliesγ < µ whereµ is the selfish ordinal next toδ. Thus,
by Theorem 3.4.6(i),take γ(dropα(h(x))) = take γ(h(z)). If ψ is a limit operator
then Theorem 3.4.6(ii) immediately givesdropα(h(x)) = h(z). ⊓⊔

3.5 Non-Deterministic Transfinite Corecursion

We start with providing a new definition of corecursion whichis the counterpart
of Definition 3.4.1(ii) in the case where functions with setsof transfinite lists as
values are considered. Denote the set of all subsets ofS by ℘S. We use the set
comprehension syntax of the well-knownZ notation [17].

Definition 3.5.1. LetX, A be sets. Takeϕ ∈ X → 1 + A andΨ ∈ STListA →
℘X. We say that a functionF ∈ X → ℘(TListA) is corecursive onϕ andΨ iff
the following twocorecursion conditionshold:
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1. if ϕ(x) = a ∈ A then, for everyl ∈ F (x), head l = a, and
if ϕ(x) ∈ 1 thenF (x) = {nil};

2. for any selfishλ < ∝ and transfinite listl ∈ (Oλ → A) such that there
exists anm ∈ F (x) for whichtakeλm = l,

{m ∈ F (x) | takeλm = l • dropλm} =
⋃

z∈Ψ(l)

F (z) .

Lemma 3.5.2. LetX,A be sets. Letϕ ∈ X → 1 +A andΨ ∈ STListA→ ℘X.
Assume thatF ∈ X → ℘(TListA) is corecursive onϕ andΨ . Supposeo being
an ordinal with principal representationα+γ. Letx ∈ X andl ∈ TListA, |l| = o
such that there exists anm ∈ F (x) such thattake om = l. Then

{m ∈ F (x) | take om = l • drop om} ⊆
⋃

z∈Ψ(dropα l)

F (z) .

Proof. If α = 0, the claim follows directly from the premises. So supposeα > 0.
Proceed by induction ono. Asγ > 0, we haveα < o, so the induction hypothesis
holds forα. Letβ + δ be the principal representation ofα.

Then, for arbitraryk ∈ TListA,

k ∈ {m ∈ F (x) | take om = l • drop om}

⇐⇒ ∃m ∈ F (x) (take om = l ∧ drop om = k)

⇐⇒ ∃m ∈ F (x) (

takeα(take om) = takeα l ∧

dropα(take om) = dropα l ∧

drop γ(dropαm) = k

)

⇐⇒ ∃m ∈ F (x) (

takeαm = takeα l ∧

take γ(dropαm) = dropα l ∧

drop γ(dropαm) = k

)

⇐⇒ ∃d ∈ {m ∈ F (x) | takeαm = takeα l • dropαm}

(take γ d = dropα l ∧ drop γ d = k)

=⇒ ∃d ∈
⋃

z∈Ψ(drop β(takeα l))

F (z)

(take γ d = dropα l ∧ drop γ d = k)
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⇐⇒ ∃z ∈ Ψ (dropβ(takeα l)) ∃d ∈ F (z)

(take γ d = dropα l ∧ drop γ d = k)

⇐⇒ ∃z ∈ Ψ (dropβ(takeα l))

(k ∈ {d ∈ F (z) | take γ d = dropα l • drop γ d})

=⇒ ∃z ∈ Ψ (dropβ(takeα l)) (k ∈
⋃

w∈Ψ(dropα l)

F (w))

⇐⇒ k ∈
⋃

w∈Ψ(dropα l)

F (w) .

This completes the proof. ⊓⊔

Theorem 3.5.3 claims the existence of alargest function meeting certain condi-
tions rather than a unique function like it was in Theorem 3.4.2(ii). The order of
functions is defined componentwise, being based on the set inclusion order.

Theorem 3.5.3. LetX,A be sets. Letϕ ∈ X → 1+A andΨ ∈ STListA→ ℘X.
AssumeΨ (l) = Ψ (dropλ l) for all selfish ordinalsλ, γ with λ < γ < ∝ and
transfinite listsl ∈ (Oγ → A). Then there is a largest functionF ∈ X →
℘(TListA) being corecursive onϕ andΨ .

Proof. Let functionH ∈ X → ℘(TListA) be defined with

H(x) =

{
{nil} if ϕ(x) /∈ A
{l ∈ TListA | head l = a ∧ P (l) • l} if ϕ(x) = a ∈ A

}

whereP (l) means that

for all o < |l| with principal representationo = α + γ,

∃z ∈ Ψ (dropα(take o l)) (ϕ(z) = l(o))

and,

with principal representation|l| = α + γ,

∃z ∈ Ψ (dropα l) (ϕ(z) /∈ A) .

We are going to show thatH is the largest function being corecursive onϕ andΨ .
The proof is divided into many cases and subcases.

1. Show thatH is corecursive onϕ andΨ .

1.1.Corecursion condition 1.

If ϕ(x) = a ∈ A andl ∈ H(x) thenhead l = a by definition ofH. If ϕ(x) /∈ A
thenH(x) = {nil} by definition ofH.

1.2.Corecursion condition 2.
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Let x ∈ X. Fix a selfish ordinalλ < ∝ and a transfinite listl ∈ (Oλ → A) such
that takeλm = l for somem ∈ H(x). ThenH(x) 6= ∅, henceϕ(x) = a ∈ A.
Take an arbitraryk ∈ TListA. We are going to show that

k ∈ {m ∈ H(x) | takeλm = l • dropλm} ⇐⇒ ∃z ∈ Ψ (l) (k ∈ H(z)) .

1.2.a.The case|k| = 0, i.e.k = nil.

1.2.a.(⊆). Assumenil = dropλm for m ∈ H(x) with takeλm = l. Thenl =
m ∈ H(x). By P (l), we getϕ(z) /∈ A for somez ∈ Ψ (drop 0 l) = Ψ (l). Then
H(z) = {nil} ∋ k for the samez.

1.2.a.(⊇). Assumenil ∈ H(z) for somez ∈ Ψ (l). Thenϕ(z) /∈ A. Choose
m ∈ H(x) such thattakeλm = l. Thenhead l = headm = a by definition
of H. Take an arbitrary ordinalo < |l| with principal representationo = α + γ.
As m ∈ H(x) ando < |m|, there exists aw ∈ Ψ (dropα(take om)) such that
ϕ(w) = m(o). Asm(o) = l(o) andtake om = take o l, we have shown the first
part ofP (l). The other part follows fromϕ(z) /∈ A andz ∈ Ψ (l).

1.2.b.The case|k| > 0.

1.2.b.(⊆). Fix m ∈ H(x) such thatl = takeλm andk = dropλm. Thenλ <
|m| with principal representationλ = 0 + λ, so we haveϕ(z) = m(λ) for some
z ∈ Ψ (takeλm) = Ψ (l). It suffices to showk ∈ H(z). As ϕ(z) = m(λ) ∈
A, we must showhead k = m(λ) andP (k). The former comes fromhead k =
(dropλm)(0) = m(λ + 0). We now proveP (k).

1.2.b.(⊆).1. Takeo < |k| with o = α + γ being its principal representation. Then

Ψ (dropα(take o k)) = Ψ (take γ(dropαk))

= Ψ (take γ(dropα(dropλm)))

= Ψ (take γ(drop(λ + α)m))

= Ψ (drop(λ + α)(take(λ + o)m)) .

Note thatλ + o < λ + |k| = |m|. If α > 0 or λ > γ then, usingP (m), we
get k(o) = m(λ + o) = ϕ(w) for somew ∈ Ψ (drop(λ + α)(take(λ + o)m)) =
Ψ (dropα(take o k)). If α = 0 andλ < γ then, usingP (m) together with the
restriction imposed onΨ , we getk(o) = k(γ) = m(γ) = ϕ(w) for somew ∈
Ψ (take γ m) = Ψ (take γ k). The first clause ofP (k) follows.

1.2.b.(⊆).2. Take|k| = α + γ, the sum being a principal representation. Then

Ψ (dropα k) = Ψ (dropα(dropλm)) = Ψ (drop(λ + α)m) .

Note thatλ + |k| = |m|. If α > 0 or λ > γ then, usingP (m), we getϕ(w) /∈ A
for somew ∈ Ψ (drop(λ + α)m) = Ψ (dropαk). If α = 0 andλ < γ then, using
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P (m) together with the restriction imposed onΨ , we getϕ(w) /∈ A for some
w ∈ Ψ (m) = Ψ (k). The second clause ofP (k) follows.

1.2.b.(⊇). Assumek ∈ H(z) for somez ∈ Ψ (l). Fix m ∈ H(x) such that
takeλm = l. It suffices to showl ++ k ∈ H(x). As ϕ(x) = a ∈ A, we have
to checkhead(l ++ k) = a andP (l ++ k). The former comes fromhead(l ++ k) =
head l = headm = a. We now proveP (l ++ k).

1.2.b.(⊇).1. Leto < |l ++ k| = |l| + |k| with principal representationo = β + δ.

If o < λ then, asm ∈ H(x), we haveϕ(w) = m(o) = l(o) = (l ++ k)(o) for
w ∈ Ψ (dropβ(take om)) = Ψ (dropβ(take o l)) = Ψ (dropβ(take o(l ++ k))).

Assumeo > λ now; leto = λ + π. If π = 0 then, ask ∈ H(z), we haveϕ(z) =
k(0) = (l ++ k)(o). In this case,β = 0 ando = λ, so

Ψ (dropβ(take o(l ++ k))) = Ψ (l) ∋ z .

It remains to consider the caseπ > 0. Letπ = α+γ be the principal representation.
If α > 0 or λ > γ thenβ = λ + α andδ = γ. Note that

Ψ (dropα(takeπ k)) = Ψ (dropα(takeπ(dropλ(l ++ k))))

= Ψ (dropα(dropλ(take o(l ++ k))))

= Ψ (drop(λ + α)(take o(l ++ k)))

= Ψ (dropβ(take o(l ++ k))) .

Thus we haveϕ(w) = k(π) = (l ++ k)(o) for w ∈ Ψ (dropβ(take o(l ++ k))). If
α = 0 andλ < γ thenβ = 0 andδ = γ. Note that

Ψ (take γ k) = Ψ (take γ(dropλ(l ++ k))) = Ψ (dropλ(take γ(l ++ k)))

= Ψ (take γ(l ++ k)) = Ψ (take o(l ++ k)) .

Thus we haveϕ(w) = k(π) = k(γ) = (l ++ k)(γ) = (l ++ k)(o) for somew ∈
Ψ (take o(l ++ k)).

In all cases, we have proven the first condition ofP (l ++ k).

1.2.b.(⊇).2. Let |k| = α + γ be the principal representation. Ifα > 0 or λ >

γ then, sincek ∈ H(z), we haveϕ(w) /∈ A for somew ∈ Ψ (dropα k) =
Ψ (drop(λ + α)(l ++ k)). If α = 0 andλ < γ then analogously we haveϕ(w) /∈ A
for somew ∈ Ψ (k) = Ψ (dropλ(l ++ k)) = Ψ (l ++ k). In both cases, the second
clause ofP (l ++ k) follows.

2. Show that if someF is corecursive onϕ andΨ thenF ⊑ H (i.e.F (x) ⊆ H(x)
for everyx ∈ X).

If ϕ(x) /∈ A thenF (x) = {nil} = H(x). Let nowϕ(x) = a ∈ A and takel ∈ F (x).
Thenhead l = a by corecursion condition 1.
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Takeo 6 |l| with principal representationα + γ. By Lemma 3.5.2,

{m ∈ F (x) | take om = take o l • drop om} ⊆
⋃

z∈Ψ(dropα(take o l))

F (z) .

Thusdrop o l ∈ F (z) for somez ∈ Ψ (dropα(take o l)).

If o < |l| then obviouslydrop o l 6= nil. ThusF (z) 6= {nil} implying ϕ(z) = b ∈
A. Now head(drop o l) = b, i.e.ϕ(z) = l(o). If o = |l|, we getz ∈ Ψ (dropα l)
andnil ∈ F (z). Thenϕ(z) ∈ A would contradictF satisfying corecursion condi-
tion 1, henceϕ(z) /∈ A. Altogether, this givesP (l). Consequently,l ∈ H(x). ⊓⊔

To finish this section, we show that the functionH constructed in the proof of
Theorem 3.5.3 is not the only one being corecursive onϕ andΨ .

Note that the corecursion conditions hold trivially whenever

F (x) =

{

{nil} if ϕ(x) /∈ A
∅ otherwise

}

for everyx ∈ X. LetX = {0, 1},A = {0} andϕ(0) = 0, ϕ(1) /∈ A. LetΨ (l) = X
for everyl. ThenF (0) = ∅ whileH(0) ∋ 0 : nil.

3.6 Connections between Two Corecursions

The corecursion theorems (Theorems 3.4.2(ii) and 3.5.3) were proven indepen-
dently on each other. Nevertheless, the two corecursions are analogous. This sec-
tion points out the relation between them.

The following result states that using our corecursion of the second type for defin-
ing one-element sets is equivalent to the corecursion of thefirst type.

Theorem 3.6.1. Let X, A be sets. Takeϕ ∈ X → 1 + A, as well asψ ∈
STListA → X and Ψ ∈ STListA → ℘X such thatΨ (l) = {ψ(l)} for every
l ∈ STListA. Assume thatf ∈ X → TListA is corecursive onϕ andψ. Then
F (x) = {f (x)} is the largest function corecursive onϕ andΨ .

Proof. We show first thatF is corecursive onϕ andΨ . Take an arbitraryx ∈ X.
If ϕ(x) ∈ A then, for everyl ∈ F (x), obviouslyhead l = head(f (x)) = ϕ(x).
If ϕ(x) /∈ A thenF (x) = {f (x)} = {nil}. Take now a selfishλ and a transfinite
list l ∈ (Oλ → A) such thattakeλm = l for somem ∈ F (x). This obviously
impliestakeλ(f (x)) = l and

{m ∈ F (x) | takeλm = l • dropλm} = {dropλ(f (x))}

= {f (ψ(takeλ(f (x))))} = {f (ψ(l))}

= F (ψ(l)) =
⋃

z∈Ψ(l)

F (z) .
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SoF is indeed corecursive onϕ andΨ .

Let nowG ∈ X → ℘(TListA) be any function corecursive onϕ andΨ . We show
by transfinite induction ono that

∀x ∈ X ∀l ∈ G(x) (f (x)(o) = l(o)) (3.2)

for every ordinalo < ∝. Firstly, we obtain

f (x)(0) = head(f (x)) =
{
ϕ(x) if ϕ(x) ∈ A
⊥ otherwise

}

= head l = l(0)

for everyx ∈ X andl ∈ G(x). Consider now any non-zeroo < ∝ and assume Eq.
3.2 holding for allπ < o. Takeo = γ +β with γ selfish andβ < o. Fix x ∈ X and
l ∈ G(x) arbitrarily. The induction hypothesis implies|l| > γ ⇐⇒ |f (x)| > γ,
as well astake γ(f (x)) = take γ l, as well asf (z)(β) = k(β) for everyz ∈ X and
k ∈ G(z). By corecursiveness ofG,

{m ∈ G(x) | take γ m = take γ l • drop γ m} =
⋃

z∈Ψ(take γ l)

G(z)

= G(ψ(take γ l)) .

Sodrop γ l ∈ G(ψ(take γ l)). Hence

f (x)(o) = f (x)(γ + β) = (drop γ(f (x)))(β) = (f (ψ(take γ(f (x)))))(β)

= (f (ψ(take γ l)))(β) = (drop γ l)(β) = l(γ + β) = l(o) .

This shows thatF (x) = {f (x)} ⊇ G(x) for everyx ∈ X, i.e.G ⊑ F . ⊓⊔

There is also a result of more general kind relating the two corecursions.

Lemma 3.6.2. Let X, A be sets. Takeϕ ∈ X → 1 + A, as well asΨ1, Ψ2 ∈
STListA → X such thatΨ1 ⊑ Ψ2 (i.e. Ψ1(l) ⊆ Ψ2(l) for everyl ∈ STListA).
Assume bothΨ1(l) = Ψ1(dropλ l) andΨ2(l) = Ψ2(dropλ l) for all selfish ordinals
λ, γ with λ < γ < ∝ and transfinite listsl ∈ (Oγ → A). Let F1 ∈ X →
℘(TListA) be the largest function corecursive onϕ and Ψ1, andF2 ∈ X →
℘(TListA) be the largest function corecursive onϕ andΨ2. ThenF1 ⊑ F2.

Proof. Let P1 andP2 denote the conditionP from the proof of Theorem 3.5.3
defined forΨ1 andΨ2, respectively. LetH1 andH2 be the corresponding functions
H defined in the same proof. The proof shows thatF1 = H1 andF2 = H2. So it
suffices to checkH1(x) ⊆ H2(x) for all x ∈ X which is an easy case study by the
definition ofH using the assumptionΨ1 ⊑ Ψ2. ⊓⊔
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Theorem 3.6.3. Let X, A be sets. Takeϕ ∈ X → 1 + A, as well asψ ∈
STListA → X and Ψ ∈ STListA → ℘X such thatψ(l) ∈ Ψ (l) for every
l ∈ STListA. Assume bothψ(l) = ψ(dropλ l) andΨ (l) = Ψ (dropλ l) for all
selfish ordinalsλ, γ with λ < γ < ∝ and transfinite listsl ∈ (Oγ → A). Let
f ∈ X → TListA be the function corecursive onϕ and ψ and F ∈ X →
℘(TListA) be the largest function corecursive onϕ andΨ . Thenf (x) ∈ F (x) for
everyx ∈ X.

Proof. DefineΨ ′(l) = {ψ(l)} for all l ∈ STListA. By Theorem 3.6.1,F ′(x) =
{f (x)} is the largest function corecursive onϕ andΨ ′. SinceΨ ′(l) = {ψ(l)} =
{ψ(dropλ l)} = Ψ ′(dropλ l) for all selfish ordinalsλ, γ with λ < γ < ∝ and
lists l ∈ (Oλ → A), Lemma 3.6.2 applies and gives the desired result. ⊓⊔

Theorem 3.6.3 made all the assumptions which are needed to prove any of the two
corecursion theorems. In contrast to it, Theorem 3.6.1 assumes only the corecur-
sivness off onϕ andψ, no further assumptions except the special shape ofΨ are
needed.
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CHAPTER 4

PROGRAM SLICING
WITH RESPECT TO TRANSFINITE

SEMANTICS

As the main contribution of the thesis, this chapter contains an expansion of the
mathematical framework of transfinite trace semantics and aproof of correctness
of standard algorithms of program slicing w.r.t. a class of transfinite semantics.

The theory is developed for control flow graphs to keep the treatment abstracted
from syntactic details and to drop the need for assuming structured control flow.
We generalize the traditional notion of control flow graph totransfinite control
flow graph which is obtained from traditional one by adding “transfinite arcs”
representing possible escaping from infinite loops.

4.1 Configuration Trace Semantics

We work as much as possible on control flow graphs to obtain uniform results for
a wide class of programming languages. Just say we have an imperative language
Prog whose programs are all finite and involve neither recursion (direct or mu-
tual) nor non-determinism. In examples, we use ubiquitous syntactic constructs
belonging to the most popular imperative programming languages.

To describe program slicing, the first demand to semantics isthat it must trace
movement of control, as well as changing of evaluation of variables.Program
pointsof a programS are potential locations of control during executions ofS.
To achieve iterative semantics, locations of control in a procedure must be distin-
guished by call string (e.g. the starting point of a procedureP when called fromQ
and when called fromR 6= Q are different program points). As there is no recur-
sion, the set of all program points of a fixed program is finite.There is one special
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program pointf calledfinal corresponding to the empty (or finished) computa-
tion. For every programS, there is a program pointiS among the program points
of S — the initial point.

A configurationis a pair of a program point and astate, the latter containing an
evaluation of variables. LetPP , State and Conf denote the set of all program
points of all programs, the set of all states, and the set of all configurations, re-
spectively; soConf = PP × State. The configuration with program pointp and
states is denoted by〈p | s〉. Let Var be the set of all variables andVal denote the
set of all possible values of variables.

This section copes with semantics where the meaning of a program is a function
whose values are sequences of configurations expressing thestep-by-step compu-
tation process. Hence the states of Chapter 3 are actually abstractions of config-
urations. This principle holds also in the remaining sections with the difference
that the configurations are a little more complicated.

As transfinite configuration trace semantics differ from standard configuration
trace semantics only by the occurrence of “transfinite steps”, we concentrate to the
latter in our discussion here. For ordinary steps, just say we have fixed a transition
functionnext ∈ Conf → 1 + Conf = Conf ∪ {⊥} such thatnext〈p | s〉 = ⊥ iff
p = f . Applying next represents making an atomic computation step and just the
final program point enables no further computation.

Consider the following way to define transfinite semantics for a program which
contains a while-loop. One has to provide principles for finding limit configura-
tions of endless sequences of them. It means that one must show both the limit
program point and the limit state. As explained in Sect. 3.3,it suffices to provide
rules for lists of selfish length (in terms of Definition 3.3.1and Theorem 3.3.3, we
are definingψ).

For the limit program pointlim p of a transfinite listp coming up as the sequence
of program points visited during a repetition of the body of awhile-loop for ω

times, take the program point where the control would go if the predicate on top
of this loop would evaluate toff. For other transfinite lists of program points,
define the limit point to be constantlyf .

This ensures that, after executing the body of a loop forω times, we reach a
configuration where we have “overcome” the loop. A loopwhile B do T in
this semantics means “whileB holds, doT , but never more thanω times”.

In the limit statelim s of a state lists, a variableX has valuev if the transfinite list
of the values ofX during the transfinite computation represented bys stabilizes
to v; if the list does not stabilize then the value ofX is ambiguous (⊤). This
choice is to some extent arbitrary; some non-stabilizing sequences of values may
possess limits of some other kind being natural to use instead of ⊤. Giacobazzi
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and Mastroeni [5] have an example where the limit of the non-stabilizing sequence
1, 2, 3, . . . is taken to beω.

Now for every transfinite configuration listc = (〈po | so〉 : o < γ) with selfish
lengthγ, define

ψ(c) =

{
next(head c) if γ = 1
〈lim p | lim s′〉 otherwise

}

(4.1)

wheres′ is the transfinite list obtained froms by keeping only those states which
occur when control passes through the beginning of the while-loop which causes
the infinite computationc. Then we haveψ ∈ STList Conf → 1 + Conf .

By Theorem 3.3.3, there exists a functionh ∈ 1 + Conf → TList Conf being
iterative onid ∈ 1 + Conf → 1 + Conf andψ. The desired transfinite semantics
T ∈ Prog → State → TList Conf is achieved by definingT (S)(i) = h〈iS | i〉
for every programS and initial statei. It is easy to verify thatψ is a limit operator;
hence the semantics is even corecursive.

Definition 4.1.1. Let C be a set of configurations such that〈iS | i〉 ∈ C for
everyS ∈ Prog and i ∈ State. (We do not requireC ⊆ Conf since, in the
following sections, we use a wider kind of configurations.) Denote the function
being iterative onid ∈ 1 +C → 1 +C andψ ∈ STListC → 1 +C by iterψ and,
for all S ∈ Prog and i ∈ State, define transfinite configuration trace semantics
corresponding toψ by

Tψ(S)(i) = iterψ〈iS | i〉 .

Being strict, applying Theorem 3.3.3 needs fixing an ordinal∝ which is an upper
bound of lengths of all transfinite lists obtained as values of our iterative functions.
We can choose∝ arbitrarily; Theorem 4.3.8 shows that taking∝ = ω

ω ensures
any program being executed to the end of its code.

In this semantics, the execution of the program in Example 1.1.2 with initial state
{
x→ 1

}
goes as follows:

〈0 |
{
x→ 1

}
〉 → 〈0 |

{
x→ 1

}
〉 → 〈0 |

{
x→ 1

}
〉 → . . . . . .

︸ ︷︷ ︸

ω steps

→ 〈1 |
{
x→ 1

}
〉 → 〈2 |

{
x→ 0

}
〉 .

So it reaches program point2 once just like the slice and computes the same value
(0) for x. Semantic anomaly has disappeared.

Note that replacings′ with s in the definition ofψ (Eq. 4.1) would cause another
kind of trouble.
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Example 4.1.2.The second program is a slice of the first w.r.t. criterion{(3,i)}:

while 0true do (
1i := 1 ;
2i := 2

) ;
3

−→

while 0true do (

2i := 2
) ;

3

Having s at place ofs′ in Eq. 4.1 means that the sequence of values whose sta-
bilization determines the value of a variable after the loopinvolves all values this
variable has during the infinite execution, not only the values observed at top of
the loop. In the example, this would mean that the value ofi at 3 is ⊤ in the
first program but2 in the second. Hence the essential property of slicing is still
not met. Usings′ in Eq. 4.1 ensures the value ofi at 3 being2 also in the first
program. ⊓⊔

The problem observed here arises because the intuitive way of understanding slic-
ing, followed also by the standard slicing algorithms, assumes that the values of
variables immediately after a loop are computable according to their values at the
head point of while-loop. Transfinite semantics must followthis principle.

In the case of while-loops, defining limit configurations does not make much trou-
ble. The choice of the limit program point is particularly straightforward because
there is just one natural way to escape from the loop — going tothe point where
control would fall if the predicate evaluated to false.

If the control flow is unstructured, such an obvious choice need not exist. Ob-
scurity can arise also in the case of structured control flow,for example, with
statements likebreak in C as, in the presence of such statements in the loop,
more than one natural way to leave the loop exists. But if our language allows a
priori infinite loop constructions likeloop S, there is no natural ways to leave
at all. The intuition tells us that one should choose the program point lexically
following the loop, taking the structure of the program intoaccount (e.g., if the
loop-construct is the only statement in another loop then weshould fall to the
beginning of the outer loop).

The latter intuition is based on the following general principle. To ensure a trans-
finite semantics being in harmony with program slicing, the limit program point
should be the point where control would fall if the loop were removed.

We illustrate this principle on two examples on unstructured control flow. We use
our abstract program point notation in goto-statements since the code is primarily
intended to be illustrative rather than strictly followingsome syntax rules of a
fixed language. Each if-statement incorporates only one rowin the program.
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Example 4.1.3.

0read a ;
if 1a < 0 then 2goto 8 ;
if 3a = 0 then 4goto 6 ;

5goto 8 ;
6a := a + 1 ; 7goto 9 ;
8goto 5 ;
9

−→

0read a ;
if 1a < 0 then 2goto 8 ;
if 3a = 0 then 4goto 6 ;

6a := a + 1 ;
8

9

Suppose the slicing criterion is{(9,a)}. The loop consisting of statements5 and
8 does not affect the value ofa, therefore it is sliced away. As a result of this
transformation, control reaches program point6 also in the casea > 0 (wherea
is the input value ofa). If a < 0, control bypasses this program point.

To be consistent with such way of slicing, a transfinite semantics of the original
program must jump to6 after the infinite loop if it started at5 (the casea > 0)
and to9 if it started at8 (the casea < 0). This way, the limit point of the loop
depends on how far backward we observe it. Thus if the semantics is of formTψ
thenψ is not a limit operator and the semantics is not corecursive. ⊓⊔

Example 4.1.4.Consider the following modification of Example 4.1.3:

0read a ; 1read b ;
if 2a < 0 then 3goto 13 ;
if 4a = 0 then 5goto 11 ;

6goto 9 ;
if 7b = 0 then 8goto 7 ;

9b := b - 1 ; 10goto 13 ;
11a := a + 1 ; 12goto 14 ;
13goto 7 ;
14

→

0read a ;
if 2a < 0 then 3goto 13 ;
if 4a = 0 then 5goto 11 ;

11a := a + 1 ;
13

14

Some stuff concerning a new variableb has been added in comparison with Ex-
ample 4.1.3 (the new stuff is at points1 and6–9). If the slicing criterion is still
{(14,a)} then our aim is to slice this away resulting in the same program as in
Example 4.1.3.

Denote bya the initial value ofa again. To justify this slicing with transfinite
semantics, control still must reach program point11 during the transfinite run
of the left-hand program ifa > 0 and bypass11 if a < 0. Things are more
complicated than in Example 4.1.3 because of the new loop at7–8 into which
control falls whenevera 6= 0.
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What should the limit point of this new loop be? The most natural choice seems
to be9. But then, after control has reached9, it starts looping between program
points 7, 9–10, 13, and the entire sequence of lengthω of the program points
visited during this looping does not depend on whethera is positive or negative.

There are two imaginable ways out from this trouble. One is that the limit program
point of the loop at7–8 depends on the program points through which control has
reached it — even if these program points are visited only finite number of times.
Then we can declare that the limit point is9 if control came to the loop via6
and14 otherwise. Another approach is that the limit program pointof the second
loop (including7, 9, 10, 13) depends on some information embedded into the
computation which occurred before control even reached this part of lengthω.
This would mean that the semantics is not even iterative in the sense of Definition
3.3.1.

None of these solutions are captured by our theory developedin this thesis. To
obtain a semantics to which our theory would apply, program point 10 must be
added into the slice and the limit point of the loop at7, 9, 10, 13 must be14
irrespective ofa. ⊓⊔

4.2 Transfinite Control Flow Graphs

To go on, we take a slightly different view to transfinite trace semantics. Firstly,
we must describe the transition in terms ofψ rather thanψ in terms of the transi-
tion like in Sect. 4.1. This enables one to formulate all our properties of semantics
in terms of properties ofψ. Secondly, we must augment our configurations with
additional information about the atomic computation step executed just before
reaching this configuration. In particular, this holds for the configurations reached
via jumping out from an endless computation. Explicit encoding of such “trans-
finite steps” into the semantics simplifies formalization ofsome useful properties
later.

We will define the augmented configurations formally in the next section; this
section introduces the appropriate context for doing it. Our graphs are all directed;
many well-known notions of graph theory are used, the necessary definitions and
properties were given in Chapter 2.

Let PP be a set of formal objects calledprogram pointswhere one pointf ∈ PP
is calledfinal. This in principle coincides with that of Sect. 4.1. Additionally, let
AS be a set of formal objects encoding all conceivable atomic computation steps,
e.g. assignments, predicate tests etc., including the transfinite steps seceding from
loops. The transfinite steps form a subsetAS∞ of AS .

We require eache ∈ AS incorporating also information about the program point
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to which control reaches after making this step; call this program pointtarget of
e and denote it byt(e). Hence the elements ofAS cannot be just code fragments,
they must enable one to locate the code in terms of our programpoints.

Assume that eache ∈ AS determines also thesourcepoint of e which we denote
by s(e). For ordinary stepse, it is the program point from which stepe starts. For
transfinite stepse, the source ofe is meant to be the program point at which the
values of variables are recorded for finding limit state whendoing the transfinite
stepe. Relying on Example 4.1.2, the source point of the transfinite step escaping
from a while-loop should be the head point of this loop.

This way, the systemTCFG = (PP ,AS , (s, t)) forms a (possibly infinite) di-
rected graph (Definition 2.1.1). We call itglobal transfinite control flow graph
and the elements ofAS∞ transfinite arcs. This graph is a formal object like code.
The explanations in the preceding paragraphs take into account also the purpose
the vertices and arcs can obtain via associating with a semantics.

Assume further thatf is reachable from every program point inTCFG while no
arc starts fromf . The former means that transfinite arcs must in principle allow
to escape from any place the computation has driven and enable finishing the run.
So(TCFG , f ) forms a flow graph in the sense of Definition 2.2.1.

Denote byCFG the directed graph obtained fromTCFG by removing transfinite
arcs; call itglobal control flow graph. The word ‘global’ is used in both cases
with the aim of reflecting the property of the graph to incorporate all programs. To
handle control flow graphs of specific programs, we introducethe parallel notions
of local flow graphs.

Call local transfinite control flow graphany system(G, i ) whereG is any sub-
graph ofTCFG being closed w.r.t. finding reachable vertices and arcs, andi is
any vertex ofG. The vertexi is calledinitial . A graph is calledlocal control flow
graph if can be obtained from a local transfinite control flow graph by removing
all transfinite arcs.

Note that any local transfinite control flow graph containsf and forms a flow
graph of Definition 2.2.1 together withf . Any local control flow graph also must
containf but not necessarily forms a flow graph in the sense of Definition 2.2.1.
The initial vertex can be different for different local flow graphs while the final
vertexf is common for all.

For every programS ∈ Prog, let tcfgS be a local transfinite control flow graph
calledtransfinite control flow graph ofS. Let cfgS, thecontrol flow graph ofS,
be the local control flow graph obtained fromtcfgS by removing transfinite arcs.
The initial point oftcfgS is denoted byiS ; call it the initial point ofS. The set
of all program points of a programS can therefore be denoted byV (tcfgS) (or,
equivalently, byV (cfgS)).
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The treatment may seem mysterious at first glance since we have fixed control
flow graphs for programs before fixing a semantics. The commonmind tells that
finding control flow graph of a program cannot be done without knowing the se-
mantics of this program.

The idea is that we take a big graph (the global transfinite) which enfolds all pos-
sible transition systems ever needed, define semantics in terms of this graph and
then programs can get their semantics via an appropriate mappingS 7→ tcfgS. In
our theoretical study, we just say that some mapping is fixed,omitting the details
of its definition, and are therefore able to introduce it independently of semantics.

Another reason for this approach is that control flow graphs,like they are tradi-
tionally computed according to the code, are not semantically precise, they are
conservative approximations. Finding a semantically precise control flow graph is
not decidable because a program doing it would decide whether a test statement
really involves branching or whether a while-loop can terminate normally. To ob-
tain results about slicing algorithms, the theory must capture decidable control
flow graphs. In particular, this holds for transfinite arcs which also must be decid-
able because the analyses being preformed in order to find slices must be able to
follow them.

Definition 4.2.1. LetS be any program.

(i) Call S finite iff tcfgS contains only a finite number of vertices and arcs.

(ii) Call S regulariff S is finite and, for every transfinite arce in tcfgS, t(e) is
the immediate postdominator ofs(e) in tcfgS.

The notion of finiteness of programs places the traditional finiteness of programs
into the context of control flow graphs. The definition of regularity refers to the
postdominance order which is well-known but also explainedby us in Sect. 2.2
for abstract flow graphs. Informally, a program pointq postdominates a program
point p if control definitely reachesq whenever it has reachedp (provided the
computation finishes atf ). The immediate postdominator ofp is the least w.r.t.
postdominance order point postdominatingp. The notion of regularity is not in-
tended to be a counterpart of any standard notion. It states the transfinite arcs
respecting some order in the global graph. This condition has been formed keep-
ing the treatment of while-loops from Sect. 4.1 in mind. There, the limit program
point of a while-loop was defined in such a way that it coincided with the imme-
diate postdominator of the head point of the while-loop.
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4.3 Augmented Configuration Trace Semantics

Augmented configurationsare pairs of form〈a | s〉 wherea ∈ PP + AS and
s ∈ State. If e ∈ AS , the configuration〈e | s〉 encodes the situation where state
s has been obtained by performing atomic stepe. Forp ∈ PP , the configuration
〈p | i〉means that computation starts atp with initial statei. To achieve uniformity,
the left components of augmented configurations which belong to PP may be
calledentrance steps.

Denote the set of all augmented configurations byAConf , soAConf = (PP +
AS ) × State and takingC = AConf in Definition 4.1.1 satisfies its conditions.
Denote also

st〈a | s〉 = s ,

pp〈a | s〉 =
{ t(a) if a ∈ AS

a otherwise

}

,

arc〈a | s〉 =
{

a if a ∈ AS
⊥ otherwise

}

,

conf c = 〈pp c | st c〉 .

So st ∈ AConf → State, pp ∈ AConf → PP , arc ∈ AConf 99K AS ,
conf ∈ AConf → Conf (with 99K, we denote partial functions).

In the rest of this chapter, we deal with transfinite semantics of formTψ for oper-
atorsψ ∈ STList AConf → 1 + AConf . Not everyψ gives rise to a reasonable
semanticsTψ because different augmented configurations in one list contain over-
lapping information which can be contradictory. To be readyfor defining sound-
ness of a given operatorψ, we at first have to be able to make clear for every
looping computation which program points the loop causing this computation ac-
tually consists of. The following definition states it.

Definition 4.3.1. Letl ∈ TList AConf \{nil}. We call a program pointp looping
in l iff, for every ordinalo < |l|, there exists an ordinal̺, o < ̺ < |l|, such that
pp(l(̺)) = p. The set of all program points looping inl is denoted byloop l.

Clearly a computationl contains looping program points only if|l| is a limit or-
dinal. Note that not necessarily all program points of an infinitely running while-
loop are looping in this infinite computation (there can be branches of conditionals
in the body of the loop being used a finite number of times only). However, the
head point of an infinitely running while-loop (meaning the body being executed
infinitely many times) definitely is looping.

The writing (0 7→ c) denotes the transfinite list of length1 whose single element
is c.
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Definition 4.3.2. Letψ ∈ STList AConf → 1 + AConf .

(i) Call the operatorψ soundiff, for everyc ∈ AConf , both following condi-
tions hold:

1. if ψ(0 7→ c) 6= ⊥ then arc(ψ(0 7→ c)) /∈ AS∞ and s(arc(ψ(0 7→ c))) =
pp(c) 6= f , otherwisepp(c) = f ;

2. for everyc̃ ∈ AConf , conf c̃ = conf c impliesψ(0 7→ c̃) = ψ(0 7→ c).

(ii) Call the operatorψ transfinitely soundiff it is sound and, for everyc ∈
AConf and selfish ordinalγ satisfying both1 < γ 6 | iterψ c| andγ < ∝, if we
denotel = take γ(iterψ c) then both following conditions hold:

1. ψ(l) 6= ⊥, arc(ψ(l)) ∈ AS∞ ands(arc(ψ(l))) ∈ loop l;

2. for everyl̃ ∈ STList AConf , map conf l̃ = map conf l impliesψ(l̃) = ψ(l).

(iii) For everyc ∈ AConf , definenextψ c = ψ(0 7→ c).

Soundness ofψ guarantees that the program point of any component of a list rep-
resenting a computation according toψ coincides with the source of the atomic
step of the next component (provided it exists). Soundness also states thatf cor-
responds to the finished computation. Transfinite soundnessstates that every end-
less initial part of any computation can be continued with a transfinite step and the
source of this step is looping in the computation observed. These and some other
facts are more precisely stated and proven in Lemma 4.3.3 below.

It is also required that ordinary steps use ordinary arcs while transfinite steps
use transfinite arcs. This is a matter of simplicity. In the case of constructs like
loop S discussed in Sect. 4.1, it is obvious that escaping the loop must involve
a new arc, but it is semantically neat to demand that actuallyall infinite loops use
some special kind of arcs for transfinite escapement even if there exists an ordi-
nary arc between the same vertices. Hence an ordinary arc starting in a program
point of predicate test is still used only if the predicate evaluated to the truth value
corresponding to this arc. For while-loops, it means that the ordinary arc from the
beginning point to the point immediately after the loop is dubbed with a transfinite
arc between the same program points.

The second conditions of soundness and transfinite soundness together demand
that the additional information in configurations in comparison to Sect. 4.1 have
no influence on the computation process. The meaning of function nextψ is the
same as in Sect. 4.1. It is indexed withψ to emphasize the dependence onψ.

By p → q, we denote thatq is an immediate successor ofp, i.e. there is an arc
from p to q, in TCFG .

Lemma 4.3.3. Letψ ∈ STList AConf → 1 + AConf .
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(i) Let l = iterψ c for somec ∈ AConf . Take an ordinalo 6 |l| and leto = α+
γ be the principal representation. Thenloop (take o l) = loop (take γ(dropα l)).

(ii) Let l = iterψ c for somec ∈ AConf . For everyo < |l|, l(o + 1) =
nextψ(l(o)).

(iii) Assumeψ being sound. For everyc ∈ AConf , nextψ c = ⊥ iff pp c = f .

(iv) Assumeψ being sound. Letc ∈ AConf be arbitrary. Ifpp(nextψ c) = q and
pp c = p thenarc(nextψ c) goes fromp to q in TCFG . Moreover, ifp ∈ V (cfgS)
for some programS thenq andarc(nextψ c) belong tocfgS.

(v) Assumeψ being sound. Letl = iterψ c for somec ∈ AConf . For every
ordinal o with o + 1 < |l|, arc(l(o + 1)) goes frompp(l(o)) to pp(l(o + 1)) in
TCFG .

(vi) Assumeψ being transfinitely sound. Letl = iterψ c for somec ∈ AConf
whereby|l| < ∝. Then|l| = o + 1 andpp(l(o)) = f for some ordinalo.

(vii) Assumeψ being transfinitely sound. Letl = iterψ c for somec ∈ AConf
whereby|l| < ∝. Letλ 6 |l| be a limit ordinal. Thenλ < |l|, arc(l(λ)) ∈ AS∞

ands(arc(l(λ))) ∈ loop (takeλ l).

Proof.

(i) Assumep ∈ loop (take o l). Take arbitraryπ < | take γ(dropα l)| = γ.
Thenα + π < α + γ = o and there exists a̺ satisfyingα + π < ̺ < o such that
(take o l)(̺) = p. Thenπ < ̺− α < γ and

(take γ(dropα l))(̺− α) = (dropα l)(̺− α) = l(̺) = (take o l)(̺) = p .

Assume nowp ∈ loop (take γ(dropα l)). Take arbitraryπ < | take o l| = o.
Defineπ̃ = π − α if π > α andπ̃ = 0 otherwise. Theñπ < γ and there exists a̺
satisfyingπ̃ < ̺ < γ such that(take γ(dropα l))(̺) = p. Thenα < α + ̺ < o
and

(take o l)(α + ̺) = (dropα(take o l))(̺) = (take γ(dropα l))(̺) = p .

(ii) By iterativity and Definitions 4.1.1 and 4.3.2(iii),

l(o + 1) = id(ψ(take 1(drop o l))) = ψ(take 1(drop o l))

= ψ(0 7→ (drop o l)(0)) = ψ(0 7→ l(o)) = nextψ(l(o)) .

(iii) Straightforward by Definitions 4.3.2(i) and 4.3.2(iii).

(iv) Denotee = arc(nextψ c) = arc(ψ(0 7→ c)). As ψ(0 7→ c) = nextψ c 6=
⊥, soundness givess(e) = pp c = p and e /∈ AS∞. We also havet(e) =t(arc(nextψ c)) = pp(nextψ c) = q. Thereforep → q, implying together with
p ∈ V (cfgS) thatq andarc(nextψ c) both are incfgS.
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(v) Straightforward by parts (ii) and (iv).

(vi) Let |l| = α + γ be the principal representation. Ifγ > 1 then, by iterativity
and transfinite soundness used together with Corollary 3.4.8, we obtain

l(|l|) = ψ(take γ(dropα l)) 6= ⊥

which contradicts the concept of length. Henceγ = 1 and, takingo = α, we obtain
the desired form. Using part (ii), we get

⊥ = l(|l|) = l(o + 1) = nextψ(l(o)) ,

hence, by part (iii),pp(l(o)) = f .

(vii) By (vi), |l| is a successor ordinal, soλ = |l| cannot be the case. Letλ =
α + γ be the principal representation; thenγ > 1. By transfinite soundness and
Corollary 3.4.8,e = arc(l(λ)) = arc(ψ(take γ(dropα l))) ∈ AS∞ ands(e) is
looping intake γ(dropα l), hence, by (i), also intakeλ l. ⊓⊔

Traditionally, any computation with a program redounds as awalk in its control
flow graph. Lemma 4.3.4 states that, in the case of transfinitesemantics based on
a transfinitely sound operator, a similar property holds also for transfinite control
flow graphs: any transfinite computation according to a finiteprogramS can be
traced by a walk intcfgS.

Lemma 4.3.4. Letψ ∈ STList AConf → 1 + AConf be transfinitely sound and
let S ∈ Prog be finite. Letl = Tψ(S)(i) for an i ∈ State and leto, π be ordinals,
o 6 π < |l|. Denotep = pp(l(o)) andq = pp(l(π)). Thenp andq are vertices in
tcfgS; furthermore, there exists a walkw = (v 0, e1, v 1, . . . , en, vn) from p to q

in tcfgS such that the following holds:

1. there exist ordinals̺ 1, . . . , ̺n such thato < ̺1 < . . . < ̺n 6 π and, for
everyi = 1, . . . , n, arc(l(̺i)) = ei andpp(l(̺i)) = v i;

2. for every ordinal̺ with o < ̺ 6 π, there exists ani = 1, . . . , n such that
arc(l(̺)) = ei.

Proof. Argue by transfinite induction on(o, π) ordered lexicographically.

If o = π = 0 thenp = q = iS and the desired result follows trivially (one can take
the empty walk fromiS to itself).

If 0 < o = π then applying the induction hypothesis foro ← 0, π ← o gives that
p is a vertex intcfgS. Thus the empty walk fromp to p works.

Let finally be0 6 o < π. Letπ−o = α+γ be the principal representation ofπ−o
and letπ = β + γ be the principal representation ofπ. By iterativity, l(π) = ψ(m)
wherem = take γ(dropβ l).
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If γ = 1 then, by the induction hypothesis, find a walkv from pp(l(o)) to pp(l(o+
α)) in tcfgS which meets the two properties. By soundness,s(arc(l(π))) = s(arc(ψ(m))) = pp(headm) = pp(head(dropβ l)) = pp(l(β)) .

By Lemma 3.4.5(ii),β = o+α. Thus the desired walk can be obtained by append-
ing arc(l(π)) andpp(l(π)) to the end ofv.

Consider the caseγ > 1 now. LetM be the set of all arcs used by computation
drop(o + 1)(takeπ l). The induction hypothesis implies that every arc inM is in
tcfgS. By assumptions,M is finite. For everye ∈ M, let ξe be the least ordinal
such thatarc((drop(o + 1)(takeπ l))(ξe )) = e. By transfinite soundness,s(arc(l(π))) = s(arc(ψ(m))) ∈ loopm .

Find ̺ > β, ̺ > maxe∈M (o + 1 + ξe) such thats(arc(l(π))) = pp(m(̺ − β)).
As o 6 ̺ < π, the induction hypothesis implies that there is a walkv from
pp(l(o)) to pp(l(̺)) meeting the two properties. The desired walk can be obtained
by appendingarc(l(π)) andpp(l(π)) to the end ofv. ⊓⊔

Lemma 4.3.4 implies that all executions of any fixed finite program in a trans-
finitely sound semantics use only finitely many program points and atomic steps
altogether. The Lemma 4.3.5 states that, under similar assumptions, every endless
computation has a non-empty final part during which it visitslooping program
points only.

Lemma 4.3.5. Letψ ∈ STList AConf → 1 + AConf be transfinitely sound and
let S ∈ Prog be finite. Letl = Tψ(S)(i) for an i ∈ State. For every ordinal
o satisfying0 < o 6 |l|, there exists an ordinalπ < o such thatpp(l(̺)) ∈
loop(take o l) for every̺ satisfyingπ < ̺ < o.

Proof. Let P be the set of all program pointsp being reachable fromiS in TCFG
and satisfyingp /∈ loop(take o l). For everyp ∈ P , chooseξp < o in such a way
that pp(l(̺)) = p for no ̺ satisfyingξp < ̺ < o. This definition is sound for
everyp asp is not looping intake o l and0 < o.

As P ⊆ V (tcfgS), it is finite and we can findπ = maxp∈P ξp < o. Choose any̺
such thatπ < ̺ < o. By construction,pp(l(̺)) /∈ P. By Lemma 4.3.4,pp(l(̺))
is reachable frompp(l(0)) = iS in TCFG . Thuspp(l(̺)) ∈ loop(take o l). ⊓⊔

We introduce some more restrictions to be imposed on semantics w.r.t. which we
are going to work. Like soundness and transfinite soundness,they are formulated
as properties of semantics.

Irrespective of the possible universal rules for choosing limit points, we can notice
a natural property desired in probably all situations. Namely, the limit point must

59



be outside the loop causing non-termination as the idea behind transfinite seman-
tics is to be able to overcome non-terminating parts of programs. This observation
leads to the kind of transfinite semantics we call escaping.

Definition 4.3.6. Call a transfinitely sound operatorψ ∈ STList AConf → 1 +
AConf escapingiff, for every c ∈ AConf and selfishγ satisfying1 < γ <
| iterψ c|, if we denotel = take γ(iterψ c) thenpp(ψ(l)) /∈ loop l.

After any infinite computation according to a finite program in an escaping seman-
tics, control reaches a program point which it has not visited during an infinite final
part of this computation. The transfinite semantics for while-loops considered in
Sect. 4.1 is obviously escaping by the definition oflim p for program point lists
p.

Next we are going to prove thatω
ω is an upper bound of the lengths of transfinite

computation in escaping semantics, irrespective of the language. This is achieved
by Theorem 4.3.8. Almost the same result (ω

ω+1) was obtained by Giacobazzi
and Mastroeni [5] for IMP programs.

Denote the set of all program points visited by computationc by occur c.

Lemma 4.3.7. Letψ : STList AConf → 1 + AConf be an escaping operator.
For every natural numberk and arbitraryc ∈ Conf ,

| iterψ c| > ω
k ⇒ | loop

(

take ω
k(iterψ c)

)

| > k ,

| iterψ c| > ω
k ⇒ |occur

(

take(ωk + 1)(iterψ c)
)

| > k .

Proof. Prove by induction onk. The casek = 0 is trivial.

Suppose that the claim holds fork and assume

| iterψ c| > ω
k+1 = ω

k ·ω = ω
k + ω

k + . . .
︸ ︷︷ ︸

ω

.

Thus the listtake ω
k+1(iterψ c) divides intoω subparts, each of lengthωk. Each

subpart is of formtake ω
k(drop(ωk · n)(iterψ c)) for a natural numbern.

Apply Corollary 3.4.7 withh = iterψ, λ = ω
k, µ = ω

k+1 (note that being selfish
is equivalent to being a power ofω), andπ = ω

k+1. We obtain

take ω
k+1(drop(ωk · n)(iterψ c)) = take ω

k+1(iterψ d) (4.2)

whered = (iterψ ; take ω
k ; ψ)n(c). Both sides of (4.2) are different from⊥

since our assumption| iterψ c| > ω
k+1 implies|drop(ωk · n)(iterψ c)| > ω

k+1.
This allows to conclude| iterψ d| > ω

k+1 > ω
k and

take o(drop(ωk · n)(iterψ c)) = take o(iterψ d)
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for all o 6 ω
k+1. Now the induction hypothesis gives

|occur
(
take(ωk + 1)(drop(ωk · n)(iterψ c))

)
|

= |occur
(
take(ωk + 1)(iterψ d)

)
| > k .

(4.3)

Letm = | loop
(
take ω

k+1(iterψ c)
)
|. It is possible to findn such that the com-

putationdrop(ωk · n)(take ω
k+1(iterψ c)) visits thesem looping program points

only. Thereforem > k+1 since, by (4.3), the firstωk+1 steps of this computation
visit more thank program points.

Finally, if | iterψ c| > ω
k+1 thenω

k+1 < ∝. The representationωk+1 = 0+ω
k+1

is principal, hence, by iterativity and escapement,

pp((iterψ c)(ωk+1)) = pp(ψ(take ω
k+1(drop 0(iterψ c))))

= pp(ψ(take ω
k+1(iterψ c)))

/∈ loop
(

take ω
k+1(iterψ c)

)

.

Therefore|occur
(
take(ωk+1 + 1)(iterψ c)

)
| > k + 1. ⊓⊔

Theorem 4.3.8. Let ψ ∈ STList AConf → 1 + AConf be an escaping oper-
ator and letS be a finite program. For everyi ∈ State, we have|Tψ(S)(i)| 6

ω
|V (cfgS)| < ω

ω.

Proof. By conditions,l = Tψ(S)(s) = iterψ〈iS | s〉 for some states. Suppose
|l| > ω

|V (cfg S)|. Then Lemma 4.3.7 implies thatl visits more program points
than there is incfgS which is impossible. Hence the first inequality follows. By
finiteness,|V (cfgS)| < ω, implying the second inequality. ⊓⊔

For everyn ∈ N, the length of the transfinite computation of the program

while true do . . . . . . while true do
︸ ︷︷ ︸

n

is ω
n. The least common upper bound of the numbersω

n is ω
ω. Hence Theorem

4.3.8 achieves the best conservative estimation common to all programs (provided
our language is powerful enough to enable arbitrary finite depth of nested loops).

The following definitions refer to control dependence. Thisnotion is well-known;
however, it is also explained in Sect. 2.3 for abstract flow graphs; it is called simply
dependence there.

Informally, a program pointq is control dependent onp if there is a computation
starting atp and finishing atf which avoidsq but, after some possible atomic com-
putation step, it reaches a program point where it is alreadyimpossible to avoid
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q later. (Note that, in the case of transfinite semantics, finishing computation is
not the same as terminating computation since also non-terminating computations
can finish.)

For everyP ⊆ PP , we denote byat P the predicate being true on configurations
c with pp c ∈ P . For everyX ∈ Var andc ∈ AConf , the value ofX at statest c
is denoted byvalX c.

Definition 4.3.9. Letψ ∈ STList AConf → 1 + AConf .

(i) Call the operatorψ regular iff ψ is transfinitely sound and, for everyc ∈
AConf and selfishγ satisfying1 < γ < | iterψ c|, if l = take γ(iterψ c) then
there is exactly one program pointp ∈ loop l with transfinite arc fromp to
pp(ψ(l)) andpp(ψ(l)) postdominates all program points inloop l.

(ii) Call the operatorψ intuitive iff both following conditions hold:

1. for everyc, d ∈ AConf , selfish ordinalsγ, δ satisfying1 < γ < | iterψ c|,
1 < δ < | iterψ d| andX ∈ Var, if we denotel = take γ(iterψ c), k =
take δ(iterψ d) then

map(valX)(filter(at {s(arc(ψ(l)))}) l)
= map(valX)(filter(at {s(arc(ψ(k)))}) k)

impliesvalX(ψ(l)) = valX(ψ(k));

2. for everyc ∈ AConf , selfish ordinalγ satisfying1 < γ < | iterψ c|,X ∈ Var
and v ∈ Val , if we denotel = take γ(iterψ c) then if there exists ano < |l|
such thatvalX(l(π)) = v for everyπ > o, π < |l|, thenvalX(ψ(l)) = v.

By construction of the transfinite semantics of while-loopsin Sect. 4.1, that se-
mantics is regular. Note that every regular operator is escaping since all postdom-
inators of a vertex differ from it (Theorem 2.2.4).

The notion of intuitivity (Definition 4.3.9(ii)) formalizes two natural desires about
limits of endless sequences of states. The first is that the limit value of every
variable depends only on the values this variable possessesat program point where
the transfinite arc escapes the loop. This is what Example 4.1.2 suggested and
what we demanded in our semantics for while-loops in Sect. 4.1. The second is
that if the sequence of values of a variable stabilizes then the limit equals to this
stable value — again a condition demanded for while-loops. In other words, it
states that, if the value of a variable is changed, this must be caused by a finite
atomic step.

This way, all the properties of operatorsψ defined in this section have been cho-
sen having in mind the transfinite semantics for while-loopsconstructed in Sect.
4.1. The facts proven about semantics possessing these properties apply to other
semantics inasmuch as they behave similarly.
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Lemma 4.3.10. Letψ : STList AConf → 1 + AConf be an operator.

(i) Let ψ be regular andl = iterψ c for a c ∈ AConf . For every limit ordi-
nal λ < |l|, there is exactly one program pointp ∈ loop(takeλ l) with transfi-
nite arc fromp to pp(l(λ)) and pp(l(λ)) postdominates every program point in
loop(takeλ l).

(ii) Letψ be intuitive andl = iterψ c for a c ∈ AConf . For every limit ordinal
λ < |l| andX ∈ Var, if map(valX)(takeλ l) stabilizes tov thenvalX(l(λ)) =
v.

(iii) Letψ be an intuitive limit operator andl = iterψ c, k = iterψ d for c, d ∈
AConf . For everyX ∈ Var, limit ordinals λ < |l|, κ < |k|, and ordinalsα, β
such thatλ− α andκ− β both are selfish limit ordinals, if

map(valX)(filter(at {s(arc(l(λ)))})(dropα(takeλ l)))
= map(valX)(filter(at {s(arc(k(κ)))})(dropβ(takeκk)))

thenvalX(l(λ)) = valX(k(κ)).

Proof.

(i) Straightforward by regularity and Corollary 3.4.8.

(ii) Straightforward by intuitivity and Corollary 3.4.8.

(iii) Denoteγ = λ− α, δ = κ− β and l̃ = dropα(takeλ l) = take γ(dropα l),
k̃ = dropβ(takeκ l) = take δ(dropβ k). By Corollary 3.4.8,dropα l = iterψ x
anddropβ k = iterψ y for somex, y ∈ AConf , thereforel̃ = take γ(iterψ x)
andk̃ = take δ(iterψ y). Thus

l(λ) = (dropα l)(γ) = (iterψ x)(γ) = ψ(take γ(iterψ x)) = ψ(l̃) ,

k(κ) = (dropβ k)(δ) = (iterψ y)(δ) = ψ(take δ(iterψ y)) = ψ(k̃) .

Hence, by intuitivity,valX(ψ(l̃)) = valX(ψ(k̃)), implying the desired claim. ⊓⊔

By p < q, we denote thatq postdominatesp in TCFG . By Theorem 2.2.4,< is
a strict order on program points. The corresponding non-strict order is denoted by
6.

Lemma 4.3.11. Letψ ∈ STList AConf → 1+AConf be transfinitely sound and
let S ∈ Prog be finite. Letl = Tψ(S)(i) for an i ∈ State and letpp(l(o)) = p ∈
PP for an ordinalo. Letq, r be postdominators ofp both visited bym = drop o l.
If q < r then the first visit ofq bym occurs before the first visit ofr .

Proof. Let ̺ be the least ordinal for whichpp(m(̺)) = r ; then

r = pp((drop o l)(̺)) = pp(l(o + ̺)) .

63



By Lemma 4.3.4, there exists a walkw from p to r in TCFG using only the
arcs occurring in the listdrop(o + 1)(take(o + ̺ + 1) l). As q < r and bothq

andr postdominatep, walkw passes throughq (Theorem 2.2.9). Thus we find an
ordinalπ such thatπ+1 < |drop(o + 1)(take(o + ̺ + 1) l)| = (o+̺+1)−(o+1) =
̺ + 1− 1 = ̺− 1 + 1 and

q = pp((drop(o + 1)(take(o + ̺ + 1) l))(π))

= pp((take(o + ̺ + 1) l)(o + 1 + π))

= pp(l(o + 1 + π))

= pp((drop o l)(1 + π))

= pp(m(1 + π)) .

Hencem visitsq beforer asπ+ 1 < ̺−1 + 1 givesπ < ̺−1 and1 +π < ̺. ⊓⊔

Lemma 4.3.12. Letψ ∈ STList AConf → 1 + AConf be regular and letS ∈
Prog be regular. Letl = Tψ(S)(i) for an i ∈ State. Takeπ < |l| and assume
arc(l(π)) going fromp to q. Then every program point inloop (takeπ l) is tran-
sitively control dependent onp.

Proof. If π is a successor ordinal, the result holds vacuously asloop (takeπ l) =
∅. Assume thereforeπ being a limit ordinal. Then, by transfinite soundness,
arc(l(π)) ∈ AS∞ andp ∈ loop (takeπ l).

By Lemma 4.3.5, there exists ano < π such thatpp(l(o)) = p andpp(l(̺)) ∈
loop (takeπ l) for every̺ satisfyingo 6 ̺ < π. By Lemma 4.3.4, find a walkw
from p to q containing precisely the arcs used bydrop(o + 1)(take(π + 1) l).

As S is regular,q immediately postdominatesp. As ψ is regular,q postdom-
inates all program points inloop (takeπ l), i.e. the program points visited by
drop o(takeπ l). Thusq does not occur inw except at the end. Sow is a walk
from point p to its immediate postdominator whereby no intermediate program
points postdominatep. Thus all intermediate program points are transitively con-
trol dependent onp (Theorem 2.3.5). By construction,w passes through all pro-
gram points inloop (takeπ l). Hence the claim follows. ⊓⊔

4.4 Data Flow Approximation

Definition 4.4.1. Let ψ ∈ STList AConf → 1 + AConf be a sound operator.
For every arce ∈ AS , let defψ e ⊆ Var be given by

X ∈ defψ e

⇐⇒ ∃c ∈ AConf
(
arc(nextψ c) = e ∧ valX(nextψ c) 6= valX c

)
.
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Informally, the setdefψ e consists of all variables whose value can be affected
by the atomic computation stepe. The definition implies that ife ∈ AS∞ then
defψ e = ∅.

Lemma 4.4.2. Letψ ∈ STList AConf → 1 + AConf be a sound intuitive op-
erator. Letl = iterψ c for somec ∈ AConf and let ordinalso, π be such that
o 6 π < |l|. LetX ∈ Var be such thatX ∈ defψ(arc(l(̺))) for no ordinal̺ sat-
isfyingo < ̺ 6 π. ThenvalX(l(̺)) = valX(l(o)) for every ordinal̺ satisfying
o 6 ̺ 6 π.

Proof. Suppose the contrary. Let̺ be the least ordinal not less thano such that
valX(l(̺)) 6= valX(l(o)). Clearlyo < ̺.

Consider the case̺= α + 1 for someα. Theno 6 α, giving

valX(nextψ(l(α))) = valX(l(̺)) 6= valX(l(α)) ,

henceX ∈ defψ(arc(nextψ(l(α)))) = defψ(arc(l(̺))). As o < ̺ 6 π, this con-
tradicts the assumption.

It remains to study the case̺being a limit ordinal. By the choice of̺, the se-
quence of values ofX in computationtake ̺ l stabilizes tov = valX(l(o)). By
intuitivity, valX(l(̺)) = v. This contradicts the choice of̺. ⊓⊔

Denote bydep the control dependence relation inTCFG , i.e.r dep q means that
q is control dependent onr in TCFG .

For a binary relationP on a setA, denote byP ∗ the reflexive transitive closure
of P . For a binary relationP between setsA andB, letP֌ ∈ A→ ℘(B) be the
function defined byb ∈ P֌(a) ⇐⇒ a P b. The part of states incorporating
only variables in setX ⊆ Var is denoted bys

∣
∣
X

.

Next we define the approximating def-sets and ref-sets of program points. Our
treatment is more scrupulous than usual ones: we take into account, for example,
that computation of the values of different variables at thesame program point
may refer to different sets of variables.

Definition 4.4.3. Letψ ∈ STList AConf → 1 + AConf be a sound operator. We
call a pair (def∨, ref) data-flow approximation system forψ iff

def∨ ∈ AS → ℘(Var) and ref ∈




∑

e∈AS

def∨ e +
∑

p∈PP

dep֌(p)



→ ℘(Var)

satisfy the following conditions:
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1. for everye ∈ AS ,

defψ e ⊆ def∨ e ∧ (e ∈ AS∞ ⇒ def∨ e = ∅) ;

2. for everye ∈ AS , X ∈ def∨ e and c, d ∈ AConf with arc(nextψ c) =
arc(nextψ d) = e,

st c
∣
∣
ref(e,X)

= st d
∣
∣
ref(e,X)

⇒ valX(nextψ c) = valX(nextψ d) ;

3. for everyp ∈ PP , q ∈ dep֌(p) andc, d ∈ AConf with pp c = pp d = p,

st c
∣
∣
ref(p,q)

= st d
∣
∣
ref(p,q)

⇒
(
pp(nextψ c) 6 q ⇐⇒ pp(nextψ d) 6 q

)
.

The setdef∨ p is an upper approximation todefψ p for everyp. These are needed
because, in real situation, we are able to compute conservative approximations
only. Checking whether the value of a variable can change at acertain program
point is generally undecidable. The statementZ ∈ def∨ e could be read as “Z
may be updated by the atomic computation stepe”.

The domain ofref,
∑

e∈AS def∨ e +
∑

p∈PP dep֌(p), consists of pairs(e,X)

with e ∈ AS , X ∈ def∨ e and pairs(p, q) with p ∈ PP , q ∈ dep֌(p). The
statementZ ∈ ref(e,X) can be read as “the value ofZ may influence the value
of X in the atomic computation stepe”. The condition in the definition tells that
if the differences between states ats(e) remain outsideref(e,X) then they do not
affect the value ofX after the atomic computation stepe on these states. Similarly,
Z ∈ ref(p, q) can be read as “the value ofZ at p may decide whether control
reachesq”. It is defined for branching program pointsp only as no program point
can be control dependent on a non-branching point. The condition in the definition
tells that if the differences between given states atp remain outsideref(p, q) then
control, when starting fromp, certainly reachesq either in both cases or in no
case.

Example 4.4.4.

Z1

Z2

Z3

X1

X2

e

This figure illustrates an atomic stepe which refers to variablesZ1, Z2, Z3 and
updates variablesX1, X2, whereby the new value ofX1 is computed byZ1 and
Z2 only and the new value ofX2 is computed byZ2 andZ3 only. In this situation,
one may takeref(e,X1) ⊇ {Z1, Z2} andref(e,X2) ⊇ {Z2, Z3}. ⊓⊔
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Lemma 4.4.5. Letψ ∈ STList AConf → 1+AConf be a sound operator and let
(def∨, ref) be a data flow approximation system for it. Lete ∈ AS and takec, d ∈
AConf such thatarc(nextψ c) = arc(nextψ d) = e, st c

∣
∣
ref(e,X)

= st d
∣
∣
ref(e,X)

for

everyX ∈ def∨ e, and st c
∣
∣
Var\def∨ e

= st d
∣
∣
Var\def∨ e

. ThenvalX(nextψ c) =

valX(nextψ d) for everyX ∈ Var.

Proof. If X ∈ def∨ e thenst c
∣
∣
ref(e,X)

= st d
∣
∣
ref(e,X)

by assumption and, by Defi-

nition 4.4.3,valX(nextψ c) = valX(nextψ d). If X /∈ def∨ e then, by Definition
4.4.1,valX(nextψ c) = valX c = valX d = valX(nextψ d). ⊓⊔

Lemma 4.4.6. Letψ ∈ STList AConf → 1 + AConf be a sound operator and
let (def∨, ref) be a data flow approximation system for it. Letp be a program point
and takec, d ∈ AConf such thatpp c = pp d = p and st c

∣
∣
ref(p,q)

= st d
∣
∣
ref(p,q)

for everyq ∈ dep֌(p) with p → q. Thenpp(nextψ c) = pp(nextψ d).

Proof. Denoter1 = pp(nextψ c) and r2 = pp(nextψ d). Clearly p → r1 and
p → r2. If neither ofr1 andr2 is control dependent onp thenr1 = r2 (Proposition
2.3.6(ii)).

Consider the case where one of them, sayr2, is control dependent onp. Then
st c

∣
∣
ref(p,r2)

= st d
∣
∣
ref(p,r2)

by assumption andr1 6 r2 by Definition 4.4.3. It
follows that alsor1 is control dependent onp since otherwisep < r1 6 r2

(Proposition 2.3.6(i)) contradicting the assumptionp dep r2. Thusst c
∣
∣
ref(p,r1)

=

st d
∣
∣
ref(p,r1)

by assumption andr2 6 r1 by Definition 4.4.3. Consequently,r1 = r2.
⊓⊔

4.5 Program Approximation

In the rest, we often need the notion of isomorphism for flow graphs.

Definition 4.5.1. Let (G, iG), (H, iH ) be local flow graphs (either transfinite or
not). A bijection · both between vertices ofG andH and between arcs ofG and
H is called isomorphismiff all the following holds:

1. s(e) = s(e) andt(e) = t(e) for everye ∈ E(G);

2. f = f ;

3. iG = iH ;

4. transfinite arcs and only these are mapped to transfinite arcs.
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Denote this situation· ∈ (G, iG) → (G, iH). In the case an isomorphism exists,
the graphs are calledisomorphic.

For any programS, denote byaconfS the set of all augmented configurations of
form 〈a | s〉 with eithera ∈ V (tcfgS) or a ∈ E(tcfgS). If f is any operator
on vertices and arcs ofTCFG then we extend it to vertex sets and augmented
configurations naturally by lettingf (A) = {a | a ∈ A • f (a)} and f〈a | s〉 =
〈f (a) | s〉.

Definition 4.5.2. Letψ ∈ STList AConf → 1 + AConf be a transfinitely sound
operator and letD = (def∨, ref) be a data flow approximation system for it. Let
S be a program.

(i) A pair (S , rel) is calledrelevance system ofS w.r.t.D iff S ⊆ V (tcfgS) and
rel ∈ V (tcfgS)→ ℘(Var) such that the following holds:

1. f ∈ S ;

2. rel q \ def∨ e ⊆ rel p for everye ∈ E(tcfgS), p = s(e), q = t(e);

3. if p ∈ V (tcfgS) andX ∈ def∨ e ∩ rel q for e ∈ E(tcfgS) and p = s(e),
q = t(e), thenp ∈ S andref(e,X) ⊆ rel p;

4. if p ∈ V (tcfgS), q ∈ S andp dep q thenp ∈ S andref(p, q) ⊆ rel p.

(ii) TakeS ⊆ V (tcfgS) and letS be a program. We say thatS approximatesS
on baseS andD iff there exists an isomorphism· ∈ tcfgS → tcfgS such that
the following holds:

1. for everyc ∈ aconfS, if pp c ∈ S thennextψ c = nextψ c;

2. for everye ∈ E(tcfgS), alwaysdef∨ e ⊆ def∨ e and if s(e) ∈ S then also
def∨ e ⊆ def∨ e.

A claimZ ∈ rel p can be read as “Z is relevant atp”. A relevance system consists
of a possible result of Relevant Sets analysis onS together with the corresponding
slice of S; this analysis forms the basis of a classic way of automatic program
slicing (see, e.g., Binkley and Gallagher [2] or Sect. 4.8 ofthis thesis).

Program approximation, i.e. finding a program approximating a given program, is
the transformation we consider as the first step in program slicing where irrelevant
statements have been replaced with other irrelevant statements. “Irrelevance” of a
statement is equivalent to starting from a point outsideS here. Item 2 of Definition
4.5.2(ii) requires that a stepe may update only variables potentially updated also
by e, hence the irrelevance of the updates bye implies the irrelevance of the
updates bye.
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Proposition 4.5.3. Letψ ∈ STList AConf → 1+AConf be a transfinitely sound
operator and letD = (def∨, ref) be a data flow approximation system for it. Let
(S , rel) be a relevance system for a programS w.r.t.D.

(i) S approximatesS on baseS andD.

(ii) LetS approximateS on baseS andD with isomorphism· . For everye ∈
E(tcfgS), if s(e) ∈ S thendefψ e = defψ e.

Proof.

(i) Take p = p ande = e for eachp ∈ V (tcfgS) ande ∈ E(tcfgS). Then
f = f andiS = iS like required. The other two conditions also hold trivially.

(ii) Let e ∈ E(tcfgS) such thats(e) ∈ S be fixed. Choose an arbitraryc ∈
aconfS such thatpp c = s(e). By condition 1 of program approximation (Def-
inition 4.5.2(ii)), nextψ c = nextψ c, hencearc(nextψ c) = arc(nextψ c) and
st(nextψ c) = st(nextψ c). The former equality givesarc(nextψ c) = e ⇐⇒
arc(nextψ c) = e and the latter givesvalX(nextψ c) = valX(nextψ c) for all
X ∈ Var implying furthervalX(nextψ c) = valX c ⇐⇒ valX(nextψ c) =
valX c. Altogether, this shows that, for allX ∈ Var, the claims

∀c ∈ aconfS
(
pp c = s(e) ∧ arc(nextψ c) = e ⇒ valX(nextψ c) = valX c

)
,

∀c ∈ aconfS
(
pp c = s(e) ∧ arc(nextψ c) = e ⇒ valX(nextψ c) = valX c

)

are equivalent. Aspp c = s(e) ⇐⇒ pp c = s(e) and · is a bijection between
aconfS andaconfS, we obtain that the claims

∀c ∈ aconfS
(
pp c = s(e) ∧ arc(nextψ c) = e ⇒ valX(nextψ c) = valX c

)
,

∀c ∈ aconfS
(
pp c = s(e) ∧ arc(nextψ c) = e ⇒ valX(nextψ c) = valX c

)

are also equivalent. Note that, for everyc ∈ AConf such thatpp c = s(e), there
exists ad ∈ aconfS such thatpp d = s(e) andst d = st c (we can simply chooses(e) ∈ AS to be the first component). By soundness,nextψ d = nextψ c in such
case. An analogous observation can be carried on fore andaconfS. It follows
that the claims

∀c ∈ AConf
(
pp c = s(e) ∧ arc(nextψ c) = e ⇒ valX(nextψ c) = valX c

)
,

∀c ∈ AConf
(
pp c = s(e) ∧ arc(nextψ c) = e ⇒ valX(nextψ c) = valX c

)

are equivalent as equivalents to the corresponding claims from the previous pair.
Note further that, by soundness,

arc(nextψ c) = e ⇒ pp c = s(e) and arc(nextψ c) = e ⇒ pp c = s(e) .

So we can omit the left components of the premise conjunctions. By Definition
4.4.1, the result tells thatX /∈ defψ e ⇐⇒ X /∈ defψ e. Hencedefψ e = defψ e.

⊓⊔
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Lemma 4.5.4. Let ψ ∈ STList AConf → 1 + AConf be a transfinitely sound
operator and letD = (def∨, ref) be a data flow approximation system for it.
Let S be a program and(S , rel) be its relevance system w.r.t.D. LetS approx-
imateS on baseS and D with isomorphism· . Let p, q ∈ V (tcfgS) and let
w = (v 0, e1, v 1, . . . , en, vn),n > 0, be a walk fromp toq in tcfgS. LetX ∈ rel q.
Let i ∈ N be the least number such thatX ∈ def∨ ek for nok with i+ 1 < k 6 n.
ThenX ∈ rel v i+1 and i is also the least natural number such thatX ∈ def∨ ek
for nok with i + 1 < k 6 n. Moreover, ifX ∈ def∨ ei+1 thenv i ∈ S .

Proof. Let j ∈ N be the least number such thatX ∈ def∨ ek for no k with
j + 1 < k 6 n. An easy induction shows thatX ∈ rel v j+1 (using the assumption
X ∈ rel vn as base case; the step follows fromrel v s+1 \ def∨ es+1 ⊆ rel v s
holding for alls by Definition 4.5.2(i)).

For everyk with j + 1 < k 6 n, we haveX /∈ def∨ ek sincedef∨ ek ⊇ def∨ ek
by Definition 4.5.2(ii). Hencei 6 j.

If X ∈ def∨ ej+1 thenX ∈ def∨ ej+1 ∩ rel v j+1 implying v j ∈ S by Definition
4.5.2(i). But thenX ∈ def∨ ej+1 = def∨ ej+1 by Definition 4.5.2(ii) givingj 6 i.

If X /∈ def∨ ej+1 then, by construction,j = 0 which also leads toj 6 i. Alto-
gether,i = j and the claims follow. ⊓⊔

Lemma 4.5.5. Let ψ ∈ STList AConf → 1 + AConf be a transfinitely sound
intuitive operator and letD = (def∨, ref) be a data flow approximation system
for it. Let S be a finite program and(S , rel) be its relevance system w.r.t.D. Let
S approximateS on baseS andD with isomorphism· . Let l = Tψ(S)(s) for an
s ∈ State and leto, π < |l|, o < π be such thatpp(l(̺)) ∈ S for no ordinal
̺ satisfyingo < ̺ < π. Let p = pp(l(o)), q = pp(l(π)), x = pp(l(o + 1)),
d = arc(l(o + 1)) and letX ∈ rel q.

(i) ThenvalX(l(o + 1)) = valX(l(π)), X ∈ rel x and if X ∈ def∨ d then
p ∈ S.

(ii) If valX(l(o)) 6= valX(l(π)) or X /∈ rel p thenX ∈ def∨ d andp ∈ S .

Proof.

(i) Let w = (v 0, e1, v 1, . . . , en, vn) be a walk fromp to q in tcfgS such that
e1 = arc(l(o + 1)) = d and(v 1, e2, v 2, . . . , en, vn) uses precisely the arcs whose
· -image occurs indrop(o + 2)(take(π + 1) l).

Supposei ∈ N is the least number such thatX ∈ def∨ ek for no k with i + 1 <
k 6 n. By Lemma 4.5.4,X ∈ rel v i+1. If X ∈ def∨ ei+1 then Lemma 4.5.4 also
givesv i ∈ S which together with our assumptions and construction impliesi = 0.
If X /∈ def∨ ei+1 theni = 0 by choice. Soi = 0.
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HenceX ∈ def∨ ek for nok with 1 < k 6 n. Therefore if̺ is any ordinal satisfy-
ing o + 1 < ̺ 6 π thenX /∈ def∨(arc(l(̺))). Consequently,X ∈ defψ(arc(l(̺)))
for no ̺ satisfyingo + 1 < ̺ 6 π. By assumptions,o + 1 6 π. So Lemma 4.4.2
applies and givesvalX(l(o + 1)) = valX(l(π)).

Furthermore, note thatX ∈ rel v 1 andv1 = x by construction. The last claim of
this part of the lemma follows directly from the last part of Lemma 4.5.4.

(ii) SupposevalX(l(o)) 6= valX(l(π)). Using Lemma 4.5.5(i), we get

valX(l(o)) 6= valX(l(o + 1)) = valX(nextψ(l(o))) .

Consequently,X ∈ defψ d ⊆ def∨ d ⊆ def∨ d .

SupposeX /∈ rel p. By Lemma 4.5.5(i),X ∈ rel x . By Definition 4.5.2(i),rel x \
def∨ d ⊆ rel p. HenceX ∈ def∨ d .

By Lemma 4.5.5(i), we have alsop ∈ S . ⊓⊔

Lemma 4.5.6. Letψ ∈ STList AConf → 1 + AConf be an escaping operator
with ∝ > ω

ω. LetD = (def∨, ref) be a data flow approximation system for it.
Let (S , rel) be a relevance system of a finite programS w.r.t.D and letS be an
approximation ofS on baseS andD with isomorphism· . Let l = Tψ(S)(s) for
somes ∈ State and leto, π < |l|, o < π be such thatpp(l(̺)) ∈ S for no ordinal
̺ satisfyingo < ̺ < π but pp(l(π)) ∈ S . Letp = pp(l(o)), q = pp(l(π)).

(i) Letx = pp(l(o + 1)); thenx 6 q.

(ii) Let r be the immediate postdominator ofp. Thenr 66 q only if p dep q.

Proof. By Theorem 4.3.8 and transfinite soundness, computationl reaches the
final point f since, due to|l| < ∝, the only way to end is reachingf . Note that
S , by Definition 4.5.2(i), is a dependence system of(tcfgS, f ) in the sense of
Definition 2.3.7. AstcfgS andtcfgS are isomorphic,S is a dependence system
of (tcfgS, f ).

(i) Finding a walk fromx to q satisfying Lemma 4.3.4, we obtainx 6 q (see
also Theorem 2.3.8), hence the first desired claim follows.

(ii) Find a walk fromp to f = f satisfying Lemma 4.3.4; it must pass throughr

sincep < r givesp < r . Thus there exists an ordinal̺ such thatpp(l(̺)) = r .

If ̺ 6 π then a train of thought analogous to the one in Lemma 4.5.6(i)gives
r 6 q. Thusr 66 q impliesπ < ̺.

Finally, find a walkw = (v 0, e1, v 1, . . . , en, vn) from p to q such thatv1 = x and
(v 1, e2, v 2, . . . , en, vn) satisfies Lemma 4.3.4. Byπ < ̺ and Lemma 4.3.11,w
passes through no postdominators ofp. Thus there exists av i such thatv i dep
q and v i+1 6 q (Theorem 2.3.4), the former condition implyingv i ∈ S . By
assumptions,i = 0. Hencep dep q giving alsop dep q. ⊓⊔
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4.6 Semantic Correctness of Program Approximation

In this section, we prove preservation of some semantic properties under program
approximation (Theorem 4.6.3). The result basically states that a programS and a
programS approximatingS, when both start running from the same initial state,
compute the same transfinite sequence of values of relevant variables.

The proof idea is transfinite induction using Lemmas 4.6.1 and 4.6.2.

Lemma 4.6.1. Let ψ ∈ STList AConf → 1 + AConf be a transfinitely sound
escaping intuitive operator with∝ > ω

ω. LetD = (def∨, ref) be a data flow
approximation system for it. Let(S , rel) be a relevance system of a finite program
S w.r.t. D and letS approximateS on baseS andD with isomorphism· . Let
l = Tψ(S)(i) and l = Tψ(S)(i) for some statesi, i. Take ordinalso, o such that
conf(l(o)) = 〈p | s〉, conf(l(o)) = 〈p | s〉 for a program pointp and statess,
s such thats

∣
∣
rel p

= s
∣
∣
rel p

. Let π be the least ordinal greater thano such that
pp(l(π)) ∈ S; denoteq = pp(l(π)). Then there exists the least ordinalπ greater
thano satisfyingpp(l(π)) = q; thereby, both following conditions hold:

1. pp(l(̺)) ∈ S for no̺ with o < ̺ < π,

2. valX(l(π)) = valX(l(π)) for everyX ∈ rel q.

Proof. Let r be the immediate postdominator ofp in TCFG . Let x = pp(l(o+ 1))
andy = pp(l(o + 1)). Note thatx 6 r andy 6 r (Lemma 2.2.5(ii)), the latter
giving alsoy 6 r . As p ∈ S, Definition 4.5.2(ii) together with soundness gives

y = pp(nextψ(l(o))) = pp(nextψ〈p | s〉) = pp(nextψ〈p | s〉) . (4.4)

Lemma 4.5.6(i) and Proposition 4.5.3(i) together implyx 6 q. If r 6 q then,
by transitivity, y 6 q. If r 66 q then applying Lemma 4.5.6(ii) and Proposition
4.5.3(i) together givesp dep q. Asq ∈ S , the latter impliesp ∈ S andref(p, q) ⊆
rel p. Hences

∣
∣
ref(p,q)

= s
∣
∣
ref(p,q)

by assumptions. Thuspp(nextψ〈p | s〉) 6 q iff

pp(nextψ〈p | s〉) 6 q by Definition 4.4.3 and soundness. Using Eq. 4.4, we
obtainx 6 q iff y 6 q. Thusy 6 q also in this case.

Let π be the least ordinal greater thano such thatpp(l(π)) = q (the computation
drop(o + 1) l reachesq since it starts fromy andy 6 q). Letσ be the least ordinal
greater thano such thatpp(l(σ)) ∈ S ; denotes = pp(l(σ)). Thenσ 6 π since
q ∈ S .

Lemma 4.5.6(i) now impliesy 6 s. If r 6 s then, by transitivity,x 6 s. If r 66 s

then applying Lemma 4.5.6(ii) givesp dep s. As s ∈ S which is equivalent to
s ∈ S, the latter givesp ∈ S andref(p, s) ⊆ rel p. Hences

∣
∣
ref(p,s)

= s
∣
∣
ref(p,s)

by
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assumptions. Thuspp(nextψ〈p | s〉) 6 s iff pp(nextψ〈p | s〉) 6 s by Definition
4.4.3 and soundness. Using Eq. 4.4, we obtainx 6 s iff y 6 s. Thusx 6 s also
in this case.

Altogether, we have got that bothq ands are common non-strict postdominators
of x andy . So eitherq 6 s or s 6 q (Theorem 2.2.6). Asq occurs indrop(o + 1) l
not later thans, Lemma 4.3.11 impliesq 6 s. Henceq 6 s and Lemma 4.3.11
givesπ 6 σ. Consequently,σ = π giving alsos = q. This proves the first part of
the lemma.

To prove the second part, chooseX ∈ rel q arbitrarily. Assumptions enable
pp(l(̺)) ∈ S for no ̺ with o < ̺ < π. By the first part,pp(l(̺)) ∈ S for
no ̺ with o < ̺ < π. Lemma 4.5.5(i) together with Proposition 4.5.3(i) give
X ∈ rel(pp(l(o + 1))) = rel x . Denotee = arc(l(o + 1)).

Consider the caseX ∈ def∨ e. By Definition 4.5.2(i),X ∈ rel x givesp ∈ S

andref(e,X) ⊆ rel p. Sos
∣
∣
ref(e,X)

= s
∣
∣
ref(e,X)

by assumptions. By soundness,
Definition 4.4.3, and Definition 4.5.2(ii),

valX(l(o + 1)) = valX(nextψ(l(o))) = valX(nextψ〈p | s〉)

= valX(nextψ〈p | s〉) = valX(nextψ〈p | s〉)

= valX(nextψ〈p | s〉) = valX(nextψ(l(o)))

= valX(l(o + 1)) .

By Lemma 4.5.5(i) and Proposition 4.5.3(i),

valX(l(π)) = valX(l(o + 1)) and valX(l(π)) = valX(l(o + 1)) .

Consequently,valX(l(π)) = valX(l(π)).

If X /∈ def∨ e then, by Lemma 4.5.5(ii) and Proposition 4.5.3(i),valX(l(π)) =
valX(l(o)) andvalX(l(π)) = valX(l(o)) wherebyX ∈ rel p. The latter implies
valX(l(o)) = valX(l(o)) by assumptions. Hence the claim follows. ⊓⊔

Lemma 4.6.2. Letψ ∈ STList AConf → 1 + AConf be a regular intuitive limit
operator and letD be a data flow approximation system for it. Let(S , rel) be a
relevance system for a regular programS w.r.t. D and letS approximateS on
baseS andD with isomorphism· . Let l = Tψ(S)(i) and l = Tψ(S)(i) for some
statesi, i. Letλ > 1 be a selfish ordinal. For each ordinalξ < λ, let oξ, oξ be
ordinals less than|l| and|l|, respectively. Denote〈pξ | sξ〉 = conf(l(oξ)) for each
ξ < λ. Assume the following:

1. pp(l(o0)) ∈ S , pp(l(o0)) ∈ S ;

2. for everyξ with 0 < ξ < λ, oξ is the least ordinal greater than any ordinal
oη with η < ξ such thatpp(l(oξ)) ∈ S ;
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3. for everyξ with 0 < ξ < λ, oξ is the least ordinal greater than any ordinal
oη with η < ξ such thatpp(l(oξ)) ∈ S ;

4. for eachξ < λ, conf(l(oξ)) = 〈pξ | sξ〉 with statesξ such thatsξ
∣
∣
rel pξ

=

sξ
∣
∣
rel pξ

.

Letπ be the least ordinal greater than any ofoξ for whichpp(l(π)) ∈ S ; denote
q = pp(l(π)). Then there exists the least ordinalπ greater than any ofoξ for which
pp(l(π)) = q; thereby, both following conditions hold:

1. pp(l(̺)) ∈ S for no̺ < π greater than any ofoξ;

2. valX(l(π)) = valX(l(π)) for everyX ∈ rel q.

Proof. Let τ be the least ordinal greater than any ofoξ and letτ be the least ordinal
greater than any ofoξ. Let τ = α + γ andτ = α + γ be principal representations.
As α < τ , there exists the least ordinalζ such thatoζ > α. Analogously, letζ
be the least ordinal such thatoζ > α. As λ is selfish, there areλ many ordinals
oξ > α and as many ordinalsoξ > α. Hencedropα l visits at leastλ program
points inS , the first of them beingpp(l(oζ)). Analogously,dropα l visits at least
λ program points inS , the first of them beingpp(l(oζ)).

Let t = pp(l(τ )) and t̃ = pp(l(τ )). We claim thatt̃ = t. For proving it, sup-
pose the contrary, i.e.̃t 6= t. As the semantics is regular,t postdominates ev-
ery program point inloop (take τ l) and t̃ postdominates every program point in
loop

(
take τ l

)
. As S is finite and every non-empty final part oftake τ l visits

program points ofS , there is at least one program points ∈ loop (take τ l) ∩ S .
By assumptions,s ∈ loop

(
take τ l

)
. So, in particular,s < t ands < t̃. Hence

t and t̃ are common postdominators ofs. As t 6= t̃, eithert < t̃ or t̃ < t must
hold (Theorem 2.2.6). Suppose the former; the proof continues analogously in the
other case.

By regularity, t̃ is the immediate postdominator of a program pointy looping in
take τ l (see also Corollary 2.2.10(ii)). For arbitraryη < τ , there is a subcomputa-
tion of drop η(take τ l) driving control froms to s throughy ; find a corresponding
walkwη from s to s throughy satisfying Lemma 4.3.4.

Let wη be the last program point on the part ofwη starting withy such that
y 6 wη. Then the program points passed through by the part ofw starting with the
last occurrence ofwη do not postdominatewη since otherwise they would post-
dominatey contradicting the choice ofwη. Therefore all these program points are
transitively control dependent onwη (Theorem 2.3.5). In particular,wη dep∗ s.
As s ∈ S , we have alsowη ∈ S . As S is finite, we have an unbounded set of
ordinalsη for whichwη is the same, say,v . Sov ∈ loop

(
take τ l

)
∩ S implying
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v ∈ loop (take τ l) ∩ S. Hencey 6 v < t < t̃, a contradiction sincẽt was
supposed to be the immediate postdominator ofy .

Consequently,̃t = t.

As τ 6 π, there is a walk fromt to q according to Lemma 4.3.4. Thust 6 q

(Theorem 2.3.8). Letπ be the least ordinal greater than or equal toτ such that
pp(l(π)) = q (the computationdrop τ l reachesq since it starts fromt andt 6 q).
Letσ be the least ordinal greater than or equal toτ such thatpp(l(σ)) ∈ S ; denote
s = pp(l(σ)). Thenσ 6 π sinceq ∈ S.

We have alsot 6 s (Theorem 2.3.8). So eitherq 6 s or s 6 q (Theorem 2.2.6).
As the first visit ofq occurs not later than the first visit ofs by drop τ l, Lemma
4.3.11 impliesq 6 s. Thusq 6 s and Lemma 4.3.11 givesπ 6 σ. Consequently,
σ = π giving alsos = q. This proves the first part of the lemma.

To prove the second part, chooseX ∈ rel q arbitrarily. Letx = s(arc(l(τ ))) ∈
loop (take τ l). By Lemma 4.3.12,x is transitively control depended on by every
program point inloop (take τ l). As there are program points ofS among them, it
follows thatx ∈ S . Thusx ∈ loop

(
take γ(dropα l)

)
. As tcfgS andtcfgS are

isomorphic, there is a transfinite arce from x to t. By regularity, the looptake τ l
is escaped from usinge.

If t = q thenX ∈ rel t; if t 6= q thenτ < π, t /∈ S and Lemma 4.5.5(ii) to-
gether with Proposition 4.5.3(i) also implyX ∈ rel t. HenceX ∈ rel x since
rel t ⊆ rel x by Definition 4.5.2(i). Thus by assumptions,sξ

∣
∣
{X}

= sξ
∣
∣
{X}

for ev-

ery ordinalξ < λ such thatpξ = x . This covers all places wheretake γ(dropα l)

visits x andtake γ(dropα l) visits x . This means

map(valX)(filter(at {x})(drop omax(ζ,ζ)(take τ l)))

= map(valX)(filter(at {x})(drop omax(ζ,ζ)(take τ l))) .

Lemma 4.3.10(iii) givesvalX(l(τ )) = valX(l(τ )). AsX ∈ rel q, using Lemma
4.5.5(ii) together with Proposition 4.5.3(i) givesvalX(l(τ )) = valX(l(π)) and
valX(l(τ )) = valX(l(π)). Hence the desired claim follows. ⊓⊔

Theorem 4.6.3. Let ψ ∈ STList AConf → 1 + AConf be an regular intuitive
limit operator with∝ > ω

ω andD be a data flow approximation system for
it. Let (S , rel) be a relevance system for a regular programS w.r.t. D and let
S approximateS on baseS andD with isomorphism· . Let l = Tψ(S)(s) and
l = Tψ(S)(s) for somes ∈ State. Denotem = filter(at S) l, m = filter(at S) l.
ThenS is regular, map(pp ; · )m = map ppm and, for everyξ < |m| and
X ∈ rel(pp(m(ξ))), the equalityvalX(m(ξ)) = valX(m(ξ)) holds.

Proof. S is regular asS is regular and the conditions of program regularity are
stated in terms of transfinite control flow graphs and preserved by isomorphism.
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Let (oξ : ξ < |m|) be the increasing family of all ordinals indexing the compo-
nents ofl satisfyingat S ; thenm(ξ) = l(oξ) for everyξ < |m|. Analogously, let
(oη : η < |m|) be the increasing family of all ordinals indexing the components
of l satisfyingat S. Denotepξ = pp(m(ξ)).

We start with showing by transfinite induction onξ that pp(l(oξ)) = pξ and
valX(l(oξ)) = valX(l(oξ)) for everyX ∈ rel pξ.

Consider the caseξ = 0. As pp(l(0)) = iS = iS = pp(l(0)) ands = s, we have
o0 = 0 ⇐⇒ o0 = 0 and the desired claim holds ifo0 = 0. If o0 > 0, the claim is
implied by Lemma 4.6.1 foro← 0, o← 0, π ← o0.

Forξ > 0, assume the claim holding for smaller ordinals and letξ = α + γ be the
principal representation.

If γ = 1, apply Lemma 4.6.1 foro ← oα, o ← oα, π ← oξ = oα+1. The required
assumptions about program points and states atoαth step hold by induction hy-
pothesis.

If γ > 1, apply Lemma 4.6.2 foroη ← oα+η andoη ← oα+η for everyη < γ, π ←
oξ. The required assumptions hold due to construction and induction hypothesis.

It remains to show|m| = |m|. By Theorem 4.3.8,|l| < ∝. By Lemma 4.3.3(vi),
computationl ends atf . By Definition 4.5.2(i),f ∈ S . So there is aζ such that
pp(m(ζ)) = pζ = f . By the proof so far,pp(m(ζ)) = pp(l(oζ)) = f = f . Thus
|m| = |m| = ζ + 1. ⊓⊔

The assumption of Lemma 4.6.2 and Theorem 4.6.3 thatψ is a limit operator (in
the sense of Definition 3.4.1(i)) is mandatory as shown by Example 4.6.4.

Example 4.6.4.Consider the following transformation:

0x := true ;
1i := 0 ;
while 2i >= 0 do (

3while x do ;
4x := false ;
5i := i + 1

) ;
6

99K

0x := false ;
1i := 0 ;
while 2i >= 0 do (

3while x do ;
4x := false ;
5i := i + 1

) ;
6

TakeS = {1, 2, 5, 6} and rel 1 = rel 2 = rel 5 = rel 6 = {i}. Then(S , rel) is
a relevance system in the original program w.r.t. naturallydefined def-sets and
ref-sets. It can be obtained by computing the slice w.r.t. criterion {(6,i)} in the
traditional way of relevant sets.
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The transfinite control flow graphs of these two programs are clearly isomorphic;
the isomorphism is reflected by the numeration of program points. The second
program differs from the first by the first statement only. As the set of variables
assigned is the same, the second program qualifies as an approximation of the first
on baseS .

The different value assigned tox involves a significant difference between the
lengths of run of these programs. The first program works forω+ω+ 1 steps (the
inner infinite loop is executed during the first execution of the body of the outer
loop and skipped afterwards) while the second program worksfor ω + 1 steps
only (the inner infinite loop is always skipped).

The principal representation ofω + ω is ω + ω while the principal representation
of ω is 0 + ω. Hence the state of variables at the final configuration of therun of
the first program (where the computation reaches after entirely running the outer
loop) is determined by the sequence of intermediate states occurring when control
passes through 2, exclusive of the first passing as the latterremains inside the first
ω steps. The state of variables at the final configuration of therun of the second
program is determined by the sequence of all intermediate states occurring when
control passes through 2.

In the first sequence, variablei obtains values1, 2, 3, . . .; in the second sequence,
it obtains values0, 1, 2, 3, . . .. If ψ were not a limit operator, the limit state given
by ψ might be different on these two sequences and hence the transformation
would not be correct, Theorem 4.6.3 would not hold. ⊓⊔

Example 4.6.4 implies also that the correctness of standardalgorithms for program
slicing w.r.t. transfinite semantics (studied in Sect. 4.8)holds generally only if
the semantics is corecursive. This conclusion may be done atleast for semantics
whose definition is grounded on principal representations of ordinals.

One may argue, relying on Example 4.6.4, that the way in whichthe principal
representation splits the computation process is unnatural because this splitting
does not respect the computation intervals corresponding to the composite (i.e.
non-atomic) statements. For languages with structured control flow, one may for-
sake principal representations and ground on the syntax structure only (like in our
recent paper [11]). In the theory developed in this thesis, we wanted to keep the
theory abstracted from language details, therefore we had to ground on some other
mechanism of structuring computation processes. If limitsof processes are always
defined via limit operators then this choice makes no essential difference.
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4.7 Program Simplification

After finding a suitable approximation to a program, the irrelevant statements must
be safely removed to obtain a slice. We call this step programsimplification.

First of all, as simplifing means omission of computation steps and the latter corre-
spond to arcs in control flow graphs in our treatment, the simplification operation
on control flow graphs must take sets of arcs as arguments. Notall sets of arcs
are allowed: one cannot remove a branching structure while maintaining the inner
statements of it. The sets of arcs of control flow graphs whosemembers may be
removed simultaneously will be called total here. The formal criterion is given by
Definition 4.7.1(i).

Definition 4.7.1.

(i) Call a setD ⊆ E(TCFG ) total iff, for every arce ∈ D, all arcs starting
froms(e) in TCFG , as well as from any vertex control dependent ons(e), belong
to D.

(ii) For every totalD ⊆ E(TCFG ), define a transformationfallD ∈ PP → PP
as follows:

∀p ∈ PP (fallD p = min {x ∈ PP | p 6 x ∧ ∀e ∈ D (s(e) 6= x ) • x})

(minimum is found w.r.t. postdominance order).

Roughly, the idea behind the concept of totality is that a computation step can be
omitted only if all computation steps control dependent on it are also removed.
This condition on control dependence implies the same also for transitive control
dependence.

Definition 4.7.1(ii) is correct asf ∈ {x ∈ PP | p 6 x ∧ ∀e ∈ D (s(e) 6= x) • x}
and the set of all postdominators ofp is finite and linearly ordered for everyp.
It states thatfallD p is the least w.r.t. postdominance order program point non-
strictly postdominatingp from which no arc ofD starts. Particularly, if no arc of
D starts fromp thenfallD p = p. Intuitively, fallD p is the program point where
one falls through fromp when the arcs ofD disappear.

Proposition 4.7.2 characterizes the totality property andfall operator. Proposition
4.7.3(i) tells that a transfinite arc can belong to a total setonly together with all
arcs used in endless computations from which control escapes along this arc. The
other claims of Proposition 4.7.3 are corollaries of this fact.

Proposition 4.7.2. LetD be a total set of arcs.

(i) For every program point, either all or none of the arcs starting from it belong
to D.
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(ii) Letw be a walk fromp to q in TCFG using arcs ofD only. If no arc ofD
starts fromq thenfallD p = q.

(iii) For everyp, there is a walk fromp to fallD p using arcs fromD only.

(iv) For everyp such thatfallD = f , every walk fromp to f uses arcs fromD

only.

(v) Let p, q, s be program points such that bothp andq are reachable froms

using arcs ofD only. ThenfallD p = fallD q.

Proof.

(i) By Definition 4.7.1(i), if an arc starting fromp belongs toD then all arcs
starting fromp belong toD.

(ii) Show first thatp 6 q. If q = f then this is the case trivially. Therefore
assumeq 6= f . Supposep 66 q. Let r be the last vertex onw before reachingq
such thatr 66 q. As there is an arc starting fromq not belonging toD while there
is an arc starting fromr belonging toD, Definition 4.7.1(i) implies thatq is not
transitively control dependent onr . Hence all walks fromr to q pass through a
postdominator ofr (Theorem 2.3.5). This must hold also for the part of walkw
from r to q. So there is ans passed through by that part ofw such thatr < s.
By the choice ofr , we haves 6 q. Thereforer < q by transitivity, giving a
contradiction.

Now p 6 q implies q ∈ {x ∈ PP | p 6 x ∧ ∀e ∈ D (s(e) 6= x) • x}. Suppose
the desired claim does not hold; then there is a program pointt < q such that
t ∈ {x ∈ PP | p 6 x ∧ ∀e ∈ D (s(e) 6= x) • x}. If p = t thenw must be empty
(as no arc ofD starts from it), hencep = q, giving a contradiction top = t < q.
If p < t thenw passes throught (Theorem 2.2.9); but then there are arcs ofD

starting fromt contradicting the choice oft.

(iii) Consider a walk fromp to f . By Proposition 4.7.2(ii), its longest initial part
using arcs fromD only ends atfallD p. This is the desired walk.

(iv) Consider arbitrary walkw from p to f . By Proposition 4.7.2(ii), its longest
initial part using arcs fromD only ends atfallD p = f . As no arc starts fromf ,
this initial part ofw coincides withw. Hence all arcs ofw belong toD.

(v) There are walks froms to p, from s to q, from p to fallD p, and fromq to
fallD q, all of which use arcs ofD only. Putting together, we obtain walks from
s to bothfallD p andfallD q using arcs fromD only. By Definition 4.7.1(ii), no
arcs ofD start fromfallD p or fallD q. Now by Proposition 4.7.2(ii),fallD p =
fallD s = fallD q. ⊓⊔

Lemma 4.7.3. Letψ ∈ STList AConf → 1 + AConf be a regular operator with
∝ > ω

ω and S a regular program. Letl = Tψ(S)(i) for somei ∈ State. Let
D ⊆ E(tcfgS) be total.
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(i) For every limit ordinalπ < |l|, all arcs between program points looping in
takeπ l are inD iff arc(l(π)) ∈ D.
(ii) For every limit ordinalπ < |l|, if drop ̺(takeπ l) uses arcs outsideD for

every̺ < π thenarc(l(π)) /∈ D.

(iii) For any ordinalo < |l|, if σ is the least ordinal greater thano such that
arc(l(σ)) /∈ D thenσ is a successor ordinal. Thereby, ifσ < |l| then we have
fallD(pp(l(o))) = s(arc(l(σ))) and otherwisefallD(pp(l(o))) = f .
(iv) For any ordinalo < |l|, there exists a largest ordinalπ such thatarc(l(̺)) ∈
D for every̺ satisfyingo < ̺ 6 π. Thereby,fallD(pp(l(o))) = pp(l(π)).

(v) For every ordinalπ < |l|, there exists a least ordinalo such thatarc(l(̺)) ∈
D for every̺ satisfyingo < ̺ 6 π; thereby,arc(l(o)) /∈ D.
(vi) There exists a largest ordinalo < |l| such thatarc(l(o)) /∈ D. Thereby,

fallD(pp(l(o))) = f .

Proof.

(i) Suppose that all arcs between program points looping intakeπ l are inD.
As s(arc(l(π))) is looping in this computation, an arc starting from it belongs to
D. Hence, using Proposition 4.7.2(i), alsoarc(l(π)) ∈ D.
Supposearc(l(π)) ∈ D. By Lemma 4.3.12, all program points looping intakeπ l
are transitively control dependent ons(l(π)). By Definition 4.7.1(i), all arcs start-
ing from all these vertices are inD.
(ii) By Lemma 4.7.3(i),arc(l(π)) belonging toD would imply all arcs between

program points which are looping intakeπ l belonging toD. By Lemma 4.3.5,
we can findo < π such that all program points visited bydrop o(takeπ l) are
looping in takeπ l. All arcs arc(l(̺)) for o < ̺ < π would have to be inD
contradicting the assumption.
(iii) Let o be fixed. Clearlyσ 6 |l|.
Show the first claim. Ifσ = |l| thenσ is a successor ordinal and we are done.
Supposeσ < |l| andσ being a limit ordinal. By Lemma 4.7.3(i), there exists an
arc outsideD between program points looping intakeσ l. By Proposition 4.7.2(i),
takeσ l must use arcs outsideD endlessly which contradicts the choice ofσ.
Consequently,σ is a successor ordinal.
Prove the second claim now. We haveσ = π + 1 for aπ > o. Find a walkw from
pp(l(o)) to pp(l(π)) using precisely the arcs ofdrop(o + 1)(takeσ l). All the arcs
of w belong toD. No arc ofD starts frompp(l(π)) sincearc(l(σ)) /∈ D. Hence
fallD(pp(l(o))) = pp(l(π)) by Proposition 4.7.2(ii). Ifσ < |l| thenpp(l(π)) =s(arc(l(σ))), otherwisepp(l(π)) = f . This concludes the proof.
(iv) Let σ be the least ordinal greater thano such thatarc(l(σ)) /∈ D. By Lemma

4.7.3(iii), σ = π + 1 for aπ. Thenarc(l(̺)) ∈ D for every̺ satisfyingo < ̺ 6 π
and clearlyπ is the largest such ordinal.
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If σ < |l| then Lemma 4.7.3(iii) givesfallD(pp(l(o))) = s(arc(l(σ))) = pp(l(π)).
If σ = |l| then, again by Lemma 4.7.3(iii),fallD(pp(l(o))) = f = pp(l(π)).

(v) As arc(l(̺)) ∈ D for every̺ satisfyingπ < ̺ 6 π, the set of ordinals where
the minimal has to be found is non-empty. Hence the first claimfollows.

For the second, supposearc(l(o)) ∈ D. If o = ξ + 1 for someξ then ξ < o
while arc(l(̺)) ∈ D for every̺ satisfyingξ < ̺ 6 π. If o is a limit ordinal then
using Lemma 4.7.3(ii) contrapositively gives thatdrop ξ(take o l) does not use
arcs outsideD for someξ < o for which we then havearc(l(̺)) ∈ D for every̺
satisfyingξ < ̺ 6 π. Hence both cases contradict the choice ofo.

(vi) Let l(σ) be the last component ofl. Defineo to be the least ordinal such
that arc(l(̺)) ∈ D for every̺ satisfyingo < ̺ 6 σ. By Lemma 4.7.3(v), this
definition is correct andarc(l(o)) /∈ D. By construction,o is the largest ordinal
less than|l| such thatarc(l(o)) /∈ D. For the second claim, note thatτ = |l| is the
least ordinal greater thano such thatarc(l(τ )) /∈ D. Thus, by Lemma 4.7.3(iii),
fallD(pp(l(o))) = f . ⊓⊔

We are going to define program simplification as a relation between two given
programs like we did with program approximation. At place ofisomorphism in
the case of program approximation, we need another type of mapping in the case
of program slicing. We call it sliceprojection. Like projections in general, it is a
structure-preserving function losing some facets of its argument.

Definition 4.7.4. Let (G, iG), (H, iH ) be local flow graphs (either transfinite or
not). LetD ⊆ E(G) be total. Let∼D be the least equivalence relation onV (G)
containing{e ∈ D | •(s(e), t(e))}; for eachv ∈ V (G), denote its equivalence
class byv/ ∼D . (The equivalence classes by∼D are actually the weakly con-
nected components of the graph whose vertices are that ofG and arc set isD.)

A mapping · ◦ from V (G) to V (H) and fromE(G) \ D to E(H) is calledslice-
projection from(G, iG) to (H, iH) w.r.t. D iff all the following holds:

1. for arbitrary p, q ∈ V (G),

p◦ = q◦ ⇐⇒ p ∼D q ;

2. on arcs,· ◦ is a bijection fromE(G) \D toE(H);

3. (s(e))◦ = s(e◦) and(t(e))◦ = t(e◦) for everye ∈ E(G) \ D;

4. f ◦ = f ;

5. i◦G = iH ;

6. transfinite arcs and only these are mapped to transfinite arcs.
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Note thatE(G) \ D can contain arcs between two program points equivalent by
∼D . Such arcs transform to arcs ofH whose source and target coincide. A practi-
cal example of this situation is removing the subgraph corresponding toS of the
graph of a loopwhile B do S. The graph ofS contains all program points of
the loop (the top point of the loop is included as it is the end point of the flow ofS)
but it does not contain the arc going from the top of the loop tothe beginning of
S. SlicingS away means removing the atomic statements ofS and all branching
constructions insideS; this results in an empty loopwhile B do . When do-
ing this on graphs, all program points of the graph ofwhile B do S become
equivalent, so being transformed to just one program point,but one arc remains
and goes from this vertex to the very same vertex.

Proposition 4.7.2(iii) implies thatp andfallD p always belong to the same equiv-
alence class of∼D and thereforep◦ = (fallD p)◦. More turns out:fallD actually
works like a canonical instance finder. Proposition 4.7.5 states this.

Proposition 4.7.5. LetG,H be local (transfinite) control flow graphs. LetD ⊆
E(G) be total. Let· ◦ be a sliceprojection fromG toH. For everyp, q ∈ V (G),

p◦ = q◦ ⇐⇒ fallD p = fallD q .

Proof. Supposep◦ = q◦. As p and q belong to common equivalence class of
∼D , there exists a finite sequencet0, s1, t1, . . . , sn, tn such thatt0 = p, tn = q

and, for eachi = 1, . . . , n, there are walks fromsi to ti−1 and ti which use
arcs ofD only. Proceed by induction onn. If n = 0 thenp = q and fallD p =
fallD q follows trivially. Assume the claim forn−1 now. By induction hypothesis,
fallD p = fallD tn−1. By Proposition 4.7.2(v),fallD tn−1 = fallD q. Altogether,
fallD p = fallD q.

On the other hand, iffallD p = fallD q thenp◦ = (fallD p)◦ = (fallD q)◦ = q◦. ⊓⊔

Definition 4.7.6(i) introduces redundancy condition on arcsetD requiring that the
computation steps corresponding to the arcs ofD have no influence to state. Pro-
gram simplification introduced by Definition 4.7.6(ii) is basically program slicing
on control flow graphs. The criterion of simplification tellsthat the action of an
atomic step of the resulting program coincides with the action of the correspond-
ing atomic step in the original program.

Definition 4.7.6. Letψ ∈ STList AConf → 1+AConf be a sound operator. Let
S be a program and letD ⊆ E(tcfgS) be total.

(i) Call D redundant on basisψ iff st(nextψ〈s | s〉) = s for everys ∈ V (tcfgS)
ands ∈ State such thatarc(nextψ〈s | s〉) ∈ D.

82



(ii) AssumeD ⊆ E(tcfgS) being total. For any prorgamS◦, say thatS◦ sim-
plifies S by D iff there exists a sliceprojection fromtcfgS to tcfgS◦ such that,
for everyp ∈ V (cfgS) ands ∈ State,

nextψ〈p
◦ | s〉 =

(
nextψ〈fallD p | s〉

)◦
.

In most cases, we will be restricted to simplifications by redundant sets in our the-
ory. This does not lose generality as we assume we can always make an approx-
imation step replacing the set of arcs having to be sliced away with a redundant
set.

Lemma 4.7.7 shows that transfinite sequence of redundancy isa redundancy.

Lemma 4.7.7. Letψ ∈ STList AConf → 1 + AConf be a sound intuitive oper-
ator. LetS be a program andl = Tψ(S)(i) for an i ∈ State. LetD ⊆ E(tcfgS) be
redundant on basisψ. Let ordinalso, π be such thato 6 π < |l| andarc(l(̺)) ∈ D

for every̺ satisfyingo < ̺ 6 π. Thenst(l(o)) = st(l(π)).

Proof. ChooseX ∈ Var arbitrarily. For anye ∈ D, supposec ∈ AConf being
such thatarc(nextψ c) = e. Thenst(nextψ c) = st(nextψ〈s(e) | st c〉) = st c
by redundancy. ThereforevalX(nextψ c) = valX c. By Definition 4.4.1,X /∈
defψ e. HenceX ∈ defψ(arc(l(̺))) for no ordinal̺ satisfyingo < ̺ 6 π. By
Lemma 4.4.2,valX(l(̺)) = valX(l(o)) for every̺ satisfyingo 6 ̺ 6 π.

Hencest(l(o)) = st(l(̺)) for every ordinal̺ satisfyingo 6 ̺ 6 π. In particular,
st(l(o)) = st(l(π)). ⊓⊔

For anyD ⊆ AS , we denote byuses D the predicate being true on augmented
configurationsc with arc c ∈ D. Thususes D ; ¬ equals to the predicate being
true on just the other configurations, i.e.uses D ; ¬ can be read “does not useD”
in English.

The following lemma will be used as an auxiliary result in therest. Note thatk
can be replaced withl in the claim since we can takeα = 0, β = |l|.

Lemma 4.7.8. Letψ ∈ STList AConf → 1 + AConf be a regular intuitive limit
operator with∝ > ω

ω. Let S be a regular program. LetD ⊆ E(tcfgS) be
redundant on basisψ and letR be a set of program points ofS from which no
arc ofD starts. Let· ◦ be a sliceprojection fromtcfgS to some graph w.r.t.D. Let
l = Tψ(S)(i) andk = dropα(take β l) whereα 6 β 6 |l| and arc(l(α)) /∈ D,
arc(l(β)) /∈ D. Then

map(conf ; · ◦)(filter(pp ; (∈ R)) k)
= map(conf ; · ◦)(filter(pp ; fallD ; (∈ R))(filter(uses D ; ¬) k)) .
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Proof. Let o = |filter(pp ; (∈ R)) l| and let(̺ζ : ζ < o) be the increasing trans-
finite sequence of all ordinals̺ζ such thatpp(l(̺ζ)) ∈ R. For eachζ, let πζ be
the least ordinal such thatarc(l(ξ)) ∈ D for everyξ satisfyingπζ < ξ 6 ̺ζ . This
definition is correct by Lemma 4.7.3(v) whereby neverarc(l(πζ)) ∈ D.

Supposeζ1 < ζ2 < o. Then̺ζ1
< ̺ζ2

by construction. Asarc(l(̺ζ1
+ 1)) /∈ D and

̺ζ1
+ 1 6 ̺ζ2

, it must be that̺ ζ1
+ 1 6 πζ2

. Henceπζ1
6 ̺ζ1

< πζ2
.

Take an ordinalτ < |l| such that botharc(l(τ )) /∈ D and fallD(pp(l(τ ))) ∈ R

hold. Letζ be the least ordinal such thatτ 6 ̺ζ . Suchζ exists since a walk from
pp(l(τ )) to f using all arcs ofdrop(τ + 1)l passes throughfallD(pp(l(τ ))) ∈
R. Thenτ 6 πζ sincearc(l(τ )) /∈ D. Let υ be the greatest ordinal such that
arc(l(υ)) ∈ D for everyξ satisfyingτ < ξ 6 υ. By Proposition 4.7.3(iv), this
definition is correct andpp(l(υ)) = fallD(pp(l(τ ))) ∈ R leading to̺ ζ 6 υ by the
choice ofζ. This inequality impliesπζ 6 τ sinceτ < πζ would giveυ < πζ .
Henceτ = πζ .

Consequently,(πζ : ζ < o) is the increasing transfinite sequence of ordinalsπζ
such that botharc(l(πζ)) /∈ D andfallD(pp(l(πζ))) ∈ R hold. Filtering maintains
components with indices̺ζ on the left-hand side and components with indicesπζ
on the right-hand side.

Let µ be the least ordinal larger than eachζ satisfyingπζ < α. Let µ̃ be the
least ordinal larger than eachζ satisfying̺ζ < α. Fix a ζ < o. If ζ < µ̃ then
πζ 6 ̺ζ < α, implying ζ < µ. If ζ > µ̃ then̺ζ > α; the definition ofπζ and the
assumptionarc(l(α)) /∈ D together giveπζ > α, implying ζ > µ. Consequently,
ζ < µ ⇐⇒ ζ < µ̃ for eachζ, implying µ = µ̃.

Let ν be the least ordinal larger than eachζ satisfyingπζ < β. Analogously,ν
equals to the least ordinal larger than eachζ satisfying̺ζ < β. Thus the sides of
the desired equality are of equal lengthν − µ.

It remains to show that
(
conf(l(̺ζ ))

)◦
=

(
conf(l(πζ))

)◦
for everyζ < o. Since

arc(l(̺ζ + 1)) /∈ D, ̺ζ is the largest ordinal such thatarc(l(ξ)) ∈ D for everyξ
satisfyingπζ < ξ 6 ̺ζ . By Lemma 4.7.3(iv),fallD(pp(l(πζ))) = pp(l(̺ζ)); thus
(
pp(l(̺ζ))

)◦
=

(
pp(l(πζ))

)◦
. By Lemma 4.7.7,st(l(̺ζ)) = st(l(πζ)). Hence the

desired claim follows. ⊓⊔

Theorem 4.7.9 states the semantic correctness of program simplification.

Theorem 4.7.9. Let ψ ∈ STList AConf → 1 + AConf be a regular intuitive
limit operator with∝ > ω

ω. Let S be a regular program. LetD ⊆ E(tcfgS)
be redundant on basisψ. Let S◦ simplify S by D with sliceprojection · ◦. Let
l = Tψ(S)(i) for somei ∈ State. Denote

l◦ = Tψ(S◦)(i) , m = map( · ◦)(filter(uses D ; ¬) l) .

Thenl◦ = m.
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Proof. ProgramS is finite since it is regular; thereforeS◦ is finite by construction.
Hence, by the results obtained so far, bothl andl◦ end atf .

Let S = {s ∈ V (tcfgS) | ∀e ∈ D (s(e) 6= s) • s}. Then fallD p ∈ S for every
p ∈ V (tcfgS). As pp ; fallD ; (∈ S) is constantly true, andpp ; · ◦ and · ◦ ; pp
work the same way on configurationsc satisfyingarc c /∈ D, Lemma 4.7.8 implies

map(pp ; · ◦)(filter(at S) l) = map(pp ; · ◦)(filter(uses D ; ¬) l)

= map( · ◦ ; pp)(filter(uses D ; ¬) l)

= map pp(map( · ◦)(filter(uses D ; ¬) l))

= map ppm .

Program pointf occurs inl once at its end; asf ∈ S , it occurs also infilter(at S) l
once at its end. Thusf occurs once at the end also inmap(pp ; · ◦)(filter(at S) l)
as · ◦ is injective on program points ofS . Hencem visits f only once, at its end.

Now it remains to prove by induction ono < |l◦| that l◦(o) = m(o).

Consider the caseo = 0. As the initial configurations do not use arcs, we obtain

l◦(0) = 〈iS◦ | i〉 = 〈iS | i〉
◦ = (l(0))◦ = ((filter(uses D ; ¬) l)(0))◦ = m(0).

Now let o > 0 with principal representationo = α + γ. Supposingo > |m|,
with help of the induction hypothesis, leads too = |m|, γ = 1 andpp(l◦(α)) =
pp(m(α)) = f contradictingo < |l◦|. Henceo < |m|. Let τ be the ordinal such
that theτ th component ofl corresponds to theoth component ofm. Let σ be the
ordinal such that theσth component ofl corresponds to theαth component ofm.
Thenm(o) = (l(τ ))◦ andm(α) = (l(σ))◦.

Supposeγ = 1. By construction,ξ = τ is the least ordinal greater thanσ such that
arc(l(ξ)) /∈ D. By Lemma 4.7.3(iii),τ = ̺ + 1 for a̺ wherebyfallD(pp(l(σ))) =s(arc(l(τ ))) = pp(l(̺)). Hence, by the induction hypothesis together with simpli-
fication and Lemma 4.7.7,

l◦(o) = nextψ(l◦(α)) = nextψ(m(α)) = nextψ ((l(σ))◦)

= nextψ〈(pp(l(σ)))◦ | st(l(σ))〉

=
(
nextψ〈fallD(pp(l(σ))) | st(l(σ))〉

)◦

=
(
nextψ〈pp(l(̺)) | st(l(̺))〉

)◦
=

(
nextψ(l(̺))

)◦
= (l(τ ))◦ = m(o) .

Suppose at last thatγ > 1. Denotee = arc(l(τ )) and let it go froms to t. For every
ordinalη < o, let εη be the ordinal such that theεηth component ofl corresponds
to theηth component ofm. Let υ be the least ordinal greater than any ofεη . By
Lemma 4.7.3(ii),arc(l(υ)) /∈ D. Henceυ = τ ande is transfinite. Letτ = β + δ
be the principal representation.
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Let (πζ : ζ < o) be the ascending family of indices ofl at which components
correspond to components offilter(uses D ; ¬)(take τ l), i.e. also to components
of take o l◦. Takeζ > α such thatβ 6 πζ < τ hold; this is possible sincetake τ l
uses arcs outsideD however far.

Denotek = dropπζ(take τ l) andk◦ = drop ζ(take o l◦). It is easy to see that
map( · ◦)(filter(uses D ; ¬) k) = drop ζ(take om) = k◦. Lemma 4.7.8 gives

map(conf ; · ◦)(filter(at S) k) = map(conf ; · ◦)(filter(uses D ; ¬) k)

= map( · ◦ ; conf)(filter(uses D ; ¬) k)

= map conf(map( · ◦)(filter(uses D ; ¬) k))

= map conf k◦ .

By transfinite soundness,s is looping in k. Thus, ass ∈ S , program points
occurs endlessly inmap pp(filter(at S) k). Hences◦ is looping ink◦, i.e., also in
take o l◦. As e◦ is a transfinite arc froms◦ to t◦, this arc is used byl◦ to escape
from take o l◦ by regularity. This meansarc(l◦(o)) = e◦ = arc(m(o)).

Furthermore, asst = conf ; st = · ◦ ; st, as well asat {s} = conf ; at {s}, and · ◦

is injective onS , we obtain

map st(filter(at {s})(take δ(dropπζ l)))

= map st(filter(at {s}) k)

= map st(filter(at {s})(filter(at S) k))

= map st(map conf(filter(conf ; at {s})(filter(at S) k)))

= map st(filter(at {s})(map conf(filter(at S) k)))

= map st(map( · ◦)(filter( · ◦ ; at {s◦})(map conf(filter(at S) k))))

= map st(filter(at {s◦})(map(conf ; · ◦)(filter(at S) k)))

= map st(filter(at {s◦})(map conf k◦))

= map st(filter(at {s◦}) k◦)

= map st(filter(at {s◦})(take γ(drop ζ l◦))) .

By Lemma 4.3.10(iii),st(l◦(o)) = st(l(τ )) = st(m(o)).

Altogether,l◦(o) = m(o). This concludes the proof. ⊓⊔

4.8 Correctness of Program Slicing

We are now going to account for correctness of two standard slicing algorithms.
These algorithms are classically stated for classical control flow graphs but it is
straightforward to adopt them to take transfinite arcs into account.
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Let S be a fixed program and letC be a slicing criterion. In the case of both
algorithms, the crucial point is that there exists a relevance system(S , rel) of S
whereS is the set of program points to be retained by the output sliceof the
algorithm. We show this first and then turn to the correctnessissue.

At the first step, we will give informal description of both slicing algorithms. Both
make use of classical def-sets and ref-sets which correspond, contrasting to our
theory, to program points rather than computation steps. For each program point
p ∈ cfgS, its classical def-setdef p contains at least all variables possibly updated
by a computation step starting fromp and the classical ref-setref p contains at
least all variables whose value is accessed by a computationstep starting fromp.

Firstly, consider the algorithm based on so-called relevant sets. This approach was
the first in history, it occurred already in Weiser’s works [20]. Originally, the com-
putation process was formulated in rather complex way [20, 18] where the com-
putation consists of iteration of analysis process (just one analysis of traditional
form does not necessarily give the desired result).

More precisely, the domain of the analysis of the original algorithm is℘(Var)
(for each program point, a set of “relevant” variables is computed) together with
inclusion order. Initially, every program pointp is associated with setiRS(p) =
C֌(p) (the variables declared by the slicing criterion are relevant). At any step of
the analysis concerning an arce from p to q in the control flow graph, variables
X that meet either of the following conditions are added to therelevant set ofp:

1. X is relevant atq while not belonging todef p (i.e. the relevant value atq
exists already atp);

2. X ∈ ref p while def p contains a variable already found to be relevant at
q (i.e. the value ofX at p can possibly influence, via the computation step
corresponding toe, the value of some relevant variables).

This means that the transition functionsfRS(e) of the backward analysis are de-
fined by

fRS(e)(Z) = (Z \ def(s(e))) ∪

{

ref(s(e)) if def(s(e)) ∩ Z 6= ∅

∅ otherwise

}

.

All program pointsp such thatdef p contains a variable relevant at some immedi-
ate successorq of p in cfgS are taken into the slice, as well as all program points
p such thatC֌(p) 6= ∅. This is not the end; then all variables belonging toref p

for any branching pointp for which there is a program pointq control dependent
on it and being in the slice are added to the relevant set ofp. The analysis together
with this additional step is repeated until no more points are added into the slice.

87



It is possible to compute all the information needed with onebackward analysis
but control dependence arcs must then be added to the graph onwhich the analysis
is performed. The domain of the new analysis is℘(Var) × T wherebyff < tt
and the order on pairs is defined componentwise. The truth value tells for each
program point whether it has to be taken into the slice. The set components are
initialized as in the previous variant of the algorithm; theBoolean component is
initially true for f and all program points occurring in the slicing criterion. This
means that the initial values associated to the program points are defined by

iRS′(p) = (C֌(p),

{

tt if C֌(p) 6= ∅ or p = f

ff otherwise

}

) .

For each normal arce from p to q, the new transition function is defined by

fRS′(e)(Z, b) = (Z \ def(s(e)), ff) ∨

{
(ref(s(e)), tt) if def(s(e)) ∩ Z 6= ∅

(∅, ff) otherwise

}

.

For any control dependence arcd , we have

fRS′(d)(Z, b) = (

{

ref(s(d)) if b = tt
∅ otherwise

}

, b) .

This way, the information about program points taken into the slice are propagated
around during the analysis process and no repetition of analysis is needed.

Algorithm 4.1 summarizes this briefly.

Input: a programS.

1. ComputetcfgS.

2. Compute control dependences and form a new graphtcfg′ S obtained from
tcfgS by adding special arcs fromp to q wheneverq is control dependent
onp.

3. Perform backward analysisRS′ defined byiRS′ andfRS′ on graphtcfg′ S.

4. Assign toS the set of all program points ofS for which the analysis com-
puted a pair with second componenttt.

Output: The program obtained fromS by omitting all statements whose arc in
tcfgS does not start from a vertex ofS .

Algorithm 4.1: Computing slices via relevant sets

The author developed the latter variant of slicing via relevant sets when he was
writing a slicer within the DAEDALUS-project of program analysis [16]. The
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advantage was the chance to reuse the modules of program analysis directly for
slicing without modifying them (the analysis process was programmed to work on
abstract graphs; computing control flow graphs was kept separate, so it was easy
to replace the graph).

The idea behind the approach of relevant sets is to compute a relevance sys-
tem directly. We can define a data flow approximation system, taking def∨ e =
def(s(e)) for every e ∈ E(cfgS), as well asref(e,X) = ref(s(e)) for every
e ∈ E(cfgS) together withX ∈ def∨ e and ref(p, q) = ref p for everyp ∈
V (cfgS) together withq ∈ dep֌p. For example, ife corresponds to the assign-
mentX := Y + Z then one obtainsdef∨ e = {X} andref(e,X) = {Y,Z}.
For any transfinite arce, takedef∨ e = ∅.

According to the result of the computation of the relevant sets and the slice, define
rel p for each program pointp to be the set of all variables decided as relevant at
p. Let S be the set of all program points to be included into the slice,inclusive of
f . It is straightforward to see that(S , rel) is a relevance system w.r.t. the data flow
approximation system wherebyX ∈ rel p for every(p,X) ∈ C.

The other classical way of slicing is reducing the task to a reachability problem in
the data and control dependence graph [18] (i.e. the directed graph whose vertices
are program points ofS and every arc indicates either data or control dependence).
The same classical def-sets and ref-sets as before may be taken as the starting
point. Next, data dependence approximations are computed.A program pointq is
considereddata dependent onp iff, for some variableX, the following conditions
hold:

1. X ∈ def p;

2. X ∈ ref q or (q,X) ∈ C;

3. there is a walkw = (v 0, e1, v 1, . . . , en, vn) from p to q in cfgS such that
X ∈ def v i for no i satisfying0 < i < n.

The slice is then obtained as the setS of all program points from which there
exists a directed path in data and control dependence graph to a vertex mentioned
in the slicing criterion, together withf . (As computation steps correspond to arcs
rather than program points, includingf into the slice does not mean that some
final statement is always included. The final vertex must be included just because
it corresponds to the finished computation doing0 steps.)

To adopt this approach safely to the case of transfinite arcs,replace the third con-
dition of data dependence with the following:

3’. there is a walkw = (v 0, e1, v 1, . . . , en, vn) from p to q in tcfgS such that
e1 ∈ E(cfgS) andX ∈ def v i for no i satisfying both0 < i < n and
ei ∈ E(cfgS).
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For walksw laying completely incfgS, conditions 3’ and 3 coincide.

This method is summarized in Algorithm 4.2.

Input: a programS.

1. ComputetcfgS.

2. Compute both control dependences and data dependences. Form a new
graphpdgS whose vertices coincide with vertices oftcfgS and arcs go
from p to q iff q is either control or data dependent onp.

3. Compute reachability information forpdgS.

4. Assign toS the set of all program points ofS from which some program
point mentioned by criterionC is reachable inpdgS.

Output: The program obtained fromS by omitting all statements whose arc in
tcfgS does not start from a vertex ofS .

Algorithm 4.2: Computing slices via data dependences

Define the data flow approximation system according to the classical def-sets and
ref-sets as before. In this approach, relevance system is not computed but it can
abstractly be attached to the result. This can be done, for example, as follows. For
every program points ∈ S , let

rel s = ref s ∪ C֌(s) . (4.5)

For every program points ∈ V (cfgS) \ S , let rel s consist of precisely the vari-
ables for which there is a walkw = (v 0, e1, v 1, . . . , en, vn) in tcfgS from s to
somer ∈ S such thatX ∈ rel r andX ∈ def v i for noi satisfying both0 6 i < n
andei ∈ E(cfgS).

This way,(S , rel) is a relevance system w.r.t. the fixed data flow approximation
system wherebyX ∈ rel p for every(p,X) ∈ C. The latter condition holds by
Eq. 4.5 because all the program points mentioned byC are inS . In the following
a few paragraphs, we prove that(S , rel) is a relevance system.

By construction, we immediately have condition 1 of Definition 4.5.2(i).

Consider condition 2. Take arbitraryp andq such that there is an arcd from p

to q in tcfgS. Choose arbitraryX ∈ rel q \ def∨ d . If q /∈ S then there exists a
walk w = (v 0, e1, v 1, . . . , en, vn) from q to somer ∈ S such thatX ∈ rel r and
X ∈ def v i for no v i satisfying both0 6 i < n andei ∈ E(cfgS). If q ∈ S

then takew = (q) (the empty path fromq to q), it satisfies the same property with
r = q. If d ∈ E(cfgS) thendef∨ d = def p and the walkv starting fromp, going
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to q via d , and continuing alongw, meets the same property. Ifd /∈ E(cfgS) then
v also satisfies this property. HenceX ∈ rel p.

Consider condition 3. LetX ∈ def∨ e ∩ rel q. AsX ∈ rel q, there exists a walk
w = (v 0, e1, v 1, . . . , en, vn) in tcfgS from q to somer ∈ S such thatX ∈ rel r
andX ∈ def v i for no i satisfying both0 6 i < n andei ∈ E(cfgS). Note that
e ∈ E(cfgS) becausedef∨ e 6= ∅. Hence the walk starting fromp, going toq via
e, and continuing alongw, makes evident thatr is data dependent onp. Therefore
p ∈ S by construction ofS . But p ∈ S impliesref p ⊆ rel p.

Consider condition 4 now. Suppose we havep dep q andq ∈ S. If q 6= f then
p ∈ S by definition ofS . But q = f contradictsp dep q since the final point
cannot be control dependent on any point. Sop ∈ S implying alsoref p ⊆ rel p.

This concludes the proof.

Both algorithms find a setS of program points which the slice should consist of.
Of course, the arcs between them are the important part. The idea is that precisely
the computation steps corresponding to the arcs starting from a vertex ofS are im-
portant. All the other arcs could be eliminated via an appropriate sliceprojection.
Proposition 4.8.1 states that this is possible: all arcs corresponding to irrelevant
statements (according to a relevance system) form a total set.

Proposition 4.8.1. Letψ ∈ STList AConf → 1+AConf be a transfinitely sound
operator. Let(S , rel) be a relevance system forS w.r.t. a data flow approximation
system forψ. ThenD = {e ∈ E(tcfgS) | s(e) /∈ S • e} is total.

Proof. Takee ∈ D arbitrarily. Thens(e) /∈ S , hence all arcs starting froms(e)
meet the criterion of belonging toD. Supposeq is control dependent ons(e).
Then assumingq ∈ S would lead to a contradiction with(S , rel) being a relevance
system. Thusq /∈ S and therefore all arcs starting fromq belong toD. ⊓⊔

In our terms, the slice constructed according toS is a simplification ofS by
{e ∈ E(tcfgS) | s(e) /∈ S • e}.

Theorem 4.8.2 is a combination of Theorems 4.6.3 and 4.7.9 and touches consec-
utive approximation and simplification where the arcs of theintermediate graph
with changed behaviour w.r.t. the originals form a redundant set. The point of the
theorem can be given with the words of Reps and Yang [14], changing them a bit
to accommodate to our case: “Slice captures a portion of a program’s behaviour
in the sense that, for any initial state, the program and the slice compute the same
transfinite sequence of values for each element of the slice.”

Theorem 4.8.2. Letψ ∈ STList AConf → 1+AConf be a regular intuitive limit
operator with∝ > ω

ω and letD be a data flow approximation system forψ. Let
(S , rel) be a relevance system for a regular programS w.r.t.D. LetS approximate
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S on baseS andD with isomorphism· . LetD ⊆ {e ∈ E(tcfgS) | s(e) /∈ S • e}
be redundant on basisψ. Let S◦ simplify S by D with sliceprojection · ◦. Let
l = Tψ(S)(i) and l◦ = Tψ(S◦)(i) for somei ∈ State. Let R ⊆ S and de-
note k = filter(at R) l and k◦ = filter(at R

◦
) l◦. Thenmap(pp ; · ; · ◦) k =

map pp k◦ and, for everyζ < |k| andX ∈ rel(pp(k(ζ))), one hasvalX(k(ζ)) =
valX(k◦(ζ)).

Proof. Denotel = Tψ(S)(i) andk = filter(at R) l.

Note that

at R
◦
c◦ ⇐⇒ ∃r ∈ R (pp c◦ = r◦)

⇐⇒ ∃r ∈ R ((pp c)◦ = r◦)

⇐⇒ ∃r ∈ R (fallD(pp c) = fallD r )

⇐⇒ ∃r ∈ R (fallD(pp c) = r )

⇐⇒ fallD(pp c) ∈ R .

From Theorem 4.7.9,

l◦ = map( · ◦)(filter(uses D ; ¬) l) ,

implying

k◦ = filter(at R
◦
) l◦

= filter(at R
◦
)(map( · ◦)(filter(uses D ; ¬) l))

= map( · ◦)(filter( · ◦ ; at R
◦
)(filter(uses D ; ¬)l))

= map( · ◦)(filter(pp ; fallD ; (∈ R))(filter(uses D ; ¬)l)) .

Lemma 4.7.8 gives

map(pp ; · ◦)(filter(at R) l)

= map(pp ; · ◦)(filter(pp ; fallD ; (∈ R))(filter(uses D ; ¬) l)) ,

map st(filter(at R) l) = map st(filter(pp ; fallD ; (∈ R))(filter(uses D ; ¬) l)) .

Let m = filter(at S) l andm = filter(at S) l. DenoteR(ζ) = rel(pp(k(ζ))) for
everyζ < |k| andQ(η) = rel(pp(m(η))) for everyη < |m|. Theorem 4.6.3 gives

map(pp ; · )m = map ppm ,

∀η < |m|
(

st(m(η))
∣
∣
Q(η)

= st(m(η))
∣
∣
Q(η)

)

.
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Observe thatk = filter(at R)m andk = filter(at R)m. We obtain

map(pp ; · ) k = map( · )(map pp(filter(at R)m))

= map( · )(filter(∈ R)(map ppm))

= filter(∈ R)(map( · )(map ppm))

= filter(∈ R)(map(pp ; · )m)

= filter(∈ R)(map ppm)

= map pp(filter(at R)m)

= map pp k .

Let (oζ : ζ < |k|) be the increasing transfinite sequence of indices at which
components ofm satisfyat R. Thenk(ζ) = m(oζ) andR(ζ) = rel(pp(k(ζ))) =
rel(pp(m(oζ))) = Q(oζ) for eachζ < |k|. But map(pp ; · )m = map ppm
implies that components ofm which satisfyat R locate at the same positionsoζ ,
ζ < |k|, hence alsok(ζ) = m(oζ) for eachζ < |k|. Thus

st(k(ζ))
∣
∣
R(ζ)

= st(m(oζ ))
∣
∣
Q(oζ )

= st(m(oζ))
∣
∣
Q(oζ)

= st(k(ζ))
∣
∣
R(ζ)

.

The first desired claim is now proven by

map(pp ; · ; · ◦) k = map( · ◦)(map(pp ; · ) k) = map( · ◦)(map pp k)

= map( · ◦)(map pp(filter(at R) l))

= map(pp ; · ◦)(filter(at R) l)

= map(pp ; · ◦)(filter(pp ; fallD ; (∈ R))(filter(uses D ; ¬)l))

= map( · ◦ ; pp)(filter(pp ; fallD ; (∈ R))(filter(uses D ; ¬)l))

= map pp(map( · ◦)(filter(pp ; fallD ; (∈ R))(filter(uses D ; ¬)l)))

= map pp k◦ .

The second claim comes from

st(k(ζ))
∣
∣
R(ζ)

= st(k(ζ))
∣
∣
R(ζ)

= st((filter(at R) l)(ζ))
∣
∣
R(ζ)

= st
(
(filter(pp ; fallD ; (∈ R))(filter(uses D ; ¬)l))(ζ)

) ∣
∣
R(ζ)

= st
(
(map( · ◦)(filter(pp ; fallD ; (∈ R))(filter(uses D ; ¬)l)))(ζ)

) ∣
∣
R(ζ)

= st (k◦(ζ))
∣
∣
R(ζ)

.

⊓⊔
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Theorem 4.8.2 seemingly implies the desired semantic correctness of the two slic-
ing algorithms, so that we have triumphed over the non-termination monster.

Roughly, this is true. However, there is one more concern which we have not
discussed so far. The facts have been proven on flow graphs abstracting from
details of programming languages but slicing is an operation on programs in a
fixed language. To carry over the results to slicing programs, one should show that
the transformations we considered on control flow graphs areindeed reflections
of replacements and removals of atomic statements in program code. This would
be a kind of result calledfeasibility lemmaby Reps and Yang [14].

Feasibility can be problematic in the case of non-standard programming lan-
guages, for instance, those involving unstructured control flow. No proof uniform
for all languages can be given. Proving feasibility remainsout of scope of this
thesis. We are satisfied with claiming that, for simple imperative programming
languages, this is intuitively clear.

Under the assumption that all our transformations of flow graphs can be simulated
on programs in a satisfactory manner, proving the desired correctness of program
slicing algorithms is straightforward. This is done in Corollary 4.8.3(i). Note that
if R = {r} for a program pointr then the result gives precisely the crucial property
of slicing: computing the same sequence of values atr for every variable listed by
the criterion as important atr .

Corollary 4.8.3. Let ψ ∈ STList AConf → 1 + AConf be a regular intuitive
limit operator with∝ > ω

ω. Let S be a regular program and̃S its slice w.r.t.
criterion C found by one of the algorithms considered above. Let·̃ denote the
sliceprojection fromtcfg(S) to tcfg(S̃) w.r.t. the set of all omitted arcs. Letl =
Tψ(S)(i) and l̃ = Tψ(S̃)(i) for somei ∈ State.

(i) Let R be arbitrary set of program points ofS occurring inC. Denotem =
filter(at R) l and m̃ = filter(at R̃) l̃. Thenmap(pp ; ·̃ )m = map pp m̃ and, for
everyξ < |m| andX ∈ C֌(pp(m(ξ))), one hasvalX(m(ξ)) = valX(m̃(ξ)).

(ii) The run ofS◦ lasts at most as long as the run ofS, i.e. |l̃| 6 |l|.

Proof. By the analysis at the beginning of this section, there is a relevance system
(S , rel) of S such that the computation steps maintained by the slicing are pre-
cisely those corresponding to the arcs which start from vertices of S; thereby,
{p ∈ V (tcfgS) | C֌(p) 6= ∅ • p} ⊆ S andC֌(p) ⊆ rel(p) for every p ∈
V (tcfgS). Let D = {e ∈ E(tcfgS) | ∀s ∈ S (s(e) /∈ S) • e}.

Find an approximationS of S together with an isomorphism· from tcfgS to
tcfgS such that every arc inD stands for a computation step with definitely no
influence to data flow.
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By Proposition 4.8.1,D is total, henceD is redundant. Let· ◦ be the mapping
from tcfgS to tcfg S̃ w.r.t. D such that·̃ = · ; · ◦. Then · ◦ is a sliceprojection
w.r.t. D.

By the choice ofD, no arc ofD starts from vertices ofS . Furthermore, if no arc
of D starts from ap ∈ V (tcfgS) then if there exists an arc starting fromp then
p ∈ S elsep = f ∈ S . ThusS = {p ∈ V (tcfgS) | ∀e ∈ D (s(e) 6= p) • p}. Hence
fallD p ∈ S for everyp ∈ V (tcfgS). Thus, by approximation,

nextψ〈fallD p | s〉 = nextψ 〈fallD p | s〉 = nextψ〈fallD p | s〉

= nextψ〈fallD p | s〉 ,

giving

nextψ〈p
◦ | s〉 = nextψ〈p̃ | s〉 = ˜nextψ〈fallD p | s〉

=
(

nextψ〈fallD p | s〉
)◦

=
(
nextψ〈fallD p | s〉

)◦
.

ThusS̃ simplifiesS by D.

(i) DenoteR(ζ) = rel(pp(m(ζ))) for everyζ < |m|. By Theorem 4.8.2,

map(pp ; ·̃ )m = map pp m̃ ,

∀ζ < |m|
(

st (m(ζ))
∣
∣
R(ζ)

= st (m̃(ζ))
∣
∣
R(ζ)

)

.

AsC֌(p) ⊆ rel p for everyp, this implies the desired claims.

(ii) By Theorem 4.8.2,

map(pp ; ·̃ )(filter(at S) l) = map pp(filter(at S̃) l̃) .

Thus|filter(at S) l| = |filter(at S̃) l̃|. By Theorem 4.7.9,̃l = map( · ◦)m where
m = filter(uses D ; ¬) l.
Predicateat S̃ = at S

◦
is constantly true onV (tcfg S̃) as fallD p ∈ S for every

p ∈ V (tcfgS). Thereforefilter(at S̃) l̃ = l̃. Hence

|l̃| = |filter(at S̃) l̃| = |filter(at S) l| 6 |l| .

⊓⊔

Corollary 4.8.3(ii) implies that if the original program terminates on an initial state
(i.e. the length of its run is finite) then also the slice terminates on the same initial
state. This means that it is possible to obtain correctness of slicing of terminating
programs (a result like one proven by Reps and Yang [14]) as a corollary from
correctness w.r.t. transfinite semantics. This can be done in so far as standard
semantics are extensible to transfinite semantics meeting the requirements of our
theory.
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CHAPTER 5

DISCUSSION OF RELATED ISSUES

5.1 Undecidability Results

When slicing programs in practice, our natural desire is to compute slices having
as few statements as possible. Such slices are calledstatement minimal.

Weiser [20] has shown that the problem of finding statement minimal slices is
undecidable but he considers slicing w.r.t. standard semantics. The argumentation
he gives fails for transfinite semantics. Therefore, it is natural to ask whether the
minimal slice problem is decidable w.r.t. transfinite semantics of our style.

The answer to this question is also negative. We prove this for while-loops, hence
the result holds also in general case. The idea of our proof issimilar to Weiser’s:
reduce the halting problem to the minimal slice problem.

Let S be an arbitrary program in our language. Assume that no branching predi-
cate inS has any side-effect. This assumption in no way loses the generality. For
each loop of shapewhile B do T occurring inS, replace it with code

X := B ;
while X do (T ; X := B) ;
Z := if X then true else Z

whereX, Z are variables not occurring inS. Let the resulting program beS′.

As predicatesB have no side-effect, the change of the loops affects neithertheir
termination/nontermination status nor the values assigned to the variables ofS.
ThusS′ andS either both terminate or both loop.

If the body of a loop inS′ is executed a finite number of times then, before exiting
the loop,X gets value different fromtt. If the body is executed forω times then
X has always valuett when control reaches the head of the loop, hence the value
of X after leaving the loop istt. So the value ofX immediately after leaving a
loop is an indicator of its termination/nontermination status.
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By transfinite induction, it is easy to see thatZ never takes value⊥ and, once
having valuett, it keeps this value until the end of the run. This way, the running
value ofZ tells whether the computation has already looped or not.

Consider finding a minimal slice of the programZ := false ; S′ w.r.t.Z at the
final point. IfS′ terminates thenZ has valueff at the final point, thereforeS′ can
be sliced away. Note that there is no other statement in the program which would
alone guaranteeZ having valueff at the end, thus a hypothetical solver of minimal
slice problem is required to outputZ := false. If S′ does not terminate then
Z has valuett at the final point, therefore the solver must output something else.
Altogether, this solver would decide also the halting problem. Thus the minimal
slice problem is undecidable.

Note that the difficulty actually sits in checking whether one program is a slice
of another w.r.t. given criterion. If we were able to performthis check, we would
solve the minimal slice problem by checking all subsets of the given program and
outputting one of the smallest subsets among those which turn out to be slices. So
whatever semantics we have, if the programs are finite and minimal slice problem
is undecidable then “slice checking” problem is also undecidable.

Note also that the argument we used to prove the undecidability of minimal slice
problem simultaneously proves the undecidability of constant propagation. Con-
stant propagation is the problem of determining, for a givenvariableX and pro-
gram pointp, whether the value ofX at p depends on the way control reachesp

and, if not, then finding the constant value. It is known to be undecidable in con-
text of standard semantics. In the construction above, determining whetherZ after
the run ofZ := false ; S′ is constantlyff would solve the halting problem for
S, so constant propagation is undecidable also for our transfinite semantics.

We can give another proof to undecidability of minimal sliceproblem based on
constant propagation. LetS be a program,X a variable inS andp a program
point inS. Let c be a given value which a variable could have. ConstructS′ from
S by insertingY := X ; Z := Y directly before program pointp whereY,Z
are variables not occurring inS. Consider the task of finding minimal slice of the
programZ := E ; S′ w.r.t. criterion{(p, Z)} whereE is an expression always
evaluating toc. A hypothetical minimal slice problem solver would decide the
constant valuec of X at pointp in S.

5.2 Fractional Semantics

The essential difference between standard trace semanticsand transfinite trace se-
mantics is that the states of traces of standard semantics can be indexed with natu-
ral numbers while those of transfinite semantics are indexedwith ordinal numbers.
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Many other kinds of numbers are used in mathematics; one may ask whether in-
dexing the states with numbers of some other kind could be reasonable.

We have argued in [11] that indexing the trace components with rational numbers
could enable passing by the difficulty to give transfinite semantics to recursive pro-
grams. Trace semantics where trace components are indexed with rational num-
bers are calledfractional there. As all countable sets of ordinals can be mapped
order-preservingly into any non-trivial interval of rationals, transfinite semantics
in principle can be reformulated as fractional. Rational numbers form increasing,
as well as decreasing infinite sequences, so the principal obstacle of using transfi-
nite semantics for recursion which was pointed out at the endof Subsect. 1.2 does
not appear in fractional semantics.

In [11], we defined a simple imperative language and a family of its fractional
semantics in fixpoint form similar to usual definitions of denotational semantics.
This family contains both a standard trace semantics and a transfinite trace se-
mantics (in fractional form) which can be obtained by givingdifferent values to
a few parameters of the definition schema. Thus fractional semantics serves as a
uniform framework for both standard and transfinite trace semantics.

The fractional semantics of the family studied in [11], however, can be only oc-
casionally applied to recursive programs. Hence this approach has not yet been
proved as a solver of the semantic anomaly problem for recursive programs.

As the work on fractional semantics is in progress yet and theexact framework
developed in [11] will be more or less changed in the future works, we explain the
behaviour of our fractional semantics only through examples in the thesis and do
not go into precise details of the definition schema.

The fractional semantics defined in [11] arebinary in the sense that all traces are
built via interval bisection. As the starting interval is[0; 1], this means that only
reduced fractions whose denominator is a power of2 can occur as an index of a
trace component. Another interesting property of our fractional semantics is that
it associates the pieces of code statically with intervals of rationals. To a piece of
code, the same interval of rationals is reserved irrespectively of the initial state.
This is not so in standard or transfinite trace semantics since the components are
enumerated with numbers without leaving gaps and the numberof steps used by
a part of a code depends on the initial state. We will observe this phenomenon in
the examples following.

In the examples, traces are rational-indexed families of configurations. All indices
belong to interval[0; 1]. Each configuration is a pair of a program point and a
variable state; we denote them like above. A program point must correspond to
the rest of the code — the part of the program to be run yet. The latter must entail
the current call-stack, including remainders of every pendent procedure. Relying
on this observation, let program points be finite lists of code fragments where list
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components in order correspond to unfinished procedures. The examples use only
the most spread syntactic constructs;ε denotes the empty program.

Example 5.2.1.Running an assignment requires just one step. The trace must
have two components: the initial state and the final one. No partition of the ini-
tial interval[0; 1] is therefore needed. The following are three examples aboutthe
meaning of assignment in our fractional semantics:

• the execution ofz := x at initial state(x 7→ 1,y 7→ 2,z 7→ 0) gives trace

0 7→ 〈[z := x] | (x 7→ 1,y 7→ 2,z 7→ 0)〉 ,

1 7→ 〈[ε] | (x 7→ 1,y 7→ 2,z 7→ 1)〉 ;

• the execution ofx := y at initial state(x 7→ 1,y 7→ 2,z 7→ 1) gives

0 7→ 〈[x := y] | (x 7→ 1,y 7→ 2,z 7→ 1)〉 ,

1 7→ 〈[ε] | (x 7→ 2,y 7→ 2,z 7→ 1)〉 ;

• the execution ofy := z at initial state(x 7→ 2,y 7→ 2,z 7→ 1) gives

0 7→ 〈[y := z] | (x 7→ 2,y 7→ 2,z 7→ 1)〉 ,

1 7→ 〈[ε] | (x 7→ 2,y 7→ 1,z 7→ 1)〉 .
⊓⊔

Example 5.2.2.Here we describe the semantics of sequential composition. In the
trace of a run ofS ; T , the traces of the runs ofS andT occurring within it
are compressed to twice shorter interval and joined together. Thereby, the code
fragments in the trace ofS are complemented withT .

This way, using the traces of Example 5.2.1, the execution trace ofx := y ;
y := z at initial state(x 7→ 1,y 7→ 2,z 7→ 1) is

0 7→ 〈[x := y ; y := z] | (x 7→ 1,y 7→ 2,z 7→ 1)〉 ,
1
2 7→ 〈[y := z] | (x 7→ 2,y 7→ 2,z 7→ 1)〉 ,

1 7→ 〈[ε] | (x 7→ 2,y 7→ 1,z 7→ 1)〉 .

Note that the two compressed traces, the first of them complemented, have a com-
mon member at12 . This double member fuses to one.

Analogously, the execution trace of the swap programz := x ; (x := y ;
y := z) at initial state(x 7→ 1,y 7→ 2,z 7→ 0) is

0 7→ 〈[z := x ; (x := y ; y := z)] | (x 7→ 1,y 7→ 2,z 7→ 0)〉 ,
1
2 7→ 〈[x := y ; y := z] | (x 7→ 1,y 7→ 2,z 7→ 1)〉 ,
3
4 7→ 〈[y := z] | (x 7→ 2,y 7→ 2,z 7→ 1)〉 ,

1 7→ 〈[ε] | (x 7→ 2,y 7→ 1,z 7→ 1)〉 .
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The assignmentsz := x, x := y andy := z are run within intervals[0; 1
2 ],

[1
2 ; 3

4 ] and[3
4 ; 1], respectively. This is so independently of the initial state. ⊓⊔

Example 5.2.3.Let W = while z > 0 do z := z - 1 and consider the
programz := x ; (W ; y := z). This program is obtained from the swap
program of Example 5.2.2 by replacing the second assignmentwith W . Hence
in the case of any execution of this program, the run ofz := x lies in interval
[0; 1

2 ], that ofW in interval [1
2 ; 3

4 ] and that ofy := z in [3
4 ; 1].

We place the run ofW at variable state(x 7→ 1,y 7→ 2,z 7→ 1) directly to[1
2 ; 3

4 ].
Running a while-loop consists of a predicate evaluation andsomething which
depends on the result of this. In our case, the predicate evaluates tott; thus the
rest is not empty and thus the test step leads the trace to5

8 (the midpoint of[1
2 ; 3

4 ]).
The rest of the run of the loop therefore lies within[5

8 ; 3
4 ]. Furthermore, the rest

consists of the run ofz := z - 1 followed by a new run ofW . Thus[5
8 ; 3

4 ] is
bisected, the run ofz := z - 1 is compressed to interval[5

8 ; 11
16 ] and the run of

W which consists of just one test this time is compressed to[11
16 ; 3

4 ].

Thus the whole run looks as follows:

0 7→ 〈[z := x ; (W ; y := z)] | (x 7→ 1,y 7→ 2,z 7→ 0)〉 ,
1
2 7→ 〈[W ; y := z] | (x 7→ 1,y 7→ 2,z 7→ 1)〉 ,
5
8 7→ 〈[(z := z - 1 ; W ) ; y := z] | (x 7→ 1,y 7→ 2,z 7→ 1)〉 ,

11
16 7→ 〈[W ; y := z] | (x 7→ 1,y 7→ 2,z 7→ 0)〉 ,
3
4 7→ 〈[y := z] | (x 7→ 1,y 7→ 2,z 7→ 0)〉 ,

1 7→ 〈[ε] | (x 7→ 1,y 7→ 0,z 7→ 0)〉 .

⊓⊔

The next two examples describe the semantics of procedures and their calls.

Example 5.2.4.Consider procedure declaration

proc q is x := y .

A run of a procedure always ends with a return step. Therefore[0; 1] is bisected,
the run of the body of the procedure is compressed to interval[0; 1

2 ] while interval
[1

2 ; 1] accommodates the return step. (The entrance step is handledtogether with
the call.)

According to this principle, the execution trace ofq at initial state(x 7→ 1,y 7→
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2,z 7→ 1) is

0 7→ 〈[x := y] | (x 7→ 1,y 7→ 2,z 7→ 1)〉 ,
1
2 7→ 〈[ε] | (x 7→ 2,y 7→ 2,z 7→ 1)〉 ,

1 7→ 〈[] | (x 7→ 2,y 7→ 2,z 7→ 1)〉 .

Note that the return step deletes the component corresponding to the finished pro-
cedure from the program point. ⊓⊔

Example 5.2.5.Consider procedure declaration

proc p is z := x ; (call q ; y := z) .

A call consists of the entrance step (lying in[0; 1
2 ]) and run of the callee (com-

pressed to[1
2 ; 1]). Thereby, all program points of the run of the callee are comple-

mented with the rest of the caller to be executed after the return of the callee.

The execution trace ofp at initial state(x 7→ 1,y 7→ 2,z 7→ 0), provided the
semantics ofq is as in Example 5.2.4, is

0 7→ 〈[z := x ; (call q ; y := z)] | (x 7→ 1,y 7→ 2,z 7→ 0)〉 ,
1
4 7→ 〈[call q ; y := z] | (x 7→ 1,y 7→ 2,z 7→ 1)〉 ,
5

16 7→ 〈[y := z,x := y] | (x 7→ 1,y 7→ 2,z 7→ 1)〉 ,
11
32 7→ 〈[y := z, ε] | (x 7→ 2,y 7→ 2,z 7→ 1)〉 ,
3
8 7→ 〈[y := z] | (x 7→ 2,y 7→ 2,z 7→ 1)〉 ,
1
2 7→ 〈[ε] | (x 7→ 2,y 7→ 1,z 7→ 1)〉 ,

1 7→ 〈[] | (x 7→ 2,y 7→ 1,z 7→ 1)〉 .

Note that the comma between the code fragments in the programpoints is the
separator of list components rather than sequential composition. ⊓⊔

To contrast the nature of fractional semantics to that of standard and transfinite
trace semantics, one may call fractional tracesdeveloping inwardwhile the traces
of standard and transfinite semantics aredeveloping outward. A fractional seman-
tics of a non-base syntactic construct is an operation whichrearranges and joins
the traces of all child statements to the same space occupiedby each of these
traces. For looping constructs like while-loop and recursion, first such an opera-
tion is defined and then a fixpoint of this operation is found.

No example so far involved infinity. If infinity arises due to while-loops only,
there exist fractional semantics of kind defined in [11] thatcopy transfinite trace
semantics. The set of indices from[0; 1] used by a trace of such fractional seman-
tics can be represented as the image of an order-preserving mapping of some set
of ordinals into[0; 1].
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Example 5.2.6.The components of the execution trace ofwhile true do ε
are numbered by ordinals0, 1, 2, 3, . . . and ω in transfinite semantics and by
0, 1

2 ,
3
4 ,

7
8 , . . . and1 in the fractional semantics under consideration. The latter set

is depicted on the upper axis in the figure below. The components of double infi-
nite loopwhile true do while true do ε are indexed by ordinals from
0 to ω

2 in transfinite semantics and by rational numbers shown on thelower axis
in the fractional semantics.

0 1

⊓⊔

To handle recursion similarly, unloading infinitely deep recursion must be en-
abled. This involves chains with no least element and this isbecause transfinite
semantics do not qualify. We bring two examples of infinite recursion in the case
of which fractional semantics of our kind exists.

Example 5.2.7.The simplest example is obtained by declaration

proc p() is call p() .

The components of the execution trace ofp are indexed by the rationals shown in
the following picture:

0 1

Two infinite sequences — one ascending and another descending — are both con-
verging to1

3 . ⊓⊔

Example 5.2.8.Consider the procedure declaration

proc q() is (call q() ; call q()) .

The set of indices used by the execution trace ofq is the limit of the following
step-by-step process:

0 1

Each step adds twice more points than the previous since the number of uninter-
preted calls doubles every level.

The limit set forms a fractal structure. A rational number between0 and1 belongs
to it iff its octal representation is finite and each its digitafter octal point is either
1 or 3 except for the last one which can be also2 or 4. The set of all possible limits
of converging sequences of rationals in this set is uncountable. ⊓⊔
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Example 5.2.8 shows that transfinite computations in the case of while-loop are
analogues to fractal computations in the case of recursion.

In [11], we gave also example programs having no fractional semantics satisfying
the definition in [11]. The programs in Examples 5.2.7 and 5.2.8 are trivial because
the variable state does not change. In general, we have to show the values of
variables at each point of the computation possibly forminga fractal structure.
This is the main difficulty in defining an appropriate fractional semantics.

In programming theory, usually an operation is calledlazy if it not necessarily
leads to the error (a runtime error or nontermination) in which the evaluation of
its arguments alone would result. Transfinite semantics is lazy in the sense that it
enables overcoming looping computations: a transfinite semantics whose subcom-
putation is looping can be properly finished itself. The sameapplies to fractional
semantics studied above. In the light of this, it is not really surprising that it is pos-
sible to implement fractional semantics in a lazy functional language like Haskell
by just translating the mathematical definition directly tothe language syntax and,
in some cases, it is able to outpute proper results even for computation points oc-
curring after looping parts or inside a fractal structure.

5.3 Triploids

In Subsect. 3.2, operatorsdrop, take and alsomap, filter were defined for trans-
finite lists (for finite lists and streams, analogous operators with the same names
are widely used in functional programming). The reader could notice from Lem-
mas 3.2.3 and 3.2.5 that operator pairs(drop, take) and(map,filter) possess very
similar properties.

By making a few slight changes in definitions, we can make these pairs really
instances of one algebraic structure type such that the similar properties become
special cases of the axioms of it.

Firstly, according to the definition ofdrop and take given in Subsect. 3.2, both
drop o l andtake o l equal⊥whenevero > |l|; change this to returning the empty
list nil and the whole listl, respectively. (This makes the behaviour ofdrop and
take analogous to the behaviour of the namesake functions in the functional pro-
gramming language Haskell.) This change could be implemented also in the the-
ory of this thesis without having to change the main results.

Secondly, restrict operatormap to type(A → A) → (TListA → TListA), i.e.
the newmap can not be applied to functions whose domain and codomain differ.

The desired type of algebraic structures is given by Definition 5.3.1.
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Definition 5.3.1. Call triploid any3-sorted structure

((A; ·, 1), (B; +, 0), (C; c, I); #,F,G)

that satisfies all the following:

1. (A; ·, 1), (B; +, 0), (C; c, I) are monoids;

2. # : A×B → B is an action of monoid(A; ·, 1) onB;

3. F : (A; ·, 1)→ (C; c, I) andG : (B; +, 0)→ (C; c, I) are monoid homomor-
phisms;

4. 0 is the zero of #, i.e.,

∀a ∈ A (a # 0 = 0) ;

5. # distributes over+, i.e.,

∀a ∈ A, b1, b2 ∈ B (a # (b1 + b2) = (a # b1) + (a # b2)) ;

6. + is both commutative and idempotent, i.e.,(B; +, 0) is actually a semilat-
tice with the least element0;

7. the following “quasi-commutativity” holds:

∀a ∈ A, b ∈ B (F(a) c G(b) = G(a # b) c F(a)) .

The word “triploid” is a simple derivation from “monoid” in the light of any
triploid consisting of three monoids.

A preliminary glance to the triploid axioms indicates that there is a close rela-
tion between triploids and vector spaces. Monoid(A; ·, 1) plays the role of the
structure of scalars, semilattice(B; +, 0) plays the role of the structure of vectors,
# plays the role of multiplication of vectors by scalars. In vector spaces, scalars
form a field and vectors form an Abelian group. The requirements about # are
precisely the requirements about multiplication by scalars in vector spaces which
can be formulated in terms of operations available in triploids. In addition, triploid
has one more monoid(C; c, I) within which both scalars and vectors can be in-
terpreted viaF andG, respectively, and which satisfies the “quasi-commutativity”
property.

Let∝ be a fixed selfish ordinal. Consider operatorsdrop, take which are defined
as suggeste above and such that

drop ∈ O∝ → TListA→ TListA ,

take ∈ O∝′ → TListA→ TListA .
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In particular, one can take∝ components from a transfinite list but dropping that
many elements is precluded.

Then

(
(O∝; +, 0)

,
(O∝′ ; min,∝)

,
(TListA→ TListA; ;, id)

;

+
,

drop
,

take
)

is a triploid. Both scalars and vectors are ordinal numbers.At place of both mul-
tiplications, there is ordinal addition; at place of vectoraddition, there is binary
minimum operator. Unit scalar is0, null vector is the upper limit∝. Operators
drop andtake are the interpreting mappings of scalars and vectors, respectively.

Similarly, if map andfilter are defined as in Subsect. 3.2 together with the re-
striction onmap suggested above then

(
(A→ A; ;, id)

,
(A→ T; ⋋pq.⋋a. p(a) ∧ q(a),⋋a. tt)

,
(TListA→ TListA; ;, id)

;

;
,

map
,

filter
)

is a triploid. This time, scalars are transformations ofA and vectors are predicates
onA. At place of both multiplications, there is function composition; at place of
vector addition, there is conjunction of predicates. Unit scalar is the identity, null
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vector is the tautology. The interpreting mappings of scalars and vectors aremap
andfilter, respectively.

In both triploids, the monoid in which the scalars and vectors were interpreted
was the same, namely the monoid of all transformations of transfinite lists.

5.4 Related Work

Transfinite semantics have been studied first for functionalprogramming, see
Kennaway et al. [7].

A fundamental theoretical study of program slicing in the context of standard se-
mantics has been done by Reps and Yang [14]. They prove that the sequence of
values computed by any atomic statement of the slice during its run coincides with
the sequence of values computed by the corresponding statement of the original
program during its run whenever the initial states are equaland the original pro-
gram terminates. They prove it by induction on the structureof the program. They
obtain also a result they call “Feasibility Lemma” which states that slicing oper-
ation on control flow graphs can always be reflected as slicingof corresponding
programs.

Besides transfinite semantics introduced by Giacobazzi andMastroeni [5], there
are some more approaches to handle semantic anomaly (see Reps and Turnidge
[13], Danicic et al. [4]).

It is worth to note that we define the limit state into which thecomputation falls
after an infinite number of steps differently from [5]; theirtreatment could be
achieved by replacings′ with s in our definition ofψ in Sect. 4.1. In other words,
the limit state of [5] depends on all states observed during the infinite computa-
tion while our limit state depends only on the states observed at the starting point
of the loop which causes the divergence. Therefore, their semantics is not com-
pletely appropriate for describing program slicing (see Example 4.1.2). Thelazy
semanticsof Danicic et al. [4] does not have this problem as the body of aloop is
an undivided unit in the definition of the semantics of loops.

A predecessor of our Theorem 4.3.8 was proven in [5] for a fixedstructured lan-
guage.

A farther aim of [5] besides overcoming semantic anomaly is to provide a de-
notational semanticsD with an order relation⊑ on the corresponding semantic
domain which would reflect the relation “being slice of” in the following sence:
if S̃ is a slice ofS then alwaysD(S̃) ⊑ D(S). Unfortunately, the main theorem of
this part (Theorem 6.4) of that paper is incorrect.

The wrong result is caused by making the assumption in the proof that all the
variables of the slice have the same values at the end of execution of the slice as
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they have at the end of execution of the original program on the same initial state.
This does not hold in general.

Example 5.4.1.The right-hand program is a slice of the left-hand program w.r.t.
criterion {(4,x)}. Note that this slice is to no extent exotic; it can be obtained
using standard slicing algorithms, in particular via reachability in the data and
control dependence graph as described in [5] and also in Sect. 4.8 of this thesis.

0i := 0 ;
1x := i ;
2i := 1 ;
3x := x + 1 ;
4

−→

0i := 0 ;
1x := i ;

3x := x + 1 ;
4

Variablei occurs in the slice; but at the end of execution of the slice,i has value
0 while, at the end of execution of the original program, it hasvalue1. ⊓⊔

The authors refer to Venkatesh [19] and Reps and Yang [14] as the sources of this
assumption but it seems to be a misinterpretation of the results of these papers.

5.5 Conclusion of the Thesis and Suggestions of Further
Work

In this thesis, we presented a proof of correctness of standard program slicing
methods w.r.t. a class of transfinite semantics. Using transfinite semantics allows
to omit assumptions about termination. The ground idea of our proof is to repre-
sent slicing as a composition of two transformations: the first removes the effect of
irrelevant statements to data flow but maintains the controlstructure and the sec-
ond simplifies the control structure by removing the statements with no influence
to data-flow. The first transformation can produce nonterminating programs from
terminating ones which implies that such kind of proof wouldnot be possible in
the case of standard semantics even for terminating programs.

The semantic correctness results of both transformations were proven for control
flow graphs. This choice guarantees independence from syntactic details. In prin-
ciple, the results can be even applied to languages with unstructured control flow.
However, all the assumptions about the nature of the flow graphs and semantics
made in our theorems were chosen so that they would hold in thecase of simple
structured control flow. Hence the results hold for unstructured control flow as far
as it behaves like structured control flow to certain extent.We did not investigate
the possible practical applications of our theory to unstructured control flow cases.
This might be one direction of further work.
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Another important limit of our theory is the exclusion of recursion. We made a
step towards generalizing transfinite semantics to involverecursion in [11] by in-
troducing fractional semantics. A brief introduction to this approach is provided
also in Subsect. 5.2 of this thesis. This preliminary work shows that a natural gen-
eralization of transfinite trace semantics to recursive procedures would give rise
to fractal computations. Finding out to which extent fractional semantics could be
used for recursive programs, or finding a semantics appropriate for formalizing
slicing of recursive programs, are also possible directions of future work.

There is one more concern about transfinite semantics: branching according to
an ambiguous value. All examples of transfinite semantics defined so far involve
ambiguous values which are aquired by variables in the first state after an endless
computation where their value did not stabilize. A branching predicate may thus
evaluate to the ambiguous value. Which branch should be chosen in this situation?
Our theory holds if the ambiguous value is treated equivalently to false (or equiva-
lently to true). There are other reasonable approaches likemerging both branches.
The lazy denotational semantics by Danicic et al. [4] is an instance of this ap-
proach. Merging branches means that both branches are run independently and,
when both have finished, the result states are merged (this isvery different from
both concurrent execution where two threads may interact already during their
run and non-determinism where no merging of different choices are performed).
Defining such trace semantics could be somewhat problematic.
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ITERATIIVSELT DEFINEERITUD TRANSFINIITSED
JÄLITUSSEMANTIKAD JA

PROGRAMMISLITSEERIMINE NENDE SUHTES

Programmislitseerimine on niisugune programmide teisendamine, kus antud pro-
grammi järgi konstrueeritakse sliits, st tema elementaarlausetest koosnev (loode-
tavasti) väiksem ja rutem töötav programm, mis teatud muutujate väärtusi teatud
punktides arvutab samamoodi kui originaalprogramm. Programmislitseerimine
äratas arvutiteadlaste tähelepanu üle 20 aasta tagasi, kuimõisteti, et see tehnika
on kasulik programmide silumisel. Katsetega tehti isegi kindlaks, et vilunud pro-
grammeerijad konstrueerivad programmivigade otsimisel oma peas sliitse. Hiljem
on slitseerimisele leitud muidki rakendusi tarkvaratehnikas.

Algoritmide leidmine programmide automaatseks slitseerimiseks on üldjoontes
lihtne (keeruliseks võivad asja teha konkreetse programmeerimiskeele keeruka-
mad erisused), kuid juba ammu märgati, et nende algoritmidekorrektsuse tões-
tamine takerdub nn semantilise anomaalia taha, mis ilmneb juhul, kui originaal-
programm töötab lõpmatult, kuid tänu lõpmatu tsükli väljaslitseerimisele lõpetab
sliits töö lõpliku ajaga ja jõuab seetõttu koodis kaugemalekui originaalprogramm.
Tegemist on põhimõttelise probleemiga, kuna teatavasti ontsükli termineeruvuse
kindlakstegemine algoritmiliselt mittelahenduv.

On välja pakutud mitmeid lahendusvariante semantilisest anomaaliast lahtisaami-
seks. Üks neist on transfiniitsete semantikate kasutamine.Transfiniitne semantika
on semantika, mille järgi programmi lõpmatu töö järel töötab programm mingist
kindlaksmääratud piirseisundist edasi, täites sellele tsüklile oma koodis järgnevaid
käske. Programmi täitmise mudel selles semantikas on algseisundist sõltuv trans-
finiitne seisundite jada.

Käesoleva doktoritöö üheks tulemuseks on väljaarendatud transfiniitsete seman-
tikate matemaatiline alusteooria. Uuritakse lähemalt transfiniitset iteratsiooni, mis
on erijuht üldisest tuntud transfiniitsest rekursioonist.Defineeritakse mitu varianti
transfiniitsest koorekursioonist, mis on analoogid tuntudlistikoorekursioonile, uu-
ritakse seoseid nende vahel ja seoseid transfiniitse iteratsiooni ja transfiniitse koo-
rekursiooni vahel. See osa on autori poolt publitseeritud artiklites [9, 10] (siin ja
edaspidi antakse kirjandusviited doktoritöö allikanimekirja järgi lk 109).

Doktoritöö peamiseks tulemuseks on kahe andmevooanalüüsil põhineva slitseeri-
misalgoritmi korrektsuse tõestamine teatavate transfiniitsete semantikate suhtes.
Selleks on välja arendatud eraldi matemaatiline alusteooria, milles neid tulemusi
sõnastada ja tõestada. See osa on osaliselt publitseeritudartiklis [10], ülejäänud
osas aga veel ilmumata (protsess on käimas).

Lähenemise üldideeks on vaade slitseerimisele kui kahest etapist koosnevale prot-
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sessile. Esimesel etapil asendatakse elementaarlaused, mis tuleks välja slitseerida,
tühjade lausetega, jättes nii juhtvoograafi isomorfismi täpsuseni puutumata. Teisel
etapil eemaldatakse esimesel sissetoodud laused, jättes puutumata andmevoo. Esi-
mese etapi teisendus on töös vaadeldud üldisemalt, kus asenduslaused pole tingi-
mata tühjad, vaid võivad olla suvalised sellised laused, mis ei kirjuta üle rohkem
muutujaid kui asendatav lause. Mõlema etapi semantiline korrektsus on analüüsi-
tud eraldi. Esimene teisendus võib termineeruvast programmist teha mittetermi-
neeruva, mis näitab, et standardsete (st mitte transfiniitsete) semantikate suhtes
programmide slitseerimise korrektsuse seda laadi tõestamine ei lähe läbi.

Lisaks on doktoritöös lühidalt käsitletud ka mõnda põhitemaatikaga seonduvat
küsimust. Näiteks on tõestatud nn vähima sliitsi ülesande mittelahenduvus trans-
finiitsete semantikate suhtes (standardse semantika suhtes on vastav tulemus tun-
tud). See osa on publitseeritud artiklis [10]. Samuti esitatakse näidete peal sisse-
juhatus murdsemantikatesse, mis põhineb autori värskeimal publikatsioonil [11].
Autori poolt sisse toodud murdsemantika mõiste on transfiniitse semantika mõiste
üldistus, mis lubab arvutusprotsessi mudelis ka tagurpidilõpmatuid jadasid —
transfiniitse jada puhul on lõpmatus alati ettepoole suunatud. Kui lõpmatu süga-
vusega rekursiooni transfiniitse semantika defineerimine on problemaatiline see-
tõttu, et loomulikul viisil pole võimalik anda piirseisundeid, siis murdsemantika
võimaldab rekursiooni tähendust anda nii, et lõpmata sügavast rekursioonist tul-
lakse välja nagu lõplikustki tasehaaval. Murdsemantikas võib rekursiivse pro-
grammi tähendus olla fraktaalstruktuur. Siiski on murdsemantika veel nii vähe
uuritud, et pole selge, millises ulatuses ta üldse saab ollarekursiivsetel program-
midel rakendatav.
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