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On estimating open position risk on electricity foward market

Abstract:

The aim of the thesis is to study the question sifmeating the risks of electricity
retailers when they offer clients contracts witkefl electricity prices for future periods and
the question of choosing prices for such contractthat the level of risk is acceptable for the
company. In the theoretical part of the masterish@stails of such contracts and derivation of
prices of those contracts under no arbitrage cmmdiare discussed as well as a brief
electricity market description and a few modelsposed for forward price modelling are
given. In the practical part open position risk lgeon in electricity market is explored by
using simulations based on historical data for & prices and various probability
distributions for the number of clients acceptirge toffers, their desired quantities of
electricity and decision making times. In the reshé risk premiums for given risk levels
under various assumptions are found and conclusibost which of the model parameters
are affecting the risk premium most strongly arelena

Keywords: financial mathematics, time series analysis, nsknagement, futures

contracts, forward contracts, electricity market

Avatud positsiooni riski hindamisest “Forward” tlitip i elektrilepingute

muaumisel jaeklientidele.
Luhikokkuvate:

Magistritod eesmargiks on uurida elektrimttgifirmske ning valitud riskitasemele
vastavate hindade leidmist fikseeritud hinnagatdlepingu pakkumisega kliendile mingiks
tulevikuperioodiks. TGO teoreetilises osas antak8evaade erinevatest tulevikuhinna
fikseerimisega seotud lepingutest ning sellisteinigyte teoreetilistest hindadest teatud
lihtsustavatel eeldustel, samuti kirjeldatakse m@aid mudeleid, mida on elektri
tulevikulepingute hindade modelleerimisel kasutafDdd praktilises osas uuritakse mainitud
lepinguga seotud riske arvutisimulatsioonide alBhsutades ajaloolisi andmeid elektri
tulevikulepingute hindade kohta ning mitmesugusgsh#fiosusjaotusi klientide arvu, nende
soovitud elektrienergia koguste ja otsuse vastuws@ks kuluva aja kirjeldamiseks.
Tulemusena leitakse erinevatele riskitasemetel@avad hinnad mitmesugustel eeldustel ning
tehakse kindlaks, millised mudeli parameetrid méyjat neid hindu kdige tugevamini.

Votmesdnad:finantsmatemaatika, aegridade analtiis, riskinafdtisurid, elektriturg
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INTRODUCTION

A rational person producing something wants to b shat when product is ready
there will be someone who will buy it. A rationalnsumer also wants to be sure that for all
products needed there will be someone from whorsetlppoducts can be purchased. Even in
Ancient Greece people wanted to be sure that thérde possibility to purchase products
they were growing. Aristotle was the first who veoabout futures trading. In his trade
description he gave an example of olive grower hisdagreements with local olive-press
owners about trading in future. {7]

Nowadays this type of trading is well-developed #akes its place in futures markets,
which are central financial exchanges where peaple trade standardized contracts for
obtaining the underlying asset in the future fdixad price. However, in futures markets are
some regulations what and how can be traded. Fongbe, not all the customers can trade in
those futures markets which deal with trading imgéa quantities. Therefore various
companies can intermediate this market. Thesenm@giary companies offer to a client a
fixed price for underlying asset/obtaining an agset fixed future date or time period, which
is based on current market price. If a client atxéfp) company makes trading in futures
markets for agreed quantity. However usually cliesninot give an answer in the same day
when an offer has been made — they need some timeohsidering it or just because of
formalities. During this period the price of ther@sponding contracts in the market could
change and, consequently intermediary company e risk. If the price in the market at
the time when client accepts an offer has increasetparing with the day when an offer was
made, it results in loss due to this differencee Wompany can avoid this risk, if it is
measured before and included in the initial prifered. The practical part of these thesis will
be focused on finding this risk premium in eledtyidutures market.

In the first chapter of theoretical part of thigsis two main types of contracts for fixing
the price for a future date, namely, futures anavéod contracts and their differences are
described and the formulas for the prices of thas#racts under no arbitrage condition are
derived. Further the focus will be directed moreebectricity market and a few proposed
models for forward price modelling and risk premiwitl be presented.

Nowadays futures markets and trading with forwaahtacts for electricity have
developed and become a major financial activityhef energy commodity industry. Usually
most of the electricity is delivered on basis afwfard contracts for some fixed time period.

! Article: Futures exchange (access time 15.04.3014.
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However, electricity has non-storable feature, e pricing of risk in forward trading
becomes more complicated.

In practical part electricity market will be expéar focusing on questions:

1) what would be universal, constant over time riséngum, which company should

add to the market price making an offer to a client

2) what would be the risk premium for current markatation;

3) how does risk premium depends on amount of el@gtric

Calculations are based on historical prices whield heen offering to clients for

electricity for some specific time period.



1. FUTURES AND FORWARD CONTRACTS

1.1. General description of futures and forward contracs

Futures contract is an agreement between two pddibuy or sell a stated quantity of a
specified asset with a pre-agreed price (the fetprece) on a specific future date (delivery
date). Futures price is fixed such that enterirgy¢bntract does not cost any money to the
parties of the contract. Futures contracts are lywidged for commodities such as sugar, wool,
gold and financial assets — currencies, bondsk stafices.

There are two largest exchanges on which the fsittwatracts are traded — the Chicago
Board of Trade and the Chicago Mercantile Exchd@)E). The Chicago Board of Trade is
the world’s oldest futures and options exchang®a$ founded in 1848, while the Chicago
Mercantile Exchange (CME) was established in 189&wadays it is focused on trading
several types of financial instruments (interesésaequities, currencies, and commodities)
and also has the largest options and futures asti@pen interest (number of contracts
outstanding) of any futures exchange.

The party which agrees to buy the asset in thedstaontract is said to be “long” and
the party which agrees to sell the asset in futisresalled “short”. To govern positions in
futures contracts specified daily agreement proeediused which is known as marking to
market. Initial deposit of investor is called iaitimargin and it is daily adjusted to reflect the
losses and profits which are related to movemehtbe futures price. For example, if we
consider the party which has a long position (agteduy), when the futures price decreases,
then the margin account is reduced by appropriat@uat of money and the broker has to pay
it to the exchange. Exchange passes this monekletdoiioker of party which has a short
position. Similarly, in case when futures pricergases, the broker from short position party
needs to pay appropriate sum of money to exchandehee broker from long position party
receives it from exchange. Thus the trade is mankedarket at the end of each trading day.
If delivery date is attained, party with a shorspion has to make a delivery to party with a
long position. The price which party with a shoosjtion receives is the futures price at the
time when the last marked to market has been made.

The concept for forward prices is similar, justdirgy is less formal and regulated. The
forward contract is an agreement to buy or selasset at a certain time in the future for a
certain price which is agreed upon current time mamThe buyer (or seller) in a forward
contract acquires a legal obligation to buy (oh)set asset (known as the underlying asset) at

some specific future date (the expiration date) doprice (the forward or delivery price)
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which is fixed today. Party which has long positioihforward contract agrees to buy the
underlying asset on a specified future date foekvery price. Holder of short position of

forward contract agrees to sell the asset on thie $ature date for the same price. At the time
when the forward contract is made, the delivergeris chosen so that the value of this
contract for both sides is zero. However, latewBnd contract value can become positive or
negative. Some features for forward contracts amales to those in futures contracts.

However there are differences, for example, forweotdtracts are not usually traded on
exchange, it is settled only once — at the matwidtte. The party of short position delivers the
asset to the holder of the long position, getting amount of money which is equal to the

delivery price in return. [#][11] [12]

1.2. Main differences between the futures and forward cotracts

Contract specification and delivery

Delivery dates and delivery procedures are stamatdo a limited number of specific
dates per year, at approved location. In realityveley is often not taking place, since it is
usually not the aim of transaction. According td][Just less than 2% are delivered. In
forward contracts the range of instruments is atmodimited, with individual contract
prices. Delivery can take place at any negotiatEtepand date, and it is the goal of
transaction. More than 90% of forward contractseehdapwith delivery.

Prices

In futures contracts the price is the same forpaliticipants, not depending on the
transaction size. Prices are disseminated publ@gh transaction is made with the best price
which is available at that time. In forward contgathe price depends on different factors like
the size of transaction, the credit risk and oth&rading takes place between individual seller
and buyer and prices are not sprpadlicly. There is no confidence that the availghiee is
the best one.

Security deposit and margin

For futures contracts there are specific rules frexghange — for requiring initial
margin and the daily settlement of variation margine daily reassessment of open position
cash payments and delivery procedures for eachaegehis done by a central clearing house.
In forward contracts the amount of money whichgbker gets even if other party breaks the
contract is negotiable, with no adjustment for ylatice variations. There is no separate
clearing house function. If one party defaults nadirket participants take this risk.

2 Article: Futures contracts, Forward contract (asdéme 05.03.2014.)
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Market place and trading hours

Trading with futures contracts is centralized oe thading floor of exchange, with
worldwide communications during the hours which &xed by the exchange. On the
contrary — it depends on agreement between indiduyer and seller, where trading with
forward contract is organized. Trading goes on iagidihe clock over-the-counter world-wide.

Volume and market liquidity

The information about volume of futures contrastéreely available. The liquidity for
futures contracts is very high, what makes it ets\sell the contracts to other market
participants. It is achieved mainly due to stangatibn of contracts. However, the
information about volume of forward contracts ist mpenly available. The liquidity for
forward contracts is limited, because some termsoimtract is specified to the owner of the

contract. [11]

1.3. Forward price

Forward contract is signed at initial date=(0). T denotes delivery date afd—
delivery price. The forward price is the delivemycp at the current time moment for fixed
future dateT which is offered to clients (for which it is polskd to enter new forward contract
at timet without any cost). So at the time when the forwewdtract is entered into it is the
same as delivery price. Usually for different mdiess the forward prices vary. For example,
forward price for 8 months contract is different than that fo® enonths contract. The party
which has long position is obligated to buy an aissalelivery date with spot pri&e, for
delivery priceK. The payoff function from the long position in@ward contract on one unit
of an asset is

X=S—K,

whereX is contingent claim at tim&. And similarly payoff function in case of short

position is
X=K-5S;.

As from both sides it is not needed to pay anythmgnter into the forward contract,

the total gain or loss is the payoff from the caotr There are payoff functions for forward

contracts in case of long position and short pasishown in Figure.16] [7]°

3 Article: Forward contract, Forward price (acces®t08.03.2014.)
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Payoff 4 Payoff 4

Long position Short position
K —delivery price
S;— price of asset at maturity date
Figure 1. Payoffs from Forward Contracts.

If underlying asset is freely tradable and can begiht earlier and stored for later use,
then the delivery price for which it is possibleaater forward contract can be obtained from
the arbitrage principle. Arbitrage principle statbat almost surely (with probability) one
side will get a profit. If arbitrage profit existand it is quite high, more of arbitrage
opportunities will be used, but in this case thefim will fall. As in idealized market
information spreads quickly, arbitrage opportusitiecome evident and more investors want
to use it and get some profit. It results thattaalgie cannot last for a long time. Therefore it is
assumed that arbitrage is not possible.

At first let us consider the case of asset thatlwameld without any storage costs and
which does not provide any income (dividends). gebe the spot price of an assEf; be
forward price (at timeé = 0 normally the delivery price set equal to the forvariceK =
For) andr as the risk-free interest rate. Then in no-arbéraase the price of a forward
contract is

For = Spe™™. 1)

Let us show that formula (1) cannot hold in arlg&gacase. Firstly assume tikgt >
Soe”™. Then one can construct an arbitrage strategtim&tt = 0 borrow S, with interest
rater, buy one unit of asset and take short positiom anforward contract with — sell the asset
for Fy r at delivery date. At time = T needs to sell a unit of asset fgr and must repay the
loanS,e™. So this leads to riskless prafif: — Spe™ > 0. But it is contrary to the no-
arbitrage. Secondly, assume thgt < Spe™”. Then the arbitrage strategy is reverse: at time
t = 0 the owner sells one unit of asset fyrand invests this at interest ratéor the time

periodT and takes long position into forward contracttiAtet = T receivesSy,e’”, but need
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to buy an asset fdf,r. Again this leads to a certain prdfife™ — Fy > 0, which is
contrary to the no-arbitrage principle Spe™” — Fyr < 0. If combine both cases of no-
arbitrage principle, get (1] [10] [12]
In general for any time moment equality (1) trarstey
Fip = Se™ ™9, (2)
whereF, r — forward price at time,

S; — price of underlying asset in forward contradiraet.

The equation (2) changes if consider forward catgran security that provides known
cash income. Denote the present value of incomehnnolder receives during the life of the
forward contract in case of risk-free discount tagé. Then under no-arbitrage condition, the
price of forward contract must be

F=(S—-De™ T, €))

To prove that previous formula cannot hold in adge principle, at first, assume
F > (S —De"™ -9, Arbitrage strategy is such: at tinteborrow money, buy the asset and
take short position in forward contract. At matyrgell the asset faf and need to repay the
loan which is(S — I)e™ ™9, assuming that a part of loan is covered by incmkich are
received. Then the profit becomBs- (S — I)e™ ™9, which obviously is positive. And on
the contrary — assunfe< (S — I)e™ =9, At time t sell the asset faf, and invest the money
and go long in forward contract. If we are usingrsiselling, then we have to provide the
owner of the share we sold, if we sell our own tafisen, compared to not selling we are
losing during time intervalt, T] the income that is equivalent k"™~ at timeT, so the
profitis (S — e™ ™9 — F. It follows that (3) no-arbitrage condition.

Considering previous situation with two portfolias,case of known cash income, the
portfolio 1 remains the same, but in the portfdie- one unit of the security plus amount
which comes from loan at a risk-free rate. This msethat the loan can be repaid from the
income of the security, so that at tiffiethe value of the portfolio would be one unit of
security. From previous portfolio 1 value is thenga therefore

f+Ke 70 =5—1]

As forward priceF is the same as delivery prigeinitially and it is chosen so that the
value of forward contract is zero. Thus (3).

Let us now consider forward contract in a secuntyat provides a known dividend
yield, this means that the income which is expre@ssepercentage form the security price is

known. Assume that the dividend yield is paid caundiusly with an annual rate Looking at
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previous case with two portfolios, this time politiol remains the same, but as regards
portfolio 2 — buye~9"=% units of underlying asset and reinvest all incomthe security. In
portfolio 2 the amount of security grows, becausead dividends and at the tinie it
reaches one unit of security. So at maturity daté portfolios are worth the same value
f+Ke 7T~ = 54D,
In time t = 0 the forward price is equal with delivery price aset so that value of
forward contract is zero, so
F = Se(— (-1 4)

1.4. The forward price relationship with the futures price

It can be shown that if interest rate is nonstotbasd forward contracts can be traded,
then forward price is equal to futures price. [6hding happen with futures contract as it
would be a forward contract and mark-to-marketleen ignored.

Let us provide a proof that in the case of constatgrest rate and when futures and
forward contracts can be traded for any quantitpssets, the futures and forward prices are
the same. Consider the futures contract which fasts days and the futures price at the end
of day i isF; (0 < i < n). Denote a risk-free rate per day poyand assume that it is constant.
Consider the strategy where at the initial time bogs futures contract fa” assets, at the
end of the first day increases the long positioa at the end of the second day increases
long position tee3” and so on. Hence, at the beginning of dawestor has long position of
e'? and the profit (or loss) from the position(i§ — F;_;)e. This amount will compound at
risk-free rate until the end of dayand becomes

(F; — Fi_)e*e™ 0P = (F, — F;_;)e™.

The value of this strategy at the end of dayg

Z(Fi —Fi_y)e™ = ((F1 —F)+ (F, —F) + -+ (F, — Fn—1))enp = (F, — Fo)e™.

=1

As final future priceF, is equal to asset price at the delivery datethen

n
D (F = Fi)e™ = (S Fy)em™.
i=1

An investment ofF, in a risk-free bond at time = 0 and together with previous
strategy yield at tim&
Foe™ + (Sp — Fy)e™ = Spe™.
Observe that no initial investment is requiredtfor strategy.

11



Denote forward price at the end of initial day@&s In strategy where invest, into
riskless bond and take long positionedf forward contracts, at maturity date amo8pé™”
Is guaranteed. So there are two strategies whithmetl" give the same retu§ye™”. For the
first initial expense$, are required and for the second initial expense&a It follows that
if no-arbitrage principle holds, then futures prased forward price are identical:
Fy = G,.
However, in case when interest rate is not detastiin- it can depend on time, but

cannot be stochastic, futures and forward pricesiat theoretically identical. [6] [10]

1.5. Futures on commodities and the cost of carry

Commodities could be divided in two main typesidrich futures contracts are used:
in the first commodities are held primarily for estment purposes, such as, gold and silver,
in the second, commodities mainly are held for comstion.

In case commoditiesre held solely for investment if the storage casészero, then the
previous case can be considered that underlyingt ggsvide no income (2). Denote the
present value of all the storage costs which odauing the life of a futures contract by If
there exist storage cost, then it can be assumeegetive income and (3) could be used to
describe the relationship betwe&nand S, as resultF = (S + U)e™ ™D, However, ifu
denotes the storage costs which are proportion#thefprice for commodity, then the case
when dividend vyield is known could be used. As afer costs provide a negative dividend
yield, form (3) gefF = Se("+WT-1),

From commodities which primarily are held for comgiion it is possible to get some
benefit from holding the physical commodity, soist logical that those who keep the
commodity do not want to sell it therefore

F<(S+1)e™ ™D, F<Sertw@-o,

The benefit from ownership of commodity is measurgdconvenience yield, which is

denote by such that
FeYT=t) = (S + U)e™ T, FeYT—t) = gor+u)(T—t)

The relationship between futures price and spaepiescribe so-called cost of carry. It
measures the storage costs plus the interest gaistdy carrying the asset, but it should be
less for the income earned on the asset. For sthath pays no dividend, the cost of carry is
r, because there are no storage costs and it doegweoany income. If the cost of carry is
denoted byc, then for and investment assit= Se‘("~® and for a consumption asset

F = Se©T=9 [6][10]
12



2. ELECTRICITY MARKET

2.1.Basic physical and economical aspects of electrigitnarket

The main difference of electricity market and ttexhal commodity market is the fact
that electricity cannot be stored like goods in elmuses in such quantities that can make
impact on market processes. It is impossible tmypce larger amount of electricity at the
moments when price of electricity production is &vand sell it in market when electricity
price is higher. According to the laws of physiasdeelectrical aspects, the quantity of
produced electricity at any moment is balanced watver consumption. Production volume
is determined by customer load size and it is ocowtusly variable. On basis of physics it is
not possible to sell electricity in queue ordemysecustomers as in the store) or make any
other priorities of customers to provide them wellctricity. All grid connected customer
appliances receive electricity simultaneously. Syppd demand balance influences not only
market conditions but also physical processes.cbmepliance of load and producing power
determines the frequency of electrical systemdbatbined with voltage quality characterizes
the overall quality of electricity supply. If loakceeds producing power system frequency is
decreasing, but if producing power is larger thaed| system frequency is rising. Therefore
in electricity power system permanently is mainggirgenerating power capacity that can
ensure power for sudden load rise and there are gwwer stations the main mission of
which is to control system frequency and take snddad. These are processes that customer
and market stakeholders often do not know — theylige invisible part. For covering the
peak loads in Baltic states most commonly hydro groplants are used, but in Europe also
gas power plants are used due to their shortarigbaime — only a few minutes. [13]

Specific feature, characterizing the electricityrked is the fact that the market price of
electricity can vary in large range within a relaty short period. During peak hours, when
electricity consumption is the highest, electrigityce can be several times larger than at the
moments when the consumption is the lowest. Acogrtlb the characteristics of the power
consumption during the day the highest electricapsumption is in the morning peak hours
from 7 till 11 a.m. and in the evening peak hotnem 17 till 23 p.m.. The lowest
consumption is during the night hours. During aryiea highest consumption and electricity
prices are in winter and summer months (especiadlycountries where conditioning
appliances are developed), but the lowest consompiid prices are in autumn and spring. In
spring, especially in Baltic and Scandinavian caast lower prices are because of high water

level in rivers. During these periods comparativeheaper electricity from hydro power
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plants is available. The electricity price is alsdluenced by meteorological forecasts,
planned network outages (maintenance works), auhilaof production units etc. On basis
of meteorological situation varies production indhy power plants and in wind farms.
Planned network maintenance works reduces carpapgcity of network, so during this time
there is limited offer of electricity. Recently skng power carrying capacity limitation on the
border between Estonia and Latvia is a reason why®C "Nord pool spot" market in
Latvian bidding area, that was made in June, 204@recity price is higher than in Estonian
bidding area. [8]

Baltic states joined to electricity market quitéelaMonopolistic system is changed to
free market with electricity trader competitioneEfricity prices are not determined by public
utility regulator but by the market situation. Bléaty market in Europe was opened in the
year 2007 and the first countries joining to therketwere Sweden, Finland and United
Kingdom. According to the strategic document of tBaktates "Baltic Energy Market
Interconnection Plan" (BEMIP) was started openingcpss of electricity markets of Baltic
states. Liberalization of electricity market in i@t was started on July 1, 2007 when from
holding company “Latvenergo” transmission and disiiion system operators were
separated. JSC “Latvenergo” now is electricity &t and trader. Now electricity market in
Latvia is fully opened for legal persons but forueehold market it will be opened on
January 1, 2015. In Latvian electricity market pmisg, 2014 are 10 active electricity trading
companies. In Estonia electricity market is opesigite April 1, 2010 when legal persons
joined, but on January 1, 2013 households joinatteSelectricity trading in the free market
is a relatively new thing, electricity operatorssédo acquire new knowledge and to analyze
the experience acquired in order to operate suftdgsis the market. [9]

In the electricity market electricity producers,wsy transmission and distribution
system operators, customers, traders and elegtagithange are involved. In the electricity
exchange traders and producers submit their off€sstomers evaluate offers in the
electricity market and choose electricity tradesnir which they will purchase electricity.
Power transmission and distribution operators m®whysical network infrastructure to
deliver electricity from producer to customer apptes. Bill for electricity basically consists
of two parts — charge for electricity and for systeervices.

Today electricity exchange participants are prowhfte use current spot market and
forward market and that is why the market has dgrgaidity, more efficient use of electricity
capacity and ensures transparent price formatidirth@ participants of electricity market are

responsible for adequate purchased amount of eiéctand the delivered in system to
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amount of electricity received from transmissiosteyn. That is why one organization that
controls (balances) these values is necessarg. d $pecial power balancing service and
usually it is done by power transmission operd&jr.

As mentioned before electricity cannot be storeckasonable quantity and that is why
it cannot be considered as regular commodity. Ntrage principle is based on buy-and-
hold strategy, but because of electricity non-dilerdeature, it cannot be used for deriving the
price of forward contracts. In literature commortlyo ways of models for price are
described: the price could be modeled in tradiliomay — as stochastic process and derive

prices of assets from equilibrium principle (modgliand balancing demand and supply). [5]
[3]

2.2.Some proposed models for electricity forward price

Next we are going to consider two models for eleityr forward price: the first, model

for forward price dynamics, the second, model &awhard price using equilibrium principle.

2.2.1. Model for electricity forward curve dynamics

There has been suggested a model for price dynami®ordic electricity market
elaborated by N. Audet, P. Heiskanen, J. Keppo, landehvilainen in year 2004. [2]
Consider that forward contracts are traded contislyowithin finite time horizon[0, t].
DenoteF (t, Ty, T,) by forward price for the perioff;, T,] at timet and for this period it is
constant. To get the forward price which would depgist on one maturity date, consider the
following theoretical forward price

F(t,T) = leiLnT F(t,T,T,), Vte[0,T],TE€]l0,1].

It means that the forward price at times for the time periodT, T + dt].
In the paper the model is
dF(t,T) = F(t,T)e *TY¢(T)dB;(t), Vte[0,T],T € [0,1],

wherea is a constanta( > 0), o iIs a bounded and deterministic spot volatility @jrv
and By is a Brownian motion corresponding to tffematurity forward price on the
probability spac€?, F, P) along with the standard filtratiofF;: t € [0, t]}. The correlation
structure of the Brownian motions is given by

dBr(t)dB;(t) = e PIT-T'ldt, VT, T*€[0,1],

wherep is a constantg( > 0). This model implies that logarithmic returns fofward

prices are independent and normally distributed #wad the variance of the changes over

fixed time intervals is increasing as the matudiaye is approaching. [2]
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2.2.2. Model for the electricity forward price using equilibrium principle

Another model to satisfy non-storable property Ih&en suggested model for the
equilibrium electricity forward price by Hendrik Beembinder and Michael L. Lemmon in
year 2002. [3] The model is based on assumptions that mbsharket participants are
interested to sell or buy electricity not to makeaulations, so the price is set by industry
participants. lis assumedhattheall powerproducersandall retailersaresimilarto eachother
and specific forms for their objective functions and operatingcost functions are assumed
Basedon equilibrium principle the following formula for the price of one period ahead

forwardpriceis derived
F=E(Sy) — N (cSgrcov (S, Sy) — cov(SEtL, Sy,
Na*c
whereF — forward price,
Sw — wholesale spot power price at next period,
Sg — fixed retail price,

Np, N — power producers and power retailers,
¢ — constant which is greater than or equal to (W(): :11)

a — variable cost parameter,

NR+Np

N = , Where%1 is the coefficient on the variance of profit iretbbjective functions

of power retailers and producers.
To use this model information about power produaed retailing firms is needed,
however, as we do not have such information thés mfodel would not be practically

analyzed. [3]
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3. ESTIMATING RETAILER’S RISK IN ELECTRICITY MARKET

3.1.General description of the problem

As in electricity futures market there are regalasi for participants, therefore all clients
cannot take part in futures market, so there ampamies which operates as intermediaries
between the futures markets and the clients. Howeeting as intermediary a company takes
the open position risk. Open position is a finahsiatus, where counterparty has an option to
enter into a contract to buy a certain amount etteicity during specified future period for a
fixed price. Open position risk is the problem whercompany offers to client one price
which is related to the electricity futures markeice in the day the offer is made. Client
usually needs more than one day to make the dacibit meanwhile the company cannot
change the offered price. However, during thisqeeprice in the market could change. If the
market price in the day when client makes a decitias decreased compared with the day
when the company has made an offer, it results pnoéit due to this difference, but if the
price has increased, it is accordingly a losslierdcompany. Our aim is to estimate how much
should the offered price be larger than the cumeartket price in order to get the probability
of loss of specified level.

3.2.Assumptions and model components for finding the sk premium

To find the price difference which can be usedha future contracts and to be quite
sure that the company would end up without bigdesge have to find the distribution of the
gains/losses per MWh. Therefore we form a modeltriding outcomes that consists of the
following components:

1. model for forward price process;) for a fixed delivery period;

2. clients arrival — how many clients who eventualtgept the offer arrive in one day,

denoted by(;;

3. quantities of electricity for a client — how muchwih of electricity each of the

clients want to buy, denoted gy, i = 1,2, ..., C;

4. how long each client is considering an offer, deddiyT;,i = 1,2, ..., C;.

In this thesis we assume that all model componardgsindependentt means that it
does not depend on forward prices, how many cli@antsse in one day and how much
electricity they want to buy. And the length of @meeded to clients for making up their
mindsalso does not depend on amount of electricity tlagt to buy and on what happens

with the prices at the market while a client isging.
17



As we do not have data about client arrivals arer tthinking times and electricity
guantities they are going to buy, we just choosemes@easonable distributions for those

random variables. For client arrival in one day ceasider two case®;~1 + X, X~Po(4)
andC;~1+ X, X~Geom (%) where the values of the geometric distributioa assumed to

start from 0. For quantity of MWh of electricity exponential stlibution was chosen
(Ql-~Exp (%)) It was considered that the client thinking tirmarieasured in days affgdhas

discrete uniform distribution with valugs,2,.., T} for some fixed maximal thinking timg.
First examples usg = 3, but later we consider also cages: 10,20,30.

As mentioned before to model the spot price andl faisvard price in electricity market
is a difficult task, because of electricity’s naiwrgble property as well as the fact the price
depends on lots of other factors, such as weattteoih price. We consider two approaches of
forward prices according to risk preferences: thst fs adding a constant premium to current
price, the second is increasing the current pricixed percentage. The first approach:

V,=F, +56,

whereF; — price in the market at tinte

V; — price which have been offered to the client;

§ — constant premium.

The second:

Ve =F(1+7y),

wherey — fixed percentage.

At time t company takes an obligation to sglIMWh electricity for priceV; to clienti
during delivery period, but at time+ T; buys it from the market with pricg ... In the first
case the total money what the company earns/las@sgdthe delivery period based on price

offered at time is

Ct Ct Ct Ct
D QF A =) QiFeer, =8 ) Qi+ D QulFe— Fear).
i=1 i=1 i=1 i=1

If a measure of risk is specified, it is possildecompute the risk premium so that the
risk level is acceptable. In this thesis measueeritk by probability of losing moneys. So if

risk levela is specified, we find premiuma form the condition:
Ct
Q;
P\6— ) —(Fur,—F)>0]=q,
i=1 Q

whereQ = Zf;l Q;andg=1-—a.
18



It means that interpretation of the result will bew much the company should add to
the current market price, so that risk would baateptable level. Two levels gf will be
considered80% and90%.

Denote

Ct
Q;
7= ; 2 (Fevr, — F).

Then we find the risk premiui from the equation
P(Z <6)=aq.
Thus$é is theq —quantile ofZ.
If considering the second case for the offeredepribe problem is different. The total

earnings/losses of the company per one day are:

Ct Ct Ct Ct
Z QiF:(1+y) - z QiFiir, = YZ QiF; + z Qi(Fy — Fryr)-
i=1 i=1 i=1 i=1

Similarly to the previous case we can transformadtedition that risk is less thanto

the condition

Ct

Q; (Frer, — Fi
(S2Es <)o
0 F, 14 q

i=1
whereq =1 —a.
If current timet and model for forward market price is fixed, itedonot matter which
approach to use. Which of the two approaches i€ m@maningful, depends on the model for
forward prices — for some modeisdoes not depend on current time (so is the samalifo

time moments), for other modegtsdoes not depend on time.

3.3.Characteristics of the analyzed data

In practical part historical prices which the comp& had been offering to clients for
electricity for year 2012, 2013 and 2014 will beedssin the role of market prices of

corresponding contracts Figure 2 it can be seen that for years 2012 2018 in general

electricity price decreases, but for year 2014 ihbre stable.
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Figure 2. Electricity prices.

The first plot of Figure 3 shows historical pricéferences for the year 2013. Similar
plots for year 2012 and 2014 data could be founfipgpendix Figure 9 and Figure 10. It can
be seen that price movements are different, sonteeoh are relatively small, but some are
quite large, so one could say that one day priiferdnce is quite random.
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Figure 3. Price differences and their autocorretaplot.

Let us first try to fit an Autoregressive Integmt®oving Average (ARIMA) type
model for forward prices. It is statistical methetlich uses time series data for predicting
future trends. The Figure df prices shows that the process is not stationswytaking a
difference is needed. From the second plot of [ei@eind Appendix 1. Figure 9 and Figure
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10 could be seen that autocorrelations and patitdcorrelations are practically within error
bounds, so we can say that ARIMX,0) models (random walk) may be appropriate:
Fri1 = F + Xe49,

wherex,,, is price difference at time+ 1.

Firstly it will be assumed that all one day histatiprice differences are with the same
distribution and, as autocorrelations are closeeto, then independent identically distributed
(IID) increments will be considered, so in ordersimulate forward prices according to the
model, there are two common approaches. The firsti® to find a suitable distribution for
the changes and generate random variables frondigtigoution. The second approach is to
consider historical differences as possible outefrem sampling of the distribution and for
generating a new value of, a random historical value is chosen. As historidata is
available, in these thesis the second approaclhasen. So at first will be simulated the
simple model for forward price movements with inelegent identically distributed (IID)
increments.

However usually in finance it is often reasonabl@ssume that changes of asset values
are proportional to the current value. It was assumed in model for electricity forward
curve dynamics from theoretical part. This meara th modelling it may be reasonable to
use either returns or to model logarithm of prigelich differences are logarithmic returns).

Return at time is the relative change of the stock prices;ifis a stock price at timg

then return is
St — St-1

St-1
Sometimes logarithmic return is analysed. It iSroef by

Tt =

S
Ri=In(1+r)=1In (S_t>

t—1
If r, is small, then; = R;, so which is used depends on the problem. LoolARIMA
model for logarithm of forward price, then lookiray autocorrelations of differences (or
logarithmic returns) are shown kigure 4for data of yea2013 and for data of yearz012
and2014 in Appendix 1. Figure 11 and Figure 12 and it doo¢ seen that they are close to
zero, so it could be assumed that logarithmic nstuare 1ID. Therefore again the model
ARIMA(0,1,0) can be considered to be a reasonable one. Nas gs the model:
In(Fi11) = In(F) + xp4q © Fryq = Fe*te,

where x;,, 1S 1ID logarithmic returns(xt+1 =In (%)) for the market prices of

t

forward contracts available for retailers.
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Figure 4. Autocorrelation plot from logarithmic wets.

It is easy to see that if the first model is usbe, value of parameter delta (reference)
does not depend on the value of the current marikes F, and if the model for the logarithm
of the market price is used, the computation ofghmeter gamma does not depend on the
current valueF;. If we assume that changes in prices are propaitito the current prices,
then it is reasonable also to ask, what percerth@fcurrent price should be added to it in
order to have risk at acceptable level.

In previous model we assumed that differences ltwansecutive working days
behave similarly but it is definitely possible tliditanges over longer periods (like weekends)
behave differently, so it would not be reasonablede previous assumptions about one day
historical price differences. In Figure 5 one mag $he historical price difference histogram
for working days and weekends for year 2013 dRitize differences for ye&012 data and
year2014 could be seen in Appendix 1. Figure 13 and Figdrand they are similar to those
of Figure 5 for yeaR013.
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Figure 5. Price differences in working days and keeels for year 2013 data.
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Mean value from both samples are around zero, ¥amele, from data of yeat013
mean value from working days is-0.000485 and mean value from weekends is
—0.057066 . With Kolmogorov-Smirnov test it was checked, igtbrical price differences in
working days and weekends has the same distributionejected this hypothesis with
p —value 0.006212 for data of yea2012, 0.001489 — in year2013 and0.0254 — in year
2014. It means that it would be logical to consider twidferent samples and make
calculations depending on which day of the weekntlihas come, then price difference
depends on the fact weather client decision-makimg crosses Friday or not — if it does
then also weekend data are included. For exampglenwelient thinking time is limited to
three days, then if entry day is Monday, priceatdghce consists just from randomly picked
one day increments from working day sample, butnifry day is Wednesday, then price
difference is the sum of two randomly picked valtresn working day sample and one from
weekend day sample. So the model when incremeatsdantical, but the distribution for

weekends is different also will be analyzed.

3.4.Numerical results

Further the results of numerical calculation wél iepresented. In each case considered,

the distribution of losses was estimated by sinmgadutcome of our moddl00000 times.

3.4.1. Simple model for forward price movements with [IDincrements

Computation results are possible loss per shatkeifits are offered the market prices,
so Figure 6 describes the distribution of losses perres if clients are offered the current
market price in case if client arrival per one demg Poisson distribution for ye2013 data.

It can be seen that 90% of d0000 times these losses are less tiias= 0.7046(EUR)
and each colour (from light green to dark oranggresents5% of results. Looking at
numbers (fron¥ to E) we can see that their differences are quite smdifference frony to

B is approximately0.08 of one euro, if comparing with one MWh price (foxaeple
50 (EUR)), it means that for lower confidence level lik&@% and75% even small changes
of the price can have an effect on the level tltatiad price differences (offered price and
market price) would not be larger than estimatechil8r figures for yea2012 and2014 can

be found in Appendix 1. Figure 15 and Figure 16.
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Figure 6.4 = 0.2524; B = 0.3349; C = 0.4253; D = 0.5466; E = 0.7046.
Figure 7 represents risk premium for one MWh irecaben number of clients arrive in

one day follows geometric distribution with paraeret = % 90% of repeated times risk

premium was smaller thaik = 0.7046 (EUR). Therefore if a company under those
assumptions would ask Wy7 EUR more than the market price, then the company cbald
90% confident that they would not end up with big lo&se can compare results of both
Figure 6 and Figure 7 as they are very similar, then probably all déferes are caused by
random effects of simulation. This type of figurfes risk premium using yea2012 and
2014 data could be seen in Appendix 1. Figure 17 agdrei 18 and they also are similar for

clients arrival with Poisson and geometric disttibis.

Density of price difference for MWh (cl. - Geometric distr.)
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Figure 7.A = 0.2535; B =0.3383; C = 0.43; D = 0.55; E =0.7074.
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3.4.2. Logarithmic model for forward prices, short maximal thinking time

Table 1 represents results for all three year detemg regular differences and
logarithmic returns. Risk premium for logarithmeturns is calculate as the product of mean
value of the price and obtained percentage, sohia tase percentages are random.
Comparing results for regular differences and lilganic returns it can be seen that they are
quite close to each other. For example, differebemveen yea2013 90" percentile for
assumptions that clients are coming with Poissatridution is just approximatel@.0005.
There is no information available how the compamyalculating its forward price and as
results under assumptions are very similar, thethenfurther calculations regular differences
will be used.

Table 1. Results for previous calculations.
2012 2013 2014

Regular Log- Regular Log- Regular | Log-
difference| return | difference| return | difference| return
80% of
differences | 0.5559 0.5610 0.4253 0.4326 0.2997 | 0.3036
Poisson less than
distr. 90% of
differences| 0.914 0.9170 0.7046 0.7051 0.5 0.5114
less than
80% of
differences | 0.5535 0.5680 0.4376 0.4307 0.3 0.3053
Geometric| less than
distr. 90% of
differences | 0.9192 0.9346 0.72 0.7097 0.5026 | 0.5164
less than

In Table 2one may see the percentage which should be addbd turrent market price for
finding the price which the company should offerthe clients in order to have a risk at
acceptable leveR0% and10%.

Table 2. Percentage what of the current price shaddled.

2012 2013 2014
Poissond.| Geom.d. Poisson|d. Geom)d. Poisspn&eom. d.
R'%(')Z"e' 0.0122 0.0123 0.0094 0.0094 0.0072 0.0072
R'%(')Z"e' 0.0199 0.0203 0.0154 0.0155 0.0122 0.0122
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In Table 1 it can be seen that comparing resultclient arriving with Poisson and
geometric distribution and results from using regulifference and log-returns they are more
or less close to each other, but the comparatiselteeduring years are a bit different. For
example 90" percentile for assumptions that clients are comitly Poisson distribution are
0.9155, 0.7046 and0.5 for year2012, 2013 and2014, the difference for each next year is
around0.2. Also Figure 8shows the differences, however the views for badgnt arrival
distributions are similar. Using data of the y2@i4 more risk premiums are around zero and
less values arountl comparing with year2012 and2013, however the results using data of
the year2012 there are less values around zero and the hedailsstand the results of year
2013 are in between both others. As it can be seendrFigure 2, this could happen because
the data of yeaR012 fluctuate the most, but the data of y@ari4 are more stable. Also
variation for one day price increments for y2ad 2 data is the larges0.3854737), but for
year2014 data it is0.1181933 and for yea2013 — 0.2344494.

Client arrival - Poisson distr. Client arrival - Geometric distr.
o 4 — 2012 o4 — 2012
_ — 2013 | — 2013
o | — 2014 © | — 2014
(en] o= |
=2 i £ .
< | <
(en ] (en ]
o | o |
= T T T T T < T T T T T
2 1 0 1 2 2 1 0 1 2
Price difference for MWh Price difference for MWh

Figure 8. These are losses per share in the casashf premium ( random variabkefrom
before).

In previous analysis risk premium is determinedfiaed percentile from100000
computed times, however we do not know how randaerttee obtained results, it means that
it is necessary to study the question, how muchotis changes. The influence to results of
increasing number of calculations is studied, & thfferences between results using different
number of calculations are small, then even calitigawvith smaller number of generations

we get accurate results.
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Table 3. Percentiles using different number of @waftons ¢; = 100000,

n, = 1000000).

2012 2013 2014
nl n2 nl n2 nl n2
70% | 0.3388 | 0.3397 | 0.2524 | 0.2559 | 0.17 | 0.1678
75% | 0.4392 | 0.4408 | 0.3349 | 0.3372 | 0.2294 | 0.2279
80% | 0.5559 | 0.5587 | 0.4253 | 0.431 | 0.2997 | 0.2992
85% | 0.7063 | 0.7076 | 0.5466 | 0.55 | 0.3867 | 0.384
90% 0.914 | 0.9149 | 0.7046 | 0.7104 0.5 0.4986

Table 3 represents percentiles of the risk premiums usiifterednt number of
calculations under assumption that client arriwdliofvs Poisson distributiom; = 100000,
n, = 1000000. It could be seen that maximum absolute differebeéween all given

percentiles for data of yed013 is 0.0028, for data of yeaR013 is 0.0058 and for data of
the year2014 is 0.0027, again the largest difference is approximaéed;f EUR cent then it

could be said that if repeating computation ¥60000 times obtained results are sufficiently
accurate.

In Appendix 1. Table 15 one may find results fosec# client arrival follows geometric
distribution. It can be seen that maximum absadilifference from all years is less théu®1.
If compering results from Table 1 between usingsBam and geometric distribution for client
arrival, the difference is relatively small andthe randomness error also is not significant,
then it could be said that client arrival distriloat (Poisson or geometric) does have major

influence of the results.

3.4.3. Model for not identically distributed price increments

Table 4 represents the risk premiums from this rhdtlean be seen that results using
Poisson and geometric distributions for how mangntt are coming in one day are again
quite close. However, examining results for usiagpdrom different years certain variations
can be observed. Average difference between resijtsar2012 and2013 is approximately
0.13 and it remains the same between results of g8aB8 and 2014, however average
difference between risk premiums of y&dr12 and2014 is approximately twice as large —

0.26.
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Table 4.80" percentile of the second task risk premiums.

2012 2013 2014

Entry day _ . :
Poisson d. Geom. d Poisson (d. Geom, d. Poisson@eom. d.

Monday 0.5533 0.5579 0.4155 0.4198 0.2991 0.3002

Tuesday 0.5565 0.5525 0.4112 0.4135 0.2936 0.3
Wednesday 0.5705 0.5710 0.4315 0.4333 0.3063 0.3073
Thursday | 0.5702 0.5700 0.4460 0.45 0.3069 0.3029
Friday 0.5687 0.5792 0.48 0.4862 0.3195 0.3145

In Table 5 one can find tH#0" percentile ofl00000 simulation times. Comparing the
same data as in the previous table, conclusionsiai&&r. There are insignificant differences
between results using Poisson and geometric disiwib for clients arriving and comparing
risk premiums between two yeazZ0(2 and2013 as well a2013 and2014) the average
difference is approximatel§.25 and differences between yedr12 and 2014 also are twice
larger —0.42.

Table 5.90" percentile of second tasks risk premiums.

2012 2013 2014

Entry day _ : :
Poisson d. Geom. d Poisson (d. Geom, d. Poisson@eom. d.

Monday 0.8835 0.8970 0.6729 0.6905 0.4897 0.4974

Tuesday 0.8879 0.8946 0.6754 0.6829 0.48 0.4997
Wednesday 0.9300 0.9417 0.72 0.73 0.5145 0.52

Thursday | 0.9574 0.9577 0.7486 0.7664 0.5277 0.5261
Friday 0.9949 1.0144 0.8048 0.8279 0.55 0.55

In Table 4 and Table 5 it can be observed, thatlisefor Monday and Tuesday as entry
day should be more or less the same, because dulaizns the same principle was used.
Also results for Wednesday, Thursday and Fridagratsy day also are more similar. The
biggest risk premium is for Friday as entry dayisitbecause variance of price difference
between weekend is bigger than that of working dagsit can be seen in Table 6, and
regardless of client thinking time data from weakesample will be included in price

difference.
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Table 6. Variance of historical one day price difece.

2012 2013 2014

Working days | 0.20754 | 0.34812 | 0.10447
Weekend 0.33953 | 0.50555 | 0.16808

From the results can be obtained that the risk pr@nior Monday, Tuesday as entry
day is slightly lower as it is for Wednesday, Thilag or Friday as entry day. This proves that
a client entry day should be taken into accourdinalysis as well as the fact that working
days and weekend increments do not have the sastebdiion. From data with less
fluctuations90% of all 100000 repeated calculations average risk premium wadlentan
approximately0.525 EUR, and from data with wide fluctuatio®9% of all simulations give

results which was smaller than approximat®Bs EUR.

3.4.4. Dependence of risk premium on clients thinking timedistribution

All previous analysis were based on assumption chants are thinking three or less
days, but in the real life clients usually can mabkeir decision for a longer time. In the
following calculation we assume that clients’ thindctime is from1 to T days, all with equal
probability, for several values Gf. Also assumptions about client coming with Poisaod
geometric distributions, client size follows expotal distribution are used. In the first part
of analysis assumption about IID price differentesonsidered. Calculations are based on
three cases — maximum client decision-making teriéj 20 or 30.

Table 7 shows risk premiun@dt" and 90" percentile 0of100000 calculation times.
Under different assumptions if maximum client thimktime is10 days the risk premiums
are less than for maximum20 and30 — days, also results using maximum thinking Z6r
days are less than those 88 days. It is quite logical: the more days clienhkis the bigger
is a risk that the price in the market will changed if market price increases during that
time then company may lose a lot of money, so wdathis situation the company should
add bigger risk premium.

Table 7. Risk premiums depending on maximum clieimking time and 11D price increment

Max. 2012 2013 2014
thinking
time
10d. 0.9267 0.9399 0.7169 0.7238 0.4823 0.4864

20d. 1.2619 1.2802 0.9837 0.9851 0.654 0.6507

Poisson d] Geom.d.| Poissond. Geom.d. Poisson@eom. d.

80%
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30d. | 14989 | 1523 11516 | 11776 | 0754 | 0.7722
10d. 1.496 1.52 11649 | 1.1943 | 0.8155 | 0.83

90% | 20d. | 2-0435 | 2.0987 | 1.6088 1.612 1117 | 1.1308
30d. | 24487 | 25051 | 1.8998 | 19477 | 13205 | 1.3606

In further calculations previous assumptions amdugust for calculation of the price
differences it is taken into account that increraeindm working days and weekends have
different distributions, so analysis depend on dayhe week when client arrives and it is
based on three cases — maximum client decisionfrgdkne is10, 20 or 30 days.

The principle for calculations is the same as & ¢gbhcond model, however in this case
client thinking time is longer. In Table 8, TableaBd Table 10 one may find the results. In
those table90'" percentiles of loss distributions are presented different maximum
thinking time based on the weekday the offer is endde distribution of client arrival and
exercise period. It means that if the risk premiwmder certain assumptions is as in the table,
the company with 90% can be sure that it will bdfident to cover incurred price
differences. Table 6 represents the results usindays as maximum client thinking time, it
could be seen that result differences between y@&k2 and 2013 as well as2013 and
2014) are approximatel9.335.

Table 8. Risk premiums with maximum client thinkiinge 10 days.

Poisson distribution Geometric distribution
Entry day | 2012 2013 2014 2012 2013 2014

Monday | 1.467 | 1.138 | 0.800 | 1.499 1.16 0.832
Tuesday | 1.460 | 1.146 | 0.803 | 1.501 | 1.150 | 0.820
Wednesday 1.458 | 1.159 | 0.810 | 1.481 | 1.169 | 0.828
Thursday | 1.470 | 1.166 | 0.804 | 1.515 | 1.180 | 0.822
Friday 1493 | 1.181 | 0.815 | 1.514 | 1.193 | 0.829

In Table 9 and Table 10 results using maximum tlieimking day 20 and 30 can be
found. Again there is difference between yearsh wiaximum decision making time 20 days
it is approximately 0.45 and with maximum time 3fysl — around 0.53. Compared to result
presented in Table 9, the dependence of risk odadlgghe offer is made is very weak and not
clearly visible in Table 10. It means if for maximwclients thinking time is relatively large
(10, 20, 30), risk premium depends very little upla fact on which day of week the client
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arrives, but if maximum decision making time is #mdike three days, then risk premium is
influenced by entry day.

Table 9. Risk premiums with maximum client thinkimnge 20 days.

Poisson distribution Geometric distribution

Entry day | 2012 2013 2014 2012 2013 2014

Monday | 1.995 | 1.559 | 1.106 | 2.052 | 1.590 | 1.132
Tuesday | 2.014 | 1.559 | 1.097 | 2.023 | 1.604 | 1.114
Wednesday 1.975 | 1.558 | 1.109 | 2.042 | 1.590 | 1.114
Thursday | 2.000 | 1.576 | 1.096 | 2.044 | 1.600 | 1.117
Friday 1993 | 1.577 | 1.091 | 2.038 | 1.591 | 1.122

Table 10. Risk premiums for maximum client thinkiimge 30 days.

Poisson distribution Geometric distribution
Entry day | 2012 2013 2014 2012 2013 2014

Monday | 2.398 | 1.876 | 1.318 | 2.422 | 1912 | 1.353
Tuesday | 2.383 | 1.878 | 1.310 | 2.440 | 1917 | 1.360
Wednesday 2.375 | 1.872 | 1.330 | 2.440 | 1.923 | 1.345
Thursday | 2.389 | 1.889 | 1.321 | 2.433 | 1911 | 1.333
Friday 2.375 | 1.885 | 1.315 | 2.420 | 1.920 | 1.340

If the results between different entry days armpgared one can see that for longer
client decision making time the risk premiums skoloé larger. For example, results of the
year 2012 with Poisson distribution as client aivor entry day Wednesday are the
following: risk premium with maximum client thinkgntime 10 days is 1.458, with maximum
client thinking 20 days it is 1.975 and with 30 dglay 2.375. Difference between maximum
thinking time 10 and 20 is approximately 0.5, beawenaximum thinking time 20 and 30 it is
0.4. Table 11 shows the boundaries for differerafessk premium for various maximum
client thinking days. It could be seen that resoltsiear2012 has the largest differences
depending on maximum thinking time and the closesults for different number of
maximum thinking days are for data of y@ari 4. It also could be explained with fluctuation
from initial data, if the variation from historicpftices is bigger it also appears in results and if

variation is smaller than results varies less dt we
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Table 11. Differences in results between diffeicas.

Poisson distribution Geometric distribution
2012 2013 2014 2012 2013 2014

10d. to | Minimum | 0.500 | 0.395 | 0.276 | 0.522 | 0.398 | 0.287
20d. | Maximum| 0.553 | 0.421 | 0.305 | 0.561 | 0.454 | 0.300

20d. to | Minimum | 0.370 | 0.309 | 0.213 | 0.370 | 0.311 | 0.216
30d. | Maximum| 0.403 | 0.319 | 0.224 | 0.417 | 0.333 | 0.247

3.4.5. Effect of changing expected number of clients’ arual

The aim of following analysis is to find out whethreean number of clients’ arrival per
one day effects the risk premium. The cases wheanrmokent arrival i2,3,5,7 and10 are
analysed. Table 12hows percentiles of the results for data of ther 613 and tables with
results from data of year3012 and 2014 are in Appendix 1. Table 16 and Table 17.
Comparing results from those tables one may seaenthat of them are quite close, however
maximum difference between different average nusbéclients arrival i$.033 for data of
year2013 and for data of the yeaP912 and2014: 0.0405, 0.0183. For data of the year
2012 this maximum difference of the risk Premium is @mmately 4 eurocents, it means
that if change the mean number of client arriviatiould have an effect to the risk premium
which the company should add to the current magrkee.

Table 12. Percentiles of the results using differeean client arrival.

2 clients | 3 clients| 5 clients| 7 clients| 10 clients
70% 0.2564 | 0.2575 | 0.2524 | 0.2561 0.2563
75% 0.3408 0.3383 | 0.3349 | 0.3367 | 0.3356
80% 0.4392 0.4315 | 0.4253 | 0.4281 0.4274
85% 0.5633 0.55 0.5466 | 0.5426 | 0.5459
90% 0.73 0.7101 | 0.7046 0.697 0.7011

3.4.6. Effect of changing given expected order size

Next we want to find out how much client size effethe results of analysis. In

previous analysis clients size follows exponerdiatribution with parametey, which means
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that clients want to buy in averageMWh of electricity. Further is studied how much
changes result of risk premiums if change averdigatcsize to2 MWh,3 MWh,5 MW h,
7 MWh and10 MWh. Table 13represents percentiles froh@0000 computed times of risk
premiums in those cases for data of the Y#dr3 and results from data of yeat812 and
2014 one may find in Appendix 1. Table 18 and Tdl®leThere are no significant differences
between results, maximum difference within datahefyear 2012 is 0.0074, in data of the
year2013 it is 0.0134 and between data of tl2®14 — 0.0075. As the differences are small,
then it could cause by randomness.

Table 13. Percentiles of risk premiums for datagslifferent average client size.

2MWh | 3MWh |5MWh |7MWh |10 MWh
70% 0.2535 | 0.2577 | 0.2524 | 0.2549 0.26
75% 0.3342 | 0.3406 | 0.3349 | 0.3367 | 0.3384
80% 0.43 | 0.4359 | 0.4253 | 0.4324 | 0.434
85% 0.55 | 0.5543 | 0.5466 | 0.5512 | 0.5552
90% 0.7129 | 0.7169 | 0.7046 | 0.7113 | 0.718
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CONCLUSION

The aim of the master thesis was to analyse dama &lectricity market estimating the
risks of the company when it offered to clientstcacts with fixed prices for future periods.
For studying this question historical electricityges which the company had been offering to
clients for year 2012, 2013 and 2014 were usedorBedtarting practical part the theoretical
background was prepared. These thesis includdsitilmes and forward contract descriptions
and comparison, as well as derivation of pricethefcontracts under no arbitrage condition
are included. Information about electricity markeds collected and discovered because of
electricity’s non-storable character, the pricinfjrsk in forward trading become more
complicated, so also a few models for forward pnmedelling were described.

In the master thesis practical part data analysis tbased on ARIMAY1,0) model
(random walk) for market price of wholesale futucesitracts. For comparison a model using
logarithmic return was analyzed. As a result tisi& premiums for given risk levels under
various assumptions were found. The questions wardied, whether the risk premium
depended on maximum client thinking time, averagantcarrival per one day and average
amount of electricity which they wanted to buy. st it was assumed that all price
differences and logarithmic returns were IID.

From the obtained results it was concluded thantlarrival distribution (Poisson or
geometric distribution) did not have an effect, lkeoer the results depend on mean number of
clients arrival for one day. Major differences beém results using regular differences and
logarithmic returns was not observed. If changedekpected number of client size analyzed
results did not show any significant effect fromlit practical part the question that price
differences between weekdays and weekends werefromt the same distribution was
studied. Results showed dependence on client dayryper week showed in case if maximum
client thinking time were three days, however & thaximum client thinking time was larger
— like 10,20 and30 — then results did not have significant differesicBifferences of data
results from different years of all analyzed casese obtained. From the data which
fluctuated the most the results were the largadt,flom data which were more stable the

smallest results were obtained.

As there are some unexpected factors which cofiigeince processes in the future and
as obtained results depend on quite many assursptioen one universal, constant overtime

risk premium could not be concluded. It would betdreto take results as advisory
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information and data source. As the topic is vesnplicated, it is still opened to deeper

analysis.
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Price difference

APPENDIX

1. appendix
Figures and tables
Price difference Autocorrelation plot of price differen:
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A.1. Figure 9. Price difference and their autodatren plot 2012).
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A.l. Figure 10. Price difference and their autoelation plot 2014).
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Autocorrelation plot of price difference
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A.1. Figure 12. Autocorrelation plot from logaritiometurns. 2014).
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A.l. Figure 13. Price differences in working dapsl aveekends for ye&012 data.
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Figure 14. Price differences in working daysl aveekends for ye@014 data.

Density of price difference for MWh (cl. - Poisson distr.)
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Price difference for MWh

A.1. Figure 154 = 0.3388; B = 0.4392; C = 0.5559; D = 0.7063;
E = 0.914 (2012).

Density of price difference for MWh (cl. - Poisson distr.)

70%
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Price difference for MWh

A.l. Figure 164 = 0.17; B = 0.2294; C = 0.2997; D = 0.3867;
E = 0.5 (2014).
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Density of price difference for MWh (cl. - Geometric distr.)
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A.l. Figure 174 = 0.3402; B = 0.4405; C = 0.5535D = 0.7035;

=i

Price difference for MWh

E =0.9192 (2012).

Density of price difference for MWh (cl. - Geometric distr.)
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A.l. Figure 184 = 0.17; B = 0.2312;C = 0.3; D = 0.3929; E = 0.5026 (2014).
A.l. Table 15. Percentiles using different numidezadculations ¢; = 100000,

T

0

T
1

Price difference for MWh

n, = 1000000) (client arrival - geometric distribution).

2012 2013 2014

nl n2 nl n2 nl n2

70% | 0.3402 | 0.3442 | 0.2559 | 0.255 | 0.17 | 0.1698
75% | 0.4405 | 0.4471 | 0.341 | 0.3396 | 0.2312 | 0.23
80% | 0.5535 | 0.5604 | 0.4376 | 0.4336 | 0.3 0.3
85% | 0.7035 | 0.7126 | 0.5588 | 0.555 | 0.3929 | 0.39
90% | 0.9192 | 0.9274 | 0.72 | 0.7206 | 0.5026 | 0.5022
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A.l. Table 16. Percentiles of the results usinted#iht mean client arrivak(12).

2 clients | 3 clients| 5 clients| 7 clients| 10 clients
70% 0.3467 0.341 0.3388 | 0.3393 0.3369
75% 0.4497 0.445 0.4392 | 0.4382 0.4363
80% 0.5659 0.5624 | 0.5559 | 0.5531 0.5499
85% 0.7195 0.7138 | 0.7063 | 0.6974 | 0.6934
90% 0.9306 0.924 0.914 0.8966 | 0.8901

A.l. Table 17. Percentiles of the results usintpd#int mean client arrivak(14).

2 clients | 3 clients| 5 clients| 7 clients| 10 clients
70% 0.1703 0.1698 0.17 0.1644 | 0.1661
75% 0.2315 0.23 0.2294 | 0.2236 | 0.2271
80% 0.3001 0.3 0.2997 | 0.2934 | 0.2972
85% 0.3931 0.3876 | 0.3867 | 0.3786 0.38
90% 0.5062 0.5 0.5 0.4879 | 0.4913

A.l. Table 18. Percentiles of risk premiums foradatt the yeak012
2MWh |3MWh |5MWh |7 MWh | 10 MWh
70% 0.3429 | 0.3386 | 0.3388 | 0.3402 | 0.3359
75% 0.4421 | 0.4382 | 0.4392 | 0.4431 | 0.4388
80% 0.5592 | 0.5566 | 0.5559 | 0.5607 | 0.5578
85% 0.7086 | 0.7046 | 0.7063 | 0.7081 | 0.7105
90% 0.9113 | 0.9108 | 0.914 | 0.9157 | 0.9182

A.l. Table 19. Percentiles of risk premiums foradait the yeak014
2MWh |3MWh |5MWh |7 MWh |10 MWh
70% 0.1688 | 0.1711 0.17 0.1642 | 0.1671
75% 0.23 0.2307 | 0.2294 | 0.2244 | 0.2271

80% 0.3 0.3 0.2997 | 0.296 | 0.2962
85% 0.3855 | 0.3883 | 0.3867 | 0.3808 | 0.3834
90% 0.4978 0.5 0.5 0.4952 | 0.4999
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2. appendix

R code

Initial_data_send <- read.delim("~/Studijas EE/MB@®ical part/Initial_data_send.txt", dec=",")
Initial_data_send

dati_2013 <-Initial_data_send$Price_2013

dati_2012 <-Initial_data_send$Price_2012

dati_2014 <-Initial_data_send$Price_2014
dati_2012=dati_2012[complete.cases(dati_2012)]
dati_2014=dati_2014[complete.cases(dati_2014)]

dati_2013

time<-Initial_data_send$Date_2013
time_2013<-strptime(time, format="%d.%m.%Y", tzGMT")
time_2013=time_2013[complete.cases(time_2013)]
time_2013

timel<-lnitial_data_send$Date 2012
time_2012<-strptime(timel, format="%d.%m.%Y", tGMT")
time_2012=time_2012[complete.cases(time_2012)]

time_ 2012

time2<-Initial_data_send$Date 2014
time_2014<-strptime(time2, format="%d.%m.%Y", tZGMT")
time_2014=time_2014[complete.cases(time_2014)]

time_ 2014

HitHHHHHHHAHTOr year 20 1 2#HHHHHHHHHH .
Dati=dati_2012

D=diff(dati_2012)

D_date=diff(time_2012)

length(D)

mean(Dati)

var(Dati)

HiHHHHHHTOr year 201 3#HHHHHHHHHHH .
Dati=dati_2013

D=diff(dati_2013)

D_date=diff(time_2013)

length(D)

mean(Dati)

var(Dati)

HitHHHHHTOr year 20 LA##HHHHHHHHHH
Dati=dati_2014

D=diff(dati_2014)

D_date=diff(time_2014)

length(D)

mean(Dati)

var(Dati)

HHHHHH R R R R R

par(mfrow=c(1,2))

plot(D, type="I", ylab="Price difference", main="iée difference")
acf(D,main="Autocorrelation plot of price differexicylab="Autocorelations")
layout(1:1)
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HHHHHHHH L. (aSK #HHHHHH .

#write one complect for one day

#clients arrival - exponential distribution withteal/5
#amount of electricity - exponential distributioitiwrate 1/5
#clients thinking time:

#1 day with probability - 33%

#2 days with probability - 33%

#3 days with probability - 33%

#day differences as empirical data - random choserday difference form historical data
n=100000

taskl=function(n,client_size gen,client_thinkingnghff gen,client_arrival_gen,D){
S 1task=rep(NA,n)
Z_1task=rep(NA,n)
for(k in 1:n) {
cl_arrival=client_arrival_gen(1) #how many dlig arrive in one day ("1+" is because this
distribution also gives 0 value, but here we comsahse when clients actually are coming)
cl_amount=client_size_gen(cl_arrival) #how mtiod clients want to buy
#generates sample from historical price
diff=diff_gen(D)
ta_1task=rep(NA,cl_arrival) #vector for prdoss from one clients
for (i in 1:cl_arrival) { #cycle for one dayient arrival
F_diff=0
#generate how long client is thnking - ome br three days (each day has the same probability
1/6)
t=client_thinking_gen(1)
F_diff=sum(diff[1:t])
ta_1ltask[i]=F_diff*cl_amount[i] # amount ofoney which the company get/lose from one client

S 1task[k]=sum(ta_1ltask) #total amount whicimgany get/lose for one day (from one
"complect")
Z_ltask[k]=S_1task[k]/sum(cl_amount) # amouhtcl company should add to current price

}
return(Z_1task)}

client_thinking_gen=function(n){
T=3
p=rep(1/T,T)
return(sample(T,n,replace=T,prob=p))}

client_size_gen=function(n){
return(rexp(n,rate=1/5))}

diff_gen=function(D){
return(sample(D, 3, replace = TRUE, prob = NULL)

#poisson distribution
client_arrival_gen=function(n){
return(1+rpois(n,lambda=4))}

Z_1ltask_po=taskl(n,client_size_gen,client_thinkgem,diff_gen,client_arrival_gen,D)
Z1 70_po<-round(quantile(Z_1task_po,0.70,names ESH, digits = 4)
Z1 75 po<-round(quantile(Z_1task po,0.75,names ESHE,digits = 4)
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Z1 80 po<-round(quantile(Z_1task po,0.80,names ESH,digits = 4)
Z1 85 po<-round(quantile(Z_1task po,0.85,names ESH,digits = 4)
Z1 90_po<-round(quantile(Z_1task_po,0.90,names EFH, digits = 4)
perc_70_po <-Z1_70_po

perc_75 po<-Z1 75 po

perc_80 po <-Z1 80 po

perc_85 po<-Z1_85 po

perc_90 po <-Z1 90 po

plot(density(Z_1task po), lwd=2.5xlim=c(-2.5,2d)="darkblue",main="Density of price difference
for MWh (cl. - Poisson distr.)",xlab="Price differee for MWh",ylab="%",bg="red",font.main=2)
clip(-2.5,perc_70_po,0,30)

polygon(density(Z_1task po), col="lightblue", bordtdarkblue")
clip(perc_70_po,perc_75_po,0,30)

polygon(density(Z_1task_po), col="lightgreen", bere'darkblue™)
clip(perc_75_po,perc_80 po,0,30)

polygon(density(Z_1task po), col="yellow", bordedatkblue")
clip(perc_80_po,perc_85_po,0,30)

polygon(density(Z_1task po), col="orange", bordearkblue")
clip(perc_85_po,perc_90 po,0,30)

polygon(density(Z_1task po), col="darkorange", lmorddarkblue")
clip(perc_90_po,2.5,0,30)

polygon(density(Z 1task po), col="red", border=lddue")
clip(-2,2,-1,30)

text(-0.1,0.45,"70%", font=2)

text(1,0.08,"10%", font=2)

text(0.37,0.40,"5%", font=1)

text(0.47,0.30,"5%", font=1)

text(0.58,0.20,"5%", font=1)

text(0.7,0.10,"5%", font=1)

#Geometric distribution
client_arrival_gen=function(n){
return(1+rgeom(1, prob = 1/5))}

Z_ ltask_geo=taskl(n,client_size_gen,client_thinkgamn,diff _gen,client_arrival_gen,D)
HHHHHHHHE previous assumpations, just change aveedge of client size

client_size_gen=function(n){
return(rexp(n,rate=1/7))

}

Z ltask_po_size7=taskl(n,client_size gen,cliemkthg_gen,diff _gen,client_arrival_gen,D)
Z1 70 _po_size7<-round(quantile(Z_1task po_sized@,0ames = FALSE),digits = 4)
Z1 75 _po_size7<-round(quantile(Z_1task_po_size3,0ames = FALSE),digits = 4)
Z1 80 po_size7<-round(quantile(Z_1task po_sized@,0d8nes = FALSE),digits = 4)
Z1 85 po_size7<-round(quantile(Z_1task po_size3,0d8nes = FALSE),digits = 4)
Z1 90 _po_size7<-round(quantile(Z_1task_po_sized@,0dimes = FALSE),digits = 4)

client_size_gen=function(n){
return(rexp(n,rate=1/3))

}

Z ltask_po_size3=taskl(n,client_size gen,cliemkthg_gen,diff _gen,client_arrival_gen,D)
Z1 70_po_size3<-round(quantile(Z_1task_po_size3,0afmes = FALSE),digits = 4)
Z1 75_po_size3<-round(quantile(Z_1task_po_size3,0afmes = FALSE),digits = 4)
Z1 80 po_size3<-round(quantile(Z_1task po_sizeB,0d8nes = FALSE),digits = 4)
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Z1 85 po_size3<-round(quantile(Z_1task po_sizeB3,0d8nes = FALSE),digits = 4)
Z1 90 po_size3<-round(quantile(Z_1task po_sizeB,0dmes = FALSE),digits = 4)

client_size_gen=function(n){
return(rexp(n,rate=1/2))

}

Z ltask_po_size2=taskl(n,client_size gen,cliemkthg_gen,diff _gen,client_arrival_gen,D)
Z1 70 _po_size2<-round(quantile(Z_1task po_sizeQ,0ames = FALSE),digits = 4)
Z1 75_po_size2<-round(quantile(Z_1task_po_size2,0afmes = FALSE),digits = 4)
Z1 80_po_size2<-round(quantile(Z_1task_po_sizeQ,0d8ines = FALSE),digits = 4)
Z1 85 po_size2<-round(quantile(Z_1task po_sizeR,0d8nes = FALSE),digits = 4)
Z1 90 _po_size2<-round(quantile(Z_1task_po_sizeQ,0dimes = FALSE),digits = 4)

client_size_gen=function(n){
return(rexp(n,rate=1/10))
}

Z ltask _po_sizelO=taskl(n,client_size_gen,cliemkiting_gen,diff_gen,client_arrival_gen,D)
Z1_70_po_sizelO<-round(quantile(Z_1task_po_size10,0ames = FALSE),digits = 4)
Z1_75_po_sizelO<-round(quantile(Z_1task_po_size1D,0ames = FALSE),digits = 4)
Z1 80 po_sizelO<-round(quantile(Z_1task po_size80,0ames = FALSE),digits = 4)
Z1_85_po_sizelO<-round(quantile(Z_1task_po_size8D,0ames = FALSE),digits = 4)
Z1 90_po_sizelO<-round(quantile(Z_1task_po_sized0,0ames = FALSE),digits = 4)

#HHHHHHHHUSING not regular differences, but lobanit returns

taskl_return=function(Dati,n,client_size_gen,clighinking_gen,log_return_gen,client_arrival_gen){
S 1task return=rep(NA,n)
Z_1task_return=rep(NA,n)
for(k in 1:n) {
cl_arrival=client_arrival_gen(1) #how many dlig arrive in one day ("1+" is because this
distributio also gives 0 value, but here we considese when clients actually are coming)
cl_amount=client_size_gen(cl_arrival) #how mtiud clients want to buy
#generates sample from historical price
log_return_sample=log_return_gen(log_return)
ta_1task=rep(NA,cl_arrival) #vector for prdoss from one clients
for (i in 1:cl_arrival) { #cycle for one daydient arrival
F_return=0
#generate how long client is thnking - ome br three days (each day has the same probability
1/6)
t=client_thinking_gen(1)
F_return=sum(log_return_sample[1:t])
ta_1task[i]=(exp(F_return)-1)*cl_amount[i] a#nount of money which the company get/lose from
one client
}
S_1task_return[k]=sum(ta_1ltask) #total amoumttvcompany get/lose for one day (from one
"complect")
Z_1task_return[k]=S_1task_return[k]/sum(cl_am# amount which company should add to
current price

}

return(Z_1task_return)

}

client_thinking_gen=function(n){
T=3
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p=rep(1/T,T)
return(sample(T,n,replace=T,prob=p))

}

client_size_gen=function(n){
return(rexp(n,rate=1/5))

}

log_return=log(Dati[-1]/Dati[-length(Dati)])

log_return

log_return_gen=function(log_return){
return(sample(log_return,3, replace = TRUE, pratbULL) )

}

log_return_gen(log_return)
acf(log_return)

#poisson distribution

client_arrival_gen=function(n){
return(1+rpois(n,lambda=4))

}
result_po=taskl_return(Dati,n,client_size_gen,tlithinking_gen,log_return_gen,client_arrival_gen)

Z1_80_po_return=quantile(result_po,0.80,names =FAL
Z1 90_po_return=quantile(result_po,0.90,names =FAL
mean(Dati)*Z1_90 po_return

#Geometric distribution

client_arrival_gen=function(n){
return(1+rgeom(l, prob = 1/5))
}

result_geo=taskl_return(Dati,n,client_size_gemtliginking_gen,log_return_gen,client_arrival_gen

)

Z1_80_geo_return=quantile(result_geo,0.80,nameAL:SE)
Z1 90_geo_return=quantile(result_geo,0.90,nameAL:SE)
mean(Dati)*Z1 90 geo_return

HHH T2 | tasK AHHHHHEH T
#check if price differences in working days arehvifie same distribution as in weekends

length(D_date)
[1=length(D_date[D_date==1])
I2=length(D_date[D_date==3])
setl=rep(NA,I1)
set2=rep(NA,12)
setl=D[D_date==1]
set2=D[D_date==3]
mean(setl) # -0.0004848485
mean(set2) # -0.05706612
var(setl) # 0.2075353
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var(set2) # 0.3395279

par(mfrow=c(1,2))

hist(setl, breaks=50, xlab="Price differences",maéiVorking days", col="lightgreen")
hist(set2, breaks=50, xlab="Price differences",mmaiVeekends", col="lightgreen")
layout(1:1)

ks.test(setl, set2)

#Two-sample Kolmogorov-Smirnov test
#data: setl and set2

#D = 0.1361, p-value = 0.001489
#alternative hypothesis: two-sided

#write one complect for one day depending on whi client enter

#clients arrival: 1) Poisson distribution distriimn with lambda=5

# 2) Geometric distributon witlopr=1/6

#amount of electricity - exponential distributioitiwrate 1/5

#clients thinking time:

#1 day with probability - 33.33%

#2 days with probability - 33.33%

#3 days with probability - 33.33%

#day differences as empirical data - random choserday difference form historical data, but
consider different distributions for workdays andekends price differences

HHHHHHHHHERUSING Poison distribution for clientvadr
task2=function(n,client_size _gen,client_thinkingnghff gen,client_arrival_gen,setl, set2){
S_2task=rep(NA,n)
Z_ 2task=rep(NA,n)
for(k in 1:n) {
cl_arrival=client_arrival_gen(1) #how many dclig arrive in one day ("1+" is because this
distributio also gives 0 value, but here we considese when clients actually are coming)
cl_amount=client_size_gen(cl_arrival) #how mtleh clients want to buy
#generates sample from historical price
diff1=diff_gen(setl,3) #generates sample flastorical working days differences
diff2=diff_gen(set2,1) #generates sample frastdnical weekend days differences
ta_2task=rep(NA,cl_arrival) #vector for prdoss from one clients
for (i in 1:cl_arrival) { #cycle for one daydient arrival
F_diff=0
#generate how long client is thnking - ome br three days (each day has the same probability
1/6)
t=client_thinking_gen(1)
F_diff=F_diff_gen(diff1,diff2,t)
ta_2task[i]=F_diff*cl_amount[i] # amount ofoney which the company get/lose from one client
}
S_2task[k]=sum(ta_2task) #total amount whicimgany get/lose for one day (from one
"complect")
Z_2task[K]=S_2task[k]/sum(cl_amount) # amouhtck company should add to current price

return(Z_2task)

client_thinking_gen=function(n){
T=3
p=rep(1/T,T)
return(sample(T,n,replace=T,prob=p))
}
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client_size_gen=function(n){
return(rexp(n,rate=1/5))
}
diff_gen=function(D,n){
return(sample(D, n, replace = TRUE, prob = NULL)
}

#poisson distribution

client_arrival_gen=function(n){
return(1+rpois(n,lambda=4))

}
#HHHH#For Monday
F_diff_gen=function(diff1,diff2,t){
return(sum(diff1[1:t]) )
}
Z_2task_po_lday=task2(n,client_size _gen,clientkthq gen,diff_gen,client_arrival_gen,setl, set2)
Z1 2task 80 po_lday=quantile(Z_2task po_1day,0a8fes = FALSE)
Z1 2task 90 po_lday=quantile(Z_2task po_1day,0a@fes = FALSE)
#HHH#For Tuesday
F_diff_gen=function(diff1,diff2,t){
return(sum(diff1[1:t]) )
}
Z_2task_po_2day=task2(n,client_size_gen,clientkthqy gen,diff_gen,client_arrival_gen,setl, set2)
Z1 2task 80 po_2day=quantile(Z_2task po_2day,0a8fes = FALSE)
Z1 2task 90 po_2day=quantile(Z_2task po_2day,(a@fes = FALSE)
#HHHH#For Wednesday
F_diff_gen=function(diff1,diff2,t){
if (t<3) {
F_diff_g=sum(diff1[1:t])
lelse {F_diff_g=(sum(diff1)+diff2)}
return(F_diff_g)
}
Z_2task_po_3day=task2(n,client_size_gen,clientkthqy gen,diff_gen,client_arrival_gen,setl, set2)
Z1 2task 80 po_3day=quantile(Z_2task po_3day,(a8fes = FALSE)
Z1 2task 90 po_3day=quantile(Z_2task po_3day,(a@fes = FALSE)
#HHHHFor Thursday
F_diff_gen=function(diff1,diff2,t){
if (t==1) {
F_diff_g=diff1[1]
telse if (t==2){
F_diff_g=diff1[1]+diff2
} else {F_diff _g=(sum(diff1)+diff2)}
return(F_diff_g)
}
Z_2task_po_4day=task2(n,client_size_gen,clientkth@ gen,diff_gen,client_arrival_gen,setl, set2)
Z1 2task_80_po_4day=quantile(Z_2task_po_4day,0a8fles = FALSE)
Z1 2task_90_po_4day=quantile(Z_2task_po_4day,0a8@es = FALSE)
Z1 2task 80 po_4day
Z1 2task 90 _po_4day
#HHHH#For Friday
F_diff_gen=function(diff1,diff2,t){
if (t==1) {
F_diff_g=diff2
telse if (t==2){
F_diff_g=diff2+diff1[1]
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} else {F_diff_g=(diff2+sum(diff1))}
return(F_diff_g)
}
Z_2task_po_bday=task2(n,client_size_gen,clientkthqy gen,diff_gen,client_arrival_gen,setl, set2)
Z1 2task 80 po_5day=quantile(Z_2task po_5day,(a8fes = FALSE)
Z1 2task 90 po_5day=quantile(Z_2task po_5day,(a@fes = FALSE)

HiHHHH A USING geometric distribution for cliamtval
client_arrival_gen=function(n){
return(1+rgeom(1, prob = 1/5))
}
#HHHHEFor Monday
F_diff_gen=function(diff1,diff2,t){
return(sum(diff1[1:t]) )
}
Z 2task_geo_lday=task2(n,client_size gen,clientkiihg_gen,diff _gen,client_arrival_gen,setl,
set2)
Z1 2task 80 _geo_lday=quantile(Z_2task geo ldayraB@s = FALSE)
Z1 2task 90 geo_lday=quantile(Z_2task geo ldayra®@s = FALSE)
#HHH#For Tuesday
F_diff_gen=function(diff1,diff2,t){
return(sum(diff1[1:t]) )
}
Z_2task_geo_2day=task2(n,client_size_gen,clierikihg_gen,diff_gen,client_arrival_gen,set1,
set2)
Z1 2task 80 _geo_2day=quantile(Z_2task geo 2dayraB@s = FALSE)
Z1 2task 90_geo_2day=quantile(Z_2task_geo_2dayraf@s = FALSE)
#HHH#HFor Wednesday
F_diff_gen=function(diff1,diff2,t){
if (t<3) {
F_diff_g=sum(diff1[1:t])
telse {F_diff_g=(sum(diff1)+diff2)}
return(F_diff_g)
}
Z 2task_geo_3day=task2(n,client_size gen,clientkithg gen,diff _gen,client_arrival_gen,setl,
set2)
Z1 2task_80_geo_3day=quantile(Z_2task_geo_3dayraB@s = FALSE)
Z1 2task 90_geo_3day=quantile(Z_2task_geo_3dayraf@s = FALSE)
#HHHHFor Thursday
F_diff_gen=function(diff1,diff2,t){
if (t==1) {
F_diff_g=diff1[1]
lelse if (t==2){
F_diff_g=diff1[1]+diff2
} else {F_diff_g=(sum(diff1)+diff2)}
return(F_diff_g)
}
Z_2task_geo_4day=task2(n,client_size gen,clierikihg_gen,diff_gen,client_arrival_gen,set1,
set2)
Z1 2task _80_geo_4day=quantile(Z_2task_geo_4dayraB@s = FALSE)
Z1 2task 90_geo_4day=quantile(Z_2task_geo_4dayraf@s = FALSE)
#HHHFor Friday
F_diff_gen=function(diff1,diff2,t){
if (t==1) {
F_diff_g=diff2
lelse if (t==2){
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F_diff_g=diff2+diff1[1]

} else {F_diff_g=(diff2+sum(diff1))}

return(F_diff_g)
}
Z 2task_geo_ bday=task2(n,client_size gen,clientkithg _gen,diff _gen,client_arrival_gen,set1l,
set2)
Z1 2task_80_geo_5day=quantile(Z_2task_geo_5dayraBes = FALSE)
Z1 2task 90 geo_5day=quantile(Z_2task geo 5dayraf@s = FALSE)

HHHHHHHHHHHHHH 3. (aSK HHHHHHTHHHHHHHE
#previous analysis if longest client thinking timer

HHH
#using 1. task assumptions (lID increments)

task3_1=function(T,n,client_size _gen, client_afrigen, client_thinking_gen){
S 1task=rep(NA,n)
Z_1task=rep(NA,n)
for(k in 1:n) {
cl_arrival=client_arrival_gen(1) #how many dlig arrive in one day ("1+" is because this
distributio also gives 0 value, but here we constdse when clients actually are coming)
cl_amount=client_size_gen(cl_arrival) #how mtiud clients want to buy
diff=sample(D, T, replace = TRUE, prob = NULEgenerates sample from historical differences
ta_1task=rep(NA,cl_arrival) #vector for prdoss from one clients
cl_thinking=client_thinking_gen(T,cl_arrivajgenerate how long client is thinking
for (i in 1:cl_arrival) { #cycle for one daydient arrival
F_diff=0
t=cl_thinking[i]
F_diff=sum(diff[1:t]) # the sum of price tkrences for all client "thinking days"
ta_1task[i]=F_diff*cl_amount[i] # amount ofoney which the company get/lose from one client

S_1ltask[k]=sum(ta_1ltask) #total amount whicimgany get/lose for one day (from one
"complect™)
Z_ltask[Kk]=S_1task[k]/sum(cl_amount) # amouhtcl company should add to current price

}
return(Z_1task)

}
client_thinking_gen=function(T,n){

p=rep(1/T,T)

return(sample(T,n,replace=T,prob=p))
}
client_size_gen=function(n){

return(rexp(n,rate=1/5))
}
#poisson distribution
client_arrival_gen=function(n){

return(1+rpois(n,lambda=4))
}
Z_3task_1 po_10=task3_1(T=10,n,client_size_geentlarrival_gen, client_thinking_gen)
Z1 3task 1 80 po_10<-round(quantile(Z_3task 1 p®.80,names = FALSE),digits = 4)
Z1 3task_1 90 po_10<-round(quantile(Z_3task 1 p®.90,names = FALSE),digits = 4)
Z_3task_1 po_20=task3_1(T=20,n,client_size_geentlarrival_gen, client_thinking_gen)
Z1 3task 1 80 po_20<-round(quantile(Z_3task 1 p®.20,names = FALSE),digits = 4)
Z1 3task 1 90 po_20<-round(quantile(Z_3task 1 p®.20,names = FALSE),digits = 4)

Z_3task_1 po_30=task3_1(T=30,n,client_size_geentlarrival_gen, client_thinking_gen)
Z1 3task 1 80 po_30<-round(quantile(Z_3task 1 p®.80,names = FALSE),digits = 4)
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Z1 3task 1 90 po_30<-round(quantile(Z_3task 1 p®.80,names = FALSE),digits = 4)
#Geometric distribution
client_arrival_gen=function(n){

return(1+rgeom(1, prob = 1/5))
}
Z 3task 1 geo_ 10=task3_1(T=10,n,client_size g@mtclarrival_gen, client_thinking_gen)
Z1 3task_1 80_geo_10<-round(quantile(Z_3task 1 4&6.80,names = FALSE),digits = 4)
Z1 3task 1 90 geo_10<-round(quantile(Z_3task 1 1®0.90,names = FALSE),digits = 4)
Z 3task_1 geo_ 20=task3_1(T=20,n,client_size g@mtclarrival_gen, client_thinking_gen)
Z1 3task_1 80_geo_20<-round(quantile(Z_3task 1 2/®6.80,names = FALSE),digits = 4)
Z1 3task_1 90_geo_20<-round(quantile(Z_3task 1 2/®60.90,names = FALSE),digits = 4)
Z 3task_1 geo_30=task3_1(T=30,n,client_size g@mtclarrival_gen, client_thinking_gen)
Z1 3task_1 80_geo_30<-round(quantile(Z_3task 1 3®60.80,names = FALSE),digits = 4)
Z1 3task_1 90_geo_30<-round(quantile(Z_3task 1 3®0.90,names = FALSE),digits = 4)

HHHHHHH
#using 2. task assumptions (increments are noticddly distributed)

task3_2=function(T,n,client_size _gen, client_afrigen, client_thinking_gen,enter_day){
S_1ltask=rep(NA,n)
Z_1task=rep(NA,n)
for(k in 1:n) {
cl_arrival=client_arrival_gen(1) #how many dclig arrive in one day ("1+" is because this
distributio also gives 0 value, but here we constdese when clients actually are coming)
cl_amount=client_size_gen(cl_arrival) #how mtleh clients want to buy
diff=sample(D, T, replace = TRUE, prob = NULEgenerates sample from historical differences
ta_1task=rep(NA,cl_arrival) #vector for prdoss from one clients
cl_thinking=client_thinking_gen(cl_arrival, T§generate how long client is thinking
S=Diff_vector(T,enter_day)
for (i in 1:cl_arrival) { #cycle for one daydient arrival
F_diff=0
t=cl_thinking[i]
F_diff=S[t] # the sum of price differences &ll client "thinking days"
ta_1ltask[i]=F_diff*cl_amount[i] # amount ofoney which the company get/lose from one client

S 1task[k]=sum(ta_1ltask) #total amount whicimgany get/lose for one day (from one
"complect")
Z_1task[k]=S_1task[k]/sum(cl_amount) # amouhtcli company should add to current price

}
return(Z_1task_po)

}
client_size_gen=function(n){
return(rexp(n,rate=1/5))

client_thinking_gen=function(n,T){

p=rep(1/T,T)

return(sample(T,n,replace=T,prob=p))
}
Diff_vector=function(T,enter_day){

diffl=sample(setl, T-floor(T/5), replace = TRUEob = NULL) #generates sample from historical
working days differences

diff2z=sample(set2, ceiling(T/5), replace = TRUEQb = NULL)

S=rep(NA,T) #vector of all posible price diffames

if(enter_day<5){

for (jin 1:TH
if(j<(6-enter_day)){
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S[jl=sum(diff1[1:]])
} else {
S[j]=sum(diff1[1:(j-floor((j+(enter_day-1H))])+sum(diff2[1:floor((j+(enter_day-1))/5)])}}

else if(enter_day==5){
for (jin 1:T)H
ifj==1)
S[jl=sum(diff2[1:floor((j+4)/5)])
} else {
S[j]l=sum(diffl[1:(j-floor((j+4)/5))])+sum(idif2[1:floor((j+4)/5)])}}

}
return(S)}
#poisson distribution

client_arrival_gen=function(n){

return(1+rpois(n,lambda=4))
}
Z 3task 2 po_10_ lday=task3 2(T=10,n,client_size gj@mt_arrival_gen,
client_thinking_gen,enter_day=1)
Z1 3task 2 _80_po_10_lday<-round(quantile(Z_3tagho210_ l1day,0.80,names = FALSE),digits =
4)
Z1 3task 2 90 _po_10_lday<-round(quantile(Z_3tagho210_ l1day,0.90,names = FALSE),digits =
4)
Z 3task 2 po_20 lday=task3 2(T=20,n,client_size_gj@mt_arrival_gen,
client_thinking_gen,enter_day=1)
Z1 3task 2 _80_po_20_lday<-round(quantile(Z_3tagho220 l1day,0.80,names = FALSE),digits =
4)
Z1 3task 2 90 po_ 20 lday<-round(quantile(Z_3tagho220 l1day,0.90,names = FALSE),digits =
4)

Z 3task 2 po_30_lday=task3 2(T=30,n,client_size gj@mt_arrival_gen,
client_thinking_gen,enter_day=1)

Z1 3task _2_80_po_30_lday<-round(quantile(Z_3tagho230_ l1day,0.80,names = FALSE),digits =
4)

Z1 3task 2 90 po_30_lday<-round(quantile(Z_3tagho230 l1day,0.90,names = FALSE),digits =
4)

Z_3task_2_po_10_2day=task3_2(T=10,n,client_size_gjemt_arrival_gen,
client_thinking_gen,enter_day=2)

Z1 3task 2 _80_po_10_2day<-round(quantile(Z_3tagho210_ 2day,0.80,names = FALSE),digits =
4)

Z1 3task 2 90 po_ 10 2day<-round(quantile(Z_3tagho210 2day,0.90,names = FALSE),digits =
4)

Z_3task_2_po_20_2day=task3_2(T=20,n,client_size_gjemt_arrival_gen,
client_thinking_gen,enter_day=2)

Z1 3task 2 80 po_ 20 2day<-round(quantile(Z_3tagho220 2day,0.80,names = FALSE),digits =
4)

Z1 3task 2 90 _po_20_2day<-round(quantile(Z_3tagho220 2day,0.90,names = FALSE),digits =
4)

Z_3task_2_po_30_2day=task3_2(T=30,n,client_size_gjemt_arrival_gen,
client_thinking_gen,enter_day=2)
Z1 3task 2 80 po_30_2day<-round(quantile(Z_3tagho230 2day,0.80,names = FALSE),digits =
4)
Z1 3task 2 90 _po_30_2day<-round(quantile(Z_3tagho 230 2day,0.90,names = FALSE),digits =
4)
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Z 3task 2 po_10_ 3day=task3 2(T=10,n,client_size_gjemt_arrival_gen,
client_thinking_gen,enter_day=3)

Z1 3task 2 _80_po_10_3day<-round(quantile(Z_3tagho210_ 3day,0.80,names = FALSE),digits =
4)

Z1 3task 2 90 po_10_3day<-round(quantile(Z_3tagho210 3day,0.90,names = FALSE),digits =
4)

Z 3task 2 po_20 3day=task3 2(T=20,n,client_size_gjemt_arrival_gen,
client_thinking_gen,enter_day=3)

Z1 3task 2 _80_po_20_3day<-round(quantile(Z_3tagho 220 3day,0.80,names = FALSE),digits =
4)

Z1 3task 2 90 po_ 20 3day<-round(quantile(Z_3tagho220 3day,0.90,names = FALSE),digits =
4)

Z 3task 2 po_30_3day=task3 2(T=30,n,client_size_gj@mt_arrival_gen,
client_thinking_gen,enter_day=3)

Z1 3task _2_80_po_30_3day<-round(quantile(Z_3tagho230_3day,0.80,names = FALSE),digits =
4)

Z1 3task_2 90 po_30_3day<-round(quantile(Z_3tagho230_3day,0.90,names = FALSE),digits =
4)

Z 3task 2 po_10_ 4day=task3 2(T=10,n,client_size_gjemt_arrival_gen,
client_thinking_gen,enter_day=4)

Z1 3task 2 _80_po_10_4day<-round(quantile(Z_3tagho210_4day,0.80,names = FALSE),digits =
4)

Z1 3task 2 90 po_10_4day<-round(quantile(Z_3tagho210 4day,0.90,names = FALSE),digits =
4)

Z_3task_2_po_20_4day=task3_2(T=20,n,client_size_gjemt_arrival_gen,
client_thinking_gen,enter_day=4)

Z1 3task 2 _80_po_20_4day<-round(quantile(Z_3tagho220_4day,0.80,names = FALSE),digits =
4)

Z1 3task 2 90 po 20 4day<-round(quantile(Z_3tagho220 4day,0.90,names = FALSE),digits =
4)

Z 3task 2 po_30_4day=task3 2(T=30,n,client_size_gjemt_arrival_gen,
client_thinking_gen,enter_day=4)

Z1 3task _2_80_po_30_4day<-round(quantile(Z_3tagho230_4day,0.80,names = FALSE),digits =
4)

Z1 3task_2 90 po_30_4day<-round(quantile(Z_3tagho230_4day,0.90,names = FALSE),digits =
4)

Z 3task 2 po_10 5day=task3 2(T=10,n,client_size_gjemt_arrival_gen,
client_thinking_gen,enter_day=5)

Z1 3task 2 _80_po_10_b5day<-round(quantile(Z_3tagho210 5day,0.80,names = FALSE),digits =
4)

Z1 3task 2 90 po_10 5day<-round(quantile(Z_3tagho210 5day,0.90,names = FALSE),digits =
4)

Z_3task_2_po_20_bday=task3_2(T=20,n,client_size_gjemt_arrival_gen,
client_thinking_gen,enter_day=5)

Z1 3task 2 _80_po_20_b5day<-round(quantile(Z_3tagho 220 5day,0.80,names = FALSE),digits =
4)

Z1 3task 2 90 po_ 20 5day<-round(quantile(Z_3tagho220 5day,0.90,names = FALSE),digits =
4)

Z_3task_2_po_30_bday=task3_2(T=30,n,client_size_gjemt_arrival_gen,
client_thinking_gen,enter_day=>5)
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Z1 3task 2 80 po_30_5day<-round(quantile(Z_3tagho230 5day,0.80,names = FALSE),digits =
4)
Z1 3task 2 90 _po_30_b5day<-round(quantile(Z_3tagho 230 5day,0.90,names = FALSE),digits =
4)

#Geometric distribution
client_arrival_gen=function(n){

return(1+rgeom(1, prob = 1/5))
}

Z_3task_2_geo_10_1l1day=task3_2(T=10,n,client_size_drnt_arrival_gen,
client_thinking_gen,enter_day=1)

Z1 3task 2 _80_geo_10_lday<-round(quantile(Z_3taske@ 10 1day,0.80,names = FALSE),digits
= 4)

Z1 3task 2 90 geo 10 lday<-round(quantile(Z_3tagke@ 10 1day,0.90,names = FALSE),digits
= 4)

Z_3task_2_geo_20_1lday=task3_2(T=20,n,client_size_drnt_arrival_gen,
client_thinking_gen,enter_day=1)

Z1 3task 2 80 _geo 20 lday<-round(quantile(Z_3tagke@ 20 1day,0.80,names = FALSE),digits
= 4)

Z1 3task 2 90 _geo_20_lday<-round(quantile(Z_3taske@ 20 _1day,0.90,names = FALSE),digits
= 4)

Z_3task_2_geo_30_1l1day=task3_2(T=30,n,client_size_drnt_arrival_gen,
client_thinking_gen,enter_day=1)

Z1 3task 2 80 _geo_ 30 lday<-round(quantile(Z_3tagke@ 30 1day,0.80,names = FALSE),digits
= 4)

Z1 3task 2 90 _geo_30_lday<-round(quantile(Z_3taske@ 30_1day,0.90,names = FALSE),digits
= 4)

Z_3task_2_geo_10_2day=task3_2(T=10,n,client_size_drnt_arrival_gen,
client_thinking_gen,enter_day=2)

Z1 3task 2 80 _geo_ 10 2day<-round(quantile(Z_3tagke@ 10 2day,0.80,names = FALSE),digits
= 4)

Z1 3task 2 90 geo_ 10 2day<-round(quantile(Z_3tagke@ 10 2day,0.90,names = FALSE),digits
= 4)

Z_3task_2_geo_20_2day=task3_2(T=20,n,client_size_drnt_arrival_gen,
client_thinking_gen,enter_day=2)

Z1 3task 2 80 _geo 20 2day<-round(quantile(Z_3tagke@ 20 2day,0.80,names = FALSE),digits
= 4)

Z1 3task 2 90 _geo_20_2day<-round(quantile(Z_3taske@ 20 2day,0.90,names = FALSE),digits
= 4)

Z 3task 2 geo_ 30 2day=task3_ 2(T=30,n,client_sizg_gent_arrival_gen,
client_thinking_gen,enter_day=2)

Z1 3task 2 80 _geo_ 30 2day<-round(quantile(Z_3tagke@ 30 2day,0.80,names = FALSE),digits
= 4)

Z1 3task 2 90_geo_30_2day<-round(quantile(Z_3taske@ 30_2day,0.90,names = FALSE),digits
= 4)

Z_3task_2_geo_10_3day=task3_2(T=10,n,client_size_drnt_arrival_gen,
client_thinking_gen,enter_day=3)

Z1 3task 2 80 geo_ 10 3day<-round(quantile(Z_3tagke@ 10 3day,0.80,names = FALSE),digits
= 4)

Z1 3task 2 90 _geo_10_3day<-round(quantile(Z_3taske@ 10 _3day,0.90,names = FALSE),digits
= 4)
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Z 3task 2 geo 20 3day=task3_ 2(T=20,n,client_sizg_gent_arrival_gen,
client_thinking_gen,enter_day=3)

Z1 3task 2 80_geo_20_3day<-round(quantile(Z_3taske@ 20_3day,0.80,names = FALSE),digits
= 4)

Z1 3task 2 90 geo 20 3day<-round(quantile(Z_3tagke@ 20 3day,0.90,names = FALSE),digits
= 4)

Z 3task 2 geo_30_3day=task3_ 2(T=30,n,client_sizg_gent_arrival_gen,
client_thinking_gen,enter_day=3)

Z1 3task 2 _80_geo_30_3day<-round(quantile(Z_3taske@ 30_3day,0.80,names = FALSE),digits
= 4)

Z1 3task 2 90 geo_30_3day<-round(quantile(Z_3tagke@ 30 3day,0.90,names = FALSE),digits
= 4)

Z 3task 2 geo 10 4day=task3_ 2(T=10,n,client_sizg_gent_arrival_gen,
client_thinking_gen,enter_day=4)

Z1 3task 2 _80_geo_10_4day<-round(quantile(Z_3taske@ 10_4day,0.80,names = FALSE),digits
= 4)

Z1 3task 2 90 geo 10 4day<-round(quantile(Z_3tagke@ 10 4day,0.90,names = FALSE),digits
= 4)

Z_3task_2_geo_20_4day=task3_2(T=20,n,client_size_drnt_arrival_gen,
client_thinking_gen,enter_day=4)

Z1 3task 2 _80_geo_20_4day<-round(quantile(Z_3taske@ 20_4day,0.80,names = FALSE),digits
= 4)

Z1 3task 2 90 geo 20 4day<-round(quantile(Z_3tagke@ 20 4day,0.90,names = FALSE),digits
= 4)

Z_3task_2_geo_30_4day=task3_2(T=30,n,client_size_drnt_arrival_gen,
client_thinking_gen,enter_day=4)

Z1 3task 2 _80_geo_30_4day<-round(quantile(Z_3taske@ 30_4day,0.80,names = FALSE),digits
= 4)

Z1 3task 2 90 geo_30_4day<-round(quantile(Z_3tagke@ 30 4day,0.90,names = FALSE),digits
= 4)

Z 3task 2 geo 10 b5day=task3 2(T=10,n,client_sizg_gent_arrival_gen,
client_thinking_gen,enter_day=5)

Z1 3task 2 _80_geo_10_b5day<-round(quantile(Z_3taske@ 10 5day,0.80,names = FALSE),digits
= 4)

Z1 3task 2 90 geo_ 10 5day<-round(quantile(Z_3tagke@ 10 5day,0.90,names = FALSE),digits
= 4)

Z_3task_2_geo_20_bday=task3_2(T=20,n,client_size_drnt_arrival_gen,
client_thinking_gen,enter_day=5)

Z1 3task 2 80 _geo 20 5day<-round(quantile(Z_3tagke@ 20 5day,0.80,names = FALSE),digits
= 4)

Z1 3task 2 90 geo 20 5day<-round(quantile(Z_3tagke@ 20 5day,0.90,names = FALSE),digits
= 4)

Z_3task_2_geo_30_bday=task3_2(T=30,n,client_size_drnt_arrival_gen,
client_thinking_gen,enter_day=5)

Z1 3task 2 80_geo_30_b5day<-round(quantile(Z_3taske@ 30_5day,0.80,names = FALSE),digits
= 4)

Z1 3task 2 90 geo_ 30 5day<-round(quantile(Z_3tagke@ 30 5day,0.90,names = FALSE),digits
= 4)

HH R plot for all.
par(mfrow=c(1,2))
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plot(density(task_1 po_2013), xlim=c(-2.5,2.5)nydic(0,1.3),lwd=2.5,col="darkblue",main="Client
arrival - Poisson distr.",xlab="Price difference fdWh",ylab="%",bg="red",font.main=2)
lines(density(task_1_po_2014),lwd=2.5, col="red")
lines(density(task_1_po_2012),lwd=2.5, col="darkgrg
legend("topright”,

c("2012","2013","2014"),

Ity=c(1,1,1),

lwd=c(2,2,2),

bty="n",

col=c("darkgreen"”,'darkblue’,"red" ))
plot(density(task_1_geo_2013), xlim=c(-2.5,2.5yc(0,1.3),lwd=2.5,col="darkblue",main="Client
arrival - Geometric distr." xlab="Price differenfmx MWh",ylab="%",bg="red",font.main=2)
lines(density(task_1_geo_2014),lwd=2.5, col="red")
lines(density(task_1_geo_2012),lwd=2.5, col="daskgr")
legend("topright”,

c("2012","2013","2014"),

Ity=c(1,1,1),

lwd=c(2,2,2),

bty="n",

col=c("darkgreen"”,'darkblue’,"red" ))
layout(1:1)
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