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Chapter 1

INTRODUCTION

1.1 A brief history of Volterra integro-differential
equations

The theory of integral equations has been an active research field for many
years and is based on analysis, function theory, and functional analysis.

An application arises on considering population dynamics involving a
gestation period. Immune response and the heart-lung mechanism pro-
vides examples from medicine. The control of a satellite from an earth-
based control system provides another example. Another application area
is economics.

The theory of integral equations is interesting not only in itself, but its
results are essential for the analysis of numerical methods. Besides existence
and uniqueness statements, the theory concerns, in particular, questions of
regularity and stability.

An integral equation is a functional equation in which the unknown
function appears under one or several integral signs; if, in addition, the
equation contains a derivative of this function we call the equation an
integro-differential equation. In an integral or integro-differential equation
of Volterra type the integrals containing the unknown function are char-
acterized by a variable upper limit of integration. To be more precise, let
I :=[0,T] denote a given closed and bounded interval, with 0 < 7', and set
S:={(t,s): 0<s<t<T}.

The functional equation (for the unknown function y) of the form

y'(t) = F(t,y(t),2()), tel,
with

A(t) = /0 K(t, 5, y(t))ds

is called a first order Volterra integro-differential equation. Here, one usu-
ally looks for a solution which satisfies the initial condition y(0) = yo.



The name ” Volterra integral equation” was first coined by Rumanian
mathematician Traian Lalesco in 1908, seemingly following a suggestion by
his teacher French mathematician Emile Picard. The terminology ”inte-
gral equation of the first (second, third) kind” was first used by German
mathematician David Hilbert in connection with his study of Fredholm
integral equations, while the name ”integral equation” is due to German
mathematician Paul Du Bois-Reymond.

The origins of the quantitative theory of integral equations with variable
(upper) limits of integration go back to the early 19th century. Norwegian
mathematician Niels Hendrik Abel in his works in 1823 and in 1826 consi-
dered the problem of determining the equation of a curve in a vertical plane
such that the time taken by a mass point to slide, under the influence of
gravity, along this curve from a given positive height to the horizontal axis
is equal to a prescribed (monotone) function of the height. He showed that
this problem can be described by a first kind integral equation of the form

/0 (t— 5) " y(s)ds = g(t), t<0, (1.1)

with @ = 1/2, and then he proved that, for any « € (0, 1), the solution of
(1.1) is given by the ”inversion formula”,

y(t) = ca% {/Ot(t - 3)a1g(s)ds} , <0, (1.2)

with ¢, = sin(am) /7 = 1/(I'(a)['(1 — ).

Three years after Abel’s death, in 1832, the problem of inverting (1.1)
was also studied by French mathematician Joseph Liouville (who seems
to have been unaware of Abel’s work), again in a purely formal manner.
The discovery of the inversion formula (1.2) was the starting point for the
systematic development of what is known now as Fractional Calculus.

In 1896 Italian mathematician Vito Volterra published his general the-
ory of the inversion of first kind integral equation. He transformed

/OtIC(t, s)y(s)ds =g(t), teT, ¢(0)=0 (1.3)

into an integral equation of the second kind whose kernel and forcing func-
tions are, respectively,

If K(t, t) does not vanish on I, and if the derivates of K and g are continuous,
then the (unique) solution of (1.3) is given by the ”inversion formula”

y(t) = g(t) + /0 R(t,s)g(s)ds, tel.
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Here, R(t, s) denotes the so-called resolvent kernel of K(t,s); it is defined
in terms of the iterated kernels IC,, (¢, s) of KC(¢, s),

~ t~ ~ ~ ~
RKon(t,s) = / Rt u)l 1 (u,$)du, n>2, Ka(t,s) = K(t,s).
0

Volterra proved that the sequence K,, converges absolutely and uniformly
on S for any kernel K in (1.3).

Even though Volterra’s result was new, his way of attack was not en-
tirely a novel one. In his thesis in 1894, French mathematician Joel Le Roux
had already studied the problem of inverting the ”definite integral” (1.3),
using the same approach. But second kind integral equation with variable
limit of integration occurred already in the work of French mathematician
Joseph Liouville in 1837.

The notion of the iterated kernels and the associated ”Neumann series”
were first used by French mathematician Joseph Caqué in 1864. Genera-
lizing Liouville’s idea, he studied the solution of the (p 4 1)-st order linear
differential equation

P
Y = 3" 45099 + A1),
§=0
by rewriting the equation as a second kind integral equation of Volterra
type with the kernel

p . _ 5\p—J

K(t,s) = Z AJ(S)(t 5') )
= =)

The existence of a solution was then established formally by introducing
the iterated kernels and the corresponding Neumann series. At about the
same time, in 1865, German mathematician August Beer used the same
concepts, still in a purely formal way, in connection with the study of
second kind integral equations with fixed limits of integration which arise
in the analysis of Poisson’s equation in Potential Theory. It was left to
German mathematician Carl Gottfried Neumann to furnish the rigorous
convergence analysis for the series of iterated kernels (associated with a
second kind integral equation of Fredholm type), now named after him.

In another paper in the year of 1896, Volterra extended his idea to linear
integral equation of the first kind with weakly singular kernels. Using the
approach employed by Abel to establish the inversion formula (1.2), he
showed that

/t(t —8) (L, s)y(s)ds =g(t), tel, O0<a<l,
0



can be transformed into a first kind equation with regular kernel, to which
the theory of his first work applies. The remaining two papers of Volterra
from 1896 are concerned with the analysis of integral equation of the third
kind.

The next forty years mainly a consolidation of Volterra’s work took
place. During this time the center stage belonged to the study of Fredholm
integral equations and their implications for the development of Functional
Analysis.

Since 1970 there has been renewed interest in study of qualitative and
asymptotic properties of solutions of Volterra equations.

It is known that the Cauchy problem for ordinary differential equation
is equivalent to a Volterra integral equation (VIE), the first order Volterra
integro-differential equation(VIDE) can be written as VIE and the second
order VIDE as first order VIDE. Thus, all approximate methods for solving
VIDE could be applied to Cauchy problem and to integral equations as well.

The presented brief history of Volterra equations is mainly based on [7].

One of the most natural methods for solving VIE and VIDE is the
standard step-by-step collocation method with polynomial splines. The
collocation method with piecewise polynomials is well studied for different
kind of equations under various assumptions and, as a rule, the convergence
results are positive, see, e.g., [9]. General case of collocation method can
be found in [7] and [20], see also [17].

Discretization methods in practical solving of differential and integral
equations are applicable only if they are stable, which we will mean as the
boundedness of approximate solutions when the number of knots increases.
In general such stability is necessary for convergence and it is also sufficient
in the case of a certain test equation. Convergence theory for collocation
is well developed for polynomial splines without any continuity conditions
in the knots or which are only continuous (see, e.g., [7], [9]). Let us men-
tion that general convergence theorems with two-sided error estimates and
stability analysis for VIDE are established in [26], see also [1]. They use
orthogonal projectors in Hilbert spaces which is not the case for spline
collocation methods.

Closely related problems have been investigated by several authors. The
stability of the numerical solutions obtained when applying very general
Runge Kutta methods to VIE and VIDE with degenerate kernels is ana-
lysed in [12]. The authors show that, under certain assumptions, the nume-
rical solution is bounded; this is the numerical analogue of the boundedness
of exact solution. The given results are generalizations of other results of
the authors of [13] for exact collocation methods applied to this type of
equation. Investigations of stability properties of exact and discretized col-
location methods for VIDE with degenerate kernel is continued in [15].
Some linear stability results for the repeated spline-collocation method ap-
plied to the linear VIDE of first order is obtained in the paper [19]. For the
stability condition introduced in [20] is proved that the repeated colloca-
tion method is stable for any choice of collocation parameters and degree
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of the spline function. Investigation of the convergence and the stability of
collocation method for VIDE with weakly singular kernels can be found in
[11]. Stability properties of reducible linear multistep methods and modi-
fied multilag methods, which are based on the test convolution equation is
investigated in [6].

Using the Lyapunov method for solving VIDE, stability criterias are well
studied. (see, e.g., [14] and [29]). Stability analysis of reducible quadrature
methods for VIDE and necessary conditions for the method to be absolutely
stable for given parameters of a test equation are derived in [10].

The authors of [5] consider the stability properties of certain integral
equation type numerical methods when applied to the certain test equation.
The simplest results are those obtained for a class of methods which may be
derived on applying an appropriate method to a system of integral equations
derived from the integro-differential equation. Results in [5] are similar to
those obtained for integral equations in [4], from which they may be derived,
and they are complementary to or consistent with earlier results of [8].

The first results about stability of the collocation method by polynomial
splines for VIE are given in [21] and the most adequate ones seem to be in
[24]. Investigation in [24] shows that in the case of piecewise polynomials
(without continuity) the collocation method is stable for any order of spline
and any choice of collocation parameters. Special case of smooth splines
is treated in [25]. The most systematic attempt to study the numerical
stability for VIDE seems to be [18]. It should be remarked that the proof
of the main result of [18] (Theorem 2.3) is not correct. In [18] this Theorem
2.3 is also applied to the particular cases and there are obtained stability
conditions. These results are disproved in our work.

The collocation with multiple collocation nodes coinciding with spline
knots for the Cauchy problem of ordinary differential equations is studied in
[23]. In particular, depending on order of the polynomial and multiplicity of
the nodes, it is proved when the method is convergent and when divergent.

In the following we give a brief overview of the work by chapters. The
present work consists of 8 chapters.

In present Chapter 1 we already gave an overview of history of inte-
gral equations. There is a standard reduction of 1st order VIDE to VIE
considering the derivative of the solution as a new unknown solution. This
connection between VIDE and VIE is shown in Section 1.2. There will be
also shown that the certain test equation, which we use in studying the
stability of collocation method, with constant kernel, transforms into an
equation with nonconstant kernel and the results obtained for VIE are not
directly extendable to the 1st order VIDE. Similar phenomena takes place
if we try to reduce the problem of stability for 2nd order VIDE to that for
1st order VIDE.

In Chapter 2 the standard step-by-step spline collocation method is
described.

In Chapter 3 we give a short overview of results containing numerical
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stability conditions of spline collocation method for VIE. In addition, some
auxiliary results from Linear Algebra, which will be used in the sequel, is
given in Section 3.2.

In Chapter 4 we show the connection between stability conditions for
integral and 1st order integro-differential equations, when the splines to be
used are at least continuous. In some cases we get explicit formulae showing
the dependence of the stability on collocation parameters.

In Chapter 5 we investigate the numerical stability of the spline collo-
cation method by piecewise polynomials for 1st order VIDE. In this special
case we will see that there is also dependence on the parameters of a certain
test equation.

Chapter 6 treats the numerical stability of the spline collocation method
for 2nd order VIDE. We also show the connection between stability condi-
tions for 1st order VIDE and the 2nd order VIDE.

Chapter 7 deals with investigations of stability of spline collocation
method with multiple nodes for 1st order VIDE. We consider the collocation
method with only one collocation point per subinterval of the grid, with
given multiplicity.

There is also given some examples in several cases.

In Chapter 8, a series of numerical tests is given to support the theo-
retical results.

1.2 Connection with integral equations
In this section we will show the connection between linear Volterra integro-

differential equations and Volterra integral equations.
Let us consider the linear integro-differential equation in the form

y'(t) = p)y(t) +q(t) +/O K(t,s)y(s)ds, te0,T], (1.4)

with initial condition
y(0) = yo.

Here p,q and K are supposed to be real-valued and continuous on [0, 7]
and S, respectively. Integration of (1.4) yields

y(t) = / p(s)y(s)ds + / g(s)ds + / / K(7, 5)y(s)dsdr + yo,
t€[0,7]. (1.5)

Using the Dirichlet’s formula which states

t T t gt
/ / D(7,8)dsdr = / / O(7,s)drds, (t,s) €S,
0o Jo 0 Js
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provided the integral exists, we may rewrite equation (1.5) as

y(t) = /0 q(s)ds +/0 [p(s) + /T K(r, s)dT] y(s)ds+yo, tel0,T],
W) =90+ [ Qt.olds, e .7 (1.6)
where ¢(t) and Q(t, s) are the functions

t
g(t) = yo + /0 g(s)ds, t€0,T],

and

Q(t, s) = p(s) +/ K(r,s)dr, (t,s)€S.

An alternative to this approach is to consider an integro-differential
equation as a system of two Volterra integral equations of the second kind.
For the linear case (1.4), let

z(s) :==q(s) + /OS K(s,u)y(u)du, se€0,T).

This allows us to rewrite (1.5) in the form

o) =w+ [ pelutsids + [ )+ [ Kt as

t ¢
:y0+/0 p(s)y(s)ds+/0 z(s)ds, te[0,T].

Thus, the equation (1.4) is reduced to the system

(ZEED B <q1£)) + /Ot (ICp(Ej)s) é) (38) ds, te€l0,7).

Example 1. Let us consider the first order VIDE having constant kernel

y'(t) = ay(t) + )\/O y(s)ds + f(t), te€][0,T], (1.7)

with y(0) = yo. Equation (1.7) is called the basis test equation and it was
suggested by Brunner and Lambert in 1974 (see [8]). It has been extensively
used for investigating stability properties of several methods.

13



The transformation which we considered at the beginning of this section
leads now to the equation (1.6), where

ﬂzm+£f@®,tdQﬂ

and

t
Q(t, s) :a—l-/ T =a+Nt—s), (ts)eS.
Thus, equation (1.7) can be rewritten as
t
y(t) =g+ [ (@t Mt = s)u(s)ds, te [0.7]
0

We see that the equation is not any more with a constant kernel, and
later on when we will investigate stability, results obtained for VIE with a
constant kernel are not extendable to the VIDE in form (1.7).

Let us now consider the second order Volterra integro-differential equa-
tion

y'(t) =p()y'(t) + at)y(t) + £(t) +/0 K(t,s)y(s)ds, tel[0,T], (1.8)

y(0) = yo, ¥'(0) = 1

with p, g, f and K to be real-valued and continuous on [0, 7] and S, respec-
tively. Integrating equation (1.8) and using Dirichlet’s formula, we get

z/(t)Z/tp() ()ds+/ d5+/f
///CT, s)dsdr + 1
= [ s+ [ sty
/[ /’CTS ] s)ds +y1, t€0,7]. (1.9)

Assume, in addition, the continuous differentiability of p. Then, using

14



integration by parts in

t

/ p(s)y'(s)ds = p(s) (y(s) + yo) —/ (y(s) +yo) P (s)ds
0 0

0

— p(H)y(t) — p(O)y(0) + (p(t) — p(0))yo — /0 (y(s) + o) p'(5)ds,

we obtain first order VIDE

/0= p(0u) + 90+ [ "ot s)y(s)ds, ¢ € 0.,

9(6) = ~p(OO)+p(0) ~ p(0) w1+ | ' Fls)ds— / ol (s)ds, £ € 0,71,

t
Q(t,s) =q(s) —p(s) +/ K(r,s)dr, (t,s)e€S.

An easier way is to present second order VIDE as a system consisting
of two first order VIDEs. First, transform (1.8) to (1.9). Now taking

2(t) = y/'(¢t), i.e.,

t
o) = [ 2(s)ds + a0
0
and setting

olt) = /0 f(s)ds +y1, te0.T],

Q(t,s) = q(s) +/ K(r,s)dr, (t,s) €S,

equation (1.8) reduces to the system

<ZE8> - (g%) +/0t <Q(?, 5) p(18)> (Zg%) de telhTl (L10)

Example 2. Let us look at the second order VIDE with a constant kernel
t
V'O = ay(®)+ 850+ A [ y(o)ds+ £, te0.T)
0
y(0) =0, ¥'(0) = 11

15



which we will write as a system of two first order VIDEs

given in (1.10), we have

o(t) = /0 F(s)ds+y1, te0.T],

Qt,s) =a+ At—s), (ts) €S,
and the system

()= () [ (o0 D) () e

. Using notations

te€0,7).

As in Example 1, we have got an equation with a nonconstant kernel.

16



Chapter 2

THE SPLINE COLLOCATION
METHOD

2.1  Description of the method

Consider the first order Volterra integro-differential equation

y(t) =f(t,y(t))+/0 K(t,s,y(s))ds, te][0,T], (2.1)

with the initial condition y(0) = yo. Here the functions f: [0,7] x R — IR
and £: S x IR — R (where S = {(t,5): 0 < s <t < T}) with number yg
are supposed to be given.

In order to describe this method, let 0 =ty < t; < ... <ty =T (with
tn, depending on N) be a mesh on the interval [0, 7).

Denote

hy,=t,—th_1,n=1,...,N,
on = (tn—1,tpl,n=1,...,N,
Ay ={t1,...,tn-1}
Let Py, denote the space of polynomials of degree not exceeding k.
Definition 2.1 For given integers m > 1 and d > —1 the space of polyno-

mial spline functions of degree m+d and continuity class d, possessing the
knots Ay, is the set

S% (AN) = {u: un == ttlg, € Pryas n=1,..., N, ul? (t,) = (),

n

tn € An, j=0,1,...,d}.

17



If d = —1, then the elements of Sn;l_l(A ~) may have jump discontinui-
ties at the knots Ay.
An element u € ng 4(AnN) as a polynomial spline of degree not greater

than m +d for allt € 0,,, n =1,..., N, can be represented in the form
m~+d
Un(t) = D bt — tn1)". (2.2)
k=0

From (2.2) we have that an element u € S% +q(An) is well defined, when we
know the coefficients b, for alln =1,...,N and k = 0,...,m + d. In order
to compute these coefficients we consider the set of collocation parameters

O0<c <...<c¢p <1,

and we define the set of collocation points by

N
X(N): UXna

with
X = {tnj =tp—1+ thn,j = 17"7m}’n =1,..,N.

So, the approximate solution u € Sgwd(AN) of the equation (2.1) will be
determined imposing the condition that u satisfies the integro-differential
equation (2.1) on set X(N), i.e.,

u'(t) = f(t,u(t)) —i—/o K(t,s,u(s))ds, te X(N). (2.3)

Starting the calculations by this method we assume also that we can use the
initial values ugj)(O) =y0U)(0), j =0,...,d, which is justified by the require-
ment v € C?4[0,T]. Another possible approach is to use only u1(0) = y(0)
and more collocation points (if d > 1) to determine u;. Thus, on every
interval o,, we have d + 1 conditions of smoothness and m collocation con-
ditions to determine m+d+ 1 parameters b,;. This allows us to implement
the method step-by-step going from an interval o, to the next one.

In the case d = —1, to be able to use initial condition on o = [0,#],
one collocation condition should be dropped.

In the case of second order VIDE

y”(t)Zf(tay(t),y'(t))Jr/o K(t, s, y(s),y'(s))ds, t€[0,T], (24

with initial conditions
y(0) = o, ¥'(0) =y

18



description of the collocation method is similar. To calculate approximate
solution u € S +4(An) of equation (2.4) we impose the following colloca-
tion condition

u’(t) = f(t,u(t),u'(t)) —i—/o K(t,s,u(s),u'(s))ds, te X(N). (2.5)

Here, starting calculation by collocation method, other approach, addi-
tional to use initial values ugj)(O) = y0)(0), 7 =0,...,d, is to use initial
conditions u;(0) = y(0), v}(0) = ¥'(0) and more collocation points (if
d > 2) to determine u;.

Remark 2.1 As the description of the collocation method for nonlinear
equations is not more complicated than for linear ones, we presented here
the method in general case. Moreover, the research practice shows that con-
vergence theorems for linear equations also hold for some nonlinear equa-
tions without any additional requirements on the method.

19



Chapter 3

AUXILIARY RESULTS

3.1 An overview of numerical stability conditions
for VIE

In this section we review some results about stability conditions for VIE.
A thorough treatment of the numerical stability of the polynomial spline
collocation method for VIE of the second kind is presented in [22] with
equidistant collocation points (i.e. ¢; = j/m, j = 1,...,m). The method
for general setting of collocation points is considered in [16], but the proof
of the main result (Theorem 3.3 of [16]) is not correct. This result is also
applied to the particular cases, and stability conditions are obtained. Note
that several results of [16] are disproved in [24].

Consider the Volterra integral equation

y(t):/o K(t,s,y(s))ds + f(t), t€0,T], (3.1)

with given functions f: [0,7] x IR — R and K£: S x R — IR (where S =
{(t,s): 0<s<t<T}).

The step-by-step collocation method for VIE is supposed to determine
the approximate solution u € ng +q(An) by the collocation conditions at
the points t,;

u(t):/o K(t,s,u(s))ds + f(t), te X(N). (3.2)

The spline collocation method for the test equation

o) = A /0 y(s)ds + f(t), te0,T], (3.3)

20



where A may be any complex number, leads to the iteration process
ni1 = (M +W)ay, +7,n=1,...,N, (3.4)

with W = O(h) and 7, = O(h). Here M = U, 'U, where Uy and U are
(m+d+1) x (m+ d+ 1) matrices as follows:

A being a (d+ 1) x (m+d+ 1) matrix

m-+d
1 a ... g
G=|..oooiiiiii. ,
1 ¢p cmtd

and I being the (d 4+ 1) x (d + 1) identity matrix.
Denote dy = max{d,0}, di = max{d,1} for the method with initial
values and d; = 1 for the method with additional initial collocation.

Definition 3.1 We say that the spline collocation method is stable if for
any X € € and any f € CU[0,T] the approzimate solution u of (3.1)
remains bounded in Lo (0,T") in the process h — 0.

Proposition 3.1 Matriz M has eigenvalue = 1 with geometric multi-
plicity m.

Proposition 3.2 If all eigenvalues of M are in the closed unit disk and
if those which lie on the unit circle have equal algebraic and geometric
multiplicities, then the spline collocation method is stable. If M has an
eigenvalue outside of the closed unit disk, then the method is not stable(u
has exponential growth: || u ||s> const XNV, K > 0).
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Proposition 3.3 If all eigenvalues of M are in the closed unit disk and
there is an eigenvalue on the unit circle with different algebraic and geo-
metric multiplicities, then the method is weakly unstable (u may have poly-
nomial growth: || u ||so~ const N¥ k € N).

Propositions 3.1 - 3.3 are proved in [24].

3.2 Behaviour of linear iteration process

In this section we will review some well-known results from Linear Algebra,
which will be used in the sequel.

1. Let M be a given m X m matrix. The polynomial fi;(A) = det(\ —
M) is called the characteristic polynomial of M. The eigenvalues of M are
the roots of the characteristic polynomial fis(A). Denote by Apaz (M) the
maximal by modulus eigenvalue of the matrix M. The spectral radius of
M is |Apaz(M)|. If far(A) = (A — Xo)*g()\), where g(A\g) # 0, then \g has
algebraic multiplicity k. The algebraic multiplicity counts the number of
times, an eigenvalue occurs. The dimension of the eigenspace Ker(A — M)
of an eigenvalue A is called the geometric multiplicity of A.

2. The geometric multiplicity is smaller or equal than the algebraic
multiplicity.

3. There exists a vector norm such that the corresponding matrix
norm is equal to the spectral radius of the matrix, i.e., supj, <1 [|Mz| =

[Amaz(M)] if and only if all eigenvalues with maximal modulus have equal
algebraic and geometric multiplicities.

Let us look at the following iteration process
ant1=(M+W)ap +rn, n=1,...,N—1,

where aq,71,...,7y_1 are supposed to be given, M is a fixed matrix, not
depending on h = T/N, r, = O(h) and W = O(h). We calculate

=(M+W)((M+W)ap—1+1n-1) +7mn
= (M +W)ay + (M +W)" Ly 4+ 7. (3.5)

If additionally, all A\;,q. (M) having equal algebraic and geometric mul-
tiplicities, we assume that |Ayq.(M)| < 1, then there is a vector norm such
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that the corresponding matrix norm [|[M|| < 1. Thus, (3.5) yields
-1
lamsall < (M + W)™ flenl] + 1M+ WP el + -+ 7l

< (1 Kb flon | 4 (14 Kuh)™ ™ 1) max [
n

1<i<
(1+Kh)" =1
(1+ Kyh) -1

< (14 K1h)" [leall + Kah,

with some positive constants K; and K. Using the inequality
(1+ Kih)" < (1+ Kih)Y

and the convergence
(1+ K h)N — T
we get that «,, is bounded uniformly in n.

4. The eigenvalues of a matrix depend continuously on the coefficients
of a matrix.

If [Apaz(M)] > 1, then |Apaz(M)| > 1+, 6 > 0. Thus,

5
Mz (M + W) > 145 =1+ee>0if 0<h<h

for sufficiently small hg. Take r; = ... = ry_1 = 0 and «; such that
(M +W)ar = Apaz(M + W)aq, ||a1]] = 1. Then

lomar |l = (M + W) a1l = [|(Amaz (M + W))" ca |
= Amaz(M +W)|[" laa]| > 1+ €e)" - 00 as n — oo.

So, if [Mpaz(M)| > 1 then the sequence «;, is not bounded.

5. If some of the eigenvalues of M have different geometric and algebraic
multiplicity, then the matrix M € IR™*™ can be decomposed into the form

M =PJpP!, (3.6)

where P is an m xm invertible matrix, having eigenvectors of M as columns,
and J is a block-diagonal matrix having the form

J1 0
Jo

0 Iy
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with J; as follows

Representation (3.6) gives us

M" = (PJp Y = pJj"pP~1,

where J" is

JT

J = g
0

with
n n—1 n(n 1)
AT nA?
I =
AP

0

0
Ty
n(n —1)
2!
nAl"
A7

)

n—2
>‘i

1

If |A\;] =1, then [A?| = 1, but [nA?| = n. Therefore, the matrix J" (such
is also M) is not bounded. Choosing a; and 7, as in the previous case we

get that o, is not bounded.
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Chapter 4

STABILITY OF THE SPLINE
COLLOCATION METHOD FOR FIRST
ORDER VIDE

In this chapter we will analyze the stability of the spline collocation method
where the splines are at least continuous, i.e., we suppose that d > 0.

4.1 Method in the case of test equation

Consider the test equation

t
y(8) = a(t) + A /O y(s)ds + (1), te[0T], (4.1)

where, in general, A and o may be any complex numbers.
Assume that the mesh sequence {Ay} is uniform, i.e., h, = h =T/N
for all n. Representing t € 0, as t = t,,—1 + 7h, 7 € (0, 1], we have on o),

m—+d
Un(tn1+7h) =Y amt®,  7€(0,1], (4.2)
k=0

where we passed to the parameters a,i = bpih”.
The smoothness conditions (for any u € S% +a(AN))

uld (ty —0) = u¥) [(tn +0), 5=0,...,d, n=1,...,N -1,
can be expressed in the form
m+d

k! ,
an+17j22mank, ]:0,...,d,n:1,...,N—1. (43)
k=j

25



The collocation conditions (2.3), applied to the test equation (4.1), give

W (tn) = 0tu(tn;) + A /0 " w(s)ds + f(tny).

From (4.2) we get
m-+d

)= D aud]
k=0

and
m+d

tna Z ankkck L

Now the equation (4.4) becomes

m+d m~+d

hZankkckl—aZankc +Z/\/ ur(s)ds

tr—1

tnj
+ )\/ Un(s)ds + f(tn;).

tn—1

Using notations s = ¢,_1 +7h or s = t,—1 + 7h, we have ds = hdr. The
new limits of integration for s = ¢, or s = t,_1 is 7 = 0, for s = ¢, is

7=1and for s =t, 1 +cjhis 7 = ¢j.
So, we get that

m-+d

m+d m~+d 1
7 Z ankk‘c =« Z ankc + Z )\h/ ( Z arka)dT
k=0

m-+d

+Ah/oc' (Zanm )dr + f(tns)

m-+d m—+d

—aZankc +Z)\h (Z k;—i—lark)

m+d k+1

+)\h2ank + f(tns)-

26

(4.5)



Using the notation «,, = (ank)zni)d, we write (4.5) as follows:

m-+d m-+d m-+d clﬁ—l

Z ankk:c?*l —ah Z ankc§ — \h? Z Ank k‘J—i— 1

k=0 k=0 k=0
n—1

= Mg, ) ap) + hf (tng), (4.6)
r=1

where ¢ = (1,1/2,...,1/(m + d + 1)) and (-,-) denotes the usual scalar

product in R™+9+1, The difference of the equations (4.6) with 7 and n + 1
yields

m+d m-+d m—+d Ck+1
k k—1 h k )\h2 J
Gp41,k Cj -« an+1,kcj - an—i—l,k’k +1
k=0 k=0 k=0
m—+d m—+d m-+d k+1

C

= Z ankkcf_l —ah Z ankc;? — \h? Z Ank k:j 1 + )\h2<q, an>
k=0 k=0 k=0 +

+hf(tnrj) —hf(tnj), j=1,....m, n=1,...,N—1. (4.7)
Now we may write together the equations (4.3) and (4.7) in matrix form
(V — ahVy — Mh2Va)apir = (Vo — ahVi — Ah2(Va — V3))ay, + hgn,
n=1,...,N—1, (4.8)
with (m +d + 1) x (m 4+ d + 1) matrices V, Vi, V1, Vi, V3 as follows:

I being the (d+ 1) x (d + 1) unit matrix,

01 2¢ (m + d)¢n a1
C = ,
0 1 2¢p (m + d)cmrdt

0
1 e & i
V1= )
1 cm €2, cm+d



0
a A2 0 T (m 4 d 4 1)

em )2 ... ML /(m4d+ 1)

V3 having first d + 1 rows 0 and last m rows the vector ¢, and, finally, the
m + d + 1 dimensional vector

9n = (07 oy 0, f(tn—i-l,l) - f(tnl)a cee 7f(tn+1,m) - f(tnm))
Thus g, = O(h) for f € C*.

Proposition 4.1 The matriz V —ahVi — h2Vs is invertible for sufficiently
small h.

Proof. Since d > 0, we have

(d+ 1) ... (m+d)crtit
detV =1 ... ...
(d+1)cd, (m + d)cmtd-t
1 v ... -1
=(@d+Def...(m+deg,| #0,
1 cfn c%il

so the matrix V is invertible. Such is also V' — ahVi — Ah?V; for small h,
which completes the proof.

Let us now take a look at (V —ahV;—Ah2V5) L. Denote B = aV;+AhVa,
By = hV !B and observe that || B| < const, HBlH < const. Then

(V —ahVy — AW2V,) ™! = (V — hB)~
= (V(I-hrv'B)™!

= -B) v

=({I+B +Bi+.)v!

=V '+ B(I+B +B+.)v!
=V '+ Bi(I-B) v

=V~ 4+ hBs,
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where By = V™'B(I — B1)~'V ! is such that ||Bs| < const.
Again, denoting Bz = aV; + Ah(Va — V3) and having || Bs|| < const, the
equation (4.8) becomes

any1 = (V — ahVy — AR2Va) Y (Vg — ahVi — AR2(Va — V3))a
+ (V — ahVy — Ah*Va) "t hg,
= (V71 4+ hBy) (Vo — hB3)ayn + (V™ + hBa)hg,
= (V"W + Way, + 7,

where W = O(h) and r,, = O(h?) because of g, = O(h) for f € C'. Note
that W =0if a =0 and A = 0.
Set M = V~'1;, then the equation (4.8) takes the form

an+1 = (M +W)ay, + 7y. (4.9)

4.2 Stability of the method

We have seen that the spline collocation method (2.3) for the test equation
(4.1) leads to the iteration process

anp1 =V Vo+W)an +1,, n=1,...,N—1, (4.10)

with W = O(h) and 7, = O(h?).

We distinguish the method with initial values ugj)(O) = 40)(0), j =
0,...,d, and another method which uses only u;(0) = y(0) and additional
collocation points to; = to + cojh, j = 1,...,d, with fixed co; € (0,1] \
{c1,...,¢m} on the first interval oy.

Denote dyp = max{d—1,0} for the method with initial values and dy = 0
for the method with additional initial collocation.

Definition 4.1 We say that the spline collocation method is stable if for
any a, A € € and any f € C%[0,T) the approvimate solution u of (4.1)
remains bounded in C[0,T] in the process h — 0.

Let us notice that the boundedness of ||ul|cpo,7) is equivalent to the

boundedness of ||ay,|| in 7 and h in any fixed norm of R™*4+1,
The principle of uniform boundedness allows to establish

Proposition 4.2 The spline collocation method is stable if and only if
llullero,r) < const||fllcaopzy ¥.f € C[0,T], (4.11)

where the constant may depend only on T', a, A\ and on parameters c; and
Coj -
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Proposition 4.3 Matriz M has eigenvalue p = 1 with geometric multi-
plicity m.

Proof. Since det(M — uI) = 0 is equivalent to det(Vp — pV) = 0, then
Ker(M — uI) = Ker(Vy — uV). The geometric multiplicity of 4 = 1 is
dimKer(Vy — V). But dimKer(Vy — V) = m +d+ 1 — rank(Vp — V). As
rank(Vo — V) = d + 1, we get the assertion.

Theorem 4.1 For fized c; the eigenvalues of M for VIDE in the case m

and d + 1 and eigenvalues of M for VIE in the case m and d coincide and
have the same algebraic and geometric multiplicities, except u = 1 whose
algebraic multiplicity for VIDE is greater by one than for VIE.

Proof. The eigenvalue problem for M is equivalent to the generalized
eigenvalue problem for Vj and V, ie., (M — pl)v = 0 for v # 0 if and
only if (Vo — uV)v = 0 and (M — pl)w = v takes place if and only if
(Vo — uV)w = Vu. Denote v =1 — pu. Then for VIDE with the parameters
m and d 4+ 1 we have

v 1 1 T 1
0 v 2 3 m+d+1

3 m+d+1
0 O

() (")
Vo—pV = 0 m—+d+1 - (412)
R 7 Q41

0 v v-2q v(im +d+ 1)t
0 v v-2y, v(m+d+1)cntd

Let I;, be the diagonal matrix obtained from an identity matrix, re-
placing the i-th diagonal element by the number p. Thus, the products
I; A and Al;, mean the multiplication of i-th row and i-th column of A,
respectively, by p. Consider also the matrices Uy and U, defined in Section
3.1, with the parameters m and d. A direct calculation and the observation

-1
that (p) 1- (p ), allows us to get from (4.12)
q/p \g—1

Livoavr - L32(Vo — V) 3170 - Laymio,1)(mids1)

v o1 12 ... 1/tm+d+1)
(0 Uo — pU )
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or

S(Vo — pV)S—1

v 1 1/2 ... 1/(m+d+1)
:R< ), (4.13)

0 U() - MU
where
S=1lg2a41---1I32

and
R = Igtmt2,dtm+1 - - Ld+3d+o-

Now (4.13) gives
det(Vo — V) =(d+2)...(d+m+ 1)vdet(Uy — pU)

which permits to get the assertion about algebraic multiplicities of eigen-
values of M and M. By Propositions 4.3 and 3.1 the eigenvalue = 1 of
M and M has geometric multiplicity m.

It remains to consider the geometric multiplicity of eigenvalues pu # 1.
Thus, suppose v # 0. Using (4.13), the equation (Vo — uV)v = 0 can be

written as
v 1
( > Sv=0
0 U() - ,u,U

or, denoting w = Sv, equivalently
vwy + wa + ... + Wyygre/(m+d+1) =0, (4.14)

(Up — pU)w =0 (4.15)

with w = (w2, ..., Wntdr2)-
Let w',...,w" be linearly independent solutions of (4.15). Extending
these vectors with the first components defined by (4.14), we get vectors

w',...,w* and then S~'w!, ..., S™'w" as linearly independent solutions
of (Vo — uV)v =0.
Conversely, consider v!, . .., v* as linearly independent solutions of (Vp—

uV)v = 0. Dropping the first components of the vectors w* = Sv* we get
the solutions w",...,w" of (4.15). Suppose W' + ... + yw" = 0 with
at least one y; # 0. Then, (4.14) allows to get vyw!' + ... + yw* = 0
or y1v!' 4+ ... 4+ 0¥ = 0. This contradiction shows that the geometric
multiplicities of u # 1 as an eigenvalue of M and M coincide. The proof is
complete.

Proposition 4.4 If M has an eigenvalue outside of the closed unit disk,

then the spline collocation method is not stable with possible exponential
growth of approximate solution.
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Proof. Consider an eigenvalue p of M +W such that || > 140 with some
fixed § > 0 for any sufficiently small h. For oy # 0, being an eigenvector
of M + W, we have here

(V — ahVi — MAh2Va)ay = hgo, (4.16)
where
g0 = (@10, ..., 01q, f(t11), ..., f(tim))
and o
ay = WyY(0)/5, j=0,...,d.
Because of

y'(0) = ay(0) + £(0),

y9(0) = ayi=1(0) + Ayu=2(0) + fU0), j=2,....d, (4.17)

the vector a; determines via (4.16) and (4.17) the values fU)(0), j =
0,....,d—1, f(t11),- -, f(t1m)-

We take f on [0, h] as the polynomial interpolating the values f()(0), j =
0,....,d—1, f(t1j), i =1,...,m,and fO(h) =0, =0,...,do (if cm =1
then fU)(h) =0,j=1,...,dp).

In the case of the method of additional knots let f be on [0,h] the
interpolating polynomlal by the data f(0), f(toj),7 =0,...,d, f(t1;), j =
1,...,m, and fO)(h) =0 (here dy = 0 and if ¢, = 1, then f(tlm) = f(h)
is already given and we drop the requirement f(h) = 0).

In both cases we ask f to be on [nh, (n + 1)h], n > 1, the interpolating
polynomial by the values fU)(nh) =0 and fU)((n+1)h) =0, =0,...,dy
(if ¢y = 1, thenfor j = 1,...,dp), and also f(tn115) = f(t1;),5=1,...,m
This guarantees that f € C%[0,T] and r, = 0, n > 1.

To represent function f, we introduce Newton’s divided difference in-
terpolation formula. Let

k
Ha:—:z] =0,...,n.

Jj=0

Then Newton’s formula is

f@) = f(zo) + > meor(x) flwo, -, k] + Bu(2), (4.18)

where f[xo,...,zy] is divided difference, and the remainder is
i 7
n(.’l?) —Wn(ﬁ)f[ﬂfo,...,l‘n,x] _Tr’n(l‘)m’ Zo <€<.’En
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The divided differences f|xg, ..., z,] on n+1 points xy, ..., z, of a function
f(x) are defined by flxo] = f(zp) and for n > 1

flzoy -y xn—1] — flz1, ..., x4)
To — Tn, '

flxo, - zn] = (4.19)

In fact, Newton’s formula (4.18) holds also for multiple knots. Then
the divided differences could be represented, basing on the formula (4.19),
by the divided differences of the form f[x;,...,x;] which, in turn, may be
written as

AED)

f[:l?l,,{[,‘l} = l' 5

where [ + 1 is the multiplicity of the knot x;.
So, considering previous discussion, the interpolant f can be represented
on [ty,tn+1] by the formula:

K k; 1—1
FE) = fltn+7h) = < R pi f(sl)(fl)) [[e-0b) (4.20)
0

=0 = r=0

with b, being c¢; or cpj, § being t,,; or t;, 0 < s; < do, k; < ¢, constants py
depending on c¢; and co;.

In the case of initial conditions k = m +d+do(k = m+d+dy — 1,
if ¢, = 1), in the case of additional knots Kk = m +d+1(k = m +d, if
¢m = 1) on the interval [0, h] and K = m+2dp + 1 (k = m + 2d, if ¢;p, = 1)
on the interval [nh, (n+ 1)h], n > 1.

Replacing h by h/k, k =1,2,..., and keeping ||a1|| = h/k, we have

k
lgolloe = 115 (V7 = ahVi = Ab*Va)an |

k
< EHV — ahVi — A2 Val|oo| 01| oo

So, ||gollsc is bounded which means that f(t1;), j = 1,...,m, and
Ry @(0)/kI, j = 0,...,d, or b fO(0)/kI, j = 0,...,dy, are bounded,
too, in the process k — oo.

Thus, (4.20) gives

£l oo,y < const k. (4.21)
On the other hand, due to r, =0 for n > 1,

and
1|l = [p"[|Jea|] = (14 6)" || ]
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yields
h
gl > (146 (122

and (4.11) cannot be satisfied. The inequalities (4.21) and (4.22) mean also
the exponential growth of approximate solution if we keep the norm of f
bounded in C%. The proof is complete.

The case where all eigenvalues of M are in the closed unit disk and there
is some of them on the unit circle having different algebraic and geometric
multiplicities can be treated as for VIE (see [24]). In fact, for VIDE the
eigenvalue y = 1 has always different algebraic and geometric multiplicities.
Thus, the collocation method is always at least weakly unstable. But this
weak instability cannot be observed for low order splines (see next section
for examples). In practice, the method is stable if and only if all eigenvalues
of M are in the closed unit disk which we keep in view describing the
examples.

4.3 Examples

Let us consider some special cases of d and m.
Case d =0, m > 1.

We have T 0 1 .
VZ( ¢ )’ %:< c )

and det(Vo—puV) = (1—p)™*! det Cy where Cj is obtained from C omitting
the first column. This means that the method is always stable.

Case d =1, m =1 (quadratic splines).
The equation det(Vp — pV') = 0 has solutions p =1 and g =1—1/c;. The
method is stable if and only if 1/2 < ¢; < 1.

Case d =1, m = 2 (Hermite cubic splines).

By proposition 4.3 u = 1 is a solution of det(Vy — uV') = 0 with geometric
multiplicity 2 and with algebraic multiplicity at least 3. The other solution
wu(ci,ea) =1 —(c1+ o —1)/cieg shows that if ¢; + co < 1 the method is
unstable. Suppose ¢; +¢o > 1. Then 1/2 < co < 1. As pu(c1,1) = 0, only
the possibility 1/2 < ¢a < 1 needs some analysis. Then 1 —c2 < ¢1 < ¢ca. As
w(l—coye0) =1, 0 < p(ea,c2) < 1 and p(eq, co) is strictly decreasing in ¢y,
we conclude that 0 < p(cq,c2) < 1 for ¢q 4+ ¢ > 1 which yields the stability.
Clearly, the case ¢; + ¢co = 1 mean that = 1 has algebraic multiplicity 4
and the method, being theoretically weakly unstable, is stable in practical
calculations.
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Case d =2, m =1 (cubic splines).
Here the geometric multiplicity of u = 1 as solution of det(Vy — uV) =0 is
1 and its algebraic multiplicity is 2. We also get

AV —(2c0+ 1) +2=0

with v = 1 — p. From v = (14 2c¢1 £ /1 +4c1(1 — ¢1))/2¢2, we see that

v > 0 and thus g < 1. For ¢; = 1, there are eigenvalues p =0 and
@ = —1 corresponding to v = 1 and v = 2. The function ¢(c;) =

(14 2c1 + /1 +4c1(1 —¢1))/2¢3 is decreasing (¢'(c1) < 0) and hence for
c1 <1, we get v > 2 and u < —1. Thus, the method is stable if and only
if Cc1 = 1.

35



Chapter 5

STABILITY OF PIECEWISE
POLYNOMIAL COLLOCATION
METHOD FOR FIRST ORDER VIDE

In previous chapter we showed that, for general case of spline collocation
method, the stability depends only on the collocation parameters. In this
chapter we will show that, for case of piecewise polynomial collocation
method (i.e. for d = —1), there is also dependence on the parameters of
certain test equation.

5.1 Method in the case of test equation

Consider the test equation

y'(t) = ay(t) + )\/0 y(s)ds + f(t), te[0,T7], (5.1)

where, in general, A and o # 0 may be any complex numbers.
Similarly to the Section 4.1, using the collocation conditions (2.3), ap-
plied to the test equation (5.1)

tnj
W (tng) = aultag) + X [ u(s)ds + £ (tny)
0
j=1....mn=1,...,N, (5.2)
we get the equation in matrix form

(V — ahVy — Ah2Va)an i1 = (V — ahVi — b2 (Vo — Va))an + hgn,  (5.3)
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with m x m matrices V', V1, Vo, V3 as follows:

0 1 2¢ (m — 1) 2
Vs o ,
0 1 2cm (m —1)cm=2
1 a ¢ crt 1 A3)2 At /m
"/i: ...................... , V2: ---------------------- ,
1 Cm, C%n Cm—l Cm 07271/2 Cm/m
1 1/2 1/m
Va=. oo, ,
1 1/2 ... 1/m

and the m dimensional vector
9n = (f(tn+1,1) - f(tnl)a s f(thrl,m) - f(tnTn))

Thus g, = O(h) for f € C.
Let us introduce the polynomials Pg (A, @) and Qk (A, @) by the following

recurrence relations
Qr = Pr—1 + aQp—1, (5.4)

Py = AQk—1 (5.5)

starting with Py = 0 and Q9 = 1. Then we have, for example, P, = A,
Q1 =a, P, = \a, Q2 = A+ a2 etc. Combining (5.4) and (5.5) we get also

Qr = aQr—1 + AQp—2. (5.6)
Note that for all & > 0 we have Qr # 0 or Qr+1 # 0 because the
assumption Qg1 = 0 and Qf = 0 via (5.6) gives Qr—1 = 0,...,Qo = 0,
which is not the case.
Denote by D,,, Vandermonde’s determinant formed by cy, ..., ¢y, i.e.,
Dm = det Vl.
Proposition 5.1 We have
det(V — ahVi — A?V3) = (=1)™Q Dy ™

+ (=1)™AQm-1(c1 + -+ + ) Dh™H fm 4+ O(K™?). (5.7)
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Proof. Writing the columns of the determinant as rows with representative
element, we get

—ah — M\h¢;

1 — ahe; — Ah2c2 /2
det(V — ahVi — A\h2V3) =

1+ (P1/Q1)he;
1 — ahc; — Ah2c2 )2

=—Q@Q1h =
(m — 1) 2 — ahe™™ 1 — AR2c /m
L+ (P1/Q1)he;
¢ + (PQ/QQ)hC?/Q

c;"_l + (Pr/Qm)he /m

which gives the representation (5.7), when @, #0,...,Q2 # 0. In general
case, take the sequences A\; — A, oj — a such that Qr()\j, ;) # 0 for all
j and k. Then from (5.7) for A;, ; we get in limit process (5.7) for A, a.
The proof is complete.

Since @, # 0 or Qpp—1 # 0, from (5.7) we get

Corollary 5.1 The matriz V — ahV; — Ah?Vy is invertible for sufficiently
small h.

5.2 Stability of the method

Definition 5.1 We say that the spline collocation method by piecewise

polynomials is stable if, for any f € C0,T], the approzimate solution
u of (5.1) remains bounded in Lo (0,T) as h — 0.

Denote W =V — ahV; — Ah2V4, then the equation (5.3) takes the form

Wani1 = (W 4 Ah2V3)ay, + hgy.
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Therefore, the equation (5.3) may be written as follows
i1 = (I + X2W )y, + hW 1g,. (5.8)

Proposition 5.2 Matriz I + A\R*>W V3 has eigenvalue p = 1 with geo-
metric multiplicity m — 1.

Proof. Tt is clear that Ker(I + Ah2W ~1V3 — ul)=Ker(W + Ah2V3 — uW).
The geometric multiplicity of p = 1 is dim KerVs, but dim KerVs =
m—rankVs. As rankVs = 1, we get the assertion.

Besides the eigenvalue p = 1 there is one more p € spec(I + A\2W~1V3)
which is equivalent to p — 1 € spec(AR2W ~1V3). Thus, we have to find one
additional solution of det(Ah?V3 — uW) = 0 having already 0 as solution of
multiplicity m — 1 by Proposition 5.2.

Denote A = Ah2V3 and B = W with corresponding entries a;j and b;;.
Taking into account

aijl = ... =amly---,1m = ... = Qmm,
we get,
ain — pbir ... arm — pbig,
asy — pbor ... agm — pbam
det(A — uB) =

am1 — mel coo Qmm — Whmm

air — pbir ... A — pbig,

p(bir —b21) ... p(bim — bom)

,U(bll - bml) . ,U(blm - bmm)
ajr — pbiy a1m — pbim
bll — b21 blm - b2m

= (5.9)

b11 — bml blm bmm
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Expansion by the first row gives us
det(A — puB) = ™ ' [(a1y — pb11) My + (a1o — pb1o) My + ...
+(a1m — pbim) M|
=pm ! [a11 M1 + a1oMs + ... + a1 My,
— (b1 My + bioMs + ... + b1y Mp,)] .
Thus, we have det(A — uB) = 0 if

= ann My + aroMs + ... + a1 My, (5.10)
binMy + biaoMa + ... + by My, '

with some M; obtained from the determinant in (5.9).

Lemma 5.1 It holds

Co—cC1 ... ¢y ~—c cy —c’

c3—c1 ... TR odp—p
(c1+ca+ ...+ ¢m)Dp =

Cm—Cl ... P72

This is a standard exercise result from Linear Algebra.
Lemma 5.2 We have
My = Qu-1h™ Dy + Pr1h™(c1 + ... + ¢m) Din/m + O(R™ 1) (5.11)
with Qm—1 # 0 or Py—1 # 0,
My = —~AQum—2h™ D= APpy—oh™  c1+. . .+cm) Din/m+O(K™2) (5.12)
with Qm—2 #0 or P9 # 0,
Ms = N2h™1Q,, 3D, /2 + O(R™T2) (5.13)

and

My, = O(h™2) k > 4. (5.14)
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Proof. Let us start with matrix M;. Writing the columns of the determi-
nant as rows we get

2 2
G — G

2
2(c1 — ¢;) + ah(c? — c2) + Ah?

ah(c; — c1) + \h?

3 3

My

—Oh 4 4
@1 3(c2 =) +ah(c —c}) + 2G4 1 “

P 22—
¢ —c1+—h= 1
7 1 Ql 9
P, 3—c
2 2 i 1
cc—ct+ ——h
= Q1 h™t Q3
Pp_1,c? ="
cifl_canfl_{_ m=1 , G 1
mel m

The straightforwards calculations give an expansion of the last determinant
as a sum of

¢ —C1
= & d
I N
............ ’ ch*Q — chQ
i P hczm —cf
Qm—-1 m

and other terms of order O(h?). Now, basing on Lemma 5.1, we get
(5.11). As in the proof of Proposition 5.1, this argument is correct if
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Qm-1#0,...,Q1 # 0, but in general case the limit process will arrange
the proof. In addition, @,,—1 = 0 and P,,—1 = 0 yield by (5.4) that Q,,, =0
which is impossible as we have seen earlier. Thus, Q-1 # 0 or P,,—1 # 0.
The other formulae (5.12) - (5.14) can be obtained by similar calculations.

Proposition 5.3 For the solution (5.10) it holds
1) if Qm—1 # 0 and Q., # 0 then

mel 2
— ) h+ O(h?),
I on (A7)
2) if Qm-1 # 0 and Qp, = 0 then
m
= 1+ 0(h
a cl+...+cm+ (h),
3) if Qm-1 =0 and Qu, # 0 then
n=O(h?%).

Proof. The main term in the numerator of (5.10) is Ab™ 1 Q,,,_1D,, for
Qm-1 # 0. The denominator of (5.10) is

(—ah — Ah?c1)(Qum-1 Dy k™1 + O(h™))

2
+ (1 — ahey — Ahz%l)(—)\Qm_ghmDm) + O(h™ 1)) + O(h™+3),

where we find, by (5.6), that the coefficient of h"™ is —Q,, Dy,. Therefore,

m+1 m+2
_ AN QoD + O™ Qo 2y
—QmDmhm + O(hm—i—l) Qm

The third assertion follows immediately. If Q,, = 0, i.e., the coefficient of
h™ in the denominator is zero, then the coefficient of h™*! can be found
as —A(c1 + ...+ ¢m) D @m—1/m which yields the formula for x4 in second
case. The proof is complete.

It is natural to ask whether p in (5.10) may have higher order in A than
27 In fact, more detailed calculations show that

M, = Qm_lhmlem + )\Qm_ghmsymle/m
+ N2Qu_3h™ L symo Dy /m(m — 1) + ...

+ AT Qo2 sy 1 Dy /),
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My = —A\Qm—2h" Dy — N2Qpu_sh™ L symi Dy, /m — . ..

— A" Qoh* ™ 2 symy, oDy /m),

M, = (=)™ ]\ LQor*™2D,, /(m — 1)!,

where sym; are standard symmetrical polynomials of c¢i,...,¢y, of
order i, for example, symi =c1 + ...+ ¢y, SYMo = 12 + ... + Cm—1Cm.

Proposition 5.4 If Q, # 0, Q-1 =0 and ¢1 + ...+ ¢y = m/2, then
p=vh®+O0(h"), v#0,

and, for k >3,
p=vh + O™, v #0,

s not possible.

Proof. The main term in the denominator of (5.10) is —AQ,—2D,,h™ as
Qm-—2 # 0. In the numerator of (5.10) the coefficient of A2 is

1
)\2 . Dm symi N
Qs ( i

2

Therefore,

=\ (S?j:“ - ;) %+ O(h®).

If the coefficient of h™*2 in the numerator of (5.10) is zero, i.e., sym; =
m/2, we find that the coefficient of h™*3 is

Syms lsym; 1
AN Qu—3D — = ~.
@m-s m(m(ml) 2 m +6>

Assuming that the coefficient of h™*3 is also zero, for Q,,_3 # 0, we have

m(m — 1)
Sme == T

Now calculate

sym% = c% + .t cfn + 2syma

m(m — 1
:c%+...+c§n+(6),
from where
2, 2 m? + 2m
c O = —
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We get that (m? +2m)/12 > m/2 for m > 4, i.e., sym3 > sym?. On the
other side, always for m > 2 it holds ¢; + ... + ¢y, > €3 + ... + c2,. Therefore,

_m ~ m(m—1)
symyi = 9 symsg = 12
cannot be valid together. Actually, @,,—3 # 0, because @Q,,—2 # 0 and
Qm-3 = 0 yield, by (5.6), that @,,—1 # 0. This contradiction completes
the proof.

Denote M = I + AR2W~1V3.

Matrix M has eigenvalues with equal algebraic and geometric multiplic-
ities. This implies that its Jordan form is diagonal matrix with m—1 entries
1 and one 1 + ¢ with e = O(h*),k = 0,...,3. The Jordan representation
M = PJP~! gives M™ = PJ"P~! and at least for & > 1 the matrix J" is
bounded. We see that the boundedness of M™ depends also on behaviour
of P and P~! in process h — 0.

Proposition 5.5 Matriz \b>W—'V3 or W~1V3 has the same eigenvectors
as the matriz M.

Proof. Let u be an eigenvalue of W~1V3 and v # 0 a corresponding eigen-
vector. Then

WV = pv < AR2W 1 Wau = AR
& I+ 2W )0 = (1 + AR p)v,

which gives the assertion.

The eigenvalues of W13 could be chosen in such a way that they are
the columns of P. Take them as an orthonormal system p',...,p" ! cor-
responding to 0 € spec(W~113), which give p',...,p™ ! € KerVs, and
p™ of Euclidean norm 1 corresponding to e € spec(W~1V3). Clearly P is
bounded. The boundedness of P~! can be guaranteed if | det P |> § for
some 0 > 0. This takes place if we get < p,q > < o|lp|||l¢|| with o < 1
for all p € KerV3 and all ¢ € Ker(Ah2V3 — uW) which is equivalent to
<p,q><a|pl|l gl for all p € (Ker V3)* and all ¢ € (Ker (AR2V3 — uW))*.
Here we may consider p = (1,1/2,...,1/m) because dim(Ker V3)t =1 and
q= Zl<j<m—1 Aj¢? with ¢7 (we write ¢/ here in column)

A2 — pu(—ah — Ah%c))
AR2/2 — (1 — ahej — )\h2c?/2)

A2 /m — pu((m — 1)02-”_2 - ahc}f"_l - )\h2c;-”/m)
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as q',...,q™ ! give a basis in (Ker (h?V3 — uW))* at least for small h. Let
@ = ¢o — Ah?p. Since detW # 0, g',...,g" ! are linearly independent.

Similarly, we get also the linear independence of p, ¢',..., g™ " for small
h. Then
m—1 m—1 ‘
<pq>= ( )‘j))‘h2 <p,p> —u<p, Wj> : (5.15)
j=1 j=1

We may consider only the ”worse” case, namely, when ¢ is the projection
of p onto (Ker (Ah2V3 — uW))+. Then in the process h — 0 the coefficients

A; stabilize and
m—1 ) m—1 .
(. > Na) = aollpl | D A
J=1 j=1

for some fixed o¢ € (—1,1) due to the linear independence of p, ', ...
In the cases pu ~ vh, v # 0, and pu ~ const the last term in (5.15) is
dominant and we get < p,q > < o||p|| ||¢|| with ¢ < 1 (actually, o — oy).
Note that the case pu ~ vh*, v # 0, k > 2 needs additional analysis but
similar arguments lead us also to the boundedness of M™.
Summing up the results of presented reasonings and Proposition 5.3 we
have

4"

Proposition 5.6 The following holds
1. if Qm # 0 then the method is stable,

2. if Qum = 0 (and hence Q-1 # 0) then for c1 + ...+ ¢y > m/2 the
method is stable, for c1 + ...+ ¢ < m/2 unstable.

For example, let m = 3. We have Q3 = 2 \a+a?3. For 2Aa+ o2 # 0 the
method is stable and for 2\a + o = 0 the stability region is ¢; + co + c3 >
3/2.
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Chapter 6

STABILITY OF THE SPLINE
COLLOCATION METHOD FOR
SECOND ORDER VIDE

In this chapter we will investigate stability conditions for second order
VIDE. We will show that there is connection between stability conditions
for 1st order VIDE and 2nd one. The treatment is similar to those in
Chapter 4.

6.1 Method in the case of test equation

Consider the test equation

y'(t) = ay(t) + By’ (t) + A /0 y(s)ds + f(t),  te[0,T], (6.1)

where, in general, o, § and A may be any complex numbers. Similarly to
Section 4.1, assume that the mesh sequence { Ay} is uniform, i.e., h, = h =
T/N for all n. We will use the representation (4.2) on o, and smoothness
conditions (4.3).

The collocation conditions (2.5), applied to the test equation (6.1), give

tnj

n=1,...,N. (6.2)

From (4.2) we get
m+d

un(tnj) = Z ankc§v
k=0

46



and

UZ(tnj) =13

Now the equation (6.2) becomes

1 m-+d
3 > k(k = Dangkd;
k=0
m+d m+d —1 tr
=« Z ankc + ﬂ Z kankck Ly Z )\/ up(s)ds

r=1 tr—1

+ )\/tm un(s)ds + f(tn;)

tn—1

m~+d m+d m—+d

—— Z ankc —i—ﬁ Z kankcl€ ! Z/\h/1 ( Z ark7k>d7
k=0

m~+d

+)\h/crl (Z anp ™ )dr -+ f(tn;)

m~+d m+d m~+d

_aZankc —1—5 Zkankck 1+Z)\h(zk+1ark)

m+d k+1

+ A\h Z ] + f(tnj).
Using the notation oy, = (@no, - - -, Gnm+d), we write (6.3) as follows:

m+d m-+d m+d
Z ankk(k — 1)6?72 — ah? Z ankc? — Bh Z ankk‘c?*l
k=0 k=0 k=0

m+d k+1 n—1
—AK? Z ank = A0, ) on) + W f (),

r=1

47



where ¢ = (1,1/2,...,1/(m +d + 1)) and (-,-) denotes the usual scalar

product in R™+4+1, The difference of the equations (6.4) with n and n + 1
yields

m—+d m+d m-+d
-2 2 k
E anq1,kk(k — 1) — Bh § Un1, ka —ah E Ant1,kC;
k=0

m-+d CkJrl
3 J
— Mk kzo 1k

m~+d m+d m—+d
= Z ankk(k —1)c —2_Bh Z ankkck 1 ah? Z ankc
m+d k+1
— AR? Z ank + )\h3<Q> an> + th(tn—I—l,j) - th(tnj)v

j=1,....m,n=1,...,N — 1. (6.5)

Now we may write together the equations (4.3) and (6.5) in the matrix
form

(V = BhV} — ah®Va — AP Vs) i
= (Vo — BhVi — ah®Va — A3 (V3 — Vi), + h2gn,
n=1,...,N—1, (6.6)
with (m +d+ 1) x (m 4 d + 1) matrices V, Vo, Vi, Va, Vs, Vy as follows:
() 5 o
I being the (d+1) x (d+1) identity matrix, 0 is the (d+1) x m zero matrix,

00 2 6¢1 ... (m+dy(m+d—1)crte2
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A being a (d + 1) x (m+ d + 1) matrix, defined in Section 3.1,

0
~ 01 2¢ (m + d)en a1
Vi = ,
0 1 2¢m (m + d)cmtdt
0
_ 1 ¢ c¢? c’f”d
V2 = )
1 cm € cm+d
0
B 1 c2/2 T J(m 4 d 4+ 1)
Va3 = )
Cm €2/2 ... T/ (m 4 d+1)

Vi having the first d + 1 rows equal to 0 and the last m rows the vector g,
and, the m + d + 1 dimensional vector

9n = (Oa cee 707 f(tn—l-l,l) - f(tnl)v .- 7f(tn+1,m) - f(tnm))
Thus g, = O(h) for f € C.

Proposition 6.1 The matrix V- ﬁhf/l — ah®Vy — AR3V; is invertible for
sufficiently small h.

Proof. 1f d > 1, we have

(d+1)dct™ ... (m+d)(m+d—1)Td2
det V = (d+1D)dced™t ... (m+d)(m+d—1)cpti?
(d + 1)dcgn_1 (m + d)(m _'_ d o 1)6%4’_(1_2
=(d+1)de . (m+d)(m+d— 1)
1 c1 C7ln—1
................. 75 07
1 ch cn-t



and the matrix V is invertible. Such is also V — ﬁh‘N/l — Ozh2‘~/2 — )\h3‘~/3 for
small h. Although we have supposed, in general, that d > 1, let us remark
that in cases d = 0 and d = —1 we may argue similarly to the proof in

Chapter 5, and show that det(V — ShV; — ah2Va — Ah3V3) £ 0, for small h.

Therefore, the equation (6.6) can be written in the form
i1 =V W+ Wan+rn, n=1,...,N—1, (6.7)

where W = O(h) and 7, = O(h3) for f € CL.

6.2 Stability of the method

We have seen that the spline collocation method (2.5) for the test equation
(6.1) leads to the recursion (6.7). Denote M = V‘lVo

We distinguish the method with initial values u (O) Yy 3)( 0), j =
0,...,d, and another method which uses u;(0) = y(O) u}(0) = '(0) and
addltlonal collocation points to; = to + cojh, j = 1,...,d — 1, Wlth fixed
coj € (0,1]\ {c1,...,cm} on the first interval oy.

Denote, in addition, dp = max{d — 2,0} for the method with initial
values and dy = 0 for the method with additional initial collocation.

Definition 6.1 We say that the spline collocation method is stable if for
any o, B, €C and any f € C©[0,T] the approzimate solution u of (6.1)
remains bounded in C[0,T] in the process h — 0.

The principle of uniform boundedness allows us to establish
Proposition 6.2 The spline collocation method is stable if and only if
lullepr) < const||fllcaopr VF €[0T, (6.8)

where the constant may depend only on T, o, 3, X\ and on parameters c;
and coj.

Theorem 6.1 For fized c; the eigenvalues ofﬁfor 2nd order VIDE in the
case m and d + 2 and eigenvalues of M for 1st order VIDE in the case m
and d+1 coincide and have the same algebraic and geometric multiplicities,

except p = 1 whose algebraic multiplicity for 2nd order VIDE is greater by
one than for 1st order VIDE.

Proof. The structure of the proof is similar to that of Theorem 4.1 in
Chapter 4.

The eigenvalue problem for M is equivalent to the generalized eigen-
value problem for Vo and V ie., (M ul)v = 0 for v # 0 if and only if
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(j/o —uV)v =0 and (M—u[)w = v takes place if and only if (Vo — uV)w =

Vwv. Denote v = 1 — p. Then for 2nd order VIDE with the parameters m
and d + 2 we have

Vo—uV =
v 1 1 1 1
0 v m+d+1
3 m+d+ 2
o () (")
i 5 m+d+ 2
d+2
0 0 v-2 v-6¢g vim+d+2)(m+d+ 1)t
0 0 v-2 vebey ... ... vim+d+2)(m+d+1)cntd

(6.9)

Let I; , be the diagonal matrix obtained from identity matrix, replacing
the i-th diagonal element by the number p. Consider also the matrices Vj
and V defined in Chapter 4, with the parameters m and d 4+ 1. Now, using

-1
relation (p> 1 (p 1), we get from (6.9)

q)p q—

Iivsaso - T32(Vo — M‘~/)I3,1/2 o dgime3 1/ (mrd2)

v q
SN0 Vo—uv

or
~ ~ 1 v q
S(Vo—uV)S™ =R , (6.10)
0 Vo—puV
where
S =1Iq13d42-- 132,
R =Igtm+3.dtm+2 - - Ldta,d+s
and

(1 1
q_ 7277m+d+2 .
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Now the equation (6.10) gives us
det(Vo — pV) = (d+3) ... (d+m+ 2)vdet(Vy — pV),

which permits to get the assertion about algebraic multiplicities of eigen-
values of M and M. Simi}grly to Propositions 4.3 or 3.1 we can prove that

the eigenvalue p = 1 of M has geometric multiplicity m and similarly to
proof of Theorem 4.1 that geometric multiplicities of  # 1 as an eigenvalue

of M and M coincide. The proof is complete.

Proposition 6.3 If M has an eigenvalue outside of the closed unit disk,
then the spline collocation method is not stable with possible exponential
growth of approximate solution.

Proof. The structure of the proof is similar to that of Proposition 4.4 in
Chapter 4 and we will deal only with main moments.

Consider an eigenvalue j of M + W such that |p| > 1+ 6 with some
fixed § > 0 for any sufficiently small h. For oy # 0, being an eigenvector
of M + W, we have here

(V — BhVi — ah®Va — Ah3V3)ay = h2go, (6.11)
where
g0 = (@10, ..., 04, f(t11), .., f(tim))
and 0
J7(0
aqj :h]y '( ),j: ,...,d.
j!
Because of

y"(0) = ay(0) + By'(0) + £(0),

y(0) = ay¥72(0) + ByU = (0) + Ay (0) + FU2(0),
j=3,...,d, (6.12)

the vector o determines via (6.11) and (6.12) the values

F90), 5 =0,...,d =1, f(t11), ..., f(tim).

We take f on [0, h] as the polynomial interpolating the values f()(0), j =
0,...,d—2, f(t1j),5=1,...,m,and fO(h) =0, =0,...,do (if ¢,y = 1,
then fU(h) =0,j=1,...,dp).

In the case of the method of additional knots let f be on [0,h] the
interpolating polynomial by the data f(0), f(toj), j =0,...,d —1, f(t1;),
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j=1,...,m,and fU(h) = 0 (here dy = 0 and if ¢,, = 1, then f(t1,,) =
f(h) is already given and we drop the requirement f(h) = 0).

In both cases we ask f to be on [nh, (n+ 1)h], n > 1, the interpolating
polynomial by the values f)(nh) = 0 and f9)((n4+1)h) =0, 5 =0,...,do
(if ey, = 1, thenfor j = 1,...,dp), and also f(tn41;) = f(t15), 5 =1,...,m.
This guarantees that f € C%[0,T] and r, = 0, n > 1.

The interpolant f can be represented on [ty, t,+1] by the formula:

K ki i—1
Ft) = flta+7h) =Y (Z hﬂpﬂf““(&z)) NG (6.13)

=0 =0 r=0

with b, being c¢; or cpj, & being t,; or t;, 0 < s; < dy, k; < ¢, constants py
depending on ¢; and cg;.

In the case of initial conditions k = m+d+dy—1(k =m+d+ dy —
2, if ¢, = 1), in the case of additional knots kK = m+d+1 (k = m+d, if ¢;,, =
1) on the interval [0, h] and kK = m +2dy + 1 (k = m +2dgif ¢;,, = 1) on the
interval [nh, (n+ 1)h], n > 1.

Replacing h by h/k, k = 1,2,..., and keeping ||a1|| = h?/k?, we have
||go||oc bounded which means that f(t;), j = 1,...,m, and hiy\)(0)/k,
§=0,....d, or hif9(0)/ki, j=0,...,dy, are bounded too in the process
k — oo. Thus (6.13) gives

| flledojo,r) < const ko, (6.14)
On the other hand,

lantall = (1+6)"||au]|
yields

h
lapel| = 1+ 61 (615)

and (6.8) cannot be satisfied. The inequalities (6.14) and (6.15) mean also
the exponential growth of approximate solution if we keep the norm of f
bounded in C%. The proof is complete.

6.3 Examples

Let us consider some special cases of d and m.
Cased=1,m>1.

We have
~ 10...0 ~ 11...1
P- () T (e

and det(Vo—pV) = (1—p)™*2 det Cy where Cj is obtained from C omitting
first two columns. This means that the method is always stable.
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Case d =2, m =1 (cubic splines).
The equation det(Vo — puV) = 0 besides p = 1 has the solution
i =1—1/c;. The method is stable if and only if 1/2 <¢; < 1.

Case d =2, m=2. _
Now the equation det(Vp — uV') = 0 has the root p = 1 with geometric
multiplicity 2. Similarly to the case d = 1, m = 2 for 1st order VIDE (see

Section 4.3) we get that from the solution p(ci,co) =1—(c1+ca+1)/cieo
it follows that the method is stable if and only if ¢; + co > 1.
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Chapter 7

STABILITY OF THE SPLINE
COLLOCATION METHOD WITH
MULTIPLE NODES FOR FIRST
ORDER VIDE

In this chapter we will analyze the stability of collocation method when, on
each subinterval, there is only one collocation point with multiplicity m.

7.1 Method in the case of test equation

Consider the test equation

y'(t) = ay(t) + )\/0 y(s)ds + f(1), t € 10,7, (7.1)

where, in general, A and o # 0 may be any complex numbers.

As in the previous chapters the smoothness conditions on uniform mesh
(for any u € S%(Ay)) give the equalities (4.3).

For given ¢ € (0,1] denote here t,. = t,—1 +ch,n = 1,..., N. From
collocation conditions (2.3), applied to the test equation (7.1), we get

m-+d m-+d m-+d k41

k—1 k 2 c
Z an+1,kk0 —ah Z An41,kC — Ah E @n+1,lck;7_’_1
m-+d m-+d m-+d k

B ck+1
= Z ankkck L ah Z ankck — \R? Z ankm
k=0 k=0 k=0

m-+d
1
+ \h? E ok +h (ftnere) = ftne)),n=1,...,N =1. (7.2)
k=0
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In addition to (7.2) we have m — 1 equations
y (1) = ay D) + 0P + fON@), i=2,.,m,
which at collocation points can be written as follows
U (tne) = aulT™ (tpe) + Ml (tne) + FO D (tne), i=2,..,m. (7.3)

Now using relations
m—+d

E : k
t c) = ankC,
k=0

1
u;nb(tnc) = E Z kankck 1;
k=1
and
1 m+d k!
unZ)(tnc) - E Z (]{3 _ i)'ankck_z; 1 = 2, ,m, (7 4)
k=i )
the equations (7.3) become
1 m+d K - o m+d k! s
2N —i ¢ —it1
hi kz:: (k — )¢ hi-1 k:zizl (k— i+ 1)1mke
m-+d A -
hl 5 Z an;.cck_Z+2 + 0 (te), i=2,.,m,
or, in the form
m-+d Kl m-+d
: ' k—i+1
R
m+d El , o
+A Y mankc’f*”? + RO D (te), i=2,..,m.  (T.5)
k=i—2 ’

Remark 7.1 Even though in general m > 0, d > —1 and ¢ € (0, 1] can
be any numbers, if ¢ = 1 and m > d we should use one-sided derivates in
(7.4). Therefore, it is natural to assume for ¢ = 1 that m <d.
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The difference of the equations (7.5) with n and n + 1 yields

m~+d m~+d

k! —i k—i+1
7 An+1 kc — ah An+1,kC
kZ::i(k—z)' * k_zjl —Z—i—l‘ *
m—+d Kl
— \h2 L — k—i+2
k;Q (k — i+ 2)1 ke
- %ankc ' —ah ankc i
k=i (k B Z) k=i— 1
m—+d Kl
— \h? S — k—i+2
k:zi:Q (k—i+ 2)!0 .
+ 1 (f(i_l)(tn—i—l,c) - f("‘l)(tnc)> L i=2,.,m. (7.6)

Now we may write together the equations (4.3), (7.2) and (7.6) in matrix
form

(V — ahVi — AW Vo)1
= (Vo — ahVy — A2 (Vo — V3))ay, + g,
n=1,...,N—1, (7.7)

with (m +d+ 1) x (m+d+ 1) matrices V, Vo, V1, Va, V3 as follows:

() ()

C C

I being the (d+1) x (d+1) identity matrix, 0 is the (d+1) x m zero matrix,

0 1 2 3¢ 4¢3 ... ... ... (m + d)cmrdt
4l (m 4+ d)! _

2! le —c® ... ... . T mtd=2

0 0 3le T (m—l—d—Z)!C
C=10o 0 0 3 4l _mtd)! s
(m+d—3)!
(m+d)! 4
|

0 m! pl
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A being a (d + 1) x (m+ d + 1) matrix, defined in Section 3.1,

0
1 ¢ 2 & cmtd
0 1 2 3¢ ... (m + d)cmtdt
i=lo o 2 36 ... ... .. mrd s,
(m+d—2)!
(m +d)! d+1
0 -1
(m—1) (d+ 1)
0
2B A cmd+l
9 3 % m+d+ 1
1 ¢ & & ¢t
Va=10 1 2 32 ... coo (mAd)emtast ;
(m +d)! d—2
2! | m-+
00 o (m+d—2)!
P <m+d)'d2
0 —2)! +
(m—2) (d+2)!
0
Va=11 1/2 1/3 ... 1/(m+d+1)],
0

and the m 4 d + 1 dimensional vector
gn = (07 cee 7O> h(f(tn+1,6) - f(tnc)), ey hm(f(tn+1,c) - f(tnC))) .
Alternative to the representation (7.7) is to write (7.5) for n + 1

m-4d m—+d

k! i k! i
—an - h —a, i+1
kz_; (k — )1 ke “ k_zi;l (k—i+ 1) ke
m+d k! ‘ o
+)\h2 Z man-i-l,k’ck_“r2 + hzf(z_l)(thrl,c)a
k=i—2 ’

i=2,....m. (7.8)
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Now equations (4.3), (7.2) and (7.1) give us
(V — ahVy — A Va)a 41
= (Vo — ahVi — AW (Va — V3))an + G,
n=1,...,N — 1,
where Vo, Vi, Vs are (m +d + 1) x (m + d + 1) matrices as follows:

A
Vo=[0 1 2¢ ... (m+d)cmti-t

)

Vo=lc /2 &/3 ... T (m 4 d41)
0
and, finally, the m + d + 1 dimensional vector

)

(7.9)

gn = (07 ceey 0, h(f(thrl,c) - f(tnc))7 thI(tn+1,c)7 ceey hmf(m_l) (tn+1,c)> .

Proposition 7.1 The matriz V —ahVi — h?V; is invertible for sufficiently

small h.
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Proof. We have

(d+1)c? (m + d)cmtd-t
(d+1)! 4y (m+d)! o ras
ey (d—1) (m+d—2)
@+ g (m+d)!cd
(@ (m—1) d'
(d+1 (m +d)
(d+1)! (m + d)!
_ma|  (@—1) (m+d—2)
(d+1)! (m + d)!
(d—(m—1))! d!
(d+1) (m+d)
o (d+1)d (m+ d)(m +d - 1)
(d+1)...(d=(m—2)) (m+d)...(d+1)

Transform the last determinant in the following way. Adding 1st row to
2nd one we get the squares in the 2nd row. But before, adding 2nd row
twice to 3rd row and then, adding the obtained squares in the 2nd row to
the new 3rd one, we will have cubes in 3rd row. This process could be
extended also to get the powers in each row, thus, we get

d+1 d+2 ... m+d
et — o (d+1)2 (d+2)? ... (m+d)?
€ =cC

d+1)™ (d+2)™ (m+d)™

=c™(d4+1)...(m+d)V(d+1,...,m+d),

where here and in the sequel V(z1,...,x,) denotes Vandermonde’s deter-
minant formed by the numbers z1,...,x,. So, the matrix V is invertible.
Such is also V — ahV; — Ah2V; for small h.
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7.2 Stability of the method

We have proved that for sufficiently small ~ the matrix V — ahV; — Ah2Vs
is invertible. Therefore the equation (7.7) can be written as

a1 =V Vo+ Wy, +7,,, n=1,...,N—1, (7.10)

with W = O(h) and r, = O(h?). Note that the equation (7.9) could be
treated as we will do with the equation (7.7) and we could get the same
results.

As in the previous sections we define stability as the boundedness of
approximate solutions in uniform norm when the number of knots increases.
It means that we need to valuate the roots of equation det(Vp — uV') = 0.
Denote v = 1 — . Based on results from Chapter 4, we already have the
next result.

Proposition 7.2 Form =1

1. If d =1, then the method is stable if and only if 1/2 < ¢ <1;
2. If d = 2, then the method is stable if and only if c = 1;

3. If d > 3, then the method is unstable for all ¢ € (0,1].

In the following we assume that m > 2 and ¢ = 1. Recall that we
assume m < d. Then

det(Vo — uV) =
v 1 1 1 ... 1 1 1
0 v 2 3 d  d+1 m+d

vC

First, we expand the determinant by the first column. Then, writing v
outside of the determinant we continue the transformation of det(Vy — uV')
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with

m) pymtl

20,

m+d

d+1

)
)
)

<m—|—d

(
(

<d+1
vV
d
d
2

m-+d
m+d
2

d+1
d+1
2

(o)

m—+d
d

d+1
d

(

= =

+ = +

g g
N—
N

— —

+ 3+

3 3
N——

A

™~

A_V

g

—

o +

S

m+d
2

(
(

)
)

d+1
2

(

)

(
(

)
)

m+1 m+ 2
2 2
m! ™y det G (v),

(
(

m+d
m

m+ 2 d d+1
m m m

m—+1
m

(—1)md+2)g1
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where

Gam (V)

(7.11)

Denoting k = d — m, write (7.11) as

rmskom (V) = V™ + bV A o (7.12)

The transformations indicated in the proof of Proposition 7.1 allow to find
the coefficient ay, ,, from (7.11) as

g = (1)

d+1 d+2 ... m+d

d+1  d+2 m+d
@ @y (m + d)?
(=1) k2‘ 1
d+D™ (d+2™ ... (m+d)m
_(_1)mk(d+‘3 :::er)V(dJrl, s+ d)
_(_1)mk(d+12)‘ ::fg‘*d)( _ 12!
(—1)m (m;: d> = (—1)mk <m; d>. (7.13)



Let us now discuss about the different choices of parameter m and d.
First, assume that d = m. From (7.11) we have

m—+ 1 m + 2 2m

m—+1 m 4+ 2 2m

o () () ()
m+1 ...... m+2 .......... 2m

") (a) - G
—WV(m+1,...,2m);&O.

We see that the solutions of the equation det(Vy — uV') = 0 are only v =0
(i.e. p=1) and p = 0. We have proved the following

Theorem 7.1 For d = m, the collocation method is stable.

Let us now look at the case d = m + 1. Here

m+1

(")

m + 2
m + 2

)

(

2m+1
2m+1

)

¢m+1,m(7/) =

=a1mV + bl,mu

with ) .
m +
al,m = (_1)m< >
m
Taki 1 m-+1 ‘
a = =
mng v 41 we ge
(m+1)...(2m+1)
Gmr1m (1) = . mE 1) Vim+1,...,2m+1)
2m +1
= = (=" .
<m+1> ( ) al,m

On the other hand,
¢m+1,m(1) = Q1,m + bl,ma
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thus,
bim=(—1D"a1,m —aim=((—1)"—1) aim.

Hence, the polynomial ¢y,+1,m () has the root v =1 — (—1)™. This means
that det(Vp — V) = 0 has the corresponding root u =1 or p = —1. We
have proved

Theorem 7.2 For d =m + 1, the collocation method is stable

In the next case we need an auxiliary result. Suppose ¢ < p. Let us
consider

Wp.ak(V) =av+0b (7.14)
P p+1 p+k p+k+2 p+q
D p+1 p+k p+k+2 +q
2 2 2 2 2

JED N G NGy R |
(TR (e ()

p+1 ... p+k p+k+2 ... pHgq

a=(-1)"" <p;r 1>

B 6 6 - 6

:(_1)q—1(p+1)...(p+k)(p+k+2)...(p+q)‘

21 . (¢ —1)!

Vip+1,....p+kp+k+2,....0+q).

Then

Similarly

ofP) 4y R +E+2).. . (Pt
q 2!...q!
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Note that

V(p7"'7p+k’p+k+2"’"p_l—q)
q!

= Vip+1,....p+kp+k+2,...

k+1

Wy qs(0) = b = @ e @

(p+1)...(p+k)p+tk+2)...(p+9q)

Thus,

2!...¢!

Vip+1,...,p+k,p+k+2,....p+q)

[ ()

Now for the case d = m + 2 we have

2
¢m+2,m(y) = azmV” + b2,m7/ + C2m-

P+ q).

(7.15)

We will calculate explicitly the coefficients as y,, b2, and ca . Actually,

the coefficient ag , is already found in (7.13) as

_(2m+2
a2m = m 4+ 2 .
From the representations (7.11) and (7.12) we find

m+1 m+ 2 m+3

O () () ()

m+1 m + 2 m+ 3 2m + 2
€2m = m m m m
0 m+ 2 m—+ 3 2m + 2
m+ 1 m+ 1 m+ 1
0 0 m+ 3 2m + 2
m+ 2 m+ 2
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Intending to develop the determinant (7.16) by last row, we see that the

2 2
coefficient of the entry ( 721:2 ) will be
2m+1
| R

The other minors occurring in the development are of kind W), ; 1(0), where
Wh.q.k is determined in (7.14), and they could be evaluated by the formula
(7.15). The calculations, for m even, give

= <277T N 22> - (27: N 21> (m — 1)!((37:?1??!(2“1 +1)

+

) (2m +2)
m+ 2 L(m—2)!(m+1)!(2m)-2!

(o
(277:+2>m 2 (m —3)! (77(?211;3!2()2m—1).3!+"'
(i

m+ 3 (2m +2)!
> 1!(m+1)!(m+3)(m—1)!

B Lot (o

- D)t (o ey @0

and, for m odd, we have
2m+2)! [ /2m+2 1 2m+1\ 1
szi - - -
> m+1)! [\m+2/)m+10I0l \m+2/)m!!

O A= B

Denote by py, the expression in brackets in (7.18). From (7.17) and (7.18)
we get, for m odd,
(2m + 2)!

(m+1)! Pm

Com =
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and, for m + 1 even (then m is odd),

(2(m+1)+2)!< ) (2m + 4)!
c = — = .
2 2
Denote ¢, = c2.m/a2,m and recalling that ag,, = < m—:—2 >, we have for
m
m odd 0 2! ( %)l m!
m+ 2)! m—+2)im!
= = 2)m! pp,.
= O P m )y mie,
Similarly, for m + 1 even,
m+1
Gm+1 = —(m + D)lpy = Tt I

We have proved the following

Proposition 7.3 For m odd (then m + 1 is even), it holds

m—+1

m+1 = —m qm-

Next, for m even, we calculate ¢,,. Using (7.17) we find

Gm = ZZ: N (m—lirl)! {‘(?)MﬂL (T)W

To give an explicit value to the right hand side of (7.19) we need following
results.

Lemma 7.1 It holds

dm (1 m
—(==-1 = (=1)™m!. 2
w(G-1) | -, (7.20)
Proof. For m =1 we have
1 ! 1
<—1> = —= =—1= (-1t 1,
€ =1 L7 | p=1

which gives us the basis of induction. Assume that the formula (7.20) holds
for m — 1. We will show that then it holds for m. Now, using the Leibniz
formula

(u) ™ = oMy 4 (T) wmUy’ 4 <rg> W™Dy ™,
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we have

C;iimm (913 = 1>m = dd::n__ll [m (al; - 1) . <_3712)]
S(E=TENIE
G E D))

Except the first term, the derivatives from 1/x — 1 will contain positive
powers of it and, thus, give at x = 1 zero terms. Therefore, we get

L E A R I En e
dz™ \ x —1 dzm=1 \ x2 »

— m(=1)" " (m — 1)(=1) = (=1)™m!,
which completes the proof.

z=1

Lemma 7.2 It holds

artt /1 mn 1
Proof. For m =1 we have
1 "
<—1> = =2=(-1)%-1-2
x =1 T g=1

as a basis of induction. Again, by Leibniz formula, we find

LSS e e
AN 1.21—m dz™ \ x x?
Loy N2

1/)dxm=1 \z 3

Now using (7.21) in the first term and Lemma 7.1 in the second one (other

r=1
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terms are zero at x = 1), we get

artt /1 m
d$m+1 (ZL‘ B 1)

— m((=1)"(m — Lmi(~1)

r=1

+m(=1)"™ " (m —1)!-2)

= (=)™ m(m +1)!.
The proof is complete.

Let us calculate, for m even, the left hand side of (7.21) otherwise:
artt /1 m
L (==
dxm+1 <‘T ) =1
_dm ) (N m (TR fm T (m
~damtl |\ 0 ) \ = 1) \z o \m—-1)z m

Taking into account the last result, Lemma 7.2 and (7.19), for m even, we

get
1 amtl 1 m m
m = — -1 — 1!
0= Gy L (1) |, (e a) e 0

r=1

1 m!
= —— [(-1)™*! N - — 1)!
(m+1)! [( U mm 4 D= gy m )}
1 | |
Now, for m odd (then m + 1 is even), by Proposition 7.3 we have
+ 2 + 2
G =~ Gt = — o (=2(m + 1)) = 2(m + 2).

m+1 m+1

In consequence, we have proved the following

Proposition 7.4 For m even, g, = —2m and, for m odd, ¢, = 2(m+2).

Clearly, for m > 3, |¢gm| > 4 and the collocation method is unstable. If
m = 2, then ¢, = —4, i.e., vivs = —4, v; and vy being the roots of the
polynomial ¢42(v). Therefore, it is not possible to have v; = v, = 2 and
at least one of the solution of the equation det(Vp — uV) = 0 is located
outside of the unit circle. Thus, we have proved the following
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Theorem 7.3 For d = m+ 2, the collocation method is unstable.

Although the knowledge of ¢, = c2m/a2,m has allowed to establish the
instability of the method for d = m + 2, we may find explicitly the roots of
®m+2,m(v). These roots characterize quantitatively the unstable behaviour

2 2
of the method. We have already as ,, = < m—:—2 > and c2.m = ¢ma2,m. The
m

coefficient by ,, can be found as by, = Gmi2,m (1) —a2,m — c2,m. Developing
the determinant

¢m+2,m(1) =

by the last row and using the technics indicated in the proof of Proposition
7.1, we obtain

Grn+2,m (1) = m [<2mm+ 1> - <T> (2:: >

LYo e

Calculate the following derivative, using before the binomial expansion:

i () )L = o ()i,

On the other hand,

an ot o\ L
dx™ T 2

= (—=1)™m! . (7.24)
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Taking into account (7.22), (7.23) and (7.24), we obtain

Pmt2,m(1) = m(_l)mnlz! [an <<313 - 1>m ;2)]

=1
(2m + 2)!
- = ) 7.25
ml(m+2)l 2™ (7:25)
Therefore,
b2,m = ¢m+2,m(1) —a2.m — C2m = —a2mdm

and the roots of the polynomial ¢y, y2m (V) = a27m(y2 — gmV + Gm) are

V= (Qm + v Qm(Qm - 4))/2'

Thus, for m even, we get the roots
Vim = —m + y/m(m+2),
Vom = —m — y/m(m + 2)

Vi =m+ 2+ /m(m+ 2),

Vom =m~+2—/m(m+2).

and, for m odd,

The elementary analysis of the asymptotics implies

Proposition 7.5 In the case d =m + 2 it holds
for m even, vi,, — 1 and v, — —00 as m — 00;
for m odd, vy, — oo and vo ., — 1 as m — oo.

Let us now consider the general case d = m + k. As we have seen, the
polynomial ¢g (V) = Yk (V) = ak,muk—i—. ..+cp m has the main coefficient

g = (—1)" (m M d).

m

Denote here the maximal root by modulus of 1y, (V) by v4,, k. We have
already proved that, for m even, v,,2 — —oo and, for m odd, v, 2 — oo
as m — oo. We state the following

Conjecture For all £ > 2 it holds
for m even, v, , — —00 as m — 00;
for m odd, vy, , — 00 as m — oo.

This assertion could be proved, e.g., taking into account the behaviour of
Ym (V) as v — oo or v — —oo and showing that, for k even, 9, k1 (Vm i) >
0, and, for k odd, ¥, k+1(Vm,k) < 0. In the following table we present some
numerical results about the value of ¢, 3(vm 2) supporting the conjecture:
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m 2 3 4
Vin.2 -4.828 8.873 -8.899
VYm3(Um,2) | 9456 - 103 | 1.364 - 105 | 1.395 - 10°

m 5 6 7
Vi, 2 12.916 -12.928 16.937
VY 3(Um2) | 1.172-107 | 8.650- 107 | 5.852 - 10%

However, the validity of the conjecture yields the instability of the colloca-
tion method for all K = d —m > 2. This would be in complete accordance
with the results by H. N. Miilthei about the convergence of step-by-step
collocation for the Cauchy problem of ordinary differential equations (see
Section 1.1).

Another way to prove the instability for k& > 2 is to show that ¢y, /ag m >
2% But this would not characterize quantitatively the unstable behaviour
of the method as well as the conjecture.
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Chapter 8

NUMERICAL TESTS

8.1 First order VIDE

Consider the 1st order Volterra integro-differential equation

Y (t) = y(t) —I—/O y(s)ds — (cost — 3sint — e') /2 (8.1)

with y(0) = 1. This equation has the exact solution y(t) = (sint + cost +
e!)/2. As an approximate value of ||u||s We actually calculate

lglang OISI}f%}io ’un(tn—l + k‘h/lO)’.

The results are presented in following tables.

Case d =0, m =1 (linear splines)

N | 4 16 64 256 4096
c; = 1.0 [ 2.105018 | 2.059782 | 2.052299 | 2.050586 | 2.050062
c1 = 0.5 | 2.049933 | 2.050022 | 2.050027 | 2.050028 | 2.050028

Cased =0, m=2

N 4 16 64 256 4096
21:(1)'5 2.042611 | 2.049641 | 2.050004 | 2.050026 | 2.050028
2 = 1.
21:8'2 2.047681 | 2.049882 | 2.050018 | 2.050027 | 2.050028
2 =Y.
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Case d =1, m =1 (quadratic splines)

N | 4 16 64 256 4096
c1 = 1.0 | 2.055503 | 2.050359 | 2.050048 | 2.050029 | 2.050028
c1 = 0.5 | 2.047524 | 2.049863 | 2.050017 | 2.050027 | 2.050028
c1 =04 | 2.047418 | 2.049880 | 8.962233 | 2.69 - 1032 | 1.83 - 1065

Case d =1, m = 2 (Hermite cubic splines)

N 4 16 64 256

21 - [1)8 2.050006 | 2.050027 | 2.050028 2.050028
2 = L.
Zl - 8:; 2.049615 | 2.050001 | 2.050026 2.050027
2 = U.

g =02 2 28 142
. 0.5 2.043332 | 3.21-10° | 9.21-10 1.39-10

2 = U.

Case d =2, m =1 (cubic splines)

N | 4 | 16 | o4 256
c1 = 1.0 | 2.050148 | 2.050028 | 2.050028 | 2.050028
c1 = 0.9 | 2.049806 | 2.049999 | 5.773942 | 1.60-10%°
c1=0.5]2.054945 | 3.30-10* | 7.30- 1038 | 2.77-10'83

For piecewise polynomial splines we look at the equation
t
Y (t) = ay(t) + /\/ y(s)ds — (cost — 3sint — ') /2 (8.2)
0

with y(0) = 1, but with different choices of parameters o and A. The results
are presented in following tables.

Case m = 2

a=1,A=1
N | 4 | 16 | 64 | 256 | 1024
21 :8; 1.81554 | 1.77374 | 1.76551 | 1.76302 | 1.76254
2 = .
21 f(l)'g 1.78039 | 1.76705 | 1.76353 | 1.76264 | 1.76242
2 = .
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a=1A=-1

N 4 16 64 256 1024
e =0.2 5.01 12.76 | 1.27-10% | 1.32.10% | 9.82.10%"
Cy = 0.5
21 - 8'? 3.71489 | 3.59568 | 3.56853 3.56193 3.56029
2 = U.
21 - (1)'3 3. 48369 | 3.52181 | 3.55030 3.55739 3.55916
2 = L.
Case m =3
a=1, =1
N 4 16 64 256 1024
c1 = 0.1
o =02 | 1.64625 | 1.66144 | 1.66684 | 1.66827 | 1.66863
C3 = 0.3
c1 = 0.2
co =0.5 | 1.65331 | 1.66493 | 1.66779 | 1.66851 | 1.66869
C3 = 0.9
a=2, A=-2
4 16 64 256
Ccl1 = 0.1
e =102 58.07 | 9.08-10% | 7.11-10%7 | 2.79 - 10153
C3 = 0.3
Ccl1 = 0.2
co=0.5 | 3.82646 | 3.78772 | 3.77323 3.76931
C3 = 0.8
c1 = 0.3
o =06 | 3.02214 | 2.56511 2.56229 2.56247
C3 = 0.9

We can see different dependence of the stability on the cases @, = 0 and
Qm # 0 (depending on the choice of o and ), as well as on different choices

of C;.

8.2 Second order VIDE

We consider the 2nd order integro-differential equation

y'(t) = y(t) +y/'(t) + /0 y(s)ds — sin(t) — cos(t) — €
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with ¢/(0) = 1,4/(0) = 1 on the interval [0, 1]. This equation has the exact
solution y(t) = (sint + cost + €')/2 (which was also the solution of (8.1)).
The results are presented in following tables.

Case d =1, m =1 (quadratic splines)

N | 4 | 16 | 64 | 256 | 409
c1 = 0.5 | 2.053593 | 2.050242 | 2.050041 | 2.050028 | 2.050028
c1 =1.0 | 2.112955 | 2.060136 | 2.052332 | 2.050591 | 2.050062

Case d =1, m = 2 (Hermite cubic splines)

C 7 | 2047625 | 2.049880 | 2.050018 | 2.050027 | 2.050028
2 — U.
21:(1)'8 2.042264 | 2.049630 | 2.050004 | 2.050026 | 2.050028
o = 1.

Case d =2, m =1 (cubic splines)

N | 4 16 64 256 | 512
¢ = 0.4 ] 2.047252 | 2.049817 | 61.720406 | 1.60 - 1033 | 1.20 - 1077
c1 =0.5 | 2.047590 | 2.049861 | 2.050017 | 2.050027 | 2.050027
c1 = 1.0 | 2.055555 | 2.050364 | 2.050048 | 2.050028 | 2.050028

Cased=2,m=2

=021 049254 | 7.65-10% | 2.89- 1013 | 1.21 10792
Cy = 05

21 - 8'?7’ 2.049935 | 2.050027 | 2.050028 | 2.050028
2 — U.

? = (1)'8 2.050015 | 2.050028 | 2.050028 | 2.050028
2 — 1.

8.3 Collocation with multiple nodes for first order
VIDE

We explore the equation

y'(t) = y(t) + /Ot y(s)ds — (cost — 3sint — ') /2 (8.4)

with y(0) = 1. The results are presented in following tables.
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Cased=1,m=1

N 4 16 64 256
c=0.21]2051823 | 1.86-10% | 5.86 - 10%® | 9.07 - 1014
c=0.7 | 2.049380 | 2.049953 | 2.050022 | 2.050027
c=1.0 | 2.055503 | 2.050359 | 2.050048 | 2.050029

Cased=2,m=1

N 4 16 64 256
¢=0.5 | 2054945 | 3.30-10* | 7.30 - 10% | 2.77 - 101
c=0.9 | 2.049805 | 2.049999 | 5.572743 | 1.61-10%
¢=1.0 | 2.050148 | 2.050028 | 2.050028 | 2.050028

Cased =2, m=2

N 4 16 | 64
c=0.2|60.572511 | 1.34-10%7 | 3.59 - 10137
c=0.5| 2.047744 | 1.73-10% | 1.02- 105!
c=1.0| 2.050016 | 2.050027 | 2.050028

Cased=3, m=1

N 4 | 1. | o4
c=0.2 | 73.516030 | 4.85-10%° | 1.30- 10
c=0.5| 2.084259 | 4.27-10" | 1.03-1073
c=1.0| 2.049860 | 2.267400 | 2.94-10%*

Cased =3, m=2

N 4 | 16 64
c=0.2 ] 5.304158 | 1.81-10%° | 7.00 - 10
c=0.5 2049929 | 1.95-10"2 | 2.11-10%
c=1.0 | 2.050027 | 2.050027 | 2.050027

Cased=4, m=1

N 4 | 1. | o4
c=0.2]11.640978 | 1.72-10%* | 2.12- 10180
c=0.5| 2.049464 | 9.87-10" | 1.20- 10100
c=1.0| 2.050028 | 61.283346 | 2.38-106

From these numerical examples we can observe a good conformity in the
preceding sections and corresponding results given in this section.
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KOKKUVOTE
Splain-kollokatsioonimeetodi stabiilsus Volterra
integro-diferentsiaalvorrandi korral

Integraalvorrandite teooria uurimine on tunduvalt intensiivistunud viimasel
paarikiimnel aastal. Vorrandite rakendusi voib leida erinevates eluvald-
kondades: meditsiinis, bioloogias, majanduses. Praktikas esinevad inte-
graalvorrandid lahendatakse enamasti ligikaudselt ehk kasutades erinevaid
diskretiseerimismeetodeid. Erinevad diskretiseerimismeetodid on aga prak-
tikas rakendatavad vaid juhul, kui need on stabiilsed. Kéaesolevas dissertat-
sioonis on vaatluse all ssmmhaaval rakendatava splain-kollokatsioonimeeto-
di stabiilsus Volterra integro-diferentsiaalvorrandi korral.

Me iitleme, et splain-kollokatsioonimeetod on stabiilne, kui teatava test-
vorrandi ligikaudne lahend on tokestatud protsessis, kus iihtlase vorgu
solmede arv kasvab.

Kaéesolevas doktoritoos on vaatluse all nii esimest kui ka teist jarku
Volterra integro-diferentsiaalvorrandid. Selgub, et kasutades splain-kollo-
katsioonimeetodit, tekib iileminekul {ihest osaldigust teise teatav iilemineku-
maatriks ning stabiilsuse tingimused on leitavad vastava iileminekumaatrik-
si omavaartuste abil.

To606 esimeses peatiikis antakse liihike iilevaade integraalvorrandite teoo-
ria ajaloost. Naidatud on, kuidas saab esimest jarku Volterra integro-
diferentsiaalvorrandi lahendamist taandada Volterra integraalvorrandi la-
hendamisele ja teist jarku integro-diferentsiaalvorrandi lahendamist esimest
jarku vorrandi lahendamisele.

Selgub, et teatud konstantse tuumaga testvorrand, mida kasutatakse
stabiilsuse uurimisel, teisendub taandamisel mittekonstantse tuumaga vor-
randiks. Seega tulemused, mis on saadud integraalvorrandite korral, ei ole
otseselt rakendatavad integro-diferentsiaalvorranditele.

Teises peatiikis on kirjeldatud kasutatavat splain-kollokatsioonimeeto-
dit nii esimest kui ka teist jarku integro-diferentsiaalvorrandite korral.

Kolmas peatiikk annab esmalt liithikese iilevaate tulemustest, mis on
saadud Volterra integraalvorrandi stabiilsuse uurimisel. Teise punktina on
toodud vajaminevad tulemused lineaaralgebrast.

Neljandas peatiikis on vaadeldud kollokatsioonimeetodi stabiilsust, kus
kasutatavad splainid on vahemalt pidevad. Néidatud on stabiilsustingimus-
te vaheline seos esimest jarku integro-diferentsiaalvorrandi ja integraalvor-
randi korral. Moningatel juhtudel on saadud tdpsed tulemused, mis néita-
vad stabiilsuse soltuvust kollokatsiooniparameetritest.

Viiendas peatiikis on vaadeldud kollokatsioonimeetodi stabiilsust esi-
mest jarku integro-diferentsiaalvorrandi korral, kus kasutatavad splainid on
tiikiti poliinomiaalsed. Sellisel juhul soltub meetodi stabiilsus ka testvor-
randi parameetritest.

Kuues peatiikk kasitleb kollokatsioonimeetodi stabiilsust teist jarku vor-
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randi korral. Naidatud on stabiilsustingimuste vaheline seos esimest ja teist
jarku integro-diferentsiaalvorrandite korral.

Seitmendas peatiikis uuritakse meetodi stabiilsust kordsete kollokat-
sioonisolmede korral. Lahemalt on vaadeldud juhtu, kui meil on vaid iiks
kollokatsiooniparameeter, mille kordsus on m.

T66 kaheksandas peatiikis on toodud rida numbrilisi eksperimente, mil-
lest selgub, et numbrilised tulemused on téaielikus kooskolas teoreetiliste
tulemustega.
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