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INTRODUCTION 
Sensing changes in the environment and rapidly responding to them is the key 
for bacterial survival. One of the most important regulatory systems, the 
stringent response, is orchestrated by alarmone nucleotides guanosine 
pentaphosphate, pppGpp, and guanosine tetraphosphate, ppGpp, collectively 
named (p)ppGpp. Regulation by alarmone nucleotides is one of the core 
processes regulating bacterial transcription, translation and replication.  

Discovered in 1960s by Cashel and colleagues, these products of GTP and 
GDP, first called magic spots, rapidly accumulate during amino acid starvation 
in Escherichia coli. Under these conditions deacylated tRNA enters the riboso-
mal A-site where it is sensed by an enzyme RelA – a representative of so-called 
RelA/SpoT Homologue (RSH) family of proteins. Despite being discovered 
almost four decades ago, the molecular mechanism of RelA is still poorly 
understood. Specifically, the relationship between RelA binding to the ribosome 
and ppGpp synthesis is a matter of debate.  

This thesis contributes to two aspects of our understanding of RelA’s mech-
anism of action. First, using single molecule microscopy, technique developed 
for studying RelA and the diffusive behavior of mitochondrial channel TOM40 
(Paper I) in living cells, I have followed RelA’s diffusion in bacteria under con-
ditions of amino acid limitation, which resulted in a formation of so-called 
‘hopping’ model of RelA’s catalytic cycle (Paper II). Second, using biochemi-
cal system from purified components, I have contributed to the discovery of 
RelA’s activation by its product, ppGpp (Paper III). 
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REVIEW OF LITERATURE 
1. Protein synthesis in bacteria 

Proteins take part in almost every process of life including enzymatic catalysis, 
maintenance of cellular structure, immune response, cell signaling and many 
others. The primary amino acid (AA) sequence of the protein defines its 3D 
structure and therefore functions. The AA sequence of a protein is encoded in 
DNA, which is transcribed into the messenger RNA (mRNA) and then trans-
lated into the protein by the ribosomes (Crick 1970). Ribosomes are large and 
complex molecular machineries composed of both protein (ribosomal proteins, 
r-proteins) and RNA (ribosomal RNA, rRNA) molecules. Translation of the 
information from mRNA to proteins by the ribosome is aided by aminoacylated 
transport RNAs (tRNA) acting as adapters. Details of structure, size and rRNA 
sequence of the ribosomes differ between bacteria, archaea and eukaryotes, 
however, the general process of protein synthesis is well conserved among the 
different domains of life (Fox 2010). In bacteria, the 70S ribosome is composed 
of small (or 30S) subunit and large (or 50S) subunit (Figure 1). In Escherichia 
coli, the workhorse of the molecular biology, the 50S subunit consists of 5S and 
23S rRNA molecules and 33 proteins (L1-L36, with L designating large sub-
unit). The small 30S subunit is composed of single 16S rRNA molecule and 21 
proteins (S1-S21, with S designating small subunit) (Czernilofsky et al. 1974). 
 
 

 
Figure 1.  The molecular architecture of bacterial ribosome. The small (30S) and the 
large (50S) ribosomal subunits form a hetero-dimer during active translation. mRNA 
contains codons corresponding to the sequence of the AA needed for protein synthesis. 
The ribosome have three tRNA binding sites, named A (acceptor site, binds incoming 
AA-tRNA), P (peptidyl, holds the tRNA carrying the growing polypeptide chain) and E 
(exit, forms the exit path for deacylated tRNA). 

 
 

The small ribosomal subunit is translating the information from mRNA into AA 
sequence while the large subunit is conducting the catalysis of the peptide bond 
formation through the transpeptidation reaction (Carter et al. 2000). The three 
tRNA binding sites, A-, P-, and E-site act as a conveyor belt sequentially pass-
ing the tRNAs through the ribosome. 
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Protein translation is complex and highly regulated process divided into four 
steps: initiation, elongation, termination and recycling (Figure 2). At each of the 
steps, the ribosome is assisted by a specific set of protein and RNA molecules. 

 
 

 
Figure 2. Schematics of the bacterial ribosomal functional cycle. Bacterial translation can 
be divided into four main steps: initiation (light blue solid arrow), elongation (dark blue solid 
arrow), termination (light brown solid arrow) and recycling (green solid arrow). Initiation is 
the first and most conserved stage in bacterial translation and is facilitated by three initiation 
factors (IFs) (green circles and ellipses) IF1, IF2 and IF3. The 70S complex formed during 
initiation enters the elongation cycle upon the arrival of the ternary complex (T3) aminoacyl-
tRNA:EF-Tu:GTP to the ribosomal P-site. The complex is dissociated with the hydrolysis of 
guanosine triphosphate (GTP) (blue circles) resulting in EF-Tu (orange ellipse) bound to 
guanosine diphosphate (GDP) (brown square) leaving the ribosome and further recycled to 
active EF-Tu:GTP by elongation factor EF-Ts (orange pie shape). EF-P (yellow) is a protein 
factor that stimulates the accommodation of proline tRNA and consequent transpeptidation 
and is critical for efficient translation of proteins containing polyproline stretches. The nas-
cent peptide is translocated from A- to P- site by translational GTPase EF-G (orange/purple 
ellipse) in a GTP-dependent manner. Upon reaching stop codon, translation enters in termi-
nation phase involving release factors (RFs) (red circles); RF1 and RF2 recognize the stop 
codon and cleave off the polypeptide, and GTPase RF3 contributes to processivity and 
accuracy of the process. After release of the newly synthesized protein, ribosome enters the 
recycling stage, which involves splitting of 70S ribosome into subunits and preparation of 
for a new round of initiation facilitated by RRF (purple pentagon) and EFG (orange/purple 
ellipse). 



11 

1.1 Initiation 

The accurate recognition of start position – the initiation codon – on the mRNA 
is the first step in translation initiation that defines the open reading frame, 
ORF, encoding the protein chain. Therefore, precise initiation is the key to cor-
rect translation and is tightly regulated by numerous protein factors. In bacteria, 
there are considerably fewer components involved in the initiation than in 
Eukaryotes and Achaea. The mRNA (Figure 3), containing information for 
synthesizing protein is loaded onto ribosome and the initiation codon is recog-
nized by the aminoacylated and formylated initiator tRNA (fMet-tRNAi). The 
formation of a pre-initiation complex from 30S subunit, mRNA, and fMet-tRNAi is 
the first step in bacterial translation. Formation of the pre-initiation complex is 
regulated by three initiation factors IF1, IF2 and IF3 and is guided by sequence 
signals encoded in mRNA: the initiation codon AUG and the Shine-Dalgarno 
(SD) sequence, SD (Gualerzi and Pon 2015). 

The SD sequence of canonical mRNAs (Figure 3) interacts with the anti-SD 
sequence of the 16S rRNA to maintain IF3 in the complex (Lee et al. 1996). 
The efficiency of the SD sequence is strongly dependent on its spacing from the 
start codon as well as the base-pairing potential with the anti-SD sequence 
(Ringquist et al. 1992). The SD sequences spacing can vary from 5 to 13 bases, 
with its optimal distance of 8 to 10 bases for E. coli genes (Chen et al. 1994). 
However, most SD sequences have small deviation from the GGAGG core 
(Sengupta et al. 2001). Strong SD sequence can compensate a weak start codon 
and counteract mRNA secondary structure (de Smit and van Duin 1993). 

 
 

 
Figure 3. Schematic representation of bacterial mRNA. A typical bacterial mRNA 
consists of 5’ untranslated region (UTR), which includes Shine-Dalgarno sequence, 
ORF (initiating with a start codon and terminating with one of the stop codons: UAG, 
UAA and UGA) and 3’-UTR. The Shine-Dalgarno sequence anchors the ribosome on 
the mRNA positioning the start codon in the P-site. 

 
As mentioned above, translation initiation in bacteria is controlled by three ini-
tiation factors: IF1, IF2 and IF3. IF2 is the largest – and, arguably, the most 
important – initiation factor, since specific contacts between IF2 and  
fMet-tRNAi are crucial during the translation initiation. These interactions 
determine the precision in the selection of the correct initiation site of mRNA 
and in the establishment of the first peptide bond (La Teana et al. 1996, 
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Guenneugues et al. 2000). IF2 belongs to translational GTPase protein family 
that binds and hydrolyzes GTP (Atkinson 2015). The GTPase proteins form a 
large family of enzymes containing a highly conserved G domain that 
hydrolyzes GTP to GDP and inorganic phosphate (Pi) (Scheffzek and Ahmadian 
2005). This reaction converts the GTPase from its active, GTP bound form, to 
inactive, GDP bound form and is regulated by GTPase-activating proteins 
(GAPs) (Ross and Wilkie 2000). The reverse reaction, turning the GTPase ‘on’ 
can be catalyzed by guanine nucleotide exchange factors (GEFs) (Cherfils and 
Zeghouf 2013), which displace the GDP from the GTPase, leading to its 
recharging with a new GTP molecule (Figure 4).  

 
 

 
Figure 4. The functional cycle of a GTPase. Active (green) and inactive (light blue) 
form of the GTPase bound to GTP (dark blue circle) and GDP, respectively. Regulation 
of the cycle is controlled by guanine nucleotide-exchange factor (GEF) (purple), which 
catalyze the exchange of GDP for GTP, and GTPase-activating proteins (GAP) (red), 
which increase the rate of GTP hydrolysis to GDP. For several GTPases involved in 
translation, including IF2, GEF is not needed and the nucleotide exchange occurs spon-
taneously. 

 
 

After associating with the 30S subunit, in a complex with GTP, IF2 binds  
fMet-tRNAi and transfers it into hybrid P/E site (Milon et al. 2010). Ribosome 
subunit association activates IF2 GTPase activity, leading to GTP hydrolysis to 
GDP and Pi, which, in turn, induces conformational change leading to IF2 
release and formation of 70S initiation complex (Antoun et al. 2003). 
Cryoelectron microscopy (Cryo-EM) studies have revealed the molecular 
details of IF2 binding to 30S subunits and 70S IC, allowing direct assignment of 
function to individual domains of the protein (Allen and Frank 2007, Julian et 
al. 2011, Eiler et al. 2013). The G domain of IF2 is interacting with the 
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ribosome, contacting functionally important element, Sarcin Ricin Loop, SRL, 
that is involved in regulation of the GTPase activity. The N-terminal domain 
contributes to the binding with the 30S subunit while the C-terminal domain 
interacts with the initiator tRNA, directly contributing to its selection (Krafft et 
al. 2000, Allen and Frank 2007) (Figure 5 A, B and C). 

 
 

 
Figure 5. Domain topology of translational GTPase IF2 and the structure of bacte-
rial initiation complex. A) Domain topology of E.coli IF2. While in most translational 
GTPases (trGTPases) the G-domain is situated at the N-terminus, in IF2 it has an addi-
tional N-terminal extension. The N-terminal region (N1, N2 and G1) contributes to the 
binding of IF2 to the 30S subunit. The GTP binding domain is followed by the classical 
domain II (G3) conserved amongst all trGTPases. Switch II undergoes conformational 
changes upon GTP/GDP binding, transitioning the GTPase’s from the GDP to the GTP 
state. C-terminal region consists of domain III (C1) and domain IV (C2), which inter-
acts with the 3’-end of the tRNA. B) Crystal structure of IF2 (adapted from Simonetti et 
al. 2013). Domains are annotated and color-coded: N-terminal region, blue; GTP bind-
ing domain, green; G3 domain, yellow and C-terminal region, orange. Switch II region 
is annotated and indicated in light green. C) Scheme of the late steps of 30S IC for-
mation. The specific recognition of fMet-tRNAi (yellow) by IF2 C-terminal (orange) 
contributes to its selection and plays fundamental role during translation initiation in 
bacteria. 
 
 
Biochemical and structural studies by cryo-EM (Julian et al. 2011, Simonetti et 
al. 2013, Sprink et al. 2016) have shown that initiation factors IF1 and IF3 assist 
IF2 in selection of initiation tRNA and initiation codon (Antoun et al. 2006, 
2006, Milon et al. 2010, Pavlov et al. 2011, Milon et al. 2012). IF1 binds to the 



14 

decoding part of the A-site blocking initiator tRNA from binding and directing 
it into the P-site (Carter et al. 2001). Additionally, the factor stimulates 
ribosome subunit dissociation and IF2 binding affinity (Moazed et al. 1995, 
Dahlquist and Puglisi 2000). IF3 stimulates 70S dissociation (Subramanian and 
Davis 1970) and prevents the ribosomal subunit reassociation before correct 
initiation has been accomplished (Kaempfer 1972).  Furthermore, it directs 
fMet-tRNAi into the P-site and stimulates the P-site codon-anticodon 
interactions, thus promoting the formation of the correct 30S IC (Meinnel et al. 
1999, Antoun et al. 2006) .  

Once 70S initiation complex is assembled and initiator tRNA is accommo-
dated, the initiation factors are released from the ribosome (Antoun et al. 2003) 
and the ribosome proceeds into elongation (Blaha et al. 2009).  

 
 

1.2 Elongation 

Precise decoding of the mRNA is crucial for protein translational fidelity and 
stability. Production and aggregation of misfolded proteins can be very toxic for 
the cell (Bucciantini et al. 2002), therefore there is a solid evolutionary pressure 
for production of correctly synthesized proteins, especially strong in the case of 
highly expressed proteins (Drummond et al. 2005). 

In the beginning of the elongation, the ribosome is in the post-translocation 
state with fMet-tRNAi in the P-site and vacant A-site ready to accept the ternary 
complex (T3) formed by AA-tRNA and EF-Tu:GTP (Moazed and Noller 1989). 
Initial contact between the T3 and the ribosome is mediated via the interaction 
of EF-Tu and the 50S subunit (Schmeing et al. 2009), followed by tRNA 
recognition of the codon by the anticodon of the tRNA. After AA-tRNA enters 
A-site, the peptide bond is formed, catalyzed by the ribosome itself (Leung et 
al. 2011). The initial binding of the complex is dependent on the presence of 
ribosomal protein L7/L12 suggesting that EF-Tu interaction with L7/L12 
endorses ternary complex binding to the ribosome (Kothe et al. 2004). The for-
mation of the peptide bond is characterized with the movement of tRNAs into 
hybrid A/P and P/E sites and by intersubunit rotation (Agirrezabala et al. 2008, 
Julian et al. 2008).  

The process of transpeptidation is characterized by exceedingly low error 
frequency in translation (10-3–10-4) (Kurland and Gallant 1996), which is 
achieved by utilizing a two-step selection process (Rodnina and Wintermeyer 
2001).  During the first step, the initial selection, a codon-anticodon pair is 
formed by binding T3 to the ribosome. The correct codon-anticodon pairing 
leads to a stronger binding: if codon does not match anticodon, the binding 
affinity of the tRNA remains low and the ternary complex falls off 
(Ramakrishnan 2002). Exceedingly low intrinsic GTPase activity of EF-Tu is 
highly induced when tRNA anticodon matches a codon of the mRNA on the 
ribosome (Sedlak et al. 2002), and the AA-tRNA is selected again during the 
so-called proofreading step. The GTP hydrolysis induces conformational 
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change in EF-Tu:GDP complex leading to low AA-tRNA affinity that induces 
dissociation from the ribosome (Yokosawa et al. 1975). EF-Tu:GDP is further 
recycled to active EF-Tu:GTP by elongation factor EF-Ts (Wang et al. 1997). 

Ribosome-catalyzed transpeptidation has similar kinetics for most of amino 
acids. An important exception is proline, which has considerably slower 
transpeptidation kinetics (Pavlov et al. 2009). Recent findings demonstrate that 
the translation of a specific subset of mRNAs in bacteria requires elongation 
factor P (EF-P) (Doerfel et al. 2013). EF-P prevents the ribosome from stalling 
during the synthesis of proteins containing repeated proline residues (Ude et al. 
2013, Woolstenhulme et al. 2015). It is shown that EF-P binding site overlaps 
peptidyl transfer center (PTC), which suggests an important role for EF-P in the 
modulation of specificity of peptidyltransferase (Blaha et al. 2009). 

After transpeptidation the elongation factor G (EF-G) catalyzes so-called 
translocation of the peptidyl-tRNA into P-site and deacylated tRNA into E-site 
(Moazed and Noller 1989, Zhou et al. 2014). The mRNA shifts correspondingly 
in order for a new codon to be presented in the A-site (Spirin 1985). The 
elongation cycle continues until the full-length protein is synthesized and ribo-
some reaches one of the stop codons. 

 
 

1.3 Termination and recycling 

When one of the three termination codons (UAA, UAG or UGA) meets the A-
site, protein synthesis is stopped and translation enters to termination phase. 
Proteins known as release factors bind to the ribosome and induce hydrolysis of 
the ester bond connecting protein with tRNA, allowing the protein to exit the 
ribosome. 

During termination the peptide attached to P-site tRNA is released by the 
class 1 (RF1 and RF2 in bacteria) assisted by class-2 release factor, trGTPase, 
RF3 (Song et al. 2000, Zaher and Green 2011, Koutmou et al. 2014). Class 1 
factors bind directly to the ribosome, recognize the stop codons in A-site and 
promote hydrolysis of the ester bond between the polypeptide and tRNA 
(Brown and Tate 1994). UAG stop codon is recognized by RF1, UGA by RF2 
and UAA by both factors (Scolnick et al. 1968).  

The role of the translational GTPase RF3 is controversial. It was first shown 
to promote dissociation of class-1 factors from the ribosome (Freistroffer et al. 
1997, Zavialov et al. 2001). However, recent studies suggested that RF3 is 
involved mainly in the quality control of protein synthesis rather than in the 
recycling phase (Zaher and Green 2011).  

Upon completion of the termination step, post-termination complex consists 
of 70S ribosome, mRNA and uncharged tRNA in the P-site (Hirokawa et al. 
2002). A specialized ribosome recycling factor (RRF) and EF-G disassemble 
the post-termination complexes and dissociate the ribosome into 30S and 50S 
subunits (Hirokawa et al. 2005, Zavialov et al. 2005). IF3 replaces the deacyl-
ated tRNA, releases the mRNA (Savelsbergh et al. 2009) and prevents subunits 
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from re-association, thus recycling ribosomes for a new round of translation 
(Subramanian and Davis 1970, Kaempfer 1972). 

 
 

2. Alarmone (p)ppGpp and The Stringent Response 

2.1 Physiological role of (p)ppGpp in bacteria 

The (p)ppGpp plays key role in the activation and regulation of the adaptive 
mechanisms that bacteria employ in order to accommodate to the adverse con-
ditions (Haseltine and Block 1973, Hauryliuk et al. 2015, Liu et al. 2015). Most 
of the knowledge about this mechanism is obtained from observations in E. coli, 
however, the enzymes involved are widespread in almost all species of bacteria 
and plants (Atkinson et al. 2011). 

 
 

Figure 6. ppGpp synthesis and degradation. Guanosine tetraphosphate (ppGpp) (in 
red) formation by RelA from ATP and GDP /GTP nucleotides and dephosphorylation to 
GDP/GTP and inorganic phosphate, PPi, by SpoT. 

 
 

ppGpp and pppGpp are synthesised by RelA/SpoT Homolog (RSH) enzymes 
(Figure 6) (Atkinson et al. 2011). The large multi-domain proteins RelA and 
SpoT that gave a name to the protein family RelA-SpoT-Homologue, were the 
first proteins historically described that are involved in both synthesis and 
degradation of (p)ppGpp. The two proteins have common evolutional origin 
from an ancestral bifunctional ribosome-dependent Rel protein (Mittenhuber 
2001, Atkinson et al. 2011). 
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Figure 7. Schematics of (p)ppGpp synthesis and degradation by RSH enzymes.  In 
bacteria, starvation signals can trigger activation of the stringent response via RelA. 
RelA is activated at the ribosome when translation is halted due to the entry of an 
uncharged tRNA into the A-site.  

 
 

RelA has pronounced, ribosome-dependent (p)ppGpp synthesis activity 
(Haseltine et al. 1972) tightly regulated by the ribosome translational state. 
RelA is strongly activated by ribosomes containing deacylated tRNA in A-site 
while active translation holds RelA in enzymatically inactive state (Figure 7) 
(Haseltine et al. 1972, Wendrich et al. 2002). Activation of RelA upon amino 
acid starvation, accumulation of (p)ppGpp and the following rewiring of bacte-
rial physiology is referred to as ‘the stringent response’.  

Until recently, the lack of detailed RelA structure limited the understanding 
of mechanisms behind its binding and activation. It has been shown that RelA 
binds to the large subunit (Ramagopal and Davis 1974) and it is strongly 
dependent on the ribosomal protein L11 for activation (Knutsson Jenvert and 
Holmberg Schiavone 2005). Recent cryo-EM structures of the RelA:ribosome 
complex shows that the ribosome-bound RelA is stabilizing an unusual tRNA 
form, with the acceptor arm making contact with RelA far from its normal 
location in the peptidyl transferase center (Agirrezabala et al. 2013, Arenz et al. 
2016, Brown et al. 2016, Loveland et al. 2016). RelA bound to deacylated 
tRNA containing ribosome adopts distinct confirmation where the C-terminal 
domain is wrapped around a highly distorted A-site tRNA (Arenz et al. 2016, 
Brown et al. 2016). 

SpoT possess weak (p)ppGpp synthesis activity (Xiao et al. 1991), stimu-
lated by iron and fatty acid limitations (Vinella et al. 2005, Battesti and 
Bouveret 2006). However, SpoT has much stronger hydrolytic activity towards 
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(p)ppGpp (An et al. 1979). SpoT may sense many other kinds of starvation (car-
bon source, iron, phosphate, fatty acid and nitrogen) (Spira et al. 1995, Vinella 
et al. 2005) and is involved in surface attachment in E. coli by regulating 
ppGpp-mediated biofilm formation (Boehm et al. 2009). 

 
 

2.2 (p)ppGpp 

The main impact of (p)ppGpp production is regulation of transcription through 
binding and altering the activity of RNA polymerase (RNAP) (Reddy et al. 
1995, Ross et al. 2013). In E. coli (p)ppGpp and transcription factor DksA 
directly bind to the RNAP, and thus, down-regulating transcription from the 
promoters of rRNA and ribosomal protein genes (Murray et al. 2003, Lemke et 
al. 2011) and enhancing the transcription of amino acid biosynthesis genes 
(Paul et al. 2005). In Bacillus subtilis, (p)ppGpp regulates transcription of 
rRNA operon promoters indirectly by changing GTP/ATP ratio, hence, reg-
ulating transcription via effects on the concentration of initiator nucleotide 
(Krasny and Gourse 2004). 

Besides regulation of the transcription, (p)ppGpp is involved in many others 
physiological processes, such as regulation of mRNA half-life (Gatewood and 
Jones 2010), cytoplasmic polyphosphate levels (Kuroda et al. 2001) and DNA 
replication (Wang et al. 2007). The pleiotropic effects of ppGpp are responsible 
for its role in antibiotic resistance (Nguyen et al. 2011), biofilm formation (He 
et al. 2012), formation of persisters (Helaine and Kugelberg 2014) and many 
others phenotypes. New (p)ppGpp functions are still being discovered – e.g. 
inhibition of the ribosome assembly (Corrigan et al. 2016). 

 
 

3. Dynamics of cellular proteins 

3.1 Single particle tracking 

The tracking of molecules using single particle tracking (SPT) provides infor-
mation at single molecule level as opposed to bulk measurements providing 
averaged information about many and many molecules. The wide range of 
application of SPT includes analyses of cell surface molecules (Baker et al. 
2007, Carayon et al. 2014), viral infection of cells (Brandenburg and Zhuang 
2007, Sun et al. 2013) and gene expression (Janicki et al. 2004, Coulon et al. 
2014, Newhart and Janicki 2014). 

The tracking of individual particles can give valuable information about the 
diffusion-related biological processes. However, in order to be observed, the 
molecules of interest need to be labeled, tracked and analyzed. The main 
obstacle during all these steps is the noise coming from different sources, such 
as background fluorescence, labels dark state or pixelation. Microscope resolu-
tion is an important factor to be considered for overcoming this problem, how-
ever, certain noise can be generated from other sources. 
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The most common approach for labeling protein molecules for studying the 
dynamics of cellular processes by SPT is fusion with fluorescent proteins 
(Harms et al. 2001, Elf et al. 2007). Fluorescent proteins, FPs, are widely 
applied for studies of the molecular mechanisms of various molecular and cel-
lular functions inside the live cells. Fluorescently labelled proteins can be 
genetically encoded and functionally independent of additional cofactors. 
Transfected cells expressing fluorescent proteins enhance resolving the hetero-
geneity and spatial organization of the target proteins to which they are bound 
(Betzig et al. 2006). Although widely used, the labeling with fluorescent pro-
teins has its technical disadvantages. The main problems are fast photobleach-
ing rate, limiting molecule tracking into very short time frames (Yu et al. 2006) 
and maintaining low expression levels, which allows fluorescent molecules to 
be detected individually. Many fluorescent proteins, when expressed, can cause 
false localization patterns and form bright foci due to clustering, and thus, 
altering the natural diffusion behavior (Landgraf et al. 2012). 

The use of photoactivatable fluorescent proteins that transform their spectral 
properties in response to irradiation with light of a specific wavelength and 
intensity have added new possibilities to the single molecule localization meth-
ods. For example, photoconvertible single-molecule label Dendra2 (Gurskaya et 
al. 2006) allows photoactivation control on top of the protein expression regula-
tion (Niu and Yu 2008). 

 
 

 
Figure 8. Plots of mean square displacement (MSD) as a function of time for dif-
ferent diffusion modes. Freely diffusing molecules feature an MSD (black line) pro-
portional with time. Molecules whose diffusion is hindered by obstacles (red line) or 
confined (green line) result in plateauing of the MSD (D<1) curve for longer time inter-
vals. Molecules going with a flow or being actively transported show an upward curva-
ture with time (blue line). 

 
 

The images acquired by SPT tracking represent individual fluorescent particles 
on dark background with each frame of the movie representing the position of 
the particle at certain time point. The particle trajectories are obtained by 
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extraction of their x-and y-coordinates diffraction from the frames where they 
are present. The extraction is obtained by 2D-Gaussian function fitting of each 
particle intensity profile and afterward used for calculating the equivalent tra-
jectories based on a nearest neighbor algorithm (Sbalzarini and Koumoutsakos 
2005, Godinez et al. 2009).  

The resulting trajectories are most commonly analyzed by calculating of the 
mean square displacement, MSD, as a function of time (Figure 8). MSD pro-
vides information about particles motion behavior by representing squared dis-
tances between a particle’s start and end position for all time-lags within one 
trajectory (Saxton 1997). The diffusion behavior is interpreted by fitting-in it to 
one of the standard types of motion: confined normal (Brownian) diffusion, 
anomalous subdiffusion, and active transport (Figure 8). Nevertheless, multiple 
transitions between different types of diffusion can occur and complicate the 
analysis. 

As opposite to eukaryotic proteins, bacterial ones are usually not confined 
into compartments in their movement, with a exception of few special cases 
(Shapiro et al. 2002). The protein mobility can range from free diffusion to con-
fined motion or immobilization. However, membrane proteins diffusion path is 
restricted to the plasma membrane surface and is locally two dimensional as 
opposed to the three dimensional movement of cytosolic proteins. 

 
 

3.2 Diffusion behavior of membrane proteins 

Protein dynamics and lateral diffusion in cell membrane is the most important 
mechanism that shapes the cell interaction with the environment. The dynamics 
of this process governs membrane-protein complex formation, cellular transport 
and cell integrity. The use of SPT techniques has revolutionized investigations 
of protein diffusion in membranes. However, most of the research has been 
focused on eukaryotic cell membrane proteins where proteins freely diffuse in 
confined microdomains (Vrljic et al. 2002, Douglass and Vale 2005). Much 
less, SPT data is available for bacterial membrane proteins. One of the earliest 
studies on protein diffusion in E. coli membrane showed that LamB (maltodex-
trin transport channel) displays confinement into a region with diameter of 29 nm  
(Oddershede et al. 2002) or 100–300 nm teetering (Gibbs et al. 2004). Other pro-
teins studied with SPT imaged at 40 Hz, BtuB and OmpF exhibit very slow and 
confined (BtuB, 0.05 ± 0.01 µm2 s-1) or long range (OmpF, 0.006 ±0.002 µm2 s-1) 
mobility. Similar slow Brownian diffusion was observed for flagella motor protein 
MotB labeled with green fluorescent protein (GFP) (0.0088 ± 0.0026 µm2 s-1) 
(Leake et al. 2006) and for the membrane-bound histidine kinase PleC  
(0.012±0.002 µm2 s-1) (Deich et al. 2004). 
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3.3 Cytoplasmic diffusion of proteins 

The cytoplasm is confined crowded space where molecules mainly rely on dif-
fusion for interaction. Indeed, measuring parameters like diffusion coefficients 
and distributions of molecules can answer many questions regarding their 
behavior and patterns of interaction (Lippincott-Schwartz et al. 2001, Luby-
Phelps 2013). The mobility of biomolecules is characterized by many different 
methods, mainly depending on fluorescent probes and single-molecule 
approaches. 

In order to explore cell microenvironment, SPT of GFP molecules is com-
bined with simulation of Brownian motion. The efficiency of the GFPs fluoro-
phores is strongly dependent on cell micro conditions and particularly on the 
concentrations of molecular oxygen (Bogdanov et al. 2009). The structure and 
content of the cytoplasm play an important role in protein diffusion in the cell. 
The cytoplasm is highly dynamic environment with non-uniform diffusion pro-
perties. Various dynamic processes, such as active transport, polymerization of 
cytoskeletal elements (Shih and Rothfield 2006) or vesicle transport (Vale 
2003), together with the fact that cytoplasm is generally not a simple viscous 
fluid but has rather complex arrangement (Luby-Phelps et al. 1987, Fabry et al. 
2001) make cytoplasmic diffusion characterization quite complicated.  

Earlier studies have investigated diffusion of proteins in the cytoplasm of E. 
coli employing techniques such as fluorescence recovery after photobleaching 
(FRAP) that is able to obtain bulk diffusion coefficients (Swaminathan et al. 
1997, Partikian et al. 1998, Dayel et al. 1999). Latest developments in high-
speed single-molecule microscopy allow individual molecule diffusion imaging 
in the three-dimensional cytoplasm of the cell (Beausang et al. 2013, Perillo et 
al. 2015). 

According to studies using FRAP (Terry et al. 1995), the diffusion coeffi-
cient of fluorescent proteins expressed in E. coli cytoplasm is 6–14 µm2 s-1, 

while initial single molecule experiments using yellow fluorescent protein 
(YFP) tagged structural protein MreB observed diffusion coefficient in the 
range of 1.6–1.95 µm2 s-1 (Kim et al. 2006). Recent single-molecule studies 
using higher sampling rate of 250 Hz showed that mEos2, a freely diffusing 
photoconvertible GFP variant diffuses in the cytoplasm with 13 µm2 s-1 (English 
et al. 2011) while another photoconvertible protein Kaede was shown to diffuse 
homogeneously within 6.2-7.4 µm2 s-1 (Bakshi et al. 2011). 

All these examples of protein mobility in bacterial cytoplasm are just a small 
illustration of the capacity of single-molecule microscopy techniques to resolve 
essential biologically questions at the level of single molecules. 
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RESULTS AND DISCUSSION 
Aims of the study 

The specific Aims of this work were: 
• To establish an experimental system for tracking single cytoplasmic and 

membrane protein molecules that enables to follow rapidly moving freely 
diffusing molecules. 

• To establish the enzymatic cycle of RelA in living bacterial cell by 
following RelA’s diffusive behavior during starvation and unperturbed 
growth. 

• To uncover the effects of RelA’s product, ppGpp, on RelA’s enzymatic 
activity. 

 
 

1. Single molecule tracking 

Detection of single molecules in living cells is a powerful method that enables 
to examine biological events at a level inaccessible for the conventional 
measurements techniques. Single-molecule fluorescence tracking is bringing a 
new view into cellular processes at unique structural and temporal resolution. 

Nowadays, the systems used for in vivo tracking are mostly based on photo-
activated localization microscopy (PALM) (Betzig et al. 2006, Hess et al. 2006) 
and stochastic optical reconstruction microscopy (STORM) (Rust et al. 2006). 
Those super resolution microscopy techniques are able to capture images with a 
higher resolution than the diffraction limit, but are restricted to observation of 
considerably slowly diffusing (Kim et al. 2006), membrane bound (Gibbs et al. 
2004) or immobile molecules (Elf et al. 2007). In order to optimize these meth-
ods, stimulated emission depletion-fluorescence correlation spectroscopy 
(STED-FCS) conjunction was used (Sahl et al. 2010) resulting in increased 
temporal resolution but limited spatial array. 

In publications I (Kuzmenko et al. 2011) and II (English et al. 2011), we 
have developed in vivo tracking microscopy assay that allowed us to track fast 
and slowly diffusive cytosolic (stringent factor RelA and free GFP variant 
mEos2) or membrane bound (mitochondrial membrane channel Tom40) pro-
teins. We combined super-resolution tracking of photoconvertible proteins 
(Manley et al. 2008, Niu and Yu 2008) with stroboscopic time-lapse imaging 
(Xie et al. 2006), a method used in strobe photography adding an extra sharp-
ness to the picture taken. This was achieved by laser exposure for short time 
intervals in which the reporter molecule does not diffuse beyond the diffraction-
limited spot. The short laser pulses where synchronized with the frame time of 
the camera enabling observation of fluorophores during the laser flash and 
avoiding autofluorescent background of environment, such as the crowded 
bacterial cytosol or cell membrane (Figure 9). 
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Figure 9. Schematic diagram of the optical setup used in the current work. A violet 
photoconversion laser (405 nm) and a wide-field yellow excitation laser (555 nm) beam 
are spatially overlapped and focused onto the sample by flip-lenses. The violet photo-
conversion laser beam is shuttered by a mechanical shutter and synchronized with an 
EMCCD camera. (adapted with permission from English et al. 2011.) 

 
 

1.1 Single-molecule tracking of membrane proteins 

The structure and function of bio-membranes and its components has been 
investigated in details, however, there is very limited information about the 
dynamics of the cell membrane protein components. One promising model sys-
tem for membrane single molecule research is the yeast mitochondrion. They 
can be easily visualized with vital fluorescent dyes, immunofluorescence, or 
targeted fluorescent proteins possessing low background of fluorescence. In 
addition, mitochondria also retain strong evolutionary conservation in the bio-
genesis of membrane proteins making them promising model system for study-
ing membrane transport (Zeth 2010, Ulrich et al. 2014). 

Previous research on the mitochondrial membrane protein dynamics is lim-
ited to only few components, such as Tom7, displaying heterogeneous diffusive 
properties within several sub-populations (Sukhorukov et al. 2010). 

In publication I (Kuzmenko et al. 2011), we investigated, by means of sin-
gle-molecule tracking microscopy the diffusion of the main mitochondrial pro-
tein import component Tom40. The fluorescently labeled Tom40-Dendra2 
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complex in the mitochondrial membrane showed highly mobile but confined 
diffusion properties. 

The isolated and immobilized intact Saccharomyces cerevisiae mitochondria 
with Tom40-Dendra construct, were imaged (Figure 10A), with frame and 
exposure time of 5 ms and analyzed in a comparison with immobilized Dendra2 
molecules (Figure 10B) in order to achieve accuracy and stable vibrational 
control of the microscopy setup. 

 
 

 
Figure 10. Analysis of Tom40 diffusion as compared with immobilized Dendra2 
molecules. A) Experimental single molecule trajectory of Tom40 with a frame time of 5 
ms and an exposure time of 5 ms. B) Tracking of immobilized Dendra2 protein. One 
single molecule trajectory with a frame time of 5 ms and an exposure time of 5 ms.  
C) Trajectory-averaged mean square displacements (MSDs) over different time 
intervals. The error bars represent the experimental standard errors of the means. MSDs 
from Tom40 (red) and MSDs from immobilized Dendra2 molecules (black).  
D) Trajectory-averaged cumulative distribution functions (CDFs) of displacements over 
10 ms for Tom40 (in red) and immobilized Dendra2 (in black). The error bars represent 
the experimental standard errors of the means. E) Trajectory-averaged cumulative 
distribution functions (CDFs) of displacements over 15 ms for Tom40 (in red) and 
immobilized Dendra2 (in black). The error bars represent the experimental standard 
errors of the means. F) Step-averaged cumulative distribution functions (CDFs) of 
displacements over 5–35 ms for Tom40 (solid lines) and immobilized Dendra2 (dashed 
lines), color-coded as indicated in the insert box. (Copied with permission from 
Kuzmenko et al. 2011.) 

 
 

We have shown that Tom40 expresses strikingly different patterns of diffusion 
(0.5 µm2 s-1) (Figure 10 C, D and E) when compared with typical eukaryotic 
membrane proteins (Simons and Sampaio 2011). Tom40 diffuses considerably 
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freely, but confined within domains similarly to the diffusion patterns of bacte-
rial protein PleC (Deich et al. 2004) or Lck clusters in T-cells (Douglass and 
Vale 2005). 

The nature of this spatial restriction of Tom40 diffusion could be result of 
the highly heterogeneous nature of the mitochondrial membrane and/or caused 
by protein-protein interactions within the membrane. These results showed that 
the single particle tracking (SPT) time-lapse assay that we have developed and 
implemented, enabled us to quantitatively describe the diffusion properties of 
membrane proteins such as Tom40. 

 
 

1.2 Single-molecule tracking of freely diffusing proteins 

A molecular mechanism of the stringent response induction has been proposed 
and summarized as the so-called hopping model (Wendrich et al. 2002). The 
model suggests that during the stringent response, deacylated tRNA blocks 
ribosome A-site, RelA binds to the stalled ribosome, adopts catalytically active 
conformation and synthesizes one molecule of (p)ppGpp. The conversion of 
ATP and GTP leads to (p)ppGpp production resulting in conformational 
changes in RelA that lowers the affinity to the ribosome. The dissociation of 
RelA from the ribosome is followed by ‘hopping’ to another ribosome. Thus, 
RelA performs general scanning of the cells translational system (Wendrich et 
al. 2002). 

In publication II (English et al. 2011), we directly tested and evaluated the 
hopping model in vivo by employing our stroboscopic single molecule tracking 
microscopy method. We examined the individual diffusion characteristics of 
single RelA molecules throughout the (p)ppGpp synthesis cycle. 

We tracked two reference molecules: the small cytosolic freely diffusing 
photoconvertible GFP variant mEos2 (McKinney et al. 2009) as a reference for 
free unbound RelA and a GFP photoconvertible variant Dendra2 (Gurskaya et 
al. 2006) tagged ribosomes as a comparison to ribosome-bound RelA (Figure 
11A). Both mEos2 and Dendra2 are monomeric photoconvertible proteins that 
fold efficiently at 37° C and successfully label targets that are intolerant of 
fusion to fluorescent protein dimers and tandem dimers. These fluorescent tags 
produce less clustering artifacts than other fluorescent proteins, although not 
ideally mimicking the wild type (Landgraf et al. 2012).  

Nonactivated ‘green’ Dendra2 possesses excitation maximum at 490 nm and 
emission maximum at 507 nm. Similarly, mEos2 has green absorbance peak at 
506 nm and green emission peak at 516 nm when inactivated. After irradiated 
with UV light, Dendra2 and mEos2 photoconvert to their red state with excita-
tion-emission maximum 553/557 nm for Dendra2 and 571/581 for mEos2 
(Chudakov et al. 2007). 
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Figure 11. Diffusion of ribosomes, 
RelA and a small fluorescent protein 
mEos2 in actively growing cells  
and during the stringent response.  
A) Mean square displacements (MSDs) 
from ribosomal protein L25 (in green) 
and inactive RelA (in blue) are indistin-
guishable during E. coli exponential 
growth. Experimentally induced strin-
gent response by addition L-Serine 
hydroxamate changes dramatically the 
RelA diffusion (in brown) resulting in 
similar diffusion behavior to mEos2 (in 
grey). The error bars represent the 
experimental standard errors of the 
means. B) Cumulative distribution func-
tions (CDFs) of displacements of in-
active RelA (in solid blue) and L25 (in 
dashed-green) with 20-ms frame time 
showing very similar diffusion behavior. 
The apparent diffusion coefficient of 
RelA when cells are starved increases 
more than eightfold (red and dashed-red 
curves) and is very similar to the CDF of 
mEos2 (in gray).  
C) One experimentally obtained single-
molecule RelA trajectory with a frame 
time of 20 ms and an exposure time of  
2 ms during cells exponential phase.  
D) One experimentally obtained single-
molecule RelA trajectory with a frame 
time of 20 ms and an exposure time of  
2 ms when cells during experimentally 
induced stringent response using L-SHX. 
(adapted with permission from English 
et al. 2011.) 

 
 

Comprehensive analysis of the single mEos2 trajectories showed very fast 
evenly distributed diffusion of the molecules, screening the whole cell cytosol 
(Figure 11B).  

By analyzing the local apparent diffusion coefficients of small molecule 
subpopulations located in different cell sections within 4 ms, we observed some 
spatial variation in apparent diffusion coefficient ranging from 8 to 16 µm2 s-1. 
These variations in the apparent diffusion coefficient were correlating with 
bacterial cell shape and faster diffusion of the molecules in the less confined 
middle section compared with the restricted diffusion next to the cell walls. 
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Additionally, an experimental comparison of MSD curve of mEos2 and 
MSD curves from simulated normal diffusion trajectories showed very similar 
diffusion patterns of mEos2 compared with the random motion (Figure 11A). 

Sharply distinguishable MSD curve of the Dendra2 labeled ribosomes com-
pared with mEos2 showed around 25 times slower diffusion of ribosomes. The 
apparent diffusion of the fluorescently labeled ribosomes used as a reference for 
ribosome-bound RelA displayed much higher confinement observed as plat-
eauing in MSD curves compared with the mEos2 one (Figure 11B). 

This confinement could be a result of localization of the translational process 
in certain cell areas (Lewis et al. 2000) or ribosome-mRNA tethering in transla-
tional complex (Montero Llopis et al. 2010) as most of the ribosomes are 
actively translating (Scott et al. 2010). 

Taking into account the two control experiments, we performed in vivo 
tracking of RelA fused with Dendra2 at C-terminus. The mean MSD curves and 
cumulative distribution functions of displacements showed statistical parity 
with the ribosomal ones indicating that RelA exhibits similar diffusive behavior 
as the ribosomes (Figure 11C).  The results are clearly supporting the idea that 
during non-starving conditions, RelA is tightly bound to the ribosomes. Expect-
edly, when we tracked and analyzed RelA diffusion behavior under starved 
condition induced by L-Serine Hydroxamate (SHX) (competitive inhibitor of 
seryl-tRNA synthetase), we observed intensive shift in RelA diffusion behavior. 
The diffusion pattern that RelA displayed during stringent response becomes 
very similar to the one that mEos2 had in our reference experiments (Figure 
11D). RelA freely diffuses through the whole volume of the bacterial cell while 
in its active ribosome-free state. Additionally, we showed that RelA dissociates 
from the ribosomes and diffuses freely during heat-shock similarly to SHX-
induced stringent response. 

These results are clearly correlating with the main aspects of the hopping 
model (Wendrich et al. 2002). However, we do not detect RelA rapid shifting 
between its ribosome-bound and free state that is predicted by the hopping 
model. Recently, similar single molecule study reported different RelA diffu-
sion patterns (Li et al. 2016) with stronger ribosome binding after induced 
starvation. In addition, much less freely diffusing RelA molecules in both nor-
mal and starved conditions were detected (Li et al. 2016). Although the study 
has additional advantages, such as double starving conditions (cells grown in 
AA free medium and inclusion of SHX), less activation laser power for shorter 
periods and using three different labeling schemes (RelA-YFP, RelA-mEos2 
and RelA-Dendra2), the discrepancy of the results between both studies have no 
explanation. However, Poly(L-lysine) cell adhesion to the coverslip for imag-
ing, used by Li et al., 2016 is very efficient technic but can disrupt the proton-
motive force (Katsu et al. 1984, Strahl and Hamoen 2010) and strongly affect 
protein localization (Colville et al. 2010) in E. coli. 

Moreover, we observe that all RelA molecules remained dissociated from 
the ribosome for hundreds of milliseconds, which suggests different (p)ppGpp 
synthesizing mechanism from the standard hopping model. Thus, an extended 
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hopping model is proposed, where many (p)ppGpp molecules are produced 
upon dissociation of enzymatically active RelA from the ribosome. This new 
model can be rationalized in the framework of the existing biochemical data for 
RelA (Mechold et al. 2002) and is further explained by positive feedback loop 
acting at the enzymatic level (Shyp et al. 2012). 

 
 

2. Allosteric activation of RelA by (p)ppGpp 

The accumulation of (p)ppGpp during the stringent response leads to rRNA and 
ribosomal protein genes transcription inhibition. Simultaneously (p)ppGpp activates 
transcription from the promoters of amino acid biosynthesis genes (Paul et al. 
2005). The nature of such regulation demands rapid accumulation of (p)ppGpp 
synthesized by RelA for the activation of the stringent response. Enzymatic feed-
back inhibition and feedback activation are widely used as pathway regulation by 
the cell with the latter being extremely rear process. Previous observations of the 
ppGpp production during time course (Payoe and Fahlman 2011) showed devia-
tions from linearity in earlier time points due to a lag effect suggesting different 
mechanism of regulation than negative feedback auto-inhibition. 

In publication III (Shyp et al. 2012), we investigate the nature of the lag 
effect using in vitro stringent response system similar to that used in Jones et al. 
2008. We showed that production of (p)ppGpp is responsible for enhancement 
of the RelA enzymatic activity by positive feedback loop acting at the 
enzymatic level. The stimulatory effect is specific for ppGpp, and other nucleo-
tides do not influence the RelA specific activation. 

The mechanism of RelA product-mediated activation is strictly specific for 
(p)ppGpp and it is strongly dependent on the ribosomal protein L11. The acti-
vation effect of (p)ppGpp is not altered in the presence of other strong RelA 
activators, such as A-site tRNA suggesting different mechanisms of influence 
(Figure 12 A, B, C and D). 
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Figure 12. Activation of 70S-dependent synthetic activity of RelA by its product, 
(p)ppGpp. A) Time course of 70S-dependent ppGpp synthesis with the addition of 
(p)ppGpp at 0 min (hollow red circles) or at 15 min (solid circles, black and red) and the 
absence of (p)ppGpp (hollow black circles) B) Time course of 70S-dependent (p)ppGpp 
synthesis by RelA in the absence (black circles) and presence (red circles) of (p)ppGpp 
with using 30 nM (hollow circles) and 100 nM (solid circles) RelA. C) 70S-dependent 
RelA synthetic activity as a correlation of (p)ppGpp concentration. D) 70S ribosomes, 
poly (U) and deacylated tRNAPhe effect on (p)ppGpp synthesis in the presence (solid red 
bars) and absence (hollow bars) of (p)ppGpp. RelA regulation by its product allows fast 
accumulation of (p)ppGpp, and thus, rapid modulation of the transcription (adapted with 
permission from Shyp et al. 2012). 

 
The direct allosteric regulation of RelA by (p)ppGpp is the first described 

example of an enzyme regulated through direct positive feedback control by its 
product. In addition to the long (p)ppGpp synthetases, some bacteria contain 
considerably smaller enzymes with fewer regulatory domains. Recently, the 
product activation was shown also for some of these small alarmone synthetases 
(SAS) (Gaca et al. 2015, Steinchen et al. 2015). The physiological relevance of 
RSH activation by its product, as well as the molecular mechanisms of this reg-
ulation are yet to be uncovered.  
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CONCLUSIONS 
1. By combining super-resolution tracking of photoconvertible proteins with 

high-speed stroboscopic time-lapse imaging, we have set up a single particle 
tracking system for measuring the diffusion of membrane proteins, cyto-
plasmic proteins and macromolecular complexes. 

2. The RelA molecules are bound to the ribosomes longer under unstarved 
conditions as compared to starvation. This suggests that activation of the 
enzyme is accompanied with dissociation from the ribosome. 

3. RelA is allosterically activated by its reaction product, (p)ppGpp. This 
suggests a mechanism for very rapid triggering of stringent response. 

4. The mitochondrial transport channel Tom40 does not exhibit free diffusion 
in the mitochondrial membrane. On the contrary, Tom40 is diffusing in outer 
mitochondrial membrane in a highly mobile but confined manner. 
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SUMMARY IN ESTONIAN 
Juhukõnnid translatsioonis 

Poomisvastus on võtmetähtsusega adaptiivsete mehhanismide regulatsioonil, 
mis aitavad bakteritel ebasoodsaid keskkonnatingimusi üle elada. Soolekepi-
keses (Escherichia coli) on selles protsessis oluliseks ensüümiks RelA, mis vas-
tusena aminohappenäljale sünteesib signaalmolekuli (p)ppGpp. See signaal-
molekul mõjutab transkriptsiooni, translatsiooni ja rakkude jagunemist. 

Meie töötasime välja ühe molekuli jälgimise mikroskoopia metoodika, mis 
võimaldab mõõta molekulide difusiooni rakus. Kasutasime seda metoodikat eri-
neva kiirusega liikuvate molekulide kirjeldamiseks. Rakus vabalt difundeeruva 
valgu näiteks oli fluorestseeruv valk mEos2. Hoopis teistsuguste omadustega 
valguks osutus mitokondri membraanivalk Tom40, mille liikumine on ühte asu-
kohta piiratud. RelA puhul täheldasime nii vabu, kiirelt difundeeruvaid mole-
kule kui ka ribosoomile seondunud ja seetõttu aeglaselt liikuvaid molekule. 

Kombineerides ühe molekuli jälgimise tulemusi biokeemiliste andmetega, 
pakume välja RelA valgu töötsükli mudeli. Kuhjuv (p)ppGpp põhjustab samuti 
RelA aktivatsiooni. Sellisel viisil tekib positiivse tagasisidestusega regulat-
sioonisüsteem ja signaalmolekuli kontsentratsioon tõuseb kiiresti. 
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