TARTU ÜLIKOOL Loodus- ja tehnoloogiateaduskond Teoreetilise füüsika instituut

Ülari Külaots

PROTSESSI $e^-e^+ \to t\bar{t}$ KIRJELDUS

Bakalaureusetöö

Juhendajad:

Stefan Groote, FI

Tartu 2013

Sisukord

1	Sissejuhatus
1.1	Jõud
1.2	Osakeste põrgutid
2	Kinemaatika
3	Fermionide kirjeldus
3.1	Lagrange'i tihedus
3.2	Elektromagnetvälja sisseviimine
3.3	Häiritusteooria ja Feynmani diagrammid
3.4	Alg- ja lõppolekud
3.5	Spinnide üle summeerimine ja keskmistamine
3.6	Verteksid ehk vastasmõju panused
3.7	Footonpropagaator
4	Mõjuristlõige
4.1	Maatrikselemendi absoluutväärtuse ruut
5	Elektronõrk teooria
5.1	Dubletid ja singletid
5.2	Vasaku- ja paremakäelised seisundid
5.3	$SU(2)_L \times U(1)_Y$ kalibratsiooniväljad
5.4	Füüsikalised väljad $(W^+_{\mu} \text{ ja } W^{\mu})$
5.5	$SU(2)_L \times U(1)_Y$ kohandamine kvantelektrodünaamikale
5.6	Z-bosoni verteks
5.7	Z-bosoni propagaator
6	Protsessi $e^-e^+ \to t\bar{t}$ tõenäosus
6.1	Z-bosoni leptontensori arvutamine
6.2	Protsessi kogutõenäosus
6.3	Sõltuvus hajumisnurgast θ
7	Kokkuvõte

8	Inquiry into the process $e^-e^+ \to t\bar{t}$	37
9	Tänuavaldused	38
10	Kasutatud kirjandus	39
11	Lisad	41

1 Sissejuhatus

Osakestefüüsika on füüsika haru, mis uurib osakeste olemasolu ja vastastikmõju, nähtusi, mida sageli nimetatakse mateeriaks ja kiirguseks. Tänapäevase arusaama järgi on osakesed kvantvälja ergastused ning mõjutavad üksteist vastavalt välja dünaamikale. Suurem osa selle valdkonna huvist kuulub nõnda nimetatud fundamentaalsetele väljadele ehk väljadele, mida ei saa kirjeldada kui teiste väljade segu. Hetkeseisu arusaam fundamentaalväljadest võetakse kokku elementaarosakeste Standardmudelis.

Kvargid ja leptonid on fundamentaalsed objektid, millest koosneb kogu mateeria, nad interageeruvad vahebosonite abil. Jõud, mis neid mõjutavad, on ühendatud elektronõrk jõud [1], mille vaheboson on footon ning W^{\pm} ja Z^0 bosonid, ning tugev jõud. Tugeva jõu vahendajaks on gluuonid.

Kvantväljateooria sisaldab erirelatiivsusteooriat. On toimunud pidev relativistliku kvantväljateooria arendus peale seda, kui see enne 1930ndaid aastaid loodi. On toimunud kindlaid ja erakordseid edusamme osakestefüüsikas, mõistetakse paremini kvantväljateooriat ning on õpitud, mida kaasata lagranžiaani. Teooriad, mis kirjeldavad osakesi ja nende interaktsioone, paistavad olevat vaheosakestega teooriad. See on eriline kvantteooriaklass, kus on olemas invariantsuse printsiip, mis tingimata eeldab vastastikmõju vahendamist vahebosonite kaudu. Vahebosonitega teooriates on interaktsioonilagranžiaan pigem vältimatu kui *ad hoc* lahendus, nagu see on kvantteoorias.

Kuigi tehniline töö relativistlikus vaheosakestega kvantväljateoorias võib olla keeruline, on teooria põhimõtteliselt arusaadav kõigile, kes on läbinud klassikalise mehaanika, elektrodünaamika ja sissejuhatava kvantmehaanika kursused. Kuigi teooria on relativistlik, on põhiliseks uuenduseks formalism, millest tuleb aru saada, et teha lihtsamaid arvutusi. Antud töö eesmärk on aru saada Standardmudeli ühest osast, elektronõrgast vastastikmõjust ning teadmisi rakendada spetsiifilise probleemi lahendamiseks.

1.1 Jõud

Newtoni teooria kõrval eksisteerib Lagrange'i teooria, mis on võrdväärne Newtoni teooriaga teises formalismis. Lagrange'i formalismis sisaldab lagranžiaan kogu füüsikalist informatsiooni süsteemi kohta. Kvantteooriates kasutatakse just seda formalismi. Võib võtta mistahes lagranžiaani ja sellest arvutada liikumise, tähendab arvutada ristlõikeid ja lagunemisaegu. Praktikas tähendab see seda, et kasutatakse Feynmani reegleid, et kirjutada välja maatrikselemente, mille kaudu saame üleminekutõenäosused. See ongi standardne lähenemine relativistlikus kvantmehaanikas [2].

Standardmudeli puhul on teada spetsiifilised lagranžiaanid nii elektronõrga kui tugeva jõu jaoks. Mainitud lagranžiaanid on mõnevõrra keerulisemad kui klassikalisest mehaanikast tuntud jõuvalemid.

Kvantteooria ja relatiivsuse ühendamine viib kvantväljade sissetoomiseni. Kvantväljateooria lahendab mitterelativsitliku kvantmehaanika põhjuslikkuse probleemid, tuues sisse antiosakesed ning seletab seose spinni ja statistika vahel. Kõige tähtsam on see, et ta annab töövahendid, millega saame arvutada hajumisristlõikeid, osakeste eluigasid ning teisi vaadeldavaid suurusi. Ennustuste eksperimentaalne kinnitus on põhjus, miks tegeletakse kvantväljateooriaga [3].

Kuna tegemist on kvantteooriaga, kantakse energia kvantidena, mis on seotud kiirgavate osakestega. Nii et kvantteoorias tõlgendatakse osakestevahelist vastastikmõju teistsuguste osakeste vahetusena.

Kalibratsiooniteooriad (ing. gauge theories) on erilised kvantväljateooriad, kus eksisteerib invariantsuse printsiip, mis tingimata nõuab vastastikmõju olemasolu osakeste vahel [4]. Kui me räägime vaheosakestega teooriast, siis mõtleme selle all jõude, mis jälgivad teatud sümmeetriat (gauge symmetry) ning need jõud on proportsioonis mingi "laenguga". See on tuttav elektrodünaamikast, kus peenstruktuurkonstant α mõõdab elektromagnetilise jõu tugevust. Teiste jõudude jaoks ilmnevad uued konstandid, mis täidavad mõlemat rolli. Osakestefüüsikas kasutatakse vastasmõju ja jõu mõisteid sünonüümidena.

Elektrodünaamikas eraldab laetud osake footoni ning põrkub siis. Footon neelatakse teise laetud osakese poolt, mis muudab seetõttu oma liikumist. Diagrammid on kasulik viis juhtunut piltlikult kirjeldada, kuid need diagrammid on veel enamat. Kui anda õiged reeglid (Feymani reeglid), mille abil igat osa pildist muuta maatrikselemendiks ning teha üleminekutõenäosuse arvutusi, siis võib öelda, et diagrammid sisaldab endas kogu teooriat (tuleb arvestada kõiki võimalikke diagramme) [5].

1.2 Osakeste põrgutid

Üldine eesmärk, mida püütakse erinevail moel teostada, on leida füüsika, mis võiks olla Standardmudeli taga. On palju eksperimentaalseid põhjusi oodata uut füüsikat, nagu tumeaine [6] ja neutriinode mass [7].

Osakesekiirendi on hea töövahend mikromaailma füüsika uurimiseks ning, kuna erinevalt näiteks kosmilistest vaatlustest on kontroll katsetingimuste üle ning algtingimused on teada. Hetkel maailma suurim füüsika eksperiment ongi põrgutieksperiment CERNis Šveitsi ja Prantsusmaa piiri peal. LHCs (*Large Hadron Collider*) põrgatatakse nagu nimi juba viitab hadroneid, täpsemalt prootoneid.

Antud töös uurime aga leptonpõrguti eksperimenti. Leptonpõrguti eksperimentide eelis on see, et algolek on lihtsam. Erinevalt prootonist, mis koosneb kvarkidest, ei ole elektronil ja positronil sisestruktuuri. Lõppseisundina vaatleme top-kvarki, mis on kõige raskem kvark, $m_t \approx 175 GeV/c^2$. Top-kvark käitub nagu vaba osake, lühikese elueaga, kõigest 5×10^{-25} sekundit, jõuab ta enne laguneda, kui hadroniseeruda [8] [9].

Protsessi vahendavad massitu footon, mis kujutab ennast interaktsiooni elektromagnetväljaga ning massivne Z-boson ($m_Z = 91.1874(21)GeV/c^2$) [10]. Z on nõrga interaktsiooni vaheboson.

2 Kinemaatika

Et oleks võimalik teha arvutisi, tuleb kokku leppida, millises inertsiaalses taustsüsteemis me tegutseme. Taustsüsteemi määrab üldiselt eksperiment. Kõige lihtsam on teha arvutusi masskeskme süsteemis, mis on ka mõistlik, kuna osakesekiirendis kiirendatakse kimbud erisuundades samale kiirusele ning põrgatatakse detektorites.

Joonis 1: Osakeste põrkumine massikeskmesüsteemis.

Kokkuleppeliselt valime elektroni liikumise (ja impulsi p_{-}) suunaks positiise z-telje ning positron liigub täpselt vastassuunas (impulsiga p_{+}) nagu tähistatud joonisel 1. Ehk siis $p_{\pm} = (E_{\pm}/c, 0, 0, p_{\pm z})$ tähistab alosakese 4-impulssi. Kehtib $p_{-}+p_{+} = q$, kus q = (E/c, 0, 0, 0)tähistab tekkiva bosoni 4-impulssi. E on protsessi koguenergia. Osakesed liiguvad vastassuunas, $p_{-z} + p_{+z} = 0$. Jääb veel määrata osakeste energiad p_{\pm}^{0} seosest $E_{-} + E_{+} = E$. Erirelatiivsusteooriast oleme tuttavad seosega $p^{2} = (E_{\pm}^{2}/c^{2} - p_{\pm z}^{2}) = (mc)^{2}$ [11], kus võtame elektroni massi ($m_{e} = 0,511MeV/c^{2}$) võrdeks nulliga põhjendades, et võrreldest protsessi energiaga on see tühine (top-kvargi tekitamiseks on energiat E vaja vähemalt $2 \times 175GeV$). Niisiis $p_{\pm z} = \mp E_{\pm}/c$, kus märkide suhtes oleme arvestanud kokkulepet, et p_{-z} on positiivne. Kokkuvõttes

$$p_{\pm} = \frac{E}{2c}(1, 0, 0, \pm 1). \tag{1}$$

Kumbki algosake kannab pool protsessi energiast. Tekkiv top-, antitop kvargi paar ei kiirgu tingimata ära samas suunas, kust tulid algosakesed. Lepime kokku, et vaatame xz-tasandit,

siis nurk θ on nurk elektroni ja tekkinud top-kvargi vahel. Antiosake kiiratakse vastassuunas. Seega

$$p_1 = (E_1/c, |\vec{p_1}| \sin \theta, 0, |\vec{p_1}| \cos \theta), \qquad p_2 = (E_2/c, -|\vec{p_2}| \sin \theta, 0, -|\vec{p_2}| \cos \theta), \tag{2}$$

kus p_1 on top ning p_2 antitop-kvargi 4-impulss. Analoogselt eelnevaga kehtib $p_1 + p_2 = q$, millest järedub $E_1 + E_2 = E$ ja $\vec{p_1} + \vec{p_2} = \vec{0}$ (s.t. $\vec{p_1} = -\vec{p_2}$) ning $E_1 = E_2 = E/2$. Erinevalt elektronist, ei saa kvargi massi lugeda nulliks, vaid on m_t . Kasutame uuesti relativistlikku seost $m_t^2 c^4 = E_i^2 - |\vec{p_i}|^2 c^2 (i = 1, 2)$. Jagatis $v = |\vec{p_i}|c^2/E_i$ määrab top-kvargi (ja antitopkvargi) kiiruse. Seda kasutades saame massi kui funktsiooni relativistlikkust energiast $m_t^2 c^4 = E^2(1 - v^2/c^2)/4$ ja $|\vec{p_i}|^2 = v^2 E^2/4c^4$. Kokkuvõtvalt on tekkivate osakeste impulsid

$$p_1 = \frac{E}{2c^2}(c, v \sin \theta, 0, v \cos \theta), \qquad p_2 = \frac{E}{2c^2}(c, -v \sin \theta, 0, -v \cos \theta).$$
 (3)

Kvarke tegelikult eksperimendis ei näe, vaid tekivad joad (*jetid*), mis umbkaudu määravad kvarkide implusside suunad.

3 Fermionide kirjeldus

Kvantväljateooria kujutab ennast väljade kvantiseerimist nagu kvantmehaanikas kvantiseeritakse osakesed. Tekib küsimus, milleks väljateooria? Kas me ei võiks relativistlikke osakesi kvantiseerida nagu kvantiseerisime mitterelativistlikud osakesed? Tuleb aga välja, et kui panna kirja ühe osakese jaoks relativistlik lainevõrrand, siis tekivad negatiivse energia lahendid ja muud vastuolud. Me ei saa eeldada, et relativistlikke protsess saab kirjeldada ühe osakese kaupa, kuna juba Einsteini seos $E = mc^2$ lubab osakese-antiosakese paari teket [3]. Kvantitatiivsete arvutuste tegemiseks on ikkagi tarvis protsessis osalevaid osakesi kuidagi kirjeldada. Schödingeri võrrand selle jaoks ei kõlba, kuna ta on mitterelativislik. Kvantväljateoorias on tuntud relativistlik üldistus Schrödingeri võrrandile, Kleini-Gordoni võrrand

$$-\frac{\partial^2 \Phi}{\partial t^2} + \nabla^2 \Phi = m^2 \Phi, \tag{4}$$

kus ∇ on ruumiline tuletis ning Φ on lainefunktsioon. Kleini-Gordoni võrrandil aga ei ole vajalikku kahekomponendilist struktuuri, et kirjeldada osakese spinni. Pikka aega arvati, et see on ainus relativistlik üldistus Schrödingeri võrrandile, kuni Dirac leidis sellele alternatiivi [12]

$$(i\hbar\partial - mc)\psi = 0. \tag{5}$$

Diraci võrrand (antud juhul kovariantsel kujul) kirjeldab vaba spinn-1/2 osakest, fermioni nagu lepton ja kvark. Läbikriipsutamine, nn "*Feynman slash*" tähistab gammamaatriksiga ahendamist, üldiselt

$$\phi = \gamma^{\mu} a_{\mu}. \tag{6}$$

Diraci võrrand saadakse Kleini-Gordoni võrrandi lineariseerimisest. Selle käigus ilmuvad kordajad, mis ei saa olla arvud, vaid peavad olema maatriksid. Gammamaatriksid on 4×4 maatriksid, mis rahuldavad antikommutaatorseost,

$$\{\gamma^{\mu}, \gamma^{\nu}\} := \gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}, \tag{7}$$

kus $g^{\mu\nu}$ tähistab meetrilist tensorit. Esitusi eksisteerib mitmeid ning neid saab üksteiseks teisendada unitaarsete teisendustega. Diraci esituses on

$$\gamma^{0} = \begin{pmatrix} 0 & \mathbb{1}_{2} \\ \mathbb{1}_{2} & 0 \end{pmatrix}, \qquad \gamma^{i} = \begin{pmatrix} 0 & \sigma_{i} \\ -\sigma_{i} & 0 \end{pmatrix}, \tag{8}$$

kus 2×2 ühikmaatriks $\mathbb{1}_2$ ja Pauli maatriksid σ_i on vastavalt

$$\mathbb{1}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \tag{9}$$

Diraci võrrandis on ahendatud kovariantne osatuletis

$$(\partial_{\mu}) = \frac{\partial}{\partial x^{\mu}} = \left(\frac{1}{c}\frac{\partial}{\partial t}; \vec{\nabla}\right). \tag{10}$$

3.1 Lagrange'i tihedus

Teoreetilise füüsika üks sügavamaid avastusi on, et interaktsioone dikteerivad sümmeetriaprintsiibid. Tänapäeva arusaam on, et kõik osakeste interaktsioonid võiks alluda nn lokaalsele kalibratsioonisümmeetriale. See on seotud mõttega, et füüsikalised suurused (nagu elektrilaeng, värv jne.) on jäävad lokaalses aegruumipiirkonnas, mitte ainult globaalselt [13]. Seos sümmeetriate ja jäävusseaduste vahel tuleb kõige paremini välja Lagrange'i formalismis. Teame klassikalisest mehaanikast mõju S, mis on lagranžiaani L ajaline integraal

$$S = \int_{t_1}^{t_2} L(q, \dot{q}) dt.$$
 (11)

Süsteemi liikumise tee on määratud mõju ekstreemumiga $\delta S = 0$. See viib Euler-Lagrange'i võrrandite ja liikumisvõrrandini [14]

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = 0.$$
(12)

Diraci võrrandi saab tuletada sarnasest suurusest. Sel juhul aga ei varieerita aegruumi koordinaate q vaid välju ψ ning algsuuruseks on Diraci Lagrange'i tihedus

$$\mathscr{L}_D^0 = c\bar{\psi}(i\hbar\partial \!\!\!/ - mc)\psi. \tag{13}$$

Kokkuleppeliselt nimetatakse ka Lagrange'i tihedust lagranžiaaniks. Nende suhe on tegelikult defineeritud ruumilise integraaliga $L = \int \mathscr{L} dx_i$. Kui klassikaline Lagrange'i funktsioon sõltub koordinaadist q ja kiirusest \dot{q} , võib-olla ajast t, siis Lagrange'i tihedus sõltub väljast ψ , kaasväljast $\bar{\psi}$ ning osatuletistest $\partial_{\mu}\psi$ ja $\partial_{\mu}\bar{\psi}$, võib-olla ka aegruumikoordinaadist x_{μ} . Kaasväljad tekivad võrrandisse sellest, et üldiselt on tegemist komplekssete väljadega, mida saame ekvivalentselt kirjeldada välja ja kaasväljaga. ψ ja $\bar{\psi}$ pole päris sõltumatud. Kui Schrödingeri võrrandis oli ψ lainefunktsioon, siis kuna Diraci gammamaatriksid on 4×4 maatriksid, on ψ neljakomponendiline nn spiinor, $\bar{\psi} = \psi^{\dagger} \gamma^0$ on aga tema kaasspiinor,

$$\psi^{\dagger} = (\psi_1^*, \psi_2^*, \psi_3^*, \psi_4^*), \qquad \psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}.$$
(14)

Kvantväljateooria võrrandid on nn. Lorentz-invariantsed, see tähendab relativistlikud, nad ei muutu vastavate teisenduste all. See määrab ka kaasspiinori erilise kuju, kuna me tahame, et $\bar{\psi}\psi$ oleks Lorentzi skalaar. $\psi^{\dagger}\psi$ aga seda ei ole, vaid on $\bar{\psi}\gamma^{\mu}\psi$ nullkomponent

$$\psi^{\dagger}\psi = \psi^{\dagger}\gamma^{0}\gamma^{0}\psi = \bar{\psi}\gamma^{0}\psi.$$
(15)

Kuna ψ on kompleksne siis saame kaks liikumisvõrrandit. Reaal- ja imaginaarosa võrrandite asemel võib ekvivalentselt esitada võrrandid välja ja kaasvälja jaoks. Lagranžiaaniks võtame Diraci lagranžiaani (13), saame Euler-Lagrange'i võrrandite abil

$$\frac{\partial \mathscr{L}_D^0}{\partial \bar{\psi}} - \partial_\mu \frac{\partial \mathscr{L}_D^0}{\partial (\partial_\mu \bar{\psi})} = 0, \qquad \frac{\partial \mathscr{L}_D^0}{\partial \psi} - \partial_\mu \frac{\partial \mathscr{L}_D^0}{\partial (\partial_\mu \psi)} = 0, \tag{16}$$

Diraci võrrandi ja kaasvõrrandi

$$(i\hbar\vec{\partial} - mc)\psi = \bar{\psi}(-i\hbar\vec{\partial} - mc) = 0.$$
(17)

3.2 Elektromagnetvälja sisseviimine

Kvantväljateoorias viiakse interaktsioon elektromagnetväljaga sisse sarnaselt klassikalisele mehaanikale, nn minimaalse asendusega

$$p_{\mu} \to p_{\mu} - eA_{\mu}.\tag{18}$$

Jälgides kvantiseerimist,

$$i\hbar\partial \to i\hbar\partial - e\gamma^{\mu}A_{\mu},$$
 (19)

kus $e = 1.6022 \times 10^{-19} C$ on elementaarlaeng ning A_{μ} on elektromagnetvälja kirjeldav vektorpotentsiaal.

Kui klassikalises mehaanikas on selline asendus *ad hoc*, siis kvantväljetoorias saab seda põhjendada kallibratsiooniinvariantsusega. Kui ütleme, et füüsika ei tohi muutuda, kui muudame faasi, siis saame teha teisenduse

$$\psi(x) \to e^{ie\alpha}\psi(x),$$
 millest järeldub ka $\bar{\psi}(x) \to e^{-ie\alpha}\bar{\psi}(x)$ (20)

kus α on konstant, mis määrab, kui palju me faasi muudame. Kui α ei sõltu aegruumi koordinaadist, nimetatakse seda globaalseks teisenduseks. Tehes asendus Diraci lagranžiaanis näeme, et kõik jääb samaks. Kehtib aga nõue, et teooria oleks invariantne lokaalsetel teisendustel [15], s.t. $\alpha(x)$ sõltub koordinaadist. Sel juhul annab tuletisega liige uue panuse

$$\partial_{\mu}\psi(x) \to \partial_{\mu}(e^{ie\alpha(x)}\psi(x)) = e^{ie\alpha(x)}(\partial_{\mu}\psi(x) + ie(\partial_{\mu}\alpha(x))\psi(x)).$$
(21)

Selle liikme kõrvaldamiseks tuuakse sisse väli A_{μ} , mis teiseneb

$$A_{\mu} \to A_{\mu} - \hbar \partial_{\mu} \alpha(x). \tag{22}$$

Kui väli lagranžiaani sisse viia, on invariantsus taastatud. Diraci lagranžiaan koos interaktsiooniliikmega on

$$\mathscr{L}_D = c\bar{\psi}(i\hbar\partial \!\!\!/ - mc)\psi - ce\bar{\psi}\gamma^{\mu}A_{\mu}\psi.$$
⁽²³⁾

Täielik kvantelektrodünaamika lagranžiaan sisaldab ka liiget, mis kirjeldab vaba footonit,

$$\mathscr{L}_{MAXWELL} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}, \qquad (24)$$

kus $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ on Maxwelli tensor, mis kirfeldab elektromagnetvälja [3]. Lähtume sellest, et interaktsioonikonstant on väike suurus ning astume seega häiritusteooriasse.

3.3 Häiritusteooria ja Feynmani diagrammid

Elementaarosakeste füüsikas kasutatakse protsesside kirjeldamiseks Feynmani diagramme. Need diagrammid ei ole lihtsalt pildid, vaid vastavate nn Feynmani reeglitega saab igale diagrammi osale vastavusse asetada algebra. Kahjuks ei ole interaktsiooni võimalik arvutada täpselt, vaid tuleb kasutada häiritusarvutust. Igale häiritusarvutusrea liikmele vastab diagramm. Kogu üleminekuamplituudi arvutmiseks tuleb summeerida üle kõigi diagrammide. Antud töös aga vaatame ainult puu-tasandi (*tree level*) interaktsiooni, kujutatud joonisel 2.

Joonis 2. Fenmani diagram protsessi $e^-e^+ \to t\bar{t}$ jaoks

Feynmani diagramm sisaldab väliseid seisundeid (alg- ja lõppseisundeid), vastastikmõju panuseid (vertekse) ning sisemisi jooni (propagaatoreid). Mis on seos eelnevalt toodud laganžiaani ja Feynmani reeglitel põhineva häritusarvutuse vahel? Lagranžiaanist loetakse välja algebra, millega arvutusi tehakse [13]:

- 1. Seostame lagranžiaani liikmed propagaatorite ja verteksitega.
- 2. Propagaatorid loetakse välja "ruudulistest" liikmetest, s.t. $F_{\mu\nu}F^{\mu\nu}$ -liikmest loetakse footonpropagaator, $\bar{\psi}(i\hbar\partial mc)\psi$ -liikmest loetakse välja fermionpropagaator, mida me antud juhul ei käsitle.
- 3. Teised liikmed seonduvad interaktsioonidega, $\bar{\psi}\gamma^{\mu}A_{\mu}\psi$ -liige kujutab endast fermioni interaktsiooni A_{μ} ehk elektromagnetväljaga.

3.4 Alg- ja lõppolekud

Alg- ja lõppseisundid on joonisel 1 fermionide omad. Diagrammi esimene osa kirjeldab elektroni ja positroni kokkupõrget. Antiosakese nool märgitakse diagrammil vastassuunas, nad on Diraci võrrandi negatiivse energia lahendid ning tuleb välja, et positroni kiirgamine on ekvivalentne elektroni neelamisega, ehk siis positron käitub nagu ajas tagurpidi liikuv elektron [13]. Diagrammil vaatame aja suunda siiski vasakult paremale. Feynmani diagrammil panustab

- ... siseneva elektroni jaoks spiinor $u(p_{-}, s_{-})$
- ... siseneva positroni jaoks spiinor $\bar{v}(p_+, s_+)$
- ... väljuva top-kvargi jaoks spiinor $\bar{u}(p_1,s_1)$
- ... väljuva antitop-kvargi jaoks spiinor $v(p_2, s_2)$.

Põhispiinorid u(p,s) ja v(p,s) tulevad sekundaarsest kvantiseerimisest, $\bar{u}(p,s) = u^{\dagger}(p,s)\gamma^{0}$ ning $\bar{v}(p,s) = v^{\dagger}(p,s)\gamma^{0}$ on vastavad kaasspiinorid. Kui ülaltoodud gammamaatriksite Diraci esituses spiinor ψ lahti võtta, siis leiame ülemistes komponentides osakese iseloomuga spiinori ning alumistes komponentides antiosakese iseloomuga spiinori. Liikumatu süsteemi jaoks on need spiinorid lihtsad, üks komponent on 1, ülejäänud 0. u(p,s) jaoks on "ülespoole" spinni puhul esimene komponent 1 ja ülejäänud 0 ning "allapoole" spinni juhul teine komponent 1 ning ülejäänud 0. v(p,s) spiinori jaoks on "ülespoole" spinni juhul kolmas liige 1, teised nullid ning kui spinn on "allapoole", siis on neljas komponent 1 ning ülejäänud nullid [3]. Lorentzi teisendustega saab muidugi üle minna suvalisse taustsüsteemi.

Alternatiivses Weyli (ehk kiraalses) esituses leiame ülemistes komponentides vasakukäelise ning alumistes paremakäelise osakese. Selle esituse kasulikkus selgub elektronõrga ineraktsiooni juures, mis eelistab vasakukäelisi osakesi. Piltlikult [16]: Weyli (kiraalne) esitus:

Dirac esitus:

osake

3.5 Spinnide üle summeerimine ja keskmistamine

Arvutuste käigus tekivad meil liikmed $u(p, s)\overline{u}(p, s)$ ja $v(p, s)\overline{v}(p, s)$. Me ei arvesta alg- ega lõppoleku spinnidega, sellepärast keskmistame üle sisenevate ning summeerime üle väljuvate (anti-)osakeste spinnide. Kehtib [3]

$$\sum_{s} u(p,s)\bar{u}(p,s) = \not p + mc, \qquad \sum_{s} v(p,s)\bar{v}(p,s) = \not p - mc, \tag{25}$$

kus *m* on (anti-)osakese mass ja $p = \gamma^{\mu} p_{\mu}$. Tava on jätta ühikmaatriks $\mathbb{1}_4 = (\delta_{ij})$ massi liikmes kirjutamata. Spiinorite tensorkorrutised moodustavad maatriksid. Kui *i* ja *j* on vastavad veeru- ja readindeksid siis saame kirjutada

$$\sum_{s} u_i(p,s)\bar{u}_j(p,s) = \gamma^{\mu}_{ij}p_{\mu} + mc\delta_{ij}.$$
(26)

3.6 Verteksid ehk vastasmõju panused

Fermion ja antifermion kokkupõrkel annihileeruvad, diagrammil on põrke kohal verteks, mis kirjeldab fermionide vastastikmõju väljaga, kvantelektrodünaamika puhul footoniga. Vastav panus loetakse lagranžiaani liikmest $-ce\bar{\psi}\gamma^{\mu}A_{\mu}\psi$. Vertekskordaja on

$$\frac{ieQ_f\gamma^{\mu}}{\hbar},\tag{27}$$

kus $q = eQ_f$ on fermioni laeng, e on elementaarlaeng ning Q_f on fermioni laeng selle suhtes (s.t. elektroni jaoks $Q_e = -1$, top-kvargi jaoks $Q_t = 2/3$ jne). Vertekskordaja on maatriksiks. Teades sisse tulevate ja välja minevate fermionide spiinoreid ning vertekseid, saame hakata konstrueerima $e^-e^+ \rightarrow t\bar{t}$ amplituudi. Tekib küsimus, kuidas seda kokku panna? Amplituud on skalaar, seega korrutame verteksit vasakult poolt kaasspiinoriga ja paremalt poolt spiinoriga. Kehtib reegel, et korrutame Feynmani diagrammil vastupidiselt noole suunale. Defineerime vasaku poole ehk algoleku jaoks *leptonvektori* L^{μ}

$$\bar{v}(p_+,s_+)\left(\frac{ieQ_e\gamma^{\mu}}{\hbar}\right)u(p_-,s_-) = \frac{ieQ_e}{\hbar}\bar{v}(p_+,s_+)\gamma^{\mu}u(p_-,s_-) =:\frac{ieQ_e}{\hbar}L^{\mu}.$$
(28)

Analoogselt defineerime lõppoleku jaoks hadronvektori H^{μ}

$$\bar{u}(p_1, s_1) \left(\frac{ieQ_t \gamma^{\mu}}{\hbar}\right) v(p_2, s_2) = \frac{ieQ_t}{\hbar} \bar{u}(p_1, s_1) \gamma^{\mu} v(p_2, s_2) =: \frac{ieQ_t}{\hbar} H^{\mu}.$$
(29)

Footonpropagaatori vahendusel korrutame need vektorid kokku, et saada skalaar.

3.7 Footonpropagaator

Propagaatorid üldiselt kirjeldavad osakese liikumist ühest aegruumipunktist teise. Kuna me siin ei arvesta kõrgemat järku kiirgusparandeid, siis jääb fermionpropagaator kirjeldamata. Propagaatori matemaatiliselt range tuletamine käib funktsionaalse integraalide meetodil, mis on läbi tehtud näiteks Peskini ja Schroederi raamatus [3]. Selle meetodi eelis on see, et ta üldistub lihtsalt massiivsele bosonile. Antud töös me seda läbi ei tee, piirdume lihtsama käsitlusega.

Footonpropagaator tuletatakse footoni lainevõrrandist kujul

$$(g^{\nu\lambda}\partial^2 - \partial^\nu\partial^\lambda)A_\lambda = j^\nu,\tag{30}$$

kus j^{ν} on voolutihedus ja $g^{\nu\lambda}$ on meetriline tensor. Propagaator on $(g^{\nu\lambda}\partial^2 - \partial^{\nu}\partial^{\lambda})$ pöödfunktsioon. Probleem on selles, et seda ei eksisteeri. Footonpropagaator ei ole üheselt määratud, kuna meil on teatud vabadus valida A_{μ} kalibratsiooniinvariantsuse tõttu. (Füüsika ei muutu teisendusel $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu}\chi$.) Probleem lihtsustub, kui teha kalibratsioonivalik $\partial_{\lambda}A^{\lambda} = 0$. Lainevõrrand saab kuju

$$g^{\nu\lambda}\partial^2 A_\lambda = j^\nu. \tag{31}$$

Kuna $g_{\mu\nu}g^{\nu\lambda}=\delta^\lambda_\mu,$ siis saame propagaatori

$$\frac{-i\hbar g_{\mu\nu}}{\varepsilon_0 c^2 q^2} = \frac{-i\mu_0 \hbar q_{\mu\nu}}{q^2},\tag{32}$$

kus oleme lisaks läbi korrutanud -i-ga ning lisanud SI ühikud dielektriline läbitavuse kontandi $\varepsilon_0 = 8.854 \times 10^{-12} C^2 s^2 / kgm^3$, magnetilise läbivuse konstandi $\mu_0 = 4\pi \times 10^{-7} kgm/C^2$ ning footoni neliimpulsi q. Sellega on kõik vahendid olemas, et panna kirja protsessi üleminekuamplituud $i\mathcal{M}$ (i on kokkuleppeline)

$$i\mathcal{M} = \bar{v}(p_+, s_+) \frac{ieQ_e\gamma^{\mu}}{\hbar} u(p_-, s_-) \frac{-\hbar g_{\mu\nu}}{\varepsilon_0 cq^2} \bar{u}(p_1, s_1) \frac{ieQ_t\gamma^{\mu}}{\hbar} v(p_2, s_2)$$
$$= \frac{ie^2Q_eQ_t}{\varepsilon_0\hbar cq^2} L^{\mu}H_{\mu} = 4i\pi\alpha \frac{Q_eQ_t}{q^2} L^{\mu}H_{\mu}.$$
(33)

4 Mõjuristlõige

Kuidas hajumist kvantitatiivselt kirjeldada? Lähtume lihtsast klassikalisest hajumiseksperimendist:

Joonis 3: Ristlõige.

- Võtame kaks palli raadiustega r_1 ja $r_2.$
- Viskame nad teineteise suunas mööda z-telge vastasuunas.
- Olenevalt pallide nihkest liikumistelje suhes, nad kas põrkuvad ($d < r_1 + r_2$) või mööduvad üksteisest ($d > r_1 + r_2$). See on visualiseeritud joonisel 3.
- Kui pallid põrkuvad, siis nad lendavad eri suundadesse. Kvantmehaanika aga on tõenäosuslik, seega ei saa eksisteerida sellist deterministlikku tulemust. Tuleb korrata katset mitmeid kordi või tuleb teha katse suure arvu identsete osakestega ja tulemused kokku lugeda.

Kiirendite puhul toimitakse järgnevalt:

- Kiirendame kaht osakeste kimpu n_1 ja n_2 .
- Mõlemad kiired fokuseerida ristlõikele A.

- Korrata katset n_{ex} korda.
- Loendada hajumiste arv N.

Oodatav N väärtus on seega

$$N = \frac{n_{ex}n_1n_2\sigma}{A},\tag{34}$$

kus karakteristlik suurus on hajumise ristlõige σ . Kahe klassikalise palli jaoks oleks $\sigma = \pi (r_1 + r_2)^2$. See tähendab, et kui teame esimese palli asendit, siis teine pall peab olema pindala σ sees, et pallid põrkuksid [17].

Põrgutieksperimentides mõõdetakse just ristlõiget. Kuid mitte mehaanilist ristlõiget vaid nn. mõjuristlõiget, kuna elementaarosakesed on siiski punktosakesed, (kuigi ulatuva mõjuga). Kuidas mõjuristlõige täpselt kujuneb, on näha vaid kvantväljateooria raames. Piirdun diferentsiaalse mõjuristlõike $d\sigma$ lõpptulemusega,

$$d\sigma = |\mathcal{M}|^2 dPS,\tag{35}$$

kus dPS on faasiruumi (diferentsiaalne) element. dPS sisaldab protsessi kinemaatikat, kui $|\mathcal{M}|^2$ sisaldab füüsikat.

Räägime diferentsiaalsest mõjuristlõikest, kui mõni faasiruumi parameetritest on jäänud integreerimata. Jätame integreerimata üle hajumisnurga θ , mis on nurk sissetuleva elektroni ja väljamineva top-kvargi vahel. Seega avaldub diferentsiaalne mõjuristlõige kujul

$$d\sigma = \frac{\hbar^2 v}{32\pi cq^2} |\mathcal{M}|^2 d(\cos\theta). \tag{36}$$

4.1 Maatrikselemendi absoluutväärtuse ruut

Faasiruumi kordaja on triviaalne, seega jätame ta edasiste arvutuste juures ära. Protsessi füüsika toimub maatrikelemendi \mathcal{M} sees. Selle ruut annab meile protsessi toimumise tõenäosuse

$$|\mathcal{M}|^2 = \mathcal{M}\mathcal{M}^* = 16\pi^2 \alpha^2 \frac{Q_e^2 Q_t^2}{q^4} L^{\mu} H_{\mu} L^{\nu*} H_{\nu*}.$$
(37)

Polarisatsioone mitte arvestades keskmistame üle algolekute ning summeerime üle lõppolekute spinnide [13]

$$|\mathcal{M}|^2 \to |\overline{\mathcal{M}}|^2 = \frac{1}{(2s_- + 1)(2s_+ + 1)} \sum_{spinnid} |\mathcal{M}|^2, \tag{38}$$

kus s_{\mp} on sissetulevad spinnid. Seega

$$|\overline{\mathcal{M}}|^2 = 16\pi^2 \alpha^2 \frac{Q_e^2 Q_t^2}{q^4} L^{\mu\nu} H_{\mu\nu}.$$
(39)

Arvutan nii lepton- kui hadrontensorid. Selle juures kasutan gammamaatriksite jäljeomadusi, mis on välja toodud Lisas 1. Leptontensoril on ülevaatlikkuse mõtte sisse jäetud elektroni mass.

$$\begin{split} L^{\mu\nu} &= \frac{1}{4} \sum_{s-,s+} L^{\mu} L^{\nu*} = \frac{1}{4} \sum_{s-,s+} \bar{v}(p_{+},s_{+}) \gamma^{\mu} u(p_{-},s_{-}) \bar{u}(p_{-},s_{-}) \gamma^{\nu} v(p_{+},s_{+}) = \\ &= \frac{1}{4} \sum_{s-,s+} \bar{v}_{i}(p_{+},s_{+}) \gamma^{\mu}_{ij} u_{j}(p_{-},s_{-}) \bar{u}_{k}(p_{-},s_{-}) \gamma^{\nu}_{kl} v_{l}(p_{+},s_{+}) = \\ &= \frac{1}{4} \gamma^{\mu}_{ij} \sum_{s-} u_{j}(p_{-},s_{-}) \bar{u}_{k}(p_{-},s_{-}) \gamma^{\nu}_{kl} \sum_{s+} v_{l}(p_{+},s_{+}) \bar{v}_{i}(p_{+},s_{+}) = \\ &= \frac{1}{4} \gamma^{\mu}_{ij} (\not{p}_{-} + m_{e}c)_{jk} \gamma^{\nu}_{kl} (\not{p}_{+} - m_{e}c)_{li} = \\ &= \frac{1}{4} tr(\gamma^{\mu} (\not{p}_{-} + m_{e}c) \gamma^{\nu} (\not{p}_{+} - m_{e}c)) = \\ &= \frac{1}{4} tr(\gamma^{\mu} \not{p}_{-} \gamma^{\nu} \not{p}_{+} - \gamma^{\mu} \not{p}_{-} \gamma^{\nu} m_{e}c + \gamma^{\mu} \not{p}_{+} \gamma^{\nu} m_{e}c - \gamma^{\mu} \gamma^{\nu} (m_{e}c)^{2}) = \\ &= \frac{1}{4} tr(\gamma^{\mu} \gamma^{\rho} \gamma^{\nu} \gamma^{\sigma} p_{-\rho} p_{+\sigma} - \gamma^{\mu} \gamma^{\nu} (m_{e}c)^{2}) = \\ &= \frac{1}{4} [p_{-\rho} p_{+\sigma} tr(\gamma^{\mu} \gamma^{\rho} \gamma^{\nu} \gamma^{\sigma}) - (m_{e}c)^{2} tr(\gamma^{\mu} \gamma^{\nu})] = \\ &= \frac{1}{4} [4p_{-\rho} p_{+\sigma} (g^{\mu\rho} g^{\nu\sigma} - g^{\mu\nu} g^{\rho\sigma} + g^{\mu\sigma} g^{\rho\nu}) - 4(m_{e}c)^{2} g^{\mu\nu}] = \\ &= p_{-}^{\mu} p_{+}^{\nu} - p_{-}^{\sigma} p_{+\sigma} g^{\mu\nu} + p_{-}^{\nu} p_{+}^{\mu} - (m_{e}c)^{2} g^{\mu\nu} = \\ &= p_{-}^{\mu} p_{+}^{\nu} + p_{-}^{\nu} p_{+}^{\mu} - (p_{-} p_{+} + m_{e}^{2} c^{2}) g^{\mu\nu} \end{split}$$
(40)

$$\begin{split} H_{\mu\nu} &= \sum_{s_1,s_2} H_{\mu} H_{\nu}^* = \sum_{s_1,s_2} \bar{u}(p_1,s_1) \gamma_{\mu} v(p_2,s_2) \bar{v}(p_2,s_2) \gamma_{\nu} u(p_1,s_1) = \\ &= \sum_{s_1,s_2} \bar{u}_i(p_1,s_1) \gamma_{\mu i j} v_j(p_2,s_2) \bar{v}_k(p_2,s_2) \gamma_{\nu k l} u_l(p_1,s_1) = \\ &= \sum_{s_1} u_l(p_1,s_1) \bar{u}_i(p_1,s_1) \gamma_{\mu i j} \sum_{s_2} v_j(p_2,s_2) \bar{v}_k(p_2,s_2) \gamma_{\nu k l} = \\ &= (\not p_1 + m_t c)_{l i} \gamma_{\mu i j} (\not p_2 - m_t c)_{j k} \gamma_{\nu k l} = \\ &= tr((\not p_1 + m_t c) \gamma_{\mu} (\not p_2 - m_t c) \gamma_{\nu}) = \\ &= tr(\not p_1 \gamma_{\mu} \not p_2 \gamma_{\nu} - \not p_1 \gamma_{\mu} \gamma_{\nu} m_t c + \gamma_{\mu} \not p_2 \gamma_{\nu} m_t c - \gamma_{\mu} \gamma_{\nu} (m_t c)^2) = \\ &= tr(\gamma_{\rho} \gamma_{\mu} \gamma_{\sigma} \gamma_{\nu} p_1^{\rho} p_2^{\sigma} - \gamma_{\mu} \gamma_{\nu} (m_t c)^2) = \\ &= p_1^{\rho} p_2^{\sigma} tr(\gamma_{\rho} \gamma_{\mu} \gamma_{\sigma} \gamma_{\nu}) - (m_t c)^2 tr(\gamma_{\mu} \gamma_{\nu}) = \\ &= 4 p_1^{\rho} p_2^{\sigma} (g_{\rho\mu} g_{\sigma\nu} - g_{\rho\sigma} g_{\mu\nu} + g_{\rho\nu} g_{\mu\sigma}) - 4(m_t c)^2 g_{\mu\nu} = \\ &= 4 [p_{1\mu} p_{2\nu} - p_1^{\sigma} p_{2\sigma} g^{\mu\nu} + p_{1\nu} p_{2\mu} - (m_t c)^2 g_{\mu\nu}] = \\ &= 4 [p_{1\mu} p_{2\nu} + p_{1\nu} p_{2\mu} - (p_1 p_2 + m_t^2 c^2) g_{\mu\nu}] \end{split}$$

Nagu näha, on hadrontensor identne leptontensoriga, kui välja arvata kordaja $\frac{1}{4}$. Seda arvestada jätan edaspidi hadrontensori arvutamata, tuues ta välja vaid lõpptulemuses. Z-bosoni arestamiseks on vaja mõningaid algteadmisi elektronõrga teooria kohta.

5 Elektronõrk teooria

Elektronõrk teooria ühendab endas nõrga ja elektromagnetilise vastasmõju. Kaks näiliselt väga erinevat jõudu on ühendatavad sümmetriaprintsiipide alusel. Meil on tarvis mõningaid teadmisi sellest teooriast, et arvestada $e^+e^- \rightarrow t\bar{t}$ protsessis tekkivat Z-bosoni panust, mis on nõrga interaktsiooni boson. Elektronõrga teooria aluseks on spiraalsuse säilimise põhimõte ning spontaanne sümmeetria rikkumine, mida kirjeldab Higgsi mehhanism [18]. Viimast me põhjalikult ei käsitle, piirdume mõne kommentariga arutluse käigus.

Et nõrk interaktsioon peab eksisteerima, sellele viitavad näiteks mesonite lagunemisajad. Värviinteraktsiooni lagunemised on suurusjärgus 10^{-23} sekundit, elektromagnetiline suurusjärgus 10^{-16} sekundit, $\pi^- \rightarrow \mu^- \bar{\nu}$ lagunemisaeg $\tau = 2.6 \times 10^{-8} s$ viitab sellele, et midagi on siin veel [13].

Peale selle nähakse eksperimentides elektroni muutumist neutriinoks ning up-kvargi muutumist down-kvargiks.

5.1 Dubletid ja singletid

Elektronõrka teooriat kirjeldab Shelton Lee Glashow, Steven Weinbergi ja Abdus Salami poolt välja pakutud GWS teooria. Kui Glashow kirjutas sellest, kuidas nõrk interaktsioon võiks tuleneda sümmeetriast [19], siis Weinberg tuli mõttele, et kalibratsiooniväljad võiks tuleneda rühmast $SU(2)_L \times U(1)_Y$ [1]. Sümmetria, mis kirjeldab elektronõrka teooriat on täpne, kuid selle rikub ära vaakum. Vaakumi rikkumine on seotud Higgsi mehhanismiga.

U(1)-rühmale vastav teisendus on $\psi(x) \to exp(ig_1\beta(x)Y)\psi(x)$, mis sarnaneb kvantelektrodünaamikale, kuna ka toda kirjeldab sama rühm. Kordaja g_1 on vastav laeng, $\beta(x)$ on parameeter, mis määrab, kui palju faasi pööratakse ning Y on pööramist teostav generaator, mille määrame hiljem.

SU(2) teisendus on kujul $\psi(x) \to exp(ig_2\vec{\omega}(x)\vec{\tau})\psi(x), g_2$ on jälle vastav laeng, $\vec{\omega}(x)$ parameeter, ning $\tau_i = \sigma_i/2$ vastava rühma generaator, kus tunneme ära Pauli maatriksid.

 $SU(2)_L$ -rühma teisendused mõjuvad ainult vasakukäelistele seisunditele ja seda mitte eraldi vaid nn. dubletina. Nii võetakse kokku näiteks vasakukäelised neutriino ja elektron ning upja down-kvargid

$$L = \begin{pmatrix} \nu \\ e^{-} \end{pmatrix}_{L} \qquad \text{ja} \qquad \begin{pmatrix} u \\ d \end{pmatrix}_{L} \tag{42}$$

Iga dubleti komponent on jälle neljakomponendiline spiinor. Analoogne retsept üldistub teistele fermionide generatsioonidele. Paremakäelised seisundid jäävad singlettideks e_R^- , u_R , d_R . Paneme tähele, et GWS mudelis puudub paremakäeline neutriino. Kui mudel koostati, siis tolle aja parimate teadmiste järgi oli neutriino massitu. Tänapäevaks oleme kindlaks teinud, et neutriinodel on küll väike, kuid nullist erinev mass [7]. Nullist erinev mass viitab paremakäelise osakese olemasolule, kuid ei eksisteeri paremakäelisi välju. Sellega seoses on palju vastamata küsimusi, mida me siin ei käsitle.

Rõhutamaks üldist, on järgneval arutluskäigul aluseks võetud up- ja down-kvark, millel on olemas paremakäeline komponent.

5.2 Vasaku- ja paremakäelised seisundid

Käelisus (kiraalsus, spiraalsus) on määratud selle järgi, kuhupoole on suunatud osakese spinn—liikumise suunas spinniga osake on paremakäeline, vastassuunas spinniga on vasakukäeline. Käelisus on seotud paarsuse mõistega. Öeldakse, et paarsus on säilitatud, kui käelisus ei muutu. Footon on pime käelisuse suhtes, nõrk interaktsioon aga paistab eelistavat vasakukäelisi osakesi. Käelisuse eraldamiseks spiinorist kasutatakse projektsioonioperaatoreid

$$P_L = \frac{1}{2}(1 - \gamma_5)$$
 ja $P_R = \frac{1}{2}(1 + \gamma_5),$ (43)

mis rakendatuna spiinorile annavad tulemuseks

$$\psi_L = P_L \psi$$
 ja $\psi_R = P_R \psi.$ (44)

Maatriks $\gamma_5 = i\gamma^0\gamma^1\gamma^2\gamma^3$ teeb teooria "tundlikuks" spiraalsuse suhtes. Weyli esituses nullib P_L kaks alumist ning P_R kaks ülemist spiinori neljast komponendist. Analoogia Diraci esitusega on silmatorkav, kus me järeldasime et spiinori pooleks jagades saame kaks erinevat

objekti: osakese ja antiosakese. Samamoodi võib järeldada, et näiteks elektron pole fundamentaalne objekt, vaid vasakukäeline elektron ja paremakäeline elektron on fundamentaalsed. Projektorid on reaalsed, kehtib

$$P_L^{\dagger} = P_L, \qquad P_R^{\dagger} = P_R$$

$$P_L^2 = P_L, \qquad P_R^2 = P_R$$

$$P_L P_R = P_R P_L = 0$$

$$P_L + P_R = 1 \qquad (45)$$

Kaasspiinorid on seotud vastupidise projektoriga,

$$\bar{\psi}_L = (P_L \psi)^{\dagger} \gamma^0 = \psi^{\dagger} P_L \gamma^0 = \psi^{\dagger} \gamma^0 P_R = \bar{\psi} P_R \qquad \text{ja} \qquad \bar{\psi}_R = \bar{\psi} P_L, \tag{46}$$

kus on kasutatud antikommutaatorit $\{\gamma^{\mu}, \gamma_5\} = 0$ ehk $\gamma^{\mu}\gamma_5 = -\gamma_5\gamma^{\mu}$ ($\mu = 0, 1, 2, 3$). Kui lähtuda sellest, et antiosake käitub nagu ajas tagurpidi liikuv osake, siis vastab ka impulsi suunas spinniga osakesele impulsi vastassuunas spinniga antiosake.

Sisestades sobivasse kohta ühikmaatriksi, saab lagranžiaane jagada parema- ja vasakukäelisteks osadeks

$$\bar{\psi}\gamma^{\mu}\psi = \bar{\psi}(P_L + P_R)\gamma^{\mu}(P_L + P_R)\psi = \bar{\psi}P_R\gamma^{\mu}P_L\psi + \bar{\psi}P_L\gamma^{\mu}P_R\psi =$$
$$= \bar{\psi}_L\gamma^{\mu}\psi_L + \bar{\psi}_R\gamma^{\mu}\psi_R.$$
(47)

Nii jaguneb \mathscr{L}_{KED} kineetiline panus

$$c\bar{\psi}i\hbar\gamma^{\mu}\partial_{\mu}\psi = c\bar{\psi}_{L}i\hbar\gamma^{\mu}\partial_{\mu}\psi_{L} + c\bar{\psi}_{R}i\hbar\gamma^{\mu}\partial_{\mu}\psi_{R}.$$
(48)

Massiliikmega aga tekib probleeme kuna

$$\bar{\psi}\psi = \bar{\psi}(P_L^2 + P_R^2)\psi = \bar{\psi}_R\psi_L + \bar{\psi}_L\psi_R \tag{49}$$

rikub paarsust. Sellest hädast aitab välja alles Higgsi mehhanism.

5.3 $SU(2)_L \times U(1)_Y$ kalibratsiooniväljad

Toimime sarnaselt elektromagnetvälja sissetoomisega ning lisame lagranžiaani väljaliikmed. Peame meeles, et $SU(2)_L$ mõjub ainult vasakukäelistele olekutele.

$$\mathscr{L}_{EN} = c\bar{L}(i\hbar\gamma^{\mu}\partial_{\mu} - g_{1}\gamma^{\mu}B_{\mu}Y_{L} - g_{2}\gamma^{\mu}W_{\mu}^{i}\tau_{i})L + c\bar{R}(i\hbar\gamma^{\mu}\partial_{\mu} - g_{1}\gamma^{\mu}B_{\mu}Y_{R})R$$
(50)

5.4 Füüsikalised väljad (W^+_{μ} ja W^-_{μ})

Eelnev lagranžiaan on aga mudeli lagranžiaan. Tahame saada kirjeldust füüsikaliste väljade kaudu. Kirjutame lahti

$$W^{i}_{\mu}\tau_{i} = \frac{1}{2} \begin{pmatrix} W^{3}_{\mu} & W^{1}_{\mu} - iW^{2}_{\mu} \\ W^{1}_{\mu} + iW^{2}_{\mu} & -W^{3}_{\mu} \end{pmatrix} =: \frac{1}{2} \begin{pmatrix} W^{0}_{\mu} & -\sqrt{2}W^{+}_{\mu} \\ -\sqrt{2}W^{-}_{\mu} & -W^{0}_{\mu} \end{pmatrix},$$
(51)

kus W^- ja W^+ esindavad juba füüsikalisi bosoneid. Märk näitab ka elektrilaengut. Saame lagranžiaaniks

$$\mathscr{L}_{EN} = c\bar{d}_L i\hbar\gamma^\mu \partial_\mu d_L + c\bar{u}_L i\hbar\gamma^\mu \partial_\mu u_L + c\bar{d}_R i\hbar\gamma^\mu \partial_\mu d_R + c\bar{u}_R i\hbar\gamma^\mu \partial_\mu u_R + - cg_1 [Y_L \bar{d}_L \gamma^\mu d_L + Y_L \bar{u}_L \gamma^\mu u_L + Y_{dR} \bar{d}_R \gamma^\mu d_R + Y_{uR} \bar{u}_R \gamma^\mu u_R] B_\mu + - c \frac{g_2}{2} [(\bar{u}_L \gamma^\mu u_L - \bar{d}_L \gamma^\mu d_L) W^0_\mu - \sqrt{2} (\bar{u}_L \gamma^\mu d_L W^+_\mu + \bar{d}_L \gamma^\mu u_L W^-_\mu)].$$
(52)

Nagu näha siis kineetilises liikmes ja interaktsiooniliikmes B_{μ} -ga ei mängi käelisus roll, küll aga liikmetes W^0_{μ} ja W^{\pm}_{μ} bosonitega. W^{\pm}_{μ} vahendavad nn. laetud voole. Näiteks $\bar{u}_L \gamma^{\mu} d_L W^{+}_{\mu}$ kirjeldab vasakukäelise down-kvargi muutumist up-kvargiks intarktsioonil W^{+}_{μ} -ga.

5.5 $SU(2)_L \times U(1)_Y$ kohandamine kvantelektrodünaamikale

Kalibratsioonväljad B_{μ} ja W^{0}_{μ} ei ole füüsikalised väljad. Nad korraldavad nn neutraalseid voole. Kuna B_{μ} tuleb rühmast $U(1)_{Y}$ ja W^{0}_{μ} rühmast $SU(2)_{L}$, siis võiks arvata, et esimene on elektromagnetväli ja teine neutraalne nõrk väli. See pole aga päris nii. Võrdleme elektronõrga lagranžiaani elektrodünaamika omaga

$$\mathscr{L}_{KED} = ic\hbar \bar{d}\gamma^{\mu}\partial_{\mu}d + ic\hbar\bar{u}_{L}\gamma^{\mu}\partial_{\mu}u_{L} - cq_{d}\bar{d}\gamma^{\mu}dA_{\mu} - cq_{u}\bar{u}\gamma^{\mu}uA_{\mu},$$
(53)

kus $q_d=eQ_d\;(Q_d=-1/3)$ ja $q_u=eQ_u\;(Q_u=2/3)$ on down- ja up-kvarkide la
engud. Näeme seoseid

$$g_1 Y_L B_\mu + \frac{g_2}{2} W^0_\mu = e Q_u A_\mu, \qquad g_1 Y_{uR} B_\mu = e Q_u A_\mu,$$

$$g_1 Y_L B_\mu - \frac{g_2}{2} W^0_\mu = e Q_d A_\mu, \qquad g_1 Y_{dR} B_\mu = e Q_d A_\mu.$$
(54)

Vasaku- ja paremakäelisi osakesi eristab hüperlaeng.

$$Y_L = \frac{1}{2}(Q_u + Q_d) = \frac{1}{6}, \qquad Y_{uR} = Q_u = \frac{2}{3}, \qquad Y_{dR} = Q_d = -\frac{1}{3}.$$
 (55)

Üldine seos on laengu Q ja hüperlaengu vahel on

$$Q = T^3 + Y, (56)$$

kus T^3 on isospinni kolmas komponent. Selgub, et nii elektromagnetväli kui neutraalne nõrk väli on kahe välja lineaarkombinatsioon, mille leiame katsest $A_{\mu} = B_{\mu} \cos \theta_W + W^0_{\mu} \sin \theta_W$ ning vastavalt $Z_{\mu} = -B_{\mu} \sin \theta_W + W^0_{\mu} \cos \theta_W$. Weinbergi nurk [19] θ_W kirjeldab, kui palju väljad on välja "keeratud" mudeli väljadest. Selle nurga kaudu leiame ka U(1) ja SU(2)laengud

$$g_1 = \frac{e}{\cos \theta_W}, \qquad g_2 = \frac{e}{\sin \theta_W}.$$
 (57)

Lõpuks saame väljendada elektronõrga lagranžiaani läbi füüsikaliste väljade

$$\mathscr{L}_{EN} = ic\hbar\bar{u}\gamma^{\mu}\partial_{\mu}u + ic\hbar\bar{d}\gamma^{\mu}\partial_{\mu}d - ceQ_{u}\bar{u}\gamma^{\mu}uA_{\mu} - ceQ_{d}\bar{d}\gamma^{\mu}dA_{\mu} + - \frac{ec}{\sin\theta_{W}\cos\theta_{W}}\left(\left(\frac{1}{2} - Q_{u}\sin^{2}\theta_{W}\right)\bar{u}_{L}\gamma^{\mu}u_{L} + \left(-\frac{1}{2} - Q_{d}\sin^{2}\theta_{W}\right)\bar{d}_{L}\gamma^{\mu}d_{L} + - Q_{u}\sin^{2}\theta_{W}\bar{u}_{R}\gamma^{\mu}u_{R} - Q_{d}\sin^{2}\theta_{W}\bar{d}_{R}\gamma^{\mu}d_{R}\right)Z_{\mu} + + \frac{ec}{\sqrt{2}\sin\theta_{W}}(\bar{u}_{L}\gamma^{\mu}d_{L}W^{+}_{\mu} + \bar{d}_{L}\gamma^{\mu}u_{L}W^{-}_{\mu}).$$
(58)

5.6 Z-bosoni verteks

Kogu eelnev arutlus oli sellks, et saaks koostada lagranžiaani, millest vertekskordaja välja lugeda. See kordaja on

$$\frac{ie\gamma^{\mu}}{\hbar\sin\theta_W\cos\theta_W} \left(T_f^3 \frac{1-\gamma_5}{2} - Q_f \sin^2\theta_W\right).$$
(59)

Fermioni nõrk isospinni kolmas komponent T_f^3 on null singleti jaoks, dubleti ülemise komponendi jaoks on 1/2 ning alumise komponendi jaoks -1/2. Arvutuste tegemiseks on mõistlik verteks kirja panna kujul

$$\frac{ieg_Z}{4\hbar}(v_f\gamma^\mu + a_f\gamma_5\gamma^\mu),\tag{60}$$

kus oleme tähistanud $g_Z = (\sin \theta_W \cos \theta_W)^{-1}$. Ilmneb, et Z-bosoni verteksil on kaks panust, vektorpanus (γ^{μ} liige) ja aksiaalvektropanus ($\gamma_5 \gamma^{\mu}$ liige). Oleme tähistanud vastavad kordajad $v_f = 2T_f^3 - 4Q_f \sin^2 \theta_W$ ja $a_f = 2T_f^3$.

Antud protsessi jaoks on tähtsad elektroni ja top-kvargi kordajad

$$v_e = -1 + 4\sin^2 \theta_W, \qquad a_e = -1,$$

 $v_t = 1 - \frac{8}{3}\sin^2 \theta_W, \qquad a_t = +1.$ (61)

5.7 Z-bosoni propagaator

Viimane osa, mida meil veel vaja on Z-bosoniga arvutuste tegemiseks, on tema propagaator. Kuju poolest on ta väga sarnane footoni propagaatoriga

$$\frac{i\mu_0\hbar g^{\mu\nu}}{q^2 - m_Z^2 c^2 + im_Z \Gamma_Z},\tag{62}$$

kus m_Z tähistab Z-bosoni massi ning $\Gamma_Z = 2.4952(23)GeV$ arvestab osakese elueaga, kuna Z ei ole stabiilne [10]. Soov on kirja panna Z-bosoni propagaator sarnaselt footoni omaga [20],

$$\frac{i\mu_0\hbar g^{\mu\nu}}{q^2}\chi_Z(q^2),\tag{63}$$

kus oleme tähistanud

$$\chi_Z(q^2) = \frac{gq^2m_Z^2c^4}{q^2 - m_Z^2c^2 + im_Z\Gamma_Z}, \qquad g = \frac{G_F}{8\sqrt{2}\pi\alpha(\hbar c)^3},$$
(64)

kus $G_F/(\hbar c)^3 = 1.16637(1) \times 10^{-5} GeV^{-2}$ on Fermi konstant. Kuna igas verteksis seisab kordaja g_Z , siis kaasame selle ruudu ka $\chi_Z(q^2)$ sisse. Kokkuvõttes on footoni ja Z-bosoni verteksid

$$\frac{ie}{\hbar}Q_f\gamma^{\mu}$$
 ja $\frac{ie}{\hbar}(v_f\gamma^{\mu} + a_f\gamma_5\gamma^{\mu})$ (65)

ning footoni ja Z-bosoni propagaatorid on

$$\frac{-i\mu_0\hbar g_{\mu\nu}}{q^2} \qquad \text{ja} \qquad \frac{-i\mu_0\hbar g_{\mu\nu}}{q^2}\chi_Z(q^2). \tag{66}$$

6 Protsessi $e^-e^+ \rightarrow t\bar{t}$ tõenäosus

Nüüd on kõik vajalik koos, et teha arvutused protsessis $e^-e^+ \rightarrow t\bar{t}$ jaoks, kus vahetatakse Z-boson. Lõpuks saame tulemused ühendada footoni vahetuse jaoks ning tulemuseks ongi protsessi tõenäosus.

6.1 Z-bosoni leptontensori arvutamine

Z-bosoni jaoks on arvutus analoogne footoni juhuga, tarvis on välja vahetada verteks. See verteks on aga keerulisem, kui footonil — Z-bosonil on nii vektorpanus γ^{μ} (mis ilmneb ka footoni puhul) kui ka aksiaalvektorpanus $\gamma_5 \gamma^{\mu}$. Uue panuse ilmnemine teeb arvutused keerulisemaks. Panen kirja leptontensorid Z-bosoni jaoks. Neid on neli komponenti. Arvutused on analoogsed eelnevalt tehtud footoni leptontensoriga.

Esimene, VV liige on identne footoni jaoks arvutatud tulemusega, kuna on puhtalt vektoriseloomuga verteks.

$$L^{VV\mu\nu} = \frac{1}{4} L^{V\mu} L^{V\nu*} = \frac{1}{4} \sum_{s-,s+} \bar{v}(p_+, s_+) \gamma^{\mu} u(p_-, s_-) \bar{u}(p_-, s_-) \gamma^{\nu} v(p_+, s_+) =$$
$$= p_-^{\mu} p_+^{\nu} + p_-^{\nu} p_+^{\mu} - (p_- p_+ + m^2 c^2) g^{\mu\nu}.$$
(67)

Järgnevad liikmed sisaldavad aksiaalvektori komponenti, $\gamma^{\mu}\gamma_{5}$ panusest. Teine, AA liige on:

$$L^{AA\mu\nu} = \frac{1}{4} L^{A\mu} L^{A\nu*} = \frac{1}{4} \sum_{s-,s+} \bar{v}(p_+, s_+) \gamma_5 \gamma^{\mu} u(p_-, s_-) \bar{u}(p_-, s_-) \gamma_5 \gamma^{\nu} v(p_+, s_+) =$$

$$= \frac{1}{4} tr[\gamma_5 \gamma^{\mu} (\gamma^{\rho} p_{-\rho} + mc) \gamma_5 \gamma^{\nu} (\gamma^{\sigma} p_{+\sigma} - mc)] =$$

$$= \frac{1}{4} tr(\gamma_5 \gamma^{\mu} \gamma^{\rho} \gamma_5 \gamma^{\nu} \gamma^{\sigma}) p_{-\rho} p_{+\sigma} - tr(\gamma_5 \gamma^{\mu} \gamma_5 \gamma^{\nu}) (mc)^2 =$$

$$= p_{-\rho} p_{+\sigma} (g^{\mu\rho} g^{\nu\sigma} - g^{\mu\nu} g^{\rho\sigma} + g^{\mu\sigma} g^{\rho\nu}) + (mc)^2 g^{\mu\nu} =$$

$$= p_{-\rho}^{\mu} p_{+}^{\nu} + p_{-}^{\nu} p_{+}^{\mu} - (p_{-} p_{+} - m^2 c^2) g^{\mu\nu}, \qquad (68)$$

kus esimeses jäljes on kaks korda ja teises jäljes on üks kord kasutatud antikommutaatorseost $\{\gamma_5, \gamma^{\mu}\} = 0$ ning $(\gamma_5)^2 = 1$. Nagu ka VV osas, kaovad kaks liiget, kuna jälg paaritust arvust

gammamaatriksitest on null. Kolmas, VA liige on:

$$L^{VA\mu\nu} = \frac{1}{4}L^{V\mu}L^{A\nu*} = \frac{1}{4}\sum_{s-,s+} \bar{v}(p_+,s_+)\gamma^{\mu}u(p_-,s_-)\bar{u}(p_-,s_-)\gamma_5\gamma^{\nu}v(p_+,s_+) =$$

$$= \frac{1}{4}tr[\gamma^{\mu}(\gamma^{\rho}p_{-\rho}+mc)\gamma_5\gamma^{\nu}(\gamma^{\sigma}p_{+\sigma}-mc)] =$$

$$= \frac{1}{4}tr(\gamma^{\mu}\gamma^{\rho}\gamma_5\gamma^{\nu}\gamma^{\sigma})p_{-\rho}p_{+\sigma} = tr(\gamma_5\gamma^{\mu}\gamma^{\rho}\gamma^{\nu}\gamma^{\sigma})p_{-\rho}p_{+\sigma} =$$

$$= -i\epsilon^{\mu\rho\nu\sigma}p_{-\rho}p_{+\sigma},$$
(69)

kus ϵ on Levi-Civita sümbol. Kasutasin ka jälje omadust $tr(\gamma_5 \gamma^{\mu} \gamma^{\nu}) = 0$. Jälg on ka null siis, kui peale γ_5 on jälje all paaritu arv gammamaatrikseid.

Jääb veel arvutada viimane, AV liige:

$$L^{AV\mu\nu} = \frac{1}{4} L^{A\mu} L^{V\nu*} = \frac{1}{4} \sum_{s-,s+} \bar{v}(p_+,s_+) \gamma_5 \gamma^{\mu} u(p_-,s_-) \bar{u}(p_-,s_-) \gamma^{\nu} v(p_+,s_+) =$$
$$= \frac{1}{4} tr[\gamma_5 \gamma^{\mu} (\gamma^{\rho} p_{-\rho} + mc) \gamma^{\nu} (\gamma^{\sigma} p_{+\sigma} - mc)] =$$
$$= \frac{1}{4} tr(\gamma_5 \gamma^{\mu} \gamma^{\rho} \gamma^{\nu} \gamma^{\sigma}) p_{-\rho} p_{+\sigma} = -i\epsilon^{\mu\rho\nu\sigma} p_{-\rho} p_{+\sigma}$$
(70)

Hadronvektorid on analoogsed leptonvektoritega. Ülejäänud erinevused tulevad top-kvargi erinevast impulsist, kui see välja kirjutada ilmutatud kujul.

6.2 Protsessi kogutõenäosus

Paneme kirja üleminekuamplituudi interaktsiooni jaoks, kus vahetatakse Z-boson.

$$i\mathcal{M}_{Z} = \frac{4i\pi\alpha}{q^{2}}\chi_{Z}(q^{2})(v_{e}v_{t}L^{V\mu}H^{V}_{\mu} + v_{e}a_{t}L^{V\mu}H^{A}_{\mu} + a_{e}v_{t}L^{A\mu}H^{V}_{\mu} + a_{e}a_{t}L^{A\mu}H^{A}_{\mu})$$
(71)

Olles teinud vastavad arvutused Z-bosoni jaoks, tuleks need tulemused kokku panna eelnevalt leitud tulemustega footoni jaoks. Selle jaoks lihtsalt summeerin maatrikelemendid:

$$\mathcal{M}_{\gamma} + \mathcal{M}_{Z} = \frac{4\pi\alpha}{q^{2}} [Q_{e}Q_{t}L^{V\mu}H^{V}_{\mu} + \chi_{Z}(q^{2})(v_{e}v_{t}L^{V\mu}H^{V}_{\mu} + v_{e}a_{t}L^{V\mu}H^{A}_{\mu} + a_{e}v_{t}L^{A\mu}H^{V}_{\mu} + a_{e}a_{t}L^{A\mu}H^{A}_{\mu})]$$
(72)

Kokkuvõttes otsime tõenäosust ehk amplituudi ruudu keskväärtust (spinne ei arvesta):

$$\begin{split} |\overline{\mathcal{M}_{\gamma} + \mathcal{M}_{Z}}|^{2} &= \frac{16\pi^{2}\alpha^{2}}{q^{4}} [(Q_{e}Q_{t})^{2}L^{VV\mu\nu}H^{VV}_{\mu\nu} + \\ &+ (\chi(q^{2}))^{2}((v_{e}v_{t})^{2}L^{VV\mu\nu}H^{VV}_{\mu\nu} + (v_{e}a_{t})^{2}L^{VV\mu\nu}H^{AA}_{\mu\nu} + \\ &+ (a_{e}v_{t})^{2}L^{AA\mu\nu}H^{VV}_{\mu\nu} + (a_{e}a_{t})^{2}L^{AA\mu\nu}H^{AA}_{\mu\nu}) + \\ &+ v^{2}_{e}v_{t}a_{t}(L^{VV\mu\nu}H^{VA}_{\mu\nu} + L^{VV\mu\nu}H^{AV}_{\mu\nu}) + v_{e}a_{e}v_{t}a_{t}(L^{VA\mu\nu}H^{AV}_{\mu\nu} + \\ &+ L^{AV\mu\nu}H^{VA}_{\mu\nu}) + a^{2}_{e}v_{t}a_{t}(L^{AA\mu\nu}H^{VA}_{\mu\nu} + L^{AA\mu\nu}H^{AV}_{\mu\nu}) + \\ &+ v_{e}a_{e}v_{t}a_{t}(L^{AV\mu\nu}H^{AV}_{\mu\nu} + L^{VA\mu\nu}H^{VA}_{\mu\nu}) + v_{e}a_{e}v^{2}_{t}(L^{VA\mu\nu}H^{VV}_{\mu\nu} + \\ &+ L^{AV\mu\nu}H^{VV}_{\mu\nu}) + v_{e}a_{e}a^{2}_{t}(L^{VA\mu\nu}H^{AA}_{\mu\nu} + L^{AV\mu\nu}H^{AA}_{\mu\nu})) + \\ &+ Q_{e}Q_{t}\chi_{Z}(q^{2})(v_{e}v_{t}L^{VV\mu\nu}H^{VV}_{\mu\nu} + v_{e}a_{t}L^{VV\mu\nu}H^{AV}_{\mu\nu} + \\ &+ a_{e}v_{t}L^{AV\mu\nu}H^{VV}_{\mu\nu} + a_{e}a_{t}L^{AV\mu\nu}H^{AV}_{\mu\nu}) + \\ &+ a_{e}v_{t}L^{VA\mu\nu}H^{VV}_{\mu\nu} + a_{e}a_{t}L^{VA\mu\nu}H^{VA}_{\mu\nu})]. \end{split}$$

On näha, et saadud tulemus on väga keerulise kujuga, ei esine mitte ainult footoni ja Zi üleminekuamplituutide ruudud \mathcal{M}_{γ}^2 ja \mathcal{M}_Z^2 , vaid ka nende interferentsiliikmed $\mathcal{M}_{\gamma}\mathcal{M}_Z^*$ ja $\mathcal{M}_Z\mathcal{M}_{\gamma}^*$. Soov oleks see kokku võtta lihtsamalt ja ülevaatlikumalt. Kordajad tuleks kuidagi kokku võtta. Arvestades Z-bosoni vektor- ja aksiaalvektorpanuseid γ^{μ} ja $\gamma_5\gamma^{\mu}$ muutub diagrammiga kirjeldatud maatrikselement $\mathcal{M} = L_{\mu}H^{\mu}$ vastavalt:

$$\mathcal{M} = \tilde{g}_{VV} L^{V}_{\mu} H^{V\mu} + \tilde{g}_{VA} L^{V}_{\mu} H^{A\mu} + \tilde{g}_{AV} L^{A}_{\mu} H^{V\mu} + \tilde{g}_{AA} L^{A}_{\mu} H^{A\mu} = \sum_{\alpha,\beta=V}^{A} \tilde{g}_{\alpha\beta} L^{\alpha}_{\mu} H^{\beta\mu}, \qquad (74)$$

kus kordaja $\tilde{g}_{\alpha\beta}$ sisaldab kordaja
id Q_f, v_f ja a_f verteksitest ja $\chi_Z(g^2)$ Z-bosoni propaga
atorist. Ära on jäetud kordaja $\frac{4\pi\alpha}{q^2}$, kuna see on triviaalne, lõpp
tulemuses tuleb ka taas sisse tuua. Oleme aga endiselt huvitatud maatrikselemendi ruudust

$$\sum_{spinnid} |\mathcal{M}|^2 = \sum_{spinnid} \sum_{\alpha,\alpha',\beta,\beta'=V}^{A} \tilde{g}_{\alpha\beta} L^{\alpha}_{\mu} H^{\beta\mu} \tilde{g}^*_{\alpha'\beta'} L^{\alpha'*}_{\nu} H^{\beta'\nu*} =$$

$$= \sum_{\alpha,\alpha',\beta,\beta'=V}^{A} \tilde{g}_{\alpha\beta} \tilde{g}^*_{\alpha'\beta'} \sum_{spinn} L^{\alpha}_{\mu} L^{\alpha'*}_{\nu} \sum_{spinn} H^{\beta\mu} H^{\beta'\nu*} =$$

$$= \sum_{\alpha,\alpha',\beta,\beta'=V}^{A} g_{(\alpha\alpha')(\beta\beta')} L^{\alpha\alpha'}_{\mu\nu} H^{\beta\beta'\mu\nu}.$$
(75)

 $g_{(\alpha\alpha')(\beta\beta')}$ olen kokku võtnud Lisas 2 kogudes kokku lepton- ja hadrontensori ees olevad kordajad võrrandist (11). Selgub aga, et mõistlikum on tulemused kokku võtta kujul

$$|\mathcal{M}|^2 = \sum_{i,j=1}^4 g_{ij} L^i_{\mu\nu} H^{j\mu\nu}.$$
(76)

Selle jaoks on defineeritud

$$L^{1}_{\mu\nu} := \frac{1}{2} (L^{VV}_{\mu\nu} + L^{AA}_{\mu\nu}), \qquad L^{2}_{\mu\nu} := \frac{1}{2} (L^{VV}_{\mu\nu} - L^{AA}_{\mu\nu}),$$
$$L^{3}_{\mu\nu} := \frac{i}{2} (L^{VA}_{\mu\nu} - L^{AV}_{\mu\nu}), \qquad L^{4}_{\mu\nu} := \frac{1}{2} (L^{VA}_{\mu\nu} + L^{AV}_{\mu\nu}).$$
(77)

Vastavalt sellele on ka tarvis defineerida g_{ij} . Selle jaoks võtsin $(\alpha \alpha'), (\beta \beta') \in \{VV, VA, AV, AA\}$ indeksiteks $i, j \in \{1, 2, 3, 4\}$ võttes aluseks definitsioonid võrrandeist (77). Tulemus on välja kirjutatud Lisas 3. Uued leptontensorid $L^{i\mu\nu}$ on seega

$$L^{1\mu\nu} = \frac{1}{2} \left(\left[p_{-}^{\mu} p_{+}^{\nu} + p_{-}^{\nu} p_{+}^{\mu} - (p_{-} p_{+} + m_{e}^{2} c^{2}) g^{\mu\nu} \right] + \left[p_{-}^{\mu} p_{+}^{\nu} + p_{-}^{\nu} p_{+}^{\mu} - (p_{-} p_{+} - m_{e}^{2} c^{2}) g^{\mu\nu} \right] \right) =$$

$$= p_{-}^{\mu} p_{+}^{\nu} + p_{-}^{\nu} p_{+}^{\mu} - p_{-} p_{+} g^{\mu\nu}$$

$$L^{2\mu\nu} = \frac{1}{2} \left(\left[p_{-}^{\mu} p_{+}^{\nu} + p_{-}^{\nu} p_{+}^{\mu} - (p_{-} p_{+} + m_{e}^{2} c^{2}) g^{\mu\nu} \right] - \left[p_{-}^{\mu} p_{+}^{\nu} + p_{-}^{\nu} p_{+}^{\mu} - (p_{-} p_{+} - m_{e}^{2} c^{2}) g^{\mu\nu} \right] \right) =$$

$$= m_{e}^{2} c^{2} g^{\mu\nu}$$

$$(79)$$

$$L^{3\mu\nu} = \frac{i}{2} \left(-i\epsilon^{\mu\rho\nu\sigma} p_{-\rho} p_{+\sigma} - \left(-i\epsilon^{\mu\rho\nu\sigma} p_{-\rho} p_{+\sigma} \right) \right) = 0$$
(80)

$$L^{4\mu\nu} = \frac{1}{2} (-i\epsilon^{\mu\rho\nu\sigma} p_{-\rho} p_{+\sigma} - i\epsilon^{\mu\rho\nu\sigma} p_{-\rho} p_{+\sigma}) = -i\epsilon^{\mu\rho\nu\sigma} p_{-\rho} p_{+\sigma}$$
(81)

Analoogselt hadrontensorid $H^{i\mu\nu}$:

$$H^{1\mu\nu} = 4(p_2^{\mu}p_1^{\nu} + p_2^{\nu}p_1^{\mu} - p_2p_1g^{\mu\nu})$$
(82)

$$H^{2\mu\nu} = 4m_t^2 c^2 g^{\mu\nu}$$
(83)

$$H^{3\mu\nu} = 0 \tag{84}$$

$$H^{4\mu\nu} = -4i\epsilon^{\mu\rho\nu\sigma}p_{2\rho}p_{1\sigma} \tag{85}$$

6.3 Sõltuvus hajumisnurgast θ

Lõpuks oleme jõudnud sinnamaale, et saame arvutada protsessi sõltuvust hajumisnurgast θ . Selle jaoks arvutan välja $L^i H^j$:

$$L^{1}H^{1} = 4(p_{-}^{\mu}p_{+}^{\nu} + p_{-}^{\nu}p_{+}^{\mu} - p_{-}p_{+}g^{\mu\nu})(p_{2\mu}p_{1\nu} + p_{2\nu}p_{1\mu} - p_{2}p_{1}g^{\mu\nu}) =$$

$$= 4\left(2(p_{-}p_{2})(p_{+}p_{1}) + 2(p_{-}p_{1})(p_{+}p_{2}) - 4(p_{1}p_{2})(p_{-}p_{+}) + 4(p_{-}p_{+})(p_{1}p_{2})\right) =$$

$$= 8\left((p_{-}p_{1})(p_{+}p_{2}) + (p_{-}p_{2})(p_{+}p_{1})\right) = \frac{E^{4}}{2c^{6}}\left((c - v\cos\theta)^{2} + (c - v\cos\theta)^{2}\right) =$$

$$= \frac{E^{4}}{c^{6}}\left(c^{2} + v^{2}\cos^{2}\theta\right) = \frac{E^{4}}{c^{4}}\left(1 + \frac{v^{2}}{c^{2}}\cos\theta\right)$$

$$L^{1}H^{2} = 4(p_{-}^{\mu}p_{+}^{\nu} + p_{-}^{\nu}p_{+}^{\mu} - p_{-}p_{+}g^{\mu\nu})m_{t}^{2}c^{2}g_{\mu\nu} = 4m_{t}^{2}c^{2}\left(2(p_{-\nu}p_{+}\mu) - 4(p_{-\nu}p_{+}\mu)\right)) =$$

$$= -8m_{t}^{2}c^{2}(p_{-}p_{+}) = -4E^{2}m_{t}^{2} = -4\frac{E^{4}}{c^{4}}\left(1 - \frac{v^{2}}{c^{2}}\right)$$

$$L^{4}H^{4} = -4\epsilon_{\mu\rho\nu\sigma}p_{-}^{\rho}p_{+}^{\sigma}\epsilon^{\mu\tau\nu\omega}p_{2\tau}p_{1\omega} = 4(\delta_{\rho}^{\tau}\delta_{\sigma}^{\omega} - \delta_{\rho}^{\omega}\delta_{\sigma}^{\tau})p_{-}^{\rho}p_{+}^{\sigma}p_{2\tau}p_{1\omega} =$$

$$= 4\left((p_{-}p_{2})(p_{+}p_{-}) - (p_{-}p_{1})(p_{+}p_{2})\right) = \frac{E^{4}}{4c^{6}}\left((c + v\cos\theta)^{2} - (c - v\cos\theta)^{2}\right)$$

$$= \frac{E^{4}}{c^{4}}cv\cos\theta.$$
(86)

Ülejäänud komponendid on nullid, kui arvestada elektroni mass nulliks ning kasutada Levi-Civita sümboli antimeetrilisust. Samuti on kasutatud seost $4m_t = \frac{E^2}{c^4} (1 - \frac{v^2}{c^2})$.

Pannes tagasi sisse ka välja jäetud konstandid, saab lõpuks kirjutada diferentsiaalse mõjuristlõikke sõltuvalt nurgast θ

$$\frac{d\sigma}{d\cos\theta} = \frac{\pi\alpha^2\hbar^2c^2v}{2q^2} \left(g_{11}\left(1 + \frac{v^2}{c^2}\cos^2\theta\right) - g_{12}\left(1 - \frac{v^2}{c^2}\right) + g_{44}\frac{v}{c}\cos\theta\right).$$
(87)

Tulemust on kujutatud joonisel 4. Arvutuste tegemisel on valitud kolm masskeskme energiat $\sqrt{q^2} = E = 380 GeV; 500 GeV; 1000 GeV$. Et tegemist on kõrgete energiatega, siis on interaktsiooni parameeter $\alpha = 1/128$ ning Weinbergi nurga väärtus on selline, et sin² $\theta_W = 0.23188$ [9]. Mõjuristlõike ühik on osakestefüüsikas kasutuses olev pikobarn $(1pb = 10^{-40}m^2)$.

Joonis 4. Diferentsiaalse mõjuristlõike sõltuvus hajumisnurgast.

Graafikult näeme, et ristlõige on suurem positiivsete $\cos \theta$ väärtuste juures.

Meid huvitab ka protsessi koguristlõige. Selle jaoks integreerime üle $\cos \theta$. Näeme, et on vaja

arvutada kolm integraali

$$\int_{-1}^{+1} d(\cos\theta) = [\cos\theta]_{-1}^{+1} = +1 - (-1) = 2$$
$$\int_{-1}^{+1} \cos\theta d(\cos\theta) = \frac{1}{2} [\cos^2\theta]_{-1}^{+1} = 0$$
$$\int_{-1}^{+1} \cos^2\theta d(\cos\theta) = \frac{1}{3} [\cos^3\theta]_{-1}^{+1} = \frac{1}{3} ((+1)^3 - (-1)^3) = \frac{2}{3}.$$
(88)

Protsessi koguristlõige on seega

$$\sigma = \frac{\pi \alpha^2 \hbar^2 c^2 v}{2q^2} \left(g_{11} \left(2 + \frac{2v^2}{3c^2} \right) - 2g_{12} \left(1 - \frac{v^2}{c^2} \right) \right).$$
(89)

Graafiliselt on kujutatud ristlõike ja energia suhe joonisel 5.

Joonis 5. Mõjuristlõike sõltuvus energiast.

7 Kokkuvõte

Käesoleva bakalaureuse töö eesmärgiks oli tutvuda kvantväljateooria ning tema formalismiga. Selle jaoks on uurimise alla võetud kiirendieksperimendi kirjeldus. Praktilise tulemusena sai selle tarbeks arvutatud protsessi $e^-e^+ \rightarrow t\bar{t}$ mõjuristlõige. Töö käigus tutvuti kvantväljateooria lähenemisega probleemide lahendamisel. Tuli selgeks teha teooria erinevad elemendid ning vastav matemaatiline kirjeldus.

Töö esimeses osas nägime, et kvantväljateoorias kasutatakse protsesside kirjeldamiseks Feynmani diagramme, mis visualiseerivad häiritusarvutuse liikeid. Sisenevad ja väljuvad osakesi kirjeldavad vastavad spiinorid. Verteks iseloomustab osakeste interaktsiooni väljaga ning propagaator vastava välja levimist. Antud juhul annihileeruvad elektron ja positron, nad interakteeruvad elektromagnetvälja ja nõrga väljaga ning lõpuks tekib top- ja antitop-kvargi paar. Verteksite ja propagaatorite algebra loetakse välja lagranžiaanist. Selle jaoks tutvusime kvantelektrodünaamika lagranžiaaniga ning teises osas ka elektronõrga teooriaga. Nägime, et GWS teooria ühendab endas kahte eelnevalt nimetatud vastastikmõju ning tutvusime põhimõtetega, mille alusel nõrk teooria eristab vasku- ja paremakäelisi olekuid.

Mahuka arvutuse tulemusena leidsime protsessi üleminekutõenäosust kirjeldava lihtsa kujuga avaldise, kus süstematiseerisime arvutuse käigus tekkivad kordajad maatriksisse, mille elemendid on selgesõnaliselt kirjas lisas 3. Seega on lihtne leida protsessi sõltuvus hajumisnurgast.

8 Inquiry into the process $e^-e^+ \rightarrow t\bar{t}$

Ülari Külaots

Summary

The purpose of this bachelor's thesis was to become familiar with quantum field theory and its methods. For this a particle collision experiment was chosen, namely the process $e^-e^+ \rightarrow t\bar{t}$. It was the intention to calculate the cross section for the process to occur, which is the standard approaching. To be able to carry out this calculation, concepts and algebra had to be introduced.

In the first part of the thesis Feynman diagrams were introduced as means to visualize the perturbative series. External lines represent fermions, which are described by spinors in the theory. The interact with the field in vertices and the internal lines describe the propagation of the corresponding boson. In this particular case we started with an electron-positron collision, which then interacted with the electromagnetic and weak fields, creating a photon or Z-boson, which then splits into a top, anti-top quark pair.

The vertices and propagators are read from the corresponding lagrangians. First the lagrangian for quantum electrodynamics was introduced which, later on also the lagrangian of the electroweak theory. Electromagnetism and the weak interaction are unified in the GWS theory. This theory is unique in that it distinguishes between left and right-handed states.

After lengthy calculations a neat formula was derived for the probability of the process to occur. The coefficients that appear during calculation were gathered in a matrix, making it simple to find the scattering angle dependence of this process.

9 Tänuavaldused

Soovin avaldada sügavaid tänuavaldusi juhendajale Stefan Grootele. Tema jätkuv juhendamine ja tugi on olnud ülimalt motiveeriv ja julgustav.

10 Kasutatud kirjandus

Viited

- [1] S. Weinberg, "A model of leptons," Physical Review Letters 19, 1264 (1967).
- [2] D. Kaiser, "Richard Feynman's Diagrams," American Scientist 93, 156.
- [3] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley Publishing Company, 1997).
- [4] W. Pauli, "Relativistic field theories of elementary particles," Reviews of Modern Physics 13, 203 (1941).
- [5] G. Kane, Modern elementary particle physics, vol. 2 (Addison-Wesley Reading, 1987).
- [6] G. Bertone, D. Hooper, and J. Silk, "Particle dark matter: evidence, candidates and constraints," Physics Reports 405, 279–390 (2005).
- [7] H. Murayama, "The origin of neutrino mass," Physics World (2002). http://hitoshi.berkeley.edu/neutrino/PhysicsWorld.pdf.
- [8] A. Brandenburg, M. Flesch, and P. Uwer, "Spin density matrix of top quark pairs produced in electron-positron annihilation including qcd radiative corrections," Phys. Rev. D 59, 014001 (1998).
- [9] J. Beringer et al., "Review of particle physics," Phys. Rev. D 86, 010001 (2012).
- [10] J. Erler and P. Langacker, "Electroweak model and constraints on new physics," arXiv preprint hep-ph/0407097 (2004).
- [11] A. Einstein, *The meaning of relativity* (Psychology Press, 2003).
- [12] P. A. Dirac, "The quantum theory of the electron," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 117, 610–624 (1928).

- [13] F. Halzen and A. D. Martin, "Quarks and leptons: an introductory course in modern particle physics," (1984).
- [14] D. Tong, "Lectures on quantum field theory," (2012).
 http://www.damtp.cam.ac.uk/user/tong/qft/prelim.pdf.
- B. Q. de Wit, "Field theory in particle physics," (2009).
 http://www.staff.science.uu.nl/ wit00103/ftip/Ch11.pdf.
- [16] M. Boers, "Neutrino masses," (2011).
- [17] P. N. Beisert, Quantum Field Theory I. http://www.itp.phys.ethz.ch/research/qftstrings/archive/12HSQFT1/QFT1HS12Notes.pdf.
- [18] P. W. Higgs, "Broken symmetries and the masses of gauge bosons," Phys. Rev. Lett. 13, 508–509 (1964).
- [19] S. L. Glashow, "Partial-symmetries of weak interactions," Nuclear Physics 22, 579–588 (1961).
- [20] S. Groote, M. Tung et al., "Polar angle dependence of the alignment polarization of quarks produced in e⁺ + e⁻-annihilation," arXiv preprint hep-ph/9601313 (1996).

11 Lisad

Lisa 1. Jälgedega arvutamine

$$tr(\mathbb{1}_{4}) = 4$$
$$tr(\gamma^{\mu}\gamma^{\nu}) = 4g^{\mu\nu}$$
$$tr(\gamma_{5}\gamma^{\mu}\gamma^{\nu}) = 0$$
$$tr(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}) = 4(g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma} + g^{\mu\sigma}g^{\nu\rho})$$
$$tr(\gamma_{5}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}) = -4i\epsilon^{\mu\nu\rho\sigma}$$
$$tr(\text{paaritu arv } \gamma\text{-sid}) = 0$$
$$tr(\gamma_{5} \cdot \text{paaritu arv } \gamma\text{-sid}) = 0$$

Lisa 2. Kordajad $g_{(\alpha\alpha')(\beta\beta')}$, kus $(\alpha\alpha'), (\beta\beta') \in \{VV, VA, AV, AA\}$

$$\begin{split} g_{(VV)(VV)} &= (v_e v_t)^2 |\chi_Z|^2 + (Q_e Q_t)^2 + 2Q_e Q_t v_e v_t Re\chi_Z \\ g_{(VV)(VA)} &= v_e^2 v_t a_t |\chi_Z|^2 + Q_e Q_t v_e a_t \chi_Z \\ g_{(VV)(AV)} &= v_e^2 a_t v_t |\chi_Z|^2 + Q_e Q_t a_t v_e \chi_Z^* \\ g_{(VV)(AA)} &= (v_e a_t)^2 |\chi_Z|^2 \end{split}$$

$$g_{(VA)(VV)} = v_e a_e v_t^2 |\chi_Z|^2 + Q_e Q_t a_e v_t \chi_Z$$

$$g_{(VA)(VA)} = v_e a_e v_t a_t |\chi_Z|^2 + Q_e Q_t a_e a_t \chi_Z$$

$$g_{(VA)(AV)} = v_e a_e a_t v_t |\chi_Z|^2$$

$$g_{(VA)(AA)} = v_e a_e a_t^2 |\chi_Z|^2$$

$$g_{(AV)(VV)} = a_e v_e v_t^2 |\chi_Z|^2 + Q_e Q_t a_e v_t \chi_Z^*$$

$$g_{(AV)(VA)} = a_e v_e v_t a_t |\chi_Z|^2$$

$$g_{(AV)(AV)} = a_e v_e a_t v_t |\chi_Z|^2 + Q_e Q_t a_e a_t \chi_Z^*$$

$$g_{(AV)(AA)} = a_e v_e a_t^2 |\chi_Z|^2$$

$$g_{(AA)(VV)} = a_e^2 v_t^2 |\chi_Z|^2$$

$$g_{(AA)(VA)} = a_e^2 v_t a_t |\chi_Z|^2$$

$$g_{(AA)(AV)} = a_e^2 a_t v_t |\chi_Z|^2$$

$$g_{(AA)(AA)} = a_e^2 a_t^2 |\chi_Z|^2$$

Lisa 3. Kordaja $g_{i,j},$ kus $i,j\in\{1,2,3,4\}$

$$\begin{array}{lll} g_{11} &=& (Q_e Q_t)^2 + 2Q_e Q_t v_e v_t Re\chi_Z + (v_e^2 + a_e^2)(v_t^2 + a_t^2)|\chi_Z|^2 \\ g_{12} &=& (Q_e Q_t)^2 + 2Q_e Q_t v_e v_t Re\chi_Z + (v_e^2 + a_e^2)(v_t^2 - a_t^2)|\chi_Z|^2 \\ g_{13} &=& -2Q_e Q_t v_e a_t Im\chi_Z \\ g_{14} &=& 2Q_e Q_t v_e a_t Re\chi_Z + 2(v_e^2 + a_e^2)v_t a_t|\chi_Z|^2 \end{array}$$

$$g_{21} = (Q_e Q_t)^2 + 2Q_e Q_t v_e v_t Re\chi_Z + (v_e^2 - a_e^2)(v_t^2 + a_t^2)|\chi_Z|^2$$

$$g_{22} = (Q_e Q_t)^2 + 2Q_e Q_t v_e v_t Re\chi_Z + (v_e^2 - a_e^2)(v_t^2 - a_t^2)|\chi_Z|^2$$

$$g_{23} = -2Q_e Q_t v_e a_t Im\chi_Z$$

$$g_{24} = 2Q_e Q_t v_e a_t Re\chi_Z + 2(v_e^2 - a_e^2)v_t a_t |\chi_Z|^2$$

$$g_{31} = -2Q_eQ_ta_ev_tIm\chi_Z$$

$$g_{32} = -2Q_eQ_ta_ev_tIm\chi_Z$$

$$g_{33} = -2Q_eQ_ta_ea_tRe\chi_Z$$

$$g_{34} = -2Q_eQ_ta_ev_tIm\chi_Z$$

$$g_{41} = 2Q_e Q_t a_e v_t Re\chi_Z + 2a_e v_e (a_t^2 + v_t^2) |\chi_Z|^2$$

$$g_{42} = 2Q_e Q_t a_e v_t Re\chi_Z + 2a_e v_e (v_t^2 - a_t^2) |\chi_Z|^2$$

$$g_{43} = -2Q_e Q_t a_e a_t Im\chi_Z$$

$$g_{44} = 2Q_e Q_t a_e a_t Re\chi_Z + a_e v_e a_t v_t |\chi_Z|^2$$

na $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
na $UARI KÜLAOTS$ (<i>autori nimi</i>) nnikuupäev: <u>14.10.1986</u>) annan Tartu Ülikoolile tasuta loa (lihtlitsentsi) enda loodud teose <u>Protressi etet et tuurimine</u>
na $ULARI KÜLAOTS$ (autori nimi) nnikuupäev: 14.10.1986) annan Tartu Ülikoolile tasuta loa (lihtlitsentsi) enda loodud teose Protressi ete $\rightarrow tT$ currimine
na $ULARI KÜLAOTS$ (autori nimi) nnikuupäev: 14.10.1986) annan Tartu Ülikoolile tasuta loa (lihtlitsentsi) enda loodud teose Protressi ete \rightarrow tT currimine
(autori nimi) nnikuupäev: <u>14.10.1986</u>) annan Tartu Ülikoolile tasuta loa (lihtlitsentsi) enda loodud teose Protressi $e^+e^- \rightarrow tT$ currimine
annan Tartu Ülikoolile tasuta loa (lihtlitsentsi) enda loodud teose $\frac{Protsessi}{e^+e^- \rightarrow tf} currimine$
annan Tartu Ülikoolile tasuta loa (lihtlitsentsi) enda loodud teose Protsessi $e^+e^- \rightarrow tF$ currimine
(lõputöö pealkiri)
le juhendaja on STEFAN GROOTE
(juhendaja nimi)
.reprodutseerimiseks säilitamise ja üldsusele kättesaadavaks tegemise eesmärgil, sealhulga digitaalarhiivi DSpace-is lisamise eesmärgil kuni autoriõiguse kehtivuse tähta lõppemiseni; .üldsusele kättesaadavaks tegemiseks Tartu Ülikooli veebikeskkonna kaudu, sealhulga digitaalarhiivi DSpace'i kaudu kuni autoriõiguse kehtivuse tähtaja lõppemiseni.
olen teadlik, et punktis 1 nimetatud õigused jäävad alles ka autorile.
kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi eg isikuandmete kaitse seadusest tulenevaid õigusi.
91. The A
2000 and a constant a
143 <i>5 - Ma</i> rtisla VIII