UNIVERSITY OF TARTU
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science
Computer Science Curriculum

Oskar Hint

Efficient parallel algorithms for synthetic
aperture radar data processing using
large-scale distributed frameworks

Bachelor’s Thesis (9 ECTS)

Supervisor: Pelle Jakovits, MSc

Tartu 2015

Efficient parallel algorithms for synthetic aperture radar data pro-
cessing using large-scale distributed frameworks

Abstract:

Processing radar satellite images is a considerable computing task due to large image
sizes. Distributed computing can often be leveraged to speed up algorithms that are too
time-consuming on a single machine. It is however unclear which radar image processing
algorithms can be efficiently migrated to parallel environments and what is the proper
way to implement them. Previous works have concentrated on parallel image processing
as a general computing task but either the unique properties of radar images or newer
distributed computing frameworks are not considered or only some specific algorithms
have been examined. This thesis proposes a classification of radar image processing algo-
rithms that can potentially be parallelized. Each class of algorithms is studied based on
the properties of current popular distributed computing frameworks and file systems. Al-
gorithms that best represent their respective classes are implemented using some concrete
distributed computing framework. The classification simplifies the gauging of potential
algorithms in terms of parallel speedup and provides general implementation steps, thus
easing the task of leveraging distributed computing for radar image processing.

Keywords: Cloud computing, Distributed computing, Synthetic aperture radar, SAR,
Image processing

Tohusad paralleel-algoritmid radarsatelliidipiltide tootluseks ka-
sutades suuremahulisi hajusraamistikke

Liihikokkuvote:

Radarsatelliidipiltide t&6tlemine on mérkimisviirse suurusega arvutusiilesanne kuna
piltide mootmed on ddrmiselt suured. Hajusarvutust kasutatakse sageli et voimendada
algoritme, mis jooksevad iihel arvutil liiga aeglaselt. Kuid on ebaselge, milliseid radarip-
iltide tootlusalgoritme on voimalik tohusalt paralleelsetesse keskkondadesse iimber viia
ning kuidas neid korrektselt implementeerida. Eelnevad t66d on keskendunud paralleelsele
pilditootlusele kui iildisele arvutusiilesandele, kuid unikaalseid radarpiltide omadusi voi
uuemaid hajusarvutusraamistikke pole késitletud voi on késitlus keskendunud monele iik-
sikule algoritmile. Kéesolev t66 pakub véilja potentsiaalselt paralleliseeritavate radarip-
iltide tootlusalgoritmide klassifikatsiooni. Iga algoritmide klassi uuritakse enimkasutata-
vate hajusraamistike ja -failisiisteemide omadustel. Koige paremini mingeid klasse esin-
davad algoritmid implementeeritakse konkreetsetel tehnoloogiatel. Klassifikatsioon liht-
sustab huvipakkuvate algoritmide vordlust ja pakub iildisi implementatsioonisamme ning
holbustab seelébi hajusarvutuse rakendamist radarsatelliidipiltide tootlusel.

Votmesonad: Hajusarvutus, Pilvearvutus, Radarsatelliidipildid, Pildité6tlus

Contents

[1I__Introduction

2 Background|

2.2 Technologies
[2.2.1 Apache Spark]

[2.2.2 Hadoop Distributed File System|.

[2.3 Synthetic Aperture Radar| o0

[2.3.1 Radar imaging

basics|

[2.3.2 SAR specifics|
2.3.3 Common uses|

[2.3.4 Image representation| L.

[3 Approach|
I;i.l] Ils g!ls!is zlll

[3.2.1 Single image pixel-based algorithms|

[3.2.2 Single image window-based algorithmsg|

[3.2.3 Multiple image

pixel-based algorithms|

[3.2.4 Multiple image

window-based algorithms|

[3.3 Implementations| . .

[3.3.1 Interacting with the file system|

B.3.2 Median flterl

[3.3.3 RGB composite change detection|

(5.2 Proposals|

[5.2.2 Applications| .

(6 Appendices|

[6.1 Appendix A: Code repository|

[6.2 Appendix B: License|

U O O i = s

OO O

10
10
11
11

12
12
13
14
14
14
15
15
17
17
18
19
19

21

22
22
23
23
23

1 Introduction

1.1 Problem overview

The last decade has seen a huge increase in the amount of data generated in almost all
walks of life. This has also been the case with satellite imagery, nowadays many airplanes
carry optical or radar imaging equipment and there are several ongoing large-scale Earth
monitoring programmes with the most extensive ones being NASA’s Earth Observing
System (EOS) which launched its first satellite in 1997 and the more recent European
Space Agency’s (ESA) Copernicus programme with 3 satellites being launched between
2014 and 2016. In Copernicus programme’s case, satellite data is freely available in various
different forms, meaning both public institutions and private companies have fast access
to the latest images. The large quantity of available images and the growing number of
imaging techniques employed has opened up new research opportunities and possibilities
for real-world applications. With new satellite images generated for the same area in
as little as 6 days, it is possible to study changes on Earth’s surface on relatively small
time scales, which in turn enables researchers to more efficiently tackle problems such as
the monitoring of polar ice caps and deforestation, farmland usage, urban development,
natural disasters’ relief efforts and so forth.

1.2 Motivation

However, as has been the case for many other fields, the volume of data being collected
also brings about many challenges in satellite imaging, especially regarding the storage,
processing and visualisation of said data. Even if focusing on a certain small area of
land, the number of images needing processing can be in hundreds and with image sizes
in gigabytes it quickly becomes apparent that due to the sheer amount of resources and
storage needed, this cannot be feasibly done using just a single machine running some
processing algorithm.

Thus, in many ways the next logical step is to use several machines. Firstly, nowadays
almost all universities and other research institutions have their own computing clusters
capable of parallel processing. Secondly, with the the rise of infrastructure as a service
(IaaS) providers such as Amazon and Google with Elastic Compute Cloud (EC2) and
Google Compute Engine respectively, anyone can get quick access to parallel computing
resources. Furthermore, there are great open source computing frameworks and dis-
tributed file systems freely available with great documentation and community support
with the most widely-used one being the Apache Hadoop software library.

1.3 Limitations

Since at the time of writing, the only launched satellite of ESA’s Coperincus programme is
the Sentinel T which is equiped with a certain type of imaging equipment called Synthetic
Aperture Radar (SAR), this thesis will focus on processing SAR data in particualar.
The distributed computing technologies chosen are Apache Spark and Hadoop Dis-
tributed Filesystem(HDFS). The common consideration for the technologies chosen was
that both Spark and HDFS are widely-used among both researches and private compa-
nies. In addition, since at the time of writing Spark is still a relatively new framework
and therefore the amount of research conducted on it is still considerably smaller than
older more established frameworks such as MapReduce. Additional reason for choosing

4

HDEFS as the file system is that as it is part of the Hadoop stack, it integrates well with
other Apache products.

1.4 Goals

The main goals of this thesis are as follows:

e Determine which SAR data processing algorithms are good candidates to be paral-
lely implemented and what is the correct way to do so

e Provide a framework in which different SAR data processing algorithms can be
compared in terms of parallel implementation feasibility

e Implement some algorithms on HDFS and Spark to gauge parallelization speedup
in practice

e Provide proof of concept for a general SAR data processing tool running on HDFS
and Spark

e Propose real-world applications that build on this work
e Propose areas of future research

e Whenever possible generalize solutions to not only cover SAR data processing, but
large-scale image processing as a whole

1.5 Contributions

As part of this thesis, a classification of SAR image processing algorithms was proposed.
The classification simplifies estimating the parallel speedup potential of different SAR
data processing algorithms and therefore answers the question, which algorithms can be
efficiently moved to distributed frameworks. Specific example algorithms from the most
important classes were implemented using Spark and HDFS to prove the feasibility of
leveraging distributed computing for SAR data processing.

1.6 Outline

Chapter 2 gives the essential overview of the technologies used and explains what are
SAR images, their characteristics, how they are produced and what sets them apart
from other image types.

Chapter 3 contains the main part of this work, classification of potentially parallelizable
SAR image processing algorithms is given. Each class of algorithms is studied to
determine if they can be efficiently parallelized and implementations of example
algorithms are discussed

Chapter 4 presents results of running the implemented algorithms on a Spark cluster

Chapter 5 concludes the thesis and provides areas of further research and ideas for
possible real-world applications

2 Background

2.1 Relevant work

Relevant previous work to this thesis is largely lacking since almost no previous distributed
image-processing works have considered SAR images. This is mostly since open access to
a large variety of different SAR images of various locations has been a recent development
and the computing framework used for the purposes of this thesis, Spark, is new as well.
Some background can still be provided however.

The most closely related preceding work is SAR Image Denoising Using Non-Local
Means on MapReduce by Vossotski. Vossotski shows that Hadoop MapReduce is well-
suited for running parallel non-local means noise reduction on SAR images. However,
no other algorithms were examined and thus the solutions proposed do not generalise
well. Since the MapReduce model used imposes considerable restrictions to algorithms’
implementations, coming up with more general solutions would have likely proved dif-
ficult. The file system used was HDFS and thus the storage and serialization of SAR
images was considered. The images were converted to PNG format and stored as striped
splits with certain overlap. However, this way of storing is not suitable for some SAR
processing tasks since SAR-specific information regarding the waveform is lost. Also,
since the image was split into long and narrow stripes, many sliding window algorithms
might only work reasonably well if the window size is small.

Another slightly related work is Distributed Processing Of Large Remote Sensing
Images Using MapReduce by Tesfamariam. Tesfamariam finds that MapReduce is an
efficient framework that scales well for large-scale edge detection so long as the size of
input is reasonably largeE] Tesfamariam also found that MapReduce model was simple in
the sense that minimal changes were needed to the sequential algorithms. Since MapRe-
duce algorithms can generally be implemented in Spark in similar fashion, this indicates
that Spark is likely suitable for various remote sensing image processing tasks. Remote
sensing images were considered from a broad and general spectrum and any SAR image
specifics were not examined.

2.2 Technologies
2.2.1 Apache Spark

Motivation Apache Spark is a cluster computing framework currently maintained and
developed by the Apache Software Foundation. Spark was originally built to address the
most common issue with the single-pass batch processing model of MapReduce, which
was the need to write intermediate results of a multi-job task to a distributed file system.
This meant that iterative algorithms brought about considerable disk I/O overhead and
made MapReduce slow for many common data processing tasks, such as machine learning
and interactive data analytics and exploration. [ZCD™12a] As both of these tasks are
common in image processing, using Spark for SAR data processing provides a larger
number of potential algorithms to be efficiently implemented as well as faster querying.
For example, a researcher can in principle load some images of a certain location to
memory, then perform noise-reduction and run some change detection algorithm on the
same data all without the need for multiple reads and writes to the underlying file system.

'In gigabytes.

Spark is also well integrated with Hadoop and many of the various systems used in tandem
with MapReduce, such as different file systems or the YARN resource manager, work fine
with Spark. [ZCD™12b| Furthermore, Spark is open source and freely available with
considerable documentation and support, provides apis for 3 different languages - Java,
Python and Scala, and puts no restrictions on the underlying hardware, making it well
suitable for current work.

Cluster overview Spark’s structure is in many ways similiar to MapReduce. Spark
requires a cluster manager and a distributed storage system. Cluster manager’s job is to
deal with resource allocation, Spark supports standalone (native Spark cluster), Apache
Mesos and Hadoop YARN cluster managers. For storage, Spark supports a wide range of
different systems, such as HDFS, Amazon S3 and several others. The program specified
by the programmer to use Spark is called a Driver program and contains a SparkContext
object that connects to the cluster manager tell Spark to acquire executors on nodes for
processing and storage, refer to figure Il Application code is distributed to executors and
SparkContext assigns tasks for the executors. Executors can be thought of as independent
processes that when connected to the manager, make up the Spark cluster.

Worker Node

Executor | Cache

—
Driver F‘mgram / */"" - —

SparkContext [4——— Cluster Manager

\ Worker Node

Executor | cache

Task Task

Figure 1: Spark cluster overview https://spark.apache.org/docs/latest/
cluster-overview.html

https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html

Resilient distributed dataset The central abstraction in Spark is that of resilient
distributed dataset (RDD) which is an immutable collection of elements partitioned across
multiple machines that can be operated on in parallel. RDDs act as a storage primitive
and a restricted form of coarse-grained memory as well as a programming abstraction.
In Spark, RDDs can be created through operations on either data on the file system or
other RDDs, by converting a collection to an RDD or by changing the persistence of an
existing RDD. Since RDDs are stored in memory during execution, operations on them
are considerably faster than maps in MapReduce for example. RDDs are aggressively
thrown out of memory if they are not immediately needed so if a certain RDD is needed

for multiple operations, appropriate cache or persist method has to be explicitly called.
[ZCD™12¢]

Programming model To use Spark, programmers need to provide a driver program
that controls the high-level processing flow of their application. This is done by first
creating an RDD, usually by reading some data from the file system, and then applying
various parallel operations on these RDDs. In Spark programs, RDDs and operations are
represented as language specific E] objects and methods. RDD operations fall into two
main categories: transformations and actions. Transformations are lazy functions that
define new RDDs and actions prompt the actual computation by either returning a value
or exporting data to storage.

Fault tolerance Fault tolerance is provided without replication, instead Spark tracks
computation and any lost data is recomputed from the base data on disk. This means
that elements of an RDD need not exist on the file system explicitly but instead contain
the RDD’s lineage - transformations used to derive a particular RDD from disk or other
RDDs.

2Scala, Java or Python.

2.2.2 Hadoop Distributed File System

As a distributed storage platform, the Hadoop Distributed File System(HDFS), a scaleable
and fault-tolerant distributed file system written in Java, was chosen. Since HDFS is part
of the Hadoop stack, it works well with Spark and has great resources and support avail-
able.

In HDFS, data is stored in nodes. Metadata and the actual application data are kept
separately with the former being stored on a single dedicated node called the NameNode
and the latter on other nodes called DataNodes.

Files in HDFS are split into large blocks, by default 128MB in size, that are repli-
cated accross multiple DataNodes, mapping of blocks to DataNodes and files, as well as
management of the namespace hierarchy, is handled by the NameNode.

Once HDFS is properly set up, DataNodes send regular heartbeats (3s) to the NameN-
ode to confirm that the DataNode is in operation as well as provide the NameNode with
information regarding their storage capacity and ongoing data transfer. NameNode uses
replies to heartbeats to send various instructions to DataNodes, such as the commands
to replicate certain blocks to other nodes or to shut down the node. Faul toleration is one
of the main principles of HDFS and it is mostly achieved by constant replicatio. Faults

are considered the norm rather than the exception. Figure [2| provides a broad overview
of HDFS architecture.

Metadata (Name, replicas, ...):
/homeffoo/data, 3, ...

Metadafge_;_,ops"" Namenode

Block ops

Read Datanodes Datanodes

* | |
A E = . Replication a0 =
[] u Blocks

N \/ . J
Y

~ |
Rack 1 VWrite Rack 2

Figure 2: HDFS Architecture http://hadoop.apache.org/docs/r1.2.1/hdfs_
design.html

http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

2.3 Synthetic Aperture Radar
2.3.1 Radar imaging basics

Typically radar imaging techniques work by emitting radio waves (called radar signals) in
some direction and collecting the waves that are reflected back. Quality of the reflected
signal is determined by properties of the object that the radio wave came in contact
with. Radar signals are reflected especially well by metals, seawater and wet ground -
materials that conduct electricity. Different materials have different reflection qualities
and some cause the signal to scatter instead of reflecting back, this means that generally
radar imaging techniques do not explicitly state that a certain object is from a particular
material but rather convey the differences between different areas covered meaning that
with additional information the actual material can be reasonably guessed.

SAR Antenna

Backscattered
Radar Pulse

~~""" Ground Targets

Figure 3: Scattered and reflected signals, http://www.crisp.nus.edu.sg/ research/

2.3.2 SAR specifics

What sets Synthetic Aperture Radar apart from regular radars is that a SAR is constantly
moving at a high speed rather than remain stationary. This allows SAR radars to produce
fine spatial resolution images while having a small physical antenna aperture. A SAR
continuously transmits radio waves to target area and gathers the reflected signals as
it moves over land, figure 3| depicts the relection and scattering of those signals. The
radar movement means that several recordings of the same area from multiple antenna

10

http://www.crisp.nus.edu.sg/~research/

locations can be combined - this forms the synthetic antenna aperture. This also allows
SARs to also create 3d representations of an area. Since for each unit of land covered,
the radar collects multiple differing signals, the pixel (or voxel - 3d pixel) values are
usually represented in terms of probability (density) of a reflective surface being at a
certain location. [OIi89| Since multiple differing signals cannot usually be coherently
collected, raw SAR images contain a lot of random interference effects called "coherence
speckle" which from an image-processing standpoint is considered random noise. For raw
SAR images, information regarding the radio wave’s waveform is also preserved, most
importantly - phase. This means that in addition to typical image processing algorithms,
signal processing methods where processing is done on radio waves can also be used.
SAR images can potentially have a very fine spatial resolution, airborne radar systems
can provide resolutions to about 10 cm and less. Satellite images though have a worse
spatial resolution and the images provided by the Sentinel 1 satellite, which are used in
this work have a spatial resolution between 5 by 5 and 20 by 40 meters. [Age]

2.3.3 Common uses

Since SAR images are produced by using radio waves, they are not affected by clouds and
work all the same in day and night meaning they can be reliably used for various land and
sea monitoring tasks. Indeed, one of the main uses of SAR imagery is to track and study
polar ice movements and deforestation and farm-land usage. Since precipitation and other
various weather phenomena affect the ground they are over, the most obvious example
being flooding, the images can also be used to better coordinate natural disasters? relief
efforts. Other areas where SAR image processing is becoming more used is tracking of
smaller-scale events, shipping routes and urban development for example.

Figure 4: Bridge between Muhumaa and Saaremaa https://scihub.esa.int/

2.3.4 Image representation

Since the Sentinel 1 radar employs a technique called TOPSAR where the produced
images are two-dimensional, this thesis does not examine three-dimensional SAR image
processing possibilities. The images used for this thesis are of two types, first type consists

11

https://scihub.esa.int/

of compressed and unfocused SAR raw data, called Sentinel 1 level-0 products, figure [4]
depicts a typical level-0 product. Images of the second type have been preprocessed and
calibrated by ESA and are therefore more useful for higher-level processing, these are
called Sentinel 1 level-1 products. Figure [5] depicts a typical level-1 product, note that
the sideways-look present in product-0 images is gone. Level-1 products however do not
contain phase data, meaning only conventional image processing can be conducted. For
Level-0 products, each pixel contains a 32-bit integer value which can be operated on for
the purposes of most algorithms. Level-1 products can essentially be considered as just
grayscale tiff images.

Figure 5: Helsinki

3 Approach

3.1 Theoretical

To best tackle the issues of adapting SAR image processing algorithms to parallel com-
puting environments and to ensure that the proposed solutions would be as general as
possible, a certain classification of potential algorithms is needed. The classification has
to provide an answer to the question, which SAR data processing algorithms can be ef-
ficiently parallelized and needs to consider the architecture and properties of both the
distributed storage system (HDEFS) and the computing framework (Spark) used, as well
as the characteristics and use cases of SAR images themselves.

12

3.1.1 Considerations

The inherent nature of parallel processing dictates that to gain the biggest increase in
processing speed, the processing task needs to be dividable into several independent
computing tasks. In the context of Spark, this means that the code running on parallel
executors needs to be executable at the same time and one executor’s processing should
not depend on some other’s progress. Indeed, in Spark, operations on RDDs are defined
so that the user-defined transformation or action operates on some chunk of data with
the information regarding other chunks being not available by default and the order of
execution unspecified, meaning programmers are forced to define their functions so that
the execution of code on chunks can potentially be done in any order. This means that
RDD operations are inherently parallel. To gain the largest increase in processing speed,
it is then necessary to maximize the number of potential parallel executors. For this work
specifically, that is to maximize the number of objects in an RDD representing a large
image. This can be done by splitting the original image into a multitude of smaller ones.

However, if done so, during the execution of a single transformation, distant pixel
values are unknown. This in turn means, that algorithms that require access to the
whole image, such as non-local means denoising with window size as the whole image,
where to set a particular pixel value, the mean of all pixels in an image is taken and
weighted by how similar those pixels are to the target pixel, need multiple passes on the
data. Since doing multiple passes on the data is fast in Spark due to intermediate results
not needing to be written to disk, the algorithms’ classification should consider what
processing needs to be done inside a single executor[]

Satellite SAR images do generally not have a very fine resolution, that is, a single
pixel represents an area in tens of meters. This combined with the fact that new images
are quickly available, means that SAR images are most suitable for detecting large scale
changes on the Earth’s surface. Two groups of typical algorithms ran on SAR data, are
thus change and edge detection algorithms. Since a typical characteristic of SAR images
is speckle noise, another essential group of algorithms is denoising algorithms. Because
many denoising and edge detection algorithms operate on or inspect a neighbourhood
of pixels the algorithms’ classification should cover sliding window approaches. The
requirement for change detection algorithms, multi-temporal images, means that the
classification should also cover algorithms with multiple input images.

Since the goal of the classification is to help compare algorithms’ potential in terms of
suitability for parallelization, it is important to note what is meant by parallel speedup.
For this work, parallel speedup refers to how close the parallel algorithm’s implementation
can get to the theoretical maximum speedup defined by Amdahl’s law. For problems
that can be easily separated into parallel taskf] , this is close to the number of parallel
executors used.

3This is specified in the user-defined RDD operation function.
4Called embarrasingly parallel problems

13

3.1.2 Classification

The proposed classification based on previously described considerations therefore makes
two distinctions. The first is based on the number of input images take algorithm takes
as arguments:

e Single image input

e Multiple image input

The second is based on the size of the necessary visible area of a single step of the
algorithm:

e Pixel-based

e Window-based

If both distinctions are considered, the SAR processing algorithms to be potentially
parallelized are divided into four broad classes:

1. Single image, pixel-based
2. Single image, window-based
3. Multiple image, pixel-based

4. Multiple image, window-based

The first class is the simplest one and includes algorithms that apply various single-pixel
filters or otherwise increase/decrease the pixel values. The second class covers typical
neighbourhood filters with many denoising algorithms falling into this category. The
third class covers change detection algorithms, where the images’ pixel values are directly
compared or otherwise used, to train some model for example. The fourth class covers
various object search and detection algorithms. It is important to note, that while many
image processing algorithms fall into one of the described classes in their entirety, many
do not. However, the majority of algorithms of interest can at least be reduced to only
contain sub-algorithms from the four mentioned classes.

3.2 Practical

With the algorithms’ classification in place, it is necessary to study, which of these can
be parallelized using HDFS and Spark, what is the most efficient way to do so, and how
do algorithms from the four classes compare to one another in terms of processing speed
gain.

3.2.1 Single image pixel-based algorithms

Single image, pixel-based algorithms can easily be parallelized due to their inherent na-
ture. Since operating on a single pixel in no way affects other pixels, the number of
parallel executors can potentially be as large as the total number of pixels in an image.
From a practical standpoint, the number of parallel executors obviously cannot be as
large and for HDFS and Spark specifically, it would be reasonable to have a single node
process at least roughly a block size of data. So for a 1200MB image with HDFS block
size 128MB, having 10 parallel executors would likely yield a good processing time win.
Adapting these algorithms to parallel environments can be done with no change to the
program’s logic.

14

3.2.2 Single image window-based algorithms

Single image, window-based algorithms require that for each pixel its surrounding area
with arbitrary size, be visible. Parallel processing for these types of algorithms can be
thought of as scanning multiple areas of the same image at the same time. Since different
windows can have overlap, cases may arise where several executors need to access the
same pixel at the same time. In Spark, situations like these are handled by the execution
framework by replicating data to the nodes that need them. Replicating data during
execution is also needed when the window spans the HDFS block boundary, that is,
when processing pixels near the borders of a sub-image in a particular block. Part of
pixels in the window reside in one block and part in another one and thus a portion of
the data needs to be fetched across the network from the correct node. The larger the
window size and number of parallel executors used, the more data is needed to be fetched.
Since compared to processing speed, network traffic is slow, this incurs a significant time
penalty on the whole task.

To parallelize this group of algorithms most efficiently it is therefore necessary to
minimize the amount of data needing to be exchanged between nodes. Maximal efficiency
can be achieved if no additional data is exchanged, that is, if every executor node contains
all the data it needs for computations from the start. The notion of assigning executors
to data already on the nodes and needing no additional data transfers is known as data
locality and is one of the main principles of processing in Hadoop and Spark.

In the case of SAR data processing, maximal data locality for this class of algorithms
can be attained if the sub-images on nodes are stored with certain overlap so that the
logical split boundary and the actual HDFS split boundary are different. This means
that pixels that are outside the logical boundary but inside the actual block boundary are
explicitly stored on multiple nodes. E] In |§] the dotted lines repsent the logical boundaries
while the green area represents an example sub-image actually stored on the node. This
way of storing images obviously carries with itself additional storage overhead depending
on the overlap size and the number of splits the original image is divided into. In HDFS,
to keep storage overhead low while still maintaining data locality, the number of splits
should be chosen so that the actual split size would be roughly the same as the HDFS
block size.

The parallel implementations of this class of algorithms need to be aware that the
input images contain overlaps and are therefore larger than the area the algorithm needs
to logically process. The simplest approach would be to have the algorithm code running
on parallel executors to require two additional parameters, one for overlap size in the
horizontal axis and one for vertical axis. The only modifications to the non-parallel
algorithm would be to use the overlap parameters to specify the area of the image where
changes might occur and to use the whole image on the node only for the search window.
In figure [7] the area of pixels for which values might potentially change is in blue and the
overlap is in white. Dotted square represents the starting position of the search window.

3.2.3 Multiple image pixel-based algorithms

Multiple image, pixel-based algorithms’ parallel executors need to have access to several
input images at once. The base case for these algorithms is for an executor to need access
to two images. The non-parallel implementations can be thought of as looking at and

5Even if the HDFS replication factor is 0

15

L e] [

Figure 6: Large image

processing each pixel of both images simultaneously. Any order of going through the
pixels is valid so long as the pixel’s coordinates are same for each image. This means
that if an executor has access to both images, parallelising the algorithm can be done in
the same fashion as for single image pixel-based algorithms, that is, with no change in
the non-parallel algorithm’s logic.

Since the image splits that correspond to each other can potentially be on any nodes,
one of them ﬁ likely needs to be fetched from some other node during execution. This
means that data locality is lost and the parallel speedup of the whole task is smaller than
potentially achievable, however it can still be considerable and therefore worthwhile to
study. To preserve data locality for this class of algorithms, it is necessary to change
the underlying file system’s block placement policy, that is, how different blocks of data
are placed on different nodes on the cluster. Although this is also possible in HDFS, it
requires a more low level configuration of HDFS and therefore outside the scope of this
work. Algorithms that require access to more than two input images are different only
in the way that the number of images potentially needed to be fetched is larger. If the
algorithm operates on n images, each divided into blocks in same fashion, the number of
splits needed to be fetched for each executor can be as large as n - 1. This means that
unless the distributed file system’s block placement policy has been overridden so that
splits for the same area of each image are placed on the same node, the amount of data
transferred over network during execution grows large and the speedup of the whole task
diminishes rapidly as the number of input images grows.

5For the case with two input images.

16

Figure 7: Single image split

3.2.4 Multiple image window-based algorithms

Multiple image, window-based algorithms suffer from the same parallelisation issues as
multiple image pixel-based algorithms, that is, if the number of images the algorithm
needs access to grows large, the amount of data needed to be exchanged between nodes
imposes a large penalty. However, par a few concrete cases, algorithms belonging to this
class are not particularly common in image processing. The most widely used group
of algorithms in this class are various object detection and search algorithms. In those
cases, the algorithm takes two images as input with one, the object representation, being
considerably smaller. In those cases the smaller image can be broadcasted to all the nodes
with no significant time penalty. The larger image would be split in the same fashion as
for single image window-based class of algorithms. The overlap would need to be with
the dimensions of the smaller image minus one pixel in both dimensions. If the images
are split correctly and the object representation is broadcast to all nodes, each parallel
executor can run the non-parallel algorithm with no change in program’s logic.

3.3 Implementations

For the specific example algorithms to implement, an algorithm was chosen from both
the second (single image, window-based) and third (multiple image, pixel-based) classes.
The first class (Multiple image, window-based) was left out of implementations since it
can be described in terms of the second class with special case of overlap being zero. The
fourth class of algorithms was left out since currently the main uses of SAR images do not
include many algorithms belonging to this class. However, they are certainly intereseting
research topics and should be considered for future work. It should be noted that the

17

language chosen to implement the algorithms is Java, but Spark also supports Scala and
Python and implementations in those languages should be similar.

3.3.1 Interacting with the file system

The first practical problem that needs to be solved is splitting the images, storing them in
the HDF'S and making sure they can be properly read in the application code. Since SAR
images are in tiff format, they cannot be read using the standard Java library. The library
chosen for this task is called Java Advanced Imaging(JAI) library[] and it is suitable since
it provides a simple high-level api for manipulating images, making it easier to focus on
the algorithms” implementations while developing. Since JAT extends the standard Java
library it is reliable and integrates easily into Java programs.

The splitting of an image into multiple splits as described in the previous section is
done as a preprocessing task. The splits are then written to HDFS with each split being
in a separate HDFS block. Since Spark is primarily used with textual data, some custom
additions are needed to work with tiff images, mainly for the writing of images to HDFS
from the executors. The reading of images is done by using JavaSparkContext.binaryFiles
method which returns an RDD of type <String, PortableDataStream> with the string
representing the path to a particular binary file and the stream containing its contents.
By applying a map transformation to this RDD, the data stream can be directed to
an ImagelO.read method which, if the necessary JAI libraries are present, returns a
Bufferedlmage object representing a concrete tiff image split which are then manipulated
depending on the needs of the algorithm implemented. For writing the Bufferedlmage
objects back to HDFS, custom implementations of certain Hadoop classes need to be
provided. Those classes are Writable, RecordWriter and OutputFormat. For this work,
the implementations just delegate various read and write methods to the corresponding
ImagelO methodsff|] Figure [§ depicts a SAR image before and after applying median
filter with 1 pixel neighbourhood. Note that denoising does not necessarily mean that
the image is more clear to humans.

Figure 8: Before and after median filter

"http://www.oracle.com/technetwork/articles/javaee/jai-142803.html
8Refer to the repository in appendix to view the implementations.

18

http://www.oracle.com/technetwork/articles/javaee/jai-142803.html

3.3.2 Median filter

The algorithm chosen to represent single image window-based class of algorithms is a sim-
ple neighbourhood filter algorithm called the Median filter. The Median filter algorithm
is as follows:

e Iterate over each pixel of the image
e For a single pixel, inspect its some neighbourhood

e Replace the original pixel value with the mean of the pixel values in the neighbour-
hood

For implementation purposes the neighbourhood for each pixel is defined by two param-
eters: x and y. The neighbourhood is a rectangle with dimensions x + 1 by y + 1 and
centered on the pixel being processed. To retain data locality it is important that nei-
ther the x or y parameters are no larger than the image overlaps in the corresponding
axes. The classification previously proposed states that for this class of algorithms, the
only necessary change in logic from the non-parallel implementation is that only the non-
overlapping area be considered for changing the pixel values. So in Spark, for an RDD
of images, the algorithm is specified by a map function which acts as the non-parallel
version of the algorithm but instead of iterating over each pixel of the image, only the
area that is not part of overlap is iterated over. Since changing the pixel values during
processing should not affect other pixels that have this pixel in their neighbourhood, the
image needs to be copied first, meaning that memory usage for each executor is at least
twice the size of the split.

The imagesplits that have gone through denoising can then be used as input for other
algorithms. If it is necessary to inspect the original image after denoising, all imagesplits
need to be downloaded and and then joined together as a post-processing task. Note
that the location of each split on the image must be preserved throughout denoising
to succesfully join the splits back together later, this can be done by having the split
filenames contain the necessary information

3.3.3 RGB composite change detection

The algorithm chosen to represent multiple image, pixel-based algorithms does not have
a specific name but the technique is common. [RAAKRO05| Several single-band images
are composed to a multi-band image. For SAR images this can be done by considering
the pixel values as single grayscale color values. The algorithm can then be described as
follows:

e [terate over the pixels of 2 separate images simultaneously

e For each pixel pair assign first image’s grayscale pixel value as the red band of the

composite image and the second image’s corresponding pixel value as the green
band

e Assign the average of both pixel values as the blue band

Parallel executors need to have access to the correct images that make up the compos-
ite. In Spark, this can be achieved by using the join operator (e.g. RDD1.join(RDD2)),
this creates an RDD of type <K,<V,V» from two RDDs of type <K,V>. Values with

19

same keys are joined together. [sf] This means that the easiest way to implement this
algorithm for multitemporal SAR images in Spark is to have two input folders, each
containing images of the same locations on different times with images of the same area
having the same name. According to the classification, as long as the executor has access
to both images, the non-parallel implementation logic of the algorithm can be used for
the parallel executors as well. This is indeed the case, when calling map function on
the RDD where values contain two images, the user-defined function can be ported from
non-parallel environments and the correct output is produced for each image in the RDD.
Since the composite image is a typical rgh image, it is reasonable to save it as a png in-
stead of tiff to save storage. For this, custom implementations of Writable, Record Writer
and OutputFormat were specified. They are nearly identical to the tiff implementations
but the ImagelO methods called refer to png images instead.

Figure 9] depicts the output for RGB composite change detection algorithm that was
run on two images from December 2014 with 3 weeks time between them. The earlier
image was assigned to red band and the later to green band. Since pixels that did
not change in value over time have all red green and blue values the same, they are in
grayscale. Pixels that had stronger magnitude in the first image are shifted to red values
and pixels that had stronger magnitude in the second, to green values. This means that
in the context of this image red-ish areas represent the loss of snow and ice and green
areas the accumulation of additional ice and snow.

Figure 9: RGB composite change detection

20

4 Results on cluster

All tests were ran on a 4-node cluster with each node having 2 processor cores, 4GB of
memory and 20GB of SSD storage.

According to the theoretical approach described in the previous chapter, the imple-
mented median filter denoising algorithm’s parallel speedup should be reasonably close to
the theoretical maximum since the algorithm itself has no strictly serial part and because
data locality is maintained, neither HDF'S nor Spark impose a considerable overhead.

This is supported by the results of running the algorithm both on the cluster and
locally. Running median filter on one 1.3GB image split into 16 splits with 1 pixel overlap
took 374 seconds locally and exactly 100 seconds on the 4-node cluster. The actual parallel
speedup is 3.74 while the theoretical maximum is 4. With double the data, 4-node cluster
ran the algorithm in 213 seconds, assuming non-parallel implementation scales linearly,
the speedup is 3.51 With triple the data the cluster’s time was 298 seconds meaning 3.76
speedup. Since runs with more data are generally more representative, it is reasonable
to think that with additional data the speedup would stay roughly the same or increase.
Figure shows how input data size and parallel execution time are correlated for the
Median filter algorithm and the theoretical best case scenario.

Median filter
8 4
[37] ——— actual
theoretical /
=
2
od
u
(48]
E
- =
= o —
=] o
=
Q
2
i
(=]
2
(]
S - ¢
| T | 1
1.5 2.0 25 3.0 3.5 4.0

Input data(GBs)

Figure 10: Median filter data and execution time dependence

For the second algorithm, the classification states that the speedup should be smaller,
especially when the number of images gets large. Composing two 200MB images on local
machine took 70 seconds and on cluster 19 seconds, this means a 3.7 parallel speedup
which indicates that transferring 200MB over the nodes is too small amount of data to
have cause a noticeable data transfer overhead. With double the data, the algorithm ran

21

for 66 seconds meaning the speedup is 2.15 With quadruple the data, the algorithm ran
for 199 seconds meaning 1.42 speedup. Figure 11| shows how input data size and parallel
execution time are correlated for the change detection algorithm and the theoretical best
case scenario.

Change detection RGB

e
] s actual
theoretical
(=]
o
=
@
E
=
g o
=] =
(_) —
@
<
1]
o |
(T3]

| | | | | |
400 600 800 1000 1200 1400 1600

Input data(MBs)

Figure 11: RGB change detection input data size and execution time dependence

5 Conclusions

5.1 Conclusion

The present work proposed a classification of synthetic aperture radar image processing
algorithms in which the feasibility of parallelizing concrete algorithms can be determined.
Properties of those classes were studied and proved in practice. Example algorithms were
implemented and their parallel implementations provided. The example algorithms serve
as a good starting point in developing more complex SAR data processing applications
and with new monitoring satellites constantly being launched the area of satellite image
processing has nearly endless amount of potential applications to be created. A lot
of further research is however needed to determine how to best take advantage of the
enormous potential large-scale satellite image processing has.

22

5.2 Proposals
5.2.1 Further research

Although the proposed algorithms’ classification can be used to group many SAR image
processing algorithms into one of the four classes, another group of algorithms is where
the algorithm as a whole does not belong to any class but can be represented as a number
of sub-algorithms that each belong to one of the four classes. This means that they can be
moved to a parallel environment with relative simplicity and reasonable gain in runtime
speed. In many cases reduction to sub-algorithms in the correct form is trivial, however
for more complex algorithms it is not. Further work is needed to determine if those
complex algorithms can be reduced to the correct form and if it is possible to do so in a
reasonable number of steps.

As described in the theoretical approach and evident from the results of running
the algorithms on cluster, algorithms that process multiple images simultaneously lose a
significant portion of potential speedup when using straightforward implementations due
to the amount of data that needs to be transferred over network. This issue can be solved
by making sure that the blocks of data executors need access to are placed on the same
data nodes which can be accomplished by overriding the distributed file system’s block
placement policy. It is not clear if this can be done for the general case or if different
algorithms require differing block placement policies. It should also be studied if data
locality can be preserved in this way for any number of input images.

Another area where further research is needed, is parallel processing of SAR waveform
data. Since the splitting, reading and writing of SAR images in this work was all done
with no loss of pixel data, further work could use similar techniques for the storage of
SAR images.

5.2.2 Applications

Since ESA continuously provides the latest satellite SAR images for anyone to freely
download and in this work it was show that SAR data processing can be feasibly done in
Spark, it is possible to build a continuous monitoring tool using Spark Streaming. This
application could detect notable changes in the images as soon as the images become
available meaning problems such as illegal deforestation could be detected more rapidly.

Although algorithms for this work were implemented in Java, Spark additionally sup-
ports Python and Scala which both also have interactive shells for Spark. This means an
interactive and fast data processing/analysis tool can be developed using either Python
or Scala Spark shell. This would make it easier to perform exploratory data analysis
by trying many different processing algorithms in quick succession. The tool would be
especially useful if it could include some type of visual feedback. Further work is needed
however to determine if this is possible in distributed manner.

23

References

[Age]

[01i89]

[RAAKRO5]

[sf]

[ZCD*12a]

[ZCD*12b)

[ZCD*12¢]

European Space Agency. Sentinel 1 sar overview. [confirmed
on 14.05.2015| https://sentinel.esa.int/web/sentinel/user-guides/
sentinel-1-sar/overview.

CJ Oliver. Synthetic-aperture radar imaging. Journal of Physics D: Applied
Physics, 22(7):871, 1989.

Richard J Radke, Srinivas Andra, Omar Al-Kofahi, and Badrinath Roysam.
Image change detection algorithms: a systematic survey. Image Processing,
IEEFE Transactions on, 14(3):294-307, 2005.

Apache software foundation. Spark programming guide. [con-
firmed on 14.05.2015] http://spark.apache.org/docs/latest/
programming-guide.html.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy Mccauley, M Franklin, Scott Shenker, and Ion Stoica. Fast

and interactive analytics over hadoop data with spark. USENIX; login,
37(4):45-51, 2012.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation, pages 2—2. USENIX Associa-
tion, 2012.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation, pages 2-2. USENIX Associa-
tion, 2012.

24

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/overview
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/overview
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html

6 Appendices

6.1 Appendix A: Code repository

All implementations are stored in a git repository at
https://github.com/ossub4/BSc-Thesis

25

https://github.com/ossu54/BSc-Thesis

6.2 Appendix B: License

Non-exclusive licence to reproduce thesis and make thesis public
I, Oskar Hint (date of birth: 26th of October 1992),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of

validity of the copyright,

Efficient parallel algorithms for synthetic aperture radar data processing using
large-scale distributed frameworks

supervised by Pelle Jakovits

2. I am aware of the fact that the author retains these rights.

3. Tcertify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 14.05.2015

26

	Introduction
	Problem overview
	Motivation
	Limitations
	Goals
	Contributions
	Outline

	Background
	Relevant work
	Technologies
	Apache Spark
	Hadoop Distributed File System

	Synthetic Aperture Radar
	Radar imaging basics
	SAR specifics
	Common uses
	Image representation

	Approach
	Theoretical
	Considerations
	Classification

	Practical
	Single image pixel-based algorithms
	Single image window-based algorithms
	Multiple image pixel-based algorithms
	Multiple image window-based algorithms

	Implementations
	Interacting with the file system
	Median filter
	RGB composite change detection

	Results on cluster
	Conclusions
	Conclusion
	Proposals
	Further research
	Applications

	Appendices
	Appendix A: Code repository
	Appendix B: License

