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INTRODUCTION 

Bacteria through evolution developed numerous adaptation mechanisms that 
made them survive in harsh environmental conditions. Therefore, to protect 
themselves from environmental challenges bacteria evolved complex molecular 
networks that leads to suitable physiological responses by acquiring resistance 
to antibiotics, forming biofilms or by entering in a dormant state. These adap-
tation mechanisms depend on enzymatic activity of specific proteins that sense 
and respond to stress. The responses of these stresses are mediated by synthesis 
and degradation of signaling molecules that can regulate transcription and 
protein activities. The PhD work comprise the study of stringent response that is 
one of the most widely spread adaptive mechanism in bacteria. This mechanism 
is orchestrated by RelA SpoT Homologue (RSH) enzymes that produce and 
degrade a highly charged alarmone nucleotide called guanosine(penta)tetra-
phosphate ((p)ppGpp), comprising guanosine pentaphosphate (pppGpp) and 
tetraphosphate (ppGpp), collectively referred as (p)ppGpp. The (p)ppGpp-
mediated signaling is one of the master regulators of bacterial physiology and 
plays an important role in bacterial virulence, and tolerance to antibiotics. In 
order to quantify the varying levels of (p)ppGpp and housekeeping nucleotides 
in different stress conditions as well as during normal bacterial growth, we 
developed a HPLC-based quantification method. Using Escherichia coli and 
Bacillus subtilis as the two representatives of Gram-negative and Gram-positive 
bacteria, I studied the effects of antibiotic treatment on the cellular levels of 
ppGpp, (p)ppGpp as well as housekeeping nucleotides such as ATP and GTP. 
Finally, using the HPLC-based approach, I discovered that a toxic Small Alar-
mone Synthetase RSH from Cellulomonas marina, in addition to coproducing 
ppGpp alarmone synthesizes a highly toxic ppGpp analogue, ppApp. Together 
with the recent report by Laub and Whitney labs who described Pseudo-
monas aeruginosa Tas1 – a divergent RSH enzyme that acts as a toxic effector 
of a secretion system via production of (pp)pApp (Ahmad et al., 2019) this 
discovery opens up a new direction in studies of RSH enzymes. 
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REVIEW OF LITERATURE 

1. The Stringent Response 

1.1 Bacterial stress responses 

Bacterial cells face rapidly changing environmental conditions. In order to 
survive, they must sense and adapt to the harsh conditions. Bacteria have 
evolved multiple protective and adaptive mechanisms that modulate bacterial 
physiology in response to stress. The adaptation to the severe environment 
conditions as starvation of Mg2+ (Groisman, Kayser, and Soncini 1997), oxida-
tive stress in form of reactive oxygen species (ROSs) (Gu and Imlay, 2011; 
Touati, 2000), envelope, heat and nutritional stress (Poole, 2012). A regulatory 
mechanism called the ‘stringent control’ (SC) or the ‘stringent response’ that 
abrogates the synthesis of stable RNA – i.e. transport RNA (tRNA) and ribo-
somal RNA (rRNA) – upon amino acid limitation in bacteria (Frederick C. 
Neidhardt, 1964; Neidhardt, 1966). 
 
 

1.2 Bacterial signaling nucleotide messengers 

Bacterial nucleotide secondary messengers that regulate key molecular targets 
in response to harsh environmental conditions can be divided into two classes: 
linear and cyclic (Figure 1). One of the most ubiquitous and well-studied 
bacterial cyclic di-nucleotide is c-di-GMP (cyclic diguanosine monophosphate) 
(Pesavento and Hengge, 2009) (Figure 1A). Several studies showed this 
signaling nucleotide positively regulates biofilm formation and virulence 
(Pesavento and Hengge, 2009; Ross et al., 1987; Römling and Simm, 2009). 
The transition between motility and sessility is also regulated by c-di-GMP 
signaling in bacteria such as Escherichia coli, Pseudomonas aeruginosa and 
others (Jones et al. 2015; Mobley, Spurbeck, and Tarrien 2012; Li et al. 2017). 
Another cyclic di-nucleotide is c-di-AMP (cyclic diadenosine monophosphate) 
(Figure 1B). This nucleotide regulates diverse cellular processes in bacteria 
(mainly in Gram-positive), including sporulation, and regulation of potassium 
ion channels (Blumenthal and Kaczmarek, 1992). c-di-AMP also signals DNA 
damage (Römling, 2008), cell wall membrane damage and homeostasis irregu-
larities (Luo and Helmann, 2012). The group of cyclic nucleotides also includes 
cGMP (Figure 1C) and cAMP (Figure 1D). In was shown that in Rhodo-
spirillum centenum cGMP played a key role in development of cyst cells which 
are metabolically dormant and are able to survive to environmental stresses 
such as nutrient starvation (Francis and Corbin, 1999). For many years one of 
the most studied of the signaling nucleotides regarding nutrient starvation in 
E. coli was cAMP (cyclic diadenosine monophosphate) (Makman and Suther-
land, 1965). In response to low concentration of ATP in the cell, the levels of 
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cAMP increase, promoting catabolism and inhibiting anabolism trough trans-
criptional regulation of gene expression (Francis and Corbin, 1999). 

The key linear messengers are alarmones guanosine 5'-diphosphate 3'-
diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp), 
collectively referred to as (p)ppGpp (Figure 1E). Acting at transcriptional and 
post-transcriptional levels these nucleotides effectuate an array of physiological 
changes, named the ‘stringent response’ (Cashel and Gallant, 1969). These 
nucleotides are the focus of my thesis. 

 

 
 
Figure 1. Chemical structures of nucleotides involved in bacterial signaling. (A) c-
di-GMP, (B) c-di-AMP, (C) cGMP, (D) cAMP and (E) (p)ppGpp. 

 
 1.3 The stringent response 

In the 60’s, Frederick C. Neidhardt observed that during amino acids starvation 
production of stable RNA (rRNA and tRNA) is rapidly abrogated in E. coli 
(Neidhardt, 1964; Neidhardt, 1966). Later was shown that other nutrient limita-
tions/stress conditions such as starvation of phosphorus (Spira et al., 1995), iron 
(Vinella et al., 2005), carbon (Flärdh et al., 1994) also result in throttling of 
stable RNA production. 

Cashel and Gallant detected the formation of two new compounds when the 
bacterial cultures were subjected to amino acid limitation (Cashel and Gallant, 
1969). Following metabolic labelling with 32PO4, the nucleotide fraction of 
amino acid-starved stringent E. coli was resolved in a thin layer chromato-
graphy (TLC), and two unusual spots were observed between GTP and the 
origin: ‘magic spot I’ (MSI) and ‘magic spot II’ (MSII). One year later it was 

A

c-di-GMP

B

c-di-AMP

C

cGMP

D E

cAMP (p)ppGpp
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later shown that MSI is ppGpp and MSII is pppGpp (Cashel and Kalbacher, 
1970). In the following years, accumulation of (p)ppGpp was documented upon 
other stress conditions as fatty acid limitation (Battesti and Bouveret, 2009) and 
heat shock (Gallant, et al., 1977). In addition to inhibiting production of stable 
RNA, the stringent response also inhibits synthesis of phospholipids (Yoshihiro 
Sokawa, Nakao, and Kaziro, 1968; Merlie and Pizer, 1973; Golden and Powell, 
1972), nucleotides (J Gallant, Irr, and Cashel, 1971), polyamides (Hölttä, Jänne, 
and Pispa, 1974) and carbohydrates (Sokawa, Nakao-Sato, and Kaziro 1970), 
abrogates phosphate incorporation (Irr and Gallant, 1969), membrane transport 
(Hochstadt-Ozer, 1972) and increases the rate of proteolysis (Sussman and 
Gilvarg, 1969). 
 
 

1.4 Synthesis and degradation of (p)ppGpp 

Early microbiological studies of the stringent response have discovered that the 
product of E. coli relA gene – protein RelA, or the stringent factor – is active in 
wild-type but not in so-called ‘relaxed’ strains, i.e. strains unable to execute the 
stringent response, and represses the production of stable RNA upon the amino 
acid limitation (Alföldi, Stent, and Clowes 1962; Gunther and Sydney 1961). 
Later it was shown that RelA enzymatically synthesizes the (p)ppGpp alarmone, 
the mediator of the stringent response (Cashel and Gallant, 1969). When the 
bacterial cells are starved of amino acids the enzyme RelA uses GTP or GDP in 
combination with ATP (serves as a donor of the pyrophosphate group) to 
produce pppGpp and ppGpp, respectively (Figure 2).  

 

 

Figure 2. (p)ppGpp synthesis by RSH. RSH utilize ATP and GTP/GDP as substrates 
to synthesize (p)ppGpp. 

 
The second gene playing a role in E. coli stringent response is spoT. It encodes 
SpoT – a bifunctional enzyme, i.e. able to both synthetize and hydrolase 
(p)ppGpp. SpoT has a predominantly hydrolase activity (Murray and Bremer, 
1996; Laffler and Gallant, 1974a), degrading pppGpp to GTP and ppGpp to 
GDP (Hauryliuk et al., 2015). Production of (p)ppGpp by SpoT enzyme is 

RSH

GTP/GDP (p)ppGpp

ATP AMP



 

14 

triggered by starvation of phosphorus (Spira et al., 1995), fatty acid (Battesti 
and Bouveret, 2009) and iron (Vinella et al., 2005). The production of (p)ppGpp 
in basal levels is in µM range while when the cells are starved of amino acids it 
goes up to mM range (Varik et al., 2017). This means that different levels of 
(p)ppGpp are important for the survival when bacteria are exposed to harsh 
conditions. 

Additionally, many bacterial species encode small alarmone synthetases 
(SAS) and encode small alarmone hydrolases SAH, which have just synthase or 
hydrolase single domain (Jimmy et al., 2020). For example, in Firmicute 
bacterium B. subtilis – the most well-studied model Gram-positive bacterium – 
a single multidomain ‘long’ RSH Rel is accompanied two SAS enzymes, RelP 
(YwaC) and RelQ (YjbM) (Figure 8) (Nanamiya et al., 2008). 

In addition to RSH enzymes, there are other enzymes involved in ppGpp 
production. Specifically, pentaphosphate phosphatase, GppA, catalyzes degra-
dation of pppGpp made by RSHs to ppGpp (Keasling, Bertsch, and Kornberg, 
1993). In general, bacteria have much higher levels of ppGpp than pppGpp 
(Varik et al., 2017).  

 
 

 1.5 Regulation of E. coli transcription by (p)ppGpp:  
direct regulation of RNAP 

The (p)ppGpp has an important role in metabolism and physiology, the alar-
mone is capable to regulate hundreds of genes. The transcription regulation 
mediated by (p)ppGpp can be done in two ways: indirectly through variation of 
GTP levels in the cell (see below, section 1.8) or through direct interaction with 
RNAP (RNA polymerase). Identification of the (p)ppGpp binding site of RNAP 
was an extremely challenging experimental task. Initially, Artsimovitch and 
colleagues reported that (p)ppGpp binding site was present in RNAP of Ther-
mus thermophilus (Artsimovitch et al., 2004). However, the biological implica-
tion of this finding was refuted by Vrentas and colleagues (Vrentas et al., 2008). 

In E. coli (p)ppGpp directly binds to RNAP (Figure 3) and regulates its 
activity positively or negatively depending on the target promoter sequences 
(Gourse et al., 2018). In case of E. coli, (p)ppGpp binds to two different sites in 
the RNAP. It was reported that the binding of (p)ppGpp was at the interface of 
βʹ and ω of RNAP subunits, referred as site 1 (Ross et al., 2013). The site 2 is a 
ligand binding site that is formed by RNAP and the transcription factor, DksA, 
and the secondary channel interface helices of β′ (Ross et al., 2016) (Figure 3). 
Both biding sites are more than 60 Å apart on the surface of RNAP, and each is 
around 30 Å from the active site (Ross et al., 2016). While both ppGpp and 
pppGpp bind to the same sites of RNAP, pppGpp is a somewhat less potent 
regulator (Mechold et al., 2013). 
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Figure 3. Structure of E. coli RNA polymerase in complex with DksA and ppGpp. 
DksA bound in the secondary channel (yellow), the two ppGpp molecules (red). 
Adapted from (Ross et al., 2016), PDB accession code 5VSW.  

 
A regulatory protein DksA is crucial for regulation of transcription by (p)ppGpp. 
Negative and positive regulation of RNAP mediated transcription by 
(p)ppGpp in presence of DksA have been described (Sanchez-Vazquez et al., 
2019). DksA by itself can inhibit transcription to some extent, but when 
(p)ppGpp binds to the site 2 of the RNAP the DksA inhibitory effect increases ~ 
20-fold in vitro (Paul, Berkmen, and Gourse, 2005; Paul et al., 2004). (p)ppGpp 
alone at site 1 and DksA together with (p)ppGpp at site 2 affect the transcription 
after the initial binding of RNAP to the promoter (Paul et al., 2004). Studies on 
rrnB P1 promoter showed that (p)ppGpp) and/or DksA associates quickly with 
RNAP, but forms an unstable open complex that inhibits directly the transcrip-
tion of certain promoters of rRNA genes (Zuo, Wang, and Seitz, 2013). In other 
hand, DksA/(p)ppGpp increase the isomerization rate of activated amino acids 
biosynthesis promoters. Nevertheless, this open complex (once formed) are 
more stable and unresponsive to the inhibitory effects of DksA/ppGpp (Paul, 
Berkmen, and Gourse, 2005). Sequence motifs associated with promoters are up 

β

β’

ω

α

ppGpp
site1

ppGpp
site2

DksA

Secondary channel

σ70
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or down regulated by (p)ppGpp and DksA were identified, allowing bioinfor-
matic prediction of the regulatory mode (Sanchez-Vazquez et al., 2019).  
 
 

 1.6 Regulation of E. coli transcription by (p)ppGpp:  
regulation via sigma factors 

Specific sigma factors are protein factors that promote transcription initiation of 
specific gene groups in response to environmental signals (Magnusson et al., 
2005). (p)ppGpp plays an important role in activation of transcription in the 
presence of sigma factors (Potrykus and Cashel, 2008). (p)ppGpp modulates of 
the affinity to RNAP of σ70 – housekeeping factor that transcribe the most of the 
genes in growing bacterial cells – which, in turn, allows other sigma factors to 
bind to the core of RNAP (Magnusson, et al., 2005; Jishage et al., 2002; 
Szalewska-Palasz et al., 2007). When acting together with DksA-(p)ppGpp it 
inhibits strong promoters, this results in increased availability of RNAP core 
(Wade et al. 2007), which, in turn, indirectly promotes the transcription initia-
tion from promotors that are dependent on alternative sigma factors σS, σH and 
σN (Maitra, Shulgina, and Hernandez, 2005) and σE (Costanzo and Ades 2006). 
σS is the gene product of rpoS, that is the primary regulator of the stationary 
phase, and strictly regulated by (p)ppGpp (Hengge-Aronis 2002). In starvation 
conditions σS is the most common sigma factor to replace σ70 (Hengge-Aronis, 
2002).  
 

 
1.7 Non-transcriptional regulation by (p)ppGpp  

While the molecular function of (p)ppGpp is intimately connected to control of 
transcription (Cashel and Gallant, 1969), a wealth of studies has established that 
in addition to transcription, (p)ppGpp directly controls many other cellular 
processes, such as replication and translation. Upon amino acid starvation, DNA 
replication in E. coli is inhibited at oriC due to the lack of the replication initia-
tion protein, DnaA (Wegrzyn, 1999). Conversely, B. subtilis DNA primase 
(DnaG) is directly inhibited by (p)ppGpp (Potrykus and Cashel, 2008). The 
alarmone (p)ppGpp was shown to interact with ribosome assembly factor Obg 
(Buglino et al., 2002). This factor interacts with several regulators (RsbT, 
RsbW, RsbX) that are involved in the stress activation of σB, the global 
regulator of a general stress regulon in B. subtilis (Scott and Haldenwang, 
1999). Transcription is directly inhibited by binding of (p)ppGpp to target enzy-
mes in E. coli. Similarly ppGpp inhibits protein synthesis trough inhibition of 
the translational GTPase’s such as translation initiation factor 2 (IF2) 
(Mitkevich et al., 2010). It also binds to inducible lysine decarboxylase (LdcI) 
thus inhibiting stress acid response (Kanjee, Ogata, and Houry, 2012). 
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 1.8 Regulation of B. subtilis physiology by (p)ppGpp 

In Firmicute bacterium B. subtilis (p)ppGpp does not directly bind to and regu-
late the RNAP activity (Krásný and Gourse, 2004) – likely do to the lack of so-
called MAR motif in the ω-subunit of RNAP – but rather regulates by 
modulation of the GTP pool (Inaoka Why and Ochi, 2002). This regulates the 
expression of genes that are controlled by promoters that are sensitive to the 
concentration of initiating nucleotides, such as GTP and ATP (Krásný and 
Gourse, 2004).  

The effects of the stringent response on the NTP pool are mediated by two 
mechanisms. First, when (p)ppGpp is produced by Rel, the enzyme efficiently 
consumes GTP (Inaoka and Ochi, 2002; Inaoka et al., 2003). Second, (p)ppGpp 
inhibits enzymes involved in production of GTP, further depleting the GTP pool 
(Inaoka and Ochi, 2002; Inaoka et al., 2003) (Lopez, et al., 1981). The severe 
drop of GTP levels is mediated by the inhibition of IMP dehydrogenase (GuaB), 
and enzyme that converts IMP into the GMP precursor, xanthine mono-
phosphate (XMP) (Lopez et al., 1981). (p)ppGpp also inhibits Hypoxanthine 
phosphoribosyl transferase (HprT), the enzyme that synthesizes GMP from of 
guanine and xanthine (Liu et al., 2015). The alarmone also inhibits GMP kinase 
(Gmk) that catalyzes conversion of GMP to GDP (Liu et al. 2015). By acting on 
multiple targets, (p)ppGpp induces a dramatic reduction of the GTP levels. 

In Firmicutes an additional regulatory mechanism operates via GTP-biding 
transcriptional repressor CodY which acts as a sensor of GTP/GDP ratios and 
branched chain amino acid (BCAA) concentration. To act as a transcriptional 
repressor, CodY requires GTP and BCAA (Kriel et al., 2012). When GTP-
bound, CodY represses the BCAA biosynthesis genes (Liu et al., 2015). Reduc-
tion in GTP and BCAA levels inactivates CodY, which leads to an upregulation 
of amino acid biosynthesis (Liu et al., 2015). Additionally, CodY regulates 
expression of genes involved in adaptation to stress or sporulation (Geiger and 
Wolz 2014). 

 
 

 1.9 Domain organization and evolutionary history  
of ‘long’ RSH enzymes Rel, RelA and SpoT 

RSH enzymes are divided onto ‘long’ multi-domain RSH – RelA, SpoT, Rel – 
and small single-domain RSH: small alarmone synthetase (SAS) or small 
alarmone hydrolase (SAH) (Jimmy et al., 2020). The N-terminal domain region 
(NTD) of long RSHs consists of (p)ppGpp synthetase domain (SYNTH) and 
(p)ppGpp hydrolyze domain (HD). In RelA the HD domain is enzymatically 
inactive, but it is active in SpoT and Rel. The C-terminal domain region (CTD) 
contains TGS (Threonyl-tRNA synthetase, GTPase, SpoT), helical domain, 
zinc-finger domain (ZFD), and ACT (Aspartokinase, Chorismate mutase, TyrA) 
domains. ACT (also known as RNA recognition motif RRM) mediated the 
interaction of RelA with A-site Finger (ASF) (Brown et al., 2016) (Figure 4). 
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ASF is an element of 23S rRNA involved in translocation step of protein 
synthesis (Komoda et al., 2006).Short RSH’s lack most of these regulatory 
domains, and consist of only SYNTH or HD domain (Atkinson et al., 2011). 
 

Figure 4 Domain organization of the long RSHs SpoT and Rel and short RSH SAS 
and SAH. Long RSH enzymes hold six domains: (p)ppGpp hydrolysis domain (HD), 
(p)ppGpp synthesis domain (SYNTH), TGS (Threonyl-tRNA synthetase, GTPase, 
SpoT), Helical, and RNA recognition motif (RRM) (Brown et al., 2016). The cross 
means that the HD domain is not active and the dashed lines show the weak domains. 
Short RSH enzymes, SAS has the SYNTH domain and SAH has the HD domain 
(Atkinson et al., 2011).  

 
 
Recently, Brown and colleagues used cryo-electron microscopy to solve the 
structure of E. coli RelA bound to ‘starved’ ribosome (Brown et al., 2016). The 
structure showed that when bounded to the ribosome, RelA assumes an 
extended conformation which wraps around the uncharged tRNA in the A-site 
(Figure 5). The ZFD and RRM are located next to the anticodon arm of the 
tRNA. The catalytic N-terminal domain region and TGS domain of RelA stay in 
the surface of the ribosome, at the acceptor end of the A-site tRNA. In this con-
formation RelA prevents the accommodation of uncharged tRNA to the 
peptidyl transferase center (Brown et al., 2016). In previous studies it was 
reported that RelA binds the ribosomal protein uL11 (Agirrezabala et al., 2013) 
and uL11 is also crucial for the RelA activation (Parker et al., 1976). However, 
Brown and colleagues did not observe direct interactions between RelA and 
uL11 (Figure 5) (Brown et al., 2016). 
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Figure 5. Structure of RelA bound to the ribosome. RelA (red) is wrapped around A-
site tRNA (light pink). 50S ribosomal subunit (cyan), 30S (grey). E-site (green) and P-
site (blue), mRNA (pink) and uL11 (yellow). PDB accession code is 5IQR. Adapted 
from (Brown et al., 2016). 

 
The divergence of bifunctional RSH’s enzymes, RelA and SpoT can be ex-
plained by the gene duplication/horizontal gene transfer (Mittenhuber, 2001). 
Gram-negative β– and γ–proteobacteria, similarly to E. coli, encode the pair of 
RelA and SpoT enzymes (Mittenhuber, 2001; Atkinson et al., 2011) (Figure 6). 
A big part of bacterial species encode a single bifunctional ribosome-associated 
Rel factor, e.g. Bacillus subtilis (Wendrich and Marahiel, 1997), Streptococ-
cus equismilis (Mechold et al., 1996) and Mycobacterium tuberculosis (Avar-
bock et al., 1999). The RHS enzymes are missing in one bacterial group: planto-
mycetes, verrucomicrobia and, chalmydiales (Atkinson et al. 2011), comprising 
the so-called PVC superphylum (Santarella-Mellwig et al., 2010; Wagner and 
Horn, 2006). The reason for RSHs missing in PVC is unclear. Other species that 
do not encode any RSH are some intracellular endosymbionts (Atkinson et al., 
2011). The distribution of SAS and SAH is more diverse comparing to the long 
RSH’s (Jimmy et al., 2020). Usually SAS’s are found in proteobacteria, firmi-
cutes, archaea and actinobacteria (Atkinson et al., 2011). A SAH, Mesh1, was 
found in Animalia, such as humans or Drosophila melanogaster (Sun et al., 
2010).  
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Figure 6. Distribution of long RSH’s in bacteria. Bifunctional enzymes Rel/SpoT in 
black and monofunctional enzyme RelA in blue. Adapted from (Atkinson et al., 2011). 
 
 

1.10 Regulation of ribosome-associated multi-domain  
RSH Rel and RelA 

RelA’s (p)ppGpp synthetic activity is strongly induced when bacteria expe-
rience shortage of one (or more) amino acids, which leads to accumulation of 
uncharged (i.e. not aminoacylated) tRNA, which could constitute up to 80% of 
the total tRNA in the cell upon acute starvation (Yegian, Stent, and Martin, 
1966). Haseltine and Block experimentally validated the hypothesis proposed 
by Cashel and Gallant (Cashel and Gallant, 1969) by demonstrating that E. coli 
RelA is activated by cognate deacylated tRNA in the ribosomal A-site 
(Haseltine and Block, 1973). Still, almost half a century after this discovery, the 
exact molecular mechanism by which long ribosome-associated RSH Rel and 
RelA sense amino acid starvation is still unresolved. 

Through biochemical investigations of E. coli RelA, Wendrich and collea-
gues proposed the ‘hopping’ model of RelA regulation (Wendrich et al., 2002). 
According to this model, RelA binds to ‘starved’ ribosome containing de-
acylated tRNA in the acceptor A-site, which prompts one act of (p)ppGpp 
synthesis resulting in dissociation of RelA from the ribosome. Upon release, 
RelA ‘hops’ to the next blocked ribosome and synthesis of (p)ppGpp is 
repeated. A similar ‘extending hopping’ model was proposed years later by 
English and colleagues who used single molecule tracking of fluorescently 
labelled RelA in live E. coli cells (English et al., 2011). According to this 
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model, once activated, RelA spends prolonged time off the ribosome, synthe-
sizing numerous (p)ppGpp molecules. It was recently shown that RelA interacts 
with uncharged tRNA in rapidly growing cells without being activated 
(Winther, Roghanian, and Gerdes, 2018). RelA seems to bind to tRNA before 
being at the A-site. The same study indeed also reported that amino acid starva-
tion leads to a strong increase of interaction with uncharged tRNA and rRNA 
and a associated activation of (p)ppGpp synthesis activity (Winther, Roghanian, 
and Gerdes, 2018). Through biochemical and microbiological studies of 
B. subtilis Rel, Takada and colleagues proposed a regulation by starved ribo-
somal complexes (Figure 7). In contrast with previous report, this model shows 
that Rel interacts with uncharged tRNA on the ribosome. TGS and Helical 
domains, turn into a “open” conformation, and associates to the vacant A-site of 
a starved ribosome leading to a specific recognition of uncharged tRNA by Rel. 
This strong interaction with uncharged tRNA increases the stability of Rel 
enzyme with starved ribosomes, which leads to a full activation of (p)ppGpp 
synthesis. After, the complex falls off the ribosome, which makes the protein 
not active because tRNA inhibits the hydrolysis activity of Rel. When the 
uncharged tRNA dissociates from Rel, the enzyme turns into a “closed” 
conformation, where the TGS and Helical domains are hidden and the hydro-
lysis domain is active (Takada et al., 2020). 

 
 
Figure 7. Model of Rel regulation by ‘starved’ ribosomal complexes. Off the ribo-
some Rel is in a ‘closed’ conformation, with SYNTH activity repressed HD activity 
induced. In this conformation, the factor cannot specifically bind tRNA, inspects the 
CCA end and be activated for (p)ppGpp synthesis. Binding to vacant A-site ‘opens up’ 
Rel, and in this conformation it can recruit the tRNA, resulting in suppression of HD 
and full activation of SYNTH. Adapted from (Takada et al., 2020). 
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1.11 Regulation of multi-domain E. coli RSH SpoT 

Soon after the discovery of relA, another E. coli gene encoding a protein in-
volved in (p)ppGpp metabolism – spoT (Laffler and Gallant, 1974b). Bio-
chemical analysis of SpoT has revealed that this enzyme is able to degrade 
(p)ppGpp with (GTP) GDP and pyrophosphate as products (Laffler and Gallant, 
1974b; Xiao et al., 1991). SpoT has a weak synthetase activity which is trig-
gered by different starvation conditions such as phosphates (Spira et al. 1995), 
iron (Vinella et al., 2005), carbon (Flärdh et al., 1994) and fatty acids (Battesti 
and Bouveret, 2009). SpoT is also activated by osmotic and heat shock (Gallant, 
et al., 1977). The hydrolysis function of SpoT is crucial to maintain the levels of 
(p)ppGpp during steady-growth conditions in presence of RelA. The HD 
activity of SpoT requires Mn2+ ions (Raué and Cashel, 1975). Since high 
(p)ppGpp levels stop the cell growth, therefore, disruption of the spoT gene in 
E. coli is lethal unless relA is also disrupted (Xiao et al., 1991). All attempts to 
purify full-length SpoT have been so far unsuccessful, postponing a better 
understanding of the molecular details of these regulatory mechanisms. 

It is still unclear if SpoT is ribosome-associated or not. It has been suggested 
that this enzyme does not bind the ribosome, being a cytosolic protein (Gentry 
and Cashel, 1995). Another report suggested that SpoT binds to ribosomal 50S 
subunit (Jiang et al., 2007). Several cellular proteins were suggested to bind to 
and regulate SpoT. First a 50S ribosomal subunit assembly factor Obg (also 
known as ObgE and CgtA) that was suggested to control its activity under 
nutrient rich conditions repressing the synthetic activity of SpoT (Persky et al., 
2009). Second, acyl carrier protein (ACP), a central cofactor in fatty-acid 
starvation, was suggested to activate SpoT’s SYNTH activation and inhibit the 
HD activity by binding to TGS domain (Jiang et al., 2007). 

 
 
1.12 Regulation of single-domain RSH: SAS and SAH 

Many bacterial species in addition to long multi-domain RSH’s encode short, 
single-domain and monofunctional RSH, SAS and SAH. SAS contain an 
individual SYNTH domain and SAH contains only HD domain, both lacking 
the CTD domain region altogether (Atkinson, et al., 2011). SAS were described 
in Streptococcus mutans (Lemos et al., 2007), B. subtilis (Nanamiya et al., 
2008), Enterococcus faecalis (Gaca et al., 2015) and Vibrio cholerae (Das et al., 
2009). The most well-studied SAS representatives are RelP and RelQ (Lemos et 
al., 2007) and RelV (Das et al., 2009). Just like RelA, synthetic activity of RelQ 
is positively regulated by (p)ppGpp (Steinchen et al., 2015) (Figure 8).  
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Figure 8. Tetrameric structure of B. subtilis RelQ with two allosteric pppGpp 
molecules (in red). PDB accession code 5DED, adapted from (Steinchen et al., 2015). 

 
Interestingly, Animalia kingdom has SAH called Mesh1, despite these orga-
nisms lacking (p)ppGpp synthetases (Sun et al., 2010). It was recently dis-
covered that Mesh1 is a cytosolic NADPH phosphatase (Ding et al., 2020). This 
contributes for the effectiveness of ferroptosis, a type of programmed cell death 
that is trigged by oxidative stress dependent on iron and characterized by the 
accumulation of peroxidation products (Dixon et al., 2012), through the de-
gradation of its central metabolite NADPH (Ding et al., 2020). 
 
 

2. (p)ppApp as a novel signaling nucleotide 

2.1 Synthesis of (p)ppApp by RSH 

Adenosine 5'-diphosphate 3'-diphosphate, ppApp, and adenosine 5'-triphosphate 
3'-diphosphate, pppApp, commonly referred to as (p)ppApp (Figure 9) were 
first shown to be produced by an excretable SAS RSH enzyme of Strepto-
myces morookaensi (Oki et al., 1975). This enzyme could produce not only 
(p)ppApp but also pApp and (p)ppGpp (Oki et al., 1975). Detection of 
(p)ppApp was also reported in sporulating cultures of B. subtilis (Rhaese, 
Grade, and Dichtelmuller, 1976). In the 70’s Rhaese and colleagues reported 
(p)ppApp production by ribosome-associated factors (Rhaese and Groscurth, 
1979). More recently, Sobala and colleagues have shown the NTD-only frag-
ment of the Rel enzyme from Methylobacterium extorquens could inefficiently 
synthesize pppApp as well as ppGpp in the presence of unphysiologically high – 
mM range – levels of Co2+ (Sobala et al., 2019). The physiological relevance of 
this biochemical observation is unclear. The authors also suggested that E. coli 
could produce ppApp, though the result was based solely on TLC assays and 
the identity of the observed spots was never confirmed by other methods 
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(Sobala et al., 2019). In the last couple of years, the effects of (p)ppApp on 
RNAP were characterized, and it was shown that in E. coli (p)ppApp binds near 
to the catalytic center at a shallow cavity of the β’ subunit (Bruhn-Olszewska et 
al., 2018). Additionally, it was observed that (p)ppApp strongly activates the 
rrnB P1 transcription by RNAP, and the authors suggested that (p)ppApp in-
creases the stability of rrnB P1 RNAP open complexes. In presence of 
(p)ppApp DksA inhibits the transcription activation (Bruhn-Olszewska et al., 
2018). However, these biochemical papers so far failed to provide a conclusive 
evidence of (p)ppApp playing a bona fide biological role in E. coli. 
 

 
Figure 9. Molecular structure of (p)ppApp and (p)ppGpp. Adenosine and Gua-
nosine bases are shown in red. 

 
 2.2 (p)ppApp as a toxic effector 

In 2019 Ahmad and colleagues have discovered that P. aeruginosa type VI 
secretion system (T6SS) effector Tas1 is a divergent RSH enzyme which 
instead of (p)ppGpp produces (pp)pApp, i.e. pApp, ppApp and pppApp (Ahmad 
et al., 2019). The authors have shown that Tas1-mediated (pp)pApp formation 
results in depletion of ATP and ADP. Delivery of Tas1 into competitor cells 
drives the rapid accumulation of (p)ppApp, depletion of ATP, and widespread 
dysregulation of essential metabolic pathways, resulting in target cell death 
(Ahmad et al., 2019). These two effects compromise the activity of numerous 
essential pathways in the cell such as glycolysis, the pentose-phosphate path-
way, amino acid biosynthesis (Ahmad et al., 2019). As in case of (p)ppGpp 
(Wang et al., 2019), the accumulation of (p)ppApp leads to the inhibition of 
purine biosynthesis by blocking PurF activity (Ahmad et al., 2019). In 2017 
Dedrick and colleagues reported for the first time that toxicity can be a function 
of some SASs (Dedrick et al., 2017). Their bioinformatic studies found a SAS 
encoded by mycobacterial Cluster N bacteriophage Phrann, gp29, that is a 
homologue of RSH proteins. The study suggested that gp29 is toxic to Myco-
bacterium smegmatis (Dedrick et al., 2017). The toxicity is neutralized by the 
expression of its neighboring gene, gp30 (Dedrick et al., 2017). While it is 
possible that gp29 and Tas1, is producing ppApp, the molecular mechanism of 
this SAS has not yet been validated directly.  
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3. Persister cells: possible roles of (p)ppGpp and  
toxin-antitoxin cells 

3.1 Regulation of bacterial virulence by (p)ppGpp 

Numerous studies have implicated (p)ppGpp-mediated signaling in regulation 
of bacterial virulence. (p)ppGpp is a key regulator of expression of genes 
involved in virulence, invasion and survival during infection in several bacterial 
species such as Streptococcus pneumoniae (Kazmierczak et al., 2009), M. tuber-
culosis (Stallings et al., 2009; Dahl et al., 2003), Vibrio cholerae (Silva and 
Benitez, 2006). Loss of ppGpp results in defects in biofilm formation in 
P. aeruginosa (Shrout et al., 2006), L. monocytogenes (Taylor et al., 2002). 
Deletion of relA and spoT genes results in a significant decrease of Burk-
holderia pseudomallei virulence in mouse infection model (Müller et al., 2012). 
In P. aeruginosa loss of (p)ppGpp results in decreased rpoS levels and virulence 
(Shrout et al., 2006). 

(p)ppGpp also promotes cell survival under stress condition during infection. 
(p)ppGpp is required for survival of H. pylori upon acid and aerobic shock 
(Mouery et al., 2006). It is important for E. faecalis exposed to antibiotic chal-
lenge (Abranches et al., 2009). Finally, the stringent response is also involved in 
sporulation, the ultimate bacterial survival strategy. Deletion of the rel gene in 
Bacillus anthracis reduced the sporulation efficiency 10 000-fold (Schaik, 
Prigent, and Fouet, 2007). 

 

 
 3.2 Persister cell formation and (p)ppGpp 

In 1944 Joseph Bigger discovered that antibiotic penicillin does not sterilize 
bacterial cultures: a small population surviving bacteria, called persisters cells, 
while not able to grow in the presence of the penicillin, can resume growth after 
antibiotic is removed (Bigger, 1944). When a culture started with these sur-
viving cells – he called them ‘persisters’ – is challenged by antibiotic, the 
majority of the new cells die, suggesting that persisters are not genetically 
modified resistant bacteria. The molecular mechanism underlying formation of 
persisters is unclear, but toxin-antitoxin systems, and (p)ppGpp-mediated 
signaling were implicated (Kaldalu, Hauryliuk, and Tenson, 2016). Below I 
discuss these two aspects of bacterial persistence in more detail. 
 

 
 3.3 Toxin-antitoxin systems 

Toxin-antitoxin (TA) systems are bicistronic operons composed of a gene en-
coding a toxin gene that inhibits the cell growth and a gene encoding an anti-
toxin that protects the cell against the toxin (Unterholzner, Poppenberger, and 
Rozhon, 2013; Page and Peti, 2016). Four main types of TA loci have been 
identified (Figure 10). TA loci type I and III encode small RNA’s that 
neutralize protein toxins at translational and post-translational levels, respec-
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tively (Blower, Salmond, and Luisi, 2011). Type II toxins are neutralized by the 
protein antitoxins that directly bind and inhibit the toxin protein (Kenn Gerdes, 
Christensen, and Løbner-Olesen, 2005). In the case of type IV TA system the 
antitoxin inhibits the toxin by affecting its molecular target rather than via direct 
interaction between the toxin and antitoxin proteins (Brown and Shaw, 2003).  

TA systems are widely distributed in bacterial genomes and have been 
studied for several decades. However, their biological function still not fully 
understood. Three biological functions have been suggested: post-segregational 
killing (Gerdes, Rasmussen, and Molin, 1986), abortive infection (Rhizobium, 
2013) and formation of persister cells (Harms, Maisonneuve, and Gerdes, 
2016). TA models were initially described on bacterial plasmids, type II and 
type III TA loci are usually related mobile elements and inclined to horizontal 
gene transfer (Gerdes, Rasmussen, and Molin, 1986; Ogura and Hiraga, 1983). 
On the other hand, type I TA loci are usually associated to vertical gene trans-
fer. Most recently, was reported new families of type I TA system. All types of 
TA systems are found on bacterial chromosomes (Blower et al., 2012; Goeders 
et al., 2016). Though, the chromosomal TA system differ among bacteria and 
between close related organisms (Pandey and Gerdes, 2005; Fozo et al., 2010; 
Coray et al., 2017; Leplae et al., 2011; Goeders et al., 2016). 

 

 
Figure 10. Four types of toxin-antitoxin systems. Type I, II, III and IV toxin-
antitoxin systems are shown. Toxins are in red and antitoxins in blue. Adapted 
from (Page and Peti, 2016). 
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3.4 Possible role of (p)ppGpp and toxin-antitoxin  
systems in persistance 

The E. coli hip (high persistence) mutant hipA7 was the first identified mutant 
producing highly elevated persister levels, and it was a focus of research 
striving to understand the molecular mechanisms of persistence. Bicistronic hip 
locus consists of two protein-encoding genes hipA and hipB (hipBA). hipBA 
belongs to type II TA system where toxins are inhibited by the cognate antitoxin 
(Harms et al., 2018). HipB antitoxin neutralizes HipA toxin through 
sequestering it into an inactive complex; consequently, expression of HipA is 
highly toxic to hipB-deficient strain (Black, Irwin, and Moyed, 1994; Black et 
al., 1991). The toxic protein HipA is a serine/threonine kinase that phospho-
rylates the glutamine tRNA synthetase, GltX. This leads to inhibition of tRNA 
aminoacylation and abrogates protein synthesis (Germain et al., 2013; Kaspy et 
al., 2013). The hipA7 mutant retains its toxic activity via phosphorylation of 
GltX, but the complex between the mutant HipA and HipB is weaker, and some 
of the toxin is released (Schumacher et al., 2009). This affects the growth and 
increases the persistence. However, deletion of the hipBA didn’t affect the 
formation persisters, suggesting that the wild-type system is not the key to 
bacterial persistence (Keren et al., 2004; Luidalepp et al., 2011). 

The type II mRNA endonuclease TA systems of E. coli suggested to mediate 
persister formation in response to stochastic accumulation of (p)ppGpp (Mai-
sonneuve et al., 2013). Maisonneuve and colleagues proposed that an increase 
of (p)ppGpp accumulation inhibits exopolyphosphatase (Ppx) that leads to 
polyphosphate (polyP) accumulation and antitoxin degradation by Lon protease, 
activated by polyP (Kuroda et al., 2001; Maisonneuve, Castro-Camargo, and 
Gerdes, 2013). However, it was soon questioned since the results were not 
reproducible when verified in deletion strains and were explained by 
bacteriophage infection and activation of prophages, among other experimental 
problems (Harms, Maisonneuve, and Gerdes, 2016; Goormaghtigh et al. 2018). 
Moreover, the effects of Lon protease as well as polyP synthesis were not 
reproducible (Ramisetty et al., 2016; Shan et al., 2017). Taking together all 
these studies, the connection of (p)ppGpp to persisters cell formation is not 
clear and further research is needed to clarify the topic.  
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4. (p)ppGpp-mediated signaling  
as a therapeutic target 

4.1 Inhibition of (p)ppGpp accumulation  
by antibiotics targeting protein synthesis 

Since (p)ppGpp-mediated signaling plays a role in bacterial virulence, antibiotic 
tolerance and biofilm formation, it was recently targeted for development of 
novel anti-infectives. Treatment with translation inhibitors – such as transpepti-
dation inhibitor chloramphenicol or fusidic acid which locks GDP-bound 
elongation factor EF-G on the ribosome and prevents the translocation – abro-
gates (p)ppGpp accumulation in the cell (Lund and Kjeldgaard, 1972). Similar 
effects were reporter for tetracycline which inhibits protein synthesis by 
blocking the delivery of charged tRNA to the A-site of the ribosome. The cyclic 
peptide thiostrepton is also a strong inhibitor of translation by blocking 
productive recruitment of translational GTPases IF2 (Brandi et al., 2004) and 
the elongation factors EF-Tu (Modolell et al., 1971) and EF-G (Walter et al., 
2012) to the ribosome. Collectively, these results demonstrate that all antibiotics 
that inhibit protein synthesis indirectly abrogate (p)ppGpp production by 
ribosome-associated long RSH enzymes Rel or RelA. 

 
 4.2 Dedicated stringent response inhibitors 

Several research groups recently attempted to develop new molecules that can 
efficiently and specifically inhibit (p)ppGpp-mediated signaling (Wexselblatt et 
al,. 2012; 2010; de la Fuente-Núñez et al., 2014). One of the compounds that 
was proposed to directly inhibit RSH enzymes is a (p)ppGpp analogue Relacin. 
This analogue of ppGpp, when tested in the test tube, inhibits the activity of Rel 
RSH (Wexselblatt et al., 2012). When added to cultures, it affects sporulation 
and biofilm formation (Wexselblatt et al., 2012). However, the efficiency 
specificity of Rel inhibition by Relacin was questioned in the follow-up studies 
(Andresen et al., 2016b).  

Another approach for inhibition (p)ppGpp-mediated signaling is exemplified 
by charged anti-biofilm peptide 1018 (de la Fuente-Núñez et al., 2014). It was 
proposed that peptide 1018 binds directly to (p)ppGpp and induces the 
degradation of the alarmone by an unknown mechanism (de la Fuente-Núñez et 
al., 2014). However, this model was later questioned (Andresen, Tenson, and 
Hauryliuk, 2016a), and it was suggested that rather than specifically targeting 
(p)ppGpp, the compound acts as a general antibacterial. 
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5. Quantification of bacterial nucleotide pools 
Concentrations of housekeeping (such as ATP, GDP, etc.) and signaling 
(ppGpp, c-di-AMP etc.) nucleotides are the key parameters of bacterial meta-
bolism. Separating and quantifying nucleotides is challenging. There are several 
challenges on quantifying specific nucleotides because one has to extract 
compounds from a complex biological mixture. Different approaches are used 
to harvest the cells, different chromatography columns, and different com-
pounds are used to release the nucleotides from the cell. The nucleotides quanti-
fication is technically challenging for various reasons. First, because of turnover 
of the nucleotides is quite fast, as ATP with a half-life of around one-tenth of a 
second (Walsh and Koshland, 1984; Holms, Hamilton, and Robertson, 1972). 
ppGpp is more stable with a half-life of 30 to 200 seconds (Gallant, Margason, 
and Finch, 1972; Fiil et al., 1977; Harshman and Yamazaki, 1971) and 
(p)ppGpp has a half-life of around 10 seconds (Fiil et al., 1977). Second, some 
nucleotides are not stable during the sample process either due to enzymatic 
activity or due to the intrinsic chemical instability. Third, achieving good 
resolution of the full spectrum of nucleotide species is challenging due the 
complexity of the cellular nucleotide pools; both identification and quantifi-
cation can be a challenge. The method can be divided in three steps: acquisition, 
extraction and quantification of the nucleotides. Currently, the most commonly 
used analytical techniques used for the analysis of nucleotide pool are TLC, 
HPLC and HPLC coupled to mass-spectrometry, HPLC-MS. 
 

 
5.1 Sample acquisition for nucleotide analysis 

The sample acquisition can be done by separating cells from culture medium 
or by sampling whole culture broth. The cells either can be separated from the 
medium by filtration or centrifugation. Nevertheless, if the acquisition of the 
sample is relatively slow – and invasive, affecting the metabolic status of the 
cell – which is a problem for the quantification of rapidly metabolizing nucleo-
tides (Bennett et al., 2009; Buckstein, He, and Rubin, 2008). Centrifugation is 
poorly suited for analysis of bacterial nucleotides since it causes dramatic 
changes in the nucleotide levels, with highly phosphorylated species such as 
ATP converted to less phosphorylated species, such as ADP (Payne and Ames, 
1982; Buckstein, He, and Rubin, 2008). Rapid vacuum filtration of the bacterial 
culture through nitrocellulose filters followed by fast snap-freezing the sample 
with liquid nitrogen overcome this issue (Payne and Ames, 1982). Challenges in 
sample acquisition can also be overcome by using with whole-culture broth 
sampling, followed by quenching by snap-freezing the sample with liquid 
nitrogen (Chassagnole et al., 2002; Dominguez et al., 1998). However, this last 
approach can have several disadvantages since it results in more diluted 
metabolites, nucleotides in intracellular or extracellular material cannot be 
distinguished, and components of growth media can interfere with the following 
analysis steps. 
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5.2 Sample extraction for nucleotide analysis 

The extraction step can be mechanical (Meyer, Liebeke, and Lalk, 2010) or by 
using sonication (Lundquist and Olivera, 1971). The most popular choice is 
chemical, using with hot or cold solutes. Several options were tested for hot 
nucleotides extraction such as alkaline, chloroform, water, buffer solutions and 
ethanol (Meyer, Liebeke, and Lalk, 2010). One should be careful while 
choosing the exact protocol since signaling nucleotides, especially cyclic spe-
cies, are unstable in alkaline conditions or the lysis of the bacterial cell is not 
efficient (Markham and Smith, 1952) which leads to (p)ppGpp losses (Cashel 
and Kalbacher, 1970). At higher temperatures chemical and enzymatic degra-
dation are more likely to degrade the nucleotide pools. Thus, cold extraction is a 
more reliable approach. However, nucleotides still can be unstable at low tem-
peratures. Use of strong acids TCA and PCA do not extract ppGpp efficiently, 
for that reason they are not the best options for our experiments (Cashel, 1969). 
The cold formic acid was very commonly used and we used in our first experi-
ments when using whole culture acquisition experiments. It was also reported 
that formic acid induces ppGpp to ppGp degradation (Lagosky and Chang, 
1978). Lastly, the acids are removed by freeze-drying using lyophilizator. 
 
 

5.3 Thin Layer Chromatography 

The thin-layer chromatography (TLC) is widely used to separate complex mix-
tures. This analytical technique was invented in 1905 in Tartu, Estonia, by Rus-
sian botanist Mikhail Semenovich Tswet (Михаил Семёнович Цвет) (Tswett, 
1905).When the sample is applied on a plate covered with thin layer of poly-
ethylenimine and cellulose (this the name, TLC), and one side of the plate is 
inserted in the solvent, as KH2PO4, the liquid mobile phase is drawn up the plate 
via capillary action. Through differential strength of the interaction with the 
sorbent, different species are resolved. In the case of nucleotides, the stationary 
phase is usually made of cellulose. 

This technique was the first approach used for separation and detection of 
ppGpp and pppGpp (Cashel and Gallant, 1969). To assist the detection of 
nucleotides, bacterial cultures are metabolically labelled by 32PO4, and it is 
essential that the cultures are grown for at least two generations in the presence 
of the label to ensure the uniform labelling of all the nucleotide species (Cashel, 
1994). The classical protocol developed by Michael Cashel relies on nucleotide 
extraction with formic acid followed by TLC on polyethyleneimine cellulose 
using phosphates buffer ( Cashel, 1994). With this method safety procedures are 
very important to avoid exposure to radioactive isotope. TLC is a fast, relatively 
reproducible and sensitive technique. It is highly versatile and relatively cheap 
procedure. The main drawback of TLC is its relatively low resolving power: 
TLC achieves about 5 000 theoretical plates (efficiency parameter used in 
chromatography) while HPLC achieves 10 000 to 20 000 theoretical plates 
(Bernard Fried, 1999). 
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5.4 High Performance Liquid Chromatography, HPLC 

High performance liquid chromatography (HPLC) is a powerful technique for 
separation, identification and quantification of components in liquid phase. In 
the 1940’s HPLC was applied to identify and quantify housekeeping bacterial 
nucleotides (such as NTP’s, NDP’s and NMP’s) from a complex mixture 
material using anion exchange chromatography (Cohn, 1949). This technique 
was further developed during the 1980’s when 10 µm 4.6 × 250 mm SAX 
(Partisil) columns with irregular silica particles became a standard for nucleo-
tide analysis (Ochi, Kandala, and Freese, 1981; Payne and Ames, 1982). As 
well IPRP is being extensively used for nucleotide analysis (Buckstein, He, and 
Rubin, 2008; Au, Su, and Wientjes, 1989; Payne and Ames, 1982). To detect 
nucleotides the machine has to have an UV detector. HPLC offers a rapid and 
automated and highly precise method to separate and quantify compounds from 
a complex biological mixture. A gradient solvent can be applied and it is highly 
reproducible. 

 
 

5.5 HPLC coupled to mass-spectrometry, HPLC-MS 

TLC and HPLC methods achieve a very good separation of bacterial nucleo-
tides according to analyte charge and size. However, identification of the com-
pounds relies on the comparison of the eluted peaks with external standards. 
This is not always reliable since the compounds need to be baseline-separated, 
and co-elution of compounds that absorb at the same wavelength can lead to 
mis-identification. To overcome this limitation, ion-pair liquid chromatography 
was paired with mass spectrometry (MS) (Qin and Wang ,2018; Seifar et al., 
2013). The disadvantage is that the MS signal deteriorates when ion pair 
reagents are used, rendering the MS spectra exceedingly complex (Holčapek et 
al., 2004). Recently ion chromatography coupled electrospray ionization high-
resolution mass spectrometry (IC-ESI-HRMS) using isotope dilution mass 
spectrometry (IDMS) was applied for quantification of ppGpp and pppGpp 
(Patacq, Chaudet, and Létisse, 2018). However, this paper demonstrated only 
quantification of these two nucleotides, not the whole pool of bacterial 
nucleotides. In 2019 Zborníková and colleagues demonstrated the feasibility of 
quantification the whole bacterial nucleotide pool using hydrophilic Interaction 
Liquid Chromatography (HILIC) coupled with mass-spectrometry (Zborníková 
et al., 2019). 
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AIMS OF THE STUDY 

The aim of this study is to develop and apply a reliable HPLC-based approach 
for quantification of bacterial nucleotide pools, with a special focus on 
alarmones (p)ppGpp and (p)ppApp. 

The specific objectives of this study were: 
• To develop a HPLC-based method to quantify bacterial housekeeping 

nucleotide pools with a focus on the second-messenger alarmones ppGpp 
and pppGpp (Paper I) 

• To validate the HPLC-based method applied to studies of acute stringent 
response and quantify the nucleotide pool dynamics throughout the bacterial 
growth curve (Paper I) 

• To describe the effects of translational antibiotics on bacterial nucleotide 
pools, with a special focus on ppGpp (Paper II) 

• To characterize the dynamics of the nucleotide pools upon expression of 
C. marina FaRel toxSAS TA toxin and uncover the molecular basis of 
FaRel-mediated growth inhibition (Paper III) 
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RESULTS AND DISCUSSION 

I. HPLC-based quantification of bacterial nucleotides 
(Paper I) 

To investigate the fluctuation of housekeeping nucleotides concentration in 
bacteria we defined a HPLC-UV method for nucleotide quantification that is 
able of quantification of bacterial nucleotide pools including adenosine, guano-
sine and pyrimidine species. Nucleotide quantification methods are divided into 
three steps: acquisition, extraction and quantification (Figure 11).  
 
 

 

Figure 11. Nucleotide quantification workflow tested in this work. The workflow 
can be subdivided into three steps: sample acquisition, nucleotide extraction, and 
quantification. Sample acquisition can be accomplished using either cell harvesting or 
whole culture sampling. During extraction, the nucleotide content is released from the 
cells chemically, with cold formic or acetic acid. The quantification was done using 
high performance liquid chromatography with an UV detector. The column used were 
Kinetix C18 2.6 µm 4.6 × 150 mm and 5 µm 4.6 × 150 mm Strong anion exchange 
(SAX). Adapted from (Varik et al., 2017). 
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Centrifugation was earlier reported to perturb the composition of bacterial 
nucleotide pools (Lundin and Thore, 1975; Leps and Ensign, 1979; Buckstein, 
He, and Rubin, 2008). We tested its effect and also concluded that centri-
fugation has a pronounced effect and should be avoided. Another option for 
sample collection is rapid filtration which is a common procedure for harvesting 
cells (Payne and Ames, 1982; Ochi, Kandala, and Freese, 1981). We commonly 
filtered 10–40 ml of bacterial culture through a 0.45 µm membrane filter using a 
vacuum pump, and the filters were immediately transferred into 1.5 ml tubes 
that contained ice-cold acid. After, the tube containing the filter and acid were 
snap-frozen in liquid nitrogen and stored at −80 °C. The extraction was per-
formed with the samples thawed on ice for around 30 minutes with occasionally 
vortexing. The filter was removed and the sample again freeze-dried in liquid 
nitrogen. This approach to collect samples shortens the method and the loss of 
monophosphates and ADP is way less compared with the whole culture 
procedure. To concentrate the nucleotides we used a freeze-drying.  

The application of anion exchange chromatography for separation of nucleo-
tide pools is well-documented (Payne and Ames, 1982; Ochi, Kandala, and 
Freese, 1981). We used a 5 µm 4.6 × 150 mm Strong anion exchange (SAX) 
column with spherical porous particles. We adopted two modes of elution: 
isocratic or gradient elution with ammonium phosphate buffer. To detect 
pppGpp and ppGpp (Figure 12B), we have used the isocratic elution at pH 3.4. 
However, the resolution of the rest of the nucleotide standards is not as robust 
(Figure 12A). The separation of the nucleotide standards in isocratic mode is 
not possible (Figure 12A). However, the nucleotide standard resolution is im-
proved when gradient elution is applied (Figure 13A and 13B). We noticed that 
the retention time of the SAX column decrease as the columns ages, requiring 
consistent adjustments of the gradient and/or buffer strength. 

SAX is a more reliable approach for detection of pppGpp and ppGpp 
(Figure 12B), but not well-suited for analysis of other nucleotide species 
(Figure 13A). To detect and quantify housekeeping nucleotides, we used IPRP 
chromatography that is also widely used (Huang, Zhang, and Chen, 2003; 
Cserjan-Puschmann et al., 1999; Buckstein, He, and Rubin, 2008; Au, Su, and 
Wientjes, 1989; Payne and Ames, 1982). In comparison to SAX, IPRP approach 
has several advantages. First, IPRP-HPLC has higher sensitivity and the peaks 
are better resolved (Figure 13C). Second, the retention times are significantly 
more stable. Third, this approach doesn’t require high-salt buffers. However, we 
were not successful to implementing this protocol to quantify (p)ppGpp. In 
conclusion, IPRP is a reliable method for detection and quantification of 
bacterial housekeeping nucleotides, with an exception of GMP which co-elutes 
with IMP (Figure 13D). 
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II. Nucleotide pools in E. coli throughout the growth curve 
and during acute stringent response (Paper I) 

With our HPLC-UV method we could follow the changes in nucleotide levels in 
E. coli throughout the growth curve (Figure 14A). The experiments were done 
using fast vacuum filtration, followed by acid extraction and freeze-drying. To 
quantify the nucleotide pools – GMP unresolved and co-migrating with IMP; 
GDP and GTP; AMP, ADP and ATP; CTP; UTP – we used C18 IPRP-HPLC 
column. To resolve ppGpp and pppGpp we used a SAX column in isocratic 
mode. Through the growth curve the most pronounce nucleotide is GTP, 60-
80% of the total pool. When ppGpp accumulated, the levels of GTP decreased 
down to 54%. The explanation is that in E. coli ppGpp inhibits IMP dehydro-
genase, thus down-regulating the production of guanosine nucleotides. Adeno-
sines are very stable throughout the growth curve. The triphosphates are stable 
with the exception of GTP, see above (Figure 14A). 

We also analyzed the nucleotide pools of E. coli during acute amino acids 
starvation. To induce the stringent response the bacterial cells were treated with 
mupirocin (pseudomonic acid), inhibitor of isoleucine aminoacyl-tRNA 
synthetase. Soon after the stringent response was induced, we observed a 
dramatic increase in the levels of ppGpp (Figure 14B). 4 minutes post-
treatment, ppGpp becomes the most abundant nucleotide in the pool (60% 
total). GTP levels drop from 73% to 25%, reciprocating the accumulation of 
(p)ppGpp. pppGpp, which is undetectable in untreated cultures, increases to 
about 8% and becomes more abundant than GDP, which drops down to 4% of 
the guanosine pool. Conversely, the adenosine pools are constant and the 
triphosphate pool changes in a similar way when there is the transition from 
exponential to stationary phase. GTP is the exception that goes from 28% to 
16% of the total NTP pool, see above, AEC, adenylate energy charge, a key 
physiological parameter showing how energized and viable the cells are 
(Atkinson 1968), is stable at approximately 0.9, showing the viability of the 
bacterial cells. 



 

38 

 
 
Figure 14. Intracellular nucleotide measurements of E. coli. (A) Nucleotides mea-
surements of E. coli through the growth curve show that the nucleotides pool is very 
stable with the exception of ppGpp. (B) Kinetics of nucleotide upon induced stringent 
response. The stringent response was induced with 150 µg/ml of mupirocin, added 
when cells reached OD600 0.5. In both cases E. coli cultures grown in MOPS 0.4% 
glucose at 37 °C with vigorous aeration are expressed as ratios of guanosine, adenosine, 
and NTP pools as indicated in the insert. Cells were harvested by filtration and nucleo-
tides extracted with acetic acid. ppGpp and pppGpp were measured using isocratic SAX 
and the remaining nucleotide species were quantified using gradient IPRP. Error bars 
indicate the standard error of the mean of biological replicates. AEC refers to the 
adenylate energy charge defined as per (Atkinson, 1968). Adapted from (Varik et al., 
2017). 
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III. Translation inhibitors block RelA-mediated  
stringent response (Paper II) 

The (p)ppGpp-mediated signaling is a promising target for new antibacterial 
agents since this signaling system plays important role in bacterial antibiotic 
tolerance, such as beta-lactams (Rodionov et al., 1995), and it is lacking in in 
eukaryotes. Antibiotics that target translation – chloramphenicol, tetracycline 
and thiostrepton – have been shown to inhibit the accumulation of (p)ppGpp 
(Kaplan, Atherly, and Barrett, 1973; Jenvert and Schiavone, 2005) suggesting 
that these antibiotics could abrogate (p)ppGpp accumulation, have a knock-on 
effect by sensitizing bacteria to cell-wall targeting beta-lactams. We charac-
terized the effect of translation inhibitors on the intracellular levels of ppGpp, 
GTP, GDP and ATP nucleotide pools using our method of quantification of 
nucleotides by HPLC-based approach. Here we revisit the classic translation 
inhibitors in E. coli (Figure 15) and B. subtilis (Figure 16) upon amino acid 
starvation.  

We tested several antibiotics that target protein synthesis (thiostrepton, 
chloramphenicol, and tetracycline), as well as antibiotic trimethoprim used as a 
control. Trimethoprim blocks the production of tetrahydrofolate by dihydro-
folate reductase, following in the inhibition of glycine, methionine, dTTP, and 
purine biosynthesis. Antibiotic mupirocin was used to pretreat exponentially 
growing bacterial cultures to induce the accumulation of (p)ppGpp. These 
results in accumulation of uncharged tRNA leading to activation of RelA or Rel 
and effectuating. Afterwards, the antibiotic of interest was added at sub-inhi-
bitory concentrations. The same experiments were done for both organisms with 
the exception of thiostrepton since E. coli is insensitive to this antibiotic due to 
a lack of uptake. Therefore, the experiments with thiostrepton are done only in 
B. subtilis (Figure 16A). In the case of both organisms all the translation 
inhibitors tested inhibited the ppGpp accumulation (Figure 15 and 16 A, C and 
D). In case of trimethoprim, the inhibition of growth does not result in the 
decrease of ppGpp levels (Figure 15B and 16B). The effects of translation 
inhibitors are three-fold. First, thiostrepton and tetracycline directly inhibit 
activation of Rel/RelA by starved ribosomal complexes. Second, it was 
proposed that all translation inhibitors abrogate consumption of amino acids, 
which results in charging up of tRNA’s indirectly inhibiting RelA activation. In 
the absence of deacylated tRNA, Rel and RelA are not activated. Finally, inhibi-
tion of translation results in abrogation of production of RSH enzymes. This is 
especially important in case of E. coli SpoT which has a protein functional 
lifespan of 40 seconds or less (Murray and Bremer 1996) and its synthetic 
activity is rapidly lost upon inhibition of protein production.  
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Figure 15. Concurrent inhibition of E. coli growth and ppGpp production by anti-
biotics targeting translation. (A) The stringent response was induced by the addition 
of increasing concentrations of mupirocin followed by 30 min of incubation and HPLC 
analysis (B to D). E. coli cultures were treated for 30 min with different concentrations 
of (B) trimethoprim, (C) tetracycline or (D) chloramphenicol combined with 70 µM of 
mupirocin. Samples were collected, and nucleotide levels were determined by HPLC. 
We used BW25113 E. coli strain grown at 37°C in MOPS medium supplemented with 
0.4% glucose and a full set of 20 amino acids at 25 µg/ml. Growth inhibition was 
calculated as an increase in the OD600 after1h of antibiotic treatment compared to the 
untreated control. The ppGpp levels are calculated as a ppGpp fraction of a combined 
GTP, GTP, and ppGpp nucleotide pool; the dashed red trace indicates the level in 
unstressed cells. Error bars indicate the standard errors of the mean. Adapted from 
(Kudrin et al. 2017). 
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Figure 16. B. subtilis cells starved for isoleucine and treated with translation in-
hibitors. (A) The stringent response was induced with 70 nM of mupirocin, followed by 
the addition of increasing concentrations of thiostrepton, (B) trimethoprim, (C) tetra-
cycline, (D) chloramphenicol. After 30 minutes of addition of antibiotics the samples 
were collected. We used BSB1 B. subtilis strain grown at 37°C in MOPS medium 
supplemented with 0.4% glucose and a full set of 20 amino acids at 25 µg/ml. Growth 
inhibition was calculated as an increase in the OD600 after1h of antibiotic treatment 
compared to the untreated control. The ppGpp levels are calculated as a ppGpp fraction 
of a combined GTP, GTP, and ppGpp nucleotide pool; the dashed red trace indicates the 
level in unstressed cells. Error bars indicate the standard errors of the mean. Adapted 
from (Kudrin et al. 2017). 

 
 

IV. FaRel toxicity is mediated by accumulation of  
ppGpp and ppApp alarmones (Paper III) 

Analysis of SAS gene neighborhood conservation across a panel of bacterial 
species was used to identify the SAS genes that are a part of conserved operon; 
this, in turn, indicates a functional association of several genes (Jimmy et al., 
2020). It was discovered that some subfamilies of SAS can be encoded in 
conserved and overlapping two-gene operons resembling toxin-antitoxin (TA) 
loci. Since high levels of (p)ppGpp are toxic, it was hypothesized that these TA-
like SAS could act as toxic effectors. Using growth assays, several toxic SAS’s 
were discovered, toxSAS – faRel, phRel2, and phRel – were validated as TA 
effectors (Figure 17). The antitoxin ATfaRel from Cellulomonas marina is an 
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SAH, suggesting it acts trough degradation of alarmone produced by toxSAS; 
the rest of the antitoxins were suggested to act via formation of an inactive, non-
toxic complex with the toxSAS (Jimmy et al., 2020). Finally, FaRel was shown 
to produce ppApp, which causes, similarly to the case of Tas1, depletion of 
ATP and GTP pools. 
 

 
Figure 17. C. marina ATfaRel SAH universally counteracts all identified toxSASs. 
(A) C. marina aTfaRel neutralizes the cognate toxin. (B) C. marina aTfaRel neutralizes 
all identified toxSAS toxins. aT stands for antitoxin. Adapted from (Jimmy et al., 2020). 
 

 
To understand better the effects of C. marina faRel toxSAS on the intracellular 
nucleotide pools, I applied the HPLC-based approach to quantify the nucleotide 
pools upon expression of either FaRel (toxin) alone (Figure 18A-C), co-
expressed with ATfaRel (anti-toxin) (Figure 18D-F) or ATfaRel by itself 
(Figure 18G-I). When FaRel was expressed, I observed a dramatic decrease of 
ATP and GTP pools (Figure 18A-B). ppGpp accumulated after five minutes 
after induction of FaRel, but it dropped five minutes later (Figure 18B). I 
noticed a very pronounced peak on IPRP upon FaRel induction. The hypothesis 
was that FaRel is able to synthesise ppApp, similarly to a S. morookaensis SAS 
(Oki et al. 1975) and Tas1 toxic effector (Ahmad et al. 2019). Using pure 
ppApp nucleotide as a spike-in standard, I validated that the new distinct peak 
was, indeed, ppApp. The accumulation of ppApp after five minutes and kept a 
high level of production, with ppApp becoming the dominant adenosine 
species; simultaneously GTP and ATP levels dropped (Figure 18A and 19B). 
When the aTfaRel in combination with faRel ppGpp and ppApp are not 
accumulate and the levels of GTP and ATP do not decrease as much. The 
induction of atfRel alone shows the nucleotide pool stable and no accumulation 
of either ppGpp or ppApp (Figure 18D-F). Collectively, my results demons-
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trated that HPLC approach is capable of detecting novel alarmones such as 
ppApp, thus explaining the mechanisms of toxicity of FaRel SAS. 
 

 
 
Figure 18. Measurements of nucleotide pools in E. coli BW25113 expressing (A-C) 
C. marina faRel, (D-F) C. marina aTfaRel and (G-I) the combination of C. marina 
faRel and aTfaRel. Cell cultures were grown in defined minimal MOPS medium 
supplemented with 0.5% glycerol at 37 °C with vigorous aeration. The expression of 
C. marina faRel was induced with 0.2% L-arabinose at the OD600 0.5 (A-C, G-I). The 
expression of C. marina aTfaRel was induced by 1 mM IPTG at the zero time point (D-
F, G-I). Intracellular nucleotides are expressed in pmol per OD600 • mL of bacterial 
culture. Error bars indicate the standard error of the arithmetic mean of three biological 
replicates. Adapted from (Jimmy et al., 2020). 
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A B C

pm
ol

 / 
(O

D
60

0
x 

m
L)

O
D

600

1000

800

600

400

200

0

1086420
Time, min

0.62

0.60

0.58

0.56

0.54

0.52

pm
ol

 / 
(O

D
60

0
x 

m
L)

O
D

600

1600

1400

1200

1000

800

600

400

200

0

1086420
Time, min

0.62

0.60

0.58

0.56

0.54

0.52

500

400

300

200

100

0

pm
ol

 / 
(O

D
60

0
x 

m
L)

1086420
Time, min

0.62

0.60

0.58

0.56

0.54

0.52

O
D

600

faRel faRel

faRel + aTfaRel

faRel

D E F
1000

800

600

400

200

0

pm
ol

 / 
(O

D
60

0
x 

m
L)

1086420
Time, min

0.62

0.60

0.58

0.56

0.54

0.52

O
D

600

1600

1400

1200

1000

800

600

400

200

0

pm
ol

 / 
(O

D
60

0
x 

m
L)

1086420
Time, min

0.62

0.60

0.58

0.56

0.54

0.52

O
D

600

aTfaRel aTfaRel 500

400

300

200

100

0

pm
ol

 / 
(O

D
60

0
x 

m
L)

1086420
Time, min

0.62

0.60

0.58

0.56

0.54

0.52

O
D

600

aTfaRel

G H I1000

800

600

400

200

0

pm
ol

 / 
(O

D
60

0
x 

m
L)

1086420
Time, min

0.62

0.60

0.58

0.56

0.54

0.52

O
D

600

1600

1400

1200

1000

800

600

400

200

0pm
ol

 / 
(O

D
60

0
x 

m
L)

1086420
Time, min

0.62

0.60

0.58

0.56

0.54

0.52

O
D

600

faRel + aTfaRel 500

400

300

200

100

0pm
ol

 / 
(O

D
60

0
x 

m
L)

1086420
Time, min

0.62

0.60

0.58

0.56

0.54

0.52

O
D

600

GMP/IMP
GDP
GTP
ppGpp

GrowthGuanosine:

ATP
ADP
AMPAdenosine: CTP

UTP

faRel + aTfaRel

ppApp

UTP and CTP:



 

44 

the dominant adenosine species; simultaneously GTP and ATP levels dropped 
(Figure 18A and 19B). When the aTfaRel is in combination with faRel then 
ppGpp and ppApp do not accumulate and the levels of GTP and ATP do not 
decrease as much. The induction of atfRel alone shows the nucleotide pool 
stable and no accumulation of either ppGpp or ppApp (Figure 18D-F). Collec-
tively, my results demonstrated that HPLC approach is capable of detecting 
novel alarmones such as ppApp, thus explaining the mechanisms of toxicity of 
FaRel SAS. 

 

 Figure 19. Detection of ppApp accumulation in E. coli BW25113 expressing 
C. marina FaRel using Ion-Paired Reverse Phase (IPRP) chromatography. Detection 
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of ppApp accumulation in E. coli BW25113 expressing C. marina FaRel using Ion-
Paired Reverse Phase (IPRP) chromatography. Cell cultures were grown in defined 
minimal MOPS medium supplemented with 0.5% glycerol at 37 °C with vigorous 
aeration. The expression of C. marina faRel was induced with 0.2% L-arabinose at the 
OD600 0.5. Nucleotides (including ppApp) were resolved and quantified on Ion-Paired 
Reverse Phase (IPRP) at 26 °C using Kinetix C18 2.6 μm 4.6×150 mm column on 5 (0 
minutes) – 35% (20 minutes) gradient of buffer B. Buffer A: 5 mM TBA-OH, 30 mM 
KH2PO4 pH 6.0. Buffer B: 100% acetonitrile. (A) Nucleotide pool prior to induction of 
C. marina faRel expression. (B) Nucleotide pool after 5 minutes of induction of 
C. marina faRel expression (C) same sample as (B) but spiked in with 1000 pmol of 
chemically synthesised ppApp standard. ppGpp was detected and quantified in a 
separate experiment by SAX-HPLC using Spherisorb 5 µm 4.6×150 mm column with 
isocratic elution in 0.27 M NH4H2PO4 pH 3.4, 2.5% acetonitrile at 26 °C at a flow rate 
of 1.5 ml/min. (D-G) UV-spectra of GTP, ATP and ppApp standards as well as the 
ppApp peak that accumulates upon expression of FaRel. Adapted from (Jimmy et al., 
2020). 
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CONCLUSIONS 

The HPLC-based method for quantification of bacterial nucleotides was 
successfully implemented using two approaches for harvesting the cells – either 
using whole culture sampling or rapid filtration – in combination with two 
complementary methods for nucleotide quantification, SAX and IPRP. Using 
this method, we show that: 

First, the nucleotide pools of E. coli are stable across the growth curve, with 
the exception of ppGpp peaking during the transition to stationary phase and 
stabilizing at higher stable level at the stationary phase. 

Second, tetracycline and chloramphenicol abolish accumulation of ppGpp in 
E. coli cells acutely starved for amino acids by mupirocin treatment. Same falls 
for B. subtilis, in which additionally ppGpp accumulation can be abrogated by 
thiostrepton.  

Third, C. marina SAS toxin FaRel produced both ppGpp as well as ppApp. 
The latter alarmone is the causative agent of the toxic effect of FaRel and its 
antitoxin can counteract the toxicity of all the ToxSAS tested. 
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SUMMARY IN ESTONIAN 

HPLC põhine regulaatornukleotiidide (p)ppGpp ja  
ppApp tasemete analüüs bakterirakus 

Bakteritel on evolutsiooni käigus välja kujunenud arvukalt kohanemismehha-
nisme, mis aitavad neil ellu jääda ka karmides keskkonnatingimustes. Keerukad 
molekulaarsed võrgustikud kontrollivad adaptiivseid füsioloogilisi vastuseid, 
näiteks antibiootikumiresistentsust, biokile moodustumist ja bakterite minekut 
uinunud olekusse. Sellised kohanemismehhanismid sõltuvad stressi tajuvate ja 
sellele reageerivate valkude ensümaatilistest aktiivsustest. Üheks oluliseks kom-
ponendiks stressivastuses on signaalmolekulide süntees ja lagundamine. Käes-
olevas töös uuriti ühte kõige laiemalt levinud adaptiivset mehhanismi, mida 
nimetatakse poomisvastuseks. Selle mehhanismi puhul on võtmetähtsusega 
RelA / SpoT homoloogsed (RSH) ensüümid, mis sünteesivad ja lagundavad 
alarmoon-nukleotiide ppGpp ja ppp(G)pp. Nende nukleotiidide ühiseks nimeta-
miseks kasutatakse tähistust (p)ppGpp. Need molekulid mõjutavad mitmeid 
protsesse bakterirakus, näiteks virulentsust ja antibiootikumitolerantsust. Käes-
oleva töö eesmärgiks oli välja töötada metoodika nukleotiidide, sealhulgas 
(p)ppGpp, tasemete kvantifitseerimiseks. Rakendades seda metoodikat uuriti 
nukleotiidide taset bakterite kasvul ning antibiootikumitöötluse käigus. 

Nukleotiidide, sealhulgas (p)ppGpp taseme kvantifitseerimiseks töötati välja 
HPLC-l põhinev meetod. Nukleotiidide kvantifitseerimise meetodid sisaldavad 
kolme etappi: proovi kogumine, nukleotiidide ekstraheerimine ja kvantifitseeri-
mine. Kogumisetapis filtreeriti bakterikultuur ja nukleotiidide ekstraheerimiseks 
viidi filter äädikhappesse. (p)ppGpp kvantifitseerimiseks rakendati HPLC 
metoodikat 5 µm 4,6 x 150 mm tugeval anioonvahetuskolonnil. Teiste nukleo-
tiidide tuvastamiseks ja kvantifitseerimiseks kasutati ioon-paar pöördfaasi 
(IPRP) kromatograafiat Kinetex C18 2,6 µm 4,6 x 150 mm kolonnil. Kasutades 
väljatöötatud metoodikaid uuriti nukleotiidide tasemete muutust bakterite 
stressivastuse korral. Soolekepikesel (Escherichia coli) analüüsiti nukleotiidide 
tasemeid kasvukõvera erinevates faasides ja aminohapete nälja puhul. Amino-
hapete nälja puhul täheldati kiiret (p)ppGpp taseme tõusu.  

Translatsiooni inhibeerivate antibiootikumide (tiostreptooni, klooramfeni-
kooli ja tetratsükliini) mõju (p)ppGpp ja teiste nukleotiidide tasemetele bakteri-
rakus uuriti nii Gram-negatiivsetes kui ka Gram-positiivsetes bakterites, esinda-
jateks vastavalt E.coli ja Bacillus subtilis. (p)ppGpp kuhjumise indutseerimiseks 
kasutati eeltöötlust muprirotsiiniga. Seejärel lisati uuritav antibiootikum subin-
hibeerivas kontsentratsioonis. Mõlema bakteriliigi korral pidurdasid kõik testi-
tud translatsiooni inhibiitorid (p)ppGpp kuhjumist. 
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Meie uurimisrühma bioinformaatiline analüüs tuvastas, et mõnedes bakteri-
liikides on RSH ensüümid, millel on ainult (p)ppGpp sünteesi eest vastutav osa. 
Leiti, et selline ensüüm bakteris Cellulomonas marina võib fosforüleerida ka 
adenosiini, tekitades molekuli ppApp. Koos paralleelselt ilmunud töödega teis-
test laboritest on alust arvata, et tegemist on uudse regulaatornukleotiidiga. Selle 
nukleotiidi täpse rolli kindlakstegemine nõuab edasisi uuringuid. 
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