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1. INTRODUCTION 

1.1. Life history theory, pace-of-life, and senescence 

Organismal aging, or senescence, can be defined as a progressive, irreversible 
loss of function that results in declines in fertility and survival (Holmes and 
Martin 2009). This definition restricts senescence to age-related deterioration 
that occurs after organisms reach maturity. Hence, classical evolutionary theory 
does not refer to senescence as a state of senility in very late adulthood rather it 
predicts that senescence should begin at the age of sexual maturity and progress 
from that point as the force of natural selection weakens (Williams 1957, 
Hamilton 1966). Senescence includes processes that can be detrimental to 
reproductive success and, therefore, are relevant to fitness trade-offs (Holmes 
and Martin 2009). 

There are multiple evolutionary theories of senescence (reviewed by Nussey 
et al. 2013). Two of those theories: antagonistic pleiotropy (Williams 1957) and 
disposable soma theory (Kirkwood 1977) are considered to be life-history 
theories of aging (Partridge and Barton 1996). According to life-history theory, 
an organism must divide its limited resources (e.g. energy) between somatic 
maintenance and reproductive effort in order to maximize its lifetime fitness 
(Williams 1966). As stated by both antagonistic pleiotropy and disposable soma 
theory, senescence can hence be viewed as a result of natural selection 
favouring greater investment into reproduction early in life at the expense of 
somatic maintenance. That allocation pattern itself is determined by the species 
ecological context, with a more stable environment and low extrinsic mortality 
leading to a greater investment into self-maintenance and a longer lifespan. 
Since greater investment into somatic maintenance automatically results in 
diminished investment into reproduction, one can place species onto a fast-slow 
life-history continuum (Gaillard et al. 1989, Bielby et al. 2007), with species in 
the “slow” end of the spectrum experiencing slow growth rate, increased size at 
maturity, late maturation, reduced number of offspring, long lifespan and low 
adult and juvenile mortalities. 

The pace-of-life syndrome (POLS) hypothesis suggests that species should 
also differ in physiological traits that have co-evolved with the life-history 
particularities of each species (Ricklefs and Wikelski 2002, Wikelski et al. 
2003a). Hence the idea of POLS is closely related to classic r- and K- strategy 
axis (Pianka 1970) as well as extends the fast-slow life-history continuum 
(Gaillard et al. 1989, Bielby et al. 2007). Figure 1. illustrates the potential 
variation of traits along the pace-of-life continuum. 
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Figure 1. Schematic of the potential integration of different traits along a pace-of-life 
continuum. Double arrows illustrate presumed continuous variation in life-history 
strategies among species. Adapted from Reale et al. (2010) 

 

Of course, there are notable exceptions to POLS. For example birds are 
considered to be long-lived slowly aging animals despite their high metabolic 
rate and small size. In fact, they can live up to three times longer than similarly 
sized mammals, despite their metabolic rates being 1.5–2.5 times higher 
(Holmes and Ottinger 2003). This inconsistency is explained by their ability to 
fly. Organisms with higher mortality rates undergo natural selection for early 
rapid maturation, early reproduction, and hence shorter life-span, while 
organisms with effective protection against predators, like flying ability, are 
expected to invest more into soma. Consistent with this view is the fact, that 
flying and gliding mammals also experience slower aging and longer lifespans, 
than predicted by their metabolism (Holmes and Ottinger 2003). Therefore birds 
might have “private” physiological mechanisms enabling them to combat the 
senescence effects usually associated with fast metabolism (reviewed by 
Holmes and Martin 2009). Furthermore, since birds are considered long-lived 
endotherm species, those mechanisms could be more easily transferable to 
human systems, than research carried out on traditional model species (e.g. 
Caenorhabditis elegans, Drosophila melanogaster and lab mouse). All the 
aforementioned reasons combined make avian systems interesting models for 
determining and validating the physiological trade-offs causing aging in long-
lived species. 
 
 

1.2. Multidimensionality of aging 

According to Williams (1957), senescence should be synchronous across the 
physiological systems, since it would not be beneficial for the organism if one 
aspect of its physiology had a catastrophic failure before the others. For 
example, there is no benefit in organism maintaining a viable germ line, if 
somatic senescence has progressed to the point that prevents successful 
reproduction (Kirkwood and Shanley 2009). However empirical data from 
humans and laboratory model organisms suggests that aging asynchrony is 
commonplace and health- and lifespan are inherently uncoupled (Herndon et al. 

pace of life
fastslow

life history
short lifelong life

precocious reproductiondelayed reproduction
high growth ratelow growth rate

physiology
high metabolismlow metabolism
high sensitivity to OSlow sensitivity to OS

low immune responsehigh immune response
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2002, Burger and Promislow 2006, Martin et al. 2007, Bansal et al. 2015). Of 
course one might theorize that since humans and laboratory model organisms 
experience life in benign and protected conditions, their life-span might be 
unnaturally high, which might disrupt the coupling of senescence. 

Although there are multiple studies investigating senescence rates across 
phenotypic traits (Nussey et al. 2008, Massot et al. 2011), studies investigating 
the uncoupling of survival and fecundity senescence in natural populations 
remain scarce (Nussey et al. 2013). Female post-reproductive survival has been 
documented in a few long-lived mammal species (Croft et al. 2015). There is 
also evidence from wild ungulates that reproductive senescence may start later 
and progress more rapidly, than age-related declines in survival probability 
(Nussey et al. 2013). Therefore, evidence suggests, that in long-lived species, 
faster reproductive senescence could be a cost of slower somatic senescence 
(Croft et al. 2015, Griesser et al. 2017). The same could be said about bird 
species, for, as stated earlier, most of them have abnormally long lifespans for 
their size. However, since there is a scarcity of studies comparing physiological 
and reproductive senescence in the same system, fundamental gaps remain in 
our understanding of the nature of asynchrony in the senescence of these traits. 

 
 

1.3. Aims of the thesis 

Aging research has been traditionally conducted on short-lived laboratory 
organisms (Holmes and Martin 2009). Since long-lived organisms differ in their 
senescence patterns from short-lived ones (Lemaitre et al. 2015) and senescence 
effects on fitness cannot be reliably measured in sterile laboratory conditions 
(Speakman et al. 2015), there is a need to integrate more long-lived wild 
populations into biogerontological research. Hence, the main aims of this thesis 
were to (1) assess the different aspects of senescence in a long-lived seabird and 
to (2) reveal the potential trade-offs leading to senescence in long-lived wild 
bird species. 

In order to assess the fitness effects of senescence, one must first determine 
if the population actually ages. There has been a persistent fallacy in biology 
that natural populations do not senesce, due to them succumbing to the 
unpredictable natural environment before the negligible effects of senescence 
can occur (Medawar 1952). However, there is an accumulating amount of 
evidence, showing, that in nature, senescence does indeed occur (reviewed by 
Nussey et al. 2013), further supported by studies on the common gull model 
system employed for the present thesis, indicating reproductive senescence 
(Rattiste 2004). To further test this notion, I aimed to measure aging, using two 
widely used physiological age markers (erythrocyte telomere length and skin 
pentosidine concentration). Both of these markers have previously been shown 
to correlate with chronological age and have been hypothesised to be affected 
by oxidative stress (OS), so the setup also enabled me to test the relevance of 
OS for senescence (paper I). 
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Since aging has been functionally linked to oxidative stress (OS) (Harman 
1956), there is a multitude of studies investigating associations between OS and 
aging (reviewed by Holmes and Martin 2009, Costantini et al. 2010), however 
most of them have only focused on a few markers of oxidative damage or 
antioxidant defence (Monaghan et al. 2009). To properly assess the associations 
between aging and OS, however, one must use a multitude of markers (Hõrak 
and Cohen 2010, Speakman et al. 2015). I aimed to determine if OS relates to 
aging and if older organisms are more prone to oxidative damage, using several 
markers of oxidative damage, antioxidant protection and nutritional state 
(paper II). 

To further explore the multidimensionality of aging, I intended to determine, if 
there is detectable senescence in reproductive traits. Many gull species poses 
wing ornamentation (Coulson et al. 1982, Allaine and Lebreton 1990), which is 
under sexual selection (Andersson 1994). I measured common gull wing tip 
ornamentation in order to find out if they were sexually dimorphic, correlated 
with age and predicted longevity (paper III). 

Studies of senescence in the wild have traditionally been focused on traits 
like fecundity and survival, while traits related to self-maintenance remain 
understudied in the context of aging. The uropygial or preen gland is a holocrine 
gland exclusive to birds, directly linked to self-maintenance. To assess the 
senescence of self-maintenance mechanisms, I measured the size of uropygial 
glands of common gulls in a cross-sectional manner in relation to aging (paper 
IV). 

Finally, I intended to explore, if maternal investment depended upon age. 
For that purpose, I measured egg yolk carotenoid content and composition, as 
well as testosterone and vitamin A and E contents, from eggs of differently aged 
mothers (paper V). Carotenoids, vitamins A and E and testosterone have all 
been linked to offspring quality, so I expected them to reveal signs of maternal 
senescence through differences in maternal allocation patterns. 
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2. MATERIALS AND METHODS 

2.1. Model system 

The biology of aging, or biogerontology, is broadly focused on understanding 
basic processes responsible for variation in animal life spans and aging patterns, 
including evolutionary forces as well as physiological and molecular mechanisms 
(Holmes and Martin 2009). Most biogerontological research has traditionally 
been conducted on short-lived, inbred laboratory model organisms, rather than 
wild, free-living animals (Holmes and Martin 2009), although recent studies 
have also started to incorporate long-lived species, in both organismal (Edrey et 
al. 2011) and cellular levels (Alper et al. 2015). Since long-lived and short-lived 
organisms have different life-histories (Pianka 1970, Gaillard et al. 1989, 
Lemaitre et al. 2015) and underlying physiological mechanisms (Lambert et al. 
2007, Galvan et al. 2015, Piersigilli and Meyerholz 2016), and physiological 
trade-offs inducing senescence cannot be reliably measured in laboratory 
conditions (Speakman et al. 2015), there is a need to incorporate more long-
lived natural animal populations into the field of biogerontology. Birds live 
remarkably long for their body size compared to mammals and in general, are 
expected to senesce at slower rates (Williams 1957, Holmes and Austad 1995, 
Ricklefs and Scheuerlein 2001). Seabirds, in particular, are among the 
longest‐lived of all birds and constitute excellent models for research into both 
the evolutionary ecology and physiological basis of aging (Ricklefs 1998, 
Holmes et al. 2001, Monaghan and Haussmann 2006). 

The common gull (Larus canus) is a monogamous long-lived seabird 
breeding mainly in colonies. Adult birds weigh around 430 g and have a 
wingspan of about 120 cm. Breeding season starts in late April, with males 
arriving at the colony ahead of females and securing a nesting site. Common 
gull has a fixed clutch size of three eggs, with the third egg being considerably 
lighter. About 10% of all eggs produce recruits. Eggs are laid 2–3 days apart 
and incubation starts after the third egg has been laid. Both male and female 
birds contribute equally into hatching the eggs and rearing the young. Recruits 
start breeding at 3–4 years of age and breeding lasts on average 5–6 years 
(Rattiste 2004), although some individuals are capable of breeding for over 
30 years. Nonetheless, after the 10th breeding year, breeding success declines as 
reproductive senescence starts to emerge (Rattiste 2004). As there is no 
variation in clutch size, laying date is presumably a key reproductive trait 
(Brommer and Rattiste 2008), with more successful birds breeding earlier. 
Since breeding success is dependent upon laying date and finding a new partner 
is time-consuming, it is crucial for the birds to form long-lasting pairs with 
high-quality individuals. Pair bonds persist on average for 2–3 years (mainly 
due to high divorce rate among inexperienced individuals and mortality in 
senescent age classes), with the longest pair lasting for 21 years (Rattiste and 
Lilleleht 1986, Rattiste personal observations). Like many other gull species 
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(Coulson et al. 1982, Allaine and Lebreton 1990) common gulls also exhibit 
wing ornamentation reflecting individual quality (paper III) as well as display 
conspicuous carotenoid-based coloration on their bill and legs. 

Studies for the current thesis were conducted on a common gull colony 
located on Kakrarahu islet in Matsalu National Park (west coast of Estonia, 
58°46’N, 23°26’E). The colony has been continuously monitored since 1962, so 
the population structure is well-known, with over 50% of the males and 10% of 
the females returning to their birth colony to breed and less than 3% switching 
colonies between breeding attempts (Rattiste 2004). From the late 1970s 
onwards, competition and nest predation by herring gulls (Larus argentatus) in 
other colonies have made Kakrarahu the preferred breeding site for common 
gulls in western Estonia. As a result, the number of breeding pairs is steadily 
increasing and actual return rates might now be even higher than previously 
reported. Birds in the colony are ringed as chicks and fitted with unique alpha-
numerically coded PVC bands at their first breeding attempt, simplifying later 
identification. Adult birds are caught (for ringing as well as for studies 
comprising this thesis) from nests after the tenth day of incubation, using spring 
traps. Breeding success is recorded by daily inspections of the nests as each 
egg’s laying date and mass is recorded as well as hatching order of the chicks. 
For the aforementioned reasons, the study system enables the collection of 
longitudinal individual-based data from the first breeding attempt to the last, 
perfect for conducting aging research. 
 
 

2.2. Methodology 

2.2.1. Measuring erythrocyte telomere length and  
skin pentosidine concentration 

For the first paper in this thesis, we measured erythrocyte telomere length and 
skin pentosidine concentration. For telomere length measurement, we collected 
50 µl of whole blood into an Eppendorf tube and mixed it with SET puffer 
(0.15 M NaCl, 20 mM TrisHCl, 1 mM EDTA, pH 8.0). Telomere length was 
measured using real time quantitative polymerisation chain reaction (qPCR) on 
a Mx3000P q-PCR system (Stratagene) as described by Asghar et al. (2014). 
For the telomere region, we used primers described by Criscuolo et al. (2009) 
and for the control region we used primers described by Asghar et al. (2011). 
We calculated a relative telomere length (T/S ratio) value, by dividing the 
(plate-adjusted) qPCR value for the telomere length (T) with the (plate-
adjusted) qPCR value for the single copy nuclear sequence. 

In order to measure skin pentosidine concentration, we took a skin biopsy 
from the inner patagium and placed it into an Eppendorf tube with distilled 
water. We processed the skin samples and analysed 20µl of each sample using 
the hydroxyproline (OH-proline) analysis as described by Cooey et al. (2010).  
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We used simple regressions to analyse associations between erythrocyte 
telomere length and age, skin pentosidine concentration and age and telomere 
length and skin pentosidine. All analyses were performed using Statistica 10 
(Statsoft 2010). 

 
 

2.2.2. Measuring biomarkers of oxidative damage,  
antioxidant defence and nutritional state 

For the second paper in this thesis, we measured several markers of antioxidant 
defence, oxidative damage and nutritional state in three consecutive years. In 
order to assess oxidative stress levels and nutritional state, we measured markers 
of antioxidant defence, oxidative damage and nutritional state. We measured 
three different antioxidants as well as plasma total antioxidant capacity (TAC). 
These antioxidants were erythrocyte glutathione, plasma carotenoids and 
plasma uric acid. We measured glutathione, one of the main intracellular 
antioxidants (Galván and Alonso-Alvarez 2008), from erythrocytes as described 
by Galván and Alonso-Alvarez (2008). Concentrations were expressed in 
micromoles per gram of blood pellet (a solid pellet consisting mainly of 
erythrocytes achieved by centrifugation).  

Carotenoids are fat-soluble carbohydrates linked with fundamental redox 
pathways (although their importance in those pathways remains to be determined; 
see Hill and Johnson 2012). We measured carotenoids from 15µl of plasma 
diluted in acetone as described by Tummeleht et al. (2006). 

Plasma uric acid is the main end product of nitrogen metabolism in birds and 
due to its abundance, it is thought to be one of the main antioxidants in birds 
(Tsahar et al. 2006).We measured uric acid concentration spectrophotometrically 
from 5 mL of plasma using a standard kit (Human GmbH kit, Weisbaden, 
Germany).  

As described earlier, in addition to individual antioxidants, we also measured 
TAC, a measure of water-soluble antioxidants in serum. We measured TAC 
spectrophotometrically from 5 µl of plasma as described by Erel (2004). 

We also measured lipid peroxidation (LPO) as an indicator of oxidative cell 
damage (Niki 2009). LPO was measured spectrophotometrically using a 
standard kit (Bioxytech LPO-586, OxisResearch). The method has been 
previously described by Hõrak et al. (2007).  

In addition to markers of oxidative status, two biochemical markers of 
nutritional condition were measured. These markers were total concentrations 
of protein and triglycerides in plasma, both of which are expected to reflect 
nutritional status (Jenni-Eiermann and Jenni 1998). The markers were measured 
from 5 and 2.5 µl of plasma for total protein and triglycerides, respectively, 
using a standard kit (Human GmbH kit). 

We analysed the data with three different methods. Firstly, for analyzing 
age-related patterns in physiological and reproductive variables on the basis of 
cross-sectional data, we relied on generalized mixed models (PROC GLIMMIX, 
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SAS/STAT, ver. 9.2, SAS), with breeding year (an approximation of age) as a 
continuous independent variable, individual identity as a random factor and 
focal physiological or breeding parameter as a dependent variable. To describe 
possible parabolic relations of measured parameters and age, all models were 
also tested for significance of the square of breeding year. 

Secondly, to distinguish between cross-sectional and longitudinal patterns, as 
described by Herborn et al. (2016), we partitioned age into within- and 
between-individual components and substituted these two new fixed effects for 
age in the original model. The between-individual component was the average 
age at which each bird was sampled. The within-individual component was (age – 
average age). We included identity and the slope of the within-individual 
component of age correlated with identity as random effects. These analyses 
were conducted using R, version 3.2.2, and the package nlme (R Development 
Core Team 2015). 

Thirdly, To test whether a bird’s physiological or breeding parameters were 
different in its last year of life, we used the discrete factor “terminal breeding 
year” as a predictor variable in generalized mixed models with individual 
identity as a random factor. To test whether any of the recorded variables 
predicts longevity, we used the mixed-effects Cox model using R, version 3.2.2, 
and the package survival (Therneau 2015). 

 
 
2.2.3. Measuring wing tip pattern, -abrasion, and preen gland size 

For the third and fourth papers in this thesis we measured the size of white wing 
patches (an ornamental trait), wingtip abrasion and preen gland size (an 
indicator of somatic maintenance). To characterize the individual wing tip 
pattern, we summed the measurements of the areas of the white spots on five to 
six (some birds had a white spot on the 6th feathers, some did not) outermost 
primaries on the right wing of the bird. As the wing-patches were measured on 
two different periods, separated by more than ten years, two different techniques 
were used.  

On the first period (1997), the area of spots was measured as follows: the 
wing was placed in its natural position on the flat surface so that the edges of all 
white spots on the feathers were visible. Transparent plastic sheet with a grid of 
5×5 mm cells was placed on the wing and the areas of spots were estimated as 
the number of squares with the precision of 1/4 cell, which was thereafter 
multiplied by 25 to obtain the measurement in square millimetres. 

On the second period (2007), all birds were photographed with a ruler placed 
next to their right wing for scale. Patch size was measured as the white area in mm2 
from digital photographs using IMAGEJ software (<http://rsbweb.nih.gov>). 
Since there were photographs from the first period, it enabled us to assess 
correlation between the two methods. The correlation was extremely strong 
(r = 0.98, p = 0.0001). 
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Wingtip abrasion level was measured by was estimated on a scale of 0–4, 
with 0 representing no visible abrasion and 4 representing missing feather tips 
on several feathers. Feather abrasion was estimated independently by four 
persons with the repeatability of 0.67 (p = 0.0001, F212,671 = 6.7). 

Uropygial gland was measured with a dialled calliper to the nearest 0.1 mm. 
Since uropygial glands of gulls are round-shaped (personal observations; see 
also (Salibian and Montalti 2009)), only one measure for diameter (as opposed 
to length + width) was taken. Repeatability of gland diameter was 0.86 
(F16,19 =14.25, p<0.0001). For birds with multiple measurements, average gland 
diameter was used in the analyses. 

For analyzing age-related patterns of wing patch size we used linear mixed-
effects models, with individual identity as a random factor and wing patch size 
as a dependent variable. Models were fit using maximum likelihood. Type III 
tests were used for testing fixed effects. Breeding year (as a proxy of age) was 
included in models as a continuous independent variable to describe associations 
between measured parameters and age. To describe possible parabolic relations 
of measured parameters and age, all models were also tested for significance of 
the square of breeding year. Models were ran using R ver. 3.2.2 and the package 
nlme. We used Cox proportional hazard models to test whether any of the 
recorded variables predicts survival, using R ver. 3.2.2 and the package survival 
(Therneau 2015). 

For the preen gland analysis, we used t-tests for comparing trait values 
between sexes, ANCOVA-s for testing the sex-specific associations between 
breeding age, its square or uropygial gland size vs dependent variables. The 
analyses were performed in Statistica v10 (Statsoft 2010).  

 
 

2.2.4. Measuring yolk testosterone and carotenoids 

For the fifth paper in this thesis, we measured yolk androgen and carotenoid 
contents. We measured yolk testosterone concentration by radioimmunoassay 
after yolk steroid extraction following previously established protocol 
(Okuliarova et al. 2011).  

We measured the concentration of yolk carotenoids by adapting previously 
established high-performance liquid chromatography (HPLC) methods (McGraw 
et al. 2002). This method allowed us to separate different types of carotenoids. 
We calculated the concentration of each compound, in μg/ml, by comparing 
absorbance values to previously prepared standard reference curves. 

We used multiple regression analyses to analyse associations between egg 
parameters (egg mass and testosterone and carotenoid contents) and maternal 
age. To test for possible parabolic relations between egg parameters and age, we 
included the square of maternal age as a predictor variable and to control for 
possible age-independent sifferences in maternal quality, we included laying 
date as a predictor. The final models had maternal age, its square and laying 
date as independent variables and the specific egg characteristic as dependent 
variable. All analyses were performed using Statistica 10 (Statsoft 2010). 
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2.3. Ethics of the experiments 

The experiments, that were carried out for this thesis comply with the current 
law of the Republic of Estonia and were approved by Animal Procedures 
Committee of the Estonian Ministry of Agriculture (decision #5, issued on 
20 April 2013 and decision #106, issued on 24 April 2017). These licenses 
granted permission to: 

• Catch common gulls from their nests using spring traps 
• Collect blood and skin samples in amounts previously reported not to be 

harmful for the species in question to assess telomere length and skin 
pentosidine concentration 

• Collect freshly laid eggs for sampling to determine the eggs’ hormonal 
and carotenoid content 

The studies complied with the organisational conditions of the experiments 
stated in the licenses. 
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3. RESULTS AND DISCUSSION 

3.1. Do common biomarkers of aging predict  
chronological age? (I) 

Birds do not possess many of the phenotypic traits associated with aging, present 
in mammals (i.e. wrinkling of the skin, whitening of the muzzle or wear of 
teeth), complicating our ability to quantify aging in birds (Chaney et al. 2003). 
Reliably measuring age in wild bird populations could play an important role in 
population management or conservation of endangered species (Anders and 
Marshall 2005, Cooey et al. 2010, Mills 2016). Since bird banding studies often 
take a long time to acquire usable demographic data (Cooey et al. 2010) and can 
produce a bias in estimating a population’s age structure (Mills 2016), there is a 
need for universal aging biomarkers for birds. It is also necessary to validate 
those markers on a wide variety of species. In the common gull, there is a 
previously documented noticeable senescent decline in both breeding success 
(Rattiste 2004) and annual fitness (Brommer et al. 2010) however, it has not 
been previously established if the same decline is also detectable in biochemical 
markers of aging. 

In paper I, I aimed to validate two commonly used independent biomarkers 
of aging. For that purpose, we caught 47 male birds of known ages (2–33 years) 
in 2013 breeding season in order to measure their erythrocyte telomere length 
and skin pentosidine concentration. Telomeres are highly conserved protective 
DNA sequences at the ends of chromosomes that progressively shorten in 
proliferative cells. Their length has been shown to correlate with chronological 
age. The association with age is different for short-lived and long-lived species 
(Haussmann et al. 2003) and both negative and positive correlation with age has 
been found in cross-sectional studies (Haussmann and Mauck 2008, Holmes 
and Martin 2009). Pentosidine is a marker of both oxidative and glycative 
damage to proteins. Glycation theory of aging suggests that modification of 
proteins by glucose leads to production of advanced glycation endproducts 
(AGEs), such as pentosidine. AGEs cause gradual crosslinking in collagen that 
is characteristic of aging and leads to deterioration of tissues (Miyata et al. 
1998). Pentosidine is found in many different tissues and organs and formed 
continuously under natural conditions. For several bird species, skin pentosidine 
content has been shown to correlate with chronological age (Chaney et al. 2003, 
Cooey et al. 2010).  

As in previous studies of the same study system (Rattiste and Lilleleht 1986, 
Rattiste 2004), the age of the males was related to their partners’ laying dates in 
a concave manner, suggesting a senescent decline in breeding success. Neither 
of the physiological aging markers, however, correlated with chronological age. 
Moreover, there was no correlation between telomere length and skin pentosidine 
concentration, suggesting that there is no common physiological factor regulating 
aging throughout different tissues of the organism. 
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To my knowledge, this was the first study that failed to find a correlation 
between skin pentosidine levels and chronological age. An explanation for such 
an absence could be, that there is only a weak correlation between physiological 
and chronological age in common gulls. In many species there exists significant 
functional and survival variation among like-aged elderly individuals (Collier 
and Coleman 1991, Nussey et al. 2013), so similarly aged individuals might be 
in very different physiological condition – have different physiological ages. 
One might hypothesize, that in the common gull oldest individuals do not 
comprise a random sample of individuals but are more viable, than the average 
bird in the population and thus appear physiologically younger for their 
chronological age. If viability relates to an ability to slow down or offset the 
processes that cause accumulation of pentosidine with age, then the correlation 
between pentosidine levels and age would be weak or absent. The uncoupling of 
physiological and chronological ages in the study system is also supported by 
the fact, that erythrocyte telomere length, a marker associated with cellular 
senescence due to oxidative stress (Monaghan and Haussmann 2006), also had 
no associations with age. Furthermore, there was more variability of telomere 
length in older individuals, suggesting a relaxed selection on the trait, which 
could indicate an ability to combat cellular senescence through various 
physiological mechanisms, one example of them being the telomerase enzyme 
(Haussmann et al. 2007). Lack of correlation between telomere length and skin 
pentosidine levels also suggests that neither OS nor any other physiological 
mechanism affects the rate of aging in this species since both markers have been 
associated with susceptibility to oxidative damage (Wellsknecht et al. 1995, 
Monaghan and Haussmann 2006). What is more, it has been shown, that 
different traits of an organism senesce at different rates (Nussey et al. 2013), so 
it is possible, that mechanisms responsible for telomere length and skin 
pentosidine accumulation senesce at a leisurely rate, while reproductive 
mechanisms senesce in a faster pace. Of course, caution must be taken in 
interpreting the results. Since it was a cross-sectional study, I cannot exclude 
the possibility of a cohort effect eclipsing the within-individual senescent pattern 
with between-individual variability. Finally, it should be noted, that we had an 
80% power to detect a significant positive correlation above r = 39 between skin 
pentosidine and age, so I cannot exclude the possibility of existence of weaker 
(but still biologically meaningful) association between these traits. 

 
 

3.2. No evidence for OS affecting somatic senescence (II) 

Free radical theory of aging (Harman 1956) suggests that senescence is caused 
by the accumulation of damage caused by free radicals, whether by direct 
damage to biomolecules by reactive oxygen species (ROS) (Kirkwood and 
Kowald 2012) or through membrane fatty acids susceptibility to ROS attack and 
subsequent lipoxidation of important macromolecules (Galvan et al. 2015). The 
free radicals responsible for aging are mainly produced in the mitochondria 
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during ATP production. Those radicals are usually produced in minuscule 
amounts, but production may increase in damaged or aged mitochondria 
(Buffenstein et al. 2008). Since this effect is often cumulative, an organism 
might get more susceptible to oxidative damage with advancing age. Though 
there is no shortage of studies relating OS to senescence, they have mostly been 
conducted on short-lived laboratory organisms (Costantini et al. 2010) and only 
recently have natural populations been included (Nussey et al. 2009, Bize et al. 
2014). Mostly those studies focus on a few markers of oxidative stress or 
antioxidant defence, assuming that they provide adequate information about OS 
(Monaghan et al. 2009). However, to measure OS accurately, one must utilize a 
multitude of biomarkers (Hõrak and Cohen 2010, Speakman et al. 2015). 

I aimed to test longitudinally, whether senescence increases susceptibility to 
OS using several markers of oxidative damage and antioxidant protection. 
Antioxidants measured over three year period included plasma uric acid, 
carotenoids, total antioxidant capacity (TAC), and erythrocyte glutathione 
(GSH). From oxidative damage markers, lipid peroxidation (LPO) was measured. 
Overall nutritional condition was assessed by measuring plasma protein and 
triglycerides concentrations. 

The results did not indicate any senescence-related increase or decrease in 
any of the measured markers. However, erythrocyte GSH concentration predicted 
the longevity of female gulls, with birds having lower concentrations living 
longer. None of the other markers predicted lifespan. Age-related decline in 
markers of reproductive success (laying date and clutch mass) was still observed. 

Since none of the measured markers of oxidative stress correlated with age, 
the results do not support the idea of OS being the key mechanism inducing 
senescence in common gulls (as was also evident in paper I). These results also 
do not support the notion of an age-related decline in resistance to OS reported 
in some studies (Gil et al. 2006, Devevey et al. 2010). Indeed more and more 
results suggest, that the relationship between aging, lifespan, and OS might not 
be as clear-cut as previously hypothesised (reviewed by Buffenstein et al. 2008, 
Speakman and Selman 2011). Alternatively, it is possible, that since organismal 
senescence is asynchronous among traits (Nussey et al. 2013), mechanisms 
responsible for maintaining redox balance have negligible senescence in long-
lived species like the common gull, for whom there already is some support for 
this notion (paper I). 

GSH was the only marker that showed any associations with lifespan, with 
females having higher GSH levels also having greater mortality risk. Since 
GSH is often considered the main intracellular antioxidant (Galván and Alonso-
Alvarez 2008), one should expect that in accordance with the free radical theory 
of aging, the results would be opposite. However, elevated GSH levels might 
indicate a compensatory upregulation of antioxidant defences in response to a 
past oxidative insult. Indeed a study on greenfinches indicated, that induction of 
severe OS by administration of paraquat elevated the subjects’ GSH levels 
(Meitern et al. 2013). The results do provide limited support for OS relating to 
longevity. However, caution must be taken in interpreting the results, since only 
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one antioxidant form a single tissue showed any mortality related variation. To 
fully prove or dismiss OS as a determinant of aging and a shaper of life history, 
there is a need to encompass more definitive OS markers and tissue types, since 
oxidative damage in different tissues may not correlate (Yang et al. 2013). 
Hence there is a chance of oxidative damage in other tissues, some of which 
may be more vital for organismal functioning, than the one measured. Finally as 
discussed earlier, long-lived organisms could have “private” mechanisms 
enabling them to negate the effects of OS on senescence altogether. 

 
 

3.3. Senescence of ornamental traits  
in a long-lived species (III) 

Since Darwin (1871) first refined his views on sexual selection, the function of 
ornamental traits has been amongst the most thoroughly studied topics in 
behavioural ecology. According to the Zahavian handicap principle (Zahavi 
1975), those ornaments should be costly to the bearer and therefore directly 
linked to organismal fitness. However, there is little theoretical consensus under 
which conditions ornamental traits should correlate with fitness (Kokko 1997, 
Hoglund and Sheldon 1998, Getty 2006, Ercit and Gwynne 2015). Furthermore, 
not much is known about associations between colour-based signals and 
lifespan, a notable fitness component. Studies in short-lived bird species have 
indicated either positive (Hõrak and Männiste 2016), negative (Moore et al. 
2015) or stabilising (Gregoire et al. 2004) survival selection on ornaments. Even 
less is known about viability selection on ornamentation in long-lived 
monogamous bird species, for which lifespan is often the most important 
determinant of lifetime reproductive success (Rattiste 2004). Moreover, there is 
no consensus, on whether an individual should invest more into ornamentation 
with advancing age as suggested by classical life-history theory (Williams 
1966), or the investment into ornaments should depend upon an organisms 
current and future condition as predicted by the condition-based approach to 
life-history theory (McNamara et al. 2009). 

Wingtip patterns of several gull species are highly variable, age-dependent 
and sometimes sexually dimorphic (Coulson et al. 1982, Allaine and Lebreton 
1990) as expected from sexually selected traits (Andersson 1994). I intended to 
test on the common gull, whether the size of the white wing patches is sexually 
dimorphic, changes and covaries with age and predicts lifespan. I also tested, if 
those wing patches were costly to the bearer by determining if the size of the 
white wing patch correlated with wingtip abrasion. White wing patch area and 
black wingtip size (a utilitarian trait not expected to be under sexual selection) 
were measured from photographs from a sample of 446 birds caught in either 
1997 or 2007. 35 of the birds caught in 1997 were also in the 2007 sub-sample, 
allowing for a semi-longitudinal approach. Wingtip abrasion was assessed from 
the same photographs using a five-unit scale and pooling the assessments of 
four independent evaluators. 
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Females had smaller wing patches than males (t=–6.2, p<0.0001), this 
together with a relatively high variability (CV=0.18 in males and 0.23 in 
females) in the trait suggests that those patches are indeed sexually selected for 
(Andersson 1994). Size of the white wing patches was also individually highly 
repeatable (females, F18,19 =17.7, R= 0.89; males, F15,16 = 11.4, R =0.84) over 
the ten year period, indicating, that the ornament can reliably demonstrate long-
term fitness. Furthermore, since females with smaller white wing patches had 
more abraded wings (rs= –0.21, p=0.028), it also appears to be a Zahavian 
handicap, at least for females. That notion is further supported by the fact, that 
irrespective of sex, white wing patch size positively predicted survival for both 
sexes, while the absolute and relative size of black wing tips was negatively 
associated with survival. Since black wing-tip area also correlated negatively 
with white wing patch size, they may have evolved as reverse components of a 
singular trait. Most of the associations between ornaments and fitness were 
similar between the sexes, so it is feasible, that as a long-lived monogamous 
species, the common gull practises mutual mate choice. 

In a cross-sectional dataset white wing patch size correlated with age in a 
concave manner for both males and females. This finding is in accordance with 
previous studies finding a similar concave relationship between age and breeding 
success in the colony (Rattiste 2004, paper II), suggesting a diminishing 
investment into traits related to reproduction with advancing age. This is further 
supported by the fact that females measured twice over a ten-year period 
showed an individual decrease in wing patch size except for the birds first 
measured at a younger age. No such relationship was found in males. So the 
observed concave relationship could be caused either by a selective 
disappearance of senescent individuals with large wing patches as predicted by 
classical life-history theory or a within-individual decrease with age in 
accordance with the condition-based life-history theory, with the latter having 
more support. Altogether, the results indicate, that white wing patches in 
conjunction with black wing tips do serve as an ornament indicating Zahavian 
fitness in the common gull. Since the size of these ornaments is age-dependent, 
it seems that the common gull shows diminishing investment into reproduction, 
instead opting to maximize its remaining life expectancy. 

 
 

3.4. Uropygial gland size as an age-dependent  
quality indicator (IV) 

Studies of senescence patterns in the wild have mostly concentrated on traits 
most proximate to fitness (e.g. survival and fecundity). Although efforts to 
study senescence in other phenotypic traits (e.g. body mass, secondary sexual 
characters, parental investment) and relevant physiological processes (e.g. 
endocrine function, sarcopenia, oxidative stress, telomere length) are rapidly 
rising (Nussey et al. 2013), traits related to self-maintenance remain understudied 
in the context of aging.  
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Uropygial or preen gland is a holocrine gland, exclusive to birds, located in 
the integument the posterior free caudal vertebrae. It secretes an oily substance 
that has been hypothesised to have several nonexclusive functions including 
plumage maintenance (Giraudeau et al. 2010), water repellence (Moreno-Rueda 
2017) and defence against bacteria (Shawkey et al. 2003), ectoparasites 
(Moreno-Rueda 2010) and fungi (Jacob et al. 1997). Uropygial gland size has 
been shown to positively correlate with residual body mass and immune 
function and is therefore related to bird health (Moreno-Rueda 2010). Since 
preen oil also has water repellent properties, maintaining gland functioning 
would be especially crucial for a seabird such as the common gull. 

Given that preen oil has numerous functions, it is reasonable to assume that 
maintaining uropygial gland function would have major fitness benefits for an 
individual. However to my best knowledge, there are no studies investigating the 
senescence of uropygial gland as a mechanism of self-maintenance. I measured, 
in a cross-sectional manner, preen gland size, a trait closely related to preen gland 
functioning (Martin-Vivaldi et al. 2009), of male and female birds aged from 2 
to 28 years. The purpose of this study was to test, if there is an association 
between uropygial gland size and age, if it correlates with other condition-
dependant traits (the extent of wing tip abrasion and breeding onset) or feather 
ornaments and if any of those links are expressed in a sex-specific manner. 

As previously established in the studied population (Rattiste 2004, paper II, 
paper III), laying date and the size of white wing patches showed a concave 
relationship with bird age for both sexes. Uropygial gland increased with 
advancing age for both males and females. Since the study was conducted in a 
cross-sectional manner, the possibility of selective disappearance of birds with 
smaller glands cannot be ruled out. Nevertheless the observed pattern is 
consistent with the idea of common gulls investing more into somatic 
maintenance than into reproduction in old age, regardless of their sex. 

The study failed to detect any sex-specific relationships between uropygial 
gland size, wing ornamentation, age, and laying date. This is in contrast with 
numerous examples in literature indicating differences in ageing rates between 
the sexes and asynchrony among phenotypic traits within sexes in the way they 
change with age in later life (reviewed by Nussey et al., 2013). As well as 
previous studies revealing sex-specific temporal patterns in preen gland size, 
with females reaching a maximum gland size later in the breeding season than 
males (Golüke and Caspers, 2017, but see also Pap et al. 2010 for the contrary). 
An explanation for this lack of sex-specific aging patterns in the species could 
be that although natural selection usually favours a ‘live fast, die young’ 
strategy for males, numerous exceptions to this rule still exist (Bonduriansky et 
al. 2008). One of those exceptions could be the common gull, for whom mutual 
mate choice exists. 

Altogether these results suggest, that common gulls with larger glands will 
reach an older age and start breeding earlier in the season, while reproductive 
senescence is still evident in older age classes. This supports previous findings 
in the colony showing an increased investment into soma and a decreased 
reproductive investment in older age classes (paper I, paper II, paper III). 
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3.5. Age-specific maternal investment  
in reproduction through egg quality (V) 

From previous studies of the population it has become apparent, that as a long-
lived species, the common gull tends to prioritize self-maintenance (paper I, 
paper II, paper IV) over traits associated to reproduction (Rattiste 2004, paper 
III, paper IV). This notion is in accordance with life-history theory, predicting, 
that reproductive investment in a given event correlates negatively with the 
expected lifespan of an individual (Williams 1966), further exemplified by 
empirical evidence from long-lived species showing larger variation in 
reproductive investment, than adult survival (Hamel et al. 2010, Griesser et al. 
2017). Although a decline in reproductive success (Rattiste 2004) and -effort 
(Griesser et al. 2017) with age has been well-documented in long-lived species, 
it is unclear, how maternal allocation of resources to offspring in the embryonal 
stage is affected by senescence. Long-lived birds are the perfect organisms to 
study this problem, for their reproductive senescence has been proven to be 
more rapid than somatic senescence (papers I–III, Holmes and Ottinger 2003) 
and their embryo development takes place in a sealed system, so reproductive 
investment in that stage can be easily measured. 

To test age-specific variation in maternal resource allocation I measured in a 
cross-sectional manner yolk testosterone, carotenoid and vitamin A and E levels 
of 30 mothers aged 4–23 years. Yolk testosterone content has been shown to 
positively correlate with offspring growth rate (Pilz et al. 2004) although that 
positive effect is counterbalanced by a reduction in immune response (Groothuis 
et al. 2005). Carotenoids are a diverse group of fat-soluble pigments that 
influence antioxidant status and immunity (Johnson-Dahl et al. 2017) and have 
also been shown to positively predict chick growth (Saino et al. 2008). The 
methodology used for carotenoid measurements enabled distinction between 
different types of carotenoids, so a potential reduction in one carotenoid type 
was not eclipsed by compensatory upregulation of other carotenoids. 
Carotenoids and testosterone are suggested to be part of a compensatory 
mechanism, where the rise of OS by testosterone is neutralised by carotenoids 
(Giraudeau et al. 2017). Vitamins A and E have also been shown to promote 
offspring growth across species (Deeming and Pike 2013). It is reasonable to 
expect, that yolk antioxidant and androgen levels should correlate with maternal 
age in a concave manner, with middle-aged birds investing the most into 
offspring, in accordance with previous studies of the colony (Rattiste 2004, 
paper II). 

From the eight carotenoids identified in the study, only one, lutein, was 
affected by maternal age, with eggs from middle-aged mothers having higher 
lutein content, than the eggs of young or old mothers. This is in line with the 
theoretical framework (Williams 1966) and various studies, including our own 
study system, showing a reduced reproductive investment with advancing age 
(Rattiste 2004, paper II, Lewis et al. 2006, Elliott et al. 2014). Yolk vitamin A 
and E levels showed a similar, though marginally nonsignificant, concave 
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relationship with age. None of the other dietary antioxidants nor yolk testosterone 
however correlated with age. 

For lutein deposition into egg yolks to be age-dependent, lutein must have an 
important function in adults and traded off against deposition to the yolk and/or 
be differently available for birds of different ages. Those two hypotheses are not 
mutually exclusive and provide a possible link between maternal age and chick 
quality. Lutein has been shown to be important for both human (Eisenhauer et 
al. 2017) and possibly avian retinal health (Toomey et al. 2010). Furthermore, 
lutein is also positively associated with chick growth (Saino et al. 2008) and 
survival (Romano et al. 2008) in yellow-legged gulls. However for that species 
and some other gull species, lutein is also the most abundant carotenoid in egg 
yolk (Blount et al. 2002, Saino et al. 2008), which is not the case for the 
common gull. Canthaxanthin was the most abundant yolk carotenoid in our 
study. It is easily absorbed from the diet and effectively deposited into eggs 
(Surai 2012), while other carotenoid types, like lutein, might be more limiting. 
So the observed difference in carotenoid and vitamin concentrations between 
age classes might be due to greater foraging ability, more efficient processing or 
different allocation of carotenoids and vitamins in middle-aged birds. 

Yolk testosterone content did not show any covariation with age. It has been 
previously suggested, that yolk testosterone and antioxidants are co-regulated to 
limit the potential effect of prenatal testosterone on OS (Giraudeau and Ducatez 
2016). Therefore, it is intriguing to hypothesise, that lower reproductive success 
of younger and older birds arises from their inability to combat a testosterone-
mediated rise in OS in their eggs with sufficient carotenoid deposition. 

In conclusion, as predicted by the life-history theory (McNamara et al. 2009) 
there is an age-associated reduction in maternal investment into embryos in the 
common gull, expressed through differences in yolk lutein content and therefore 
potentially undetectable by only measuring overall carotenoid content. 
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CONCLUSIONS 

Neither erythrocyte telomere length nor skin pentosidine concentration 
correlated with age (paper I) nor did any of the multitude of oxidative state and 
nutrition markers show a senescent decline (paper II), while uropygial gland, 
an important defence mechanism against ectoparasites, fungi and feather 
degrading bacteria, actually increased with age in a cross sectional sample 
(paper IV). Hence, it is probable that as a long-lived bird species, the common 
gull has “private” mechanisms of combating physiological deterioration with 
age, as previously suggested (Holmes and Martin 2009). Determining these 
mechanisms could be a fruitful path for future studies. The main conclusions of 
the thesis are visualised on Figure 2. 

Figure 2. The main conclusions of the thesis visualised. Black arrow sizes indicate the 
amount of resource allocated for the function. Grey bubbles indicate research papers 
from the thesis supporting such a resource allocation, +/– in the bubbles indicate either a 
positive or a negative common resource allocation with advancing age. (Photo: Lauri 
Saks) 

 
Somewhat paradoxically, there was a clear senescent pattern in both ornamental 
traits (paper III) and investment into progeny (paper V). Classical life-history 
theory predicts that as an organism ages, its residual reproductive value 
decreases, prompting in many cases an increase in reproductive investment with 
advancing age. This pattern could easily obscure the observed senescence in 
those reproductive traits. Since reproductive senescence was clear-cut however, 
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it offers support for the condition-dependent life-history theory (McNamara et al. 
2009), suggesting that animals (especially long-lived species) regulate their 
reproductive investment in order to optimise their condition and with that, 
maximise their chances of surviving until next reproduction. 

Altogether, the conducted studies indicated, that there is indeed a senescent 
decline in reproductive traits in the common gull (paper III, paper V), while 
senescence in physiological markers associated with maintaining somatic 
condition could not be detected (paper I, paper II, paper IV). The results are 
in line with life-history theory, predicting an increased investment into somatic 
maintenance compared to reproduction in long-lived species with low extrinsic 
mortality rates (Williams 1966). Another way to interpret the results would be 
through the cost of flying. Flying is a very costly physiological function 
(Wikelski et al. 2003b), and since any reduction in flying ability could be 
potentially fatal,there is a reason to expect that even short-lived bird species 
have a more pronounced reproductive than somatic senescence. Indeed, some of 
them even experience a post-reproductive lifespan (reviewed by Holmes et al. 
2003, but see also Sanz and Moreno 2000 for the contrary). For instance, the 
barn swallow (Hirundo rustica), a short-lived species, showed a concave pattern 
in reproductive success (Balbontin et al. 2012), consistent with reproductive 
aging (Rattiste 2004). Furthermore, early reproduction had no effect on that 
species lifespan (Balbontin and Moller 2015), suggesting that even short-lived 
birds do not trade life-span for increased reproductive success.  

All in all, birds and especially seabirds are intriguing model organisms for 
unravelling the trade-offs that shape senescence in natural populations. However 
the investigated senescent patterns and underlying trade-offs cannot be considered 
conclusive. Future studies are needed to investigate the effect senescence has on 
every possible facet of the common gull’s physiology and reproduction. 
Possible future studies should include aspects like immunosenescence, 
longitudinal studies of telomere dynamics, the existence of possible anti-cancer 
mechanisms, investment into antioxidant protection on the level of gene 
transcription and age dependent differences in offspring quality. Only then can 
we fully understand the diverse trade-offs shaping that organism’s senescence.  
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SUMMARY 

There is a persistent fallacy in biology, that natural populations do not senesce. 
Furthermore, aging research has traditionally been focused on short-lived 
laboratory organisms, which have different life-histories and underlying 
physiological mechanisms, than long-lived ones. Although more and more 
aging research is being conducted on long-lived natural animal populations, 
there is still a lack of comprehensive studies analysing both physiological and 
reproductive senescence in the same system in order to reveal the potential 
trade-offs shaping senescence in long-lived species. The present thesis aimed to 
assess the different aspects of senescence in a long-lived seabird and to reveal 
the potential trade-offs leading to senescence in a long-lived wild bird species. 

Firstly, in order to determine if there is physiological senescence in the study 
system, I aimed to validate two commonly used physiological aging markers 
(erythrocyte telomere length and skin pentosidine concentration) on male 
common gulls of known ages. Since both of those markers are also potentially 
indicative of oxidative damage, the same setup allowed to test if oxidative stress 
(OS) affected senescence. Since neither erythrocyte telomere length nor skin 
pentosidine concentration correlated with chronological age of the birds, it 
would seem, that physiological senescence might be negligible in the study 
system. Of course, since it was a cross-sectional study, the senescent effect might 
have been eclipsed by the cohort effect. Since skin pentosidine concentration 
and erythrocyte telomere length also did not correlate with each other, it is 
unlikely, that there is a common physiological factor, such as OS, affecting 
senescence rates in the population. 

Aging has long been functionally linked to OS. However most early studies 
suffered from methodological difficulties. I aimed to investigate if OS caused 
senescence and if older individuals were more prone to oxidative damage, 
measuring multiple markers of oxidative damage, antioxidant defence and 
nutritional state in a three year period. Since none of the measured markers 
correlated with age, it would seem that aging does not make an organism more 
prone to OS, at least in the case of the common gull. It is also possible, that the 
mechanisms responsible for maintaining redox balance in long-lived species 
like the common gull do not senesce. This is further supported by the fact, that 
in the same system neither erythrocyte telomere length nor skin pentosidine 
concentration were affected by age. 

Ornamental traits are among the most thoroughly studied subjects in animal 
ecology. However, there is no consensus on how they should indicate individual 
quality as an individual senesces. To address that problem, I measured white 
wingtip patterns of both male and female common gulls and investigated, if 
they were sexually dimorphic and prone to senescence. As the size of the white 
wing patches showed a concave relationship with age for both male and female 
gulls, with middle-aged birds having the largest patches, it would seem that 
common gulls invest less into reproduction with advancing age. 
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Aging research in the wild has traditionally been focused on traits most 
proximate to fitness, like survival or fecundity, while research of aging in self-
maintenance mechanisms is lagging behind. I measured in a cross-sectional 
manner preen glands of differently aged male and female common gulls to see 
if this trait, closely related to self-maintenance was prone to senescence and if 
these patterns differed between sexes. As expected from previous results from 
the same study system, there was no senescent decline in uropygial gland size, a 
trait associated with somatic maintenance, on the contrary, preen gland seemed 
to increase with age in both sexes. This offers further support for the notion that 
common gulls as long-lived species invest more into soma with advancing age.  

To further investigate, how reproductive effort depended upon age, I measured 
yolk testosterone and carotenoid content from eggs of differently aged mothers. 
Both testosterone and carotenoids have previously been shown to positively 
affect offspring quality. From the measured carotenoids lutein showed a concave 
relationship with age, suggesting a reduced reproductive effort with advancing 
age. Yolk testosterone content was not affected by maternal age. Since 
testosterone could be immunosuppressive and raise OS levels, senescent 
mothers could jeopardize offspring quality by limiting yolk carotenoids, known 
in vitro antioxidants.  

In conclusion it seems that as a long-lived species, the common gull invests 
more into somatic maintenance than into reproductive effort, as senescence 
progresses. This conclusion is supported by life-history theory, suggesting 
increased somatic investment from species with low extrinsic mortality such as 
seabirds. However to conclusively prove the existence of the perceived pattern, 
every aspect of that organism’s senescence should be investigated with future 
studies concentrating on aspects like immunosenescence, longitudinal studies of 
telomere dynamics, the existence of possible anti-cancer mechanisms, 
investment into antioxidant protection on the level of gene transcription and age 
dependent differences in offspring quality.  
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SUMMARY IN ESTONIAN 

Pikaealise merelinnu vananemise mitmetahulisus  

Bioloogias on levinud väärarusaam, et looduslikes populatsioonides vananemist 
ei toimu. Seepärast on vananemise bioloogilised uuringud olnud traditsiooni-
liselt keskendunud lühiealistele laboriorganismidele. Sellistel mudelorga-
nismidel on aga pikaealistest liikidest erinevad elukäigud ja neid elukäike 
iseloomustavad füsioloogilised lõivsuhted. Kuigi aina enam on hakatud läbi 
viima ka uuringuid pikaealistel looduslikel loomaasurkondadel, on siiski vähe 
uuringuid, mis käsitleksid nii füsioloogilist kui reproduktiivset vananemist 
samas uurimissüsteemis, avaldamaks potentsiaalseid lõivsuhteid mis pikaealiste 
liikide vananemise mustreid kujundab. Käesoleva doktoritöö eesmärgiks oli 
hinnata pikaealise merelinnu – kalakajaka (Larus canus) vananemise erinevaid 
aspekte ning avastada potentsiaalseid lõivsuhteid, mis pikaealiste liikide 
vananemist vormivad. 

Esiteks mõõtsin ma teada oleva vanusega isastel kalakajakatel kahte 
laialdaselt kasutatavat füsioloogilist vananemismarkerit (erütrotsüütide telo-
meeripikkust ja naha pentosidiini sisaldust), et teada saada, kas uuritavas asur-
konnas esineb füsioloogilist vananemist. Kuna mõlemad markeritest on ka 
tundlikud oksüdatiivsele stressile (OS), võimaldas see uurimus ka kindlaks teha, 
kas vananemine on oksüdatiive stressiga seotud. Kuna ei erütrotsüütide 
telomeeripikkus ega ka naha pentosidiini sisaldus ei korreleerunud vanusega, 
võib järeldada, et käesolevas uurimissüsteemis füsioloogilist vananemist tõe-
näoliselt ei eksisteeri. Kuigi, kuna tegemist oli läbilõikelise uuringuga, võis 
vanuse mõju markeritele olla varjatud ka kohordi efekti poolt. Samas, kuna 
naha pentosidiini kontsentratsioon ei korreleerunud ka erütrotsüütide telomeeri-
pikkusega, on ebatõenäoline, et need markerid on mõjutatud ühise füsioloogilise 
faktori, nagu oksüdatiivse stressi, poolt. 

Biogerontoloogilistes uurimistöödes on vananemist traditsiooniliselt seos-
tatud oksüdatiivse stressiga (OS). Enamus uuringuid selles vallas on aga 
kannatanud metodoloogiliste raskuste all. Püüdsin selgitada, kas vananemine on 
seotud OS-iga ning, kas vanemad indiviidid on oksüdatiivsete kahjustuste 
suhtes haavatavamad, mõõtes kolmel järjestikkusel aastal mitmeid oksüda-
tiivsete kahjustuste, antioksüdantkaitse ja toitumusliku seisundi markereid. 
Kuna ükski mõõdetud markeritest ei korreleerunud lindude kronoloogilise 
vanusega, näib, et vananemine ei muuda kalakajakaid OS-ile vastuvõtlikumaks. 
On ka võimalik, et kalakajakataoliste pikaealiste liikide redokstasakaalu eest 
vastutavad mehhanismid ei vanane. Seda järeldust toetab ka seik, et eelnevas 
uuringus ei olnud sama liigi erütrotsüütide telomeeripikkus ning naha pento-
sidiini sisaldus samuti linnu vanusega seotud. 

Sulestikuornamendid on ühed enim uuritud nähtustest loomaökoloogias. 
Samas pole üksmeelt, kuidas sellised ornamendid peaksid indiviidi vananedes 
tema kvaliteediga seotud olema. Selle probleemi uurimiseks mõõtsin ma nii 
emaste kui isaste kalakajakate tiivalaike ning vaatasin, kuidas nende suurus 
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linnu soost ja vanusest sõltub. Nii emaste kui isaste kalakajakate puhul oli 
märgatav mittelineaarne seos tiivalaigu suuruse ning linnu vanuse vahel, nii, et 
keskealistel lindudel olid suurimad tiivalaigud. Seega tundub, et kalakajakad 
investeerivad vanuse kasvades vähem ornamentidesse. 

Vananemise uuringud looduslikes asurkondades on tavaliselt keskendunud 
otseselt kohasusega seotud tunnustele nagu elumus või sigimine ning teeni-
matult vähe on pööratud tähelepanu enesehooldusmehhanismide vananemisele. 
Vähe tähelepanu on pälvinud ka soolised erinevused selliste tunnuste vanane-
mises. Mõõtsin läbilõikeliselt erinevas vanuses emaste ja isaste kalakajakate 
päranipunääret, tunnust, mis on seotud enesehooldusega, ning uurisin, kas see 
tunnus vananeb ning kas see vananemine sooti erineb. Kooskõlas eelnevate 
sama asurkonna uuringutega ei vähenenud päranipunäärme suurus vanuse 
kasvades, vaid kasvas mõlema soo puhul vanusega lineaarselt. See pakub 
kinnitust hüpoteesile, et pikaealise liigina investeerib kalakajakas vanuse 
kasvades rohkem ressursse tervisesäilitamisfunktsioonide toetamisse.     

Mõistmaks, kuidas sigimispingutus vanusest sõltub, mõõtsin ma erinevates 
vanustes emaste lindude munarebu testosterooni ja karotenoidide tasemeid. Nii 
testosterooni kui karotenoidide puhul on näidatud nende positiivset mõju 
linnupoegade kvaliteedile, seega peaksid individuaalsed erinevused nende 
ainete rebusse paigutamises peegeldama erinevusi sigimispingutuses. Mõõdetud 
karotenoididest vähenes vanusega luteiini tase munades, mis annab tunnistust 
vanusega vähenenud sigimispingutusest ja/või võimest vastavaid karotenoide 
munadesse deponeerida. Rebu testosterooni tase aga ei sõltunud vanusest. Kuna 
testosteroon võib olla immunnsupressiivne ning tõsta ka oksüdatiivse stressi 
taset ning kuna karotenoididel on in vitro antioksüdatiivseid omadusi, on 
võimalik, et vanemad emad võivad rebu karotenoide vähendades oma järglased 
oksüdatiivsele stressile haavatavamaks muuta.      

Kokkuvõttes tundub, et kalakajakas investeerib pikaealise liigina vanuse 
kasvades rohkem keha eest hoolitsemisesse kui sigimispingutusse. Selline 
järeldus on ka kooskõlas elukäigu teooriaga, mis soosib kalakajakataolisel pika-
ealistel vähese välise suremusega liikidel ressursside eelistatud investeerimist 
elus püsimisse (võrreldes sigimisinvesteeringutega igal konkreetsel 
sigimiskorral). Vaadeldud lõivsuhete lõplikuks tõestamiseks tuleb aga uurida 
kalakajaka vananemise igat aspekti. Tulevased uurimused võiksid seega 
keskenduda sellistele vananemise tahkudele nagu immuunsüsteemi vananemine, 
telomeeridünaamika, vähivastaste mehhanismide olemasolu ja vananemine, 
antioksüdantkaitse geenitraskriptsiooni tasemel ning vanusest tingitud erine-
vused järglaste kvaliteedis.  
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