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Geochemistry, microstructure and origin of recent phosphorites on the Namibian 

margin 

Phosphorites are crucial components of the global phosphorous cycle and a major source 

of fertilizers. Their formation is poorly understood, but the role of microbes has been strongly 

suggested. To determine microbial influence, in this thesis the nucleation and primary growth 

of phosphate minerals in natural phosphorites was studied using XRD, ICP-MS and SEM 

analyses. From recent phosphorite sediments on the Namibian shelf authigenic phosphate 

pellets were extracted. The pellets contain conspicuous phosphatic microrods, which co-occur 

with film-like organic substances. The structures superficially resemble phosphatized 

microbes, but there are frequent cases of the rods intersecting each other. Furthermore, there 

exists a continuum of forms from rods to dumbbells to spherical aggregates. A very similar 

succession of phosphate microstructures, fluoroapatite-gelatine nanocomposites, have 

previously been reported from abiological laboratory experiments. The microstructures do not 

represent microbial casts, but abiological precipitates, which urges caution when interpreting 

similar structures in other phosphorites. The bacterially produced organic film possibly acts as 

the major nucleation template for phosphate minerals and thus supports the role of microbes 

in the formation of phosphorites. 

Phosphogenesis, apatite nucleation. P420 Petrology, mineralogy, geochemistry 

 

Retsentsete Namiibia šelfimere fosforiitide geokeemia, mikrostruktuur ja päritolu 

Fosforiidid on olulised komponendid maailma fosforiringes ja kriitilise tähtsusega 

ressursid väetiste tootmisel. Nende tekkemehhanismi mõistetakse veel halvasti, aga hiljutised 

uuringud on  rõhutanud mikroobide olulist rolli nende moodustumisel. Mikroobse mõju 

selgitamiseks uuriti käesolevas töös fosfaadi nukleerumist ja esmast kasvu Namiibia šelfimere 

tänapäevastes fosforiidisetetes. Autigeenne fosforiit esineb nendes setendites fosfaatsete 

teradena millede kohati poorses sisestruktuuris leidub orgaanilise matriitsiga seotult 

hulgaliselt fosfaatseid mikropulgakesi. Visuaalselt meenutavad need moodustised 

fosfatiseerunud mikroobe, aga erinevalt mikroobsetest struktuuridest on täheldatavad osakeste 

lõikumine ja läbikasvulised agregaatmoodustised. Samuti moodustavad pulgakesed 

morfoloogiliselt pideva üleminekulise rea pulkadest hantlikujulisteks ja sfäärilisteks 

vormideks. Sarnast morfoloogilist arengurida on täheldatud ka fosfaadi setitamise 

laborieksperimentides, nn. fluoroapatiidi-gelatiini nanokomposiitide puhul. Uuritud fosfaatsed 

pulgakesed on seega abioloogilised, mitte mikroobsed fossiilid ja seetõttu tuleks sarnaste 

struktuuride tõlgendamisega edaspidi ettevaatlik olla. Struktuuridega seotud orgaaniline 

substants on tõenäoliselt bakteriaalse metabolismi kõrvalprodukt ning mängib suurt rolli 

apatiidi nukleerumisel, mis viitab mikroobide suurele rollile fosforiitide tekke esmaetappidel. 

Fosfogenees, apatiidi nukleerumine. P420 Petroloogia, mineroloogia, geokeemia. 
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Introduction 

Phosphorous, an essential energy carrier and building block of life, is the primary 

limiting nutrient of marine biological productivity in a geological time scale (Tyrrell, 1999). 

Consequently, the phosphorus cycle is intimately coupled to the cycles of carbon and other 

biologically significant elements, having a substantial influence on atmospheric levels of 

oxygen and carbon dioxide as well as on the history of life (e.g. Cárdenas and Harries, 2010; 

Martin, 1996; Papineau, 2010; Papineau et al., 2013; Planavsky et al., 2010; Pufahl and Hiatt, 

2012). Phosphorites – rocks that contain >9% of P2O5 (Filippelli, 2011) – constitute a central 

part of the phosphorous cycle, being its most important long-term sink (Delaney, 1998). 

Phosphorites are also a critical non-renewable resource for agriculture, used for producing 

phosphatic fertilizer (Cordell et al., 2009), and the worldwide drive towards a more 

sustainable P management is wholly dependent on a comprehensive understanding of its 

cycling (Crosby and Bailey, 2012). 

Despite their great scientific and economic importance, the origins of phosphorites are 

to a large degree still uncertain. The necessary processes forming phosphorites involve the 

whole marine P cycle starting from P weathering and release on continents, transport to 

oceans, incorporation/take up into biomass, accumulation/deposition with organic-rich 

sediments, release from decaying organic matter and pre-concentration, and finally, 

precipitation of a stable Ca-phosphate phase – apatite (Filippelli, 2011; Föllmi, 1996; 

Ruttenberg, 2014). 

Much of scientific understanding of the formation of phosphorites and of the P cycle 

itself has undergone a significant revision over the past decades (Filippelli, 2011). Long-

standing debates involve, for example, the relative importance of Fe/Mn hydroxides and 

organic matter in the flux of P towards sediments; the nature of processes which remobilize 

this deposited P in sediments; the spatial and temporal distribution of P burial episodes and 

the reasons for such episodic-temporal distribution of phosphorites. Perhaps the least well-

known are the processes and substrates that are involved in the transition from pore water P 

enrichment to the beginning of the precipitation of apatite minerals – essentially the very first 

stages of phosphogenesis (Crosby and Bailey, 2012), which is what this thesis is specifically 

interested in. 
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Recent studies have highlighted the role of microbial processes mediating phosphorous-

cycling by creating sinks for marine phosphorous and eventually phosphorite formation 

(Arning et al., 2009, 2008; Brock and Schulz-Vogt, 2011; Goldhammer et al., 2010; Schulz, 

1999; Schulz and Schulz, 2005). It is of utmost importance that these studies have revealed in 

marine sediments several genera of sulfur-oxidizing bacteria that are capable of storing 

intracellular polyphosphate reserves (e.g. Beggiatoa, Thiomargarita). These microorganisms 

act like peculiar “phosphate pumps” capable storing intracellularly polyphosphate under oxic 

conditions, then hydrolyzing the polyphosphate and releasing phosphate under anoxic 

conditions (Brock and Schulz-Vogt, 2011; Schulz and Schulz, 2005). This means, that the 

bacterial phosphate “pumping” can lead to supersaturation of the pore water with respect to 

apatite and eventually its precipitation (Arning et al., 2009; Goldhammer et al., 2010). 

However, the mechanisms how apatite becomes precipitated and/or if and to what extent the 

precipitation itself, apart from creating P-supersaturation, is bacterially mediated or 

influenced in such processes, are unknown. 

In modern oceans a major sink of phosphorous and the formation of phosphorites occurs 

at the continental margins influenced by upwelling ocean currents which carry P-rich deep 

ocean water that stimulates primary production in surface water leading, thus, to accumulation 

of organic-rich sediments and organically bound phosphorous. Such hot-spots of modern 

phosphorite deposition are the Namibian and the Peruvian shelves (Föllmi, 1996). The 

phosphorites of the Namibian and southern to eastern South African shelves are known for 

more than 100 years, and their formation and economic potential has attracted attention since 

then (Coles et al., 2002). Phosphorite formation at the Namibian shelf is a complex 

phenomenon involving changes in sea level that has resulted in the reworking, transport and 

concentration of earlier phosphorites (Compton and Bergh, 2016), and presumably 

microbially influenced (direct) phosphate precipitation (Schulz and Schulz, 2005). It was on 

the Namibian shelf where giant sulfur-oxidizing bacteria possibly controlling the 

phosphogenesis in these sediments were first discovered (Schulz, 1999). 

The central question motivating this study is whether or not phosphate precipitation is 

controlled or influenced by microbial/biological structures. I focus on studying the micro- and 

nanofabric of modern phosphorites from the shelf sediments off the coast of Namibia. The 

overall goal is to determine any present and preserved microbial structures and their relation 

to the overall fabric of phosphorites in Namibian shelf.  
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P-cycle and phosphogenesis 

The whole marine P cycle is very complex and constitutes several steps (Filippelli, 

2011; Föllmi, 1996; Ruttenberg, 2014): 

(1) P is weathered from rocks on the continents and is carried to the oceans mainly via 

riverine transport, and to a lesser degree by wind, in various forms, like dissolved inorganic or 

organic P, included in particulate organic matter, absorbed onto Fe-mineral particles or as 

detrital phosphate minerals (Compton et al., 2000); 

(2) Having reached the ocean, most of the P is dispersed within sediments, while 

roughly 30% of it, called the reactive phosphorous phase, becomes rapidly incorporated in 

planktonic biomass. As a consequence of this, photic zone phosphate concentration in 

seawater is generally very low (Compton et al., 2000; Filippelli, 2011); 

(3) P is carried from the photic zone towards the sediment via sorption or incorporation 

onto/into particulate forms, such as dead organic matter, biominerals, continentally or 

hydrothermally derived Fe/Mn-oxide particles, or oxide coatings on mineral surfaces, of 

which particulate organic matter makes up the majority (Delaney, 1998; Krajewski et al., 

1994). As far as the delivery of reactive P to the sea floor far exceeds that delivered into 

oceans from continental weathering, the vast majority of P is not incorporated into sediments, 

but is rather regenerated into dissolved form once it has reached the sea floor (Delaney, 1998; 

Föllmi, 1996). However, in almost every marine environment, a fraction is still incorporated 

in the sediment – estimated to be roughly 5% of the delivered P (Föllmi, 1996). 

(4) Several processes contribute to the release of dissolved phosphate form all of these 

phases during sinking or during early diagenesis in the topmost sediments, meaning that 

phosphate concentrations in bottom water and in sediment pore water are substantially higher 

than in surface waters (Filippelli, 2011; Krajewski et al., 1994); 

(5) In the majority of the world’s ocean bottom environments the P concentrations are 

high enough to allow for the precipitation of authigenic phosphate phases – a process known 

as phosphogenesis – though the concentration can be largely varying depending on the ratio 

between terrigenous input and sinking organic matter flux (Ruttenberg and Berner, 1993; 

Delaney, 1998). Areas of low terrigenous input and high biomass production can show a 

substantially higher concentration of authigenic phosphatic matter, but typically these 
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concentrations are still not enough to be classified as phosphorites (Filippelli, 2011; 

Ruttenberg, 2014); 

(6) The final step in the transformation of P-rich sediments into true phosphorites 

involves multi-stage sedimentological processes, such as winnowing and reworking, driven 

either by current activity or sea-level changes (Baturin, 1971; Filippelli, 2011; Föllmi, 1996). 

Episodes of these sedimentological processes can alternate with phosphate precipitation in 

what are known as “Baturin cycles” (Föllmi, 1996). 

The most common phosphate mineral is the Ca-containing apatite, but due to the high 

tolerance of apatite minerals for elemental and molecular substitutions, it is more properly 

referred to as a large family of minerals (Omelon et al., 2013). Authigenic apatite is 

commonly precipitated as carbonate fluoroapatite (CFA), which during diagenesis starts to 

lose carbonate and transforms into fluoride-rich CFA or francolite that is the most common 

form of apatite in ancient phosphorites (Jarvis et al., 1994; Ruttenberg, 2014). 

Apatite precipitation in the natural environment depends on several physical/chemical 

parameters like pH, temperature and redox potential, but there is no consensus on the specific 

mechanisms (Ruttenberg, 2014). Much less ambiguous is the effect of supersaturation. At a 

lower supersaturation state, apatite can nucleate only in a heterogeneous manner, e.g. making 

use of a compatible nucleation surface, while at higher values, homogeneous or spontaneous 

nucleation becomes possible. Still, as a general rule, homogeneous nucleation is kinetically 

less favored due to a significantly higher activation energy, meaning that nucleation on a 

preexisting surface is more common in nature (Omelon et al., 2013). Direct apatite 

precipitation from solution is, however, a very slow process due to its high interfacial free 

energy, which makes its role in producing phosphorite deposits of an economic value 

questionable (Ruttenberg and Berner, 1993). At very high concentrations (∑PO4 = 400–600 

μM), a much more effective pathway becomes kinetically possible. It involves the 

precipitation of different metastable Ca-phosphate phases, such as struvite, octacalcium 

phosphate or amorphous calcium(-magnesium) phosphate as precursor phases, which later 

serve as a template for apatite formation or convert directly into it (Krajewski et al., 1994; van 

Cappellen and Berner, 1991). Geochemical signals of such transformations have been 

previously found in modern phosphorites, such as those off the coast of Peru (Froelich et al., 

1988; Krajewski et al., 1994). 
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High supersaturations are also deemed necessary for the rapid nucleation events that 

could produce the high concentrations of stable nuclei in many recent and ancient 

phosphorites – for example Lamboy (1990a) estimated the nucleation density (number of 

individual apatite particles) in modern phosphorites to be as high as 109 cm-3. Local 

nucleation events would additionally explain the occurrence of modern phosphorites as 

discrete crusts, nodules or pellets (Föllmi, 1996; Krajewski et al., 1994). 

The concentration of dissolved P in modern bottom seawater is on average between 1.5 

and 2.5 μM (Filippelli, 2011; Omelon et al., 2013). Nucleation of apatite from such a solution 

is expected and observed taking place in a wide variety of marine environments (Föllmi, 

1996). Diffuse phosphate phases appear in-deep ocean sediments and have been implicated as 

a major sink in the P cycle, when taking account the geographical extent of such 

environments (Delaney, 1998; Filippelli and Delaney, 1996). Estuaries and continental 

margins have a significantly higher iron and organic matter flux (Krajewski et al., 1994) and 

the shallower water column leaves fewer opportunities for phosphate-associated particulate 

matter to be degraded (Krajewski et al., 1994). These factors are responsible for a much 

higher phosphate concentration and, thus, more intense P burial (Delaney, 1998; Reimers et 

al., 1996; Ruttenberg and Berner, 1993). Nevertheless, in both environments, authigenic 

phosphate is too scattered and its formation process is too slow to produce economic deposits 

(Föllmi, 1996). 

The main areas of importance in phosphorite formation are the major upwelling systems 

on continental margins. This is due to their outsized role in biomass production and thus in the 

flux of sinking organic matter to the sediments. Indeed, the great majority of modern 

phosphorites are forming in regions of upwelling (Föllmi, 1996), such as on the Namibian 

(Baturin, 2000; Baturin and Bezrukov, 1979; Compton and Bergh, 2016; Summerhayes et al., 

1973), Chilean and Peruvian (Burnett, 1977; Burnett et al., 2000; Veeh et al., 1973), Mexican 

(Jahnke et al., 1983; Schuffert et al., 1998), and East Australian (O’Brien and Heggie, 1988; 

O’Brien and Veeh, 1980) shelves and in the Arabian Sea (Schenau et al., 2000). In these 

environments, P supersaturation of a high degree have been shown to occur in the topmost 

cm-s of sediment pore water. Due to the high flux of easily degradable organic matter, the 

oxygen levels in the overlying bottom waters are very low, which means that the redoxcline – 

the interface between oxic and anoxic environments – lies very close to the sediment-water 

interface, and all redox-dependent reactions of phosphate release must take place in a very 
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shallow zone (Froelich et al., 1988; Goldhammer et al., 2010; Holmkvist et al., 2010; Schulz 

and Schulz, 2005). Though the phosphate content in those pore waters is generally still lower 

than what is needed for the formation of apatite precursors, sufficient concentrations might be 

achieved periodically. The quick precipitation of these phases might also lead to the rapid 

depletion of porewater phosphate and could explain why higher values are rare (Krajewski et 

al., 1994). More interestingly, even when below the level needed for the precipitation of 

precursors, the recorded concentrations of dissolved phosphate in some of these environments 

cannot be explained simply by decomposition of sedimentary organic matter (Froelich et al., 

1988; Krajewski et al., 1994). This has led many to turn towards more explicitly biogenic 

solutions to the problem of the intensive phosphogenesis needed for the production of 

phosphorites. 

Microbial influences on phosphorite formation 

Microbially mediated reactions have been shown to be involved in most steps of the 

formation of phosphorites (Crosby and Bailey, 2012). Chemical weathering of P-bearing 

rocks, which produces most of the reactive P flux into oceans, is carried out with the help of 

microbial processes (Compton et al., 2000). Microbes have also long been known to play an 

integral part in regulating the rate at which dissolved phosphate is released from reactive 

sedimentary P reservoirs to pore waters (Föllmi, 1996; Krajewski et al., 1994). Different 

heterotrophic microbial mechanisms are involved in the degradation of particulate organic 

matter in the sediments (Arning et al., 2009). P-binding Fe/Mn phases are dissolved once 

exposed to the kind of reduced conditions that allow for bacterial dissimilatory iron reduction 

(Ruttenberg and Berner, 1993). Aerobic microbes also play a role in the dissolution of 

phosphatic skeletal remains (Smith et al., 1977). 

In the late 1980s and 1990s, however, researchers began to speculate on the importance 

to phosphogenesis of those sediment microbial communities, which have the ability to uptake 

and release phosphate depending on the prevailing redox state and thus significantly influence 

the geochemical potential of their environment (Föllmi, 1996; Gächter et al., 1988; Krajewski 

et al., 1994). It was suspected that one such type of microbes might be the colorless 

filamentous sulfur bacteria that commonly form mats in areas of phosphogenesis (Bailey et 

al., 2013; Krajewski et al., 1994). 
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A significant boost to this line of thinking was given in 1999 when the largest known 

bacteria, the coccoid sulfur-oxidizing chemoheterotroph Thiomargarita namibiensis were 

discovered and characterized (Schulz, 1999). These bacteria inhabit the sulfide-rich 

redoxcline of modern oxygen-poor oceanic shelf sediments in a variety of locations around 

the world, but the most well-known locality is off the coast of Namibia (Bailey et al., 2011; de 

Beer et al., 2006; Girnth et al., 2011; Kalanetra et al., 2005; Salman et al., 2013; Schulz and 

Schulz, 2005). The common metabolic pathway of these bacteria involves the oxidation of 

reduced sulfur species using dissolved oxygen or nitrate, which they store in a giant central 

vacuole. All of these substances are abundant in significant concentration in their 

environment, but at different times, that is due to the seasonally shifting redox conditions on 

the Namibian shelf (Monteiro et al., 2006). Due to the unstable nature of the environment they 

inhabit, however, Thiomargarita also utilize a complementary metabolic track, in which they 

scavenge dissolved phosphate released from decaying organic matter that they store in the 

form of intracellular granules of polyphosphate, an energy and P storage compound. In 

anaerobic, sulfidic conditions, this compound is used up and the resultant phosphate is 

released into the surrounding environment in a short pulse (Brock and Schulz-Vogt, 2011; 

Schulz and Schulz, 2005). In addition to Thiomargarita, the polyphosphate storage is 

important in the metabolically similar Beggiatoa and Thioploca (Holmkvist et al., 2010; 

Jørgensen and Gallardo, 1999) and also in iron-oxidizing bacteria that tend to inhabit similar 

hypoxic conditions (Singer et al., 2011), but also in a variety of other groups in similar 

environments (Jones et al., 2016). 

This mechanism of microbial phosphate cycling is strongly implicated as responsible for 

producing the conditions required for phosphogenesis in modern sediments. Evidence for this 

is provided by the intimate spatial correlation between the abundance of sulfide-oxidizers and 

phosphate concentration both in pore water and in solid phase (Arning et al., 2009, 2008; 

Schulz and Schulz, 2005) along with experimental proof of phosphate release by these 

microbes in response to sulfidic conditions (Brock and Schulz-Vogt, 2011), and isotope 

studies indicating the rapid precipitation as apatite of microbially-released phosphate 

(Goldhammer et al., 2010). Though some studies have cast doubt on the uniqueness of this 

process in being able to produce significant dissolved phosphate concentrations (Arning et al., 

2009; Holmkvist et al., 2010), polyphosphate metabolism has been proposed as the 
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mechanism responsible for the creation of many ancient phosphorites (Alsenz et al., 2015; 

Arning et al., 2009; Bailey et al., 2013, 2007; Crosby et al., 2014; Crosby and Bailey, 2012). 

Microbes have even been implicated in influencing the temporal distribution of 

phosphorites throughout geological time. This distribution is characterized by the episodic 

occurrence of widespread phosphorites, such as in the Palaeoproterozoic, Neoproterozoic to 

Cambrian, Permian, Cretaceous to Eocene, and Miocene, separated by long periods of relative 

paucity (Cook and Shergold, 1984; Filippelli, 2011; Lepland et al., 2013b; Ruttenberg, 2014). 

Some authors emphasize the key role of sedimentary processes and assert that the distribution 

of phosphorites in discrete intervals of geological time is a coincidental result of prevailing 

sedimentary conditions favoring the preservation of phosphorites during those periods 

(Filippelli, 2011). Others explain it through fluctuations in the riverine flux of continentally-

derived phosphate into the sea, which is in turn related to changes in weathering conditions 

(Föllmi, 1996; Papineau, 2010; Planavsky et al., 2010). However, recent papers have put 

forward a new explanation for the first appearance of phosphorites roughly 2.0 Ga ago, 

shortly after the Great Oxygenation Event (Lyons et al., 2014; Pufahl and Hiatt, 2012). 

According to this scenario, the leap in sulfide mineral weathering caused by the onset of oxic 

conditions lead to the buildup of the marine sulfate pool. Together with the establishment of 

sediment redox boundaries, it allowed for the evolution of modern sulfur-cycling bacterial 

communities and the associated polyphosphate metabolism. With the establishment of the 

required geobiochemical conditions for phosphogenesis, the formation of the first 

phosphorites became a possibility (Crosby and Bailey, 2012; Lepland et al., 2013b).  
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Geological setting 

The phosphorites of the Namibian and eastern/southern South African shelves were 

discovered in the end of the 19th century (Murray and Renard, 1891). In the 1970s, the 

Namibian shelf, along with the Peru/Chilean shelf, was one of the first places in the world 

where modern formation of phosphorite was observed (Summerhayes et al., 1973). Scientific 

and economic interest resulted in an extensive study of the geology of the deposit, especially 

from the 70s to early 90s, results of which are summarized in (Rogers and Bremner, 1991). 

During the past few years, world phosphate price fluctuations and a more immediate 

understanding of the critical nature of this resource has reignited commercial interest in the 

mining of Namibian phosphorite (Coles et al., 2002). This has resulted in an intensive 

commercial study campaign, the results of which were very recently summarized by Compton 

and Bergh (2016). 

The Namibian shelf, which formed ca. 400 Ma ago during the breakup of Gondwana, is 

known for its unusual broadness and deepness, extending to 400 m water depth. It is generally 

divided into three zones: the inner shelf, up to 130 m depth; the middle shelf, up to 300 m; 

and the outer shelf, up to 400-500 m. The basement rocks are Proterozoic up to the middle 

shelf and Cretaceous to Cenozoic in the outer shelf. These are covered by a thin, poorly 

documented Cenozoic succession, terminated by an erosional surface, on which late Cenozoic 

to modern sediments lie. The main sources of terrigenous input onto the shelf are the Kunene 

and Orange rivers, marking the northern and southern boundaries of Namibia; and windblown 

dust from the Namib Desert (Compton and Bergh, 2016; Eckardt and Kuring, 2005). The 

nearshore facies is heavily influenced by storms and consists of sand and gravel. On the inner 

shelf, it is replaced by a 15 m thick layer of Pleistocene to recent diatomaceous mud (Baturin, 

2000), the composition of which is influenced by the sediment flux carried by the Kunene 

river in the north, but grades into an organic-rich diatomaceous ooze towards the south. The 

middle and outer shelves are dominated by terrigenous sediments off the Kunene river delta in 

the north and carbonate-rich shelly or nannofossil sediment elsewhere. The Pliocene to recent 

succession on the shelf is highly condensed but is represented by 600 m thick sediment pile 

on the upper slope (Compton and Bergh, 2016). 
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Figure 1: Sediment type distribution on the southern part of the Namibian shelf along with 

coring sites. Modified after (Baturin, 2000). 

 

The entire southwestern African shelf and especially its Namibian section is dominated 

by some of the strongest upwelling in the world, the Benguela Upwelling System. The rising 

nutrient-rich deep ocean waters fuel the world’s most productive eastern boundary marine 

ecosystem (Carr, 2001), which is associated with intense organic carbon burial (Inthorn et al., 

2006). This flux of sinking organic matter is the main factor enabling the formation of 
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phosphorites on the inner shelf. Phosphorite deposits of the sea floor, ranging in age from late 

Oligocene to modern extend from the southern shelf of South Africa up to the Kunene River 

(Baturin, 2000; Compton et al., 2004, 2002; Compton and Bergh, 2016). This phosphorite 

usually occurs in the form of francolite pellets, which are roughly a few hundred micrometers 

in diameter, along with concretionary authigenic forms, phosphatized mollusk molds and very 

occasionally recent phosphatic brachiopods (Baturin, 2000). Skeletal fragments are also 

ubiquitous, but make up no more than 10-20% of the total phosphorite. Apatite in these 

sediments is also commonly associated with glauconite sand and microscopic pyrite 

(Compton and Bergh, 2016). 

Based on its genesis, Namibian phosphorites can broadly be divided into two classes: 

modern phosphatic sediments forming in the diatomaceous ooze of the inner shelf, and 

reworked, more extensive phosphorite of the middle to outer shelf (Baturin, 2000). The area 

where diatomaceous ooze is distributed is known from the vicinity of Walvis Bay and is 

situated between 50 and 140 m of depth. The phosphatic component in the diatomaceous mud 

is modest, but is prevalent in the sand fraction (Baturin, 2000). It is characterized by 

phosphatic concretions and pellets, which range from fragile and light-colored non-lithified 

aggregates to hard, dark and lithified pellets. Additionally, these sediments contain abundant 

fish fragments and coprolites. This phosphorite is known to be late Pleistocene to Holocene in 

age and is considered to be authigenic (Baturin, 2000; Veeh et al., 1974). 

The economically-important phosphorite deposit of the middle to outer shelf between 

Walvis Bay and Lüderitz is located at between 180 to 500 m depth and is genetically and 

morphologically distinct from the modern phosphorites of the inner shelf. The focus of the 

recent study campaign was on this deposit, which is described in detail by Compton and 

Bergh (2016). The deposit consists of a 1-2 m thick P-rich layer, which displays a coarsening 

upward succession from muddy to increasingly more sandy and gravelly. Aside from 

phosphorite sand, skeletal fish debris, foraminal and bivalve shells and some terrigenous 

component can be recovered. As a whole, strontium isotope stratigraphy places the formation 

time of this phosphorite from the late Miocene to Pleistocene, beginning at roughly 5.8 Ma, 

with the majority of it forming during the Pliocene and Pleistocene. Higher resolution Sr 

isotope measurements combined with biostratigraphy show an upward trend towards younger 

ages, with the topmost layer late Pleistocene to early Holocene in age. However, there does 

remain the possibility of contamination of the Sr system (Compton and Bergh, 2016). Some 
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pellets show evidence of zonation consistent with multiple episodes of phosphorite formation; 

this, in addition to the sedimentary fabric and different strontium isotope ages for pellets in 

the same sample points to complex sedimentary reworking. Compton and Bergh (2016) 

explain the formation of this deposit through changes in sea level that has resulted in the 

reworking, transport and concentration of previously-formed authigenic phosphorite from the 

diatomaceous mudbelt to sediments further offshore, similar to what has previously been 

reported for South African deposits (Compton et al., 2004, 2002; Wigley and Compton, 

2006). Authigenic phosphorite formation is interpreted to have taken place during sea level 

highstands and reworking during lowstands, beginning with the onset of glacial cycles in the 

Pleistocene (Compton and Bergh, 2016).  
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Materials and methods 

The sediment samples used for this study were collected during oceanographic cruises 

on the research vessel Mirabilis in the central-southern shelf sea off the coast of Namibia. 

This was carried out as part of the doctoral school „RGNO – African Discovery Camp for 

Research-based Training” in April of 2014 and May of 2015. The 2014 material was 

unconsolidated phosphorite sand taken as a bulk sample using a van Veen grab, while in 

2015, an Ocean Instruments, Inc. MC-400 multi-corer was used to sample a variety of 

unconsolidated sediments. A total of five cores were retrieved from a variety of locations on 

the shelf (Figure 1; Table 1). The top 10 cm of the cores were sectioned and sampled at 1 cm 

intervals; below that, the intervals were 2 cm in length. The samples were subsequently dried 

in the Sam Nujoma Campus of the University of Namibia, using a freeze-drier. 

The mineralogical composition of whole rock samples was studied by means of X-ray 

diffractometry (XRD). Samples were pulverized by hand with an agate pestle and mortar and 

unoriented preparations were made. Preparations were scanned on Bruker D8 Advance 

diffractometer using CuKα radiation and LynxEye positive sensitive detector in 2–70° 2Θ 

range. The quantitative mineralogical composition of the samples was interpreted and 

modelled by using the Rietveld algorithm-based program Topaz.  

To determine phosphorite rare earth element (REE) composition and to study its 

microstructure, several apatite pellets were visually handpicked and extracted from bulk 

samples within apatite-containing cores. While apatite is a heavy mineral and should be able 

Table 1: Sediment cores. 

ID Latitude Longitude 
Water Depth 

(m) 

Core length 

(cm) 

Number of 

samples 

      

23002 -23.00 14.37 40 25 18 

25005 -25.00 14.74 47 25 18 

GC4 -25.34 13.78 301 21 16 

26030 -26.00 14.40 198 13 12 

26010 -26.00 13.77 116 19 19 
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to be extracted from lighter minerals via heavy liquid fractionation, the impurity and high 

porosity of the apatitic pellets made this method unfeasible. 

The preparation of the pellets was done in three different ways. Some were cleaned in an 

ultrasound bath and placed on an adhesive carbon film. Others were placed on the adhesive 

carbon film, then cut with a scalpel to reveal their inner structure. A different set of pellets 

was embedded in epoxy, then finely ground down to reveal a cross-section. These were 

subsequently milled with a Leica EMRES101 Argon Ion Mill to produce a smooth and flat 

microsurface. 

The embedded and polished pellets were used to determine the phosphorite REE 

composition. The REE in apatite were measured at the Department of Geology, University of 

Tartu, by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). In total, 

61 spots were analysed from polished slabs. Measurements were made using an Agilent 8800 

quadrupole ICP-MS coupled to a Cetac 213 nm HelEx fast-washout two-volume large-format 

cell using 25 µm spot size, at 5 Hz and ~2.5 j/cm2 fluence with a 40 second dwell time. 

Helium was used as a carrier gas in both instruments and was mixed with argon from a 

desolvating nebuliser. The following masses were measured: 139La, 140Ce, 141Pr, 146Nd, 149Sm, 

153Eu, 157Gd, 159Tb163Dy, 165Ho, 167Er, 169Tm, 172Yb and 175Lu and were normalized to 44Ca 

assuming 39.7% Ca in the apatite mineral. Terbium and thulium were not analysed. NIST612, 

using values from (Jochum et al., 2011), was used as a standard and analysed four times per 

ten samples. The reproducibility of NIST612 within each analytical session was better than 

10 % for each mass measured for both instruments. During LA-ICP-MS analysis, Ba oxides 

interfere with Eu and light (LREE) oxides interfere with the heavy (HREE) oxides (Kent and 

Ungerer, 2005). The rate of Ba- and LREE-oxide formation is similar to, or less than, that of 

Th- and U-oxides, as confirmed in a separate analytical session, and these oxides monitored 

during analysis were <0.3 % for UO/U and <0.6 % ThO/Th. To assess Ba-oxide interference 

on Eu measurements, the Ba content was measured. 

Measured REE abundances were normalized against Post Archaean Average Shale 

(PAAS: Taylor and McLennan, 1985). Cerium anomalies were calculated arithmetically as 

the half sum of neighbouring elements: Ce/Ce* = CeN/(0.5PrN + 0.5LaN) (Bau and Dulski, 

1996). The Eu, Pr and Y anomalies were calculated as the half sum of neighbouring elements: 
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Eu/Eu* = EuN/((SmN+GdN)/2), Pr/Pr* = PrN/ (0.5CeN+0.5NdN), Y/Y* = YN/((DyN+HoN)/2) 

(Byrne and Sholkovitz, 1996). 

For micromorphology studies, the polished pellets were coated with a carbon conductive 

layer and others with a platinum one. These were then studied under a scanning electron 

microscope (SEM) at the University of Tartu, Estonia, using a variable pressure Zeiss EVO 

MA15 SEM equipped with Oxford X-MAX energy dispersive detector system (EDX) and 

AZTEC software for element analysis. Imaging was done both in back-scattered electron 

(BSE) and secondary electron (SE) modes. Over 700 micrographs were taken, some in 

magnifications up to 90000×.  
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Results 

Mineralogy 

 

Apatite-containing cores were identified during preliminary screening of measured XRD 

spectra. Two cores out of five core sampled were identified – GC4 from the outer shelf and 

25005 from the inner shelf (Figure 1).  

Core GC4 contains a high organic component, a result of horizontal transfer of organic 

matter originating on the inner shelf (Inthorn et al., 2006). The mineral component can be 

described as a calcareous phosphatic sand, containing mostly calcite, quartz, some 

phyllosilicates and up to 28 wt% apatite (Figure 2). The apatite content is quite stable 

throughout the core, rising slightly towards the bottom. Pyrite is present only in very small 

amounts. 

The apatite can be identified by its characteristic XRD pattern as a fluor-carbonate 

apatite that is rather poorly crystallized as estimated by quite low values of apatite coherent 

stacking domain sizes averaging at about 31 nm. The unit cell parameters of apatite in this 

core are relatively well constrained, varying between 9.327 and 9.332 Å and 6.885 and 6.889 

Å for a and c parameters, respectively (Figure 3). 

Figure 2: Apatite and pyrite content for cores GC4 and 25005, as interpreted from XRD data. 
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Figure 3: Apatite unit cell parameters. 

 

Core 25005 too displays a prominent organic component along with opal diatom 

frustules. However, the composition of the mineral component is more varied. The core 

contains abundant quartz, plagioclase, phyllosilicates, pyroxene, calcite, K-feldspar, and up to 

13 wt% apatite. There is a noticeable shift in mineral composition at around 8-10 cm of depth 

– plagioclase, phyllosilicate, pyrite and calcite component rises, while quartz, plagioclase, 

pyroxene and apatite content falls. Apatite starts at 4% in the topmost sediments, rises to 13% 

at the transition and then quickly falls to 2% and less. Pyrite is practically absent at the top, 

but rises to 3 wt% in the lower half of the core (Figure 2). Also in this core the apatite can be 

identified as a fluor-carbonate apatite that is even less crystallized as evidenced by lower 

value of apatite coherent stacking domain sizes averaging at about 23 nm. Interestingly, the 

unit cell parameters of apatite in this core had a much larger variance than in GC4 – between 

9.298 and 9.337 Å and 6.865 and 6.900 Å for a and c parameters, respectively (Figure 3).  
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Rare earth elements 

 

REE content within the apatite pellets was measured from seven different horizons in 

the 25005 core. The total REE content within pellets was heterogeneous, possibly reflecting 

the compositional impurities within the apatitic pellets and varied from 4 to 575 ppm without 

any noticeable trend respective to the depth of the samples (Figure 4). However, there is a 

clear and systematic difference in total REE content between the centers of the pellets and the 

margins (Figure 4; Figure 5). In the central parts, the total REEs were systematically lower, 

varying between 23 and 84 ppm. 

Figure 4: ∑REE content through core 25005, measured from the centers and rims of the 

pellets, the rims showing much higher values, but no clear trend being visible. 

 

REE content on the rims of the pellets, however, was without exceptions significantly 

higher than in the center, occasionally more than 500 pm (Figure 4). Nevertheless, there is no 
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clearly discernible trend of total REEs with depth for pellet centers or margins. The 

enrichment with respect to REEs is well exemplified in line scans crossing the entire pellet 

(Figure 6). Importantly, the REE counts within the line scan spectra rose concurrently with 

the Ca and P counts on the edges of the pellet, but dropped quickly towards the centers, while 

Ca and P remained constant. This indicates that REE enrichment is linked to substitutions in 

apatite and not to some contamination on the surface of the pellets. 

 

Figure 5: Heterogeneity of REE content within apatite pellets. Scale bars are 100 μm. Top 

pellet is from 5 cm depth, bottom from 7 cm. 

 

The shapes of the PAAS normalized REE spectra are in good accordance with modern 

sea water (Reynard et al., 1999) and are consistent throughout the samples, both on the rims 

and in the centers of the pellets (Figure 7). The enrichment respective with seawater is up to 

300 times in central parts of the pellets and up to 5000 times at the margins. The general 

shape of the curve represents a monotonous fall of PAAS-normalized elemental abundance 

from the heavy REEs towards the light REEs, with the exception of a negative Ce anomaly. 
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The Ce anomaly is constant throughout the core, with values ranging between 0.6 and 0.8 

(Figure 8). On a La/Yb vs La/Sm graph most of samples scatter within a rather compact field, 

which closely resembles modern seawater ratios and suggests that the REE signal of the 

apatite is derived from a seawater source (Figure 9; Reynard et al., 1999). 

Figure 6: Line scan diagram for REE and P content. Rectangles on the pellets denote line 

scan ablation trails. Top pellet is from 1 cm depth, bottom from 5 cm.  
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Figure 7: Variation and depth profile of REE spectra for apatite pellets from different 

horizons in the 25005 core. Measurements taken from the centers of the pellets. Sea water 

data from Reynard et. al. (1999).  
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Figure 8: apatite Ce/Ce* anomaly throughout the core 25005. 

 

Figure 9: La/Yb vs La/Sm plot. The rectangle denotes modern seawater values, from Reynard 

et. al. (1999).  
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Microscopy 

Under optical and scanning microscopy, samples from all cores were found to be 

dominated by “fluffy” organic matter of unknown composition and mud, which binds several 

mineral grains or subfossils together. In the particulate fraction, diatom frustules are relatively 

abundant. Aside from that, there are ostracod valves found, and other calcareous shelly 

fragments, quartz, feldspar and glauconite grains, a small fraction of heavy minerals and 

numerous apatite pellets (Figure 10a). The average grain size of the particulate fraction is 

typically between 100 to 300 μm. 

Apatite pellets can be recognized under an optical microscope as significantly darker 

and slightly larger than other grains, though these are attributes shared with some glauconite 

grains. It is possible to distinguish them from the latter by their surface, which usually appears 

splotchy and pitted. Since attempts at heavy liquid fractionation turned out not to be viable, 

the apatite pellets examined in this study were hand-picked by visual identification, which 

leaves the possibility of other unidentified apatite fractions not being included in the study. 

Little difference in microfabric can be discerned between pellets obtained from the 

shallower 25005 core and the deeper GC4 core, likewise for different horizons within the 

compositionally heterogeneous 25005 core. Scanning electron microscopy reveals that most 

of the studied apatite pellets are ca 50 to a few hundred μm in diameter, have a pitted surface, 

are poorly- to well-rounded and generally elongated (Figure 10b to d). The pellets have a 

semi-smoothed surface that usually shows numerous pores or pits. In some cases, the pellets 

seem to be covered by a flaky or filamentous electron-transparent layer, through which a 

rougher inner surface can be discerned, which gives the pellets a mottled appearance (Figure 

10e and f). This layer is too thin to be able to determine its composition with an EDX 

measurement, but its filamentous appearance suggests that it is at least partly organic, perhaps 

having later phosphatized. Alternatively, the mottled surface could be topographic to a degree, 

perhaps a result of partial dissolution. Most of the pellets are quite porous with large pores 

opening to the smooth surface. The insides of the pores are much rougher and contain 

abundant irregular structures along with some elongated or rod-shaped aggregates (Figure 

10f).  
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Figure 10: Apatite pellets imaged using SEM in SE mode. (a) Sediment can be described as a 

silty sand that contains diatom frustules, detrital grains, shell fragments and apatite pellets 

(denoted by white arrow). (b) to (d) Individual phosphorite pellets. These have a semi-

smoothed surface, which shows numerous larger and smaller pores. (e) A flaky layer covers 

the pellets, denoted by arrow. Underneath, a narrow pore can be seen. (f) Filamentous parts 

of the covering layer (black arrow). Inside the pores are more diverse and fine-grained 

microstructures (white arrow).  
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Figure 11: Inner fabric of apatite pellets. Image (c) and (d) made using SEM in BSE mode, 

others in SE. (a) The pellet is composed of massive apatite, but contains numerous shell 

fragments and pores. (b) Some pellets contain detrital grains, denoted by arrow. (c) Pellets 

display a distinct rim of which a section is denoted by arrow. (d) Substantial parts of the 

apatite matrix of the pellets are composed of intergrown rod-shaped crystallites. Wavy lines 

indicate separate rods. (e) Rods growing out of surrounding apatite matrix, an example 

denoted by arrow. (f) Apatite matrix contains numerous radial structures, denoted by arrows.  
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Figure 12: Microrods in apatite pellet pores, imaged with SEM in SE mode, except for (d). (a) 

Diverse forms of apatite microstructures. (b) Micrometer-long apatite rods cover the pore 

walls, some denoted by arrows. (c) High-resolution image of a single rod. Black lines denote 

nanocrystals oriented along the long axis. (d) BSE image of rod cross-sections. Rods denoted 

by arrows. A distinct core and a rim is visible. The bottommost arrow indicates a rod with an 

additional outer rim. (e) A film-like filamentous organic substance, denoted by arrows, is 

closely associated with apatite rods. (f) Collection of rods along with pyrite framboids, 

denoted by arrow.  
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Figure 13: Apatite microstructures in pellet pores, images taken using SEM in SE mode. (a) 

Many apatite rods intersect with one another, intersection points marked by arrows. (b) 

Flower-like rod aggregate, denoted by arrow. (c) Rod aggregates inside diatom frustule 

fragments. (d) Truncated rods growing out of a solid shell surface denoted by arrow. (e) 

Dumbbell-like structures, an example denoted by arrow, are also common. (f) Semi-spherical 

structures, denoted by arrow.  
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Pellets were cut with a scalpel or ground down to reveal their inner structure. The 

majority of the pellets are composed of massive unstructured apatite, in which numerous 

pores can be found, with diameters in the tens of μm or less. Additionally, there are numerous 

fossil fragments – most commonly diatom frustules – and some terrigenous grains 

incorporated in the apatite. Some of the pores constitute either the hollow lumena or the 

dissolved casts of fossils (Figure 11a to b). 

The massive unstructured apatite aggregate composing the pellets seems to have an 

irregular inner structure, with some exceptions. In BSE micrographs of polished pellets, a rim 

or zone of slightly differing material can be discerned around the edge of the apatite particle, 

ca 10-20 μm wide (Figure 11c). On a smaller scale, SE analyses reveal difficult to discern 

radial structures with diameters ranging from 2 to 4 μm, which permeate the apatite, 

especially near pores (Figure 11f). 

A much more varied picture is revealed inside pores. Structures on the pore walls range 

from irregular or colloform, to globular, dumbbell shaped and elongated (Figure 12a). 

Especially conspicuous are elongated rod-shaped aggregates with rounded ends, generally ca 

0.5 μm to 4 μm in length and roughly a third of that in diameter (Figure 12b to f), which are 

present in nearly every apatitic pellet studied. Aside from a few cases, most of the rods in any 

particular pore are very similar in size. Such particles co-occur with a film-like substance and 

are often embedded in it. Highest resolution micrographs reveal that the rods are not single 

crystals, but are rather composed of elongated nanocrystallites tens of nanometers in diameter, 

which are oriented parallel to the long axis of the rods (Figure 12c). BSE images of polished 

pellets reveal that the rods have a heterogeneous inner structure, with some samples 

displaying a core and a rim and others having an additional outer rim (Figure 12d). EDX 

analyses report the rods as consisting of rather pure fluoride-rich apatite, but the analysis does 

not to reveal any compositional differentiation inside the rods, as the BSE imaging would 

suggest. The rods mostly occur together with a film-like organic substance (Figure 12e). The 

substance permeates the pore wall wherever there are rods present, often connecting several 

structures as filaments or sheets. Occasionally the rods also appear together with framboidal 

pyrite aggregates 0.3 to 3 μm in diameter (Figure 12f). 

In almost every pore, there can be found cases of rods intersecting at different angles 

and to different degrees (Figure 13a and b). In addition, several rods can form larger 
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aggregates (Figure 13 b and c). Rarely, the structures can appear truncated, growing from 

solid surfaces such as diatom frustules (Figure 13d). The walls of pores can often be seen to 

be composed of such intergrown rods (Figure 11e). Furthermore, substantial sections of the 

pellets can be seen to be composed of tightly intergrown rods, while other sections are more 

heterogeneous and stochastic in composition and fabric (Figure 11d). 

Though significantly rarer, dumbbell-like structures can often be found, resembling the 

rods in size, but having bulged tips (Figure 13e). Furthermore, much of the pore walls are 

coated with larger spherical or colloform structures (Figure 13f). 
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Discussion 

The phosphogenic system 

The core GC4 sampled on Namibian shelf was taken from the outer shelf at a water 

depth of 301 m, south of Walvis Bay. Its location, sandy fabric, high calcite and P content and 

the thickness of the apatite-rich layer (Figure 2) are characteristic of the large reworked 

phosphate sand deposit of the middle-to-outer shelf. As suggested by the lack of pyrite, the 

core is at least suboxic, which makes it unlikely that phosphogenetic processes could be 

active, as the mechanisms facilitating phosphogenesis – such as Fe/Mn-oxide or microbial 

pumping – seem to all be dependent on reducing conditions or at least a nearby flux of 

reduced compounds (Brock and Schulz-Vogt, 2011; Ruttenberg and Berner, 1993). 

Though further south of the diatomaceous ooze province occurring around Walvis Bay, 

nevertheless, the muddy sediments at site 25005 lie within the zone most affected by the 

Benguela Upwelling System and the associated high organic matter flux. At around 47 m of 

depth, the site is situated within the reported depth range of authigenic phosphorites (Table 1). 

It is shallow enough to have been periodically exposed during most of the Pleistocene 

(Bintanja et al., 2005), making it unlikely that the phosphorites at this site are the result of 

intensive transportation, as the much deeper relict phosphorite deposits of the middle to outer 

shelf are. Furthermore, the rapid cutoff of apatite abundance at 10 cm of depth stands in sharp 

contrast to the 1-2 m P-rich interval in the deeper deposit (Figure 2; Compton and Bergh, 

2016). The location of the highest apatite content and its sharp decrease right on the transition 

to sulfidic conditions suggests that this phosphate is authigenic – a transported layer would 

not be expected to coincide so well with redox boundaries, as apatite is quite insoluble even in 

reducing conditions (Ruttenberg, 2014). XRD studies also reveal a noticeably lower 

crystallinity of core 25005 apatite in comparison with that in core GC4, indicating a younger 

origin (Figure 3). Thus, the material in core 25005 can be considered a close equivalent to the 

authigenic phosphorite traditionally found within the diatomaceous oozes. 

The growth of phosphatic pellets 

The low REE abundance of the bulk of the authigenic apatite pellets (Figure 4) has been 

previously reported (Baturin, 2000) and stands in stark contrast to the high REE abundance in 

the majority of ancient phosphorites (Joosu et al., 2015; Lécuyer et al., 2004) and also in the 
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reworked phosphorites of the Namibian outer shelf (Baturin, 2000). However, the REE 

enrichment of the rim of the pellets has not been previously shown (Figure 4 and 5). This 

distinct rim, revealed also from BSE micrographs (Figure 11c), is either a weathering front or 

a result of precipitational zonation. Phosphogenesis on the Namibian shelf is known to be 

episodic and zonated apatite pellets have previously been reported (Compton and Bergh, 

2016). However, there is no reason the believe that the precipitation mechanisms or seawater 

conditions were different enough at the time of the formation of the core and the rim to result 

in such contrasting REE abundance, especially as the REE spectra are very similar in both 

cases (Figure 5). Much more likely is that the rim represents a diagenetic alteration front. 

Indeed, it has been previously shown that sedimentary apatite concretions, when first 

precipitating, are depleted in REE and get enriched only during diagenesis, showing 

enrichment towards their outer parts (Reynard et al., 1999). 

The mostly featureless inner structure of the massive phosphate that forms the bulk of 

the pellets in studied material makes it difficult to discern the growth mechanism of the 

pellets, but at least some clues can be found near pore walls. In many cases, the apatite rods 

are seen growing out of pore walls, forming the pore wall itself and merging quite seamlessly 

into the massive apatite that forms the majority of the pellet (Figure 11e). These, along with 

the abundant radial cross-sections of spherical aggregates that can be seen near pore walls or 

in the solid matrix of the pellet (Figure 11f; see also Compton and Bergh, 2016), suggest that 

at least some part of the apatite matrix may be formed as a result of the intergrowth of such 

microstructures. This is supported by observations of polished sections of the pellets, where 

large areas of consolidated apatite seem to be composed of cross-sections of such rods (Figure 

11d). The less-well defined apatite matrix might represent re-crystallization of (semi-) 

amorphous Ca-phosphate mass (Baturin, 2000). 

Previous studies, which have used a wider variety of phosphatic matter, have reported 

poorly consolidated phosphatic concretions in the diatomaceous ooze, which they interpret as 

the original authigenic form (Baturin, 2000; Compton and Bergh, 2016). From the 

petrography of these concretions, it was suggested that they initially form as replacements of 

carbonaceous shells or infillings of sediment pore space (Compton and Bergh, 2016), via local 

rapid apatite nucleation events triggered by phosphate-cycling bacteria (Krajewski et al., 

1994). Continuous organics input might provide enough P influx to promote further growth of 
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the already-nucleated francolite and to gradually lithify the concretions, forming the well-

cemented pellets studied in this thesis (Compton and Bergh, 2016). 

The controversy of the role of microbes in apatite nucleation 

In natural environments, the fast-growing field of biomineralization research has 

provided a myriad of experimental evidence to support the importance of microbes both in 

providing nucleation surfaces, and in exerting more or less direct control over the 

precipitation of minerals via extra- or intracellular enzymes (Konhauser and Riding, 2012). 

Specifically, functional groups on cell walls provide suitable binding sites for calcium ions 

and have thus been shown to promote the nucleation of calcium minerals (Benzerara et al., 

2004), though the importance of such surfaces on apatite precipitation decreases with higher 

degrees of supersaturation and higher speeds of precipitation (Krajewski et al., 1994). 

It is not surprising then, that phosphatization is a well-known fossilization mechanism 

for microbes (Crosby and Bailey, 2012). Microbial fabrics have been long recognized in 

phosphorites and there has been extensive microstructural study of them in the decades since 

the introduction of scanning electron microscopy (see references in Crosby and Bailey, 2012; 

Krajewski et al., 1994). The rapid formation of authigenic apatite leads to the phosphatization 

of widely different biological structures, including nanoscale fibrous organic structures in 

linguliform brachiopods (Lang et al., 2016), fungal mats (Bréhéret, 1991), filamentous 

cyanobacteria mats, stromatolites (Krajewski et al., 1994; Rao et al., 2000), and other 

bacterial forms (Krajewski et al., 1994). In microbial structures the mechanism remains the 

same in most cases – extracellular precipitation of apatite, which tends to produce external 

molds of microbes (Krajewski et al., 1994). Conspicuous microbial structures have also been 

found in a wide variety of ancient phosphorites (Bailey et al., 2013; Cosmidis et al., 2013; 

Crosby and Bailey, 2012; Krajewski et al., 1994) up to and including the very earliest 

significant phosphorites in the world (Crosby et al., 2014; Edwards et al., 2012; Hiatt et al., 

2015; Lepland et al., 2013a). The very common occurrence of phosphatized microbial cells in 

phosphatic sediments have been seen both as a proof of the direct role of microbial surfaces in 

the nucleation of phosphate minerals (Lamboy, 1990a) or as simply a consequence of the 

rapid precipitation of apatite, which tends to phosphatize surfaces indiscriminately (Krajewski 

et al., 1994). 
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A controversial class of phosphatic microstructures are densely-packed aggregates of 

small rod-shaped particles marked by rounded, non-crystalline appearance and a few μm of 

length, which have been reported from a variety of recent and ancient phosphorites (Baturin 

and Dubinchuk, 1979; Baturin, 2000; Bersenev et al., 1986; Bremner, 1980; Garrison et al., 

1987; Garrison and Kastner, 1990; Lamboy, 1994, 1993; Lewy, 1990; Mullins and Rasch, 

1985; O’Brien et al., 1981; Rao and Nair, 1988). In their overall outward appearance, they 

very much resemble phosphatized microbial mats and have been previously interpreted as 

such (Lamboy, 1990a, 1990b; O’Brien et al., 1981; Zanin and Zamirailova, 2011), though 

controversially (Baturin and Titov, 2006; Krajewski et al., 1994). Importantly, Lepland et al. 

(2013a) recently found very similar structures in some of the most ancient phosphorites in the 

world and processed them as phosphatized casts of methanotrophic archea on the basis of 

detailed nanostructural and geochemical study (Joosu et al., 2015; Lepland et al., 2013a; Qu et 

al., 2012). In the light of these findings, a more focused revision of these common microbial 

microstructures found in a variety of phosphorites is needed. Modern Namibian phosphorites 

are a prime location for such a study, as similar structures have previously been found there, 

along with abundant irregular and globular shapes, though previously dismissed as diagenetic 

precipitates (Baturin, 2002; Baturin and Titov, 2006; Compton and Bergh, 2016). 

Important to bear in mind while studying phosphogenesis in the natural environment is 

the large body of laboratory work that has been carried out on the precipitation of apatite in 

the field of biomaterial research, motivated by the goal of understanding biomineralization of 

human bone and teeth and by possible medical applications, such as re-growing bone tissue 

(Vallet-Regí and González-Calbet, 2004). Since controlled biomineralization in vertebrates 

takes place in a complex environment of organic scaffolds and catalysts, this research has 

focused on the effects of polymers as nucleation templates or additives, while also keeping in 

mind the effect of inorganic additives, pH and temperature (Bleek and Taubert, 2013). These 

studies have shown an exceedingly diverse picture of the possible apatite mineral forms 

capable of being grown via the large variety of developed synthesis methods (Lin et al., 

2014). Densely-packed rod-shaped particles are an often seen result of such experiments 

(Ruan et al., 2013), these are also well-known among the equally-variable calcite precipitates 

(Meldrum and Cölfen, 2008; Meldrum and Hyde, 2001). 
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The nature of the apatite microrods in Namibian phosphate pellets 

The dense collections of apatitic rods that appear ubiquitous within the pores of the 

Namibian phosphate bear a strong superficial resemblance to microbial biofilms, due to their 

generally similar sizes, noncrystalline appearance and co-occurrence within organic films that 

closely resemble microbial exopolymeric substances (Figure 12). Very similar fabrics have 

been found in other ancient and recent phosphorites and have previously been interpreted by 

some authors as aggregations of microbial casts (Lamboy, 1990a; Zanin and Zamirailova, 

2011). Their formation mechanism was hypothesized to be the nucleation of apatite 

nanocrystals on microbial walls, which are known to provide suitable binding sites for 

biologically induced mineral formation (Benzerara et al., 2004). The minerals encrusting the 

microbes then start to grow and coalesce, until the organic structures are wholly replaced by 

apatite (Lepland et al., 2013a). There are, however, significant problems with this 

interpretation in the case of the phosphorites of the Namibian margin, some of which have 

also been pointed out in previous studies of Namibian material (Baturin and Titov, 2006). 

Firstly, very many of the rods seem to intersect one another, examples of which can be found 

almost in every pore (Figure 13a and b). While this could possibly be the result of post-

nucleation growth of what were originally much smaller and non-intersecting apatite 

aggregates, the in-plane intertwinning of many of the rods makes it very unlikely that they 

were originally bacterial cells and points to mineral twinning as a more likely scenario. While 

the rods are mostly of similar size within a single pore, there exists a large variation in sizes 

between different pores, which would not be expected in the case of bacteria. Furthermore, 

some cases of co-occurrence of larger and smaller rods have been found (Figure 13e). The 

truncated forms growing off of solid surfaces are also hard to reconcile with a bacterial origin 

(Figure 13d). 

The growth of very similar apatite forms have been previously reported in laboratory 

experiments conducted at high supersaturations for the purpose of elucidating phosphorite 

origin (van Cappellen and Berner, 1991), and, much more commonly, for the purpose of 

testing biomineralization processes and for developing medical applications (Ruan et al., 

2013). An important aspect for understanding the genesis of such apatite microstructures is 

the occurrence of different types of microstructures in these pores: rods with bulged tips, 

dumbbells and semi-spherical aggregates (Figure 14). A similar assemblage of 

microstructures has been reported to occur in double-diffusion experiments in a variety of 
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organic substrates (Busch et al., 1999; Kniep and Busch, 1996; Kniep and Simon, 2006; Wu 

et al., 2010). During growth, these fluoroapatite-gelatine nanocomposites start out as 

hexagonal, rod-shaped, or spindle-shaped seed crystals, which then start to bulge at their tips, 

forming dumbbells and eventually enclosing into a spherical form (Figure 15). This unusual 

form of crystal growth has been found to be controlled by an intrinsic dipolic field generated 

by organic macromolecules that are incorporated in the nanostructure of the aggregate (Simon 

et al., 2006). A very similar form of crystal growth is interpreted to have formed the 

succession of rod-shaped to dumbbell to spherical or radial microstructures found on the 

Namibian shelf, though Baturin (2000) has offered alternative hypotheses for the formation of 

spherical/radial aggregates. In addition to the very similar morphology, the rods appear almost 

without exception in association with an organic substrate, the likes of which is generally 

needed for the formation of the fluoroapatite-gelatine nanocomposites. 

 

Figure 14: Apatite rods along with other microstructures form a continuum from (a) spindle-

shaped elongated rods to (b) rods that start to bulge at their tips to (c) dumbbells to (d) 

spherical aggregares. 
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Figure 15: Fluoroapatite-gelatine nanocomposites display growth patterns similar to the 

apatitic microstructures of the Namibian phosphorites. Modified after (Busch et al., 1999; Wu 

et al., 2010). 

 

The reason why dumbbell-like structures are not as common in the Namibian samples as 

they can be in laboratory experiments are the relatively small pore spaces in the phosphorite 

pellets and the dense nucleation of the seed crystals, which means that most of the rods start 

to intergrow before they reach the dumbbell or spherical stages. 

The role of microbes in the formation of Namibian phosphorite 

Krajewski et al. (1994), along with many researchers expressed a skepticism of all 

putative bacterial forms in phosphorites (except filamentous cyanobacteria and fungi) and 

believed that only the specific microfossil morphologies that have been experimentally 

demonstrated can be taken seriously. Such forms are mainly empty or partially infilled 

coccoid to rod-shapes, in essence the forms which contain hollow lumena (Cosmidis et al., 

2013). The present study gives further credence to such skepticism. However, even though the 

abundant microstructures in themselves might not be fossilized bacteria, there is still evidence 

within these phosphorites of a significant influence of bacteria on their formation. 

Slightly negative Ce/Ce* anomalies indicate that the formation environment was at least 

suboxic (Figure 8; Liu et al., 1988). Abundant glauconite present within both cores is 
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commonly associated with fluctuating redox conditions (Stille and Clauer, 1994; Wigley and 

Compton, 2007). These conditions are favorable to the sulfide-oxidizing microbial 

communities thought to be responsible for inducing phosphogenesis on the Namibian shelf 

(Schulz and Schulz, 2005). More directly relevant is the presence of abundant framboidal 

pyrite tightly embedded within the microstructure of the apatite, commonly associated with 

microbial S-cycling (Figure 12f). An integral part of most phosphorites are traces of 

bacterially influenced organic compounds (Krajewski et al., 1994). One tantalizing clue to the 

influence of bacteria on phosphogenesis at the Namibian margin is the ubiquitous organic 

substance permeating the pore walls and co-occurring with apatitic rods within the phosphatic 

pellets (Figure 12e). Such a substance most likely results from microbial activity, perhaps a 

product of microbial breakdown of sedimentary organic matter or possibly a relict of 

bacterially excreted exopolymeric substance. A clear understanding of the chemical nature of 

this substance is outside of the scope of this study, but the close relationship between it and 

the apatite rods gives reason to speculate that this substance serves as a common or even 

primary nucleation substrate during the formation of these microstructures. Microbially 

produced organic substances are after all well known to act as a nucleation templates for 

many different kinds of biominerals (Konhauser and Riding, 2012). If the apatite 

microstructures do represent analogs of fluoroapatite-gelatine nanocomposites, the importance 

of this substance is rather evident. Thus, the ever-increasing understanding of the critical role 

of microbes in facilitating phosphorite formation can possibly be extended to the most 

enigmatic part of this process: the nucleation of authigenic apatite. 

The question of the Namibian phosphorites’ origin is made more important by their 

striking similarity to the ones found in ancient phosphorites, including some of the earliest 

(Lepland et al., 2013a), and that they have been used to make paleoenvironmental inferences 

based mostly on their morphology. Thus it is important to understand the nature and origin of 

modern phosphorite microfabric. Especially important in this might be TEM-studies of the 

nanostructure of these rods, which has been documented extensively in the case of 

fluoroapatite-gelatine nanocomposites (Brickmann et al., 2010).  
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Conclusions 

Phosphorites are a crucial component of the global phosphorous cycle, and globally 

important for the production of fertilizers. Phosphorites also have great potential to be used as 

paleoenvironmental proxies, owing to their unique temporal distribution, and have already 

been used as such. This depends, however, on an incomplete understanding of their origin. 

There is an ever-increasing awareness of the significant role of microbes in the formation of 

phosphorites, especially of sulfur and polyphosphate metabolizing bacterial communities. In 

this thesis the nucleation and primary growth of apatite minerals in the natural environment 

and its possible relation to microbial processes was studied. 

A set of cores was retrieved from the sediments of the shelf sea off the coast of Namibia, 

an area known for modern phosphogenesis. Of the two P-rich cores, one was found to contain 

reworked and concentrated pre-Holocene phosphorite, while the other hosted authigenic 

apatite pellets, as inferred mainly by the association of a well-defined redox zone with a peak 

in apatite content. Furthermore, the pellets were revealed to have a REE-rich alteration rim 

and a REE-poor center, reminiscent of authigenic apatite in the first stages of diagenesis. 

The apatite pellets are composed of massive carbonate fluoroapatite interspersed with 

detrital debris and skeletal fragments. These also contain numerous micropores, which in turn 

host a variety of apatite microstructures. Most ubiquitous of these are ca 1 μm elongated rods 

with rounded tips, which seem to form large parts of the pellets. These structures strongly 

resemble phosphatized microbial films, especially as they co-occur with an organic matrix. 

However, the rods tend to intersect one another, very reminiscently of mineral twinning. 

Bulged forms, dumbbells and spherical aggregates form a growth continuum with the rods as 

starting points. A very similar succession of apatite microstructures, called fluoroapatite-

gelatine nanocomposites, have previously been reported from laboratory experiments carried 

out at high supersaturations in organic matrices. Therefore the apatite rods from Namibian 

phosphorite pellets can be interpreted to be analogous to these nanocomposites. 

The abiological nature of the apatite rods urges caution when interpreting similar 

structures as fossilized microbes, as has been done in the case of both recent and ancient 

phosphorites. Nevertheless, the ubiquitous organic matrix, likely a bacterial byproduct, might 

serve as the main template for the nucleation of apatite and thus still speaks to the importance 

of microbes on the very first stages of phosphorite formation.  
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Retsentsete Namiibia šelfimere fosforiitide 

geokeemia, mikrostruktuur ja päritolu 

Fosforiidid on olulised komponendid maailma fosforiringes ja kriitilise tähtsusega 

ressursid väetiste tootmisel. Samas ei mõisteta teatud aspekte fosforiitide tekkemehhanismist 

veel sugugi hästi. Hiljuti on järjest enam maad võtnud arusaam mikroobide olulisest rollist 

fosforiitide tekke indutseerimisel. Käesolevas töös uuriti võimalikke mikrobiaalse mõju 

väljendusi apatiidi nukleerumisel ja esmasel kasvul kaasaegsetes fosforiitides. 

Namiibia šelfimere setetes, kust võeti antud töös kasutatud settesüdamikud, leiab aset 

tänapäevane fosforiitide teke. Kahest fosfaadirikkast settesüdamikust üks esindas Holotseeni 

eelset edasikantud ja kontsentreeritud fosfaatset liiva. Teises aga leidusid autigeensed 

apatiiditerad, mille kontsentratsioonimaksimum langes kokku redokstingimuste üleminekuga. 

Terade ääred olid rikastunud haruldastest muldmetallidest, keskmed aga vaesustunud, mis 

viitasid varadiageneetilistele ümberkristalliseerumisle. 

Apatiitsed terad koosnevad massiivsest apatiidist, milles esinevad mikropoorid. 

Mikropooride siseseinu katavad arvukad struktuurid, millest kõige levinumad on piklikud ja 

ümardatud otstega, ca 1 μm pikkused apatiitsed pulgakesed. Sellised pulgakesed moodustavad 

suure osa kogu terast. Tänu nende püsivatele suurustele ja nende tihedale seotusele filamentse 

orgaanilise massiga meenutavad nad fosfatiseerunud mikrobiaalseid biokilesid. Samas on 

paljud sellised pulgakesed üksteisest läbi kasvanud, moodustades seejuures kas 90° või 60° 

lõikuvaid läbikasvestruktuure, mis on omased pigem abioloogilisele mineraalsetele kasvule. 

Samuti näivad pulgakesed olevat vaid esimene osa pikemast kristallikasvu reast: ühes 

nendega esineb ka hulgaliselt hantlikujulisi ja sfäärilisi struktuure. Sarnast üleminekut on 

varem täheldatud ka laborieksperimentides, nn. fluoroapatiidi-gelatiini nanokomposiitide 

puhul, kus Ca-fosfaadi väljasettimisel orgaanilises matriitsis moodustusid algul pulgakesed, 

edasi hantlid ja lõpuks sfäärilaadsed vormid. Sellisel juhul võiksid Namiibia fosforiitides 

leiduvad mikrostrkuurid olla anloogsed nende abiogeensete nanokomposiitidega. 

Kuna selliseid mikrostruktuure on leitud paljudest retsentsetest ja iidsetest fosforiitidest, 

tasuks ümber hinnata morfoloogiale tuginevad interpretatsioonid taoliste struktuuride 

päritolust. Nende apatiidivormidega tugevalt seotud orgaaniline substants on aga tõenäoliselt 

bakteriaalse metabolismi kõrvalprodukt ning mängib suurt rolli apatiidi nukleerumisel, mis 

viitab mikroobide tähtsusele fosforiitide tekke esmaetappidel.  
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