
DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS
79

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS
79

UUNO PUUS

Structural performance as a success factor
in software development projects –

Estonian experience

Faculty of Mathematics and Computer Science, University of Tartu, Estonia

Supervisors: Professor Tõnis Mets (Cand. Sc),

University of Tartu, Estonia

Professor emer. Jüri Kiho (Cand. Sc.),
University of Tartu, Estonia

Opponents: Professor Alok Mishra (D.Sc.),
 University of South Pacific, Fiji

 Professor Marko Torkkeli (D.Sc.),
 Lappeenranta University of Technology, Finland

Commencement will take place on June 11, 2012. at 09:15 in J. Liivi 2–404.

ISSN 1024–4212
ISBN 978–9949–19–999–0 (trükis)
ISBN 978–9949–32–000–4 (pdf)

Autoriõigus Uuno Puus, 2012

Tartu Ülikooli Kirjastus
www.tyk.ee
Tellimus nr 234

Dissertation is accepted for the commencement of the degree of Doctor of
Philosophy (PhD) on April 23, 2012, by the Council of the Institute of Computer
Science, University of Tartu.

5

CONTENTS

LIST OF ORIGINAL PUBLICATIONS ... 6

PUBLICATIONS NOT INCLUDED IN THE THESIS 7

ABSTRACT ... 8

1. INTRODUCTION .. 9
Problem statement .. 11
The research process and methods ... 12
Structure of the thesis ... 14

2. SOFTWARE DEVELOPMENT PROJECT SUCCESS IN AN AGILE
ENVIRONMENT .. 16
The traditional vs the agile approach ... 16
Project performance as part of organizational performance 19
Agility as a pattern of interaction between different types of
performance ... 22

3. STRUCTURAL PERFORMANCE ... 29
Structural performance at the cellular level ... 29
Structural performance and the OL environment 30
Structural performance evaluation ... 30

4. FINDINGS AND DISCUSSION ... 32
Contribution of the thesis ... 33

5. CONCLUSIONS .. 34

6. LIMITATIONS AND FUTURE RESEARCH .. 37

REFERENCES ... 39

ACKNOWLEDGEMENTS ... 43

SUMMARY IN ESTONIAN ... 44

PUBLICATIONS ... 49

CURRICULUM VITAE .. 101

2

6

LIST OF ORIGINAL PUBLICATIONS

I. Heiberg, S., Puus, U., Salumaa, P., Seeba, A. (2003) Pair-Programming
Effect on Developers Productivity, Extreme Programming and Agile Pro-
cesses in Software Engineering, Lecture Notes in Computer Science, Vol.
2675, Springer, pp. 215–224

II. Puus, U., Seeba, A., Salumaa, P., Heiberg, S. (2004) Analyzing Pair-
Programmer’s Satisfaction with the Method, the Result, and the Partner,
Extreme Programming and Agile Processes in Software Engineering,
Lecture Notes in Computer Science, Vol. 3092, Springer, pp. 246–249

III. Puus, U., Mets, T., Torokoff, M., Tamm, A. (2009) Organizational Lear-
ning Environment in Software Industry – the Case of Estonian Enterprises,
In Proceedings of the 10th European Conference on Knowledge Manage-
ment, Vicenza, Italy, pp. 642–681

IV. Puus, U., Mets, T. (2010) Software development maturity evaluation: six
cases from Estonian SMEs. Baltic Journal of Management, Vol. 5, No. 3,
pp. 422–443

7

PUBLICATIONS NOT INCLUDED IN THE THESIS

1. Puus, U., Mets, T. (2009) SECI Model and Software Life Cycle: the Organi-
zational Learning View to Software Development Management, In The ESU
conference in Entrepreneurship 2009 “Many voices of European Entrepre-
neurship Research”: Full papers, Riviezzo, A., Kyrö, P., Napolitano, M.-R.
(Editors) pp. 745–758

2. Puus, U., Mets, T., Torokoff, M., Tamm, A. (2009) Organizational Learning
Environment in Software Industry – the Case of Estonian Enterprises.
Abstract, In: Proceedings of the 10th European Conference on Knowledge
Management: The 10th European Conference on Knowledge Management,
Scarso, E., Bolisoni, E. (Editors), Vicenza (Italy), September 3–4, 2009,
Academic Publishing Limited, p. 41

3. Puus, U., Mets, T. (2009) Organizational Learning View: Situation in Esto-
nian ICT Enterprises, Abstract, In Proceedings of Modern Management
Research Conference (MMRC), Insights into the sustainable growth of busi-
ness, Vilnius; 19.–21.11.2009. Emerald Group Publishing Limited,
Online http://www.ism.lt/mmrc/2009/articles_index.html, viewed 13.06.2011

4. Puus, U., Mets, T. (2009) SECI Model and Software Life Cycle: the Organi-
zational Learning View to Software Development Management. Abstract. In
The ESU conference in Entrepreneurship 2009. Conference handbook: The
ESU conference in Entrepreneurship 2009; Benevento, Italy; Sept. 8–13
2009, Benevento: University of Sannio, p. 59

5. Palm, R., Peder, A., Kiho, J., Uibo, H., Jaeger, J., Puus, U., Salumaa, P.,
Meho, I., Tõnisson, E. (2003) Programmeerimise praktikumid. Algklassid.
Tartu, Tartu Ülikooli Kirjastus

6. Heero, K., Puus, U., Willemson, J. (2002) XML based document manage-
ment in Estonian legislative system. In Databases and information systems:
5th International Baltic Conference BalticDB&IS, Tallinn; 03.–06.06.2002.
(Editors) Haav, H-M., Kalja, A. Tallinn, Tallinna Tehnikaülikool, 2002,
321–330

7. Oit, M., Puus, U. (2000) Andmebaaside turvalisus: tavamehhanismid. A & A,
6, 41–48

8. Puus, U., Pöial, J. Villems, A. (1987) Arvutiõpetuse abimaterjal. Tallinn:
Eesti NSV Haridusministeerium

8

ABSTRACT

Although the history of software development projects is long, the failure of
projects remains a concern. One of the reasons for this situation is that the
success of a software development project is defined by different stakeholders
in different ways. A software development project usually has three main
groups of stakeholders – the development company management, the project
customer as software user and the project team as the creator of software. A
successful project is completed, when software, which is user-friendly and
works, is delivered on time and within budget. Hence, project success is defined
in terms of a consensus between the interests of these three groups of project
stakeholders.

To achieve the consensus mentioned above, projects developed different
(management) structures during software development and applied different
principles of management. One of these, agile methodologies, has attracted
more attention in recent years. The agile approach values openness, frequent
communication and the involvement of all stakeholders. Agility serves as a
methodological basis for success in software development projects having a
clearly defined structure of interaction (with the stakeholders) in the project.
Such a structure makes it possible to achieve and establish a consensus of
interests among the different stakeholders.

The current research focuses on structural performance as method to achieve
the consensus between software project stakeholders. Structural performance
incorporates elements of agile software development methodology including
organizational structure, standards and other methodological choices established
in the project. Such set of different policies is generalized as an instrument of
the project management to improve process performance, and therefore, to
complete software development projects successfully. Three instances of struc-
tural performance – 1) pair-programming, 2) organizational learning environ-
ment and 3) software development process maturity level based on self
evaluation – are implemented to evaluate structural performance as a measure
of agility. An analysis of structural and process performance among Estonian
software development teams is carried out.

9

1. INTRODUCTION

The concept of the software development project is the same age as software
development itself. The first Software Development (hereafter SD) projects
were performed in the 1960s. Although the history of SD projects is long, the
failure of projects remains a concern. According to Eveleens and Verhoef
(2010) every fourth project is failing, however the percentage of failed projects
is decreased from 31% in 1994 to 24% in 2009 (ibid). Since failure rates are
usually relatively high, then “no failure” can hardly be considered a success
criterion. In other words, every more or less properly completed SD project
could be considered successful. One of the reasons for this situation is that the
success of an SD project is defined by different stakeholders in different ways.
The most common groups of stakeholders are (Rising and Janoff 2000; Hoff-
man and Lehner 2001): 1) software customers, 2) the SD project team, and
3) the SD company management. Software customers need an information sys-
tem, the project team is interested in inspiring work and the company
management is responsible for profitability. Therefore, SD process is relatively
controversial. The SD discrepancy triangle is presented in Figure 1.1.

The discrepancy is concealed in the fact that it is actually impossible
perfectly to fulfil the time, cost and functionality and usability targets in SD
simultaneously. When the necessary functionality is delivered and usable on
time, this very often results in exceeding the budget, the agreed functionality
within budget results in late delivery and a project that is within budget and on
time is only possible at best with limited functionality (sometimes delivering a
useless system). Every SD project is faced with these problems, especially when
deadlines are approaching.

A successful SD project results from an effective solution to this
discrepancy. There are different methodologies and approaches describing more
or less suitable solutions for the success of SD projects. Regarding development
models, historically the first was the waterfall model (Royce 1987), and the
latest was the agile approach since the beginning of the last decade (Cockburn
2002). The agile approach characterizes inter alia team development and
organizational learning in SD teams. The common elements and features of
agile development and organizational learning are presented in (Qumer and
Sellers 2010; Salo and Pikkarainen 2005; Pikkarainen, Salo and Still 2005 and
Salo 2007). Although agile methodologies will have been in use for around 10
years, the common, standardized methodology to use them in software
development is still missing. In the sense of standardization, the best model is
still the Capability Maturity Model and its subsequent development, the
Capability Maturity Model Integrated (hereafter CMMI) (CMMI 2006). The use
of CMMI as an SD model in the deployment of agile practices is described in
(Kähkönen and Abrahamsson 2004; Turner 2002; Clazer, Dalton, Anderson,
Konrad and Shrum 2008 and Kalermo and Rissanen 2002).

3

10

Figure 1.1 SD discrepancy triangle

Source: Composed by the author

SD project success is also interpreted in terms of conflict management (Gobeli,
Koenig and Bechinger 1998), the mathematical causal model (Procaccino,
Verner, Darter and Amadio 2005) or as a project manager leadership issue
(Garcia-Morales, Llorens-Montes and Verdu-Jover 2008; Kivipõld and Ahonen
2011).

With a view to assess the quality of SD, the process is created in accordance
with standards, for example, using the CMMI. The SD team as a Learning
Organization (LO) is described in (Fichman and Kemerer 1997; Kelly 2003;
Jiang, Klein, Hwang, Huang and Hung 2004 and Shepherd, Tesch and Hsu
2006).

Project success is related also to another aspect – project performance. As in
project success, project performance has the same dimensions as outlined for
project success above – a management dimension, a customer dimension and a
project team dimension. However, project success and project performance are
measured differently. The concept of success is used hereafter in the sense of
perceived success that stakeholders have perceived based on the outcome of the
project. This success is a rather emotional measure and is explained regardless
of deadlines and project cost via the feelings and emotions of the project parti-
cipants. Project performance is explained in a more quantitative way using
terms like deadlines (as Cycle Time), costs (as Effort), size of system (as Lines
of Code) and quality of development (as Errors Repaired) (Harter, Krishnan and
Slaughter 2000), and therefore, are more suitable for analysis.

Project performance is divided into structural and process components.
Structural and process performances were firstly differentiated by Nidomulu
and Subramani (2003). Process performance is the quantitative part of per-
formance, and is usually measured as project performance in general. Structural
performance by contrast is not so well known and describes organizational
structure and standards and other methodological choices established in the
project.

11

Goal of this thesis is to explore the role of structural performance in the SD.
For this purpose three different studies are performed. The problem statement,
research process and structure of the thesis are presented in the following
sections.

Problem statement

Project success is based on several mutually interacting success factors. Perfor-
mance as a factor of project success is an implemented capability carried into
effect. According to Feldt, Angelis, Torkar and Samuelsson (2010) the capa-
bility of an SD team to perform a software project successfully is divided into
1) capacity as the physiological and cognitive abilities of the individual that
enables him/her to perform a work task in an efficient way, 2) willingness as the
psychological and emotional characteristics that influence the degree to which
the individual is inclined to perform the task, and 3) opportunity as the parti-
cular configuration of the environment and surroundings beyond his/her direct
control, an individual and his/her task that enables or constrains his/her perfor-
mance. It is important to know which features help different capabilities within
SD teams actually to function, and so determine the success of the SD project.

In above-mentioned terms of performance, capacity, willingness and
opportunity set up the structural performance framework within the SD project.
Consequently, project success is determined by structural performance as
features carrying project capabilities into effect via process and project per-
formance as presented in Figure 1.2

Figure 1.2. SD project performance and success

Source: Composed by the author

SD performance in general has structural and dynamic components. In mutual
interaction, structural performance is coherently interrelated through agility
practices with process performance as the basis for general performance. The
latter, in turn, serves as a factor of the success of the SD project.

Agile practices as process management and control principles constitute an
important part of structural performance. Agile practices if used in project

12

management increase the flexibility of the project, and therefore, improve the
adaptability of the project team in terms of structural performance. In other
words, the structural performance of the SD team (as an organization) is
measured according to their ability to adapt to changes in the internal and
external environment.

The success rate of SD projects is an important competitive advantage for
any SD company. Although the Estonian SD industry has developed
substantially during the last decade, the current situation in the Estonian SD
sector is complicated. Since the last years of the previous century there have
been various challenges such as setting up complicated government information
systems, creating banking information systems for new banks and creating
world famous IT trademarks such as Skype and Playtech. First of all, it is
necessary to analyse the experiences collected during these development years
aiming to increase competitiveness in foreign markets and exports of SD
products. In particular, there is a need for the analysis of present-day methodo-
logies based on agile principles in Estonian SD teams. Therefore, dynamic
Estonian SD teams need new approaches to analyze SD project performance.

The goal of this thesis is to explore, describe and evaluate the structural
performance as an essential component of project performance, and therefore,
a project success factor in general on the example of Estonian SD teams.

To achieve this goal the following research tasks were formulated:
1. Analysis and evaluation of SD project performance as a factor of the success

of SD projects.
2. Analysing practices and creating suitable methods for evaluating structural

performance in SD projects.
3. Clarifying the interaction between the structural and process components of

SD performance in Estonian SD teams.
4. Exploring and understanding organizational patterns in Estonian SD teams in

terms of agile practices, and at the same time in terms of structural perfor-
mance.

5. Evaluating the maturity level of Estonian SD teams as a quality of structural
performance.

SD project performance and the interaction between structural and process
performance are analysed in the second chapter and also in Study I. The Organi-
zational Learning (hereafter OL) patterns in SD teams are explored in Study II
and the maturity level evaluation methodology is developed in Study III.

The research process and methods

The thesis contains three relatively independent, but conceptually bound stu-
dies. The general goal of the research was to explore the interaction between

13

structural and process performance in a more detailed manner. The research
process was started in Study I at the initial (cellular) level, where the project
team consisted of only two people. The goal of this study was to describe the
interaction between structural (pair, non-pair) and process (productivity) perfor-
mance in a minimal structure. In this study, it was intended to evaluate the
productivity according to two different team structures – pair programming and
non-pair programming. The research method was a controlled experiment.

In the same study (Study I), the minimal environment of the SD team was
also described via the satisfaction level of the participants in the experiment. To
describe the level of satisfaction, an appropriate questionnaire was used as the
research method. As a result, three types of satisfaction were differentiated as
perceptions of the development environment by the team members.

To clarify the linkages of structural performance and the SD project
environment in a non-experimental (everyday SD) situation, a more advanced
OL paradigm was chosen in Study II to explore the actual SD environment. The
research method was a questionnaire followed by factor analysis to describe the
situation in Estonian SD projects. Since the SD team is usually a part of a
company, aspects of the enterprise were studied in Study II as well.

For practical implementations and in order to have a more precise image of
the structural performance, it is necessary to evaluate the level of structural
performance. A qualitative method for evaluating structural performance is
described in Study III. The necessary case studies (semi-structured interviews)
were performed in six Estonian Small and Medium sized Enterprises (SMEs).
Study III demonstrated that evaluating the level of maturity in SD using self-
assessment based on the CMMI process area categories, is a relevant method for
evaluating structural performance in an SD project.

The schedule of the research process is represented in Figure 1.3 as sequen-
tial research steps and appropriate research methods to clarify and describe the
structural performance outline.

The research process is initiated to describe the SD process at the initial
(team consisting of two people) level. Study I describes the interaction of
structural and process performance and the SD environment in terms of team
member satisfaction. Since satisfaction is only one particular aspect, it was
reasonable to introduce the description of a more complete SD environment. In
Study II the respective environment was described as the Organizational Lear-
ning Environment (OLE). Study II complements the controlled experiment
(Study I) with research of the environment of a real SD process. Study II is an
extension of Study I in a real SD environment. In this study the environment of
SD was described in terms of the structural performance of the organization
(SD team). An exploratory approach was used to simultaneously describe the
environment and the interaction of process and structural performance.

Study III aimed to evaluate the level of structural performance in the project
team in order to have a more precise view of the quality of the specific working
environment. The evaluation method was derived from CMMI and the level of

4

14

structural performance was evaluated in terms of SD maturity. Project managers
participating in Study III performed a self-evaluation of the maturity of the
development process across CMMI process areas.

Figure 1.3. The research process

Source: Composed by author

As the result of the exploratory research process, the structural performance of
the SD team was described as a five- and three-factor model of OLE, and
qualitatively evaluated in terms of development maturity.

Structure of the thesis

This study is based on four papers published between 2003 and 2010.
1. Heiberg, S., Puus, U., Salumaa, P., Seeba, A. (2003) Pair-Programming

Effect on Developers Productivity, Extreme Programming and Agile Pro-
cesses in Software Engineering, Lecture Notes in Computer Science, Vol.
2675, Springer, pp. 215–224

The author’s main contribution was the description and analysis of the role of
the personality of team members in pair-programming. In addition, the author
also contributes to the methodology of the study and the experiment set up.

15

2. Puus, U., Seeba, A., Salumaa, P., Heiberg, S. (2004) Analyzing Pair-
Programmer’s Satisfaction with the Method, the Result, and the Partner,
Extreme Programming and Agile Processes in Software Engineering, Lec-
ture Notes in Computer Science, Vol. 3092, Springer, pp. 246–249

The paper is mostly the author's own work. The author contributed the rationale
for the theoretical background, methodology, questionnaire development and
data analysis. Personality data was collected during the experiment performed
in cooperation with the co-authors. The co-authors also contributed to the
preparation of the text.

3. Puus, U., Mets, T., Torokoff, M., Tamm, A. (2009) Organizational Learning

Environment in Software Industry – the Case of Estonian Enterprises, In
Proceedings of the 10th European Conference on Knowledge Management,
Vicenza, Italy, pp. 642–681

The author contributed to the theoretical background and partially also the
methodology and data analysis. The main part of the questionnaire was pre-
pared at the Centre for Entrepreneurship at the University of Tartu and
developed by author. Data collection, theoretical rationale and part of the data
analysis were carried out together with the co-authors. The text was prepared in
cooperation with the supervisor.

4. Puus, U., Mets, T. (2010) Software development maturity evaluation: six

cases from Estonian SMEs. Baltic Journal of Management, Vol. 5, No. 3,
pp. 422–443

The paper is mostly the author’s own work. The theoretical framework, metho-
dology, interviews and data analysis was the author’s contribution. The text was
prepared in cooperation with the co-author.

Copies of the papers are included in the thesis on pages 49–100. The four
papers included in the thesis are divided between three studies. Study I is based
on papers 1 and 2, Study II on paper 3 and Study III on paper 4.

The outline of the thesis is as follows. The first chapter is the introduction. The
main body of the thesis consists of six chapters. The second chapter includes
different definitions of success in software development projects and concept of
agility as a pattern of interaction between different types of performance. The
concepts of software development success are generalized and a definition of SD
development success is presented based on the consensus of SD project
stakeholders. The relationship between organizational performance and process
performance is clarified, and structural performance improvement is introduced as
a managerial tool for process performance enhancement.

The third chapter defines and clarifies structural performance as a success
factor of SD projects. Different instances of structural performance are intro-
duced and a structural performance evaluation methodology is described based
on SD development standards. The fourth chapter is dedicated to presenting and
discussing the findings explored in the studies. Conclusions are formulated in
the chapter five and limitations of the study in the chapter six.

16

2. SOFTWARE DEVELOPMENT PROJECT
SUCCESS IN AN AGILE ENVIRONMENT

The traditional vs the agile approach

In the current thesis, the traditional approach is interpreted as the methodologies
and models used before the publication of the Agile Manifesto (Fowler and
Highsmith 2001). Most of these essential software development processes are
presented in CMMI. In this sense CMMI is a software development model
based on best practices in traditional software development. Additionally,
CMMI contains definitions of different areas of SD including the Software
Improvement Process. Hence the SD model presented by CMMI is based on
best (historical) practices in traditional software development.

Historically, the agile approach was already introduced in 1995, in the
Quality Improvement Paradigm proposed by Basili and Caldera (1995). Basili
and Caldera presented two closely interacting iterative learning cycles 1) the SD
project as a learning organization, and 2) the whole company as a learning
organization. Different authors (Kähkonen and Abrahamsson 2004; Turner
2002; Glazer, Dalton, Anderson, Konrad and Shrum 2008) compared and
analyzed traditional (CMMI based) and agile approaches.

SD project success criteria differ for different stakeholders. For example, a
project is successful for the company management when the project is finished
on time, with the agreed costs and the delivered software implements all the
agreed features in a manner that satisfies the customer (Procaccino, Verner,
Overmyer and Darter 2002). The SD team involved in the project has a different
attitude on some occasions. Usually, developers also appraise the information
system created as a result of the project, technological challenges surmounted
during the project and skills or experiences obtained. Likewise, the satisfaction
of the development team is important. Organizational performance aspects
related to human resources practices are described by Tseng and Lee (2009).

The project team view is explained, for example, in the survey by Pro-
caccino, Verner, Shelfer and Gefen (2005). According to the results of this
survey, successful SD projects have: 1) customers/users that provide feedback,
2) sufficiently skilled development team, and 3) feedback provided by the
project manager. The fact that a successful project implies the following
characteristics: 1) the developers have a sense of achievement, 2) they have a
good job, 3) this job results in professional growth, and 4) they have learned
something new, was also mentioned (ibid.).

In addition to the company management vs development team dimension
project success determinants are divided into personal (internal) and
organizational (external). Personal determinants are 1) competency, 2) personal

 Hereafter in current study we use concepts success factor and success determinant as
synonyms.

17

characteristics, 3) communication and negotiation, 4) societal culture, and
5) learning and training. Organizational are external determinants, such as
1) customer satisfaction, 2) customer collaboration, 3) customer commitment,
4) decision time, 5) team distribution, 6) team size, 7) corporate culture,
8) planning, and 9) control (Misra, Kumar and Kumar 2009).

Project success is reciprocally related to another concept – project per-
formance. For the company management project success and project per-
formance are usually synonyms – high project performance is in the opinion of
the managers a prerequisite for project success. Although the company manage-
ment and the project team should have the same objectives, in reality they
sometimes differ. In the SD process some kind of discrepancy between the
development team and the company management is observed. This discrepancy
is described by one developer who said in an interview, “The rules of the
organization favor revenue generators, and not instruments. I like working with
instruments, especially embedded software” (Linberg 1999: 188). Indeed the
goal of the company is to have proper revenue and earn a profit, and the inte-
rests of the developers and the firm need to be considered.

Another list of project success determinants is presented by Procaccino et al
(2002) as follows: 1) management, 2) customers and users, 3) requirements,
4) estimation and scheduling, 5) the project manager, 6) the SD process, and
7) development personnel. The difference between the views of the manage-
ment and the development team is stressed by Procaccino et al (ibid.) as well. It
is essential for the management to deliver a software product in accordance with
the business goals, in time and within budget. By contrast, the project team
evaluates the clarity – for the development team the project should be
completed (despite the necessary expenses) or cancelled (despite the business
results of cancelling).

Cancelling projects reduces the profitability of the company, but from the
development team’s perspective a cancelled project is a source of experience. A
comparison of completed and cancelled projects in the project success
continuum is presented in Table 2.1

The software developers’ view demonstrates the benefits of cancelled
projects as sources of experience, that for the management are sources of loss.
Similarly, the management’s view of project success is not coherent. The
measurable indicators such as deadlines and budget can easily be measured, but
correspondence to business goals is more complicated to evaluate. Business
goals depend not only on the development team or the company management,
but also on a third party – the customer or software product user. Although one
of most important business goals is customer satisfaction, software is some kind
of special product in the sense of customer satisfaction. The reason for this is
that it is usually too complicated for the software customer to change their
information system. So sometimes the first versions of software are convenient
and usable for customer, but after some period the software provider is unable
to maintain the delivered software. In this case the customer has to make

5

18

difficult choices about whether to continue with a problematic system or switch
to a new one, taking into account that introducing the new system needs new
investment.

Customer relationships add a new dimension to the software success frame-
work. The customer expectations and software developer relationships in the
context of SD project success are described for example by Petter (2008).

Consequently SD project success is represented as the consensus between
three different parties – the company management, the development team and
the software customer as seen in Figure 2.1

Table 2.1 Comparison of cancelled vs completed project success determinants

Project
outcome

Failure Low success Successful High success
Exceptio-
nally
successful

Project
completed

Developing a
product that
causes
customer
discontent
(not meeting
quality
expectations)

Below
average cost,
effort and
schedule
performance
compared to
industry
AND
meeting
quality
expectations

Average
cost, effort
and schedule
performance
compared to
industry
AND
meeting
quality
expectations

Better than
average cost,
effort and
schedule
performance
compared to
industry AND
meeting
quality
expectations

Meeting all
quality, cost,
effort and
schedule
expectations

Project
cancelled

Not learning
anything that
can be
applied to
the next
project

Learning can
be minimally
applied to
future
projects

Learning can
be applied to
future
projects.
Some
elements
from the
cancelled
project can
be directly
used on
future
projects

Substantial
learning can
be applied to
future
projects.
Significant
numbers of
elements
from the
cancelled
project can be
directly used
on a future
project

A cancelled
project cannot
be called
“exceptio-
nally
successful”

Source: Linberg, K. R. (1999)

19

Figure 2.1 Successful SD project as a consensus between management, team and
customer

Source: Composed by the author

The project success for the management team includes reaching business goals,
product delivery promptness and controlled costs. The project team on the other
hand values challenges and the satisfaction of overcoming them and the
knowledge and experience gained. For the software customers the situation is
complicated and varies widely. For example, the customers are anxious to have
the information systems they need, at the lowest price. Development service
providers on the other hand are trying to compensate their investments in
technology or the development process with the customer’s money.

Those goals (listed above) should be achieved during the development
process by creating the necessary information system and building mutual
understanding simultaneously. As result, a successful SD project can be defined
as a consensus between all stakeholders.

Project performance as part
of organizational performance

Another concept related to project success is project performance, usually
defined (Jiang et al 2004) as SD team performance. As with project success,
project performance has a different meaning for different stakeholders. Project
performance is evaluated by the development team using several determinants
as follows: 1) work quality, 2) team operations, 3) ability to meet project goals,
4) extent to which design objectives can be met, and 5) the reputation of the
work excellence (Faraj and Sproull 2000). The company management by
comparison values: 1) project costs and 2) time to completion (ibid). Project

20

success factors are divided into internal and external determinants (Tomas-
zewski and Lundberg 2005). The relationship between project success and
project performance is presented in Table 2.2

Concerning SD success, it is mentioned “... practitioners consider software
projects successful if they provide intrinsic, internally motivating work to
develop software systems that both meet customer/user needs and are easy to
use” (Procaccino et al 2005: 200). In the case of project performance, it is
essential that the software be acceptable for the customer, developed in time and
within the planned budget. Consequently, a successful SD project has good
project performance according to the management and the development team.

Project success and performance are measured differently. Success is a more
emotional measure and is explained regardless of the deadlines and project cost
via the feelings and emotions of the project participants. Project performance is
explained in a more quantitative manner. For example, in addition to deadlines

Table 2.2 Relationship between project success and performance

 Project success
determinants:
Procaccino et al
(2005)

Project success
determinants: Misra et al
(2009)

Project perfor-
mance determi-
nants: Faraj and
Sproull (2000)

Management
view, external or
organizational
determinants

1) customers that
provide feedback,
2) sufficiently
skilled development
team and
3) feedback
provided by project
manager

1) customer satisfaction,
2) customer
collaboration,
3) customer com-
mitment,
4) decision time,
5) team distribution,
6) team size,
7) corporate culture,
8) planning
9) control

1) project costs and
2) time to
completion

Development
team view,
internal or
personal
determinants

1) the developers
have a sense of
achievement,
2) they have a good
job,
3) this job results in
professional growth
and
4) they have learned
something new

1) competency,
2) personal charac-
teristics,
3) communication and
negotiation,
4) societal culture,
5) learning and training

1) work quality,
2) team operations,
3) ability to meet
project goals,
4) extent of
meeting design
objectives,
5) reputation of
work excellence

Source: Composed by the author, based on (Procaccino et al 2005; Misra et al 2009; Faraj and
Sproull 2000)

21

(as Cycle Time) and costs (as Effort), project performance is often measured
according to Lines of Code or Errors Repaired (Harter et al 2000). Project
performance, as with project success, has the same dimensions as described
above – a management dimension, a customer dimension and a project team
dimension.

The customer and management dimension are primarily extended to diffe-
rent levels of management such as the operational, tactical and strategic levels.
The current study focuses on the operational level because the management of a
specific software development project is usually an example of operational
management.

Project performance and organizational performance are also essential
abilities of the organization (SD company) for performing SD projects success-
fully. In the literature, organizational performance as a measure of the quality of
the organization is described in several ways.
(1) At the level of the organization or firm, and in the sense of business pro-

cesses, organizational performance is described as turnover, productivity
and corporate financial performance (Huselid 1995). These aspects are
essential for the management of an SD company and project.

(2) Additionally, organizational performance is explained by market perfor-
mance (Delaney and Huselid 1996), (Lai and Cheng 2005). Market per-
formance (as customer feedback and involvement) and productivity
performance (as usability and viability of the delivered product) are
related to customer success in the sense of SD project success.

(3) Employee performance, employee innovation and employment relations
are important at the organizational level as well (Guest, Conway and Dewe
2004). So employee performance, employee innovation and employment
relations in organizations are related to the SD team at the SD project
level.

According to statements (1), (2) and (3) above, there exists clear links between
project performance dimensions (management dimension, customer involve-
ment dimension, project team dimension) and organizational performance
dimensions. Therefore organizational performance measures describe different
aspects of business processes similarly to project performance measures.

Despite the clear connection between organizational performance and pro-
ject performance, these concepts are different. SD project performance is
narrower and project specific – it has sense mostly in the SD project context.

The performance of an SD project is divided into structural and process
components. Structural and process performance were firstly differentiated by
Nidomulu and Subramani (2003), where the structural approach is explained as
the structure of the project team “... describing organizational structuring – the
pre-specification of standards and choices regarding the level of delegation of
decision-making”. In contrast, the process based approach is explained as “…

6

22

specification of behaviours and outcomes as the key means to guide work”
Nidomulu and Subramani (ibid).

The management and customer dimensions are important as the wider
environment, but while structural performance, as well as process performance,
is defined in the current study for the project team, the focus is the team level.
The relationship between different types of performance is presented in Figure
2.2

Figure 2.2 The relationships between types of performance

Source: Composed by the author

Organizational performance is more general and characterizes the organization
(company, firm) and business process as a whole. Consequently, the SD
company as a whole is characterized by organizational performance. The SD
team as part of the organization (inside company) is usually project specific,
and therefore, more restricted. Since SD is part of the business process,
development performance forms a corresponding part of organizational perfor-
mance. SD performance is, in turn, divided into structural and process per-
formance.

Agility as a pattern of interaction
between different types of performance

According to Nidomolu and Subramani (2003), the structural and process
approach explain two different but mutually interacting aspects of project per-
formance. The question is how these two approaches interact in an actual SD
process in an SD team? Evidence of a positive correlation between the
structural and process component of performance is described in Harter et al
(2000), where characteristics of process performance, such as the number of

23

Errors Repaired, Lines of Code (delivered in a certain period) are positively
correlated by evaluations of structural performance like maturity level using the
Capability Maturity Model Integrated (CMMI).

The SD process evaluation method developed in the current study describes
five levels of maturity in the SD process expressed through a set of key process
areas that should be in place for each level. The OL framework is described as
key features, based on process areas of the environment where the OL appears.
The OL framework is applicable in the SD team because SD itself is a
knowledge intensive activity and needs to adapt new technologies and improve
practices (Mathiassen and Pourkomeylian 2003).

OL is usually defined as a cyclical process (Argyris 1976). In the sense of
the SD process, a repeating cycle proceeds from new information from the
development environment and feedback about the present performance of the
development process, which creates new knowledge. This may lead to the
formation of new (infra)structure – developing structural performance. Created
concepts sometimes lead to the creation of new learning strategies and infra-
structure as new levels of structural performance.

The new wave of methodologies in software development called the agility
approach has been in use since the beginning of the 00s. The management of
SD team agility is defined by Qumer and Sellers (2010: 504) as “... a persistent
behaviour or ability of a sensitive entity that exhibits flexibility to accommodate
expected or unexpected changes rapidly, follows the shortest time span, uses
economical, simple and quality instruments in a dynamic environment and
applies updated prior knowledge and experience to learn from the internal and
external environment.”

Definitions of agility (given above) and those for organizational learning
mostly overlap. Lets focus here on the definition of organizational learning
proposed by Argyris and Schön (1978: 18) “… learning is characterized as
when, members of the organization respond to changes in the internal and
external environment of the organization by detecting errors which they then
correct so as to maintain the central features of theory-in-use”. Single-loop
learning is also defined by Argyris and Schön and they differentiate second-
loop learning as “… those sorts of organizational inquiry which resolve in-
compatible organizational norms by setting new priorities and weightings of
norms, or by restructuring the norms themselves together with associated
strategies and assumptions” (ibid: 18). So single-loop learning means the adap-
tation of organizational members to suit the internal and external environment.
At the same time, second-loop learning relates to the development of the
environment according to internal and external changes.

Both, agility and organizational learning are oriented to adapting to a
changing environment. Organizational learning by definition has no limitations
about conditions and methods, or about how learning should occur. In contrast,
agility is defined as a simple adaptation with minimum time and resources.

24

Ibert (2004) explains organizational learning in project-based organizations
as being divided into linear and cyclical time concepts. The SD team uses the
linear time concept because of the time limitation of the project. As a result,
quite a large proportion of the experience gathered during one concrete project
is not usable in the same project, but is applicable in the following project or
projects. Then the linear concept of time could also only describe the linear
(without feedback loops) organizational non-learning process.

Knowledge, generated in a particular project, can be transferred to sub-
sequent projects, and therefore knowledge and experience, collected during one
project, are reasonable to save for future use to ensure development and lear-
ning in the SD team. Frameworks, employed to manage knowledge, are
explored by theory of OL. Most known of these frameworks are five disciplines
introduced by Senge (1990). Senge differentiates five main features of OL as
follows (ibid):
1. Systems thinking – it is the feature that integrates the others OL features,

fusing them into a coherent body of theory and practice ,
2. Mental models are deeply ingrained assumptions, generalizations, or even

pictures and images that influence how team members understand the project
and how they take action,

3. Personal mastery – it is a lifelong discipline. People with a high level of
personal mastery are acutely aware of their ignorance, their incompetence
and their growth areas,

4. Team learning – Team learning starts with “dialogue”, the capacity of
members of a team to suspend assumptions and enter into a genuine
“thinking together”,

5. Shared vision – is “pictures of the future” that foster genuine commitment
and enrollment rather than compliance.

Structural performance and at the same time OL features, first of all Systems
thinking and Mental models, allow the storing of knowledge and experience in a
retrievable way. Hence structural performance links the linear concept of time
in a project with the cyclical concept of time in a company or firm. While only
the cyclical concept of time is applicable for describing organizational learning,
structural performance implements knowledge transfer from the project level to
the company level as OL.

In addition, the fact that cyclical concepts appear quite often in projects
should also be mentioned – iteration within a project is a typical example of a
cycle within a project.

Senge’s OL features are as presumptions for application agility in organi-
zations including SD teams. Different authors are stressing the importance of
Mental models (Kruchten 2007; Kollmann 2008; Cao and Ramesh 2007) and
Shared vision (Kollmann 2008).

According to several authors (Rifkin and Fulop 1997; Johnson 2002; Mitki,
Shani and Meiri 1997), OL is 1) an OL process, including activities to structure,

25

save and reuse the knowledge created during a project, taking place in 2) a
learning organization; that is, an OL environment that provides the rules,
structures and technologies to manage this knowledge. In terms of SD perfor-
mance, process performance characterizes the OL process and structural perfor-
mance characterizes the (agile) OL environment accordingly. In organizations
and also in SD team Learning Organization forms the main part of environment
for OL.

Single-loop and double-loop learning are differentiated according to the
action with different governing variables. In the SD project, the governing
variables in single-loop learning are 1) project plan, 2) cost and 3) deadlines
(Cao and Ramesh 2007). Since the SD project usually takes place in a rapidly
changing environment, the simultaneous achievement of all governing goals/
variables is impossible. Therefore, single-loop learning has some additional
(implicit) governing variables like 1) maximizing gains and minimizing losses,
2) minimizing negative emotions, 3) rationality (ibid.), to ensure who among
the stakeholders are gaining and who losing.

Argyris (1976) describes single-loop learning from the viewpoint of the
organization member as follows: “The primary strategies are to control the
relevant environment and tasks unilaterally and to protect themselves and their
group unilaterally” (ibid: 368). This leads to “Control as behavioural strategy
influences the leader, others, and the environment in that it tends to produce
defensiveness and closeness, because unilateral control does not tend to produce
valid feedback. […] Under these conditions, problem solving about technical or
personal issues is rather ineffective” (ibid). Therefore, single-loop learning for
SD is inappropriate or, in other words, single-loop learning is one of the reasons
for the high percentage of unsuccessful SD projects.

The problems related to single-loop learning are possible to avoid by
changing governing variables. In agile development and second-loop learning
the governing variables are 1) valid information, 2) free and informed choice,
and 3) internal commitment (Cao and Ramesh 2007; Argyris 1976). The
suitability of the management model based on double-loop learning is stressed
by Argyris (1976): “The behavioral strategies involve sharing power with
anyone who has competence and with anyone who is relevant to deciding or
implementing the action, in the definition of the task or the control over the
environment” (ibid: 369).

The interdependency between OL as a general framework and learning loop
levels is depicted in Figure 2.3

7

26

Figure 2.3. Organizational learning and SD process interdependency

Source: Composed by the author

On the left side (Fig. 2.3), the different levels of the learning process are pre-
sented from non-learning to triple-loop learning – the arrow shows the direction
of the growth of the distinctness of LO patterns. On the right side, a general OL
environment is described using the features of an LO introduced by Senge
(1990).

At the Initial level no learning occurs. The project is managed in a chaotic
way, the project team is not able to take corrective actions in reply to change or
repeat their successes. OL features are not developed – they are at the
embryonic stage.

Single-loop learning occurs when the project is Managed. The project is
planned and executed in accordance with policy. Possible mismatches with
policy are discovered and corrective actions are performed. According to the
requirements of managed software development, the features of LO Systems
thinking and Mental models exist, and the Personal mastery feature among
project team members is developed.

In the case of Double-loop learning, the standard activities in a project are
Defined. The standards, procedures, tools and methods used in the project are
described and tailored. Systems thinking and Mental models are clear enough to
create and use the necessary standards. Personal Mastery in connection with
Team learning is developed to a suitable level to ensure the use and tailoring of
the necessary standards. The shared vision among the project team is accepted
by the team members as a common guide for performing the project.

In triple loop learning level Continuous Optimizing takes place in the
project. A clear set of OL features is distinguishable. For example, the Shared

27

vision is explained in qualitative-quantitative terms; Personal mastery and Team
learning progress is expressed using qualitative-quantitative measures.

According to the framework described above, and in the sense of project per-
formance divided into process and structural performance, the OL environment
in the SD project is defined as the structural performance of this project. Conse-
quently, any improvement of the OL environment means raising structural
performance.

The improvement of the OL environment requires effort. In a project at the
Initial level of maturity, whole such effort goes directly into the project out-
comes; no resources are available to develop structural performance. To achieve
the higher levels of structural performance it is necessary to create a suitable
environment for OL and invest some resources (for example time) in this.
Greater structural performance needs more resources to create the necessary
environment. Hence, optimal structural performance comes from investing the
resources to create an optimal environment to proceed with the project at the
necessary or agreed (with the customer) level of maturity.

The mutual interaction between structural and process performance is
described in Figure 2.4. Structural performance explained, for example, in terms
of Process Maturity, Personal Satisfaction, Organizational Learning and so on,
is connected to process performance such as the Size of the Product (Lines of
Code) developed within a certain time frame, Product Quality (Ratio of Test
Cases Passed, Defect Removal Efficiency) etc.

The double arrows in Figure 2.4 depict the probable causal relationships
between structural and process performance via the software development
process model implemented. Similarly, in the study described by Harter et al
(2000), the level of maturity in SD (in CMMI) was positively correlated with
product quality.

Figure 2.4. Project performance outline

Source: Composed by the author

28

In the SD process, the interaction between process and structural performance is
implemented via different SD process evaluation and development methodo-
logies as SD process models. The SD process model, in the sense of combining
the concepts of structural and process performance, is an organized set of rules
and structures designed to perform the SD process in order to satisfy the
management, customer and project team needs simultaneously.

Some authors (Jiang et al 2004) divide process performance into efficiency
and effectiveness. “Efficiency is often considered to be measured by the quality
of the software product, adherence to budgeted time and money, and cost of the
software operation. Effectiveness is considered to be the applicability and
adaptability of the software.” (ibid: 281).

Although process performance can be interpreted differently, the improve-
ment of process performance proceeds via structural performance. This position
is explained clearly by the developer participating in the Linbergs' (1999: 188)
study – “Although the project focus gives projects much empowerment, this
arrangement is no longer appropriate for a complex product-line like we have.
There are far too many inter-dependencies. Competition ends up delaying our
products or making them less successful. A better structure that supports
collaboration is needed”.

The same idea is supported by Jiang et al (2004: 281) as “...the organi-
zational issues involve the knowledge gained by the organization during
development, the interpersonal relations maintained, and the ability to control
the resources used by the project”. This is evidence that process performance
cannot be improved independently of structural performance.

29

3. STRUCTURAL PERFORMANCE

This section presents the results of the author's studies in terms of structural
performance. At the cellular level and in the controlled environment explored,
structural performance is described in Study I. Structural performance in the
actual SD environment as an OL pattern is presented in Study II. A qualitative
structural performance evaluation methodology, derived from CMMI, is
introduced in Study III.

Structural performance at the cellular level

Structural performance at the cellular level is explored in Study I focusing on
pair-programming – a technique used in agile methodologies, where two
programmers work simultaneously on the same task. Several previous studies
(Williams 2000; Williams and Kessler 2000b), have mostly demonstrated the
emotional and satisfaction related advantages of pair-programming. The current
research aims to discover the differences in performance using non-pair- and
pair-programming teams. The research method implemented is a controlled
experiment. The rationale behind this approach is that, although two
programmers are working together on the same task and are therefore
expending more hours than if programming alone, the quality of the teamwork
is higher. Two different structures of team were implemented in the experiment:
1) two workers in a team working separately on different tasks (non-pair
programming), 2) two workers working together in a team on the same task
(pair-programming). These two structures also provide two different process
performance characteristics – in the case of non-pair programming, process
performance seems to be greater because the two programmers can perform
separate tasks. Although direct process performance (for example, number of
produced Lines of Code) is lower in the case of pair-programming, the quality
of the delivered code (process performance in general) is greater and needs less
amendments or improvements afterwards; for example, during the testing and
debugging phase.

The advantages of code delivered using a pair-programming team do not
appear in quantitative measures of productivity per employee, but evidently the
teamwork appears to produce higher structural performance creating higher SD
process performance. The main result of Study I is that in terms of direct
process performance the efficiency of pair-programming is about the same as
non-pair programming. But that additional organizational memory and greater
team member satisfaction with 1) the result, 2) the method and 3) the partner
does result from pair-programming.

8

30

Structural performance and the OL environment

The non-pair vs pair-programming dimension characterizes unilateral structural
performance at the cellular team level. To generalize the concept of structural
performance at the project team level, a new framework is necessary. More
diversified structural performance is explored at the SD team level on the basis
of the OL environment. As presented in Figure 2.3, OL is a feedback-based
cyclic process led by the management of the project team. OL appears in the SD
process and is described in several ways. For example, Nonaka et al (2003)
describes the OL environment as a “... diversified space, where organization
members learn together, as well as the result of the OL process”. An OL
environment consisting of mental models, feelings, emotions and experiences as
a mental, organizational and social pattern is described by Senge (1990) in the
form of a five-factor model and by Mets (2002) as a three-factor model
specially identifying role of main process (here SD) in OL. The same OL
environment characteristics (mental models and shared vision) are introduced in
the agile approach by Kruchten (2007) and Kollmann (2008).

Study II aimed to explore the OL environment as a pattern of OL features in
the SD project. The research instrument was a questionnaire consisting of one
part on OL and another on project management. The project management part
was included to discover the possible mutual impact of the features of OL and
project management. Patterns of OL were derived via an exploratory factor
analysis.

The study was performed in Estonian SD teams, and three- and five-factor
patterns were explored as structure performance models. It was discovered that
project management issues are genuine for the OL environment. Consequently,
the OL environment in Estonian SD teams mostly corresponds to the five-factor
model and the three-factor model. One industry specific feature is presented in
both models – a strong feature called “Desire for personal mastery”. This
feature is evidence of a perceived demand to improve the developers’ own
skills.

In Study II Senge’s five disciplines and Mets’ three-factor model of the OL
environment were implemented and adjusted for the SD project teams as a
structural performance framework. In addition to this framework, the qualitative
evaluation of structural performance is necessary to evaluate the quality of the
OL environment. This evaluation issue was resolved in Study III as presented in
the next section.

Structural performance evaluation

Structural performance explored according to the features of OL as presented in
the previous section is not comparable across projects. To compare the struc-
tural performance of different projects the qualitative method is implemented.

31

To find such a measure, the different software process models were
analyzed. The software development process assessment tools, like CMMI, ISO
9001, ISO/IEC 12207 and ISO/IEC 15505 were analyzed to find another more
qualitative way to define the structural performance of an SD project. As a
result of the analysis, CMMI process area categories were chosen to express the
structure of SD processes as structural performance. This choice was made
because in comparison with the others, the result of the assessment for each
process area category is expressed as a qualitative measure – self evaluated
maturity level. Besides, the use of CMMI as the basis of structural performance
evaluation was confirmed by the study by Harter et al (2000), identifying a clear
connection between maturity levels and software product quality. Harter et al
(ibid) introduced modelling structural performance in terms of maturity level
according to CMMI and process performance in terms of Lines of Code, Errors
Repaired, Effort and so on. The results of this study (ibid) indicate that although
enhancing process maturity needs additional (development) effort: the greater
the maturity or the greater the structural performance, the shorter the time
needed to develop the product and the better the process performance in
general.

The maturity level, as a result of the assessment of the development process,
is usually evaluated by certification bodies. An external audit identifies the
practices predefined by CMMI and specifies a maturity level for the SD process
accordingly. Study III adapts the main ideas and criteria of the method to
evaluate the maturity of the project team across the process area categories
replacing the external audit with an internal self-evaluation. Each process area
was evaluated according to the level of the applicability of the particular pro-
cess area in the project. The evaluations were then summarized for each process
area category. As opposed to conventional CMMI, maturity level is evaluated
across process area categories as the maturity level for each particular category.

In the process of the current study, six semi-structured interviews with
experienced project managers were performed. The structure of the interviews
consisted of three parts – 1) general data, 2) project success related data, and
3) SD and OL related data. Project success related data includes a self-
evaluation of process areas in the project predefined by CMMI. In the current
study the quality management issues were also analyzed – the most popular
quality assessment standard among Estonian SD teams is ISO 9001. Regarding
the relation between SD process self evaluation and ISO certification, the ISO
certified projects turned out to be more balanced across process area categories.

The methodology developed in Study III allows us to analyze maturity in the
project relatively inexpensively and therefore, to evaluate the structural per-
formance of the project.

32

4. FINDINGS AND DISCUSSION

In Study I structural performance appears at the cellular level as pair- and non-
pair programming. Pair-programming in the SD process requires additional
effort since it reduces the number of tasks performed in a specific period – two
workers work on the same task. Most experiments and studies of pair-
programming described in the literature focus on the emotional and social
aspects of teamwork. For example, Williams and Kessler (2000a, 2000b) and
Williams, Kessler, Cunningham and Jeffries (2000) and Williams (2000)
present the benefits of pair-programming for collaborative work, adhering to
procedures and standards, satisfaction with the work process and so on. The
current study confirms the presence of these advantages. Besides these social
and emotional aspects, Study I proves via a controlled experiment that the
process performance results in both pair-programming and non-pair
programming teams were statistically equivalent. In other words the additional
effort of applying pair-programming does not essentially reduce the process
performance of the SD process in general.

Team satisfaction was additionally analyzed in Study I. Satisfaction was
divided using a factor analysis into three different types of satisfaction: satis-
faction 1) with result, 2) with method and 3) with partner. As opposed to other
studies, Study I showed lower satisfaction when using the pair programming
method. The reason for this difference is the complexity of the tasks used in the
experiment and dissatisfaction increased along with the complexity of the
assignments. Dissatisfaction with result was transferred to dissatisfaction with
method. A similar transference was described by McDowell, Werner, Bullock
and Fernald (2003). McDowell et al (ibid.) also refer to satisfaction with result
as confidence, and this is related to the “Desire for personal mastery” as a
feature of the OL environment in Study II.

A more detailed and diverse example of structural performance was presen-
ted in Study II as the OL environment. A theoretical framework based on
Senge’s five disciplines and Mets’ three-factor model was implemented and
adjusted for the SD project teams. The number of features (in patterns) and the
structure of the pattern turned out to be relevant to the theoretical basis of the
study and also according to features of the OL environment discovered in agile
environments. Mental models and shared vision are mostly presented in agile
environments.

Compared to other studies exploring the structure of the OL environment in
SD project teams, full correspondence between the features of the current
empirical model was not established. The features described by Kelly (2003) do
not correspond, but among the features defined by Shepherd et al (2006),
partially corresponding features can be found in the empirical five-factor model.

In comparison with other Estonian industries, empirical models of Estonian
SD teams are more accurate in terms of the orthogonality of the features. The
correlations between the features in the three-factor empirical model are
remarkably lower (between 0.06 and 0.14, on significance level 0.05) than in a

33

similar model based on data from service and manufacturing enterprises
(between 0.22 and 0.42 accordingly, on significance level 0.001) (Mets and
Torokoff 2007).

Among the OL features presented in the Estonian SD teams “Desire for
personal mastery” appeared to be a strong feature. This feature was similarly
presented in the five-factor model and the three-factor model as well. According
to the analysis of team satisfaction in Study I dissatisfaction with results was
similarly strong for complicated assignments. These two findings are evidence
of the perceived demand to improve their own skills among Estonian project
team members.

To evaluate the quality of the structural performance, the framework for self-
evaluation was created in Study III. This framework allows us to analyze the
maturity in the company, and therefore, evaluate the structural performance in
the project team relatively inexpensively. The actual SD maturity evaluated
among Estonian software developing companies in the current study is not very
high – only basic process areas are evident. The motivation for software process
improvement increases team satisfaction in terms of structural performance:
emotionally successful projects were more mature and balanced.

Contribution of the thesis

SD project success is the consensus of different project stakeholders. This
creates the need for appropriate methodologies and concepts. In this work we
have explored structural performance improvement as a managerial tool for
process performance enhancement. Structure performance is a suitable concept
for building consensus between project stakeholders’ interests for SD project
success.

The theoretical value of the thesis is its attempt to link the cellular level,
organizational level and structural performance in software development. The
OL environment explored among Estonian SD teams provided that link. The
OL features explored in SD are clearer and statistically more independent than
among other Estonian service and manufacturing companies. This confirms the
viewpoint based on OL theory, that features of OL are more essential for
knowledge intensive industries such as SD.

The practical outcomes of the current work include the OL features question-
naire and methodology for SD process maturity self-evaluation in SD teams.
The SD process maturity self-evaluation methodology created in the process of
the current study allows us to evaluate the quality of structural performance for
internal needs without a costly and time-consuming certification process.

Instances of structural performance, presented in the current study, are pro-
visional and serving the basis for following studies. Probably there exists a wide
range of different useful frameworks of structural performance. Therefore the
structural performance in general is a useful managerial tool for resolving SD
development discrepancies and achieving SD project success.

9

34

5. CONCLUSIONS

An SD project usually has three main groups of stakeholders – the development
company management, the project customer as software user and the project
team as the software implementer. According to former studies, the interests of
these groups differ. A successful project results when software that is user-
friendly and works is delivered on time and within budget. Hence, project
success is defined in terms of a consensus between the interests of these three
groups of project stakeholders.

Project performance on the management level is important in relation to time
and budget. This performance is a feature of the company since it is dealing
with turnover and profit issues. However, project performance has meaning as a
measure of success at the project level as well. Project performance is divided
into process and structural performance. Process performance is more easily
measured, but difficult to improve. Evaluating structural performance is more
complicated. But in contrast to process performance, the improvement of
structural performance is a task for the management.

The current research focuses on structural performance as an instrument of
the project management to improve process performance, and therefore, to
complete SD projects successfully. Firstly, structural performance is introduced
at the cellular level as process performance in two different structures – pair-
and non-pair programming. A more advanced instance of structural perfor-
mance is the OL environment. Clearly identified OL features are evidence of
agility in the project environment and a high level of structural performance. To
evaluate structural performance more precisely, the concept of maturity levels is
introduced. In addition to the conventional concept of maturity levels (CMMI),
the adjusted self-evaluation is quicker and easier to use.

Conclusion 1: The analysis of the concepts presented in various studies
shows that structural and process performance are important success factors for
a software project. This PhD thesis mainly focuses on the social, organizational
and managerial aspects, including organizational learning and project manage-
ment. During the course of this research it became apparent that the perfor-
mance of a project consists of a structural component (in the wider sense) and a
dynamic component. Structural performance can be expressed in different ways,
such as 1) the maturity of the development process, 2) organizational learning
ability, and 3) the satisfaction of project team members. The structural perfor-
mance of the development process can be measured according to its maturity
level, which is evaluated by an independent certifier or by the project team via
self-evaluation. Organizational learning ability expresses structural performance
on the scale of “learning – non-learning”. The third way of describing structural
performance – project team satisfaction – can be divided into: 1) satisfaction
with the result – motivational aspect, 2) satisfaction with the method (of work)
– organizational aspect, and 3) satisfaction with the partner – social aspect.

35

Conclusion 2: Agile methodologies have been very popular since the
publication of the Agile Manifesto in 2001, and they exploit relatively frequent
use in small and medium sized businesses. One of the best known agile metho-
dologies is pair programming. Structural performance can be observed parti-
cularly well in pair programming, since pair and non-pair programming are two
clearly distinguishable work methods or structures. Most advantages of pair
programming established in previous studies have been effectiveness-oriented
and social in nature. These have also been confirmed by current research. In
general, pair programming is regarded as more efficient (productive). Previous
studies have focused more on this programming technique’s social satisfaction
related aspects, than the productiveness of the development process. The
controlled experiment conducted during this research focused on measuring the
productivity and no differences in productivity were observed for pair and non-
pair programming. Nevertheless, these results showed that pair programming is
not less productive and is thus useful as another technique to increase the
process performance of the development process as a whole.

Conclusion 3: The agile approach as a learning environment in general is
not so clearly explored as in the case of pair programming. Previous studies
refer to the characteristics of the learning environment primarily in more intelli-
gent and agile organizations. The best known is Senge’s five-factor model of
the organizational Learning. As a generalization of Senge’s OL concept, Mets’
three-factor model has been derived from the example of Estonian businesses.
In the present study, project management characteristics inherent in software
development were added to these approaches and a questionnaire for software
companies was composed. As a result of the survey, OL characteristics for
software companies were established in accordance with Senge’s five-factor as
well as the three-factor model previously observed in Estonian businesses. The
first model also included modified characteristics of “Systems thinking” and
“Mental models”, the remaining components – “Work values”, “Team develop-
ment”, and main process related “Desire for personal mastery” – were similar
for both models. In giving importance to personal mastery, the need to improve
one’s skills felt among Estonian software developers can be noted. At the same
time, even in a survey with a relatively small sample, the OL characteristics/
patterns in Estonian software development are more visible than in manufac-
turing and services organizations based on previous studies. This confirms our
view of software development organizations as learning organizations.

Conclusion 4: Evaluation and development methodologies used in projects
usually depend on the project size, market needs and level of maturity. Research
so far has demonstrated that methodologies are the more formalised the larger
the projects and the higher the level of maturity. Customer demand and the need
to better organize the work of the development team are also among the main
reasons for implementing formalised methods, such as CMMI and ISO9001, for
evaluating development processes. Hence, evaluating partners based on forma-
lised methodologies is used in global and especially in outsourced development

36

services; often the certification of the development team is required. Our
research in Estonia established that due to the lack of customer demand,
certification is not used and most development projects are not very large.
Consequently, the formalization of the development process remains low and
various iterative and agile approaches are popular even in relatively large busi-
nesses, such as the IT department of one of the major banks active in Estonia.

Conclusion 5: A mature software development project is characterized by
properly documented process performance data. Post-project interviews re-
vealed that collecting process performance data is not a priority among Estonian
developers – data for evaluating the quality of the software created existed for
two projects out of six; data collection was considered complicated. Data about
the volume of the project existed in two thirds of the projects researched. The
situation as a whole shows Estonian software development being on half way to
maturity in terms of project management and this implies unused opportunities
for Estonian companies in the global knowledge economy.

37

6. LIMITATIONS AND FUTURE RESEARCH

Structural performance issues in the current dissertation have been explored at
elementary (minimally two members) team level (Study I), project team level
(Study II) and evaluated across process area categories as process maturity level
(Study III).

The Study I was a carefully planned and performed pair-programming
experiment in a controlled environment, but the essential limitation of this study
was the sample. The first part of the study was performed among students, who
do not have long-term experience in SD. Therefore, the generalization of results
for experienced developers is somewhat problematic. However, the study
demonstrated the potential for the rigorous analysis of SD process performance.

The sample in the second part of the study was more general, since ex-
perienced developers participated in this study. This sample was biased accor-
ding to the fields of activity because more than half of the respondents were
from software development department in Estonia’s largest bank. The rest of
the respondents were mostly from small and micro-sized SD companies.

Study II explores structural performance as features of OL. OL is significant
at all levels of management – operational, tactical and strategic. The current
study focused on projects as first of all an operational entity of management.
Therefore, the aspects related to features of OL on tactical and strategic levels
are not covered in this study.

The methodology for evaluating SD process maturity using self-evaluation
developed in Study III is in its initial stages. The six interviews were the first
attempt to explore the structural performance self-evaluation quantitatively.
Hence, the future justification and generalization of the self-evaluation metho-
dology would be necessary.

The general limitations for all studies performed are 1) locality, as only
Estonian teams participated in the studies and 2) the diversity of the metho-
dologies. Due to the long period and different methods of study, the process of
joining and generalizing the collected results and some interpretations caused a
slight bias because of the changing business environment and accumulation of
experience by software developers in that period.

There is also no proven clear causal relationship between different more
complicated structures and process performance. Pair-programming is a very
simple example and future studies should prove or disprove the influence of
different structures on performance.

The studies presented in this thesis can be considered as introductory
research into structural performance. In the future, the challenge would be to
repeat similar studies among the international community of software deve-
lopers and across a full-scale range (from micro-sized to large) of SD
enterprises to generalize the results. Also, some future research would be
desirable to analyze more precisely the role of different structures in SD project
success. It is reasonable as well to find more influential and convenient

10

38

structures beside process assessment standards or Organizational Learning
environments for managing SD process performance as a success factor of SD
projects.

The list of instances of structural performance presented in the current study
is not exhaustive and can be complemented in future studies. Structural per-
formance as a phenomenon remains open to continuing interpretations in the
future. Quite possibly, some other concepts and approaches exploring the struc-
tural performance characteristics also exist. For example, an approach based on
project manager leadership is probably useful in small SD teams and might
complement the structural performance description.

39

REFERENCES

1. Argyris, C. (1976). Single-loop and double-loop models in research on decision
making, Administrative Science Quarterly, Vol. 21, pp. 363–375

2. Cao, L., Ramesh, B. (2007) Agile software development: ad hoc practices or sound
principles, IEEE Pro (Mar.–Apr. 2007), pp. 41–47

3. CMMI (2006), CMMI for development, Version 1.2, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA

4. Cockburn, A. (2002) Agile software development. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA

5. Delaney, J., T., Huselid, M. A. (1996) The impact of human resource management
practices on perceptions of organizational performance, The Academy of Manage-
ment Journal, Vol. 39, No. 4, pp. 949–969

6. Eveleens, J. L., Verhoef, C. (2010) The rise and fall of the Chaos report figures,
IEEE Software, Vol. 27, No. 1

7. Faraj, S., Sproull, L. (2000) Coordinating expertise in software development teams,
Management Science, Vol. 46, No. 12, pp. 1554–1568

8. Feldt R., Angelis, L., Torkar, R., Samuelsson, M. (2010) Links between the perso-
nalities, views and attitudes of software engineers, Information and Software
Technology, Vol. 52, pp. 611–624

9. Fichman, R. G., Kemerer, C. F. (1997) The assimilation of software process
innovations: an organizational learning perspective, Management Science, Vol. 43,
No. 10 pp. 1345–1363

10. Fowler, M., Highsmith, J. (2001) Agile manifesto, Software Development, Vol 9,
Part 8, pp. 28–35

11. Garcia-Morales, V. J., Llorens-Montes, F. J., Verdu-Jover, A. J. (2008). The effects
of transformational leadership on organizational performance through knowledge
and innovation, British Journal of Managament, Vol. 19, pp. 299–319

12. Glazer, H., Dalton, J., Anderson, D. J., Konrad, M., Shrum, S. (2008) CMMI or
Agile: why not embrace both!, Technical Note, CMU/SEI-2008-TN-003

13. Gobeli, D. H., Koenig, H. F., Bechinger, I. (1998) Managing conflict in software
development teams: a multilevel analysis, Journal of Product Innovation Manage-
ment, Vol. 15, Issue 5, pp. 423–435

14. Guest, D., N. Conway, N., Dewe, P. (2004) Using sequential tree analysis to search
for bundles of HR practices, Human Resource Management Journal, Vol. 14, No.
1, pp. 79–96

15. Harter, E. D., Krishnan, S. M. and Slaughter, A. S. (2000), Effects of process
maturity on quality, cycle time, and effort in software product development,
Management Science, Vol. 46, No. 4, pp. 451–66

16. Hoffman, H., F. and Lehner, F. (2001) Requirements engineering as a success
factor in software projects, IEEE Software, Vol. 18, Issue 4, pp. 58–66

17. Huselid, M. A. (1995) The impact of human resource management practices on
turnover, productivity and corporate financial performance, The Academy of
Management Journal, Vol. 38, No. 3, pp. 635–672

18. Ibert, O. (2004) Projects and firms as discordant complements: organisational
learning in the Munich software ecology, Research policy, Vol. 33, pp. 1529–1546

40

19. Jiang, J. J., Klein, G., Hwang H., Huang, J., Hung, S. (2004) An exploration of the
relationship between software development process maturity and project per-
formance, Information and Management, Vol. 41, pp. 279–288

20. Johnson, J. R. (2002) Leading the learning organization: portrait of four leaders,
Leadership & Organization Development Journal, Vol. 23, No. 5, pp. 241–249

21. Kalermo, J., Rissanen, J. (2002) Agile software development in theory and practice,
Master Thesis, University of Jyväskylä

22. Kelly, A. (2003) Software development as organizational learning, MBA thesis,
Nottingham University Business School

23. Kivipõld, K., Ahonen, M. (2011) Evidence of relationship between organizational
leadership capability and job satisfaction: the case of IT service organization in
Estonia, In Proceedings of the V International Conference Management Theory and
Practice: Synergy in Organisations, Tartu, 01–02 April 2011, (Editors) Vadi M.,
Jaakson, K., Kindsiko E.

24. Kollmann, J. (2008) Designing the user experience in an agile context, Project
report, Faculty of Life Sciences, University College London

25. Kruchten, P. (2007) Voyage in the agile memeplex, ACM Queue, Vol. 5, No. 5, pp.
38–44

26. Kähkönen, T., Abrahamsson P. (2004) Achieving CMMI level 2 with enhanced
extreme programming approach, In Proceedings of PROFES, Editors F. Bomarius
and H. Iida, LNCS 3009, pp. 378–392

27. Lai, K. H., Cheng, T. C. E. (2005) Effects of quality management and marketing on
organizational performance, Journal of Business research Vol. 58, Issue 4, pp. 446–
456

28. Linberg, K. R. (1999) Software developer perception about software project failure:
a case study, The Journal of Systems and Software, Vol. 49, pp. 177–192

29. McDowell, C., Werner, L., Bullock, H. E., Fernald, J. (2003) The impact of pair
programming on student performance, perception and persistence, 25th Inter-
national Conference on Software Engineering, Portland, Oregon, May 03–May 10

30. Mathiassen, L., Pourkomeylian, P. (2003) Managing knowledge in software
organization, Journal of Knowledge Management, Vol. 7, No. 2, pp. 63–80

31. Mets, T., Torokoff, M. (2007) Patterns of learning organization in Estonian com-
panies, TRAMES. A Journal of the Humanities and Social Sciences, Vol. 11, No. 2,
pp. 139–154

32. Mets, T. (2002) Learning-based strategic development framework: implementation
in Estonian company, Management of Organizations: Systematic Research, No. 23,
pp. 83–93

33. Misra, S. C., Kumar, V., Kumar, U. (2009) Identifying some important success
factors in adopting agile software development practices, The Journal of Systems
and Software, Vol. 82, pp. 1869–1890

34. Mitki, Y., Shani, A. B., Meiri, Z. (1997) Organizational learning mechanisms and
continuous improvement: a longitudinal study, Journal of Organizational Change
Management, Vol. 10, No. 5, pp. 426–446

35. Nidomulu, S. R. and Subramani, M. R. (2003) The matrix of control: combining
process and structure approaches to managing software development, Journal of
Management Information Systems, Vol. 20 No. 3, pp. 159–96

36. Nonaka. I., Toyama, R., Byosiere, P. (2003) A theory of organizational knowledge
creation: understanding the dynamic process of knowledge, Handbook of Organi-
zational Learning & Knowledge, Oxford University Press, New York, pp. 491–517

41

37. Petter, S. (2008) Managing user expectations on software projects: Lessons from
the trenches, International Journal of Project Management, Vol. 26, Issue 7, pp.
700–712

38. Pikkarainen, M., Salo, O., Still, J. (2005) Deploying agile practices in organi-
sations: a case study, in Proceedings of Euro SPI, Editors I. Richardson, et. al.,
Lecture Notes of Computer Science, Vol. 3792, pp. 16–27

39. Procaccino, J. D., Verner, J. M., Overmyer, S. P., Darter, M. E. (2002) Case study:
factors for early prediction of software development success, Information and
Software Technology, Vol. 44, pp. 53–62

40. Procaccino, J. D., Verner, J. M., Shelfer K. M., Gefen, D. (2005) What do software
practitioners really think about project success: an exploratory study, The Journal of
Systems and Software, Vol. 78, pp. 194–203

41. Procaccino, J. D., Verner, J. M., Darter, M. E., Amadio, W. (2005) Toward
predicting software development success from the perspective of practitioners: an
exploratory Bayesian model, Journal of Information Technology, Vol. 20, No. 3,
pp. 187–200

42. Qumer, A., Henderson-Sellers, B. (2010) Empirical evaluation of the agile process
lifecycle management framework, in Proceedings of Fourth International Con-
ference on Reserch Challenges in Information Sciences, editors Loucopoulos, P.,
Cavarero, J. L., Nice, May 19–21, France, pp. 213–222

43. Rifkin, W., Fulop, L. (1997) A review and case study on learning organizations,
The Learning Organization, Vol. 4, No. 4, pp. 135–148

44. Rising, L., Janoff, N. S. (2000) The Scrum software development process for small
teams, IEEE Software, Vol. 17, Issue 4, pp. 26–32

45. Royce W. W. (1987) Managing the development of large software systems:
concepts and techniques, in Proceedings of the 9th international conference on
Software Engineering, Monterey, California, United States, pp. 328–338, IEEE
Computer Society Press

46. Salo, O., Pikkarainen M. (2005) Agile deployment model, public report, Agile VTT,
Finland

47. Senge, P. (1990) The fifth discipline. The art and practice of the learning organi-
zation, Random House, Sydney

48. Shepherd M. M., Tesch B. D., Hsu S. C. J. (2006) Environmental traits that support
a learning organization. The impact on information system development projects,
Comparative Technology Transfer and Society, Vol. 4 No. 2, pp. 196–218

49. Tomaszewski, P., Lundberg, L. (2005) Software development productivity on a
new platform: an industrial case study, Information and Software Technology, Vol.
47, pp. 257–269

50. Tseng Y., Lee T. (2009) Comparing appropriate decision support of human
resource practices on organizational performance with DEA/AHP model, Expert
Systems with Applications, Vol. 36, Issue 3, Part 2, pp. 6548–6558

51. Turner (2002), Agile development: good process or bad attitude, Lecture Notes in
Computer Science, Vol 2559, pp. 134–144

52. Williams, L., Kessler, R. R. (2000a) All I really need to know about pair
programming I learned in kindergarten, Communications of the ACM

11

42

54. Williams, L., Kessler, R. R., Cunningham, W., Jeffries, R. (2000) Strengthening the
case for pair programming, IEEE Software

55. Williams, L. (2000) The Collaborative Software Process, University of Utah

53. Williams, L., Kessler, R. R. (2000b) Experimenting with industry’s “Pair-
Programming” model in the computer science classroom, Journal on Software
Engineering Education

43

ACKNOWLEDGEMENTS

The author is grateful to his supervisors, Tõnis Mets and Jüri Kiho, for useful
advices, help and support, always encouraging him whenever he needed it. He
would also like to thank his co-authors and all his other colleagues and friends
for supporting him throughout his long and finally successful PhD studies. He is
very thankful to his family, especially to wife Eve, for all this long years of
understanding and support.

The author has been partly financially supported by the Estonian Ministry of
Education’s project SF0180037s08, by the Centre for Entrepreneurship and
Institute of Computer Science of University of Tartu. He is also thankful to his
former employer Cybernetica AS, one of the few private research companies in
Estonia, where the initial idea of this study was born. Last but not least, the
author would like to thank numerous students, developers and other software
development team members, who contributed to data collection used in this
study. Printing the dissertation has been supported by European Social Fund.

44

SUMMARY IN ESTONIAN

Struktuurne tulemuslikkus tarkvaraprojekti
edutegurina – Eesti kogemus

Tarkvaraarenduse projekt on sama vana mõiste kui tarkvaraarendus ise – esime-
sed tarkvaraarendusprojektid viidi läbi juba eelmise sajandi kuuekümnendatel
aastatel. Pikale ajaloole vaatamata on tarkvaraprojektide edukuse protsent
jätkuvalt madal. Sellise olukorra üheks põhjuseks on asjaolu, et tarkvaraprojekti
edukus võib olla määratletud mitmel erineval viisil. Näiteks konkreetne
tarkvaraprojekt on edukaks ettevõtte juhtkonna jaoks, kui vajalik funktsionaal-
sus on valminud tähtajaks ja selle valmimiseks tehtud kulutused on jäänud
eelarve piiresse. Süsteemi loomisel osalenud arendusmeeskonna vaade sellele
samale projektile võib aga olla hoopiski erinev. Sageli väärtustavad projekti-
meeskonna liikmed lisaks teostatud funktsionaalsusele ka projekti käigus esine-
nud tehnoloogilisi väljakutseid, saadud kogemusi ja uusi oskusi. Samuti on
olulisel kohal projektimeeskonna liikmete rahulolu. Seega saame öelda, et sage-
li on projekti edukuse kriteeriumid erinevate projekti osapoolte jaoks erinevad.

Kui ettevõtte juhtkonnale oluliste edutegurite hulgas on tähtaegadest ja eel-
arvest kinni pidamine selgelt ja üheselt määratletav, siis kolmas edutegur – äri-
listele eesmärkidele vastavus – on keerulisem. Lisandub kolmas osapool – loo-
dava tarkvara kasutaja. Projekti edukust saame seega vaadelda kolme erineva
osapoole – tarkvara loonud projektimeeskonna, tarkvarafirma juhtkonna ja tark-
vara kasutaja – konsensusena. Edukas tarkvaraprojekt on konsensus kõigi nende
kolme osapoole huvide vahel.

Projekti edukusega on tihedalt seotud teine mõiste – projekti tulemuslikkus.
Üldiselt, kui räägitakse projekti tulemuslikkusest, siis mõeldakse selle all
projektimeeskonna tulemuslikkust. Projekti parem tulemuslikkus annab projek-
tile paindlikkuse ja võimaldab seeläbi jõuda väiksema ressursikuluga projekti
edukaks lõpetamiseks vajaliku konsensuseni.

Projekti tulemuslikkus jaguneb struktuurseks tulemuslikkuseks ja protsessi
tulemuslikkuseks. Esimest korda on selliselt kahte liiki projekti tulemuslikkust
eristanud Niddomulu ja Subbaramani (2003). Struktuurne tulemuslikkus väljen-
dab projektimeeskonna struktuuri „ ... kirjeldades projektis kehtivaid standar-
deid ja valikuid otsuste delegeerimiseks”. Protsessi tulemuslikkus kirjeldab „ ...
talitusviise ja tulemeid kui võtmemeetmeid projekti töö juhtimiseks” (ibid).

Nii ettevõtte kui ka projektimeeskonna tulemuslikkuse aluseks on töötajate
innovatiivsus, nende võimed ja oskused ning motivatsioon, samuti oma-
vahelised suhted ehk kokkuvõtlikult – töötajaskonna võimekus. Siiski ei piisa
tulemuslikkuseks üksnes vajaliku võimekuse olemasolust. Selleks, et võimeku-
sest saaks konkreetne tulemus on tarvis veel midagi, mis viiks projektimees-
konna potentsiaali või meeskonna võimekuse konkreetse tulemuseni ehk siis
realiseeriks võimekuse tulemuslikkusena. Oluline on teada projektimeeskonna
eriomadusi, mis on vajalikud kogu meeskonna võimekuse realiseerumiseks ja

45

seeläbi projekti eduks. Doktoritöö eesmärk on identifitseerida tarkvaraprojekti
eriomadused, mis on aluseks projektimeeskonna struktuursele tulemuslikkusele,
ning kirjeldada ja üldistada struktuurse tulemuslikkuse mudelid Eesti projekti-
meeskondade näitel.

Doktoritöö koosneb kolmest suhteliselt erinevast kuid kontseptuaalselt seo-
tud Eesti tarkvara-arendusmeeskondade hulgas läbi viidud uuringust. Töö põhi-
liseks eesmärgiks on uurida struktuurse tulemuslikkuse olemust ja kirjeldada
struktuurse ning protsessi tulemuslikkuse vahelist seost. Kõigepealt kirjel-
datakse struktuurset tulemuslikkust Uuringus I algsel minimaalsel tasemel, kus
projektimeeskond koosneb kahest isikust. Selle eksperimendi eesmärgiks on
kirjeldada seoseid struktuurse (paaris-, mittepaaris-programmeerimine) ja prot-
sessi tulemuslikkuse (tootlikkuse) vahel. Uurimuse käigus oli plaanis tuvastada,
kas meeskonna struktuur mõjutab programmeerimise tulemuslikkust (tootlik-
kust). Uurimismeetodiks oli kontrollitud eksperiment. Samas uurimuses on
kirjeldatud ka minimaalset projektikeskkonda kui eksperimendis osalejate
rahulolu, mille mõõtmiseks on kasutatud vastavat küsimustikku.

Selleks, et tuvastada tarkvaraarendusprojekti keskkonna kui struktuurse tule-
muslikkuse määra eripära mitte-eksperimentaalses olukorras, on läbi viidud
Uuring II. Kuna tarkvaraprojekti keskkond on tegelikus tarkvaraarenduses
oluliselt mitmetahulisem, siis on selle uurimuse taristuks valitud õppiva organi-
satsiooni kontseptsioon. Uurimismeetodiks on õppiva organisatsiooni küsi-
mustik ja sellele järgnev faktoranalüüs, mille abil lisaks õppiva organisatsiooni
omadustele on uuritud ka tarkvaraprojekti juhtimisega seotud eripärasid
projektimeeskonnas. Kuna projektimeeskonda pole võimalik vaadelda lahus
ettevõttest, milles projektimeeskond töötab, siis on selles uurimuses vaatluse all
ka ettevõtte töökorraldusega seotud aspektid nagu töötajate koolitus, projektide
plaanimine jms.

Selleks, et saada täpsemat ettekujutust struktuurse tulemuslikkuse hindami-
sest, eriti praktilistes rakendustes, on läbi viidud Uuring III, mille käigus
mõõdeti struktuurse tulemuslikkuse taset kui CMMI arendusprotsessi küpsuse
taset. Uurimismeetodiks on selles uurimuses struktureeritud intervjuud, mille
käigus uuriti Eesti tarkvaratootjate kuut projekti.

Uurimisprotsessi käik ja uuringute omavaheline seos on kujutatud
Joonisel 1.

Uurimisprotsessi lõpptulemusena valmis struktuurse tulemuslikkuse kirjel-
dus kui õppiva organisatsiooni keskkonna kirjeldus tarkvara projektimeeskonna
jaoks. Seda keskkonda kirjeldab õppiva organisatsiooni nii kolme- kui ka viie-
faktoriline mudel. Kvalitatiivselt iseloomustab projektimeeskonna struktuurset
tulemuslikkust CMMI küpsustase, mis on hinnatud üle kõikide CMMI
protsessivaldkondade.

12

46

Joonis 1. Uurimisprotsessi kirjeldus

Allikas: Autori koostatud

Juhtimisülesandena pole võimalik otseselt protsessi tulemuslikkust parandada,
näiteks suurendada otseselt edukalt läbitud testide arvu. Seda on võimalik teha
vaid struktuurse tulemuslikkuse suurendamise ehk projekti keskkonna paranda-
mise kaudu. Projektimeeskonna parem struktuurne tulemuslikkus (näiteks
CMMI või mõne muu otstarbekalt ja süstemaatiliselt rakendatud hindamis- või
arendusmetoodika mõttes) tagab ka parema protsessi tulemuslikkuse.

Siiski kulutab struktuurse tulemuslikkuse suurendamine projekti jaoks eral-
datud ressursse, seega jääb projekti otsese edenemise jaoks neid vähem. Projekti
õnnestumise tõenäosust suurendab projekti struktuurse tulemuslikkuse paranda-
mine vaid sel juhul, kui selle läbi saadav aja kokkuhoid on suurem kui struk-
tuurse tulemuslikkuse parandamiseks kulunud aeg.

Järgnevalt on esitatud töö põhijäreldused.
1. Doktoritöös läbi viidud uuringute käigus selgus, et projekti tulemuslikkus

koosneb struktuursest komponendist (laias mõttes) ja dünaamilisest kompo-
nendist. Struktuurne tulemuslikkus on väljendatav mitmel erineval viisil
nagu 1) arendusprotsessi küpsustase, 2) organisatsioonilise õppimise võime-
kus ja 3) projektimeeskonna liikmete rahulolu. Arendusprotsessi struktuurset
tulemuslikkust saab mõõta kui arendusprotsessi küpsustaset, mis on hinnatud

47

sõltumatu sertifitseerija poolt või siis projektimeeskonna poolt eneseana-
lüüsina. Organisatsioonilise õppimise võimekus väljendab struktuurset tule-
muslikkust „õppiv vs. mitteõppiv” skaalal. Kolmas viis struktuurse tulemus-
likkuse väljendamiseks – projektimeeskonna rahulolu, on jaotatav 1) rahul-
oluks tulemusega – motivatsiooniline aspekt, 2) rahuloluks (töö) meeto-
diga – organisatsiooniline aspekt ja 3) rahuloluks partneriga – sotsiaalne
aspekt.

2. Struktuurne tulemuslikkus on iseloomulik ka alates 2001 aastast laiemalt
kasutusele võetud agiilsetele (agile) metoodikatele. Eriti selgelt on struk-
tuurne tulemuslikkus väljendunud paarisprogrammeerimises, kuna paaris- ja
mittepaaris-programmeerimine on kaks selgelt eristatavat tööviisi ehk
struktuuri. Enamus varasemates uuringutes tuvastatud paarisprogrammeeri-
mise eeliseid on olnud tõhususele orienteeritud ja sotsiaalse iseloomuga.
Need erisused said kinnitust ka käesolevas uuringus. Üldiselt on arvatud, et
paarisprogrammeerimine on tõhusam (produktiivsem). Eelmistes uurimustes
on enam tähelepanu pööratud selle programmeerimistehnika sotsiaalsetele ja
rahuloluga seotud aspektidele, kui arendusprotsessi tulemuslikkusele.
Uuringu käigus läbi viidud kontrollitud eksperiment keskendus tulemus-
likkuse mõõtmisele, kuid ei avastanud erinevusi paaris- ja mittepaaris-
programmeerimise tulemuslikkuse vahel. Siiski näitasid saadud tulemused,
et paarisprogrammeerimine pole vähem produktiivne ja on seeläbi kasutatav
kui üks tehnikatest, mis tõstab kogu arendusprotsessi tulemuslikkust.

3. Agiilne projektikeskkond üldiselt, kui organisatsioonilise õppimise kesk-
kond, ei ole nii selgelt väljendunud kui paarisprogrammeerimise puhul.
Varasemad uuringud viitavad õppimiskeskkonna tunnustele eelkõige intelli-
gentsemates organisatsioonides. Enimtuntud on Senge õppiva organisat-
siooni (ÕO) viiefaktoriline mudel. Üldistades Senge ÕO kontseptsiooni on
Eesti ettevõtete näitel tuletatud Metsa kolmefaktoriline mudel. Täiendades
käsitlust tarkvaraarendusele omaste projektijuhtimise tunnustega koostati
käesolevas uuringus ÕO küsimustik tarkvarafirmadele. Küsitluse tulemusena
tuvastati tarkvarafirmadele omased ÕO tunnused vastavuses nii Senge viie-
faktorilisele kui ka varem Eesti ettevõtetes tuvastatud kolmefaktorilisele
mudelile. Esimene neist eristus „jagatud visiooni” ja „mõttemudelite” modi-
fitseeritud tunnustega, ülejäänud komponendid „tööväärtused”, „meeskonna
arendamine” ja põhiprotsessiga seonduv „isikliku meisterlikkuse vajadus”
olid mõlemal mudelil sarnased. Isikliku meisterlikkuse tähtsustamises võib
näha Eesti tarkvaraarendajate hulgas tajutud vajadust oma oskuste paranda-
miseks. Samas, isegi suhteliselt väikese valimiga uuringus on ÕO tunnused/
mustrid Eesti tarkvaraarenduses paremini välja joonistunud kui ülejäänud
tootmis- ja teenindusorganisatsioonides varasemate uuringute põhjal. See
kinnitab tarkvaraarendus-organisatsiooni iseloomustust õppiva organisat-
sioonina.

4. Projektides rakendatud hindamis- ja arendusmetoodikad sõltuvad tavaliselt
projekti suurusest, turuvajadustest ja küpsustasemest. Senised uurimused on

48

näidanud, et metoodikad on seda formaliseeritumad, mida suuremate ja kõr-
gema küpsustasemega projektidega on tegemist. Kliendinõudlus, aga ka
vajadus arendusmeeskonna töö paremaks korraldamiseks on samuti arendus-
protsesside hindamise formaliseeritud metoodikate nagu CMMI ja ISO9001
rakendamise peamisteks põhjusteks. Seega partnerite hindamine formali-
seeritud metoodika alusel on kasutusel globaalse ja eriti sisse ostetava aren-
dusteenuse puhul, sageli nõutakse arendusmeeskonna (CMMI) sertifitseeri-
tust. Meie uuring Eestis tuvastas, et kliendinõudluse puudumise tõttu pole
CMMI kasutusel ning enamus arendusprojekte pole väga suured. Seetõttu on
ka arendusprotsessi formaliseeritus madal ja populaarsed on erinevad iter-
atiivsed ja väledad lähenemised isegi suhteliselt suurtes ettevõtetes, nagu
näiteks ühe Eestis tegutseva suure panga IT osakonnas.

5. Küpset tarkvaraarendusprojekti iseloomustavad korrektselt dokumenteeritud
tulemuslikkuse andmed. Projektijärgsed intervjuud näitasid, et tulemus-
likkuse andmete kogumine pole prioriteediks Eesti arendajate hulgas: and-
med loodud tarkvara kvaliteedi hindamiseks olid olemas ainult kahe projekti
puhul kuuest – põhjenduseks andmete kogumise keerukus. Andmed projekti
mahu kohta olid olemas kahel kolmandikul uuritud projektidest. Situatsioon
tervikuna iseloomustab Eesti tarkvaraarendust olevat poolel teel projekti-
juhtimise küpsusele ja viitab tööstusharu kasutamata võimalustele globaalses
teadmusmajanduses.

PUBLICATIONS

13

CURRICULUM VITAE

Name Uuno Puus
Date of birth 28.06.1956
Citizenship Estonia
Home Kastani 24a–19, 50410 Tartu, Estonia
Phone +372 7 376 362
E-mail uuno.puus@ut.ee

Current position
Researcher, University of Tartu, Faculty of Economics and Business Administ-
ration, Centre for Entrepreneurship

Education
2002 – Present PhD student, University of Tartu;
1999–2002 MSc, Informatics, University of Tartu;
1987–1993 BSc, Psychology, University of Tartu;
1974–1979 Bsc, Applied mathematics, Tartu State University (University

of Tartu today).

Employment History
2010–Present, Researcher, University of Tartu, Faculty of Economics and

Business Administration, Centre for Entrepreneurship;
2008–2010 Consultant-advisor, University of Tartu, Faculty of Economics

and Business Administration, Centre for Entrepreneurship;
2002–2009 Researcher, Cybernetica AS;
1998–2009 Head of Laboratory, Cybernetica AS;
1994–1998 Accountant, Financial analyst, Tartu Maja Ltd;
1994 IT specialist, L. M. R. A. Ltd;
1992–1994 IT specialist, Tartu County Government;
1979–1992 Director, Teacher, Nõo Secondary School.

Studies and practices
2006, November Project Management for Software Development, (1 week

course), Tallinn, Cybernetica, Learningtree International,
course No. 340;

2006, September Management and Audit of Software Development Projects
by P. Ceulemans (2-day course), ISACA Estonian chapter,
Tallinn

2006, February Managing Complex Projects, (1 week course), Tallinn,
Cybernetica, Learningtree International, course No. 287;

2006, January Project Quality Management for Project Managers, (1 week
course), Tallinn, Cybernetica, Learningtree International,
course No. 349;

2005 January Innovative product commercialization, (2 month practice)
Netherlands, Groeningen, Zernike group.

101
26

ELULOOKIRJELDUS

Nimi Uuno Puus
Sünniaeg 28.06.1956
Kodakondsus Eesti
Kodune aadress Kastani 24a–19, 50410 Tartu
Telefon +372 7 376 362
E-mail uuno.puus@ut.ee

Amet, töökoht
Teadur, Tartu Ülikool, Majandusteaduskond, Ettevõtluskeskus

Haridustee
2002–praeguseni, Tartu Ülikool, doktorant;
1999–2002 Tartu Ülikool, MSc informaatikas;
1987–1993 Tartu Ülikool, BSc psüholoogias;
1974–1979 Tartu Riiklik Ülikool (praegune Tartu Ülikool) BSc

rakendusmatemaatikas.

Teenistuskäik
2010–praeguseni, Teadur, Tartu Ülikool, Majandusteaduskond, Ettevõtlus-

keskus;
2008–2010 Konsultant-nõustaja, Tartu Ülikool, Majandusteaduskond,

Ettevõtluskeskus;
2002–2009 Teadur, Cybernetica AS;
1998–2009 Laborijuhataja, Cybernetica AS;
1994–1998 Raamatupidaja, finantsanalüütik, Tartu Maja AS;
1994 IT spetsialist, L. M. R. A. AS;
1992–1994 IT spetsialist, Tartu Maavalitsus;
1979–1992 Direktor, õpetaja, Nõo Keskkool (praegu Nõo

Reaalgümnaasium).

Täiendõpe ja stažeerimine
2006, november Project Management for Software Development, (nädalane

kursus), Tallinn, Cybernetica, Learningtree International,
kursus nr. 340;

2006, september Management and Audit of Software Development Projects,
lektor P. Ceulemans (2-päevane kursus), ISACA Eesti
haruühing, Tallinn

2006, veebruar Managing Complex Projects, (nädalane kursus), Tallinn,
Cybernetica, Learningtree International, kursus nr. 287;

2006, jaanuar Project Quality Management for Project Managers, (1 week
course), Tallinn, Cybernetica, Learningtree International,
kursus nr. 349;

2005, jaanuar Innovative product commercialization, (2 kuuline
stažeerimine) Holland, Groeningen, Zernike group.

102

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

 1. Mati Heinloo. The design of nonhomogeneous spherical vessels, cylindrical

tubes and circular discs. Tartu, 1991, 23 p.
 2. Boris Komrakov. Primitive actions and the Sophus Lie problem. Tartu,

1991, 14 p.
 3. Jaak Heinloo. Phenomenological (continuum) theory of turbulence. Tartu,

1992, 47 p.
 4. Ants Tauts. Infinite formulae in intuitionistic logic of higher order. Tartu,

1992, 15 p.
 5. Tarmo Soomere. Kinetic theory of Rossby waves. Tartu, 1992, 32 p.
 6. Jüri Majak. Optimization of plastic axisymmetric plates and shells in the

case of Von Mises yield condition. Tartu, 1992, 32 p.
 7. Ants Aasma. Matrix transformations of summability and absolute summa-

bility fields of matrix methods. Tartu, 1993, 32 p.
 8. Helle Hein. Optimization of plastic axisymmetric plates and shells with

piece-wise constant thickness. Tartu, 1993, 28 p.
 9. Toomas Kiho. Study of optimality of iterated Lavrentiev method and

its generalizations. Tartu, 1994, 23 p.
10. Arne Kokk. Joint spectral theory and extension of non-trivial multiplica-

tive linear functionals. Tartu, 1995, 165 p.
11. Toomas Lepikult. Automated calculation of dynamically loaded rigid-

plastic structures. Tartu, 1995, 93 p, (in Russian).
12. Sander Hannus. Parametrical optimization of the plastic cylindrical shells

by taking into account geometrical and physical nonlinearities. Tartu, 1995,
74 p, (in Russian).

13. Sergei Tupailo. Hilbert’s epsilon-symbol in predicative subsystems of
analysis. Tartu, 1996, 134 p.

14. Enno Saks. Analysis and optimization of elastic-plastic shafts in torsion.
Tartu, 1996, 96 p.

15. Valdis Laan. Pullbacks and flatness properties of acts. Tartu, 1999, 90 p.
16. Märt Põldvere. Subspaces of Banach spaces having Phelps’ uniqueness

property. Tartu, 1999, 74 p.
17. Jelena Ausekle. Compactness of operators in Lorentz and Orlicz sequence

spaces. Tartu, 1999, 72 p.
18. Krista Fischer. Structural mean models for analyzing the effect of

compliance in clinical trials. Tartu, 1999, 124 p.

103

19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

20. Jüri Lember. Consistency of empirical k-centres. Tartu, 1999, 148 p.
21. Ella Puman. Optimization of plastic conical shells. Tartu, 2000, 102 p.
22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.
23. Varmo Vene. Categorical programming with inductive and coinductive

types. Tartu, 2000, 116 p.
24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p.
25. Maria Zeltser. Investigation of double sequence spaces by soft and hard

analitical methods. Tartu, 2001, 154 p.
26. Ernst Tungel. Optimization of plastic spherical shells. Tartu, 2001, 90 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 p.
28. Rainis Haller. M(r,s)-inequalities. Tartu, 2002, 78 p.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
30. Eno Tõnisson. Solving of expession manipulation exercises in computer

algebra systems. Tartu, 2002, 92 p.
31. Mart Abel. Structure of Gelfand-Mazur algebras. Tartu, 2003. 94 p.
32. Vladimir Kuchmei. Affine completeness of some ockham algebras. Tartu,

2003. 100 p.
33. Olga Dunajeva. Asymptotic matrix methods in statistical inference

problems. Tartu 2003. 78 p.
34. Mare Tarang. Stability of the spline collocation method for volterra

integro-differential equations. Tartu 2004. 90 p.
35. Tatjana Nahtman. Permutation invariance and reparameterizations in

linear models. Tartu 2004. 91 p.
36. Märt Möls. Linear mixed models with equivalent predictors. Tartu 2004.

70 p.
37. Kristiina Hakk. Approximation methods for weakly singular integral

equations with discontinuous coefficients. Tartu 2004, 137 p.
38. Meelis Käärik. Fitting sets to probability distributions. Tartu 2005, 90 p.
39. Inga Parts. Piecewise polynomial collocation methods for solving weakly

singular integro-differential equations. Tartu 2005, 140 p.
40. Natalia Saealle. Convergence and summability with speed of functional

series. Tartu 2005, 91 p.
41. Tanel Kaart. The reliability of linear mixed models in genetic studies.

Tartu 2006, 124 p.
42. Kadre Torn. Shear and bending response of inelastic structures to dynamic

load. Tartu 2006, 142 p.

104

43. Kristel Mikkor. Uniform factorisation for compact subsets of Banach
spaces of operators. Tartu 2006, 72 p.

44. Darja Saveljeva. Quadratic and cubic spline collocation for Volterra
integral equations. Tartu 2006, 117 p.

45. Kristo Heero. Path planning and learning strategies for mobile robots in
dynamic partially unknown environments. Tartu 2006, 123 p.

46. Annely Mürk. Optimization of inelastic plates with cracks. Tartu 2006.
137 p.

47. Annemai Raidjõe. Sequence spaces defined by modulus functions and
superposition operators. Tartu 2006, 97 p.

48. Olga Panova. Real Gelfand-Mazur algebras. Tartu 2006, 82 p.
49. Härmel Nestra. Iteratively defined transfinite trace semantics and program

slicing with respect to them. Tartu 2006, 116 p.
50. Margus Pihlak. Approximation of multivariate distribution functions.

Tartu 2007, 82 p.
51. Ene Käärik. Handling dropouts in repeated measurements using copulas.

Tartu 2007, 99 p.
52. Artur Sepp. Affine models in mathematical finance: an analytical approach.

Tartu 2007, 147 p.
53. Marina Issakova. Solving of linear equations, linear inequalities and

systems of linear equations in interactive learning environment. Tartu 2007,
170 p.

54. Kaja Sõstra. Restriction estimator for domains. Tartu 2007, 104 p.
55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.

Tartu 2007, 162 p.
56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-

tions. Tartu 2008, 123 p.
57. Evely Leetma. Solution of smoothing problems with obstacles. Tartu 2009,

81 p.
58. Ants Kaasik. Estimating ruin probabilities in the Cramér-Lundberg model

with heavy-tailed claims. Tartu 2009, 139 p.
59. Reimo Palm. Numerical Comparison of Regularization Algorithms for

Solving Ill-Posed Problems. Tartu 2010, 105 p.
60. Indrek Zolk. The commuting bounded approximation property of Banach

spaces. Tartu 2010, 107 p.
61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory

systems. Tartu 2010, 153 p.
62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-

ture by Counting Method. Tartu 2010, 87 p.
63. Marek Kolk. Piecewise Polynomial Collocation for Volterra Integral

Equations with Singularities. Tartu 2010, 134 p.

105
27

64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

65. Larissa Roots. Free vibrations of stepped cylindrical shells containing
cracks. Tartu 2010, 94 p.

66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

67. Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

68. Olga Liivapuu. Graded q-differential algebras and algebraic models in
noncommutative geometry. Tartu 2011, 112 p.

69. Aleksei Lissitsin. Convex approximation properties of Banach spaces.
Tartu 2011, 107 p.

70. Lauri Tart. Morita equivalence of partially ordered semigroups. Tartu
2011, 101 p.

71. Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.
72. Margus Treumuth. A Framework for Asynchronous Dialogue Systems:

Concepts, Issues and Design Aspects. Tartu 2011, 95 p.
73. Dmitri Lepp. Solving simplification problems in the domain of exponents,

monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

74. Meelis Kull. Statistical enrichment analysis in algorithms for studying gene
regulation. Tartu 2011, 151 p.

75. Nadežda Bazunova. Differential calculus d3
 = 0 on binary and ternary

associative algebras. Tartu 2011, 99 p.
76. Natalja Lepik. Estimation of domains under restrictions built upon gene-

ralized regression and synthetic estimators. Tartu 2011, 133 p.
77. Bingsheng Zhang. Efficient cryptographic protocols for secure and private

remote databases. Tartu 2011, 206 p.
78. Reina Uba. Merging business process models. Tartu 2011, 166 p.

	pair_programming_effect.pdf
	1 Introduction
	2 Experimental Design
	2.1 Structure of the Experiment
	2.2 Programming Task for Participants

	3 Current State and First Conclusions
	3.1 Productivity in General
	3.2 Personality Findings

	4 Validity of the Results
	4.1 Strengths of the Experimental Design
	4.2 Internal Validity Issues
	4.3 External Validity Issues

	5 Future Work
	5.1 Pending Issues of Current Experiment
	5.2 Questions for the Replication Experiments

	References

	Pair_programming_satisfaction.pdf
	Introduction
	Satisfaction Survey
	Three Types of Satisfaction
	Satisfaction Questionnaire and Data Analysis

	Discussion
	Conclusions
	Future Work

	uusOrgan_learning_environm.pdf
	Volume 1
	Lupiana-lawlwess
	1. Introduction
	2. Background: Knowledge Management
	2.1 Knowledge Management processes
	2.2 Knowledge Management Systems
	2.2.1 Categories of KMS

	3. Background: Security awareness
	3.1 Current SA approaches
	3.2 Shortcomings of existing SA approaches
	3.2.1 Who - the audience
	3.2.2 What - Security Awareness material
	3.2.3 When - time span
	3.2.4 Where – programme coverage

	4. Security Awareness and Knowledge Management parallels
	4.1 Who - the audience
	4.2 What - Security Awareness materials
	4.3 When - time span
	4.4 Where - programme coverage

	5. Conclusion
	References

	Manville
	1. Introduction
	2. Background
	2.1 Learning cycles

	3. The nature of reflective learning
	3.1 Reflective learning within the context of a KTP

	4. Case study investigation
	5. Results and discussion
	6. Conclusions
	References

	Marchin
	1. Introduction
	2. KT processes in product innovation settings: the role of cognitive distance and time pressure
	3. Research design and methodology
	3.1 The empirical context
	3.2 The unit of analysis
	3.3 Sampling, methodology, and variables definition

	4. Results
	5. Discussion
	6. Propositions for further research
	References

	Martins
	1. Introduction
	2. Knowledge Management
	3. Knowledge creation
	4. Systemic flexibility
	5. Conclusion
	References

	Matos-et al
	1. Introduction
	2. The importance of intellectual capital management accreditation
	3. Support methodology
	4. Accreditation model and parameters
	4.1 Individual Capital Quadrant
	4.2 Team Capital Quadrant
	4.3 Processes Capital Quadrant
	4.4 Clients Capital Quadrant

	5. Presentation of the accreditation methodology
	6. Objectives of ICMA methodology
	7. Brief description of procedures for accreditation
	7.1 Preliminary inquiry
	7.2 Preliminary eligibility
	7.3 Formal requests
	7.4 Self-assessment
	7.5 Audit
	7.6 Eligibility
	7.7 Accreditation

	8. Conclusion
	References

	Moffett-Hinds
	1. Key factors for KM
	2. Data analysis – descriptive statistics
	3. Factor analysis
	4. Results and discussion
	4.1 Organizational Climate (OC)
	4.2 Technical Climate (TC)
	4.3 Technology
	4.4 Information
	4.5 People

	5. Conclusion
	References

	Moteleb
	1. Introduction
	2. KMS development is not working in practice
	3. Overview of KMS approach
	4. Guide for developing KMS in organizations
	4.1 Phase I: Engage in sense-making conversations
	4.1.1 Sensemaking activities
	4.1.2 Requirement for ‘open mind set’

	4.2 Phase II: Envisioning improved situations
	4.2.1 Envisioning activities

	4.3 Phase III: Designing KMS
	4.3.1 Designing activities

	4.4 Phase IV: Exploring technology
	4.5 Phase V: Managing KMS evolution the evolutionary potential of change

	5. Conclusion: Practicalities of the guide to KMSD
	References

	Neto Correia
	1. Introduction
	2. Wikis
	3. Wikis in education
	4. Virtual Communities of Practice
	5. BIWiki
	6. Interim remarks
	References

	Neumann-Tome
	1. Introduction and motivation
	2. Requirements for a web-based knowledge impact and IC reporting portal
	3. Methodological background of the portal
	4. Structure and components of the portal
	5. Summary and further research
	References

	Oliver
	1. Introduction
	2. Determining the salient features of the competitive advantage value chain
	3. Evaluating an information (knowledge) value chain
	4. Proposing an information sharing value chain
	5. Case study of using the information sharing value chain
	6. Conclusion
	References

	Olthof-et al
	1. Introduction
	2. Knowledge acquisition method development
	2.1 Problem definition
	2.1.1 Artifactual design problems
	2.1.2 Routine design characteristics
	2.1.3 Routine design formulation

	2.2 Knowledge elicitation
	2.3 Knowledge representation

	3. Experimental assessment
	3.1 Results of the objective assessment
	3.2 Results of the subjective assessment
	3.3 The S3 method

	4. Case Study
	4.1 Identification of a design process
	4.2 Formalization of a routine design problem
	4.3 Evaluation of S3 method
	4.4 Computational synthesis of runner gate design

	5. Conclusion
	6. Acknowledgements
	References

	Parboteeah-et-al
	1. Introduction
	2. Autopoiesis and living systems
	3. Creating the living model of knowledge
	4. The living model of knowledge
	4.1 Definition of terms

	5. Creating the testing instrument
	5.1 An evaluation approach to testing
	5.2 Evaluation in Knowledge Management
	5.3 Question rationale

	6. The pilot study
	6.1 Recommendations for the main study
	6.2 Example of model in use: Creating a lawn drainage system

	7. Conclusion
	References

	Po et al
	1. Introduction
	2. Schema and ontology matching
	3. Lexical annotation
	4. Lexical knowledge extraction
	4.1 The PWSD method
	4.2 From the probabilistic lexical annotation to the discovery of probabilistic relationships

	5. Conclusion and future work
	Acknowledgements
	References

	Poloski
	1. Introduction
	2. Humanistic knowledge management perspective
	2.1 Differences between technological and humanistic knowledge management perspective
	2.2 The limitations of technological knowledge management perspective
	2.3 The importance of human resources for successful knowledge management
	2.4 Roles and responsibilities of different groups of knowledge management holders

	3. Methodology
	3.1 Data collection
	3.2 Data analysis

	4. Results
	5. Discussion and conclusion
	References

	Pozza-Borgo
	1. Introduction
	2. A class of knowledge objects
	3. Relationship between material and data in a knowledge object
	4. The IZSVE scenario
	5. Conclusions
	Acknowledgements
	References

	Puus-et al
	1. Introduction
	2. Identifying organizational learning environment in SD team
	3. Empirical research and methodology
	3.1 Sample
	3.2 Questionnaire
	3.3 Method

	4. Data analysis and result
	4.1 Software development team five-factor model
	4.2 Software development team three-factor model

	5. Discussion and conclusion
	References

	Ramsey et al
	1. Introduction
	2. Research design
	2.1 Research approach
	2.2 Research methodology
	2.2.1 Participants

	2.3 Methods of data gathering
	2.3.1 Focus group sessions

	2.4 Data capturing and storing
	2.5 Data analysis and interpretation

	3. Findings
	3.1 Organisational design
	3.1.1 Culture
	3.1.2 Structure
	3.1.3 Codification

	3.2 Optimising knowledge worker expertise
	3.2.1 Knowledge
	3.2.2 Knowledge management
	3.2.3 Knowledge creation
	3.2.4 Knowledge transfer
	3.2.5 Knowledge sharing
	3.2.6 Knowledge communication

	3.3 Competitive advantage

	4. Discussion
	4.1 Organisational design
	4.1.1 Culture
	4.1.2 Structure
	4.1.3 Codification

	4.2 Optimising of knowledge worker expertise
	4.2.1 Knowledge
	4.2.2 Knowledge management
	4.2.3 Knowledge creation
	4.2.4 Knowledge transfer
	4.2.5 Knowledge sharing
	4.2.6 Knowledge communication

	4.3 Competitive advantage

	References

	Rezazade
	1. Introduction
	2. Literature review
	2.1 Success trap / lock-in
	2.2 Strategic inflection point
	2.3 Learning to forget / detaching from past
	2.4 Creative destruction / competence destruction

	3. Case study
	4. Conclusion
	References

	Rivera
	1. Introduction
	2. Knowledge creation and sharing in a Virtual Community of Practice
	3. Method
	4. Results
	5. Discussion
	6. Conclusion
	References

	Rodrigues-Matos
	1. Introduction
	2. Literature review
	3. Methodology
	4. Findings and data analysis
	4.1 Identification of qualification needs by industry
	4.2 Identification of qualification needs, by industry and by professional category
	4.3 Identification of the areas of knowledge needs by professional category

	5. Conclusions
	References

	Rodriguez
	1. Introduction
	2. Theoretical framing
	2.1 KM, KM Strategy and KMS as an enabler of RM

	3. Research model and hypotheses
	3.1 Quality of risk knowledge sharing

	4. People
	4.1 Organizational capacity for work coordination
	4.2 Perceived quality of communication among groups

	5. Process
	5.1 Perceived quality of risk control

	6. Technology
	6.1 Web channel functionality
	6.2 RM information system functionality

	7. Research Methodology and Analysis
	7.1 Measurement and data transformation
	7.2 Findings

	8. Discussion
	9. Conclusions, implications and limitations
	References

	Rosselet-et al
	1. Introduction
	2. Knowledge analysis of ITPPM process
	2.1 Knowledge intensive activities
	2.2 Knowledge assets

	3. Knowledge Management System for ITPPM
	3.1 Components of the KMS

	4. Conclusion
	References

	Saad
	1. Introduction
	2. Research studies
	3. DAMICK
	3.1 Phase 1: Identifying “potential crucial knowledge”
	3.2 Phase 2: Evaluating “potential crucial knowledge”
	3.3 Phase 3: Classifying “potential crucial knowledge”

	4. Case study
	4.1 Phase 1: Identifying “potential crucial knowledge”
	4.2 Phase 2: Evaluating “potential crucial knowledge”
	4.3 Phase 3: Classifying “potential crucial knowledge”

	5. Conclusion
	References

	Sabeeh-et al
	1. Introduction
	2. Literature review
	3. Research method
	4. Research results
	4.1 Barriers identified during the implementation of change
	4.1.1 Lack of coordination
	4.1.2 Lack of trust
	4.1.3 Lack of motivation

	5. Discussion
	6. Conclusion
	7. Future research
	References

	Salasso-et al
	1. Introduction
	2. Modelling techniques
	2.1 Flowchart
	2.2 IDEF
	2.3 UML

	3. Case study
	4. Results
	4.1 Flowchart
	4.2 IDEF
	4.3 UML

	5. Results analysis and comparison
	6. Conclusions
	References

	scarso-Bolisani
	1. Introduction
	2. Computer services as KIBS companies
	3. Knowledge strategies as business strategies
	3.1 Porter’s competitive strategies
	3.2 Knowledge strategy matrix
	3.3 Knowledge chain

	4. Empirical survey: purpose and methodology
	5. Main findings and discussion
	5.1 Cognitive characteristics of the surveyed firms
	5.2 Knowledge strategies and their classification: lessons learned

	6. Conclusion
	Acknowledgments
	References

	scarso
	1. Introduction
	2. Formal models and Knowledge Management
	3. Qualitative models
	3.1 The communication-like model
	3.2 The cognitive model
	3.3 The Dynamic Knowledge Transfer Capacity (DKTC) model
	3.4 An inter-organisational model
	3.5 An inter-organisational process-oriented model
	3.6 An expectations-based process model

	4. Quantitative models
	4.1 An economic-based model
	4.2 An antecedents-based process model
	4.3 “Success” models

	5. Discussion and conclusion
	Acknowledgements
	References

	Schorcht-et al
	1. Introduction
	2. Strategic knowledge planning and knowledge valuation
	3. Construction of the KVM Architecture
	3.1 Data layer
	3.2 Integration layer
	3.3 Business logic
	3.3.1 Knowledge basis
	3.3.2 Knowledge valuation

	3.4 Presentation layer

	4. Conclusion and future work
	References

	Schotborgh-et al
	1. Introduction
	2. Model of a design process
	2.1 Types of information
	2.1.1 Embodiment
	2.1.2 Scenario
	2.1.3 Performance
	2.1.4 Auxiliary
	2.1.5 Decision scheme
	2.1.6 Requirements

	2.2 Processes
	2.3 Levels of abstraction

	3. Analysis methods in practice
	3.1 Simulation
	3.2 Formula
	3.3 Tacit
	3.4 Differences between simulation, formulas and tacit analysis

	4. Analysis-oriented decomposition
	5. Cases
	5.1 Optical chamber design
	5.2 Baggage handling system

	6. Limitation
	7. Conclusion
	Acknowledgement
	References

	Schumann-et al
	1. State of science – knowledge networks
	2. Systemic view of science – analogous to knowledge processes
	3. Value and valuation of knowledge
	4. Knowledge nodes within knowledge networks
	4.1 Knowledge networks
	4.2 Knowledge nodes

	5. Causes and effects of knowledge flows – structure, rules, restrictions
	5.1 Fundamentals of knowledge flows
	5.2 Derivation of knowledge flow structures
	5.3 Derivation of restrictions and filters
	5.4 Derivation of rules for knowledge flows

	6. Conclusion
	References

	Secundo-Grippa
	1. Introduction
	2. Theoretical background
	3. Research question and methodology
	4. The conceptual model to monitor the learning networks dynamics
	5. Preliminary results
	5.1 Human capital
	5.2 Structural capital
	5.3 Social capital

	6. Conclusions and future research
	References

	Shami-et al
	1. Introduction
	2. Background
	2.1 Knowledge management
	2.2 Change management

	3. The conceptual framework
	4. Research methodology
	5. Case study findings
	5.1 Trust among people of the projects
	5.2 Capable programme reward system
	5.3 Commitment by the programme managers
	5.4 Motivating climate to share knowledge among projects
	5.5 Effective KM unit in the PMO

	6. Conclusion
	References

	Sheerman
	1. Purpose
	2. Context
	3. Introduction
	4. KM and SMEs
	5. Method and data collection
	6. Phase 1: stage 1
	6.1 Semi-structured Interviews
	6.2 Village Hall Meeting
	6.3 Focus Group
	6.4 Structured questionnaire

	7. Recommendations
	7.1 People and process
	7.2 Technology

	8. Further research
	9. Summary and conclusion
	References

	Shu-et al
	1. Introduction
	2. Literature review
	2.1 Knowledge sharing
	2.2 Virtual communities
	2.3 Theory of Reasoned Action

	3. Methodology
	3.1 Research framework
	3.2 Research hypothesis
	3.2.1 Expected return and attitude of knowledge sharing
	3.2.2 Knowledge absorptive capacity and attitude of knowledge sharing
	3.2.3 Self esteem and attitude of knowledge sharing
	3.2.4 Attitude to sharing knowledge and intention to share knowledge

	3.3 Research procedure

	4. Data analysis
	4.1 Pre-test analysis
	4.2 Sample analysis
	4.3 Validity and reliability test
	4.4 Hypothesis test and path analysis

	5. Conclusion
	References

	Simard-et al
	1. Introduction
	2. Literature review
	3. Methods
	4. The knowledge services model
	4.1 Knowledge services
	4.2 Knowledge services value chain
	4.3 Knowledge services system
	4.4 Service delivery spectrum

	5. Discussion
	6. Conclusions
	References

	Singh
	1. Introduction
	2. Knowledge Management aspects
	3. Knowledge Management systems and challenges
	4. Managing torrent of Information
	4.1 Problems in managing torrent of Information

	5. Quality and reliability of managed Information
	6. Approaches for managing torrent of Information
	7. Conclusion
	References

	Souto
	1. Knowing and knowing work
	2. The missing practice
	3. Including the knowing practice
	4. Methods
	5. Helped by knowledge: helps for meaning creation
	6. Conclusion and implications
	Acknowledgements
	References

	Souza-et al
	1. Introduction
	2. Open innovation background
	3. Crowdsourcing innovation
	4. Risk management and crowdsourcing innovation
	5. How to manage the risks of crowdsourcing innovation in technology-based SMEs
	5.1 Research question
	5.2 Delimitation
	5.3 Theoretical model

	6. Conclusion
	References

	Suciu-et al
	1. Introduction
	2. Higher education and intercultural dialogue from intercultural sensitivity to intercultural competence and effectiveness
	2.1 Background
	2.2 Methodology of study

	3. KM and Intercultural competence within diverse multiethnic student groups when all the topics are taught in foreign languages
	4. In conclusion
	References

	Turner-Minonne
	1. Introduction
	1.1 Interrelationship between OLM, ICM, and OKM
	1.2 Four forms of KM integration

	2. From corporate strategy to contextual KM targets
	3. Challenges related to KM performance measurement
	3.1 Deriving KM targets from strategy
	3.2 Developing a KM culture
	3.3 Alignment of human oriented and system oriented KM practices
	3.4 Measuring performance

	4. Conclusions and recommendations
	5. References

	Vajkai-et al
	1. Introduction
	2. Research methodology
	3. Short history and characteristics of the Hungarian pharmaceutical sector
	4. Knowledge management characteristics of pharmaceutical companies
	4.1 Optimising efficiencies in knowledge transfer
	4.2 Database management

	5. Knowledge Management cycle of pharmaceutical companies
	6. Conclusions
	References

	Van Reijsen-et al
	1. Introduction
	2. ESNE: E-mail Social Network analysis
	2.1 Introduction to ESNE
	2.2 Deriving networks from header data
	2.3 Tools for mining header data
	2.4 Analysis
	2.5 Application of ESNE in practice
	2.6 Discussion

	3. EKE: E-mail Knowledge Extraction
	3.1 Introduction to EKE
	3.2 Deriving knowledge from body data
	3.3 Tools for mining body data
	3.4 Analysis
	3.5 Application of EKE in practice
	3.6 Discussion

	4. Integration of ESNE and EKE
	4.1 Application of ESNE and EKE combined

	5. Conclusions
	5.1 Conclusion
	5.2 Limitations
	5.3 Future work

	Acknowledgements
	References

	Vlada-Nica
	1. Introduction
	2. Information and knowledge
	2.1 The waves of the information technology

	3. Problem solving and knowledge – correct thinking
	3.1 Demonstration process – human intelligence
	3.2 Computational process - human intelligence

	4. Languages and knowledge
	5. Conclusion
	References

	Wiewiora
	1. Importance of knowledge transfer in organisations
	2. Functional organisations versus PBO
	3. Knowledge transfer in PBO
	4. Organisational culture and trust
	5. Empirical study
	5.1 Social communication
	5.2 Transfer of lessons learned
	5.3 Project manager’s role in knowledge transfer
	5.4 PMO’s role in knowledge transfer

	6. Discussion and conclusions
	Acknowledgement
	References

	Woransachai
	1. Introduction
	2. Background
	3. Case study of automotive industries in Thailand
	3.1 Context of study
	3.2 Methodology of study
	3.3 Finding and discussions

	4. Conclusion
	References

	Zaharia- Leon
	1. Introduction
	2. Knowledge Management for disaster mitigation
	3. Architecture of a multiagent system for disaster Knowledge Management
	3.1 Agent communication
	3.2 Security issues

	4. Disaster ontology harmonization
	5. Knowledge integration and data mining
	6. Conclusions
	Acknowledgement
	References

	Cosma
	1. Introduction
	2. Research objectives
	3. Description of methodology and results
	4. Critical success factors and constrains
	4.1 Critical Success Factors (CSF)
	4.2 Particular constraints of the military environment

	5. Application of QFD to optimize Knowledge Management
	5.1 Blitz QFD
	5.2 Some of the QFD techniques and tools

	6. Implementation of KMS
	7. Conclusions
	References

	Esposito-et al
	1. Introduction
	2. Knowledge and Knowledge Management
	3. Knowledge Management in SMEs
	4. The context of investigation
	5. Methodology
	6. Findings
	7. Conclusions and recommendations
	References

	Farahzadi
	1. Entrepreneurship
	2. Opportunity
	3. Individuals and opportunities
	3.1 Opportunity discovery
	3.1.1 Access to information
	3.1.2 Opportunity recognition

	3.2 Opportunity exploitation
	3.3 Entrepreneurial decision-making

	4. Collaborative knowledge management
	5. How CKM can work for entrepreneurship development?
	5.1 CKM in discovery of opportunities
	5.1.1 CKM as a facilitator of access to up-to-date, abstract and more useful information
	5.1.2 CKM and recognition of opportunities

	5.2 CKM in exploitation of opportunities

	6. Future works
	7. Conclusion
	8. References

	Liang-r-et al
	1. Introduction
	2. Theoretical model
	3. Research methods
	3.1 Data collection techniques
	3.2 Questionnaire
	3.3 Dependent variables
	3.4 Independent variables
	3.4.1 Density of a project team’s internal network
	3.4.2 Structural diversity of a project team’s internal network
	3.4.3 Number of a project team’s external connections
	3.4.4 Diversity of a project team’s external connections

	3.5 Control variables

	4. Conclusions
	5. References

	Magee
	1. Introduction
	2. Background
	3. Modelling ontology commensurability
	3.1 Descriptive model
	3.2 Formal model

	4. A framework for commensurability
	4.1 Dimensions
	4.2 Methodology

	5. Evaluating the framework
	5.1 Quantitative results
	5.2 Qualitative results
	5.3 Discussion

	6. Conclusion
	7. Appendix 1 - default dimensions
	8. Appendix 2 - survey results
	9. Appendix 3 – toolkit screen-shot
	References

	Miller
	1. UTT process
	1.1 KM and UTT
	1.2 AC and UTT

	2. Research methodology
	2.1 Context of study

	3. Results and discussion
	3.1 Knowledge acquisition
	3.1.1 PI perspective
	3.1.2 Government perspective

	3.2 Knowledge assimilation / transformation
	3.2.1 TTO perspective
	3.2.2 PI perspective
	3.2.3 Government perspective

	3.3 Knowledge exploitation
	3.4 Power relationships
	3.5 Social integration mechanisms

	4. Conclusion
	5. References

	Adjadj
	1. Introduction
	2. Knowing where to start
	2.1 Step1: set business expectations
	2.3 Step 3: map knowledge stores
	2.4 Step 4: map knowledge processes
	2.5 Step 5: – knowledge audiences
	2.6 Step 6: - knowledge values
	2.7 Step 7: identify business champions
	2.8 Step 8: identify technology platform

	3. Implementation
	11. Relevant content
	13. Measuring success
	14. Conclusions

	Hessami-Moore
	1. Introduction
	2. Enterprise competence
	3. A systems framework for Enterprise Competence Assurance (ECAF)
	4. Case study
	4.1 Relative significance of each driver and inhibitor
	4.2 Standards against which assessments are made
	4.3 Ratings
	4.4 Assessment strategy
	4.4.1 Role of an assessor
	4.4.2 Evidence requirements

	4.5 Determining the ratings
	4.6 An example at level 3
	4.7 Input of the rating value

	5. Conclusions
	References

	Software_development_maturity_SME-s_edited_final_journal_sei.pdf
	Acknowledgments
	This publication incorporates portions of "CMMI for Development, Version 1.2" (CMU/SEI-2006-TR-008, ESC-TR-2006-008), Copyright 2006 Carnegie Mellon University, with special permission from its Software Engineering Institute.
	This publication has not been reviewed nor is it endorsed by Carnegie Mellon University or its Software Engineering Institute.
	The authors acknowledge the support offered by the Estonian Ministry of Education’s project SF0180037s08
	Introduction
	Software development performance as maturity benchmark
	Research design, methodology and data
	Maturity evaluation

	Data analysis and discussion
	Conclusion
	References
	Appendix I
	Appendix II

	uusuusSoftware_development_maturity_SME-s_edited_final_journal_sei_1.pdf
	Acknowledgments
	This publication incorporates portions of "CMMI for Developm
	This publication has not been reviewed nor is it endorsed by
	The authors acknowledge the support offered by the Estonian
	Introduction
	Software development performance as maturity benchmark
	Research design, methodology and data
	Data analysis and discussion
	Conclusion
	References
	Appendix I
	Appendix II

