
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Urmas Rosenberg

Using Graphic Processing Unit in Block Cipher Calculations

Master's Thesis

Supervisor: Meelis Roos

Tartu 2007

Table of Contents
 1 Introduction...3

 1.1 Prolog..3
 1.2 Overview of the Thesis...4
 1.3 Related work...5

 2 Graphic Processing Unit ..5

 2.1 History...5
 2.2 Architecture...6
 2.3 Specifications..7
 2.4 OpenGL...9
 2.5 GLUT..10
 2.6 GLEW...10
 2.7 Cg Toolkit...11
 2.8 CUDA...12

 3 Advanced Encryption Standard..14

 3.1 Algorithm..15
 3.2 Optimization..16

 4 OpenSSL...16

 5 AES on GPU...18

 5.1 Creating a new OpenSSL engine..18
 5.2 Implementing AES algorithm on GPU...19

 5.2.1 6800 implementation..20
 5.2.2 8800 implementation..25

 5.3 Problems..27

 6 Results...29

 6.1 Description of test system...29
 6.2 Speed tests...30

 6.2.1 Results of 6800 implementation...31
 6.2.2 Results of 8800 implementation...33

 6.3 Thoughts for the future...34

 7 Conclusions...35

 8 Resümee..36

 9 Bibliography...37

 Appendix A: Test results, Speed..39

 Appendix B: Test results, CPU usage..45

 Appendix C: Figures...47

2

 1 Introduction

 1.1 Prolog

Development of Central Processing Unit (CPU) is approaching its physical limits,

struggling at the same time with problems like high temperature and increasing need of

extra power. There are mainly two alternatives to relieve those problems – Grid computing

and Multi Core processors. Both of those approaches are able to give us more computing

power than Single Core processors, though it means new algorithms and programs must be

developed to be able to use all possibilities of new systems.

Although Grid seems to be a very sophisticated system which seems to need a room full of

personal computers and Multi Core processors are expensive – all those options are

available almost in every modern machine in the form of Graphic Processing Unit (GPU).

Generally there are many processors in GPU and they can act like Grid – run in parallel

way or same program on different data, or by Flynn's Taxonomy [1] it is Single Instruction,

Multiple Data (SIMD) stream.

The rest of this paper introduces technologies used in GPU programming, algorithm of

AES block cipher, implementation of this algorithm on two different graphics cards,

problems that rose during creation of working code and the results.

Author wishes to thank his supervisor Meelis Roos for helping to complete this work, for

giving support on programming, and also helping to get NVIDIA 8800GTS graphics card

for testing (many thanks also to Andrus Laansalu and computer reseller “Ordi”); and

biggest thanks to workmate Henri Kuuste who helped to create GPU programs and

optimize them. Author is also thankful to his wife for understanding, supporting and

helping with translation.

3

 1.2 Overview of the Thesis

Goal of this thesis is to study possibilities of using GPU in non-graphics calculations, like

cryptography. Author tries to figure out problems rising when moving arithmetic

calculations from CPU to GPU and to determine when this move is reasonable. The goal is

to add GPU-using functionality to an existing cryptographic framework and then test it in

real-life situation. As GPUs are more powerful with bigger amounts of data, the author has

chosen file encryption as the main target, leaving aside other possibilities like stream

encryption. For file encryption, block ciphers are usually used as they are faster than

asymmetric cryptosystems. AES block cipher was chosen as one of the most popular block

ciphers today. Focus was set to testing in real-life situations rather than conducting

microbenchmarks to take into account the impact to other parts of the system. Only

encryption was implemented because there is no difference at programming whether to

study encryption or decryption. The motivation for offloading cryptographic calculations to

a general-purpose GPU is the possibility of using GPUs as cryptographic coprocessors,

leaving CPU mostly free for other tasks, or replacing specialized cryptographic accelerator

cards with cheaper mass-produced GPUs.

The three following sections (2-4) will give an overview of used graphics hardware and

software – descriptions of graphics cards hardware, software and drivers used to utilize

those cards. Some of this software has been publicly available only for a month, therefore

this work could not possibly have been written earlier and on the other hand there may be

some changes to them by the time this paper becomes public.

Sections describing technologies are followed by two sections that discuss about

implementing the algorithm, problems that rose and the results of testing. Paper ends with

conclusions. Detailed results of testing can be found in appendix A.

This work is written using open source and free software. The first reason for this choice is

that author has only Linux at his computer and he is also more experienced with this

operating system. Linux is well suited for lowlevel programming and gives good access to

hardware. OpenSSL and other tools used in this work are also better integrated into Linux

than into Windows. Second reason is that Linux is faster as confirmed by first tests where

simple calculations were done on GPU, so the results should be more exact because of

lower overhead.

4

 1.3 Related work

There are three papers written which are related to the current paper:

• “Secret Key Cryptography Using Graphics Cards” [2] where authors used OpenGL and

three different GPUs, getting results which were 40..100 times slower compared to

CPU. This work is comparable to current paper's NVIDIA 6800 implementation.

• “AES encryption Implementation and Analysis on Commodity Graphics Processing

Units” [3] where author used NVIDIA 6600GT and 7900GT. On 6600 he got

approximately 7 times slower result compared to CPU (when 8 bit XOR-table was

used).

• “Remotely Keyed Cryptographics. Secure Remote Display Access Using (Mostly)

Untrusted Hardware” [4] where authors tested Trusted Computing on GPU.

To summary, it can be said all efforts that have been made earlier on older chips are slower

than CPU. Also they have been made for microbenchmarking leaving aside other system

components like HDD which is bottleneck when talking about CPU implementations.

 2 Graphic Processing Unit

 2.1 History

Ancestors of modern GPUs are native from late 1970s and 1980s when they had

comparatively small functionality comparing to modern GPUs – they had several

operations for graphics commands, some of them could combine bitmap patterns in a

limited way and they could use direct memory access to reduce the load on the host

processor. During that time GPUs were used even for faster printing [5].

At the beginning of 1990s, when Microsoft Windows was released, the need for faster 2D

graphics rose. In 1991, S3 Graphics introduced first single-chip 2D accelerator and by 1995

already all major graphic chip makers had added this support to their chips. In mid-1990s,

when CPU-assisted 3D became common in computer games it lead to an increasing public

demand for hardware accelerated 3D graphics. First chips that arrived were not pure 3D

accelerators but 2D chips which included also some 3D features. DirectX became one of

the leading 3D graphics programming interfaces and chips got 3D rendering pipeline. For

5

some cards the graphic acceleration was not the only thing to do – for example NVIDIAs

NV1 could also manage sound and video and act as a modem [6][7].

In 2000 and later, programmable shading got added to GPUs' capabilities which meant that

every pixel could be separately processed by a short program. NVIDIA was first on the

market with programmable shading and in 2002 graphic chips were already able to make

loops and lengthy floating point calculations – they quickly became nearly as flexible as

CPUs [5].

 2.2 Architecture

Today, parallel GPUs are offering generally quite good computation power compared to

latest CPUs (as seen on figure 2.2.1) and have found their way to several different

application types [5].

Figure 2.2.1: Floating-Point Operations per Second for the CPU and GPU [8]. As seen –

GPUs can give remarkably more computing power and the progression of GPUs is also

much faster.

The main reason behind such an evolution is that GPU is specialized for compute-intensive,

highly parallel computation – exactly what graphics rendering is about – and therefore is

designed so that more transistors are devoted to data processing rather than data caching

and flow control [8][9]. Also, as seen on figure 2.2.2, compared to the CPU GPU devotes

more transistors to data processing meaning that work can be done faster.

6

Figure 2.2.2: The GPU devotes more transistors to data processing [10].

More specifically, the GPU is especially well-suited to address problems that can be

expressed as data-parallel computations. Because the same program is executed for each

data element, there is lower requirement for sophisticated flow control; and because it is

executed on many data elements and has high arithmetic intensity, the memory access

latency can be hidden with calculations instead of big data caches [10].

For current thesis this means several things. First, we must reconsider almost everything

about optimization on CPU. For example, AES optimization on CPU uses several lookup

tables, but on GPU these tables would slow things down instead. Second, it must be

possible to calculate the algorithm in parallel. It means that GPU is not suitable for

(cryptographic) algorithms where calculation of one data block is related to its prior data

block calculation. Third, there must be considerably more arithmetic complexity compared

to memory operations.

 2.3 Specifications

For current work two different graphic chips were used – NVIDIAs GeForce 6800 GT and

8800 GTS. We now take a brief look at the specifications and general information of those

cards.

ASUS GF6800GT PCX

This card is advertised on manufacturers page

(http://www.nvidia.com/page/geforce_6800.html) as following: “The groundbreaking new

NVIDIA GeForce 6800 GPUs and their revolutionary technologies power worlds where

reality and fantasy meet; worlds in which new standards are set for visual realism and

quality, performance, and video functionality. The GeForce 6800 GPUs deliver powerful,

7

elegant graphics to drench your senses, immersing you in unparalleled worlds of visual

effects for the ultimate PC experience.”

This card has Geforce 6800 GT core running at 350MHz and 256 megabytes of GDDR3

memory running at 1GHz. This card uses PCI Express system interface. Memory transfer

rate is 32GB/s. It has 16 pixel processors and 6 vertex processors, in our implementation

are only pixel processors used.

• http://www.asus.com/products4.aspx?l1=2&l2=6&l3=138&model=406&modelmenu=2

• http://www.viperlair.com/reviews/video/asus/nv4x/6800gt/

• http://www.guru3d.com/article/content/151/

Club 3D 8800GTS

This card is advertised on manufacturers page

(http://www.club3d.nl/index.php/products/graphics/item/231) as following: “This is the

first Graphics Card of a completely new generation. The Club 3D 8800 is not only limited

to boosting the speed and the image quality of your games. With the new developed

Quantum Effects engine it will also accelerate movements and particles known as the

physics from your game. This will make explosions, movements and collisions look more

impressive and realistic.”

Club3D 8800GTS has 640 megabytes of GDDR3 memory running at 800MHz and 12

multiprocessors at 600MHz (Club3D homepage says at 500Mhz). Each multiprocessor is

composed of eight processors running at twice the clock frequency of multiprocessor.

Difference between 8800 and 6800 is also processors ability to make computations – 6800

processors can do only prescribed operations, vertex or pixel calculations, but processors on

8800 can do those calculations which are more needed at the moment.

8800 family chips have new architecture compared to earlier NVIDIA chips. NVIDIA has

released a new software framework named CUDA (introduced in section 2.8) which makes

easy to use graphics cards possibilities in programs being developed.

The memory transfer rate is 64GB/s and it is much higher than the bandwidth between the

device memory and the host memory. In 0.8 beta version of CUDA, the maximum

observed bandwidth between system memory and device memory is 2GB per second [10].

8

Club 3D says [11] about that card: For optimal performance with the CPU, the fastest bus

communication PCI-Express x16 technology is used. This will allow communication with

4GB/s in each direction between VGA card and CPU [12]. This statement gives some hope

that in final versions of CUDA, the memory transfer rate will be faster than the current rate.

The memory transfer speed between CPU and GPU also makes a difference in cipher

implementations. When block size 4096 is used, there is no chance for GPU to be faster

than CPU if there is no urgent need for arithmetic power in given algorithm. For that reason

we also changed OpenSSL's encoding block size. More detailed data about that will be

given in sections “AES on GPU” and “Results”.

Differences

From programmers point of view, the main differences between those two cards are

• 8800 supports bitwise logic and shift operations

• 8800 gives more flexible access to memory, for both reading and writing.

• Through CUDA it is possible directly define data on GPU, no need for extra copying.

• 8800 can modify more data in one function. When 6800 just returned float4 (16 bytes)

as color after end of execution, 8800 implementation is changing 160 bytes directly in

memory by default configuration.

 2.4 OpenGL

Open Graphics Library is a standard specification defining a cross-language cross-platform

API for writing applications that produce 2D and 3D computer graphics. The interface

consists of over 250 different function calls which can be used to draw complex three-

dimensional scenes from simple primitives. OpenGL was developed by Silicon Graphics

Inc. in 1992 and is popular in the video games industry where it competes with Direct3D on

Microsoft Windows platforms. OpenGL is widely used in CAD, virtual reality, scientific

visualization, information visualization, flight simulation and video game development

[13].

OpenGL describes a set of functions that are implemented in device driver. We use

NVIDIA's binary driver which is not open source. On driver lays yet another layer which

hides real function calls and lets user see this as normal OpenGL implementation. There

might be some doubt – could one write better and faster programs if he could get direct

access to the card, but at the moment it is not even the most important. By using OpenGL

9

for this implementation we have an advantage compared to CUDA implementation – it can

also be used with ATI video cards, as CUDA is only able to run with NVIDIA cards, at the

moment.

As designers of OpenGL anticipated the need to extend OpenGL in the future [14] there is

possibility to add extensions to OpenGL, for example by hardware vendors, and therefore

there is no immediate need for new releases of OpenGL as new features are developed.

OpenGL's homepage is available at http://www.opengl.org/.

 2.5 GLUT

The OpenGL Utility Toolkit (GLUT) is a library of utilities for OpenGL programs, which

primarily perform system-level I/O with the host operating system. Functions performed

include window definition, window control and monitoring of keyboard and mouse input.

Routines for drawing a number of geometric primitives (both in solid and wireframe mode)

are also provided, including cubes, spheres, and the Utah teapot. GLUT even has some

limited support for creating pop-up menus. The two aims of GLUT are to allow the creation

of rather portable code between operating systems (GLUT is cross-platform) and to make

learning OpenGL easier. Getting started with OpenGL programming while using GLUT

often takes only a few lines of code and requires no knowledge of operating system–

specific windowing APIs [15].

In this work we use the GLUT library for initialization (to establish a session with

windowing system) and create and hide a window. We can also notice a restriction of one

of the created implementations here – 6800 code must be running in a graphical

environment because window creation without X (or any other graphical environment

where needed libraries can be used) is impossible.

 2.6 GLEW

The OpenGL Extension Wrangler Library (GLEW) is a cross-platform C/C++ library that

helps in querying and loading OpenGL extensions. It also provides efficient run-time

mechanisms for determining which OpenGL extensions are supported on the target

platform [16].

10

When vendor releases new hardware and a new OpenGL extension, it contains functions

with specific names. With OpenGLs own tools it is difficult to test which extensions are

available and call those functions. GLEW makes it possible to load those extensions and to

test if they exist on the current system – and it also redefines those functions into usable

standard form.

GLEW library is available at its homepage: http://glew.sourceforge.net/.

 2.7 Cg Toolkit

The Cg (C for graphics) is programming language developed by NVIDIA to make

programming on graphics hardware easier. It is based on C [17], as this is very popular

programming language, and it removes the need for developers to program directly in the

graphics hardware assembly language [18][20].

The Cg Toolkit provides a compiler for the Cg language, runtime libraries for use with both

leading graphics APIs (OpenGL and DirectX), runtime libraries for CgFX, example

applications and extensive documentation. Supporting over 24 different OpenGL and

DirectX profile targets, Cg allows incorporating interactive effects into 3D applications

[19].

Although Cg is based on C and its constructions are easy to read when familiar with C,

there is one thing to pay attention to – data types. There are well known types in like int and

float, but new ones like half, half4 and float4:

• The half type is lower-precision IEEE-like floating point [17].

• half4, float4 are vector types, containing 4 numbers of respective type. There are more

defined vector types for every standard type [17] but they are no longer discussed here.

Running Cg compiler separately is easy:

cgc -profile fp40 -o outputfile inputfile

So source file can be compiled into machine code, which is then loaded into GPU. fp40

here means that output code is generated specifically for NVIDIA's fp40 profile as used in

6800 chip. In current work .cg file is converted to GPU code by cg function

cgCreateProgramFromFile which chooses the right target profile automatically.

11

It must not be forgotten that almost each GPU family is different from others which means

that the right profile must be chosen. At the time of writing this paper the 8800 chip is not

yet supported by cg, so no comparison can be done on this level for those cards, as 8800 is

programmed by using CUDA. This will be discussed in the next section.

Cg is available at its homepage: http://developer.nvidia.com/object/cg_toolkit.html

It is important to point out that version 1.5 of cg came out in February 2007. Previous

version (1.4) of cg generated invalid machine code from source. The possible reason, as the

tests proved, was that the compiler couldn't handle so many variables as were used by AES

implementation. With version 1.5 that problem disappeared.

 2.8 CUDA

CUDAs homepage [8] advertises this product the following way: “CUDA (Compute

Unified Device Architecture) technology is a fundamentally new computing architecture

that enables the GPU to solve complex computational problems in consumer, business, and

technical applications. CUDA technology gives computationally intensive applications

access to the tremendous processing power of NVIDIA GPUs through a revolutionary new

programming interface. Providing orders of magnitude more performance and simplifying

software development by using the standard C language, CUDA technology enables

developers to create innovative solutions for data-intensive problems. For advanced

research and language development, CUDA includes a low level assembly language layer

and driver interface”.

When programmed through CUDA, the GPU is viewed as a computing device capable of

executing a very high number of threads in parallel. It operates as a coprocessor to the main

CPU. A portion of an application that is executed many times, but independently on

different data, can be isolated into a function that is executed on the device as many

different threads. To achieve that effect, such a function is compiled to the instruction set of

the device and the resulting program is downloaded to the device [10].

12

Figure 2.8.1: 8800 Thread Batching [10]

Figure 2.8.1 illustrates how GPU is seen as a computation device – function, called a

kernel, is going to run on a grid (see figure 2.8.1), which has predefined configuration

given on call. The number of blocks in grid and the number of threads going run in a block

are configurable. Example of running a kernel:

encrypt_8800<<<grid,threads>>>((uint*)d_idata,

(uint*)d_odata, isbox, (uint*)ikey);

Only number of blocks and threads are defined here but it is possible to also declare the

amount of shared memory (see figure 2.8.2) which will accessible for threads within one

block, but as this is not useful in current implementation, it is not used. All data, which

includes key, sbox and data to encryption, will lay in Global Memory (see figure 2.8.2)

and local variables are in registers.

13

Figure 2.8.2: 8800 Memory Model [10]

 3 Advanced Encryption Standard

In cryptography, the Advanced Encryption Standard (AES), also known as Rijndael, is a

block cipher adopted as an encryption standard by the U.S. Government. It became

effective as a standard on May 26th in 2002. As of 2006, AES is one of the most popular

algorithms used in symmetric key cryptography [20].

In current paper the author focuses only on AES with 128 bit key length, although AES

supports also keys with lengths of 192 and 256 bits. Using particular length of key is not

very important because it doesn't change algorithm significantly in terms of intense of

calculations, and full implementation is not the goal of this paper.

14

 3.1 Algorithm

Figure 3.1.1: Encryption process [21].

Figure 3.1.1 shows AES encryption graphically to give a better overview of the whole

process. After initial AddRoundKey transformation with ten rounds of SubBytes,

ShiftRows, MixColumns and AddRoundKey transformations, on the final round the

MixColumns transformation is left out from the chain. State is data going to be

encrypted, round keys are blocks of the same size as data and they are derived from cipher

key using Rijndael key schedule.

AddRoundKey – corresponding bytes from data and key are combined by using bitwise

XOR.

SubBytes – bytes are replaced according to lookup table.

ShiftRows – rows are rotated to the left (1st row stays same, 2nd shifted one step, 3rd two

steps and 4th shifted three steps)

MixColumns – four bytes of each column are mixed by using bitwise XOR and special

function which can be replaced with a lookup table.

15

 3.2 Optimization

Optimizations for CPU often mean replacing calculations with table lookups, but on GPU

there are complications with memory reads when comparing to CPU. GPU can do more

arithmetic operations in one processor cycle than CPU but when reading from memory

there is latency and while processor waits for a response on the execution is stalled.

Therefore it is very important to measure time ratio between memory reads and arithmetic

operations when implementing algorithms on GPU.

According to Wikipedia [20] AES algorithm can be optimized on 32 bit system by

converting SubBytes, ShiftRows and MixColumns transformations into tables. It is

useful on CPU, but when programming on GPU, we must consider that there will be 200 to

300 clock cycles of memory latency [10:53], so there is a big chance that making extra

calculations on GPU is still faster than memory lookup.

As seen later in results' section, it really depends on arithmetic intensity, whether one or the

other method is faster, so the best results will be gotten by measuring the results of testing.

 4 OpenSSL

The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade, full-

featured, and open source toolkit implementing the Secure Sockets Layer (SSL v2/v3) and

Transport Layer Security (TLS v1) protocols as well as a full-strength general purpose

cryptography library. The project is managed by a worldwide community of volunteers

who use the Internet to communicate, plan, and develop the OpenSSL toolkit and its related

documentation [22].

The core library (written in the C programming language) implements the basic

cryptographic functions and provides various utility functions. Wrappers allowing the use

of the OpenSSL library in a variety of programming languages are available [23].

OpenSSL implements many cryptographic algorithms and additionally gives users a

possibility to use special-purpose accelerator hardware. This is done by using cryptographic

engines which will communicate with the special-purpose hardware and perform

encryption/decryption processes on them. Minimum set of functions which must be

declared in an engine is:

16

• function that creates a new engine instance

• function that registers id, name, init an finish functions

• function that returns the list of supported ciphers.

Our benchmarking is focused on OpenSSL's command line functionality and other

possibilities are left out of focus. Example of running OpenSSL on testing:

openssl aes-128-ecb -bufsize 16777216 -in test1.dat -out

data.cpu -k abcd -nosalt

where “aes-128-ecb” means that AES cipher will be used for encryption, it is in ECB mode

(it means that key is unchanged when encrypting different data blocks) and it will use 128

bit key. “-bufsize 16777216” means that OpenSSL will read 16777216 bytes of data

at once and will forward it to the engine for encrypting. Still, the engine will not get directly

the same size of buffer as determined on command line but it is chunked a smaller size

defined in OpenSSL file crypto/evp/bio_enc.c – ENC_BLOCK_SIZE, which is

4096 bytes by default. But as mentioned earlier, and shown later, GPU can't give good

results on small data blocks, so this value is changed during testing. “-in” and “-out” are

describing input and output files correspondingly. “-k“ sets password to “abcd” and

“-nosalt” means that there is no random data added to the key. This is useful for

repeatability of the results, and to test whether CPU and GPU get the same results.

It is important to bear in mind that the ECB version of AES is used because that algorithm

could be calculated in parallel way, but versions that change key depending on previous

data would make this impossible. But if no parallel computing is possible to apply, there is

no sense in using the GPU.

17

 5 AES on GPU

 5.1 Creating a new OpenSSL engine

Work on creating a new engine for OpenSSL started at studying the whole code base. It

must be said that OpenSSL is quite confusing for new developers. Internal documentation

is almost missing, there are few comments in code and a lot of function definitions and calls

are made through preprocessors definitions and through many layers of abstraction.

First goal of the current work was set to create an empty engine and learn how data gets

there. To let OpenSSL know that there is a new engine, it must be loaded by

ENGINE_load_builtin_engines function (eng_all.c in crypto/engine

directory) like this:

ENGINE_load_gpu();

The alternative way of loading additional engines would be loading the engine explicitly

from the application that uses OpenSSL, but since we build our engine into OpenSSL, we

modified OpenSSL to also automatically load it. In function ENGINE_load_gpu GPU

implementation creates a new engine instance and adds pointer to it into global list of

known engines. In initialization process function gpu_bind_helper is called which

registers important data and functions into ENGINE function table – engines id, name, init

and finish function, and finally a function which returns the list of implemented ciphers. It

is called always when OpenSSL is started.

If the engine is not specified for the command-line utility, OpenSSL internal engine is used,

assembler or C version of AES. We need to add new keyword to command line to activate

and use our new engine:

openssl aes-128-ecb -bufsize 16777216 -engine gpu -in

test1.dat -out data._gpu -k abcd -nosalt

Engine is chosen by its ID which is set in helper function. If no such engine is registered in

OpenSSL, it will fall back to C or assembler implementation.

From here on there will be a difference between 6800 and 8800 chip implementations.

Although function calls are the same, they have different inner implementation. Overall

process on encrypting/decrypting is the same: gpu_init → gpu_aes_init_key →

18

gpu_aes_cipher → gpu_finish where init does all initialization needed to be

able to use GPU, init_key initializes key according to AES key schedule algorithm,

cipher encrypts given block of data and finish frees used memory.

And now a few final changes to original OpenSSL code to make the new engine work.

6800 implementation changes:

in root directory Makefile.org must be changed, PEX_LIBS should be

PEX_LIBS= -lCg -lCgGL -lglut -lX11 -lm -lpthread -lGLEW

It forces compiler to use libraries needed for graphical programming.

And in crypto/engine/Makefile “eng_gpu.c” should be added to LIBSRC and

“eng_gpu.o“ to LIBOBJ. After that one should run “make depend” command in

OpenSSL source directory and then the code will be ready to use.

8800 implementation changes:

only crypto/engine/Makefile must be changed:

all: lib

should be replaced with

all: cuda lib

cuda:

nvcc -c -o eng_gpu.cu.o eng_gpu.cu -I

/usr/local/cuda/include -I/opt/NVIDIA_CUDA_SDK/common/inc

-DUNIX -O3

And “eng_gpu.c” should be added to LIBSRC and “eng_gpu.o eng_gpu.cu.o“

to LIBOBJ. This additional target will compile CUDA file into object file which can be

linked to OpenSSL binary. After that one should run “make depend” command in

OpenSSL source directory and then the code will be ready to use.

For a note – “-I/opt/NVIDIA_CUDA_SDK/common/inc” should refer to directory

where NVIDIA CUDA software development kit is installed.

19

 5.2 Implementing AES algorithm on GPU

In this section the author will give overview of 6800 and 8800 implementations.

When GPU engine is chosen, first function called before encoding/decoding is gpu_init

which does all GPU initialization.

 5.2.1 6800 implementation

Data is sent to GPU as textures which means that data is treated as picture where one pixel

contains 16 bytes of data.

First variable defined is texSize – it will represent the length of texture edges (square) in

which data (which should be encrypted) will be copied to GPUs memory. Maximum

texture size is 4096 x 4096, so texSize must be between 1..4096.

When data is mapped into GPUs memory, its size will be 16*texSize*texSize bytes. It's 16

times bigger than defined texture but it's not a mistake – 16 bytes will be represented as one

pixel, containing four 32bit floats (Red, Green, Blue, Alpha), which are all in turn

separately “unpacked” to four bytes.

After the GPU is initialized static data (xor, sbox and mix tables) will be written into

GPUs memory. Xor, and also mix is set into table not because of the optimization but due

to the fact that 6800 chip can't do bitwise logic operations so this data will be precomputed

on CPU. Mix is subdata for MixColumns operation.

The next step is to initialize cg (“C for Graphics”) – context is created, GPU profile data

initialized and cg program loaded and translated into format of current profile. Final steps

in initialization are creating named parameters and making them related to corresponding

textures.

Function named gpu_aes_init_key is called once before real encyption/decryption

starts. As one of the input parameters is key, 16 bytes, it will be expanded by Rijndael's

key schedule algorithm and after that key data is copied to GPU. Currently

20

gpu_aes_init_key will return error if action is something else than encryption,

because only encryption is currently implemented.

From CPU side the most important function is gpu_aes_cipher which handles the

following things:

• copying data to GPU with OpenGL function glTexSubImage2D

• starting GPU side program by calling glBegin

• after GPU is done, copying data from GPU back to main memory with function

glReadPixels.

This function is called as many times as ENC_BLOCK_SIZE fits into data size and

additionally one last time with final data. Here lays also a possibility to win some extra time

by making glTexSubImage2D and glReadPixels depend on the number of bytes

going to be encrypted (nbytes).

6800 GPU side implementation lays in file gpu_aes_encrypt.cg and it contains code

written in cg.

Cg file can also be compiled separately for fast testing:

cgc -profile fp40 -o outputfile inputfile

For every pixel on input texture a main function is called with return type float4 (which in

current implementation means 16 bytes). Main function gets the following input

parameters:

• coords – float2 (two floats) indicates to the program which pixel on texture must be

handled by this current call

• data – input texture, two-dimensional array of data which will be encrypted. It is

accessed by normal int type indexes

• key – key and its expanded subkeys

• sbox, mix and xor – precalculated tables with results to logical calculations which

could not be done in GPU.

In code, there is roughly 7 different blocks, which will now be closely observed:

1) initial block, where data is prepared for calculations

2) add round key

3) subbytes

4) shift rows

21

5) mix columns

6) add round key

7) final block, data is packed and prepared for returning

Blocks 3, 4, 5 and 6 are in for loop (described in AES algorithm section) and block 5 is left

out on final round.

In block 1:

float4 cf = tex2D(data, coords);

Cf represents data matrix, containing 16 bytes which will be encrypted. The key will later

be extracted in the same way. But cf is not usable in this format (cf.x is 32 bits, 4 bytes),

so we need to “unpack”it:

half4 c1 = ceil(unpack_4ubyte(cf.x)*255);

c1..c4 will now hold columns (data is represented in column-major order) in 4x4 matrix.

As half4 is a type containing four elements, four first bytes are accessed like this: c1.x,

c1.y, c1.z and c1.w. Multiplication with 255 is needed due the fact that in initial state

all numbers are in float format between 0..1 but for table lookup we need it in “byte”

format.

As data and key are already available, it is time to do first step of the ciphers –

addRoundKey, block 2:

c1.x = texRECT(xor, int2(c1.x, kr.x)).x;

It means that the first element in the first column (c1.x) gets a new value which is the first

value (textRECT will return float4) from result of xor table at coordinates c1.x and

kr.x (first key byte). For now, first byte is calculated, and in that way it is repeated for the

rest of the 15 bytes. Next four bytes of the key are read when four bytes of data is done.

Reading the key between calculations is done in that way because it gives GPU more

chance to make calculations while reading data from memory.

SubBytes operation is similar to XOR operation, block 3:

c1.x = texRECT(sbox, int2(c1.x, 0)).x;

As seen, the xor table is just replaced with the sbox table. As it is a two-dimensional texture

with only one row, then the second coordinate is 0.

22

Block 4 contains shiftRows operation where matrix rows are rotated left getting the

following result:

1 5 9 13 1 5 9 13

2 6 10 14 6 10 14 2

3 7 11 15 11 15 3 7

4 8 12 16 16 4 8 12

In block 5 mixColumns operation can be seen, this is half-way implemented with look-up

table due to the lack of bitwise operations. Algorithm of this operation is nicely discussed

on Wikipedias page: http://en.wikipedia.org/wiki/Rijndael_mix_columns. C

implementation is there given as following:

void gmix_column(unsigned char *r) {

 unsigned char a[4];

 unsigned char b[4];

 unsigned char c;

 unsigned char h;

 /* The array 'a' is simply a copy of the input array 'r'

 * The array 'b' is each element of the array 'a' multiplied by 2

 * in Rijndael's Galois field

 * a[n] ^ b[n] is element n multiplied by 3 in Rijndael's Galois field */

 for(c=0;c<4;c++) {

 a[c] = r[c];

 h = r[c] & 0x80; /* hi bit */

 b[c] = r[c] << 1;

 if(h == 0x80)

 b[c] ^= 0x1b; /* Rijndael's Galois field */

 }

 r[0] = b[0] ^ a[3] ^ a[2] ^ b[1] ^ a[1]; /* 2 * a0 + a3 + a2 + 3 * a1 */

 r[1] = b[1] ^ a[0] ^ a[3] ^ b[2] ^ a[2]; /* 2 * a1 + a0 + a3 + 3 * a2 */

 r[2] = b[2] ^ a[1] ^ a[0] ^ b[3] ^ a[3]; /* 2 * a2 + a1 + a0 + 3 * a3 */

 r[3] = b[3] ^ a[2] ^ a[1] ^ b[0] ^ a[0]; /* 2 * a3 + a2 + a1 + 3 * a0 */

}

from which the following part is implemented with table look up:

 for(c=0;c<4;c++) {

 a[c] = r[c];

 h = r[c] & 0x80; /* hi bit */

 b[c] = r[c] << 1;

 if(h == 0x80)

 b[c] ^= 0x1b; /* Rijndael's Galois field */

 }

As seen on visualization (table 5.2.1.1) of output of this chunk of code, it is quite

symmetrical, so it is also implemented as function mix2

23

Table 5.2.2.1: Visual representation of subtable in mix_table function.

half mix2(half b){
half x;
if(b<=127){

x=b*2;
}else{

x=b-128;
half k=(int)(x/16); //number of block
x=((int)x%16)+1;
x=16-x;
half n=(int)x/4;
half diff=(n*2+1)*2-x;
x=(diff+((int)x%2)*2+n*4)*2;
x=x+k*32+1;

}
return x;

}

On 6800 chip this function is slower than table lookup, so it is commented out, but there is

a big chance that on newer chips it turns out to be faster.

Block 6 is the same as block 2, only a new key is read from memory, and finally in block 7

data is divided by 255 to transform it back to “float form” and packed into one variable

which is returned as color.

There is also xor2 function left in cg file (commented out) which can replace xor table

lookups. It is much slower than memory lookup itself but it is still interesting to test on

newer cards.

24

 5.2.2 8800 implementation

Programming with CUDA is much faster, easier and shorter compared to OpenGL as used

in 6800 implementation – for example there is no need for extra initialization or

transferring data to GPU. Mix table data can be defined as device-side data directly:

__device__ int mix[] = {

There is some difference in overall structure compared to 6800 implementation – while in

the case of 6800 there was a new C file created which did all GPU initialization and static

data moving to GPUs memory and GPU-side code in cg file is loaded and compiled on the

fly, in the case of 8800 all GPU-related code is in cu file. OpenSSLs side still has functions

gpu_init, gpu_finish, gpu_aes_init_key and gpu_aes_cipher but they

just make calls to functions implemented in file eng_gpu.cu. During the building

process, this file is compiled separately by nvcc (compiler from CUDA) to object file and at

the end linked with other object files as usual.

Before giving an overview of functions, some information about defined constants is

necessary:

• NUM_BLOCKS – how many blocks will be run on GPU (See figure 2.8.1). For better

performance it should be multiple of 12 (number of multiprocessors), at least 24 in case

of 8800GTS [10:49].

• NUM_THREADS – how many threads will be run in each block. Thread should be

considered as unit computing one pixel. Maximum number is 512 [10:49] while 64 is

minimal and better is 192 or 256 threads per block [10:63] in case of 8800GTS.

• ROUNDS_IN_THREAD – Although a thread should be treated as a process for

calculating one pixel, or one 16 bytes block of data, tests showed that it is possible to

gain better results if one thread can do more calculations.

Functions in eng_gpu.cu file, CPU side functions

• init_8800: initialize GPU. CUT_CHECK_DEVICE macro is defined in cutil.h and

this file can be found under SDK. After initialization memory on GPU is allocated for

sbox, input- and outputdata. Also sbox is copied to GPU. Sbox could also be defined

as __device__ type and therefore there would be no need for memory allocation but

sbox is also used on CPU-side – as the key is still expanded on CPU.

• finish_8800: frees all allocated memory, will be called as the last function after

25

encryption process is completed.

• init_key_8800: key expansion

• cipher_8800: copies data to GPU, calls GPU-side function encrypt_8800 (with

extra parameters which tell how many blocks and threads must be run on GPU), and as

GPU has finished, copies encrypted data back to CPUs side memory. Here lays also one

point which can be improved – size of memory (which is copied and encrypted) doesn't

take into account that the last block of encryption is only 16 bytes.

Two last functions, mix_column and encrypt_8800 are GPU side functions:

• mix_column, with keyword __device__, is callable only from device, implements

Rijndael column mixing. Compared to Wikipedias C implementation it has some

improvements – one variable is left out, shift to left is done once on all four bytes, also

XOR with 0x1b (constant coming from algorithm) is done once on all bytes.

• encrypt_8800, with keyword __global__, also named as “kernel” and is

callable from host (CPU side) only, is AES encryption implementation.

As programming with CUDA is like programming in C then the algorithm itself will not be

longer discussed here. Comparing to 6800 implementation the new things are the way

memory is used and the way data gets into the encryption process. First, there are two new

built-in variables – blockIdx.x and threadIdx.x. The first one says which block is

currently running and second one says which thread is in current block. As data is held in

global memory and “kernel” gets only a pointer to it, function must calculate the address

where to start reading data for encryption. The formula for that is:

unsigned long int sb = (bid * NUM_THREADS *

ROUNDS_IN_THREAD * 4) + (tid * ROUNDS_IN_THREAD * 4);

As blocks' and threads' numbers are starting from zero, first thread from first block

becomes the starting byte address 0 in pointer. Later ones must already consider that the

maximum number of bytes is the number of threads started in block multiplied by number

of rounds in one thread multiplied by 4 (32bit unsigned integers are used).

For a note, there is one more benefit programming with CUDA compared to programming

in OpenGL – CUDA code can be compiled with an extra parameter -deviceemu which

gives possibility to run CUDA code on the host without GPU. It is useful for testing,

because neither CUDA environment nor GPU gives any debugging support.

26

 5.3 Problems

In this section the author will discuss problems experienced during implementing AES

block cipher on GPU.

When talking about 6800 chip, problems can mostly be divided into three groups: problems

related to limitations of the chip, problems related to limitations of the programming tools

and finally physical problems.

Problems related to chip

• 6800 does not have bitwise logical operations, so all bitwise calculations must be

implemented as lookup tables, but on GPU it's a slow operation. There is a native XOR

at the end of the rendering pipeline, but it is unusable because this operation is applied

only to the final stage of the rendering process [3].

• Natively GPU handles floats faster than integers, but on table-indexing there is need for

integers. So all numbers used are not byte, but integers and float. This casting takes

some time. First tests on XOR table were for example indexed by float, but problems

occurred at bytes above ASCII code 240 (due to progressive error in distance between

floats if they are handled as integers).

• As XOR is implemented as a table, there is no possibility to make fast calculations like

four bytes XORed by four bytes at once because it would take too much memory.

Problems related to tools

• cg is still in stage of development. Problems like buggy compiler rose due to too large

amount of variables with cg version 1.4.

• Graphical environment is needed to run this 6800 implementation.

Physical problems

• Testing on 6800 gave interesting results – when a 500MB file was encrypted the result

was correct, but 700MB file was full of errors at the end. So what's the catch? As

problem was studied more closely author discovered that the chip was starting to give

errors when its temperature went above 114 degrees by Celsius. For authors fortune,

problem disappeared when cards cooling system was cleaned from dust. After the

cleaning, GPU's temperature was around 65 degrees by Celsius in the middle of

calculations.

• Copying data to GPU is a relatively slow action, therefore GPUs algorithm must be

really fast to win back time lost in copying.

27

• Copying bigger portions of data is a considerably hard task to CPU, it means that big

chunks are making performance results worse.

• At the end of encryption GPU algorithm makes an extra block by size of 16 bytes. But

currently GPU doesn't count on real size of data, so it spends the same time as usual on

that last block, depending on testing settings, for example 16MB.

• Results, while testing on small files, vary very much (see Table A6, file #7). Reasons

for that may lay in cache of both operating system and GPU.

Problems encountered while creating 8800 implementation were mostly related to the tools.

Although, memory copying speed issue is mostly the same, and as 6800 implementation,

8800 implementation doesn't also count the last block size.

• CUDA is beta I. For example – there is up to 16KB shared memory per multiprocessor,

but if larger amount of shared memory is allocated at running CUDA program, it

doesn't give any error but returns some random result.

• CUDA is beta II. When errors occurred (allocated too much memory, etc), CUDA

program failed, printing just an error message "terminate called after throwing an

instance of 'bool'". It made debugging difficult.

• CUDA is beta III. At some point, after a line “unsigned char r[4];” there were no errors

as there was assignment to r[0]..r[2]. Assignment to r[3] showed up an error

message:

Assertion failure at line 1432 of ../../be/cg/cgemit.cxx:

Compiler Error in file /tmp/tmp_00007a9f-1.i during Assembly phase:

incorrect register class for result 0

nvopencc INTERNAL ERROR: /usr/local/cuda/open64/lib//be returned non-zero status.

As 6800 implementation relies on OpenGL standard, it is independent from graphics card

used (it must be supported in cg's profiles). 8800 implementation relies on NVIDIA's

CUDA and graphics driver, so it is unusable with cards manufactured by other firms or by

NVIDIA's older cards.

One reason to use 8800 as a coprocessor is its speed and tests (for example “simulation of

the dispersion of airborne contaminants in the Times Square area of New York City” [24]

which showed that GPU cluster is 4.6 times faster than CPU cluster) empower those

expectations, but speed-bonus may get shadowed by power consumption problems and by

alternatives which do not need so much power. When comparing pictures C1 and C2 it

28

shows that in one case 8800GTS system uses 81 watts more than idle system. Pure numbers

vary, but one number said [25] is that G80 family (it means 8800 chip) uses about 177W

when loaded. Considering that AMD wants to add new coprocessor [26] which is able to

calculate 25GFlops at only 10 watts, it might end up NVIDIAs wish [27] to enter into high-

performance computing market with current GPUs.

 6 Results

 6.1 Description of test system

All programming and testing were done on one PC using two different cards to test

different implementations:

PC

CPU: Intel P4 640 3.2GHz

RAM: 2 x 512MB DDR2

Motherboard: Abit NI8-SLI C19 s.755 DDR2

HDD: Western Digital, 250GB, SATAII

6800 card

http://www.asus.com/products4.aspx?l1=2&l2=6&l3=138&model=406&modelmenu=2

GPU: NVIDIA 6800GT

RAM: 256MB

8800 card

http://www.club3d.nl/index.php/products/graphics/item/231

GPU: NVIDIA 8800GTS

RAM: 640MB

Operating System

Name: Gentoo Linux

Kernel: 2.6.18-gentoo-r6

gcc version: 3.4.6

glibc version: 2.5

X: 7.2

29

KDE: 3.5.5

Graphics and other libraries

video driver: NVIDIA 9751 (CUDA compatible)

nvidia-cg-toolkit version: 1.5.0

glew: 1.3.5

freeglut: 2.4.0

CUDA Toolkit: 0.8

CUDA SDK: 0.8

OpenSSL: 0.9.8d

 6.2 Speed tests

AES implementation was tested and compared in “real-life situation” with OpenSSL where

“user” had a file on hard drive and it had to be encrypted with AES algorithm. Tests also

included error checking – will CPU and GPU implementations get the same result? As

talked in “Problems” section, for example, one “bug” was found when comparing results

with cmp:

cmp data.cpu data.gpu

and although small files (below 500MB) were correctly encrypted 700MB files already got

errors at the end while using 6800 card.

First tests were focused to find configurations of implementations (such as buffer size,

texture size, etc.) which give best results and then stay focused on them. Some testing was

also done during programming to also find out which area of code takes most of the time of

execution. It was done by commenting of lines or blocks and then comparing results. In that

way a lot of optimizations were made which now lay in final code. But this sort of testing

needs attention – both compilers, cgc and nvcc, eliminate all calculations which are not

related to return value, so for example when one comments out the last line in some blocks

where there is ascription and therefore code becomes several times faster, it doesn't mean

that loss of time happens because of this ascription.

For final testing, 8 different files were generated, although last of them got less attention

due to big variance among results.

30

Name Size (bytes) Content

1 test1.dat 884 736 000 Blocks with bytes 0..255

2 test2.dat 884 736 000 All bytes are 0xAA

3 test3.dat 884 736 000 Random bytes in increasing range (0..255*rand())

4 test4.dat 884 736 000 Random bytes (255*rand())

5 test5.dat 442 368 000 Random bytes (255*rand())

6 test6.dat 442 368 000 Random bytes (255*rand())

7 test7.dat 117 964 800 Random bytes (255*rand())

8 test8.dat 58 982 400 Random bytes (255*rand())
Table 6.2.1: Files used in testing and their contents.

 6.2.1 Results of 6800 implementation

Three texture sizes were mostly tested: 256x256, 512x512 and 1024x1024. Best results

were gained with size 512x512, as 256x256 took longer, although CPU usage was lower

than 512x512. 1024x1024 was slower than 512x512 (on file #1 1.029 times and on file #3

1.027 times), as seen when comparing tables A5 and A6, and a noticeable fact is that CPU

usage at the same time was between 90..99% and overall response of computer was bad

almost the whole time. Therefore 512x512 was considered to be the best texture size for

encryption on GPU and most testing was done with that size. Trying to lower the overhead

that could come from HDD I/O (bufsize twice as GPU could do in one round) showed same

or worse results.

When comparing times there will be comparison between whole calculation times and

between “pure computing times”. While the first represents whole running time, the second

is time which does not take into account engine overhead. We get this time from full time

by subtracting “Null engine” times found in table A7. It becomes important on 6800

implementation where variance among results is bigger and copying time hides real relation

between CPU and GPU. Comparing full time it will give a sence of encryption time to end-

user who will get results after whole process is completed, at the point of programmer is

“pure computing time” comparsion more informative about CPU/GPU speed relation.

Analyzing table A5, we first notice that in case of using the 6800 chip, GPU

implementation is slower than CPU implementation. On file #1 CPUs average is 46.609s

and GPUs average 87.548s, it shows that GPU is 1.87 times slower than CPU. Pure

computing time in the case of CPU is 11.670s and in the case of GPU is 46.393s, which

31

means that GPU is 3.9 times slower.

With file #2 the results are 44.804s for CPU and 81.952s for GPU which means that GPU is

1.82 times slower, and by pure calculation time (CPU is 9.865s, GPU 40.797s) GPU is 4.1

times slower.

Results on encrypting files #3 and #4 as seen in table A5 are surprisingly different from

previous results – GPU implementation takes 201 seconds (2.3...2.4 times slower

comparing to results on files #1 and #2) to complete while CPU results are almost the same

or even faster. Comparing pure computation times on file #3 (CPU 9.244s and GPU

160.301s) shows that GPU is 17.34 times slower (by full time GPU is 4.55 times slower!).

Despite of trying different configurations, results stayed the same: encrypting files #3 and

#4 was much slower than files #1 and #2. As there were no chances that this difference

could come due to I/O problems (encrypting same files with CPU gave same results!) the

next possible explanation to this is that encryption time on 6800 depends directly on data

which is currently in process – file #1 is containing blocks with bytes with ASCII code

0..255 and file #2 containing bytes with ASCII code 170 (Hex: 0xAA) while files #3 and #4

contained random data – in case #1 and #2 GPU has higher possibility to hit a value in the

cache because data which is needed on next read from lookup table is near to data which

was just used. But in case of files #3 and #4 GPU must read data from different area of

memory during each table lookup and because GPU has relatively small cache it doesn't get

that accelerating effect.

Even if encryption on GPU takes longer time, there is no good reason to take load off from

CPU and put it on GPU (in case 6800 implementation) because, as seen from table B3,

while encrypting files #1 and #2 on GPU, CPU is still much more utilized, and it gets even

worse on files #3 and #4 where CPU usage is over two times higher. There is also a chart of

CPU usage during encrypting file #3 with bigger bufsize – as seen from table B3 – CPU

usage is even more higher and overall response of PC was very jumpy at that time.

File #5, which was half the size of previous ones, gave the following results – average of

CPU 20.704s and average of GPU 101.649s, real computing time of CPU 5.593s and of

GPU 86.538s – shows that GPU is 15.4 times slower.

32

 6.2.2 Results of 8800 implementation

8800 testing was done in two main stages: without X (graphic driver was not in use) and

with it (KDE was running and using graphics driver). Author tried to find proof to the

hypothesis that in case GPU is used only to compute AES cipher, it will be done faster, but

tests showed, on the contrary, that encryption was almost always faster when X was

running as seen when comparing tables A1, A2, A3 and A4 (see appendix A): with any

configuration, the average results of files #1, #3 and #4 in table A4 are better than in A1,

A2 and A3. Only encrypting file #2 (all bytes 0xAA) was done a little bit faster as seen in

table A2. C implementation also performed better when X was running.

Comparing results of 6800 and 8800 chips, one good conclusion can be made – 8800

implementation doesn't depend on data which is encrypted as 6800 did – table A5 shows

that encrypting files #3 and #4 on 6800 takes 201..202 seconds while files #1 and #2 took

81..87 seconds while table A4 shows that files #1, #2, #3 and #4 are all encrypted in 39..41

seconds.

And finally, as tables A1, A2, A3 and A4 show when encrypting large files #1..#4, 8800

implementation is generally faster than C implementation:

File # CPU average GPU average GPU faster

1 43.208s 41.949s 1.0300

2 40.647s 40.474s 1.0043

3 42.383s 41.824s 1.0134

4 41.786s 40.314s 1.0365
Table 6.2.2: General comparision of CPU and GPU implementations on 8800.

When comparing CPU usage during encryptions on 8800, seen in table B1 and B2 (see

appendix B), conclusion is that CPU usage in case of CPU and GPU encryptions is the

same, or just a little bit better in case of GPU (table B1, bufsize 29 491 200, and table B2,

there are bigger CPU usage drops on GPU usage). Still, question remains – what is the CPU

doing while encryption process is running on GPU? Testing showed that at least type

casting in GPU programs is thrown back to CPU.

33

 6.3 Thoughts for the future

According to figure 2.2.1 and considering the results of testing 8800 implementation it

becomes clear that work on studying GPUs must continue. Current work is done at the very

right time – CUDA, thanks to which this kind work has been done at all, came out in March

2007 and has proven that it makes programming on GPUs and using them in non-graphic

applications easier and faster. But, as it has been public for such a short time, and is still

beta, author hopes that those implementations will also be tested with the next versions of

CUDA and newer GPUs, as 8800 was used for programming only for a week.

There were ideas not put into practice due to lack of time, need of additional testing:

• both implementations should have dynamic texture/block/thread resizing according to

the number of bytes going to be encrypted (nbytes) in function gpu_aes_cipher as

there is always one 16 byte block at the end of AES cipher. It will also give better

results on smaller files with sizes smaller than hardcoded ENC_BLOCK_SIZE.

• 6800 chip is significantly slower compared to the CPU, but there might still be some

ways to make the code run faster on GPU as this was the first time for the author to

write programs for GPU.

• For 8800 “pure table lookup version” (AES is reduced to four table lookups and four

XORs) [2] should also be implemented which would probably be faster than the current

implementation.

• 8800 code should be tested more with different configurations to find faster ways to

run. Some more profiling is also needed to find slower places in code. Although it has

been optimized in quite a hard way (look for example mix_column function which is

faster than Wikipedias C implementation), there may still be lines of code which can be

made faster considering the fact that it runs on GPU.

• As all this code is tested only on Linux and PC architecture, it would be appropriate to

test it on other platforms as well.

• As there is now a mostly working engine for OpenSSL, it is now easy to add new

ciphers. As AES doesn't need very much computing power, there might be other

algorithms which could perform (asymmetric cryptography for example) better on

GPU.

• Running two NVIDIA SLI-Ready cards in a single system (more detailed description

available at http://www.slizone.com/page/slizone_learn.html) can give up to double

better graphics performance – should be tested, does it give better results on

34

cryptographic algorithms too.

• Although this paper is focused on real-life use there are signs showing, that at least on

case CPU implementation there is bottleneck linked to HDD I/O and avoiding that

could make CPU implementation more faster when compared to 6800 implementation.

There has also been an idea that perhaps in parallel computing course, where the whole

classroom is full of computers connected to each other supporting students' practical work

while creating parallel programs, GPUs could be considered as good alternatives – they are

easier to install, easier to maintain and communication between processes is many times

faster compared to parallel computing with fortran or grid.

 7 Conclusions

Goal of this thesis was to study possibilities of using GPU in non-graphics calculations, like

cryptography. Author tried to figure out problems rising when moving arithmetic

calculations from CPU to GPU and to determine when this move is reasonable. AES block

cipher was chosen because it is common and popular and is suitable for file encryption

which was the main target (leaving aside possibilities of asymmetric and stream

encryption).

Author created a new engine for OpenSSL cryptographic framework and implemented AES

encryption algorithm on two different chips – NVIDIA 6800GT and 8800GTS using

different graphics toolkits:

• 6800 implementation was coded as a graphics application using OpenGL and data was

handled as textures

• 8800 implementation was coded with a brand new tool – NVIDIAs CUDA which gave

fast (no need for extra and difficult GPU initialization) and common (programming

with CUDA means to write C-like code) way to use GPUs resources.

Test results show that older GPUs (6800) are not suitable to take over CPUs tasks, at least

when considering AES block cipher which has not very high arithmetic intensity. But one

of the fastest chips at the moment on the market, NVIDIAs 8800, is quite considerable on

overtaking CPUs tasks. But when calculations are moved from CPU to GPU it must be

noticed, that probably all algorithms must be remade because optimizations which give

better results on CPU may on the GPU slow things down.

35

 8 Resümee

Käesoleva magistritöö peamiseks eesmärgiks oli uurida graafikaprotsessorite (GPU)

kasutamise võimalusi mittegraafiliste arvutuste jaoks, nagu näiteks krüptograafia. Autor

uuris probleeme, mis võivad tekkida arvutuste üleviimisel põhiprotsessorilt GPU'le ning

samuti seda, millal selline üleviimine võiks osutuda põhjendatuks. Töö aluseks sai valitud

populaarne ja levinud AES plokkšiffer, mis sobib hästi failide krüptimiseks, mis oli ka

põhiliseks uurimissuunaks. Voo krüptimine ja asümmeetriline krüptograafia said teadlikult

kõrvale jäetud.

Autor realiseeris antud magistritöö raames OpenSSL krüptoraamistikule uue krüptomootori

(engine) ning realiseeris kahe erineva kiibi – NVIDIA 6800GT ja 8800GTS – jaoks AES

algoritmi, kasutades selleks erinevaid vahendeid:

• 6800 implementatsioon on kirjutatud kui graafikaprogramm, kasutades OpenGL ning

kus kõiki andmeid on käsitletud tekstuuridena

• 8800 kirjutamise jaoks on kasutatud täiesti uut vahendit – CUDA, mille NVIDIA lasi

välja 2007. aasta märtsis, ning mis andis kiire (erinevalt OpenGL'ist, ei ole CUDA

puhul vaja näha lisavaeva GPU initsialiseerimisega jne) ja üldise võimaluse (CUDA

abil programmeerimine tähendab praktiliselt C keelse koodi kirjutamist) kasutada GPU

resursse.

Testimise tulemused näitavad, et vanemad GPUd (6800) ei sobi CPU ülesandeid täitma,

vähemalt mitte AES plokkšifri puhul kus arvutuste osakaal on väiksem kui

mäluoperatsioonide osakaal. Kuid hetkel üks võimsamaid kiipe, 8800GTS, on

põhiprotsessori (CPU) abistamisel ning arvutuste ülevõtmisel täiesti arvestatav. GPU

kasutamisel aga tuleb arvesse võtta asjaolu, et osaliselt vajavad algoritmid ümbertegemist

kuna mitmed optimiseerimised, mis töötavad CPU peal, võivad GPU puhul hoopiski

tulemuse aeglasemaks muuta.

36

 9 Bibliography

1. Flynn's Taxonomy. http://en.wikipedia.org/wiki/Flynn's_Taxonomy, March, 2007

2. Cook, D., Baratto, R., Keromytis, A., Luck, J. (2005) Secret Key Cryptography

Using Graphics Cards. http://www.cs.columbia.edu/techreports/cucs-002-04.pdf,

March, 2007

3. AES Block Cipher Encryption Implementation and Analysis on Commodity

Graphics Processing Units.

https://www.cs.tcd.ie/~harrisoo/publications/AES_On_GPU.pdf, April, 2007

4. Cook, D., Baratto, R., Keromytis, A. (2004) Remotely Keyed Cryptographics,

Secure Remote Display Access Using (Mostly) Untrusted Hardware – Extended

version. http://www1.cs.columbia.edu/~library/TR-repository/reports/reports-

2004/cucs-050-04.pdf, April, 2007

5. Graphics processing unit. http://en.wikipedia.org/wiki/Graphics_processing_unit,

March, 2007

6. Preview: NVIDIA GeForce 6800 Ultra, (2004),

http://www.behardware.com/articles/491-1/preview-nvidia-geforce-6800-ultra.html,

April, 2007

7. A Personal History of 3D Graphics, (2006),

http://www.extremetech.com/article2/0,1697,1911275,00.asp, April, 2007

8. NVIDIA CUDA Homepage. (2007). http://developer.nvidia.com/object/cuda.html,

March, 2007

9. General-Purpose Computation On GPUS: A Primer,

http://http.download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch29.pdf,

April, 2007

10. NVIDIA CUDA Compute Unified Device Architecture. (2007).

http://developer.download.nvidia.com/compute/cuda/0_8/NVIDIA_CUDA_Progra

mming_Guide_0.8.pdf, March, 2007

11. 8800GTS. http://www.club3d.nl/index.php/download/pdf/CGNX_GTS8820.pdf,

March, 2007

12. GPU Gems 2, The GeForce 6 Series GPU Archidecture. (2005).

http://http.download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch30.pdf,

April, 2007

13. OpenGL. http://en.wikipedia.org/wiki/Opengl, March, 2007

14. Using OpenGL Extensions. http://www.mesa3d.org/brianp/sig97/exten.htm, April,

37

2007

15. OpenGL Utility Toolkit. http://en.wikipedia.org/wiki/OpenGL_Utility_Toolkit,

March, 2007

16. OpenGL Extension Wrangler Library.

http://en.wikipedia.org/wiki/OpenGL_Extension_Wrangler_Library, March, 2007

17. Appendix A: Cg Language Specification.

http://http.download.nvidia.com/developer/cg/Cg_Specification.pdf, April, 2007

18. The Cg Tutorial: The Definite Guide to Programmable Real-Time Graphics.

http://http.download.nvidia.com/developer/cg/Cg_Tutorial/Chapter_1.pdf, April,

2007

19. Cg Toolkit 1.5. http://developer.nvidia.com/object/cg_toolkit.html, March, 2007

20. Advanced Encryption Standard,

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard, March, 2007

21. Rijndael cipher. http://www.conxx.net/rijndael_anim_conxx.html, March, 2007

22. OpenSSL, http://www.openssl.org/, April, 2007

23. OpenSSL, http://en.wikipedia.org/wiki/OpenSSL, April, 2007

24. GPU Cluster for High Performance Computing, (2004),

http://portal.acm.org/citation.cfm?id=1048933.1049991&coll=&dl=ACM&type=se

ries&idx=1048933&part=Proceedings&WantType=Proceedings&title=Conference

%20on%20High%20Performance%20Networking%20and%20Computing&CFID=

15151515&CFTOKEN=6184618, April, 2007

25. GeForce 8800: the DirectX 10 era begins,

http://www.firingsquad.com/hardware/nvidia_geforce_8800_preview/default.asp,

April, 2007

26. AMD considers Clearspeed math co-processor, (2006)

http://arstechnica.com/news.ars/post/20060315-6392.html, April, 2007

27. Nvidia Banks on Split-Personality Chip,

http://www.thestreet.com/_dm/smallbusinesstech/smallbusinesstech/10347867.html

, April, 2007

28. Nvidia's GeForce 8800 graphics processor, (2006),

http://techreport.com/reviews/2006q4/geforce-8800/index.x?pg=1, April, 2007

38

Appendix A: Test results, Speed

File # Test # CPU GPU 8800

1 1 47.856s 42.238s

2 43.887s 42.815s

3 45.957s 43.935s

average 45.900s 42.996s

2 1 40.158s 40.750s

2 41.328s 40.965s

3 43.493s 41.920s

average 41.659s 41.211s

3 1 41.802s 40.620s

2 43.242s 39.443s

3 41.883s 41.030s

average 42.309s 40.364s

4 1 42.365s 43.539s

2 43.684s 43.482s

3 42.750s 42.655s

average 42.966s 43.225s

Table A1: Results with configuration: GPU program – Blocks: 360, Threads: 512, Rounds

in thread: 10; bufsize: 29491200 (One read per GPU round); X is not running

39

File # Test # CPU GPU 8800

1 1 42.915s 42.405s

2 42.663s 42.600s

3 43.619s 43.935s

average 43.065s 42.980s

2 1 36.840s 39.691s

2 39.915s 40.368s

3 37.776s 38.306s

average 38.177s 39.455s

3 1 42.080s 37.892s

2 38.806s 37.607s

3 40.251s 39.958s

average 40.379s 38.485s

4 1 42.071s 40.301s

2 39.994s 42.218s

3 40.836s 40.377s

average 40.967s 40.965

Table A2: Results with configuration: GPU program – Blocks: 360, Threads: 512, Rounds

in thread: 10; bufsize: 58982400 (One read per two GPU rounds); X is not running

40

File # Test # CPU GPU 8800

1 1 43.082s 43.628s

2 43.988s 42.469s

3 43.863s 42.038s

average 43.644s 42.711s

2 1 42.269s 40.133s

2 40.310s 42.327s

3 41.558s 40.243s

average 41.379s 40.901s

3 1 40.501s 41.577s

2 42.538s 42.327s

3 40.299s 40.913s

average 41.112s 41.605s

4 1 42.583s 42.643s

2 44.158s 41.263s

3 43.450s 42.332s

average 43.397s 42.079s

5 1 9.918s 21.718s

2 20.248s 19.860s

3 12.297s 13.307s

6 1 21.995s 16.764s

2 19.970s 16.847s

3 7.784s 8.984s
Table A3: Results with configuration: GPU program – Blocks: 240, Threads: 256, Rounds

in thread: 10; bufsize: 9830400 (One read per GPU round); X is not running

41

File # Test # CPU GPU 8800

1 1 43.319s 41.143s

2 43.871s 41.507s

3 42.291s 42.868s

average 43.160s 41.839s

2 1 38.865s 39.670s

2 39.358s 40.648s

3 42.673s 38.681s

average 40.298s 39.666s

3 1 41.431s 39.138s

2 41.910s 38.153s

3 42.371s 40.415s

average 41.904s 39.235s

4 1 41.168s 39.820s

2 43.584s 41.788s

3 40.605s 39.946s

average 41.785s 40.518s

5 1 20.457s 21.369s

2 18.095s 20.190s

3 19.284s 20.289s

6 1 17.945s 20.090s

2 19.747s 17.688s

3 19.549s 20.441s

7 1 1.967s 2.469s

2 1.931s 2.306s

3 1.894s 2.303s

8 1 1.068s 1.557s

2 1.098s 1.922s

3 1.076s 2.684s
Table A4: Results with configuration: GPU program – Blocks: 360, Threads: 512, Rounds

in thread: 10; bufsize: 58982400 (One read per two GPU rounds); X is running

42

File # Test # CPU GPU 6800

1 1 46.197s 86.895s

2 46.895s 86.970s

3 46.736s 88.780s

average 46.609s 87.548s

2 1 45.512s 84.737s

2 42.789s 80.460s

3 46.112s 80.659s

average 44.804s 81.952s

3 1 45.006s 201.782s

2 43.940s 200.754s

3 43.604s 201.832s

average 44.183s 201.456s

4 1 44.859s 202.042s

2 45.938s 202.385s

3 45.561s 202.922s

average 45.452s 202.449s

5 1 21.061s 102.798s

2 20.883s 101.390s

3 20.170s 100.759s

6 1 21.547s 101.819s

2 19.722s 103.049s

3 20.162s 101.380s

7 1 2.009s 26.282s

2 1.856s 26.498s

3 1.905s 26.462s
Table A5: Results with configuration: GPU program – texture size: 512 x 512; bufsize:
4194304 (One read per GPU round)

File # Test # CPU GPU 6800

1 1 44.231s 88.954s

2 43.415s 90.592s

3 43.821s 90.857s

3 1 40.993s 206.346s

2 41.173s 207.879s

3 40.071s 206.622s
Table A6: Results with configuration: GPU program – texture size: 1024 x 1024; bufsize:
16777216 (One read per GPU round). Note: CPU highly utilized.

43

File # Test # Null engine Without GPU “run”

6800

Without GPU “run”

8800

1,2,3,4 1 34.073s 40.500s 34.257s

2 34.855s 41.775s 35.831s

3 35.891s 41.190s 36.244s

average 34.939s 41.155s 35.444s

5 1 14.920s 20.952s 16.849s

2 15.495s 18.620s 14.653s

3 14.918s 18.450s 16.281s

7 1 3.491s 6.022s 4.367s

2 0.697s 1.672s 4.411s

3 0.697s 1.499s 3.478s

8 1 1.635s 2.140s 2.609s

2 0.602s 1.174s 3.297s

3 1.141s 1.174s 1.709s
Table A7: Results to engine speed tests. “Null engine” is result of empty function named

gpu_aes_cipher (pure OpenSSL running time) and “Without GPU “run”” is

gpu_aes_cipher where data coping to/from GPU is done, but real GPU-side program

is not started (to measure how much time it takes to copy data between CPU and GPU).

44

Appendix B: Test results, CPU usage

Graphs are made with program GkrellM (available at http://www.gkrellm.net/). Each

horizontal line on picture is at 25% of CPU usage, full scale is 100%.

Figure B1: CPU usage while coping file #1 on HDD to new location.

bufsize CPU GPU 8800

29 491 200

58 982 400

Table B1: CPU usage during encryption of file #1 with ENC_BLOCK_SIZE 29491200

(GPU configuration: 360 blocks, 512 threads, 10 rounds)

bufsize CPU GPU 8800

9 830 400

Table B2: CPU usage during encryption of file #1 with ENC_BLOCK_SIZE 9830400

(GPU configuration: 240 blocks, 256 threads, 10 rounds)

45

File # CPU GPU 6800

1

0m42.767s 1m25.006s

2

0m41.492s 1m22.954s

3

0m41.584s 3m19.159s

3m19.615s (bufsize 8388608)

4

0m42.534s 3m21.873s

5

0m19.523s
1m42.262s

Table B3: CPU usage during encryption of file #1 with ENC_BLOCK_SIZE 4194304
(Texture size 512 x 512) and bufsize 4 194 304

46

Appendix C: Figures

Figure C1: System power consumption when idle [28:16]

47

Figure C2: System power consumption when system is utilized [28:16]

48

	 1 Introduction
	 1.1 Prolog
	 1.2 Overview of the Thesis
	 1.3 Related work

	 2 Graphic Processing Unit
	 2.1 History
	 2.2 Architecture
	 2.3 Specifications
	 2.4 OpenGL
	 2.5 GLUT
	 2.6 GLEW
	 2.7 Cg Toolkit
	 2.8 CUDA

	 3 Advanced Encryption Standard
	 3.1 Algorithm
	 3.2 Optimization

	 4 OpenSSL
	 5 AES on GPU
	 5.1 Creating a new OpenSSL engine
	 5.2 Implementing AES algorithm on GPU
	 5.2.1 6800 implementation
	 5.2.2 8800 implementation

	 5.3 Problems

	 6 Results
	 6.1 Description of test system
	 6.2 Speed tests
	 6.2.1 Results of 6800 implementation
	 6.2.2 Results of 8800 implementation

	 6.3 Thoughts for the future

	 7 Conclusions
	 8 Resümee
	 9 Bibliography
	Appendix A: Test results, Speed
	Appendix B: Test results, CPU usage
	Appendix C: Figures

