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 1 Introduction

 1.1 Prolog

Development  of  Central  Processing  Unit  (CPU)  is  approaching  its  physical  limits, 

struggling at the same time with problems like high temperature and increasing need of 

extra power. There are mainly two alternatives to relieve those problems – Grid computing 

and Multi Core processors. Both of those approaches are able to give us more computing 

power than Single Core processors, though it means new algorithms and programs must be 

developed to be able to use all possibilities of new systems.

Although Grid seems to be a very sophisticated system which seems to need a room full of 

personal  computers  and  Multi  Core  processors  are  expensive  –  all  those  options  are 

available almost in every modern machine in the form of Graphic Processing Unit (GPU). 

Generally there are many processors in GPU and they can act like Grid – run in parallel 

way or same program on different data, or by Flynn's Taxonomy [1] it is Single Instruction, 

Multiple Data (SIMD) stream.

The rest of this paper introduces technologies used in GPU programming, algorithm of 

AES block cipher,  implementation of  this  algorithm on  two  different graphics  cards, 

problems that rose during creation of working code and the results.

Author wishes to thank his supervisor Meelis Roos for helping to complete this work, for 

giving support on programming, and also helping to get NVIDIA 8800GTS graphics card 

for testing (many thanks  also  to  Andrus Laansalu and computer reseller “Ordi”); and 

biggest  thanks  to  workmate Henri  Kuuste  who  helped  to  create  GPU programs and 

optimize them. Author is  also thankful to  his  wife for  understanding,  supporting  and 

helping with translation.
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 1.2 Overview of the Thesis

Goal of this thesis is to study possibilities of using GPU in non-graphics calculations, like 

cryptography.  Author  tries  to  figure  out  problems  rising  when  moving  arithmetic 

calculations from CPU to GPU and to determine when this move is reasonable. The goal is 

to add GPU-using functionality to an existing cryptographic framework and then test it in 

real-life situation. As GPUs are more powerful with bigger amounts of data, the author has 

chosen file  encryption as  the main target, leaving aside other possibilities  like stream 

encryption. For file  encryption, block ciphers are usually  used as they are faster than 

asymmetric cryptosystems. AES block cipher was chosen as one of the most popular block 

ciphers  today.  Focus  was  set  to  testing  in  real-life  situations  rather  than  conducting 

microbenchmarks to  take  into  account the  impact to  other  parts  of  the  system.  Only 

encryption was implemented because there is no difference at  programming whether to 

study encryption or decryption. The motivation for offloading cryptographic calculations to 

a general-purpose GPU is the possibility of using GPUs as cryptographic coprocessors, 

leaving CPU mostly free for other tasks, or replacing specialized cryptographic accelerator 

cards with cheaper mass-produced GPUs.

The three following sections (2-4) will give an overview of used graphics hardware and 

software – descriptions of graphics cards hardware, software and drivers used to utilize 

those cards. Some of this software has been publicly available only for a month, therefore 

this work could not possibly have been written earlier and on the other hand there may be 

some changes to them by the time this paper becomes public.

Sections  describing  technologies  are  followed  by  two  sections  that  discuss  about 

implementing the algorithm, problems that rose and the results of testing. Paper ends with 

conclusions. Detailed results of testing can be found in appendix A.

This work is written using open source and free software. The first reason for this choice is 

that author has only Linux at  his  computer and he is  also more experienced with this 

operating system. Linux is well suited for lowlevel programming and gives good access to 

hardware. OpenSSL and other tools used in this work are also better integrated into Linux 

than into Windows. Second reason is that Linux is faster as confirmed by first tests where 

simple calculations were done on GPU, so the results should be more exact because of 

lower overhead.
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 1.3 Related work

There are three papers written which are related to the current paper:

• “Secret Key Cryptography Using Graphics Cards” [2] where authors used OpenGL and 

three different GPUs, getting results  which were 40..100 times slower compared to 

CPU. This work is comparable to current paper's NVIDIA 6800 implementation.

• “AES encryption Implementation and Analysis on Commodity Graphics Processing 

Units”  [3]  where  author  used  NVIDIA 6600GT  and  7900GT.  On  6600  he  got 

approximately 7 times slower result  compared to CPU (when 8 bit  XOR-table was 

used).

• “Remotely Keyed Cryptographics.  Secure Remote Display Access Using  (Mostly) 

Untrusted Hardware” [4] where authors tested Trusted Computing on GPU.

To summary, it can be said all efforts that have been made earlier on older chips are slower 

than CPU. Also they have been made for microbenchmarking leaving aside other system 

components like HDD which is bottleneck when talking about CPU implementations.

 2 Graphic Processing Unit 

 2.1 History

Ancestors  of  modern  GPUs  are  native  from  late  1970s  and  1980s  when  they  had 

comparatively  small  functionality  comparing  to  modern  GPUs  –  they  had  several 

operations for graphics  commands, some of them could combine bitmap patterns in  a 

limited way and they could  use  direct memory access to  reduce the load on  the host 

processor. During that time GPUs were used even for faster printing [5].

At the beginning of 1990s, when Microsoft Windows was released, the need for faster 2D 

graphics rose. In 1991, S3 Graphics introduced first single-chip 2D accelerator and by 1995 

already all major graphic chip makers had added this support to their chips. In mid-1990s, 

when CPU-assisted 3D became common in computer games it lead to an increasing public 

demand for hardware accelerated 3D graphics. First chips that arrived were not pure 3D 

accelerators but 2D chips which included also some 3D features. DirectX became one of 

the leading 3D graphics programming interfaces and chips got 3D rendering pipeline. For 
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some cards the graphic acceleration was not the only thing to do – for example NVIDIAs 

NV1 could also manage sound and video and act as a modem [6][7].

In 2000 and later, programmable shading got added to GPUs' capabilities which meant that 

every pixel could be separately processed by a short program. NVIDIA was first on the 

market with programmable shading and in 2002 graphic chips were already able to make 

loops and lengthy floating point calculations – they quickly became nearly as flexible as 

CPUs [5].

 2.2 Architecture

Today, parallel GPUs are offering generally quite good computation power compared to 

latest  CPUs (as  seen  on  figure  2.2.1) and have  found their  way to  several  different 

application types [5].

Figure 2.2.1: Floating-Point Operations per Second for the CPU and GPU [8]. As seen – 

GPUs can give remarkably more computing power and the progression of GPUs is also 

much faster.

The main reason behind such an evolution is that GPU is specialized for compute-intensive, 

highly parallel computation – exactly what graphics rendering is about – and therefore is 

designed so that more transistors are devoted to data processing rather than data caching 

and flow control [8][9]. Also, as seen on figure 2.2.2, compared to the CPU GPU devotes 

more transistors to data processing meaning that work can be done faster.
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Figure 2.2.2: The GPU devotes more transistors to data processing [10].

More  specifically,  the  GPU is  especially  well-suited  to  address problems that  can be 

expressed as data-parallel computations. Because the same program is executed for each 

data element, there is lower requirement for sophisticated flow control; and because it is 

executed on many data elements and has high arithmetic intensity, the memory access 

latency can be hidden with calculations instead of big data caches [10].

For current thesis this means several things. First, we must reconsider almost everything 

about optimization on CPU. For example, AES optimization on CPU uses several lookup 

tables, but  on  GPU these tables would  slow things down instead. Second, it  must  be 

possible  to  calculate  the  algorithm in  parallel. It  means that  GPU is  not  suitable  for 

(cryptographic) algorithms where calculation of one data block is related to its prior data 

block calculation. Third, there must be considerably more arithmetic complexity compared 

to memory operations.

 2.3 Specifications

For current work two different graphic chips were used – NVIDIAs GeForce 6800 GT and 

8800 GTS. We now take a brief look at the specifications and general information of those 

cards.

ASUS GF6800GT PCX

This  card  is  advertised  on  manufacturers  page 

(http://www.nvidia.com/page/geforce_6800.html) as following: “The groundbreaking new 

NVIDIA GeForce 6800 GPUs and their revolutionary technologies power worlds where 

reality and fantasy meet; worlds in which new standards are set for visual realism and 

quality, performance, and video functionality. The GeForce 6800 GPUs deliver powerful, 

7



elegant graphics to drench your senses, immersing you in unparalleled worlds of visual 

effects for the ultimate PC experience.”

This card has Geforce 6800 GT core running at 350MHz and 256 megabytes of GDDR3 

memory running at 1GHz. This card uses PCI Express system interface. Memory transfer 

rate is 32GB/s. It has 16 pixel processors and 6 vertex processors, in our implementation 

are only pixel processors used.

• http://www.asus.com/products4.aspx?l1=2&l2=6&l3=138&model=406&modelmenu=2

• http://www.viperlair.com/reviews/video/asus/nv4x/6800gt/

• http://www.guru3d.com/article/content/151/

Club 3D 8800GTS

This  card  is  advertised  on  manufacturers  page 

(http://www.club3d.nl/index.php/products/graphics/item/231)  as  following:  “This  is  the 

first Graphics Card of a completely new generation. The Club 3D 8800 is not only limited 

to  boosting  the speed and the image quality of your games. With  the new developed 

Quantum Effects engine it  will  also accelerate movements and particles known as the 

physics from your game. This will make explosions, movements and collisions look more 

impressive and realistic.”

Club3D 8800GTS has 640 megabytes of GDDR3 memory running at 800MHz and 12 

multiprocessors at 600MHz (Club3D homepage says at 500Mhz). Each multiprocessor is 

composed of eight processors running at  twice the clock frequency of  multiprocessor. 

Difference between 8800 and 6800 is also processors ability to make computations – 6800 

processors can do only prescribed operations, vertex or pixel calculations, but processors on 

8800 can do those calculations which are more needed at the moment.

8800 family chips have new architecture compared to earlier NVIDIA chips. NVIDIA has 

released a new software framework named CUDA (introduced in section 2.8) which makes 

easy to use graphics cards possibilities in programs being developed.

The memory transfer rate is 64GB/s and it is much higher than the bandwidth between the 

device  memory and  the  host  memory. In  0.8  beta  version  of  CUDA, the  maximum 

observed bandwidth between system memory and device memory is 2GB per second [10].
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Club 3D says [11] about that card: For optimal performance with the CPU, the fastest bus 

communication PCI-Express x16 technology is used. This will allow communication with 

4GB/s in each direction between VGA card and CPU [12]. This statement gives some hope 

that in final versions of CUDA, the memory transfer rate will be faster than the current rate.

The memory transfer speed between CPU and GPU also makes a difference in cipher 

implementations. When block size 4096 is used, there is no chance for GPU to be faster 

than CPU if there is no urgent need for arithmetic power in given algorithm. For that reason 

we also changed OpenSSL's encoding block size. More detailed data about that will be 

given in sections “AES on GPU” and “Results”. 

Differences

From programmers point of view, the main differences between those two cards are

• 8800 supports bitwise logic and shift operations

• 8800 gives more flexible access to memory, for both reading and writing.

• Through CUDA it is possible directly define data on GPU, no need for extra copying.

• 8800 can modify more data in one function. When 6800 just returned float4 (16 bytes) 

as color after end of execution, 8800 implementation is changing 160 bytes directly in 

memory by default configuration.

 2.4 OpenGL

Open Graphics Library is a standard specification defining a cross-language cross-platform 

API for writing applications that produce 2D and 3D computer graphics. The interface 

consists of over 250 different function calls which can be used to draw complex three-

dimensional scenes from simple primitives. OpenGL was developed by Silicon Graphics 

Inc. in 1992 and is popular in the video games industry where it competes with Direct3D on 

Microsoft Windows platforms. OpenGL is widely used in CAD, virtual reality, scientific 

visualization, information  visualization,  flight  simulation and video game development 

[13].

OpenGL describes a  set  of  functions  that  are  implemented in  device  driver.  We use 

NVIDIA's binary driver which is not open source. On driver lays yet another layer which 

hides real function calls and lets user see this as normal OpenGL implementation. There 

might be some doubt – could one write better and faster programs if he could get direct 

access to the card, but at the moment it is not even the most important. By using OpenGL 
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for this implementation we have an advantage compared to CUDA implementation – it can 

also be used with ATI video cards, as CUDA is only able to run with NVIDIA cards, at the 

moment.

As designers of OpenGL anticipated the need to extend OpenGL in the future [14] there is 

possibility to add extensions to OpenGL, for example by hardware vendors, and therefore 

there is no immediate need for new releases of OpenGL as new features are developed.

OpenGL's homepage is available at http://www.opengl.org/.

 2.5 GLUT

The OpenGL Utility Toolkit (GLUT) is a library of utilities for OpenGL programs, which 

primarily perform system-level I/O with the host operating system. Functions performed 

include window definition, window control and monitoring of keyboard and mouse input. 

Routines for drawing a number of geometric primitives (both in solid and wireframe mode) 

are also provided, including cubes, spheres, and the Utah teapot. GLUT even has some 

limited support for creating pop-up menus. The two aims of GLUT are to allow the creation 

of rather portable code between operating systems (GLUT is cross-platform) and to make 

learning OpenGL easier. Getting started with OpenGL programming while using GLUT 

often takes  only a  few lines of code and requires no knowledge of operating system–

specific windowing APIs [15].

In  this  work  we  use  the  GLUT library for  initialization (to  establish  a  session  with 

windowing system) and create and hide a window. We can also notice a restriction of one 

of  the  created  implementations  here  –  6800  code  must  be  running  in  a  graphical 

environment because window creation  without  X (or  any other  graphical  environment 

where needed libraries can be used) is impossible.

 2.6 GLEW

The OpenGL Extension Wrangler Library (GLEW) is a cross-platform C/C++ library that 

helps  in  querying and loading OpenGL extensions.  It  also  provides efficient run-time 

mechanisms for  determining  which  OpenGL extensions  are  supported  on  the  target 

platform [16]. 

10



When vendor releases new hardware and a new OpenGL extension, it contains functions 

with specific names. With OpenGLs own tools it is difficult to test which extensions are 

available and call those functions. GLEW makes it possible to load those extensions and to 

test if they exist on the current system – and it also redefines those functions into usable 

standard form.

GLEW library is available at its homepage: http://glew.sourceforge.net/.

 2.7 Cg Toolkit

The  Cg  (C  for  graphics) is  programming language  developed  by  NVIDIA to  make 

programming on graphics hardware easier. It is based on C [17], as this is very popular 

programming language, and it removes the need for developers to program directly in the 

graphics hardware assembly language [18][20].

The Cg Toolkit provides a compiler for the Cg language, runtime libraries for use with both 

leading  graphics  APIs  (OpenGL and  DirectX),  runtime  libraries  for  CgFX,  example 

applications  and  extensive  documentation.  Supporting  over  24  different  OpenGL and 

DirectX profile targets, Cg allows incorporating interactive effects into 3D applications 

[19].

Although Cg is based on C and its constructions are easy to read when familiar with C, 

there is one thing to pay attention to – data types. There are well known types in like int and 

float, but new ones like half, half4 and float4:

• The half type is lower-precision IEEE-like floating point [17].

• half4, float4 are vector types, containing 4 numbers of respective type. There are more 

defined vector types for every standard type [17] but they are no longer discussed here.

Running Cg compiler separately is easy:

cgc -profile fp40 -o outputfile inputfile

So source file can be compiled into machine code, which is then loaded into GPU. fp40 

here means that output code is generated specifically for NVIDIA's fp40 profile as used in 

6800  chip.  In  current  work  .cg  file  is  converted  to  GPU  code  by  cg  function 

cgCreateProgramFromFile which chooses the right target profile automatically.
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It must not be forgotten that almost each GPU family is different from others which means 

that the right profile must be chosen. At the time of writing this paper the 8800 chip is not 

yet supported by cg, so no comparison can be done on this level for those cards, as 8800 is 

programmed by using CUDA. This will be discussed in the next section.

Cg is available at its homepage: http://developer.nvidia.com/object/cg_toolkit.html

It is important to point out that version 1.5 of cg came out in February 2007. Previous 

version (1.4) of cg generated invalid machine code from source. The possible reason, as the 

tests proved, was that the compiler couldn't handle so many variables as were used by AES 

implementation. With version 1.5 that problem disappeared.

 2.8 CUDA

CUDAs homepage [8]  advertises  this  product  the  following  way:  “CUDA (Compute 

Unified Device Architecture) technology is a fundamentally new computing architecture 

that enables the GPU to solve complex computational problems in consumer, business, and 

technical  applications.  CUDA technology  gives  computationally  intensive  applications 

access to the tremendous processing power of NVIDIA GPUs through a revolutionary new 

programming interface. Providing orders of magnitude more performance and simplifying 

software development  by  using  the  standard C  language,  CUDA technology  enables 

developers  to  create  innovative  solutions  for  data-intensive  problems.  For  advanced 

research and language development, CUDA includes a low level assembly language layer 

and driver interface”.

When programmed through CUDA, the GPU is viewed as a computing device capable of 

executing a very high number of threads in parallel. It operates as a coprocessor to the main 

CPU. A portion of  an  application that  is  executed many times, but  independently  on 

different data, can be isolated into a  function that is  executed on the device as  many 

different threads. To achieve that effect, such a function is compiled to the instruction set of 

the device and the resulting program is downloaded to the device [10].
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Figure 2.8.1: 8800 Thread Batching [10]

Figure 2.8.1 illustrates how GPU is seen as a computation device – function, called a 

kernel, is going to run on a grid (see figure 2.8.1), which has predefined configuration 

given on call. The number of blocks in grid and the number of threads going run in a block 

are configurable. Example of running a kernel:

encrypt_8800<<<grid,threads>>>((uint*)d_idata, 

(uint*)d_odata, isbox, (uint*)ikey);

Only number of blocks and threads are defined here but it is possible to also declare the 

amount of shared memory (see figure 2.8.2) which will accessible for threads within one 

block, but as this is not useful in current implementation, it is not used. All data, which 

includes key, sbox and data to encryption, will lay in Global Memory (see figure 2.8.2) 

and local variables are in registers.
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Figure 2.8.2: 8800 Memory Model [10]

 3 Advanced Encryption Standard

In cryptography, the Advanced Encryption Standard (AES), also known as Rijndael, is a 

block  cipher  adopted  as  an  encryption  standard by  the  U.S.  Government. It  became 

effective as a standard on May 26th in 2002. As of 2006, AES is one of the most popular 

algorithms used in symmetric key cryptography [20].

In current paper the author focuses only on AES with 128 bit key length, although AES 

supports also keys with lengths of 192 and 256 bits. Using particular length of key is not 

very important because it  doesn't  change algorithm significantly in terms of intense of 

calculations, and full implementation is not the goal of this paper. 
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 3.1 Algorithm

Figure 3.1.1: Encryption process [21].

Figure 3.1.1 shows AES encryption graphically to give a better overview of the whole 

process.  After initial  AddRoundKey transformation with  ten  rounds of  SubBytes, 

ShiftRows, MixColumns and AddRoundKey transformations, on the final round the 

MixColumns transformation is  left  out  from the  chain.  State  is  data  going  to  be 

encrypted, round keys are blocks of the same size as data and they are derived from cipher 

key using Rijndael key schedule.

AddRoundKey – corresponding bytes from data and key are combined by using bitwise 

XOR.

SubBytes – bytes are replaced according to lookup table.

ShiftRows – rows are rotated to the left (1st row stays same, 2nd shifted one step, 3rd two 

steps and 4th shifted three steps)

MixColumns – four bytes of each column are mixed by using bitwise XOR and special 

function which can be replaced with a lookup table.
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 3.2 Optimization

Optimizations for CPU often mean replacing calculations with table lookups, but on GPU 

there are complications with memory reads when comparing to CPU. GPU can do more 

arithmetic operations in one processor cycle than CPU but when reading from memory 

there is  latency and while  processor  waits  for a  response on  the  execution is  stalled. 

Therefore it is very important to measure time ratio between memory reads and arithmetic 

operations when implementing algorithms on GPU.

According  to  Wikipedia  [20]  AES algorithm can  be  optimized on  32  bit  system by 

converting SubBytes, ShiftRows and MixColumns transformations into tables. It is 

useful on CPU, but when programming on GPU, we must consider that there will be 200 to 

300 clock cycles of memory latency [10:53], so there is a big chance that making extra 

calculations on GPU is still faster than memory lookup.

As seen later in results' section, it really depends on arithmetic intensity, whether one or the 

other method is faster, so the best results will be gotten by measuring the results of testing.

 4 OpenSSL

The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade, full-

featured, and open source toolkit implementing the Secure Sockets Layer (SSL v2/v3) and 

Transport Layer Security (TLS v1) protocols as well  as a full-strength general purpose 

cryptography library. The project is managed by a worldwide community of volunteers 

who use the Internet to communicate, plan, and develop the OpenSSL toolkit and its related 

documentation [22].

The  core  library  (written  in  the  C  programming  language)  implements  the  basic 

cryptographic functions and provides various utility functions. Wrappers allowing the use 

of the OpenSSL library in a variety of programming languages are available [23].

OpenSSL implements  many  cryptographic  algorithms  and  additionally  gives  users  a 

possibility to use special-purpose accelerator hardware. This is done by using cryptographic 

engines  which  will  communicate  with  the  special-purpose  hardware  and  perform 

encryption/decryption  processes on  them.  Minimum set  of  functions  which  must  be 

declared in an engine is: 
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• function that creates a new engine instance

• function that registers id, name, init an finish functions

• function that returns the list of supported ciphers.

Our  benchmarking is  focused  on  OpenSSL's command line  functionality  and  other 

possibilities are left out of focus. Example of running OpenSSL on testing:

openssl aes-128-ecb -bufsize 16777216 -in test1.dat -out 

data.cpu -k abcd -nosalt 

where “aes-128-ecb” means that AES cipher will be used for encryption, it is in ECB mode 

(it means that key is unchanged when encrypting different data blocks) and it will use 128 

bit key. “-bufsize 16777216” means that OpenSSL will read 16777216 bytes of data 

at once and will forward it to the engine for encrypting. Still, the engine will not get directly 

the same size of buffer as determined on command line but it is chunked a smaller size 

defined in OpenSSL file  crypto/evp/bio_enc.c –  ENC_BLOCK_SIZE, which is 

4096 bytes by default. But as mentioned earlier, and shown later, GPU can't give good 

results on small data blocks, so this value is changed during testing. “-in” and “-out” are 

describing input  and output  files  correspondingly.  “-k“  sets  password  to  “abcd” and 

“-nosalt” means that there is  no random data added to  the key.  This  is  useful for 

repeatability of the results, and to test whether CPU and GPU get the same results.

It is important to bear in mind that the ECB version of AES is used because that algorithm 

could be calculated in parallel way, but versions that change key depending on previous 

data would make this impossible. But if no parallel computing is possible to apply, there is 

no sense in using the GPU.
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 5 AES on GPU

 5.1 Creating a new OpenSSL engine

Work on creating a new engine for OpenSSL started at studying the whole code base. It 

must be said that OpenSSL is quite confusing for new developers. Internal documentation 

is almost missing, there are few comments in code and a lot of function definitions and calls 

are made through preprocessors definitions and through many layers of abstraction.

First goal of the current work was set to create an empty engine and learn how data gets 

there.  To  let  OpenSSL  know  that  there  is  a  new  engine,  it  must  be  loaded  by 

ENGINE_load_builtin_engines function  (eng_all.c in  crypto/engine 

directory) like this:

ENGINE_load_gpu();

The alternative way of loading additional engines would be loading the engine explicitly 

from the application that uses OpenSSL, but since we build our engine into OpenSSL, we 

modified OpenSSL to also automatically load it. In function  ENGINE_load_gpu GPU 

implementation creates a new engine instance and adds pointer to it  into global list  of 

known engines. In initialization process function  gpu_bind_helper is called which 

registers important data and functions into ENGINE function table – engines id, name, init 

and finish function, and finally a function which returns the list of implemented ciphers. It 

is called always when OpenSSL is started.

If the engine is not specified for the command-line utility, OpenSSL internal engine is used, 

assembler or C version of AES. We need to add new keyword to command line to activate 

and use our new engine:

openssl  aes-128-ecb  -bufsize  16777216  -engine  gpu -in 

test1.dat -out data._gpu -k abcd -nosalt

Engine is chosen by its ID which is set in helper function. If no such engine is registered in 

OpenSSL, it will fall back to C or assembler implementation.

From here on there will be a difference between 6800 and 8800 chip implementations. 

Although function calls are the same, they have different inner implementation. Overall 

process on encrypting/decrypting is the same: gpu_init → gpu_aes_init_key → 
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gpu_aes_cipher → gpu_finish where init does all initialization needed to be 

able to use GPU,  init_key initializes key according to AES key schedule algorithm, 

cipher encrypts given block of data and finish frees used memory.

And now a few final changes to original OpenSSL code to make the new engine work. 

6800 implementation changes:

in root directory Makefile.org must be changed, PEX_LIBS should be

PEX_LIBS= -lCg -lCgGL -lglut -lX11 -lm -lpthread -lGLEW

It forces compiler to use libraries needed for graphical programming.

And in crypto/engine/Makefile “eng_gpu.c” should be added to LIBSRC and 

“eng_gpu.o“ to  LIBOBJ. After that one should run “make depend” command in 

OpenSSL source directory and then the code will be ready to use.

8800 implementation changes:

only crypto/engine/Makefile must be changed:

all: lib

should be replaced with

all: cuda lib

cuda:

nvcc -c -o eng_gpu.cu.o eng_gpu.cu -I

/usr/local/cuda/include -I/opt/NVIDIA_CUDA_SDK/common/inc 

-DUNIX -O3

And “eng_gpu.c” should be added to LIBSRC and “eng_gpu.o eng_gpu.cu.o“ 

to  LIBOBJ. This additional target will compile CUDA file into object file which can be 

linked to  OpenSSL binary. After that one should run “make depend” command in 

OpenSSL source directory and then the code will be ready to use.

For a note – “-I/opt/NVIDIA_CUDA_SDK/common/inc” should refer to directory 

where NVIDIA CUDA software development kit is installed.
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 5.2 Implementing AES algorithm on GPU

In this section the author will give overview of 6800 and 8800 implementations.

When GPU engine is chosen, first function called before encoding/decoding is gpu_init 

which does all GPU initialization.

 5.2.1 6800 implementation

Data is sent to GPU as textures which means that data is treated as picture where one pixel 

contains 16 bytes of data.

First variable defined is texSize – it will represent the length of texture edges (square) in 

which data  (which should be  encrypted) will  be  copied to  GPUs memory. Maximum 

texture size is 4096 x 4096, so texSize must be between 1..4096.

When data is mapped into GPUs memory, its size will be 16*texSize*texSize bytes. It's 16 

times bigger than defined texture but it's not a mistake – 16 bytes will be represented as one 

pixel,  containing  four  32bit  floats  (Red,  Green,  Blue,  Alpha),  which  are  all  in  turn 

separately “unpacked” to four bytes.

After the GPU is initialized static data (xor,  sbox and mix tables) will be written into 

GPUs memory. Xor, and also mix is set into table not because of the optimization but due 

to the fact that 6800 chip can't do bitwise logic operations so this data will be precomputed 

on CPU. Mix is subdata for MixColumns operation.

The next step is to initialize cg (“C for Graphics”) – context is created, GPU profile data 

initialized and cg program loaded and translated into format of current profile. Final steps 

in initialization are creating named parameters and making them related to corresponding 

textures.

Function named gpu_aes_init_key is called once before real encyption/decryption 

starts. As one of the input parameters is key, 16 bytes, it will be expanded by Rijndael's 

key  schedule  algorithm  and  after  that  key  data  is  copied  to  GPU.  Currently 
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gpu_aes_init_key will  return  error  if  action  is  something else  than  encryption, 

because only encryption is currently implemented.

From CPU side the most important function is  gpu_aes_cipher which handles the 

following things:

• copying data to GPU with OpenGL function glTexSubImage2D

• starting GPU side program by calling glBegin

• after  GPU is  done, copying data from GPU back to  main memory with  function 

glReadPixels.

This  function  is  called  as  many times as  ENC_BLOCK_SIZE fits  into  data  size and 

additionally one last time with final data. Here lays also a possibility to win some extra time 

by making glTexSubImage2D and glReadPixels depend on the number of bytes 

going to be encrypted (nbytes).

6800 GPU side implementation lays in file gpu_aes_encrypt.cg and it contains code 

written in cg.

Cg file can also be compiled separately for fast testing:

cgc -profile fp40 -o outputfile inputfile

For every pixel on input texture a main function is called with return type float4 (which in 

current  implementation  means  16  bytes).  Main  function  gets  the  following  input 

parameters:

• coords – float2 (two floats) indicates to the program which pixel on texture must be 

handled by this current call

• data – input texture, two-dimensional array of data which will  be encrypted. It  is 

accessed by normal int type indexes

• key – key and its expanded subkeys

• sbox,  mix and xor – precalculated tables with results to logical calculations which 

could not be done in GPU.

In code, there is roughly 7 different blocks, which will now be closely observed: 

1) initial block, where data is prepared for calculations

2) add round key

3) subbytes

4) shift rows
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5) mix columns

6) add round key

7) final block, data is packed and prepared for returning

Blocks 3, 4, 5 and 6 are in for loop (described in AES algorithm section) and block 5 is left 

out on final round.

In block 1:

float4 cf = tex2D(data, coords);

Cf represents data matrix, containing 16 bytes which will be encrypted. The key will later 

be extracted in the same way. But cf is not usable in this format (cf.x is 32 bits, 4 bytes), 

so we need to “unpack”it:

half4 c1 = ceil(unpack_4ubyte(cf.x)*255);

c1..c4 will now hold columns (data is represented in column-major order) in 4x4 matrix. 

As half4 is a type containing four elements, four first bytes are accessed like this: c1.x, 

c1.y, c1.z and c1.w. Multiplication with 255 is needed due the fact that in initial state 

all  numbers are in float format between 0..1 but for table lookup we need it in “byte” 

format.

As  data  and  key  are  already available,  it  is  time  to  do  first  step  of  the  ciphers  – 

addRoundKey, block 2:

c1.x = texRECT(xor, int2(c1.x, kr.x)).x;

It means that the first element in the first column (c1.x) gets a new value which is the first 

value (textRECT will return float4) from result of xor table at coordinates  c1.x and 

kr.x (first key byte). For now, first byte is calculated, and in that way it is repeated for the 

rest of the 15 bytes. Next four bytes of the key are read when four bytes of data is done. 

Reading the key between calculations is done in that way because it  gives GPU more 

chance to make calculations while reading data from memory.

SubBytes operation is similar to XOR operation, block 3:

c1.x = texRECT(sbox, int2(c1.x, 0)).x;

As seen, the xor table is just replaced with the sbox table. As it is a two-dimensional texture 

with only one row, then the second coordinate is 0.
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Block 4  contains  shiftRows operation  where  matrix rows  are  rotated  left  getting  the 

following result:

1 5 9 13 1 5 9 13

2 6 10 14 6 10 14 2

3 7 11 15 11 15 3 7

4 8 12 16 16 4 8 12

In block 5 mixColumns operation can be seen, this is half-way implemented with look-up 

table due to the lack of bitwise operations. Algorithm of this operation is nicely discussed 

on  Wikipedias  page:  http://en.wikipedia.org/wiki/Rijndael_mix_columns.  C 

implementation is there given as following:

void gmix_column(unsigned char *r) {

        unsigned char a[4];

        unsigned char b[4];

        unsigned char c;

        unsigned char h;

        /* The array 'a' is simply a copy of the input array 'r'

         * The array 'b' is each element of the array 'a' multiplied by 2

         * in Rijndael's Galois field

         * a[n] ^ b[n] is element n multiplied by 3 in Rijndael's Galois field */ 

        for(c=0;c<4;c++) {

                a[c] = r[c];

                h = r[c] & 0x80; /* hi bit */

                b[c] = r[c] << 1;

                if(h == 0x80) 

                        b[c] ^= 0x1b; /* Rijndael's Galois field */

        }

        r[0] = b[0] ^ a[3] ^ a[2] ^ b[1] ^ a[1]; /* 2 * a0 + a3 + a2 + 3 * a1 */

        r[1] = b[1] ^ a[0] ^ a[3] ^ b[2] ^ a[2]; /* 2 * a1 + a0 + a3 + 3 * a2 */

        r[2] = b[2] ^ a[1] ^ a[0] ^ b[3] ^ a[3]; /* 2 * a2 + a1 + a0 + 3 * a3 */

        r[3] = b[3] ^ a[2] ^ a[1] ^ b[0] ^ a[0]; /* 2 * a3 + a2 + a1 + 3 * a0 */

}

from which the following part is implemented with table look up:

        for(c=0;c<4;c++) {

                a[c] = r[c];

                h = r[c] & 0x80; /* hi bit */

                b[c] = r[c] << 1;

                if(h == 0x80) 

                        b[c] ^= 0x1b; /* Rijndael's Galois field */

        }

As  seen  on  visualization (table  5.2.1.1) of  output  of  this  chunk of  code,  it  is  quite 

symmetrical, so it is also implemented as function mix2
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Table 5.2.2.1: Visual representation of subtable in mix_table function.

half mix2(half b){
half x;
if(b<=127){

x=b*2;
}else{

x=b-128;
half k=(int)(x/16); //number of block
x=((int)x%16)+1;
x=16-x;
half n=(int)x/4;
half diff=(n*2+1)*2-x;
x=(diff+((int)x%2)*2+n*4)*2;
x=x+k*32+1;

}
return x;

}

On 6800 chip this function is slower than table lookup, so it is commented out, but there is 

a big chance that on newer chips it turns out to be faster.

Block 6 is the same as block 2, only a new key is read from memory, and finally in block 7 

data is divided by 255 to transform it back to “float form” and packed into one variable 

which is returned as color.

There is also xor2 function left in cg file (commented out) which can replace xor table 

lookups. It is much slower than memory lookup itself but it is still interesting to test on 

newer cards.
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 5.2.2 8800 implementation

Programming with CUDA is much faster, easier and shorter compared to OpenGL as used 

in  6800  implementation –  for  example  there  is  no  need  for  extra  initialization  or 

transferring data to GPU. Mix table data can be defined as device-side data directly:

__device__ int mix[] = {

There is some difference in overall structure compared to 6800 implementation – while in 

the case of 6800 there was a new C file created which did all GPU initialization and static 

data moving to GPUs memory and GPU-side code in cg file is loaded and compiled on the 

fly, in the case of 8800 all GPU-related code is in cu file. OpenSSLs side still has functions 

gpu_init,  gpu_finish,  gpu_aes_init_key and  gpu_aes_cipher but they 

just  make calls  to  functions  implemented in  file  eng_gpu.cu.  During the  building 

process, this file is compiled separately by nvcc (compiler from CUDA) to object file and at 

the end linked with other object files as usual.

Before giving an  overview of  functions,  some information about  defined constants is 

necessary:

• NUM_BLOCKS – how many blocks will be run on GPU (See figure 2.8.1). For better 

performance it should be multiple of 12 (number of multiprocessors), at least 24 in case 

of 8800GTS [10:49].

• NUM_THREADS – how many threads will  be run in each block. Thread should be 

considered as unit computing one pixel. Maximum number is 512 [10:49] while 64 is 

minimal and better is 192 or 256 threads per block [10:63] in case of 8800GTS. 

• ROUNDS_IN_THREAD –  Although  a  thread  should  be  treated  as  a  process  for 

calculating one pixel, or one 16 bytes block of data, tests showed that it is possible to 

gain better results if one thread can do more calculations.

Functions in eng_gpu.cu file, CPU side functions

• init_8800: initialize GPU. CUT_CHECK_DEVICE macro is defined in cutil.h and 

this file can be found under SDK. After initialization memory on GPU is allocated for 

sbox, input- and outputdata. Also sbox is copied to GPU. Sbox could also be defined 

as __device__ type and therefore there would be no need for memory allocation but 

sbox is also used on CPU-side – as the key is still expanded on CPU.

• finish_8800: frees all allocated memory, will be called as the last function after 
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encryption process is completed.

• init_key_8800: key expansion

• cipher_8800: copies data to GPU, calls GPU-side function encrypt_8800 (with 

extra parameters which tell how many blocks and threads must be run on GPU), and as 

GPU has finished, copies encrypted data back to CPUs side memory. Here lays also one 

point which can be improved – size of memory (which is copied and encrypted) doesn't 

take into account that the last block of encryption is only 16 bytes.

Two last functions, mix_column and encrypt_8800 are GPU side functions:

• mix_column, with keyword __device__, is callable only from device, implements 

Rijndael column mixing.  Compared to  Wikipedias  C implementation it  has  some 

improvements – one variable is left out, shift to left is done once on all four bytes, also 

XOR with 0x1b (constant coming from algorithm) is done once on all bytes.

• encrypt_8800,  with  keyword  __global__,  also  named  as  “kernel”  and  is 

callable from host (CPU side) only, is AES encryption implementation. 

As programming with CUDA is like programming in C then the algorithm itself will not be 

longer discussed here. Comparing to 6800 implementation the new things are the way 

memory is used and the way data gets into the encryption process. First, there are two new 

built-in variables – blockIdx.x and threadIdx.x. The first one says which block is 

currently running and second one says which thread is in current block. As data is held in 

global memory and “kernel” gets only a pointer to it, function must calculate the address 

where to start reading data for encryption. The formula for that is:

unsigned  long  int  sb  =  (bid  *  NUM_THREADS  * 

ROUNDS_IN_THREAD * 4) + (tid * ROUNDS_IN_THREAD * 4);

As  blocks'  and  threads'  numbers are  starting  from zero,  first  thread from first  block 

becomes the starting byte address 0 in pointer. Later ones must already consider that the 

maximum number of bytes is the number of threads started in block multiplied by number 

of rounds in one thread multiplied by 4 (32bit unsigned integers are used).

For a note, there is one more benefit programming with CUDA compared to programming 

in OpenGL – CUDA code can be compiled with an extra parameter -deviceemu which 

gives possibility to run CUDA code on the host  without GPU. It  is useful for testing, 

because neither CUDA environment nor GPU gives any debugging support.
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 5.3 Problems

In this  section the author will  discuss problems experienced during implementing AES 

block cipher on GPU.

When talking about 6800 chip, problems can mostly be divided into three groups: problems 

related to limitations of the chip, problems related to limitations of the programming tools 

and finally physical problems.

Problems related to chip

• 6800 does not  have bitwise logical operations,  so  all  bitwise  calculations must be 

implemented as lookup tables, but on GPU it's a slow operation. There is a native XOR 

at the end of the rendering pipeline, but it is unusable because this operation is applied 

only to the final stage of the rendering process [3].

• Natively GPU handles floats faster than integers, but on table-indexing there is need for 

integers. So all numbers used are not byte, but integers and float. This casting takes 

some time. First tests on XOR table were for example indexed by float, but problems 

occurred at bytes above ASCII code 240 (due to progressive error in distance between 

floats if they are handled as integers).

• As XOR is implemented as a table, there is no possibility to make fast calculations like 

four bytes XORed by four bytes at once because it would take too much memory.

Problems related to tools

• cg is still in stage of development. Problems like buggy compiler rose due to too large 

amount of variables with cg version 1.4.

• Graphical environment is needed to run this 6800 implementation.

Physical problems

• Testing on 6800 gave interesting results – when a 500MB file was encrypted the result 

was correct, but 700MB file was full of errors at the end. So what's the catch? As 

problem was studied more closely author discovered that the chip was starting to give 

errors when its temperature went above 114 degrees by Celsius. For authors fortune, 

problem disappeared when cards cooling system was cleaned from dust. After the 

cleaning,  GPU's temperature was  around  65  degrees by  Celsius in  the  middle of 

calculations.

• Copying data to GPU is a relatively slow action, therefore GPUs algorithm must be 

really fast to win back time lost in copying.
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• Copying bigger portions of data is a considerably hard task to CPU, it means that big 

chunks are making performance results worse.

• At the end of encryption GPU algorithm makes an extra block by size of 16 bytes. But 

currently GPU doesn't count on real size of data, so it spends the same time as usual on 

that last block, depending on testing settings, for example 16MB.

• Results, while testing on small files, vary very much (see Table A6, file #7). Reasons 

for that may lay in cache of both operating system and GPU.

Problems encountered while creating 8800 implementation were mostly related to the tools. 

Although, memory copying speed issue is mostly the same, and as 6800 implementation, 

8800 implementation doesn't also count the last block size.

• CUDA is beta I. For example – there is up to 16KB shared memory per multiprocessor, 

but  if  larger amount of shared memory is  allocated at  running CUDA program, it 

doesn't give any error but returns some random result.

• CUDA is beta II. When errors occurred (allocated too much memory, etc), CUDA 

program failed,  printing just  an  error message "terminate called after throwing an 

instance of 'bool'". It made debugging difficult.

• CUDA is beta III. At some point, after a line “unsigned char r[4];” there were no errors 

as  there was  assignment to  r[0]..r[2].  Assignment to  r[3] showed up an  error 

message: 

### Assertion failure at line 1432 of ../../be/cg/cgemit.cxx:

### Compiler Error in file /tmp/tmp_00007a9f-1.i during Assembly phase:

### incorrect register class for result 0

nvopencc INTERNAL ERROR: /usr/local/cuda/open64/lib//be returned non-zero status.

As 6800 implementation relies on OpenGL standard, it is independent from graphics card 

used (it  must  be supported in cg's  profiles). 8800 implementation relies on NVIDIA's 

CUDA and graphics driver, so it is unusable with cards manufactured by other firms or by 

NVIDIA's older cards.

One reason to use 8800 as a coprocessor is its speed and tests (for example “simulation of 

the dispersion of airborne contaminants in the Times Square area of New York City” [24] 

which showed that  GPU cluster is  4.6  times faster than CPU cluster) empower those 

expectations, but speed-bonus may get shadowed by power consumption problems and by 

alternatives which do not need so much power. When comparing pictures C1 and C2 it 
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shows that in one case 8800GTS system uses 81 watts more than idle system. Pure numbers 

vary, but one number said [25] is that G80 family (it means 8800 chip) uses about 177W 

when loaded. Considering that AMD wants to add new coprocessor [26] which is able to 

calculate 25GFlops at only 10 watts, it might end up NVIDIAs wish [27] to enter into high-

performance computing market with current GPUs.

 6 Results

 6.1 Description of test system

All  programming and testing  were done on  one PC using two different cards to  test 

different implementations:

PC

CPU: Intel P4 640 3.2GHz

RAM: 2 x 512MB DDR2

Motherboard: Abit NI8-SLI C19 s.755 DDR2

HDD: Western Digital, 250GB, SATAII

6800 card

http://www.asus.com/products4.aspx?l1=2&l2=6&l3=138&model=406&modelmenu=2

GPU: NVIDIA 6800GT

RAM: 256MB

8800 card

http://www.club3d.nl/index.php/products/graphics/item/231

GPU: NVIDIA 8800GTS

RAM: 640MB

Operating System

Name: Gentoo Linux

Kernel: 2.6.18-gentoo-r6

gcc version: 3.4.6

glibc version: 2.5

X: 7.2
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KDE: 3.5.5

Graphics and other libraries

video driver: NVIDIA 9751 (CUDA compatible)

nvidia-cg-toolkit version: 1.5.0

glew: 1.3.5

freeglut: 2.4.0

CUDA Toolkit: 0.8

CUDA SDK: 0.8

OpenSSL: 0.9.8d

 6.2 Speed tests

AES implementation was tested and compared in “real-life situation” with OpenSSL where 

“user” had a file on hard drive and it had to be encrypted with AES algorithm. Tests also 

included error checking – will CPU and GPU implementations get the same result? As 

talked in “Problems” section, for example, one “bug” was found when comparing results 

with cmp:

cmp data.cpu data.gpu

and although small files (below 500MB) were correctly encrypted 700MB files already got 

errors at the end while using 6800 card.

First  tests were focused to find configurations of implementations (such as buffer size, 

texture size, etc.) which give best results and then stay focused on them. Some testing was 

also done during programming to also find out which area of code takes most of the time of 

execution. It was done by commenting of lines or blocks and then comparing results. In that 

way a lot of optimizations were made which now lay in final code. But this sort of testing 

needs attention – both compilers, cgc and nvcc, eliminate all calculations which are not 

related to return value, so for example when one comments out the last line in some blocks 

where there is ascription and therefore code becomes several times faster, it doesn't mean 

that loss of time happens because of this ascription.

For final testing, 8 different files were generated, although last of them got less attention 

due to big variance among results.
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# Name Size (bytes) Content

1 test1.dat 884 736 000 Blocks with bytes 0..255

2 test2.dat 884 736 000 All bytes are 0xAA

3 test3.dat 884 736 000 Random bytes in increasing range (0..255*rand())

4 test4.dat 884 736 000 Random bytes (255*rand())

5 test5.dat 442 368 000 Random bytes (255*rand())

6 test6.dat 442 368 000 Random bytes (255*rand())

7 test7.dat 117 964 800 Random bytes (255*rand())

8 test8.dat 58 982 400 Random bytes (255*rand())
Table 6.2.1: Files used in testing and their contents.

 6.2.1 Results of 6800 implementation

Three texture sizes were mostly tested: 256x256, 512x512 and 1024x1024. Best results 

were gained with size 512x512, as 256x256 took longer, although CPU usage was lower 

than 512x512. 1024x1024 was slower than 512x512 (on file #1 1.029 times and on file #3 

1.027 times), as seen when comparing tables A5 and A6, and a noticeable fact is that CPU 

usage at the same time was between 90..99% and overall response of computer was bad 

almost the whole time. Therefore 512x512 was considered to be the best texture size for 

encryption on GPU and most testing was done with that size. Trying to lower the overhead 

that could come from HDD I/O (bufsize twice as GPU could do in one round) showed same 

or worse results.

When comparing times there will  be comparison between whole calculation times and 

between “pure computing times”. While the first represents whole running time, the second 

is time which does not take into account engine overhead. We get this time from full time 

by  subtracting  “Null  engine” times found in  table A7.  It  becomes important on 6800 

implementation where variance among results is bigger and copying time hides real relation 

between CPU and GPU. Comparing full time it will give a sence of encryption time to end-

user who will get results after whole process is completed, at the point of programmer is 

“pure computing time” comparsion more informative about CPU/GPU speed relation.

Analyzing  table  A5,  we  first  notice  that  in  case  of  using  the  6800  chip,  GPU 

implementation is slower than CPU implementation. On file #1 CPUs average is 46.609s 

and GPUs average 87.548s, it  shows  that  GPU is  1.87 times slower than CPU. Pure 

computing time in the case of CPU is 11.670s and in the case of GPU is 46.393s, which 
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means that GPU is 3.9 times slower.

With file #2 the results are 44.804s for CPU and 81.952s for GPU which means that GPU is 

1.82 times slower, and by pure calculation time (CPU is 9.865s, GPU 40.797s) GPU is 4.1 

times slower.

Results on encrypting files #3 and #4 as seen in table A5 are surprisingly different from 

previous  results  –  GPU  implementation  takes  201  seconds  (2.3...2.4  times  slower 

comparing to results on files #1 and #2) to complete while CPU results are almost the same 

or  even faster.  Comparing pure computation  times on  file  #3 (CPU 9.244s and GPU 

160.301s) shows that GPU is 17.34 times slower (by full time GPU is 4.55 times slower!).

Despite of trying different configurations, results stayed the same: encrypting files #3 and 

#4 was much slower than files #1 and #2. As there were no chances that this difference 

could come due to I/O problems (encrypting same files with CPU gave same results!) the 

next possible explanation to this is that encryption time on 6800 depends directly on data 

which is currently in process – file #1 is containing blocks with bytes with ASCII code 

0..255 and file #2 containing bytes with ASCII code 170 (Hex: 0xAA) while files #3 and #4 

contained random data – in case #1 and #2 GPU has higher possibility to hit a value in the 

cache because data which is needed on next read from lookup table is near to data which 

was just used. But in case of files #3 and #4 GPU must read data from different area of 

memory during each table lookup and because GPU has relatively small cache it doesn't get 

that accelerating effect.

Even if encryption on GPU takes longer time, there is no good reason to take load off from 

CPU and put it on GPU (in case 6800 implementation) because, as seen from table B3, 

while encrypting files #1 and #2 on GPU, CPU is still much more utilized, and it gets even 

worse on files #3 and #4 where CPU usage is over two times higher. There is also a chart of 

CPU usage during encrypting file #3 with bigger bufsize – as seen from table B3 – CPU 

usage is even more higher and overall response of PC was very jumpy at that time.

File #5, which was half the size of previous ones, gave the following results – average of 

CPU 20.704s and average of GPU 101.649s, real computing time of CPU 5.593s and of 

GPU 86.538s – shows that GPU is 15.4 times slower.
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 6.2.2 Results of 8800 implementation

8800 testing was done in two main stages: without X (graphic driver was not in use) and 

with it  (KDE was running and using graphics driver). Author tried to find proof to the 

hypothesis that in case GPU is used only to compute AES cipher, it will be done faster, but 

tests  showed, on  the  contrary, that  encryption was almost always faster  when X was 

running as seen when comparing tables A1, A2, A3 and A4 (see appendix A): with any 

configuration, the average results of files #1, #3 and #4 in table A4 are better than in A1, 

A2 and A3. Only encrypting file #2 (all bytes 0xAA) was done a little bit faster as seen in 

table A2. C implementation also performed better when X was running.

Comparing results of 6800 and 8800 chips, one good conclusion can be made – 8800 

implementation doesn't depend on data which is encrypted as 6800 did – table A5 shows 

that encrypting files #3 and #4 on 6800 takes 201..202 seconds while files #1 and #2 took 

81..87 seconds while table A4 shows that files #1, #2, #3 and #4 are all encrypted in 39..41 

seconds.

And finally, as tables A1, A2, A3 and A4 show when encrypting large files #1..#4, 8800 

implementation is generally faster than C implementation:

File # CPU average GPU average GPU faster

1 43.208s 41.949s 1.0300

2 40.647s 40.474s 1.0043

3 42.383s 41.824s 1.0134

4 41.786s 40.314s 1.0365
Table 6.2.2: General comparision of CPU and GPU implementations on 8800.

When comparing CPU usage during encryptions on 8800, seen in table B1 and B2 (see 

appendix B), conclusion is that CPU usage in case of CPU and GPU encryptions is the 

same, or just a little bit better in case of GPU (table B1, bufsize 29 491 200, and table B2, 

there are bigger CPU usage drops on GPU usage). Still, question remains – what is the CPU 

doing while  encryption process is  running on GPU? Testing showed that at  least type 

casting in GPU programs is thrown back to CPU.
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 6.3 Thoughts for the future

According to figure 2.2.1 and considering the results of testing 8800 implementation it 

becomes clear that work on studying GPUs must continue. Current work is done at the very 

right time – CUDA, thanks to which this kind work has been done at all, came out in March 

2007 and has proven that it makes programming on GPUs and using them in non-graphic 

applications easier and faster. But, as it has been public for such a short time, and is still 

beta, author hopes that those implementations will also be tested with the next versions of 

CUDA and newer GPUs, as 8800 was used for programming only for a week.

There were ideas not put into practice due to lack of time, need of additional testing:

• both implementations should have dynamic texture/block/thread resizing according to 

the number of bytes going to be encrypted (nbytes) in function gpu_aes_cipher as 

there is always one 16 byte block at the end of AES cipher. It will also give better 

results on smaller files with sizes smaller than hardcoded ENC_BLOCK_SIZE.

• 6800 chip is significantly slower compared to the CPU, but there might still be some 

ways to make the code run faster on GPU as this was the first time for the author to 

write programs for GPU.

• For 8800 “pure table lookup version” (AES is reduced to four table lookups and four 

XORs) [2] should also be implemented which would probably be faster than the current 

implementation.

• 8800 code should be tested more with different configurations to find faster ways to 

run. Some more profiling is also needed to find slower places in code. Although it has 

been optimized in quite a hard way (look for example mix_column function which is 

faster than Wikipedias C implementation), there may still be lines of code which can be 

made faster considering the fact that it runs on GPU.

• As all this code is tested only on Linux and PC architecture, it would be appropriate to 

test it on other platforms as well.

• As there is now a mostly working engine for OpenSSL, it  is now easy to add new 

ciphers. As  AES doesn't need very much computing power, there might  be  other 

algorithms which  could  perform (asymmetric cryptography for  example) better  on 

GPU.

• Running two NVIDIA SLI-Ready cards in a single system (more detailed description 

available at  http://www.slizone.com/page/slizone_learn.html) can give up  to  double 

better  graphics  performance –  should  be  tested,  does  it  give  better  results  on 
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cryptographic algorithms too.

• Although this paper is focused on real-life use there are signs showing, that at least on 

case CPU implementation there is bottleneck linked to HDD I/O and avoiding that 

could make CPU implementation more faster when compared to 6800 implementation.

There has also been an idea that perhaps in parallel computing course, where the whole 

classroom is full of computers connected to each other supporting students' practical work 

while creating parallel programs, GPUs could be considered as good alternatives – they are 

easier to install, easier to maintain and communication between processes is many times 

faster compared to parallel computing with fortran or grid.

 7 Conclusions

Goal of this thesis was to study possibilities of using GPU in non-graphics calculations, like 

cryptography.  Author  tried  to  figure  out  problems  rising  when  moving  arithmetic 

calculations from CPU to GPU and to determine when this move is reasonable. AES block 

cipher was chosen because it is common and popular and is suitable for file encryption 

which  was  the  main  target  (leaving  aside  possibilities  of  asymmetric  and  stream 

encryption).

Author created a new engine for OpenSSL cryptographic framework and implemented AES 

encryption  algorithm on  two  different chips  –  NVIDIA 6800GT and 8800GTS using 

different graphics toolkits:

• 6800 implementation was coded as a graphics application using OpenGL and data was 

handled as textures

• 8800 implementation was coded with a brand new tool – NVIDIAs CUDA which gave 

fast (no need for extra and difficult GPU initialization) and common (programming 

with CUDA means to write C-like code) way to use GPUs resources.

Test results show that older GPUs (6800) are not suitable to take over CPUs tasks, at least 

when considering AES block cipher which has not very high arithmetic intensity. But one 

of the fastest chips at the moment on the market, NVIDIAs 8800, is quite considerable on 

overtaking CPUs tasks. But when calculations are moved from CPU to GPU it must be 

noticed, that probably all algorithms must be remade because optimizations which give 

better results on CPU may on the GPU slow things down.
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 8 Resümee

Käesoleva  magistritöö  peamiseks  eesmärgiks  oli  uurida  graafikaprotsessorite  (GPU) 

kasutamise võimalusi mittegraafiliste arvutuste jaoks, nagu näiteks krüptograafia. Autor 

uuris probleeme, mis võivad tekkida arvutuste üleviimisel põhiprotsessorilt  GPU'le ning 

samuti seda, millal selline üleviimine võiks osutuda põhjendatuks. Töö aluseks sai valitud 

populaarne ja levinud AES plokkšiffer, mis sobib hästi  failide krüptimiseks, mis oli ka 

põhiliseks uurimissuunaks. Voo krüptimine ja asümmeetriline krüptograafia said teadlikult 

kõrvale jäetud.

Autor realiseeris antud magistritöö raames OpenSSL krüptoraamistikule uue krüptomootori 

(engine) ning realiseeris kahe erineva kiibi – NVIDIA 6800GT ja 8800GTS – jaoks AES 

algoritmi, kasutades selleks erinevaid vahendeid:

• 6800 implementatsioon on kirjutatud kui graafikaprogramm, kasutades OpenGL ning 

kus kõiki andmeid on käsitletud tekstuuridena

• 8800 kirjutamise jaoks on kasutatud täiesti uut vahendit – CUDA, mille NVIDIA lasi 

välja 2007. aasta märtsis, ning mis andis kiire (erinevalt OpenGL'ist,  ei ole CUDA 

puhul vaja näha lisavaeva GPU initsialiseerimisega jne) ja üldise võimaluse (CUDA 

abil programmeerimine tähendab praktiliselt C keelse koodi kirjutamist) kasutada GPU 

resursse.

Testimise tulemused näitavad, et vanemad GPUd (6800) ei sobi CPU ülesandeid täitma, 

vähemalt  mitte  AES  plokkšifri  puhul  kus  arvutuste  osakaal  on  väiksem  kui 

mäluoperatsioonide  osakaal.  Kuid  hetkel  üks  võimsamaid  kiipe,  8800GTS,  on 

põhiprotsessori  (CPU)  abistamisel  ning  arvutuste  ülevõtmisel  täiesti  arvestatav.  GPU 

kasutamisel aga tuleb arvesse võtta asjaolu, et osaliselt vajavad algoritmid ümbertegemist 

kuna  mitmed optimiseerimised, mis  töötavad CPU peal,  võivad GPU puhul  hoopiski 

tulemuse aeglasemaks muuta.
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Appendix A: Test results, Speed

File # Test # CPU GPU 8800

1 1 47.856s 42.238s

2 43.887s 42.815s

3 45.957s 43.935s

average 45.900s 42.996s

2 1 40.158s 40.750s

2 41.328s 40.965s

3 43.493s 41.920s

average 41.659s 41.211s

3 1 41.802s 40.620s

2 43.242s 39.443s

3 41.883s 41.030s

average 42.309s 40.364s

4 1 42.365s 43.539s

2 43.684s 43.482s

3 42.750s 42.655s

average 42.966s 43.225s

Table A1: Results with configuration: GPU program – Blocks: 360, Threads: 512, Rounds 

in thread: 10; bufsize: 29491200 (One read per GPU round); X is not running
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File # Test # CPU GPU 8800

1 1 42.915s 42.405s

2 42.663s 42.600s

3 43.619s 43.935s

average 43.065s 42.980s

2 1 36.840s 39.691s

2 39.915s 40.368s

3 37.776s 38.306s

average 38.177s 39.455s

3 1 42.080s 37.892s

2 38.806s 37.607s

3 40.251s 39.958s

average 40.379s 38.485s

4 1 42.071s 40.301s

2 39.994s 42.218s

3 40.836s 40.377s

average 40.967s 40.965

Table A2: Results with configuration: GPU program – Blocks: 360, Threads: 512, Rounds 

in thread: 10; bufsize: 58982400 (One read per two GPU rounds); X is not running
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File # Test # CPU GPU 8800

1 1 43.082s 43.628s

2 43.988s 42.469s

3 43.863s 42.038s

average 43.644s 42.711s

2 1 42.269s 40.133s

2 40.310s 42.327s

3 41.558s 40.243s

average 41.379s 40.901s

3 1 40.501s 41.577s

2 42.538s 42.327s

3 40.299s 40.913s

average 41.112s 41.605s

4 1 42.583s 42.643s

2 44.158s 41.263s

3 43.450s 42.332s

average 43.397s 42.079s

5 1 9.918s 21.718s

2 20.248s 19.860s

3 12.297s 13.307s

6 1 21.995s 16.764s

2 19.970s 16.847s

3 7.784s 8.984s
Table A3: Results with configuration: GPU program – Blocks: 240, Threads: 256, Rounds 

in thread: 10; bufsize: 9830400 (One read per GPU round); X is not running
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File # Test # CPU GPU 8800

1 1 43.319s 41.143s

2 43.871s 41.507s

3 42.291s 42.868s

average 43.160s 41.839s

2 1 38.865s 39.670s

2 39.358s 40.648s

3 42.673s 38.681s

average 40.298s 39.666s

3 1 41.431s 39.138s

2 41.910s 38.153s

3 42.371s 40.415s

average 41.904s 39.235s

4 1 41.168s 39.820s

2 43.584s 41.788s

3 40.605s 39.946s

average 41.785s 40.518s

5 1 20.457s 21.369s

2 18.095s 20.190s

3 19.284s 20.289s

6 1 17.945s 20.090s

2 19.747s 17.688s

3 19.549s 20.441s

7 1 1.967s 2.469s

2 1.931s 2.306s

3 1.894s 2.303s

8 1 1.068s 1.557s

2 1.098s 1.922s

3 1.076s 2.684s
Table A4: Results with configuration: GPU program – Blocks: 360, Threads: 512, Rounds 

in thread: 10; bufsize: 58982400 (One read per two GPU rounds); X is running
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File # Test # CPU GPU 6800

1 1 46.197s 86.895s

2 46.895s 86.970s

3 46.736s 88.780s

average 46.609s 87.548s

2 1 45.512s 84.737s

2 42.789s 80.460s

3 46.112s 80.659s

average 44.804s 81.952s

3 1 45.006s 201.782s

2 43.940s 200.754s

3 43.604s 201.832s

average 44.183s 201.456s

4 1 44.859s 202.042s

2 45.938s 202.385s

3 45.561s 202.922s

average 45.452s 202.449s

5 1 21.061s 102.798s

2 20.883s 101.390s

3 20.170s 100.759s

6 1 21.547s 101.819s

2 19.722s 103.049s

3 20.162s 101.380s

7 1 2.009s 26.282s

2 1.856s 26.498s

3 1.905s 26.462s
Table A5: Results with configuration: GPU program – texture size: 512 x 512; bufsize: 
4194304 (One read per GPU round)

File # Test # CPU GPU 6800

1 1 44.231s 88.954s

2 43.415s 90.592s

3 43.821s 90.857s

3 1 40.993s 206.346s

2 41.173s 207.879s

3 40.071s 206.622s
Table A6: Results with configuration: GPU program – texture size: 1024 x 1024; bufsize: 
16777216 (One read per GPU round). Note: CPU highly utilized.
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File # Test # Null engine Without GPU “run” 

6800

Without GPU “run” 

8800

1,2,3,4 1 34.073s 40.500s 34.257s

2 34.855s 41.775s 35.831s

3 35.891s 41.190s 36.244s

average 34.939s 41.155s 35.444s

5 1 14.920s 20.952s 16.849s

2 15.495s 18.620s 14.653s

3 14.918s 18.450s 16.281s

7 1 3.491s 6.022s 4.367s

2 0.697s 1.672s 4.411s

3 0.697s 1.499s 3.478s

8 1 1.635s 2.140s 2.609s

2 0.602s 1.174s 3.297s

3 1.141s 1.174s 1.709s
Table A7: Results to engine speed tests. “Null engine” is result of empty function named 

gpu_aes_cipher (pure  OpenSSL  running  time)  and  “Without  GPU  “run””  is 

gpu_aes_cipher where data coping to/from GPU is done, but real GPU-side program 

is not started (to measure how much time it takes to copy data between CPU and GPU).

44



Appendix B: Test results, CPU usage

Graphs  are  made with  program GkrellM  (available  at  http://www.gkrellm.net/).  Each 

horizontal line on picture is at 25% of CPU usage, full scale is 100%.

Figure B1: CPU usage while coping file #1 on HDD to new location.

bufsize CPU GPU 8800

29 491 200

58 982 400

Table B1: CPU usage during encryption of file #1 with ENC_BLOCK_SIZE 29491200 

(GPU configuration: 360 blocks, 512 threads, 10 rounds)

bufsize CPU GPU 8800

9 830 400

Table B2: CPU usage during encryption of file #1 with ENC_BLOCK_SIZE 9830400 

(GPU configuration: 240 blocks, 256 threads, 10 rounds)
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File # CPU GPU 6800

1

0m42.767s 1m25.006s

2

0m41.492s 1m22.954s

3

0m41.584s 3m19.159s 

3m19.615s (bufsize 8388608)

4

0m42.534s 3m21.873s

5

0m19.523s
1m42.262s

Table B3: CPU usage during encryption of file #1 with ENC_BLOCK_SIZE 4194304 
(Texture size 512 x 512) and bufsize 4 194 304
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Appendix C: Figures

Figure C1: System power consumption when idle [28:16]
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Figure C2: System power consumption when system is utilized [28:16]
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