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Empirical Comparison of Machine Learning Algorithms Based

on EEG Data

Abstract:

The aim of this work is to compare different machine learning algorithms in an

attempt to find the best one for classifying EEG data. In order to achieve this, the

data from ten subjects were classified by ten machine learning algorithms. The

algorithms were compared in three ways: Firstly, they were compared by using

three performance metrics, secondly, by using clustergrams and lastly, by using

corralation matrices. The results from the comparison show that the without

parameter optimization, logistic regression model is the most efficient algorithm

for classifying EEG data. However, with parameter optimization, random forest

is the most efficient algorithm for classifying EEG data.

Keywords: Machine learning algorithms, electroencephalography, statistical anal-

ysis, comparison.

Kogemuslik masinõppealgoritmide võrdlus EEG andmete

põhjal

Lühikokkuvõte:

Selle töö eesmärgiks on võrrelda erinevaid masinõppealgoritme ning üritada leida

nende hulgast parim EEG andmete klassifitseerimise jaoks. Selle saavutamiseks

klassifitseeriti 10 inimese andmeid 10 masinõppealgoritmi poolt. Algoritme võrreldi

kolmel viisil: esiteks võrreldi neid kolme erineva jõudlust iseloomustava näitaja

alusel, teiseks kasutati klasteranalüüsi meetodeid ja dendrogramme ning viimaks

kasutati selleks korrelatsioonimaatrikseid. Saadud võrdluse tulemused näitavad,

et optimeerimata parameetrite korral on logistilise regressiooni mudel kõige efek-

tiivsem algoritm EEG andmete klassifitseerimisel. Optimeeritud parameetrite ko-

rral on kõige efektiivsemaks algoritmiks juhumets.

Võtmesõnad: Masinõppealgoritmid, elektroentsefalograafia, statistiline analüüs,

võrdlus.
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Introduction

The aim of this thesis is to compare different machine learning algorithms in an

attempt to find the best one for classifying electroencephalography (EEG) data.

In order to achieve this goal, 10 modern machine learning algorithms were chosen

for the comparison, such as: AdaBoost [1, 2, 3], k-Nearest Neighbours [4, 5],

C4.5 decision tree [6], logistic regression model [7, 8, 9], multilayer perceptron

network [10, 11, 12], naive Bayes [13, 14, 15], random forest [16, 17, 18], radial basis

function network [19, 20], minimal cost-complexity pruning [21, 22] and sequential

minimal optimization algorithm for training a support vector classifier [23, 24, 25,

26, 27].

Although many of these machine learning algorithms have already been reported

to give great results, it is still difficult to say which of these algorithms is the

best one for classifying EEG data due to differences in performance metrics [28],

datasets [29], chosen algorithms [30] and/or the number of classes in each data

set.

This paper attempts to find the best machine learning algorithm for classifying

EEG data by following these simple rules for comparison:

1. All of the datasets are based on motor imagery and have two classes.

2. All of the datasets are evaluated single-trial - this means no averaging is

done across multiple trials.

3. Three performance metrics are used for comparison: classification accuracy,

time taken to build the model and F-score.

4. Classification results for each machine learning algorithm and dataset are

evaluated using 10-fold cross-validation.
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The paper is organized as follows: Chapter 1 presents the reader with the theoret-

ical background information, Chapter 2 describes the datasets and the classifiers,

the results are provided in Chapter 3 and the conclusions are given in Chapter 4.
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Chapter 1

Theoretical Background

The goal of this chapter is to provide some background information and to explain

to the reader what is electroencephalography and machine learning, how are they

used and what are they used for.

1.1 Electroencephalography (EEG)

Figure 1.1: An EEG cap with 32 elec-
trodes [31].

Electroencephalography, a method for

recording the electrical activity of the

brain, was invented by a German neurol-

ogist named Hans Berger in 1929 [32].

The device, which measures voltage fluc-

tuations resulting from ionic current flows

within the neurons of the brain, is called

an electroencephalograph (see Figure 1.1).

An electroencephalogram, on the other

hand, is the graph which shows the bioelec-

trical activity of the brain.

An example of an EEG recording can be seen on Figure 1.2. Due to the similar

nature of all these terms, the abbreviation EEG may stand for electroencephalog-

raphy, electroencephalograph and also electroencephalogram.
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The recording of the brain’s spontaneous electrical activity is done by placing

multiple electrodes on the scalp.

Since EEG has a very high temporal resolution (precision of a measurement with

respect to time) on the order of milliseconds rather than seconds, it is commonly

recorded at sampling rates between 250 and 2000 Hz in clinical and research

settings. For instance, a sampling rate of 1000 Hz would mean that the number

of samples of EEG data being recorded per second is 1000 [33].

EEG is most often used to diagnose epilepsy [34], sleep disorders [35], coma [36],

encephalopathies [37] and brain death [38]. It is also used extensively in neuro-

science [39], cognitive science [40], cognitive psychology [41], neurolinguistics [42]

and psychophysiological research [43].

EEG, the invention, has been described “as one of the most surprising, remarkable,

and momentous developments in the history of clinical neurology” [44].

Figure 1.2: Example EEG showing the electrical activity of the brain of a pediatric
subject suffering from epileptic seizures [45].
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1.2 Machine Learning

Machine learning is a subfield of computer science that evolved from the study of

pattern recognition and computational learning theory in artificial intelligence. It

concentrates on algorithms that can learn from data by generalizing from experi-

ence [46].

Generalization in this context is the ability of a machine learning algorithm to

perform accurately on new, unseen examples/tasks after having experienced a

learning data set. The training examples come from some generally unknown

probability distribution (considered representative of the space of occurrences) and

the learner has to build a general model about this space that enables it to produce

sufficiently accurate predictions in new cases. This is the main difference between

machine learning algorithms and algorithms, which simply follow a predefined set

of instructions to solve problems [47].

They can be used to tackle numerous types of tasks such as predicting user prefer-

ences for movie recommendations [48], foreseeing economic movements for exam-

ple the next financial crisis [49] or even revealing previously unknown influences

between famous painters [50].

1.2.1 Supervised Learning

Supervised learning is a subcategory of machine learning, where the learning algo-

rithm is presented with labeled training data (data that has class values), which

consists of example inputs and their desired outputs, and the goal is to learn a

general rule that maps inputs to outputs [51].

In order to solve a given problem of supervised learning, one has to perform the

following steps:

1. Determine what kind of data will be used as a training set. In the case

of handwriting analysis, for example, this might be a single handwritten

character, an entire handwritten word, or an entire line of handwriting.

2. Gather a training set. The training set needs to be representative of the

real-world use of the function. Thus, a set of input objects is gathered and
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corresponding outputs are also gathered, either from human experts or from

measurements.

3. Determine the feature representation of the data. The accuracy of the su-

pervised learning algorithm depends strongly on how the input object is

represented. Typically, the input object is transformed into a feature vec-

tor, which contains a number of features that are descriptive of the object.

The number of features should not be too large, but should contain enough

information to accurately predict the output.

4. Determine what type of learning algorithm to use. For example, the engineer

may choose to use support vector machines or decision trees.

5. Run the learning algorithm on the training set. Most supervised learning

algorithms require the user to determine certain control parameters. These

parameters may be adjusted by optimizing performance on a subset of the

training set called validation set, or via cross-validation.

6. Evaluate the accuracy of the learned function. After parameter adjustment

and learning, the performance of the resulting function should be measured

on a test set that is separate from the training set and the validation set.

A wide range of supervised learning algorithms are available, each with its strengths

and weaknesses. There is no single learning algorithm that works best on all su-

pervised learning problems [52].

1.2.2 Unsupervised Learning

Unsupervised learning is a subcategory of machine learning, where the learning

algorithm is presented with unlabeled training data, leaving it on its own to find

the structure in its input. Unsupervised learning can be a goal in itself — for

example, it can be used to discover hidden patterns in data [51].

Since the examples given to the learning algorithm are unlabeled, there is no error

or reward signal to evaluate a potential solution. This distinguishes unsupervised

learning from supervised learning and reinforcement learning. Unsupervised learn-

ing also encompasses many other techniques that seek to summarize and explain

key features of the data [53].
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1.3 Optimization

In mathematics and computer science, optimization is the selection of a best ele-

ment (with regard to some criteria) from some set of available alternatives [54].

In the simplest case, an optimization problem consists of maximizing or minimizing

a real function by systematically choosing input values from within an allowed set

and computing the value of the function.

Optimization is very closely tied to machine learning due to the fact that most ma-

chine learning problems reduce to optimization problems. By using optimization

techniques on the paramaters of each machine learning algorithm, a mathemati-

cally optimal solution for a (classification) problem can be found.

In subsection 2.2.1, this thesis makes use of SMAC (Sequential Model-based Al-

gorithm Configuration [55]) and AutoWEKA (a Program for Combined Selection

and Hyperparameter Optimization of Classification Algorithms [56]) for the pur-

pose of optimizing the aforementioned machine learning algorithms.
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Chapter 2

Materials and Methods

This chapter describes the datasets chosen for this thesis, explains how the data

was preprocessed and gives a brief overview for each of the chosen machine learning

algorithms.

2.1 The Datasets

In order to follow all of the rules that were described in the introduction of this

thesis, the following three datasets were chosen from the BCI Competitions:

1. BCI Competition III Dataset IVa [57, 58]

2. BCI Competition III Dataset IVb [58, 59]

3. BCI Competition IV Dataset 1 [60, 61]

All of the datasets had a sampling rate of 1000Hz and contained the following

information:

• matrix containing the data of continuous EEG signals. For example, the

original dimensions of the matrix from Dataset 2: BCI Competition III were

2102599 (milliseconds) x 118 (electrodes).

• table containing information about the timings of cues (visual prompt given

to a subject, which means he/she has to perform an activity, for example,

to move their left hand).
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• table containing information about the structure of the data.

The final dataset consists of 10 individual datasets, 1 for each subject. The first

5 datasets/subjects are obtained from Dataset 1: BCI Competition III Dataset

IVa, 1 dataset/subject from Dataset 2: BCI Competition III Dataset IVb and 4

datasets/subjects from Dataset 3: BCI Competition IV Dataset 1.

2.1.1 Dataset 1: BCI Competition III Dataset IVa

Dataset 1 contains the continuous signals of 118 EEG channels and markers that

indicate the time points of 280 cues for each of the 5 subjects (aa, al, av, aw,

ay). For some markers no target class information was provided (value NaN) for

competition purpose. These markers were not used as a part of this thesis.

The dataset is well balanced - after the preprocessing process the total number of

samples is 1680. Out of those 1680 samples, 846 have a class value of 0 and 834 a

class value of 1, which means the ratio between the two classes is almost 50 : 50

(50.3571 : 49.6429).

The dataset was recorded from five healthy subjects and contains only the data

from the 4 first sessions. Subjects sat in a comfortable chair with arms resting on

armrests. Visual cues indicated for 3.5 s which of the following 2 motor imageries

the subject should perform: (R) right hand, (F) right foot. The presentation of

target cues were intermitted by periods of random length, 1.75 to 2.25 s, in which

the subject could relax (see Figure 2.1 for an illustration of the experimental

setup).

There were two types of visual stimulation: (1) where targets were indicated by

letters appearing behind a fixation cross, and (2) where a randomly moving object

indicated targets (inducing target-uncorrelated eye movements).

Figure 2.1: Graph illustrating the process of recording Dataset 1.
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2.1.2 Dataset 2: BCI Competition III Dataset IVb

Dataset 2 contains the continuous signals of 118 EEG channels and, for the train-

ing data, markers that indicate the time points of 210 cues and the corresponding

target classes. Only cues for the classes left and foot are provided for the compe-

tition.

The dataset is well balanced - after the preprocessing process the total number of

samples is 627. Out of those 627 samples, 315 have a class value of 0 and 312 a

class value of 1, which means the ratio between the two classes is almost 50 : 50

(50.2392 : 49.7608).

The dataset was recorded from one healthy subject and contains only data from

the 7 first sessions. He sat in a comfortable chair with arms resting on armrests.

The first 3 sessions are given with labels as training set. Visual cues (letter pre-

sentation) indicated for 3.5 seconds which of the following 2 motor imageries the

subject should perform: (L) left hand, (F) right foot. The presentation of target

cues were intermitted by periods of random length, 1.75 to 2.25 seconds, in which

the subject could relax.

Because the continous EEG signals of sessions 4 to 7 were given without any cue

information (neither target class nor timing) as a test set, these sessions were not

used in this thesis.

2.1.3 Dataset 3: BCI Competition IV Dataset 1

Dataset 3 contains the continuous signals of 59 EEG channels and, for the cali-

bration data, markers that indicate the time points of cue presentation and the

corresponding target classes.

The dataset was recorded from four healthy subjects. For each subject two out

of three classes of motor imagery were selected (the classes being as follows: left

hand, right hand and foot. The side being used was chosen by the subject).

The dataset is well balanced - after the preprocessing process the total number of

samples is 2388. Out of those 2388 samples, 1188 have a class value of 0 and 1200

a class value of 1, which means the ratio between the two classes is almost 50 : 50

(49.7487 : 50.2513).
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The first two runs were used as calibration data. Arrows pointing left, right, or

down were presented as visual cues on a computer screen. Cues were displayed

for a period of 4 s during which the subject was instructed to perform the cued

motor imagery task. These periods were interleaved with 2 s of blank screen and

2 s with a fixation cross shown in the center of the screen. The fixation cross was

superimposed on the cues, i.e. it was shown for 6 s. These data sets are provided

with complete marker information.

The following four runs were used as evaluation data. Due to the fact that these

runs did not contain any markers or cue information, they were not used in this

thesis.

2.2 Data Preprocessing

The preprocessing of each dataset consisted of the following steps:

1. The .mat file that contains the dataset is loaded into Matlab environment.

2. In order to use the original microvolt (µV) values of the EEG recording, the

data is converted from datatype INT16 into DOUBLE.

3. 16 EEG channels are chosen for use (the rest of the channels were removed

to reduce the size of the datasets):

AF3, AF4, F3, F4, FC5, FCz, FC6, C5, C6, CP5, CPz, CP6, P5, P6,

O1 and O2 (illustrated in Figure 2.2) These specific EEG channels were cho-

sen in an attempt to cover the maximum area of the subjects’ scalp (and

therefore achieve the greatest variance possible in EEG signals).

4. Since this thesis only focuses on supervised machine learning algorithms

which require labeled samples, unlabeled samples are removed.

5. Each sample is divided into three equally sized subsamples.

6. The detrend function is used on each subsample. This subtracts the mean

or a best-fit line (in the least-squares sense) from the data. This is done

in order to emphasise short-term changes that otherwise might have gone

unnoticed.
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Figure 2.2: Layout of the 16 EEG channels that were chosen (in blue).

7. Fourier transform (FT) algorithm is used on each subsample (see subsec-

tion 2.2.1)

8. Each subsample is divided into the following 7 frequency bands:

(a) 1 - 3 Hz (Delta)

(b) 4 - 7 Hz (Theta)

(c) 8 - 15 Hz (Alpha)

(d) 16 - 31 Hz (Beta)

(e) 32 - 50 Hz (Low-Gamma)

(f) 51 - 80 Hz (Medium-Gamma)

(g) 81 - 120 Hz (High-Gamma)
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9. Mean values are found for each frequency band.

10. The data is shuffled and saved.

11. The data is converted from .mat to .arff in order to use the machine learn-

ing classifiers that are implenented in Weka 3 (data mining software) [62]

and AutoWEKA.

2.2.1 Fourier Transform

Because of the fact that the voltage fluctuations in the brain (also known as brain

waves) are periodical, they can be decomposed into frequency components that

make them up. This is done by using Fourier transform, a method created by

Joseph Fourier in 1822, who showed that almost all functions could be written as

an infinite sum of harmonics [63].

This thesis uses Fast Fourier Transform (FFT) to compute the Discrete Fourier

Transform (DFT) in order to convert a signal from time domain (EEG record-

ing) to the frequency domain. As a result of this transformation the frequency

components of the EEG signal are found.

The Discrete Fourier Transform (DFT) is defined by the formula

Xk =
N−1∑
n=0

xne
−i2πk n

N k = 0, ..., N − 1,

where N is the amount of values which are recorded in the predefined amount of

time; xn is the value which is being recorded when time is equal to n; k is the

current frequency; Xk is the energy of the current frequency k.

An example of a signal before and after Fourier Transform can be seen in figures

2.3 and 2.4 correspondingly.
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Figure 2.3: An example of a signal of frequency 10 Hz before Fourier Transform.

Figure 2.4: An example of a signal of frequency 10 Hz after Fourier Transform.

2.3 Classification

In machine learning and statistics, the goal of classification is to use object’s

characteristics to identify which class (or group) it belongs to. In supervised

learning, this is achieved by the use of a classifier - an algorithm which has to

be trained on labeled training examples to be able to distinguish new unlabeled

examples between a fixed set of classes [64].

This thesis focuses on the classification problem of EEG data from BCI competi-

tions.
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In order to achieve this, from each dataset, subject and sample, features are ex-

tracted, which are then used to train the classifiers. Then a feature vector is formed

for each of the classifiers. These feature vectors are then used as the representation

of the corresponding sample. In the testing phase, each trained classifier predicts

the class label according to the extracted feature vector which was obtained from

the corresponding test sample.

AdaBoost, k-Nearest Neighbours, C4.5 decision tree, logistic regression, multilayer

perceptron network, Naive Bayes, random forest, radial basis function network,

minimal cost-complexity pruning and support vector classifiers were trained on 5

subjects from Dataset 1, 1 subject from Dataset 2 and 4 subjects from Dataset 3.

In the following subsections, all of the previously chosen classifiers are briefly

described and reviewed.

2.3.1 AdaBoost Classifier

AdaBoost (AB)1, short for “Adaptive Boosting”, is a machine learning meta-

algorithm formulated by Yoav Freund and Robert Schapire [1, 2].

It can be used in conjunction with many other types of learning algorithms to im-

prove the overall result. The outputs of the other learning algorithms are combined

into a weighted sum that represents the final output of the boosted classifier.

AdaBoost is adaptive in the sense that subsequent weak learners (a classifier which

is only slightly correlated with the true classification, but can still label examples

better than random guessing) are tweaked in favor of those instances misclassified

by previous classifiers. It is sensitive to noisy data and outliers. In some problems,

however, it can be less susceptible than other learning algorithms to the overfitting

problem, which occurs when a statistical model describes random error or noise

instead of the underlying relationship.

The individual learners can be weak, but as long as the performance of each one

is slightly better than random guessing (i.e., their error rate is smaller than 0.5

for binary classification) and they succeed each on a different subset of samples,

the final model can be proven to converge to a strong learner [2].

1AdaBoostM1
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This thesis uses AdaBoost in conjunction with the decision stump classifier, which

is a machine learning model consisting of a one-level decision tree. It is a decision

tree with one internal node (the root) which is immediately connected to the

terminal nodes (its leaves). A decision stump makes a prediction based on the

value of just a single input feature [3].

AdaBoost can also be used in conjunction with many other classifiers, such as

RandomForest, RandomTree or C4.5 decision tree.

2.3.2 k-Nearest Neighbours Classifier

The k-Nearest Neighbors algorithm (KNN)2 is a method used for classification [4].

In k-NN classification, the output is a class membership. An object is classified by

a majority vote of its neighbors, with the object being assigned to the class most

common among its k nearest neighbors (k is a positive integer, typically small and

arbitrarily chosen) [5].

An example of k-NN classification can be seen in Figure 2.5.

Figure 2.5: Example of k-NN classification. If k = 1, the green circle or the current test
sample is classified as the class of its nearest neighbor. If k = 3 (solid line circle), it
is classified as a red triangle because there are more triangles than squares inside the
inner circle. If k = 5 (dashed line circle), it is classified as a blue square (3 squares vs.
2 triangles inside the outer circle) [65].

2IBk
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2.3.3 C4.5 Decision Tree

C4.5 (C45)3 is an algorithm used to generate a decision tree developed by Ross

Quinlan. It’s an extension of Quinlan’s earlier ID3 (Iterative Dichotomiser 3)

algorithm [66].

C4.5 builds decision trees from a set of training data, using the concept of informa-

tion entropy. The training data is a set S = s1, s2, ... of already classified samples.

Each sample si consists of a p-dimensional vector (x1,i, x2,i, ..., xp,i), where the xj

represent attributes or features of the sample, as well as the class in which si falls.

General algorithm for building a decision tree:

1. Check for base cases.

(a) If all of the samples in the list belong to the same class, C4.5 creates a

leaf node for the decision tree saying to choose that class.

(b) If none of the features provide any information gain, C4.5 creates a

decision node higher up the tree using the expected value of the class.

(c) If an instance of previously-unseen class is encountered, C4.5 creates a

decision node higher up the tree using the expected value.

2. Find the normalized information gain ratio from splitting on each of the

attributes.

3. Create a decision node that splits on the attribute which has the highest

normalized information gain (a measurement, which shows the amount of

information gained by doing the split using that particular feature).

4. Recur on the sublists obtained by splitting on the attribute that has the

highest normalized information gain.

5. Add the nodes found in step 4 as children of the decision node that was

created in step 3 [6].

3J48
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2.3.4 Logistic Regression

Logistic regression (LR)4 is a model that was developed by statistician D. R. Cox

in 1958 [7]. It models the relationship between a dependent and one or more

independent variables, making it possible to look at the fit of the model as well as

at the significance of the relationships which are being modelled.

These relationships between variables are measured by estimating probabilities.

Logistic regression is used widely in many fields, including the medical and social

sciences [9].

For example, the Trauma and Injury Severity Score (TRISS), which is widely

used to predict mortality in injured patients, was originally developed using lo-

gistic regression [8]. The technique can also be used in engineering, especially for

predicting the probability of failure of a given process, system or product [67, 68].

2.3.5 Multilayer Perceptron Network

A Multilayer Perceptron Network (MPN)5 is an artificial neural network model

that maps sets of input data onto a set of appropriate outputs. Multilayer Per-

ceptron Network utilizes a supervised learning technique called backpropagation

for training the neural network model [10].

It consists of multiple layers of nodes in a directed graph, with each layer fully

connected to the next one. Except for the input nodes, each node is a neuron

(or processing element) with a non-linear activation function. This means that

the output cannot be reproduced from a linear combination of inputs. Without a

non-linear activation function in the network, a neural network would behave just

like a single perceptron (because no matter how many layers the neural network

had, summing the layers would only give us another linear function).

A multilayer perceptron is a modification of the standard linear perceptron, it

can distinguish data that is not linearly separable [11]. Learning occurs in the

perceptron by changing connection weights after each piece of data is processed,

based on the amount of error in the output compared to the expected result [12,

10].

4Logistic
5MultilayerPerceptron
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2.3.6 Naive Bayes Classifier

Naive Bayes (NB)6 classifiers are a family of simple probabilistic classifiers based

on applying Bayes’ theorem with the “naive” assumption of independence between

every pair of features [13].

For example, a fruit may be considered to be a tangerine if it is orange, round, and

about 5 cm in diameter. A Naive Bayes classifier considers each of these features to

contribute independently to the probability that this fruit is a tangerine, regardless

of any possible correlations between the color, roundness and diameter features.

The usage of Naive Bayes classifiers has proven to be a popular method for text

categorization, the problem of judging documents as belonging to one category or

the other (such as spam or legitimate) with word frequencies as the features.

With appropriate preprocessing, it is competitive in this domain with more ad-

vanced methods including support vector machines [14]. It has also found appli-

cation in automatic medical diagnosis [15].

An example of classification with a Naive Bayes classifier can be seen in Figure

2.6.

Figure 2.6: 2D binary classification with Naive Bayes. A density contour is drawn for
the Gaussian model of each class and the decision boundary is shown in red. [69].

6NaiveBayes
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2.3.7 Random Forest

Random forests (RF)7 are an ensemble learning method that was developed by

Leo Breiman and Adele Cutler for classification. It operates by constructing a

multitude of decision trees at training time and outputting the class that is the

mode of the classes of the individual trees [16].

Random forests try to correct for decision trees’ habit of overfitting to their train-

ing set. The method combines Breiman’s “bagging” idea and the random selection

of features, introduced independently by Ho [17] and Amit and Geman [18] in order

to construct a collection of decision trees with controlled variance.

2.3.8 Radial Basis Function Network

A radial basis function network (RFN)8 is an artificial neural network which was

first formulated in a 1988 paper by Broomhead and Lowe [19].

It uses radial basis functions (real-valued functions whose values depend only on

the distance from the origin) as activation functions. The output of the network is

a linear combination of radial basis functions of the inputs and neuron parameters.

Radial basis function networks have many uses, including function approximation,

time series prediction, classification, and system control [19, 20].

2.3.9 Minimal Cost-Complexity Pruning

Pruning is a technique in machine learning that reduces the size of decision trees

by removing sections of the tree that provide little power to classify instances.

Pruning reduces the complexity of the final classifier, and can improve predictive

accuracy by the reduction of overfitting [21].

Minimal cost-complexity pruning (MCP)9 generates a series of trees T0, ..., Tm

where T0 is the initial tree and Tm is the root alone. At step i the tree is created

by removing a subtree from tree i− 1 and replacing it with a leaf node with value

7RandomForest
8RBFNetwork
9SimpleCart
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chosen as in the tree building algorithm (see the general algorithm for building a

decision tree at subsection 2.3.3). The subtree that is removed is chosen as follows:

1. Define the error rate of tree T over data set S as err(T, S).

2. The subtree that minimizes err(prune(T,t),S)−err(T,S)
|leaves(T )|−|leaves(prune(T,t))| is chosen for removal.

3. The function prune(T, t) defines the tree gotten by pruning the subtrees t

from the tree T .

4. Once the series of trees has been created, the best tree is chosen by general-

ized accuracy as measured by a training set or cross-validation [22].

2.3.10 Sequential Minimal Optimization Algorithm for Train-

ing a Support Vector Classifier

Support vector machines (SVM)10, are supervised learning models that analyze

data and recognize patterns, used for classification and regression analysis [23, 24,

25].

Given a set of training examples, each marked as belonging to one of two categories,

a SVM training algorithm builds a model that assigns new examples into one

category or the other, making it a non-probabilistic binary linear classifier.

A SVM model is a representation of the examples as points in space, mapped so

that the examples of the separate categories are divided by a clear gap that is as

wide as possible (see Figure 2.7). New examples are then mapped into that same

space and predicted to belong to a category based on which side of the gap they

fall on.

There exist several specialized algorithms for quickly solving the quadratic pro-

gramming optimization problem that arises from SVMs, mostly relying on heuris-

tics for breaking the problem down into smaller, more-manageable chunks.

One of these specialized algorithms is Platt’s sequential minimal optimization

(SMO) algorithm, which breaks the problem down into 2-dimensional sub-problems

that may be solved analytically, eliminating the need for a numerical optimization

algorithm [26, 27].

10SMO
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Figure 2.7: Example of classification by using the SMO algorithm. The figure shows an
SVM trained with samples from two classes (black circles and white circles). Samples
on the margin (dotted line) are called the support vectors [70].

2.4 Performance Metrics Used for the Compar-

ison of the Classifiers

This section explains the three performance metrics used to compare the classifiers

of the machine learning algorithms/methods: classification accuracy (CA), time

taken to build a model (Time) and F-score.

2.4.1 Classification Accuracy

By defining class labels of the binary (two-class) prediction problem as positive

and negative, each classifier has the following four possible outcomes:

• True positive (TP): The number of positive samples correctly predicted.

• True negative (TN): The number of negative samples correctly predicted.
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• False positive (FP): The number of negative samples incorrectly predicted

as positive samples.

• False negative (FN): The number of positive samples incorrectly predicted

as negative samples.

Classification accuracy (CA) is defined as the percentage of the number of samples

classifed correctly in the test set over the total samples and it is calculated by [71]:

CA =
TP + TN

TP + TN + FP + FN
∗ 100 (2.1)

2.4.2 Time Taken to Build a Model

For each subject and classifier, the time taken to build a model was recorded. The

runtime experiments were conducted on a PC with Intel(R) Core(TM) i7 CPU

860 @ 2.80 GHz, 12 GB 1333Mhz RAM.

2.4.3 F-score

F-score also known as F-Measure or F1-score is a combined performance metric,

which considers both the precision p and the recall r of the test to compute a score:

p is the number of correct positive results divided by the number of all positive

results, and r is the number of correct positive results divided by the number of

positive results that should have been returned [72, 73].

It is calculated by:

F1 =
2 ∗ p ∗ r
p + r

, (2.2)

where

p =
TP

TP + FP
; r =

TP

TP + FN
(2.3)
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Chapter 3

Results

3.1 Comparison by Using Performance Metrics

Over all of the BCI Competition Datasets, only the data from 10 subjects was used

in this thesis (5 subjects from the Dataset 1: BCI Competition III Dataset IVa, 1

subject from the Dataset 2: BCI Competition III Dataset IVb and 4 subjects (1a,

1b, 1f, 1g) from the Dataset 3: BCI Competition IV Dataset 1).

The data from these subjects was tested with 10 supervised learning algorithms

using all of the features for each subject. All of the classifiers were trained by using

the default values - this means none of the classifiers were specifically optimized

for this type of two-classed EEG data.

The results of the classifiers in terms of three metrics including CA (classification

accuracy), Time (time taken to build a model) and F-score (or F1-score) for all of

the subjects can be found in Figure 3.1, Figure 3.2 and Figure 3.3 respectively.

S1 to S10 represent the subjects from all of the datasets: S1 to S5 are the subjects

from Dataset 1, S6 the subject from Dataset 2 and S7 to S10 the subjects from

Dataset 3.

Acronyms explained: AB - AdaBoost; KNN - k-Nearest Neighbours; C45 - C4.5

decision tree; LR - logistic regression; MPN - multilayer perceptron network; NB -

naive Bayes; RF - random forest; RFN - radial basis function network; MCP - min-

imal cost-complexity pruning; SVM - sequential minimal optimization algorithm

for training a support vector classifier.
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The averages of the metrics are given in Figure 3.4, Figure 3.5 and Figure 3.6.

In case of the Subject 2 from the Dataset 1 (S2), the logistic regression (LR)

classifier provided the best CA and F-score performance which are 82.14% and

0.821, respectively. The best time performance was obtained from the k-Nearest

Neighbours classifier (KNN), which managed to build a model in 0.00s for each of

the subjects.

Figure 3.1: Classification accuracy for all subjects.

Figure 3.2: Time taken to build model for all subjects.
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Figure 3.3: F-score for all subjects.

Figure 3.4: Average classification accuracy over all subjects.

Figure 3.5: Average time taken to build model over all subjects.

Figure 3.6: Average F-score over all subjects.

According to the datasets chosen for this thesis, the best classifier for classifying

EEG data without parameter optimization is the logistic regression model (LR),

followed by sequential minimal optimization algorithm for training a support vec-

tor (SVM) and multilayer perceptron network (MPN), with average values for CA,

Time and F-score being 66.14%, 0.22s, 0.661; 65.13%, 0.09s, 0.650 and 62.68%,

32.59s, 0.625, respectively.
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3.2 Visual Comparison by Using Clustergrams

A visual comparison of the classifiers was done by using clustergrams.

Clustergram is an object which contains the analysis data based on given input

data (prediction values from each classifier for each subject) and visualizes it by

displaying a dendrogram and a heat map.

It uses hierarchical clustering with Euclidean distance metric and average linkage

to generate the hierarchical tree.

It clusters along the rows of the data, which results in clustered columns in the

matrix of the input data [74].

This comparison was done for the following reasons:

1. To visualize the classification predictions created by different classifiers.

2. To use the created dendrogram in order to see if the predictions generated

by the classifiers are highly correlated or not — if the classifiers are highly

correlated then the clusters would be nearer the bottom of the dendrogram

and vice versa.

Since the prediction values from each classifier can only have four possible out-

comes (TP, TN, FP, FN) (see subsection 2.4.1), each prediction value in the heat

map was colored as follows:

• True Positive (TP) & True Negative (TN)

– Color: Green

– Heat map numerical value: -1

• False Positive (FP) & False Negative (FN)

– Color: Red

– Heat map numerical value: 1

An example clustergram for Subject 2 from Dataset 1: BCI Competition III

Dataset IVa is shown in Figure 3.7.
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In the provided example, it is possible to see multilayer perceptron network (MPN)

and support vector classifier (SVM) being highly correlated due to the fact that

the clusters are near the bottom of the dendrogram. This can also be seen upon

visual inspection - for instance, near the midpoint of the dendrogram, both of

the classifiers have made similar False Positive (FP) and False Negative (FN)

predictions.

Figure 3.7: Example clustergram for the Subject 2 from the Dataset 1. The number in
the brackets is the F-score of the classifier.

The clustergrams for all of the subjects can be found in Appendix A.

3.3 Comparison by Using Correlation Matrices

A comparison of the classifiers was done by using linear or rank correlation. Ma-

trices for each subject from the datasets were created which contained the pairwise

linear correlation coefficient between each pair of classifiers. The correlation ma-

trices are symmetric because the correlation between Xi and Xj is the same as

the correlation between Xj and Xi (where Xj and Xi indicate performance of

algorithms j and i).

There are several correlation coefficients, often denoted ρ or r, measuring the

degree of correlation. This thesis used the most common of these, the Pearson
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correlation coefficient, which is sensitive only to a linear relationship between two

variables. This comparison was done in order to get the numerical correlation

coefficient values between each pair of classifiers.

An example correlation matrix containing the average correlation over all subjects

is shown in Figure 3.8. In the provided example, it is possible to see logistic

regression (LR) and multilayer perceptron network (MPN) both having high linear

correlation with support vector classifier (SVM). It is also possible to see that k-

Nearest Neighbours (KNN) has the lowest linear correlation with logistic regression

(LR).

Figure 3.8: Example average correlation matrix over all of the subjects. The number in
the brackets is the F-score of the classifier.

The correlation matrices for all of the subjects can be found in Appendix B.

3.4 Comparison after Parameter Optimization

In order to fully actualize the importance of parameter optimization in machine

learning algorithms, SMAC and AutoWEKA were used.

All of the datasets and machine learning algorithms were optimized by using 10-

fold cross-validation when generating their corresponding instances.

Due to the limitations of AutoWEKA, the only result metric that could be used

was Classification Accuracy (CA). There were also issues with some of the ma-
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chine learning algorithms, therefore it was not possible to obtain the optimization

results for AdaBoost (AB), radial basis function network (RFN) and minimal

cost-complexity pruning (MCP).

The following AutoWEKA configuration parameters were used for each dataset

and machine learning algorithm:

• Optimization Timeout (hours): 1

• Training Memory Limit (MB): 2048

• Training Run Timeout (minutes): 60

• Use Attribute Selection: Yes

• Attribute Selection Timeout (minutes): 60

As soon as one of the timeouts was reached, AutoWEKA stopped the optimization

process and used the parameters that gave the best results at that particular point

in time.

The results obtained by AutoWEKA after parameter optimization for Classifica-

tion Accuracy (CA) can be seen in figure 3.9.

Figure 3.9: Classification accuracy for all subjects after parameter optimization.
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The average results for Classification Accuracy (CA) with and without Parameter

Optimization (PO) can be seen in figure 3.10.

Figure 3.10: Average classification accuracy for all subjects with and without parameter
optimization.

The optimized parameter values for all of the subjects can be found in Appendix

C. More detailed information about the optimized parameters can be found at:

https://github.com/madism/ECMLA/tree/master/Parameters
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Chapter 4

Conclusion

This thesis was created in order to find the best machine learning algorithm for

classifying EEG data by means of an empirical comparison. In order to achieve

this, three datasets, which were created for various brain-computer interface (BCI)

competitions, were used. A total of 10 subjects from the datasets were used.

These datasets were preprocessed and then classified by the following machine

learning algorithms/methods: AdaBoost, k-Nearest Neighbours, C4.5 decision

tree, logistic regression model, multilayer perceptron network, naive Bayes, ran-

dom forest, radial basis function network, minimal cost-complexity pruning and

support vector classifier. The classification results were evaluated using 10-fold

cross-validation.

The visual comparison which was done by using clustergrams showed that some

of the predictions generated by the classifiers were highly correlated. This was

confirmed by the comparison done by using correlation matrices, which showed

that there was a moderately strong (value of the correlation being in the range of

0.4 to 0.6) correlation between the following classifiers:

• AdaBoost and random forest;

• AdaBoost and minimal cost-complexity pruning;

• Logistic regression and SVM;

• Multilayer Perceptron Network and SVM;

• Random forest and SVM.
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The comparison that was done by using correlation matrices showed that the

highest correlation coefficient was in Subject 2 from Dataset 1 between sequential

minimal optimization algorithm for training a support vector classifier (SVM)

and Multilayer Perceptron Network (MPN), which had a correlation value of 0.77,

therefore indicating a strong correlation between the two classifiers.

The comparison that was done by using three performance metrics (classifica-

tion accuracy, time taken to build a model and F-score) showed that according

to our datasets, the best classifier for classifying EEG data without parameter

optimization is the logistic regression model (LM), followed by sequential mini-

mal optimization algorithm for training a support vector (SVM) and Multilayer

Perceptron Network (MPN).

The comparison that was done by using SMAC and AutoWEKA showed the im-

portance of parameter optimization. All of the machine learning algorithms which

were able to be optimized benefited greatly from the optimization. Average Clas-

sification Accuracy (CA) was improved by the amount of 14.10% in the case of the

logistic regression and up to 24.05% in the case of the C4.5 decision tree model.

The results from the comparison by using optimized parameters showed that ac-

cording to our datasets, the best classifier for classifying EEG data with parameter

optimization is random forest (RF), followed by sequential minimal optimization

algorithm for training a support vector (SVM) and logistic regression model (LM).
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Appendix B: Correlation Matrices
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Appendix C: Optimized Parameter Values

k-Nearest Neighbours Subject 1: KNN = 24; lookupCacheSize = 2; searchTer-

mination = 7 attribute eval = SymmetricalUncertAttributeEval; attribute search

= BestFirst;

k-Nearest Neighbours Subject 2: KNN = 21; searchTermination = 15 at-

tribute eval = GainRatioAttributeEval; attribute search = GreedyStepwise;

k-Nearest Neighbours Subject 3: KNN = 51; lookupCacheSize = 0; searchTer-

mination = 6 attribute eval = ReliefFAttributeEval; numNeighbours = 3; weight-

ByDistance = False; sigma = 1; attribute search = BestFirst;

k-Nearest Neighbours Subject 4: KNN = 1; searchTermination = 124 at-

tribute eval = CfsSubsetEval; attribute search = GreedyStepwise;

k-Nearest Neighbours Subject 5: KNN = 20; searchTermination = 15; at-

tribute eval = SymmetricalUncertAttributeEval; attribute search = GreedyStep-

wise;

k-Nearest Neighbours Subject 6: KNN = 25; searchTermination = 203; at-

tribute eval = CfsSubsetEval; attribute search = GreedyStepwise;

k-Nearest Neighbours Subject 7: KNN = 13; lookupCacheSize = 0; searchTer-

mination = 5; attribute eval = ReliefFAttributeEval; numNeighbours = 10; weight-

ByDistance = False; sigma = 7; attribute search = BestFirst;

k-Nearest Neighbours Subject 8: KNN = 16; attribute search = NONE;

k-Nearest Neighbours Subject 9: KNN = 52; lookupCacheSize = 0; searchTer-

mination = 4; attribute eval = CfsSubsetEval; attribute search = BestFirst;

k-Nearest Neighbours Subject 10: KNN = 16; lookupCacheSize = 0; searchTer-

mination = 6; attribute eval = CorrelationAttributeEval; attribute search = Best-

First;

C4.5 Decision Tree Subject 1: minNumObj = 13; confidenceFactor = 0.0159;

lookupCacheSize = 0; searchTermination = 5; attribute eval = SymmetricalUncer-

tAttributeEval; attribute search = BestFirst;

C4.5 Decision Tree Subject 2: minNumObj = 6; confidenceFactor = 0.1929;

69



lookupCacheSize = 1; searchTermination = 7; attribute eval = CfsSubsetEval;

attribute search = BestFirst;

C4.5 Decision Tree Subject 3: minNumObj = 8; confidenceFactor = 0.2566;

threshold = 14.6656; attribute eval = GainRatioAttributeEval; attribute search

= GreedyStepwise;

C4.5 Decision Tree Subject 4: minNumObj = 10; confidenceFactor = 0.7056;

searchTermination = 21; attribute eval = CfsSubsetEval; attribute search = GreedyS-

tepwise;

C4.5 Decision Tree Subject 5: minNumObj = 11; confidenceFactor = 0.3397;

centerData = True; maximumAttributeNames = 1; varianceCovered = 0.9280;

lookupCacheSize = 0; searchTermination = 10; attribute eval = PrincipalCompo-

nents; attribute search = BestFirst;

C4.5 Decision Tree Subject 6: minNumObj = 4; confidenceFactor = 0.2527;

lookupCacheSize = 1; searchTermination = 8; attribute eval = CfsSubsetEval;

attribute search = BestFirst;

C4.5 Decision Tree Subject 7: minNumObj = 43; confidenceFactor = 0.3747;

folds = 2; minimumBucketSize = 1; threshold = 1.6254; attribute eval = OneR-

AttributeEval; attribute search = Ranker;

C4.5 Decision Tree Subject 8: minNumObj = 14; confidenceFactor = 0.3500;

folds = 14; minimumBucketSize = 2; threshold = 9.2158; attribute eval = OneR-

AttributeEval; attribute search = Ranker;

C4.5 Decision Tree Subject 9: minNumObj = 30; confidenceFactor = 0.0974;

centerData = True; maximumAttributeNames = -; varianceCovered = 0.9858;

lookupCacheSize = 2; searchTermination = 5; attribute eval = PrincipalCompo-

nents; attribute search = BestFirst;

C4.5 Decision Tree Subject 10: minNumObj = 21; confidenceFactor = 0.0363;

folds = 10; minimumBucketSize = 5; threshold = 5.5871; attribute eval = OneR-

AttributeEval; attribute search = Ranker;
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Logistic Regression Model Subject 1: ridge = 5.2227; attribute search =

NONE;

Logistic Regression Model Subject 2: ridge = 0.3669; numToSelect = 38;

attribute eval = CorrelationAttributeEval; attribute search = GreedyStepwise;

Logistic Regression Model Subject 3: ridge = 2.8541; lookupCacheSize =

2; searchTermination = 10; attribute eval = CfsSubsetEval; attribute search =

BestFirst;

Logistic Regression Model Subject 4: ridge = 8.3614E-7; numNeighbours =

44; weightByDistance = False; sigma = 1; threshold = 3.0904; attribute eval =

ReliefFAttributeEval; attribute search = GreedyStepwise;

Logistic Regression Model Subject 5: ridge = 0.0246; folds = 8; minimum-

BucketSize = 2; threshold = 2.8797; attribute eval = OneRAttributeEval; at-

tribute search = Ranker;

Logistic Regression Model Subject 6: ridge = 2.0988; threshold = 17.7142;

attribute eval = GainRatioAttributeEval; attribute search = GreedyStepwise;

Logistic Regression Model Subject 7: ridge = 9.9170; attribute search =

NONE;

Logistic Regression Model Subject 8: ridge = 0.7175; numNeighbours = 15;

weightByDistance = False; sigma = 4; lookupCacheSize = 2; searchTermination

= 10; attribute eval = ReliefFAttributeEval; attribute search = BestFirst;

Logistic Regression Model Subject 9: ridge = 3.6800; folds = 11; mini-

mumBucketSize = 8; threshold = 0.2781; attribute eval = OneRAttributeEval;

attribute search = Ranker;

Logistic Regression Model Subject 10: ridge = 0.7175; numNeighbours = 15;

weightByDistance = False; sigma = 4; lookupCacheSize = 2; searchTermination

= 10; attribute eval = ReliefFAttributeEval; attribute search = BestFirst;
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Multilayer Perceptron Network Subject 1: learningRate = 0.2969; momen-

tum = 0.8217; hiddenLayers = o; folds = 13; minimumBucketSize = 51; lookup-

CacheSize = 2; searchTermination = 4; attribute eval = OneRAttributeEval; at-

tribute search = BestFirst;

Multilayer Perceptron Network Subject 2: learningRate = 0.6786; momen-

tum = 0.1688; hiddenLayers = t; attribute search = NONE;

Multilayer Perceptron Network Subject 3: learningRate = 0.3319; momen-

tum = 0.7439; hiddenLayers = t; threshold = 12.1851; attribute eval = GainRa-

tioAttributeEval; attribute search = GreedyStepwise;

Multilayer Perceptron Network Subject 4: learningRate = 0.5675; momen-

tum = 0.1054; hiddenLayers = t; lookupCacheSize = 2; searchTermination = 8;

attribute eval = CfsSubsetEval; attribute search = BestFirst;

Multilayer Perceptron Network Subject 5: learningRate = 0.2185; momen-

tum = 0.5771; hiddenLayers = a; folds = 6; minimumBucketSize = 49; threshold

= 9.8556; attribute eval = OneRAttributeEval; attribute search = Ranker;

Multilayer Perceptron Network Subject 6: learningRate = 0.2126; momen-

tum = 0.3269; hiddenLayers = i; folds = 2; minimumBucketSize = 11; threshold =

9.1441; attribute eval = OneRAttributeEval; attribute search = GreedyStepwise;

Multilayer Perceptron Network Subject 7: learningRate = 0.4645; momen-

tum = 0.1866; hiddenLayers = o; folds = 2; minimumBucketSize = 1; threshold =

3.5890; attribute eval = OneRAttributeEval; attribute search = GreedyStepwise;

Multilayer Perceptron Network Subject 8: learningRate = 0.7832; momen-

tum = 0.1490; hiddenLayers = t; attribute search = NONE;

Multilayer Perceptron Network Subject 9: learningRate = 0.6786; momen-

tum = 0.1688; hiddenLayers = t; attribute search = NONE;

Multilayer Perceptron Network Subject 10: learningRate = 0.5633; mo-

mentum = 0.7133; hiddenLayers = a; attribute search = NONE;
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Naive Bayes Subject 1: searchTermination = 81; attribute eval = CfsSubsetE-

val; attribute search = GreedyStepwise;

Naive Bayes Subject 2: searchTermination = 570; attribute eval = CfsSub-

setEval; attribute search = GreedyStepwise;

Naive Bayes Subject 3: searchTermination = 570; attribute eval = CfsSub-

setEval; attribute search = GreedyStepwise;

Naive Bayes Subject 4: threshold = 0.2939; attribute eval = CorrelationAt-

tributeEval; attribute search = Ranker;

Naive Bayes Subject 5: centerData = True; maximumAttributeNames = 272;

varianceCovered = 0.9964; lookupCacheSize = 0; searchTermination = 2; at-

tribute eval = PrincipalComponents; attribute search = BestFirst;

Naive Bayes Subject 6: searchTermination = 161; attribute eval = CfsSub-

setEval; attribute search = GreedyStepwise;

Naive Bayes Subject 7: centerData = False; maximumAttributeNames = -

1; varianceCovered = 0.9598; lookupCacheSize = 0; searchTermination = 3; at-

tribute eval = PrincipalComponents; attribute search = BestFirst;

Naive Bayes Subject 8: centerData = True; maximumAttributeNames = 45;

varianceCovered = 0.9972; lookupCacheSize = 2; searchTermination = 3; at-

tribute eval = PrincipalComponents; attribute search = BestFirst;

Naive Bayes Subject 9: centerData = True; maximumAttributeNames = 442;

varianceCovered = 0.5276; lookupCacheSize = 1; searchTermination = 6; at-

tribute eval = PrincipalComponents; attribute search = BestFirst;

Naive Bayes Subject 10: centerData = True; maximumAttributeNames = 180;

varianceCovered = 0.9632; threshold = 4.5383; attribute eval = PrincipalCompo-

nents; attribute search = GreedyStepwise;

Random Forest Subject 1: numTrees = 57; features HIDDEN = False; num-

Features = 0; depth HIDDEN = False; maxDepth = 0; folds = 4; minimum-

BucketSize = 10; threshold = 5.4648; attribute eval = OneRAttributeEval; at-

tribute search = Ranker;

Random Forest Subject 2: numTrees = 131; features HIDDEN = False; num-

Features = 0; depth HIDDEN = False; maxDepth = 0; lookupCacheSize = 2;
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searchTermination = 3; attribute eval = InfoGainAttributeEval; attribute search

= BestFirst;

Random Forest Subject 3: numTrees = 127; features HIDDEN = False; num-

Features = 0; depth HIDDEN = True; maxDepth = 16; folds = 13; minimum-

BucketSize = 14; threshold = 3.5659; attribute eval = OneRAttributeEval; at-

tribute search = Ranker;

Random Forest Subject 4: numTrees = 128; features HIDDEN = True; num-

Features = 8; depth HIDDEN = True; maxDepth = 9; lookupCacheSize = 2;

searchTermination = 4; attribute eval = CfsSubsetEval; attribute search = Best-

First;

Random Forest Subject 5: numTrees = 8; features HIDDEN = True; num-

Features = 5; depth HIDDEN = False; maxDepth = 0; threshold = 17.3189;

attribute eval = InfoGainAttributeEval; attribute search = GreedyStepwise;

Random Forest Subject 6: numTrees = 51; features HIDDEN = True; num-

Features = 31; depth HIDDEN = False; maxDepth = 0; numNeighbours = 15;

sigma = 2; lookupCacheSize = 2; searchTermination = 3; attribute eval = Relief-

FAttributeEval; attribute search = BestFirst;

Random Forest Subject 7: numTrees = 189; features HIDDEN = True; num-

Features = 5; depth HIDDEN = False; maxDepth = 0; attribute search = NONE;

Random Forest Subject 8: numTrees = 158; features HIDDEN = True; num-

Features = 8; depth HIDDEN = True; maxDepth = 10; attribute search = NONE;

Random Forest Subject 9: numTrees = 8; features HIDDEN = False; num-

Features = 0; depth HIDDEN = False; maxDepth = 0; numNeighbours = 2;

sigma = 1; searchTermination = 420; attribute eval = ReliefFAttributeEval; at-

tribute search = GreedyStepwise;

Random Forest Subject 10: numTrees = 174; features HIDDEN = False;

numFeatures = 0; depth HIDDEN = True; maxDepth = 4; lookupCacheSize = 0;

searchTermination = 3; attribute eval = InfoGainAttributeEval; attribute search

= BestFirst;
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Support Vector Classifier Subject 1: c = 1.1213; filterType = 1; kernel

= RBFKernel; gamma = 0.0027; numNeighbours = 61; sigma = 2; lookup-

CacheSize = 1; searchTermination = 2; attribute eval = ReliefFAttributeEval;

attribute search = BestFirst;

Support Vector Classifier Subject 2: c = 0.5199; filterType = 0; kernel =

PolyKernel; exponent = 1.3900; attribute search = NONE;

Support Vector Classifier Subject 3: c = 1.2166; filterType = 2; kernel =

PolyKernel; exponent = 3.4430; searchTermination = 54; attribute eval = Cfs-

SubsetEval; attribute search = GreedyStepwise;

Support Vector Classifier Subject 4: c = 0.5196; filterType = 0; kernel =

PolyKernel; exponent = 2.1511; threshold = 10.3495; attribute eval = Symmetri-

calUncertAttributeEval; attribute search = GreedyStepwise;

Support Vector Classifier Subject 5: c = 0.5710; filterType = 2; kernel =

PolyKernel; exponent = 1.1682; folds = 9; minimumBucketSize = 11; threshold =

17.0519; attribute eval = OneRAttributeEval; attribute search = GreedyStepwise;

Support Vector Classifier Subject 6: c = 1.1873; filterType = 1; kernel =

RBFKernel; gamma = 0.0059; attribute search = NONE;

Support Vector Classifier Subject 7: c = 1.2884; filterType = 0; kernel =

RBFKernel; gamma = 0.8826; folds = 11; minimumBucketSize = 4; threshold =

2.8913; attribute eval = OneRAttributeEval; attribute search = Ranker;

Support Vector Classifier Subject 8: c = 0.6114; filterType = 0; kernel =

PolyKernel; exponent = 1.9743; attribute search = NONE;

Support Vector Classifier Subject 9: c = 1.4620; filterType = 0; kernel =

Puk; sigma = 4.2011; omega = 0.6600; attribute search = NONE;

Support Vector Classifier Subject 10: c = 1.0273; filterType = 0; kernel =

PolyKernel; exponent = 2.2284; attribute search = NONE;
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Appendix D: Scripts and Other Materials

The Matlab scripts and other materials that were created in the making of this

thesis can be found in an open source online repository at:

https://github.com/madism/ECMLA

It contains the following items:

• README.md - contains the guidelines for running the scripts and the changelog.

• Dataset name converter.m - script for preprocessing the specified dataset

before conversion with mat2arffmod.m.

• Dataset name converted.mat - the dataset after using Dataset name converter.m.

• Dataset name converted.arff - the dataset after using mat2arffmod.m.

• Datasets - folder which contains the datasets for each subject.

• Graphs - folder which contains the plotted clustergrams, correlation matrixes

and heatmaps.

• Parameters - folder which contains more detailed information about the

optimized parameters for each machine learning algorithm.

• Results - folder which contains the cross validation results for each dataset

and files created by Weka 3 which are needed for plotting the results.

• Scripts - folder which contains the Matlab scripts created for this thesis.

• mat2arffmod.m - script which converts the each corresponding dataset from

.mat format to .arff for Weka 3.

• draw heatmap.m - script for drawing a heatmap for for each performance

metric.

• draw signal.m - script for drawing an example signal before and after

Fourier Transform.

• loadARFF.m - script for loading data from a Weka .arff file into a Java Weka

Instances object for use by Weka classes.
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• plotresults.m - script for plotting a clustergram and a correlation matrix.

• results tables.mat - tables containing the results obtained from Weka 3

and AutoWEKA for each algorithm.

• weka2matlab.m - script for converting Weka data, stored in a Java Weka

Instance object, to a Matlab data type.

• wekaPathCheck.m - script for checking whether Weka has been added to

system path which is needed for other scripts to work.

77



Licence

Non-exclusive license to reproduce and make this thesis public

I, Madis Masso (18.02.1991),

1. herewith grant the University of Tartu a free permit (non-exclusive licence)

to:

(a) reproduce, for the purpose of preservation and making available to the

public, including for addition to the DSpace digital archives until expiry

of the term of validity of the copyright, and

(b) make available to the public via the web environment of the University

of Tartu, including via the DSpace digital archives until expiry of the

term of validity of the copyright,

“Empirical Comparison of Machine Learning Algorithms Based on EEG

Data”, supervised by Ilya Kuzovkin and Kristjan Korjus,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intel-

lectual property rights or rights arising from the Personal Data Protection

Act.

Tartu

January 21, 2016

78


	Introduction
	Theoretical Background
	Electroencephalography (EEG)
	Machine Learning
	Supervised Learning
	Unsupervised Learning

	Optimization

	Materials and Methods
	The Datasets
	Dataset 1: BCI Competition III Dataset IVa
	Dataset 2: BCI Competition III Dataset IVb
	Dataset 3: BCI Competition IV Dataset 1

	Data Preprocessing
	Fourier Transform

	Classification
	AdaBoost Classifier
	k-Nearest Neighbours Classifier
	C4.5 Decision Tree
	Logistic Regression
	Multilayer Perceptron Network
	Naive Bayes Classifier
	Random Forest
	Radial Basis Function Network
	Minimal Cost-Complexity Pruning
	Sequential Minimal Optimization Algorithm for Training a Support Vector Classifier

	Performance Metrics Used for the Comparison of the Classifiers
	Classification Accuracy
	Time Taken to Build a Model
	F-score


	Results
	Comparison by Using Performance Metrics
	Visual Comparison by Using Clustergrams
	Comparison by Using Correlation Matrices
	Comparison after Parameter Optimization

	Conclusion
	Bibliography
	Appendices
	Appendix A: Clustergrams
	Appendix B: Correlation Matrices
	Appendix C: Optimized Parameter Values
	Appendix D: Scripts and Other Materials

	Licence

