
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Computer Science speciality

Mati Vait

Platform Virtualization for F2F Computing

Bachelor Thesis (6 EAP)

Supervisors: Ulrich Norbisrath, PhD

Artjom Lind, MSc

Author: ..�......� June 2011

Supervisor: ...�......� June 2011

Supervisor: ...�......� June 2011

Allowed to defence

Professor: ...�......� June 2011

TARTU 2011

Platform Virtualization for F2F Computing

Mati Vait

Contents

1 Background 6

1.1 Bene�ts and drawbacks of virtualization 6

1.2 Available virtualization methods 7

1.2.1 Virtualization techniques 7

1.2.2 Virtualization technologies 9

1.3 Network virtualization . 10

2 Architecture 12

2.1 Requirements and examples . 12

2.1.1 General requirements . 12

2.1.2 Usage examples . 14

2.2 Architecture of the solution . 15

2.2.1 Components . 15

2.2.2 Architectural layers . 16

2.3 Ideas for Virtualized Platform Setup 17

2.3.1 F2F Computing Peer con�guration 17

2.3.2 Virtual machine image provisioning 18

3 Prototype implementation 20

3.1 Components . 20

3.2 F2F Computing Job . 21

3.2.1 The structure of F2F Computing job 22

3.2.2 Helper module and other tools 22

3.3 Networking in the virtual platform 23

3.4 Virtual machine con�guration . 23

1

CONTENTS 2

4 User's Manual 25

4.1 Dependencies . 25

4.2 Con�guration . 26

4.3 Deployment . 27

Bibliography 30

Introduction

The aim of this thesis is to research and provide a proof-of-concept solution

for running distributed computing tasks and applications on a F2F Computing

network using the Qemu virtual machines communicating over VDE (Virtual

Distributed Ethernet)[21].

The use of virtual machines will make developers of distributed jobs indepen-

dent from the underlying platform accessible to F2F Computing while providing

them with more �exibility than the F2F Computing possibly could alone do.

The virtual machine images can be prepared keeping in mind the speci�c task

at hand. All of the required libraries and tools can be previously installed based

on the application requirements and data for computation can be distributed

in these virtual machines leaving the F2F Computing job with a little to do:

launching a virtual machine and providing it with the network connection.

Additional resources could be assigned to the F2F computing cluster by

connecting these virtual or physical machines over the VDE. For example, a

high-performance computation cluster or storage server, which otherwise would

be inaccessible in easily con�gurable manner from the regular F2F Computing

network, can be included to the computational cloud by adding a network route

to it on VDE.

Currently it has already been tried out by the F2F Computing developers,

that it is possible to submit a F2F Computing slave instance as job to a Grid.

Next the F2F Computing job was submitted to that F2F Computing slave node

and successfully run on the Grid infrastructure utilizing the resources for given

Grid node instance.

On the other hand, this work is a part of the exploration in F2F Computing

for new directions. Various ideas are currently under consideration to improve

the user experience and also the overall structure and the aims of project which

will not be further discussed here.

3

CONTENTS 4

Related work

In the �eld of personal spontaneous clouds there has not yet been much work

done. A lot of commercial services and open source projects are available for

building and running ordinary but heavyweight private clouds1. Most of these

are intended for large scale users. The problem is that none of these provide a

convenient platform for spontaneously setting up and running private personal

clouds.

Amazon's EC2 (Elastic Cloud) [1] is a cloud computing service provided by

Amazon. It enables to run virtual machines and use its storage (S3) on its

infrastructure for a fee. Spontaneous setup for EC2 is not overly complex either

through the web interface [2] or using the tools provided, but using it costs after

certain amount of time2.

OpenStack project [15] provides tools for setting up entire cloud infrastruc-

ture which is too much for simple testing and running small scale computations.

OpenStack consists of three bigger classes of components: OpenStack Compute

for starting, stopping and controlling virtual machine images, OpenStack Object

Storage for storing massive amounts of various data (backups, applications, etc)

and OpenStack Imaging Service for providing virtual machine images. Multiple

services ([11]) are running on each computational node to support the cloud

infrastructure; root access or sudo-enabled user account is required to install

the software.

Condor is a HTC (High Throughput Computing) software [5] developed at

University of Wisconsin-Madison. Computational node installation for Condor

requires the root access [6] and adding a new user, modi�cations to the system

to enable automatic startup and idle-monitoring. The installation can be done

either manually or by using Perl install script. Condor node software runs in the

background of the host machine and monitors for idling periods during which

it can process the jobs.

Boinc is a software for grind computing [4] that is similar to the Condor. It

also runs jobs during the idle periods and also requires root access installation

which is intrusive [10].

From the viewpoint of a small scale user who only occasionally needs consid-

erably more computational power, current solutions for distributed computation

1Amazon's EC2, Eucalyptus, OpenStack, etc.
2At the time of writing this thesis the Amazon is o�ering a certain amount of free service

for new sign ups [3].

CONTENTS 5

are cumbersome to set up and to run. On one hand, the cloud setups are either

costly or too heavyweight to set up and on the other hand the grid middleware

is designed to run job written in a speci�c manner. The installation process

for both categories is intrusive and technical which makes recruiting friends and

colleagues to provide computational power of their computers di�cult if it is

hard for them to set up the system. These reasons make both categories of

distributed platforms unsuitable as a base for spontaneous private clouds.

Chapter 1

Background

1.1 Bene�ts and drawbacks of virtualization

Virtualization provides multiple bene�ts for running distributed applications

over deploying them directly on the unvirtualized host system. First of all,

virtualization reduces signi�cantly the requirements for the host system. Host

systems con�guration can be oriented more towards running multiple virtual

machines simultaneously, rather than to satisfy various library requirements

that build up rapidly when system has multiple services running. Recovery from

crashes for virtual machines means booting up the last backup of the image, but

recovery for the crashed unvirtualized system means usually rebuilding it from

the scratch. Host systems can vary in architecture and can be running di�erent

operating systems as long as the virtualizing application supports those and is

able to run given virtual machine images.

Virtualization provides sandboxing for the deployable applications by sep-

arating them from the underlying environment. Sandboxing protects the host

machine from potentially malicious applications from corrupting or stealing the

data, installing unwanted software, crashing the system or using it as a proxy

for launching new attacks against other systems.

On the downside, virtualization introduces additional computational over-

head that consists of additional work done by the processor and also the ad-

ditional memory that is used to keep each virtual machine instance running.

The amount of additional work varies depending on the level of virtualization.

The rule of thumb is that the lower level the virtualization takes place, the less

6

CHAPTER 1. BACKGROUND 7

overhead occurs. That is because of the smaller number of abstraction layers

involved.

In the next section I look more closely to some of the main virtualization

techniques that could be used to solve the problem at hand: platform virtual-

ization for F2F Computing.

1.2 Available virtualization methods

In this section I introduce and compare di�erent virtualization approaches in

order to choose suitable method for doing the platform virtualization for F2F

Computing. How to virtualize, more speci�cally what tools to use for platform

virtualization, is a big question since the virtualization can be performed on

multiple di�erent levels. Each of those levels have some positive and some

negative sides to them, so it is necessary to understand these.

1.2.1 Virtualization techniques

Chroot or jailed environment can be considered as a basic idea of virtu-

alization. It is done on the application level in the host system by setting up

a separate root �lesystem in a new directory. Applications, that are run under

that new root folder, are given an impression that this �lesystem is the only

�lesystem and as a result they know nothing about the actual �lesystem on the

host machine.

Although chroot is simple to set up for just application sandboxing it is not a

good option to do platform virtualization for F2F Computing. Mainly because

of it has no real encapsulation from the host's system. It can be damaged

accidentally by the users of the host system. There is also a security risk involved

due to the variety of ways of escaping [13] the chroot environment and possibility

of altering maliciously the host system.

Application level virtualization is done for each application separately

and each of those applications are separated from the others but are still running

on the host system.

Virtualized application has its own address space and it sees the operating

system as a generic operating system mostly having no idea if it is virtualized or

not. Application level virtualization enables to deploy the same application on

CHAPTER 1. BACKGROUND 8

similar kind of environments regardless if the system does or does not provide

certain libraries because all of the dependencies come with the application.

Process-level virtualization is done by programming language speci�c in-

terpretators. Two examples of this are Java Virtual Machine (JVM) and Python

Virtual Machine(PVM). In case of process-level virtualization the code written

in high-level language is translated into intermediate byte-code and then pro-

cessed by the language interpretator.

Paravirtualization is a virtualization technique in which the guest operat-

ing system's kernel is modi�ed to use modi�ed CPU instructions so that the

host CPU underneath can understand and run faster. The guest system uses

modi�ed drivers to connect directly to the host machine. The main bene�t of

paravirtualization is the performance. for an example it helps to acquire more

precise time measurements1 on the guest. The gain in performance is achieved

mostly through the fact, that the guest system is aware of it's role (virtual ma-

chine) and uses more e�cient system calls and modi�ed device drivers to access

system resources.

Full virtualization is a technique, in case of which an unmodi�ed guest

operating system is running on some host machine and is not aware of that

it is a virtual machine. Every system call, that is made to the host machine

from the virtualized operating system, is captured and executed by the machine

emulator. Virtual machine uses unmodi�ed drivers to access system resources.

Full virtualization can be divided into two categories: native virtualization

and hosted virtualization. In the case of the native virtualization, the hyper-

visor2 is located directly on top of the host hardware and is running without

any help of the host operating system3. However the negative side to it is that

in this mode it is hard to control the amount of resources used by the virtual

machine.

In case of the hosted virtualization, the hypervisor is located between the

host operating system and the guest operating system where the unsafe system

calls are rewritten. This way the control over the virtual machine's and the

host's performance is better. To run guest operating system's system calls

1In most of the applications having a precise time is a must.
2Hypervisor is an application that translates system calls between the host and guest

operating system.
3Hypervisor may be directly built into the �rmware of the host systems

CHAPTER 1. BACKGROUND 9

natively full virtualization requires hardware support such as Intel's VT-x or

AMD's AMD-V and a guest virtual machine built for the same architecture.

1.2.2 Virtualization technologies

Xen is an open source hypervisor[25] that is considered to be the industry

standard. It provides an abstraction level between host hardware and multiple

guest operating systems. Xen is designed to consolidate together a relatively

large number of virtual machines on a single physical machine while not loosing

much in performance.

Xen, as a hypervisor, is located in between of physical machine and the guest

(virtual) machine. In addition to the guest machines, a Xen setup always has a

domain0 � an operating system that is always started �rst by the hypervisor and

is used to launch other virtual machines. Xen uses paravirtualization technique

between the hypervisor and the guests to provide uniform and secure access

to the hardware resources. Most of the hardware access is provided through

the domain0 virtual machine in a generalized manner: the underlying machine

architecture is simpli�ed and presented to all of the guests as a generic system.

Because of very intrusive installation process[18], which involves setting up

specially modi�ed operating system - domain0, from where guest machines could

be launched, Xen is not the best option for running a regular node's virtual

machines in F2F Computing network. Xen installation requires changing the

host's kernel or even reinstalling the whole system. Xen suits better for running

special-purposed nodes that are not restarted or recon�gured very often on F2F

Computing network.

VMware is a company providing virtualization solutions, among which is a

free product called VMware Player. It enables to create and use run machines

on a workstation. VMware Player uses paravirtualization techniques to support

wide range of guest operating systems.

Qemu [17] is a processor emulator that enables to run virtual machines di-

rectly in the userspace using full virtualization. Guest operating systems are run

unmodi�ed while Qemu provides a generic interface to the hardware. Qemu has

built in support for many di�erent kind of processor architectures and knows

how to interpret their instructions.

CHAPTER 1. BACKGROUND 10

KVM (Kernel-based Virtual Machine) [12] is an open source hypervisor that

is used mostly in conjunction with Qemu. KVM is loaded as a kernel module

and thus provides better performance than having Qemu running alone. KVM

is built to take an advantage of a regular Linux kernel to run virtual machines in

hosted mode, so it does not have to do much of the hardware controlling itself.

Because of the reuse of the Linux kernel, the KVM hypervisor is located closer

to the hardware than Xen.

UML-Linux (User Mode Linux) [19] is virtualization solution in which Linux

kernel is started and run in the user-space and all calls from and to the guest

system are intercepted and rewritten as necessary, by UML-Linux. Complete

virtual machines are built using UML-Linux by attaching additional resources,

such as �lesystems, network interfaces and other devices, to the kernel. All

virtual machines are run under user privileges and without any direct low level

access to the host machine hardware. This means that all virtual machines run

in this manner are quite slow and probably not suitable to be used for platform

virtualization in general.

VirtualBox [23] is a free and relatively popular virtualization solution that

is developed by Oracle. It uses hosted mode virtualization and supports wide

range of guest operating systems.

1.3 Network virtualization

Network virtualization is the process of creating subnets that span over multiple

real or virtual subnets. Virtual networks may consist both of guest and host

machines. Multiple techniques exist that can be used to create virtual networks

but mainly they are formed by creating network interfaces to the guests and

then routing the connections between these interfaces using some means for

transport. In the virtualized networks the data throughput is reduced because

of the overhead of encapsulation of the tra�c into the lower levels of network.

Virtual networks are made utilizing various tools and technologies. In the

remaining part of this section I give an overview of some more useful of these.

Network Address Translation (NAT) is used to seamlessly manipulate

the tra�c coming from one subnet and going to another subnet to look like it is

actually from that second subnet. The purpose of NAT is to hide one or multiple

CHAPTER 1. BACKGROUND 11

private subnetworks behind one IP address (the gateway). NAT was introduced

because of IPv4 shortage. Perfect to hide internal hosts from external attacks,

however it also complicates P2P communication.

Virtual Private Network more ofter referred to as VPN is a secure way of

building Private Networks on top of the existing IP networks. All of the tra�c is

protected by encryption. VPN encapsulates multiple service channels into one

channel. This encapsulation reduces the router load by mapping connections

over the tunnel into respective ports on the VPN instances on either side of the

tunnel.

Virtual Distributed Ethernet (VDE) is a subproject of Virtual Square

project. VDE provides a fundamental toolkit for building virtual network solu-

tions. VDE toolkit consists of software-based switch and wide range of utilities

for connecting switches to other switches, network interfaces to switches and

other endpoints such as virtual machines4. Spanning tree protocol is imple-

mented on the vde_switch tool and it enables to route the tra�c faster.

UML-Linux utilities [19] provide also means for network setup (uml_switch).

They contain relatively big portion of the code from VDE project and may be

considered to be used for extending the virtualized platform by UML-Linux vir-

tual machines. Currently UML-Linux tools are not as advanced as VDE and

thus are not used for this work.

Virtualbricks [24] project is based on KVM and Qemulator projects. It en-

ables to graphically con�gure virtual network connections and virtual machines.

This, and similar tools are worth looking into when platform virtualization is

already more advanced for F2F Computing. There exists a potential of inte-

grating similar tool into special F2F Computing job, so the the private cloud

management could be more �exible and more under the control of the initiator.

4Qemu has built in support for VDE.

Chapter 2

Architecture

In this chapter I bring out the requirements along with some usage examples

that drive the design and describe the overall architecture of the prototype. The

main objective is to identify necessary components and specify how exactly the

platform virtualization can be provided on the F2F Computing framework at

the moment.

The requirements are brought out from the point of view that regular com-

putational nodes are hosted on regular computers. These nodes may not have

there full priorities over the host system resources.

2.1 Requirements and examples

2.1.1 General requirements

Virtualized computation environment must not depend on underlying

host system. The virtualized computational environment must not have

any other external dependencies apart from network connection and su�ciently

reserved amount of memory and CPU resources.

Indistinguishable virtualized and physical platforms. All applications

that run on one platform must also be able to run on the host platform. This

requirement can be relaxed in a sense that not all special software that runs on

specialized hardware can be run in virtualized settings and vice versa. However

having this requirement ful�lled, means that development time can be signi�-

cantly reduced while applications are built on physical platforms and deployed

12

CHAPTER 2. ARCHITECTURE 13

on the virtual platform.

Minimal requirements on non-dedicated host system. Virtual machine

must not exhaust too much resources on host machine and by that render it

unusable through the host operating system. On the host systems that are

used exclusively for running virtual machines or are purposely used for running

virtual machines this requirement does not fully apply.

Use of high performance virtualization methods. Virtualization meth-

ods must be chosen such that they do not make virtual machines too slow com-

pared to the physical machines. Capabilities of the average host machine must

be considered when assembling a generic virtual machine for the majority of

computational nodes.

Nodes in the virtualized platform must be interconnected in virtual

network. The virtualized network runs over existing network connections.

Having a separate logical layer of network addressing and tra�c helps admin-

istrators of the network e�ectively group all of the components in platform.

Using virtual network (see subsection 1.3) makes all of the remotely located

components and communication between those components easily manageable.

Some of the components in the virtual network may also have external con-

nections. These connections are necessary for managing, monitoring and ex-

tending the network.

Network connections in virtual network must be as optimal as pos-

sible. The optimality in this case means two things. Firstly it means that

the transmission speeds in the virtual and in the underlying physical network

should not di�er signi�cantly. Naturally there exists an overhead that occurs

nevertheless when having virtualized network tra�c encapsulated inside of the

real network tra�c. This overhead can be minimized by not arti�cially increas-

ing the unnecessary workload for an example by running multiple ssh sessions

one inside of another.

Secondly the optimality means that all of the communication happening in

the virtual network is also routed via the fastest route possible. Fast routing

can be achieved in two ways: either by adding optimal routes manually into the

routing tables of virtual machines or by using automated and adaptive solutions

such as fast spanning tree protocol implementation in software based switches.

CHAPTER 2. ARCHITECTURE 14

Virtualized platform must be easy to set up. Depending on the role of

the component in the platform it has to be as easy to set up as possible. Simple

computational nodes must be launched using only minimal e�ort1 on the user's

part and must not require any special knowledge either on programming or

system administration. Only if this requirement is ful�lled then is it possible

to have as many regular users as possible for deploying the main force of the

platform: generic computational nodes.

Virtualized platform must be easily extendable. The proper selection

and the use of networking tools will enable the administrators to extend vir-

tualized platform whenever the need or opportunity arises. For an example by

adding another group of computational nodes to existing set of nodes through

connecting some virtual network switches either directly or through tunnels.

2.1.2 Usage examples

Running a speci�c distributed computational job. A small group of

virtual machines2 are set up for development and testing of distributed com-

putational jobs. Those machines are con�gured according to the needs of the

application and are used as base images for creating virtual machines for all of

the nodes.

F2F Computing job is developed keeping in mind speci�c needs of the dis-

tributed computational job. Required resources are negotiated over the instant

messaging service, group chat is formed and F2F Computing job is distributed.

Each F2F Computing job, based on the machine that it is running on, estab-

lishes initial network connections, con�gures and deploys it's virtual machine.

During the boot time virtual machines are connected together into a virtual

network and the actual distributed job or application is launched.

Adding additional resources to another F2F Computing cluster. For

multiple possible usage scenarios it is necessary to augment existing computa-

tional network with additional resources. This can be done in multiple ways,

1Simple computational nodes are meant to be run on the machines operated by an average
computer user who simply launches the virtual machine through running F2F Computing job
and after that has no further interaction with the node.

2For an example base images for virtual machines of master and slave roles.

CHAPTER 2. ARCHITECTURE 15

but if using F2F Computing to launch additional set of machines, the basic

setup is similar to the previous paragraph up to the point where it is time to

launch the computational job. In that point, instead of launching that job, the

network is connected to the other network through some (or multiple) of the

nodes in the newly created network that acts as a gateway.

The augmentation becomes necessary, when some of the computational nodes

fail or network connections go down and remaining nodes cannot recover. More

resources and redundancy can be added to the F2F computing cluster by adding

additional friends and allowing them to add their friends. To build up more re-

dundant system, some of the new nodes could be instead of launching their

virtual machines back up some of the more critical ones already running.

2.2 Architecture of the solution

The architecture consists of multiple components of which some are concrete and

some are logical entities by nature. In the following I discuss these components

and then separate them into distinct levels. Some of the terminology is borrowed

from the VDE project, because of the prototype solution makes a heavy use of

tools that it provides.

2.2.1 Components

Host system is an underlying component of the virtualized platform. Hosts

provide computational and storage resources for the virtualized platform. Host

system is connected to other host systems and they form the basis for the

virtualized platform. At this point it is not necessary to make a distinction

between dedicated host3 and regular host4.

Guest system is a virtual machine that is the main component of the virtual

platform. It is build for speci�c role depending on the overall task and carries

libraries and other necessary tools. Sometimes it is justi�able for the data to be

included also in the virtual machine5.
3Dedicated host is a physical machine, that is used solely for providing some speci�c service

or resource, for an example database.
4For a regular host only some of it's resources are allocated for the guest system.
5Whether the data is included in the virtual machine during the initial virtual machine

distribution or not, depends on the sizes of the virtual machine and the data. Also the network
speed must be taken into account: maybe it is more e�cient to do the delivery by some other
means.

CHAPTER 2. ARCHITECTURE 16

Software-based switch is a component that is responsible for interconnect-

ing di�erent parts of the network. For the prototype solution there is always

one switch placed in front of each of the virtual machines. This setup enables

to use uniform con�guration for all of the virtual machines in the initial F2F

Computing job. Also, having a switch in front of the virtual machine provides

an easy opportunity for attaching another network segment through this switch.

Wire is a logical component by nature because is comprises of several other

applications. It is used to interconnect parts of either the underlying network

or the virtual network, hence the name. Wires are used to make two types of

connections: guest system to switch, switch to switch.

In the architecture of the solution it is possible to separate two basic levels:

physical and virtual. All of the host systems are situated on the physical level.

They may be located far apart in respect to each other and can be connected

by di�erent means such as ssh, VPN, LAN, P2P (TCP or UDP) or other.

2.2.2 Architectural layers

Components of the solution can be divided into three layers. Each of those

layers can be considered separately depending on the components that given

layer focuses on and the problems that the given abstraction helps to solve.

Virtual layer provides a high-level view for the developer who is writing

applications for the virtualized platform.

This layer consists of virtual machines that are used to run either �nal dis-

tributed job or an application. All of the machines are provided implicitly with

network connections so that they all appear to be on the same network. Figure

2.1 shows one possible virtual layer that has multiple virtual machine instances

not taking into account whether they are running on the same host, same site

or even if their hosts are connected to the same network segment. The only

concern in virtual level is the con�guration of the applications and implicitly

provided network connections which are not shown.

Logical layer describes the topological setup of the virtual machine instances,

how they all are connected to each other. Figure 2.2 shows two possible ways of

setting up topologies (star and mesh), however it is possible to combine these

CHAPTER 2. ARCHITECTURE 17

Figure 2.1: Layout of the components in the virtual layer.

and some other di�erent network layouts to achieve close to optimal network

performance.

Figure 2.2: Star and Mesh layout of the components in the logical layer.

Physical layer is the most important layer from the viewpoint of this work.

This layer concerns with the layout of di�erent components for setting up the

underlying infrastructure. Each line in the Figure 2.3 denotes a connection

between two given components whereas that connection may not necessarily be

a network connection6.

2.3 Ideas for Virtualized Platform Setup

2.3.1 F2F Computing Peer con�guration

The F2F Computing job is the glue for setting up and holding together the vir-

tualized platform. It is essentially a regular F2F Computing job, which instead

6Connections between F2F Computing jobs and virtual machines that are launched from
these jobs may also be implemented through local pipes.

CHAPTER 2. ARCHITECTURE 18

Figure 2.3: Layout of the components in the physical layer.

of performing calculations and returning results bootstraps the virtualized plat-

form. It starts up virtual machines and establishes underlying connections for

virtual network.

As in any distributed job that has separate master and slave roles, the F2F

Computing job contains two parts. The master part of the F2F Computing job is

for setting up master virtual machine and attaching it to the switch. Master job

is also responsible for distributing parameters that need to be coherent across

the network. These parameters are for an example the MAC addresses for all

guest virtual machine network interfaces, special parameters for VDE switches.

Slave part of the F2F Computing job is for con�guring and starting up the

slave virtual machine and attaching it to the switch. When launched, the slave

part receives parameters from the master job and con�gures it's virtual machine

and prepares network connections.

2.3.2 Virtual machine image provisioning

Distribution of the virtual machine images can be done in multiple ways.

The easiest way would be to retrieve the images by their URLs from dedicated

server or to use some of data retrieval tools.

Second approach is to get the images directly from the master node or from

special node in the F2F Computing network using the F2F Computing commu-

nication channels. In this case the speed and e�ciency would all depend on the

speed of the F2F Computing messaging channel.

Third option is to use F2F Computing messaging layer to set up TCP streams

between the peers and share large �les from master to slaves using swarm down-

load algorithm where the master broadcasts the data to the slaves simultane-

CHAPTER 2. ARCHITECTURE 19

ously.

The used distribution strategy also depends on what kind of virtual machine

images are used on what kind of nodes and what are their roles. Some or all

of the nodes may take part in the distribution process using Peer-to-Peer data

transfer techniques to share uniformly over the network the same kind of virtual

machine images7.

Management. For every role in the virtual platform a virtual machine base

image is created. That image is delivered to appropriate node (see previous

paragraph) and the node uses that image to derive a working copy of it. The

base virtual machine image is stored on the host's hard drive as is and it is used

to derive a temporary virtual machine image that is actually launched8.

7This approach is particularly fast when the number of distinct base images is small com-
pared to the number of the nodes in the network.

8This approach enables clean restart for the guest and also creates an opportunity to later
investigate virtual machine state if something went wrong.

Chapter 3

Prototype implementation

In this section I describe the F2F Computing job related code in more technical

detail. Currently the prototype depends a lot on some of the common tools

found in the Linux systems e.g. nc [14] due to the fact that it is a versatile tool

with very low overhead that can be used to connect Qemu machines to F2F

Computing job.

Python [16] was chosen as the implementation language because F2F Com-

puting framework supports it and the code is written in Python with portability

in mind.

3.1 Components

Following components and applications are used in the prototype solution.

F2F (Friend-to-Friend) Computing is a framework [7] which provides

a platform for distributed computing borrowing ideas from cloud computing,

Peer-to-Peer and social networks. It is a middleware running on top of instant

messaging (IM) clients and provides means for writing spontaneously deployable

distributed applications and services. Currently supported languages are python

and C/C++. In the old version Java was supported and that is currently being

redesigned and rewritten to be included in the future.

Open�re is an IM server, by Jive Software [9], that uses XMPP instant mes-

saging [20] protocol. It enables users to have group chats - the feature that F2F

Computing takes extensively advantage of.

20

CHAPTER 3. PROTOTYPE IMPLEMENTATION 21

Qemu is a processor emulator [17] which is capable of running virtual machine

images of multiple di�erent architectures on host machine with nearly native

speeds when using kernel-based acceleration through KVM kernel module. In

this thesis Qemu processor emulator is used to run virtual machines because it

emulates a wide range of CPU architectures and is extensively con�gurable.

Debian GNU/Linux distribution is used as a operating system in the virtual

machines. Other operating systems could also be used.

VDE tools. VDE (Virtual Distributed Ethernet) [21] is a sub-project of

the Virtual Square [22] project that enables to create sparse virtual machines

spanning over multiple real machines. VDE project provides a set of tools to

establish networks containing virtual and real machines. The most basic set of

tools, that enable to set up virtual network between two or more machines are

vde_switch1, vde_plug2 and dpipe3.

The central component of the VDE network is vde_switch. It is a software-

based Ethernet-compliant network switch that supports fast-spanning-tree pro-

tocol. dpipe is a utility to connect vde_switch to other switches through other

transport programs4.

nc (netcat) is a versatile networking [14] tool which is used in the solution as

a means for transport between F2F Computing job and vde_switch but there

are other alternatives, such as ssh or to programmatically read and write the

standard input and output, that could be used instead.

3.2 F2F Computing Job

The F2F Computing job is used to launch, con�gure and interconnect separately

located virtual machines into a virtualized platform. The F2F Computing client

is launched on each of the nodes and once the master node is launched, then

the F2F Computing job is distributed among all of the clients. At this stage

1vde_switch is a software-based switch that is Ethernet compliant and implents fast span-
ning tree protocol for e�cient routing.

2vde_plug is an endpoint of a logical �wire� connecting two vde_switches or a vde_switch
and a virtual machine.

3dpipe is a bidirectional pipe command, that connects standard output of one process to
the standard output of another process.

4In this work nc and F2F Computing messaging was used for connections, however network
sockets or other means could be used.

CHAPTER 3. PROTOTYPE IMPLEMENTATION 22

all of the nodes in the group set up their virtual machines and interconnect

them into VDE network. All of the communication is proxied through the F2F

Computing messaging layer. The only external component needed to have a

working communication between nodes is a plain XMPP server (Open�re, see

section 3.1). That server is also used for managing all F2F Computing users in

the network.

The F2F Computing job code of the prototype is divided into two main

parts: sample network topologies (see 2.2.2) and a helper module for setting up

and con�guring virtual machines and networking.

3.2.1 The structure of F2F Computing job

A F2F Computing job, that sets up virtual platform, consists of two parts:

master and slave role which in general can be referred as master and slave nodes.

Both of them share common logic for setting up network tra�c forwarding from

vde_switch to appropriate F2F Computing job on the other side of the network

where it is in turn forwarded into vde_switch.

Master node �rstly generates parameters and con�gures its virtual machine.

The virtual machine is started in parallel to the master node as soon as it is

con�gured. Master virtual machine is launched �rst to ensure, that all nodes can

receive a network address through DHCP. After starting the virtual machine,

the master node generates and provides parameters for F2F Computing nodes

to con�gure their virtual machines. All of the uncon�gured slave nodes are

provided with parameters and at this point the master node continues to wait

for added new nodes and provide these with con�guration parameters.

Slave node receives parameters from the master node and launches the virtual

machine also in parallel. While the virtual machine is starting up, the slave node

prepares tra�c forwarding to either to the center node of the star-topology or

to every other node in the mesh-topology. It depends on which of the proof-of-

concept implementations is currently running.

3.2.2 Helper module and other tools

For performing repetitive tasks and to reduce boilerplate code, a great part of

the code was moved into a separate module. It contains functionality for easily

con�guring and launching virtual machines and connecting these machines to

CHAPTER 3. PROTOTYPE IMPLEMENTATION 23

the VDE network. This Python module is also separately usable from the F2F

Computing job.

3.3 Networking in the virtual platform

Virtual network con�guration for the virtualized platform can be done in

two ways. First option is to have static addresses which means that each machine

on the network must be individually precon�gured and possibly shipped while

containing this information. The second, and more preferable, option is to

use dynamic addressing which divides all virtual machines in the network into

two classes: master and slaves. Master machines have DHCP5 servers running

and provide slave virtual machines with IP addresses and possibly some other

network related con�guration information.

Di�erent topologies. Two di�erent network topologies (Figure2.2) were im-

plemented as a result of this thesis. Both of the implementations as F2F Com-

puting jobs can be found on the DVD attached to the thesis.

� f2f_STAR.py - Star topology implementation,

� f2f_MESH.py- Mesh topology implementation.

Software-based switches (vde_switch) are located in front of each of the Qemu

virtual machines to enable to change the topologies more easily. Otherwise if

only some central switches were used, then it would be di�cult to �nd a suitable

point to connect additional machines and networks.

Another motivation for having such high concentration of switches is to use

the fast spanning tree protocol in vde_switches to achieve the most e�ective

routing possible.

3.4 Virtual machine con�guration

Depending on the role in the virtualized platform, the virtual machines are

con�gured di�erently. For the proof-of-concept solution following simple con�g-

uration was set up.

5DHCP - Dynamic Host Con�guration Protocol

CHAPTER 3. PROTOTYPE IMPLEMENTATION 24

Master virtual machine is con�gured with a static IP address and is pro-

viding a DHCP service.

Slave virtual machines are con�gured to automatically acquire the IP

address over the DHCP protocol. All slaves also have preinstalled ssh public keys

of the master virtual machine to lessen the access and con�guration complexity.

Testing, diagnostics. To ensure the health and responsiveness of the plat-

form, each of the virtual machines should to be examined separately, albeit

often it is su�cient to examine the state of the network from one or two nodes

to verify that all other nodes are up and responding. For that purpose each

virtual machine has installed tcpdump and nmap applications.

Figure 3.1 shows an example of how to verify that all of the (four) launched

nodes are actually running and responsive. Firstly, the IP of the local machine

is queried and secondly, all 256 IP addresses are pinged in given subnet of

192.168.254.0/24.

Figure 3.1: Using ifcon�g to �nd out the IP of the network interface and nmap
to display all of the machines in the subnet.

Chapter 4

User's Manual

In this section I describe concrete dependencies, con�guration and deployment

of the prototype solution for a Debian Linux based system.

On Debian Linux the Qemu package already has a built in support for VDE.

On Ubuntu, since version 10.4 and later, the support for VDE is not included

due to some maintenance issues. For Ubuntu the Qemu package has to be

recompiled and reinstalled to enable VDE network interfaces.

4.1 Dependencies

In this section I list dependencies for running the prototype code on host ma-

chines.

1. Open�re server. Download a Linux version (tar.gz) of the Open�re server

from

http://www.igniterealtime.org/downloads/index.jsp#open�re. Only one

instance of this server is needed to set up. Unpack the archive using some

graphical archiver or by issuing command:

ta r zxvf op en f i r e * . t a r . gz

2. Qemu package. Install the package on Debian based systems by issuing

command as a root:

apt−get i n s t a l l qemu qemu−kvm

25

http://www.igniterealtime.org/downloads/index.jsp#openfire

CHAPTER 4. USER'S MANUAL 26

3. Virtual machines for slave and master nodes can be taken from the DVD

media (respectively slave.qcow2 and master.qcow2).

4. VDE tools are available under the name vde2 in the Debian repositories.

Issue following commands a root to install:

apt−get i n s t a l l vde2

5. F2F Computing core and python bindings are necessary to run the F2F

Computing nodes. Latest version of the source for the core can be down-

loaded from [8]. This page contains extensive instructions for setting up

and building the core. An alternative option is to take pre-built 32bit

binaries from the DVD media.

6. F2F Computing headless slave nodes can be taken from the DVD media

(slave*.py).

7. F2F Computing headless master nodes can be taken from the DVD media

(master*.py).

4.2 Con�guration

Following steps are necessary to prepare environment for launching. The con�g-

uration of the virtual machines in step 5 can be skipped because sample virtual

machines are already con�gured and can be used instead.

1. Open�re

(a) Start the server

op en f i r e / bin / op en f i r e s t a r t

(b) Disable o�ine messaging:

i. con�gure administrator password and log into the server,

ii. in Server�Server Manager�Server Settings�O�ine Messages

enable �Drop�,

iii. save the settings.

(c) Create users f2f01, f2f02, f2f03, f2f04,... (password e.g. f2f):

i. log in as administrator,

CHAPTER 4. USER'S MANUAL 27

ii. in Users/Groups�Create New User enter the username of the

new used and according password,

iii. click Create User.

2. Build the F2F Computing core or take pre-built 32bit binaries from the

accompanied DVD. Put binaries and bindings to the same folder as the

slave and master node �les are (for testing on a single machine).

3. Set user parameters in F2F Computing nodes. Edit the computing nodes

slave*.py and master*.py to contain previously, in Open�re server, con�g-

ured usernames and passwords.

4. Set the location for virtual machine images in the mesh/star F2F Com-

puting job �le.

5. *Con�gure virtual machines

(a) not to remember MAC and IP address associations (udev).

(b) to ask for an IP over DHCP (slaves)

(c) to provide IP addresses over DHCP (master)

4.3 Deployment

1. Start Open�re server

op en f i r e / bin / op en f i r e s t a r t

2. Launch slave nodes

python s l ave1 . py

python s l ave2 . py

python s l ave3 . py

3. Launch master node

python master_MESH . py # mesh topology or

python master_STAR . py # s t a r topology

Summary

The main contribution of this thesis is the prototype solution of platform vir-

tualization for F2F Computing. I provide two possible network topologies of

setting up the virtualized platform: star and mesh. Both are implemented as

F2F Computing jobs using some of the common code from a helper module I

wrote for launching Qemu virtual machines.

In the thesis I also look into various virtualization techniques and technolo-

gies. Some of them could be used in the virtual platform for some persistent

tasks. For an example the Xen hypervisor could be used instead of the Qemu

for running database or storage servers that are less changing parts of the vir-

tualized platform.

One possible future research direction after implementing platform virtu-

alization for F2F Computing could be the integration of graphical network

and virtual machine manager software like Virtualbricks1 to F2F Computing

platform. This would enable to central con�guration for all of the networked

machines from the master node using graphical interface.

1http://virtualbricks.eu/

28

http://virtualbricks.eu/

Platvormi virtualiseerimine

F2F Computing raamistikule

Mati Vait

Bakalaureusetöö (6 EAP)
Sisukokkuvõte

F2F Computing raamistikku on arendatud Tartu Ülikoolis juba pikemat aega

ning käesolevaks hetkeks on see juba võrdlemisi paindlik, sest jooksutab C/C++

keeltes kirjutatud hajustöid LLVM (Low Level Virtual Machine) virtuaalmasina

kaudu ja toetab ka Pythonis kirjutatud töid.

Käesoleva töö eesmärk on uurida virtuaalmasinate jooksutamist F2F Com-

puting arvutusvõrgus sihiga see virtualiseerida.

Arvutusplatvormi täielikul virtualiseerimisel on mitmeid eeliseid: spontaan-

sus ülesseadmisel, suurem valik kasutatavat tarkvara mida kasutada hajustööde

loomiseks ja jooksutamiseks, võimalus virtuaalmasinaga kaasa panna arvutuste

algandmed. Lisaks tavapärastele hajustöödele on võimalik virtualiseeritud platvormil

käivitada hajusrakendusi, näiteks mitmest komponendist koosnevaid veebiteenu-

seid. Muuhulgas on hõlpsalt võimalik laiendada virtuaalset platvormi väliste

ressurssidega. Laiendamine toimub ühenduse lisamisega arvutusvõrgust ressursi-

ni.

Käesoleva töö raames uurisin erinevaid virtualiseerimise tehnikaid ning va-

hendeid. Vaatasin kuidas võiks välja paista virtualiseeritud platvorm erinevate

kasutajate vaatepunktist ning praktilise osana valmis prototüüplahendus F2F

Computing arvutusplatvormi virtualiseerimiseks. Lahenduses on realiseeritud

kaks topoloogiat (Star ja Mesh).

29

Bibliography

[1] Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.

com/ec2/, May 2011.

[2] Amazon Elastic Compute Cloud: Get Started with EC2. http://docs.

amazonwebservices.com/AWSEC2/2011-05-15/GettingStartedGuide/,

May 2011.

[3] Amazon Web Services (AWS) free usage tier. http://aws.amazon.com/

free/, May 2011.

[4] BOINC - Open-source software for volunteer computing and grid comput-

ing. http://boinc.berkeley.edu/, May 2011.

[5] Condor project homepage. http://www.cs.wisc.edu/condor/, May 2011.

[6] Condor version 7.6.0 manual: 3.2 installation. http://www.cs.wisc.edu/

condor/manual/v7.6/3_2Installation.html, May 2011.

[7] F2F - ulno.net. http://ulno.net/f2f/, June 2011.

[8] F2F Development - ulno.net. http://ulno.net/f2f/development/, June

2011.

[9] Ignite Realtime: Open�re Server. http://www.igniterealtime.org/

projects/openfire/, May 2011.

[10] Installing BOINC - BOINC. http://boinc.berkeley.edu/wiki/

Installing_BOINC, May 2011.

[11] Installing OpenStack Compute on Ubuntu. http://docs.openstack.org/

bexar/openstack-compute/admin/content/ch03s02.html, May 2011.

30

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://docs.amazonwebservices.com/AWSEC2/2011-05-15/GettingStartedGuide/
http://docs.amazonwebservices.com/AWSEC2/2011-05-15/GettingStartedGuide/
http://aws.amazon.com/free/
http://aws.amazon.com/free/
http://boinc.berkeley.edu/
http://www.cs.wisc.edu/condor/
http://www.cs.wisc.edu/condor/manual/v7.6/3_2Installation.html
http://www.cs.wisc.edu/condor/manual/v7.6/3_2Installation.html
http://ulno.net/f2f/
http://ulno.net/f2f/development/
http://www.igniterealtime.org/projects/openfire/
http://www.igniterealtime.org/projects/openfire/
http://boinc.berkeley.edu/wiki/Installing_BOINC
http://boinc.berkeley.edu/wiki/Installing_BOINC
 http://docs.openstack.org/bexar/openstack-compute/admin/content/ch03s02.html
 http://docs.openstack.org/bexar/openstack-compute/admin/content/ch03s02.html

BIBLIOGRAPHY 31

[12] KVM - main page. http://www.linux-kvm.org/page/Main_Page, May

2011.

[13] [Linux University Handbook]: chroot. http://wiki.linux.edu/chroot,

May 2011.

[14] Manual Pages: nc. http://www.openbsd.org/cgi-bin/man.cgi?query=

nc, May 2011.

[15] OpenStack projects. http://www.openstack.org/projects/, May 2011.

[16] Python Programming Language - O�cial Website. http://www.python.

org/, May 2011.

[17] Qemu - open source processor emulator. May 2011.

[18] RHEL6Xen4Tutorial: Xen installation - Xen Wiki. http://wiki.

xensource.com/xenwiki/RHEL6Xen4Tutorial, May 2011.

[19] The User-mode Linux Kernel Home Page. http://user-mode-linux.

sourceforge.net/, May 2011.

[20] The XMPP Standards Foundation. http://xmpp.org/, May 2011.

[21] VDE - Virtual Distributed Ethernet. http://vde.sourceforge.net/,

May 2011.

[22] Virtual Square. http://www.virtualsquare.org/, May 2011.

[23] VirtualBox. http://www.virtualbox.org/, May 2011.

[24] Virtualbricks. http://virtualbricks.eu/, May 2011.

[25] Xen® hypervisor. http://xen.org/, May 2011.

http://www.linux-kvm.org/page/Main_Page
http://wiki.linux.edu/chroot
http://www.openbsd.org/cgi-bin/man.cgi?query=nc
http://www.openbsd.org/cgi-bin/man.cgi?query=nc
http://www.openstack.org/projects/
http://www.python.org/
http://www.python.org/
http://wiki.xensource.com/xenwiki/RHEL6Xen4Tutorial
http://wiki.xensource.com/xenwiki/RHEL6Xen4Tutorial
http://user-mode-linux.sourceforge.net/
http://user-mode-linux.sourceforge.net/
http://xmpp.org/
http://vde.sourceforge.net/
http://www.virtualsquare.org/
http://www.virtualbox.org/
http://virtualbricks.eu/
http://xen.org/

	Background
	Benefits and drawbacks of virtualization
	Available virtualization methods
	Virtualization techniques
	Virtualization technologies

	Network virtualization

	Architecture
	Requirements and examples
	General requirements
	Usage examples

	Architecture of the solution
	Components
	Architectural layers

	Ideas for Virtualized Platform Setup
	F2F Computing Peer configuration
	Virtual machine image provisioning

	Prototype implementation
	Components
	F2F Computing Job
	The structure of F2F Computing job
	Helper module and other tools

	Networking in the virtual platform
	Virtual machine configuration

	User's Manual
	Dependencies
	Configuration
	Deployment

	Bibliography

