
U N I V E R S I T Y O F T A R T U

DEPARTMENT OF MATHEMATICS AND INFORMATICS

Institute of Computer Science

Juri Gavšin

Using the Concept of Reversibility to

Develop Safe Behaviours in Robotics

Master’s thesis

Supervisors: Maarja Kruusmaa, Ahto Buldas

TARTU 2007

 2

Table of contents

1 PREFACE... 4

1.1 Objectives ... 4

1.2 Contribution and overview ... 4

2 INTRODUCTION.. 6

2.1 Epigenetic robotics ... 6

2.2 Reversibility as a basis for safe behaviour ... 7

2.3 (Irr)reversibility examples .. 8

2.4 Reversibility as an extension of stability.. 8

3 REVERSIBILITY MODELS... 10

3.1 Introduction ..10

3.2 Definition of reversibility ... 10

3.3 Initial and refined reversibility models... 11

3.3.1 Example of refinement ... 12

3.4 Local and global reversibility of composite actions......................... 13

3.5 (Hemi)metrics and thresholds... 15

3.6 Limits / discussion .. 16

4 EXPERIMENTS... 18

4.1 Introduction ..18

4.2 The Task and Algorithms ... 18

4.2.1 Reinforcement learning algorithm (RL) 19

4.2.2 Reversibility-based algorithm (IRR) .. 20

4.3 Comparability of algorithms... 22

4.4 Software architecture.. 23

4.5 Physical experimental setup ... 24

4.6 Implementation details ... 26

4.6.1 Local reversibility 1D/2D experiments .. 27

4.6.2 Global reversibility experiment .. 29

5 TEST RESULTS .. 32

5.1 Local reversibility 1D/2D test results... 32

5.1.1 IRR vs. RND... 33

5.1.2 IRR vs. REW vs. REW2... 33

 3

5.1.3 IRR vs. RL vs. RL2 .. 34

5.2 Global reversibility test results ... 35

6 CONCLUSIONS AND FURTHER WORK .. 39

SUMMARY.. 41

SISUKOKKUVÕTE...42

REFERENCES ... 43

APPENDIX A: Source code and test data explanations

APPENDIX B: “Don’t Do Things You Can’t Undo: Reversibility Models for

Generating Safe Behaviours” article for ICRA’2007 by Maarja Kruusmaa,

Juri Gavšin and Adam Eppendahl

 4

1 PREFACE

Global trends in robotics research show that robotics is getting more concerned

with applications in real-world environments. Robots are moving from industrial

environments and research laboratories closer to humans. They are moving to the

streets, hospitals, homes, supermarkets and other public places where they closely

interact with humans. In these environments safety and reliability of robots as well as

robustness of their behaviour is getting more important.

This thesis deals with an aspect of this research trend by investigating an idea

of implementing a general law that would increase safety and reliability of robots.

1.1 Objectives

The primary objective of this thesis is to show, analyze and discuss

experimental evidence that following some abstract idea can lead to a concrete and

safe behaviour. The secondary objective is to build a programming framework for

implementing and comparing different learning algorithms using a Khepera-

compatible (or similar) robot and to implement easy-to-extend reversibility-based

algorithm.

1.2 Contribution and overview

This master thesis is concerned with a particular way of generating reliable behaviours

of robots based on abstract ideas. The thesis is arguing about the idea, that the ability

of undoing its actions can be useful for generating reliable behaviours for robots. In

particular, in this thesis we demonstrate that an abstract rule “Don’t do things that you

can’t undo” leads to a concrete safe behaviour – obstacle avoidance, and can also lead

to higher level of behaviours.

However, the algorithms and cases described are simpler than in a real life

scenarios, e.g. during interaction with moving objects (humans, other robots). This

thesis does not intend to present a ready-to-use theory, but to prove a concept and

make some suggestions for further development.

My contribution of this thesis is:

1. validation of the idea of reversibility presented by Kruusmaa and

Eppendahl

2. extension of the idea of reversibility to action sequences

 5

3. definition of the global and local reversibility

4. development of the programming and test environment to validate the

above mentioned ideas and concepts

5. conducting experiments with the developed tools

6. analysis and interpretation of the experimental results

Chapter 2 contains introductory information for this thesis: it shortly describes

the research field – developmental robotics, and introduces the concept of

reversibility.

Chapter 3 contains theoretical part of the thesis, introducing formal definitions

for the notions used further. It also contains a short discussion about weaknesses and

strengths of our approach. The first half of this chapter is based on theory developed

by Maarja Kruusmaa and Adam Eppendahl (see appendix B), simplified in some areas,

but extended and changed in others.

Chapter 4 contains the descriptions of the experiments and algorithms.

Chapter 5 contains test results with a short analysis.

This thesis also contains conclusions, suggestions for further development, as

well as the list of references used in this thesis. The summary is in English and

Estonian languages.

The CD which is provided along with this document contains the source code,

test data, required input files, a copy of this document, as well as some additional

sources. Contents of the CD is described and explained in appendix A.

Appendix B is a copy of the article, written by Maarja Kruusma, Juri Gavšin

and Adam Eppendahl, which is based on the experiments made by the author of this

thesis.

 6

2 INTRODUCTION

2.1 Epigenetic robotics

Epigenetic1 Robotics (a.k.a. Developmental Robotics), is a relatively new

approach in robotics (and artificial intelligence), which combines developmental

psychology, neuroscience and biology with robotics and computer science. The terms

Epigenetic Robotics and Developmental Robotics are essentially equal, with the

difference that the latter one is more concerned with integration of developmental

psychology and robotics (like formalization of theories in developmental psychology,

which are often informal), and the former one has a broader interdisciplinary emphasis.

Epigenetic Robotics studies control systems’ development through interaction

with the environment, which implies that the system is embodied, the environment

situations can be identified and the system is evolving through a prolonged epigenetic

developmental process. It also implies that the machines must go through a learning

process (supervised or unsupervised) as infants do. The research includes practical

goals of:

• enabling robots and other artificial systems to better adapt to their

environments, and to better adapt to changes in these environments

• simplifying the problem of programming robots by programming the robots to

develop skills for any particular environment instead of programming robots

for specific environments

[ER1]

In [ER2], authors do not divide this area into discrete partitions, but distinguish

several main regional trends in a continuous research space:

• Interaction studies – basic social interactions, like low-level imitation, joint

visual/shared attention, early language development, etc.

• Sensorimotor Development – basic sensor-motor joint work coordination, like

gaze fixation, hand-eye coordination, navigation, etc.

1 Epigenesis – a biological „theory holding that development is a gradual process of increasing

complexity. (This contrasts with preformationism, which holds that the organism is already present in

the gamete(s), merely growing and unfolding during development.) For example, organs are formed de

novo in the embryo rather than increasing in size from pre-existing structures.” [BC1]

 7

• Active Vision – real-time, continuously operating vision systems able to adjust

their visual parameters to aid task-oriented behaviour

• Motivation – internal motivational value/reward systems for self-motivation,

stability/exploration/exploitation balancing, etc.

• Emergence of the self – high level cognitive abilities associated with robot

self-discovery, like self-identification, distinction between “I” and “You”, etc.

• Dynamics of development – study of the steps in the emergence of perception

throughout the learning process.

This thesis addresses the problem of motivation and regulation of sensorimotor

interaction, associated with two of the above trends - Sensorimotor Development and

Motivation .

2.2 Reversibility as a basis for safe behaviour

In [ER3], a number of basic visual behaviours (tracking of the moving light,

exploration for other light sources) are seen to emerge from abstract motivational

principles – stability, predictability and familiarity. The general idea is to identify

principles that can be expressed without reference to the ground meaning of sensor-

motor values, with the expectation that code based on such principles will function

reliably in a broad range of environments and on different robots or on different parts

of the same robot.

In [ER4] it is proposed that the principle “don’t do what you can’t undo” is one

of those basic abstract principles that can be used to guide the robot’s behaviour.

Authors also proposed that obstacle avoidance is a natural consequence of that

principle and conducted a 1-dimensional test (the robot moved back and forth between

two objects) to back up their hypothesis.

The suggestion is that reversibility, being a necessary condition of

controllability, is a fundamental concept when programming robots to behave safely

and reliably. The most undesirable actions in the real world (for example, those that

damage the robot or the environment) are characterized by irreversibility. Thus,

instead of teaching the robot specific routines such as avoiding collisions, avoiding

falls, etc., it is better to teach the robot a more general principle of avoiding

irreversible actions.

 8

2.3 (Irr)reversibility examples

For example, falling down the stairs is not good because the robot does not

know how to climb back. Closing the door is not good because it does not have

knowledge of how to open it.

Though, reversibility of the action should not be considered a binary

reversible/irreversible choice, but a continuous value, since some of the actions are

reversible very easily without any significant effort, but some of them take a lifetime

to reverse them. For example, if the stone floor is soiled by spilled coffee then this

action is usually easy to reverse by using a wet cloth, but a carpet soiled in similar way

is much more difficult to clean back, sometimes impossible, and if the carpet is

burned, then this action is most definitely irreversible. By considering this, one could,

at least theoretically, calculate what is the cost of spilling coffee and how desirable this

action is.

2.4 Reversibility as an extension of stability

The above examples demonstrate that one of the main consequences of

reversibility is stability. It can be even argued that they are equal, but, actually, they

are different. Since stability is mostly an objective notion, it does mean, that relevant

values must be stable, i.e. to stay within some allowed limits. Reversibility doesn’t

have that limitation and it can be defined so, that the “goodness” of values does not

decrease, and, since “goodness” is always a subjective notion, the reversibility itself

can be subjective.

Reversibility can be informally defined as a “similarity” of the state before the

action and the state after making the action and its counteractions. Thus, if the action

has a known counteraction, and the agent (person, robot, etc) knows (from his own or

somebody else’s experience) that this action and the counteraction in this situation will

put the things back the way they were (or acceptably close to that), the action is safe.

One of the problems is that most of the situations are not exactly the same as

experienced ones for a robot, especially autonomously developing one. If the state can

somehow be identified as non-novel (the best synonym, in my opinion, is “familiar”),

i.e. if the state in question is acceptably similar to some of the experienced states with

known feedback for the action in question, then information for those states can be

somehow interpolated to predict the outcome.

 9

It can also be argued, that not all actions have exact counteractions and if

someone is doing something, he/she usually wants to make things better. For example,

if the mobile phone does not work properly and this can be fixed by soldering one wire

back, the phone after fixing will not be the same, but, definitely better. These cases can

be dealt with in the same way, as the ones, where all the actions have exact

counteractions, by slightly modifying the definition of reversibility.

For example, if the latter state differs from the original one only positively (in the last

example: the phone was virtually the same, but one thing fixed, i.e. better), then the

states can be considered similar (reversible) enough. This addition makes it unclear

how to decide what is good and what is bad; when solving a specific problem such

modified definition is certainly context dependent.

 10

3 REVERSIBILITY MODELS

3.1 Introduction

A reversibility model tells the robot which actions are reversible and how to

reverse them if they are.

In a fixed, known, exact, deterministic world, modelled by a graph G of states

as nodes and actions as links, an action from state s to state s′ is reversible if there is

a path back from s′ to s . Finding reversibilities in G is equivalent to finding loops in

G , a standard problem in graph theory. This is all very well for playing games like

Sokoban, but real robots face a non-deterministic, inexact, partially known and

changing world.

Therefore, we model non-determinism using labelled transition systems, we

allow inexactness with (hemi)metrics on the space of states, and we define a

reversibility model pragmatically to be a set of expected reversibilities that may grow

or shrink as the robot gains experience.

In this thesis we consider one such change in robot’s world, addition of sensors

to the definition of the world’s state, and introduce a notion of refinement that captures

the relationship between the robot’s world before and after the change. In the learning

experiments we describe, a reversibility model for an unrefined world is adapted to a

refined world (with side-effects of producing obstacle avoidance and a “stay in a safe

area” behaviour).

3.2 Definition of reversibility

Def: A robot’s world is a labelled transition system2 ()→Λ,,S , where S is a

set of experienced environment states, Λ is a set of labels (a label represents an action

or a sequence of actions), and → is a set of labelled transitions between states.

2 A labelled transition system is a tuple ()→Λ,,S where S is a set (of states), Λ is a set (of

labels) and SS ×Λ×→⊆ is a ternary relation (of labelled transitions.) If Sgp ∈, and Λ∈α ,

then ()∈→qp ,,α is written as: qp →α . This represents the fact that there is a transition from

state p to state q with label α α. Labels can represent different things depending on the language of

interest… [WI1]

 11

Def: Let action be an atomic action or a composite action (sequence of atomic

actions).

When the result of an action a in state s is not wholly determined by the

robot, multiple transitions from s are labelled with the same action a and it is the

world that determines which transition actually happens.

Def: Action 1a is a counter-action of action 0a (denoted 01 aa −=), if 1a is

expected to undo the action 0a , i.e. the sequence 10aa is expected to end in the same

state where it started (or acceptably close to it).

Def: A reversibility for a world W is a pentuple of three experienced states and

two actions that initiated transitions between them ()21100 ,,,, sasas , so that 01 aa −= ,

i.e. the composite action 10aa produced a transition from 0s to 2s through 1s in W

and, in such transition, state 2s is expected to be acceptably close to 0s for any states

x and y with () origorig sxd ε≤0, and () destdest syd ε≤1, , where origd , destd are metrics3

on states and origε , destε are their thresholds.

Def: The reversibility ()21100 ,,,, sasas holds in W if () revrev ssd ε≤20, , where

revd is a hemimetric4 on states and revε is a threshold; and fails otherwise.

Generally speaking, () revrev ssd ε≤20, means that the distance from the initial

state of the reversibility sequence to the final state is “acceptably close”.

3.3 Initial and refined reversibility models

Def: A reversibility model for a world W is a set of reversibilities that are

expected to hold in W .

In practice, a reversibility model could be given in advance, communicated to

the robot, learned empirically, deduced from knowledge about the world, or obtained

3 A metric space ()dS, is a set S together with a function ℜ→× SSd : (a metric) which

satisfies three following conditions:

1. () yxyxdSyx =⇔=∈∀ 0,:,

2. () ()xydyxdSyx ,,:, =∈∀

3. () () ()zydyxdzxdSzyx ,,,:,, +≤∈∀
4 A hemimetric space ()dS, is a set S together with a function ℜ→× SSd : (a

hemimetric) which satisfies two following conditions:

1. () 0,: =∈∀ xxdSx

2. () () ()zydyxdzxdSzyx ,,,:,, +≤∈∀

 12

in some other way. In the experiments described in the thesis, the robot is given a

model for world where all actions in all states are reversible and uses this to learn a

model for a refined world.

Def: A refinement (of states) from a world W to a world W ′ is a surjective

function p from the states of W ′ to the states of W .

In other words, every state in W is the image of one or more states in W ′ ,

which “refine” the state in W .

Def: For any reversibility model R for a world W and for any refinement from

W to W ′ , with state function p , there is an initial refined set of reversibilities R′ in

W ′ defined as () (){ }RspaspaspsasasR ∈=′)(,),(,),(:,,,, 2110021100

To obtain a reversibility model for the new world W ′ we may form R′ and

then remove reversibilities that fail in the refined world. An important aspect of this

procedure is that “it gives the robot something to do”, though, making its judgements

too optimistic: the original model R provides a list of actions together with the

circumstances in which they should be tried.

A refined reversibility model in a refined world should be used in conjunction

with new (hemi)metrics and thresholds, since old ones are, generally, void or trivial in

the new world.

3.3.1 Example of refinement

The kind of refinement we have in mind is produced by extending a robot’s

sensor vector. Suppose we have a trivial world with an empty sensor vector and the

single state S ′ and actions (labels) given by pairs of integer wheel displacement

commands ()RL mm , . This world is deterministic, all actions are reversible and a good

non-trivial reversibility model R can be given by taking ()RL mma −−= ,1 when

()RL mma ,0 = .

Now suppose we include one proximity value (say, the front sensor) in the state

vector ()Fd . Assuming the new sensor does not affect the robot’s environment, we

obtain a refinement of the original world. The state function p is the projection

()() () Sdp F ′== .

When the simple model R described above is refined according to this new

world, some of the refined reversibilities hold and some do not. In our experiments, the

robot tests these refined reversibilities to discover which hold and which fail.

 13

The interesting point here is that the ones that fail generally correspond to

collisions of some sort. Consider the following four cases (in which wheel commands’

values and proximity values are given, without loss of generality, in comparable units

– moving n wheel command units forward decreases the distance to the wall by n

proximity sensor units).

(1) The robot does not touch anything, we obtain the successful reversibility:

() () ()()1510),- A(-10,,510), A(10,,15 SSS ,

where the robot approaches and retreats from an object without touching it.

(2) The robot touches an object and the object slides, we obtain a failed reversibility:

() () ()()1010),- A(-10,,010), A(10,,8 SSS ,

where the robot runs into an object, pushing it 2 units forward, then retreats, and then

finds that its proximity sensor now reads 10 instead of the original 8.

(3) The robot touches an object and its wheels slide: from the robots point of view, this

is identical to case 2.

(4) The robot touches an object and jams, if motor commands time-out and report

success, adjusting the wheel encoder counts as necessary, then this case is again

similar to case 2 (and may be thought of as a kind of internal sliding) – we obtain a

failed reversibility:

() () ()()010),- A(-10,,010), A(10,,8 SSS .

Not only does the robot discover that it is ”bad” to push things — without ever

knowing what pushing is — but the refined state allows the robot to distinguish those

cases in which ‘bad things happen’ from those in which they do not (by using the

additional sensor(s) to distinguish different states in a refined world).

Once the robot learns a valid reversibility model, it may use the model to

censor its actions. Note that it is our method of creating a ”pushing is bad” model out

of initially refined R′ (by pruning it).

3.4 Local and global reversibility of composite actions

It is sometimes beneficial to explicitly be aware that an action is a sequence of

some more detailed actions. For example, action “make 100 steps ahead” consists of

100 single-step actions and each single-step action actually consists of several even

smaller actions like “strain muscle x ”, “relax muscle y ”, etc.

 14

Actually, the same definitions of reversibility can be used, by assuming that

each action is a sequence of sub-actions – ()naaaaa ,02,01,00,00 ,...,,,= and every ia ,0 has

a reverse-action), and discarding any knowledge about intermediate states while

considering the reversibility of the action ()0a as a whole.

Def: A trivial reverse-action of a composite action ()naaaaa ,02,01,00,00 ,...,,,= is

another composite action 1a , consisting of 0a sub-actions’ reverse-actions in an

inverse order, i.e. ()naaaaa ,12,11,10,11 ,...,,,= , where ini aa −−= ,0,1 . This is also denoted

by 01 aa −= .

A reversibility of a single non-composite action or the composite action in a

context where the composition does not matter, is called local, a reversibility of an

explicitly composite action is called global. The notions of local and global

reversibility are relative and are heavily dependent on the context, in which they are

considered, i.e. globally reversible composite actions can be a part of more complex

actions, where their own complexity is not important and their reversibility in such

context is considered local.

Def: A composite action ()naaaaa ,02,01,00,00 ,...,,,= from state s is back-path

globally reversible if reversibility ()2110 ,,,, sasas holds and 01 aa −= .

In other words, it is a special case of local reversibility, where actions are

explicitly composite and action 1a is a trivial counter-action of 0a , but any

information about intermediate states is discarded. Generally, for a local reversibility

to hold 1a is not required to be a trivial counter-action of 0a .

This definition allows to construct global reversibilities for action sequences of

any complexity and of finite length. The notion of back-path global reversibility also

relies on the fact that the sub-actions by themselves can be reversed.

Def: A composite action ()naaaaa ,02,01,00,00 ,...,,,= from state s is recursively

reversible, if 0=n or the reversibility ()10,1,01 ,,,, +− nnnn sasas holds and the composite

action ()1,02,01,00,00 ,...,,, −= naaaaa from the same state (or a state acceptably close to it)

is also recursively reversible, where 1−ns is the state after making action

()
1210 0000 ,...,,,
−n

aaaa from s .

 15

The composite action ()0,00 aa = with length 1 is recursively reversible if the

single action 0,0a is reversible, since the length of the remaining action sequence is

zero and, therefore, is recursively reversible by definition.

3.5 (Hemi)metrics and thresholds

Since metrics origd , destd and hemimetric revd on states and their thresholds

(origε , destε , revε) are important to understand reversibility definitions, an explanation

can be useful. Let us consider a reversibility ()zayax ,,,, − .

Metric ()0,sxdorig calculates how far is initial state x from initial state 0s of

some already experienced reversibility ()210 ,,,, sasas − , i.e. how novel is the state x; if

the distance between states x and 0s is greater than origε , then selected reversibility

cannot be used to predict how reversible is the action a from state x .

Metric ()1,syddest calculates how far is intermediate state y from intermediate

state 1s of some already experienced reversibility ()210 ,,,, sasas − where

() origorig sxd ε≤0, ; if the distance between states y and 1s is greater than destε , then

selected reversibility cannot be used to predict how reversible is the action a from

state x .

Hemimetric ()zxdrev , calculates whether the reversibility holds, i.e. how

reversible is the action a from the state x by action a− ; if () revrev zxd ε≤, then

reversibility holds, and fails otherwise. The reason to use hemimetric instead of a

metric is to allow non-stable, but safe state transitions.

The implementation can calculate novelty/reversibility discretely as yes/no or

continuously as, for example, interval [–1, 1] using the thresholds involved to calculate

how far the value is from 0.

Thresholds can be adjusted according to the implementation: increased or

decreased, or set to 0 or infinity.

If the value ()()ssdorig
Wss

orig ′≥
∈′

,max
,

ε (for example, infinity), then it essentially

means that none of the states are novel, if at least one suitable reversibility (i.e.

forward action of that reversibility and the action in question are the same) has been

 16

experienced before. If 0=origε , then it means that the state is not novel only if that

particular state has already been experienced.

If the value ()()ssddest
Wss

dest ′≥
∈′

,max
,

ε (for example, infinity), then familiarity of

the intermediate state plays no role in familiarity of the whole reversibility and only

the familiarity of the initial state matters. There is usually no point in making distε too

small, if the number of states is large, since this will heavily reduce the number of

suitable states available for comparison; but, if the number of states is small, then it

might be useful.

If the value ()()ssdrev
Wss

rev ′≥
∈′

,max
,

ε (for example, infinity), then all reversibilities

hold. If 0=revε then it doesn’t yet mean that the action a is reversible from state x if

and only if action-counteraction sequence ends in the same state, i.e. zx = ;

hemimetric definition allows two non-equal states to have zero distance and it is not

symmetric. Informally speaking, if state s′ is “better” than s then ()ssdrev ′, may be 0,

but it does not imply that ()ssdrev ,′ is also 0, i.e. it is safe to go from the worse state to

the better, but not vice versa.

Extreme origε and revε values are often quite meaningless because of their

triviality, thus, in general, some intermediate values are strongly recommended.

3.6 Limits / discussion

The generality of the concept of reversibility is the source of both the strength

and the weakness of our approach. Although, it is not completely general, it allows a

wide range of implementations to use the notion of reversibility without modifying the

theory. For example, since the definitions are based on (hemi)metrics, both discrete

and continuous spaces can be used. Raw sensor data and internal non-physical

“sensors” are usable as inputs for interstate distance computations.

At the same moment, our approach definitely should not be considered as some

sort of a panacea. As any other algorithm/concept it has its own limitations and there

definitely is a long way ahead to develop the theory and implementations further.

 The disadvantage is that the quality of the algorithm strongly depends on the

implementation, especially on the choice of right (hemi)metrics (origd , destd , revd) and

thresholds (origε , destε , revε). The problem is, as with most algorithms implemented on

 17

real robots, noise and dynamic nature of real-life data. Thus, the (hemi)metrics must

somehow deal with the dynamics of the environment and the choice of threshold

values must also take noise into account.

Linearity of the sensors’ data is also important. If it is very non-linear then the

same physical distance between states would result in considerably different internal

distance depending on the sensors’ values, thus, making it almost impossible to choose

the right general thresholds.

There is also a major problem in our approach to distinguish between

successfully reversed actions and the sequence of actions, where both the action and

the counteraction do not succeed. Since in the latter case the state is, generally, stable

and the sequence ends in the same state after it started, the action is considered

reversible. This can, actually be fixed by introducing another (hemi)metric to measure

a distance between the start and the end points of actions, for example, ()ssdmove ′, with

a threshold moveε .

A new notion of reversibility holding “strongly” can be introduced so that:

reversibility ()21100 ,,,, sasas holds strongly if it holds and () movemove ssd ε>10, or

() movemove ssd ε>21, . If, for example, revmove dd = and revmove εε = then this would

efficiently solve the problem of distinguishing jamming from successful reversible

actions.

 18

4 EXPERIMENTS

4.1 Introduction

The main purpose of the thesis is to collect and analyze experimental data to

back up the suggestion that abstract principles, specifically “Don’t Do Things You

Can’t Undo”, can generate concrete and safe behaviours. It implies that the algorithm,

based on such abstract principle must perform comparably to other well-known

algorithms in some non-trivial task. To have the results that can be trusted, the

comparison must be as fair as possible, which makes it harder to choose the task to be

used in comparison and the algorithm (or algorithms) to compare with.

4.2 The Task and Algorithms

After considering different tasks, the task of obstacle avoidance was chosen.

This task is simple enough to understand and to describe. At the same time, it is a very

natural and safe feature of an autonomous object (robot) to avoid obstacles. Though,

even this simple task can be understood differently. I will describe in detail my version

of this task to compare different algorithms as “fairly” as possible.

The task details are simple: the robot makes pseudo-random (using C/C++

random() function) moves in non-dynamic real-life environment and the algorithms

predict if the action will succeed or not. Robot software receives some input from the

environment (through sensors) and can make some actions (through motors

commands). The randomness is used to automatically generate test runs. No algorithm

affects the robot behaviour (thus, none of them is preferred), which makes it possible

to seamlessly simulate the same test runs with new versions of the algorithms. In this

task algorithms can be easily compared by the percentage of correctly predicted action

successes.

The very obvious algorithm for comparison is the random prediction that

returns the possibility of success of the action based only on some internal pseudo-

random value. Because of its simplicity, this algorithm can be considered a feasibility

check, i.e. if the efficiency of some algorithm (with real return values) is below

“random”, there is no point to use it and it is a good reason to redesign the algorithm or

try another one.

 19

After choosing a feasibility check algorithm, the “reference” algorithm must

also be chosen, but this is much more difficult to do. The problem is that it should

perform well in real-life environment and it would be convenient if it is also simple

enough to be easily understood.

Also, for the comparison to be “fair”, this “reference” algorithm must be of

self-learning/trial-and-error type, i.e. it should learn using previously obtained

experience without supervision. A very simple reinforcement learning algorithm,

described further, is chosen as such an algorithm.

4.2.1 Reinforcement learning algorithm (RL)

The reader can find a very good and through introduction to reinforcement

learning in general in [RL1].

Shortly, reinforcement learning is concerned with problems in which

autonomous agent searches for the best strategy to act in the surrounding environment

by trial–and–error process. The only feedback for the agent is a numeric “reward” for

every transition from one state to another and the primary objective of agent’s mission

is to maximise the long-term reward.

Reinforcement learning algorithms attempt to generate an optimal policy that

consists of the best action choice for each state to give the highest sum of rewards in

the future. The most popular approach to create such policies is a “value function”

approach, by which only a set of estimates of expected returns for the policy is

maintained and the policy is modified by actual returns. This approach contrasts with

“direct approach”, that suggests sampling returns for each possible policy by following

it, and then selecting the one with the largest expected return).

Value function approach has two variations: state value function ()sV and

state-action pair value function ()asQ , ; the former one estimates the expected return

starting from state s and following the policy thereafter, and the latter - expected

return when taking action a in state s and following the policy thereafter.

My simple algorithm, denoted further as “RL” is a “state-action pair value

function” type, though it is different from classical RL algorithms. First, the algorithm

does not have a terminal state, so collision avoidance is considered to be a continuous

task of getting as much cumulative non-negative reward as possible. Second, it is

concerned only with immediate rewards without considering in what order the states

and actions are sequenced. It is made this way because of the fact that policies are

 20

observers and predictors in the experiments none of them is allowed to influence the

flow of the experiment.

The algorithm itself is the following:

RL algorithm

Initially Q(S,A)=0 for every state-action pair.

0<α≤1 is the constant learning rate value.

1. Get the current state Si and the intended action Ai.

2. If the current value of the action value function Q(Si,Ai)>0,

predict no collision. If Q(Si,Ai)=0 then make a random

prediction (or predict nothing). Predict a collision

otherwise.

3. After executing Ai get the reward signal r for that action.

4. Update the action value function: Q(Si,Ai) ← α*r + Q(Si,Ai).

5. Go to step 1.

The states in this algorithm are discrete – the sensor space is divided to regions

of the same size. The reward signal for an action is defined by checking if the motor

command was successfully implemented, i.e. if wheel counters’ values are acceptably

close to the projected ones:

()
()



+

+++
=

collision a is thereif ,100

collision no is thereif ,100

RL

RLRL

ee

eeww
r ,

where Lw and Rw are modules of accordingly left and right wheel commands in the

action and Le and Re are modules of positioning errors of accordingly left and right

wheel movements. Thus, a successful action is rewarded more if it moves the robot for

greater distance and an unsuccessful action is penalized depending on the size of the

error.

4.2.2 Reversibility-based algorithm (IRR)

Reversibility-based algorithm, denoted further as IRR is also quite simple.

Acronym IRR stands for IRReversibility, since it is more correct to say, that it is based

on irreversibility – prediction are based on how irreversible the similar experienced

actions were.

The algorithm itself is the following:

 21

IRR algorithm

A set of experienced reversibilities is always available.

Initially the set is empty, used (hemi)metrics are defined and

used thresholds are set.

1. Get the current state Si and the intended action Ai.

2. Search through experienced reversibilities to find

reversibilities where forward action is the same (a0=Ai) and

dorig(Si,s0)≤εorig, where s0 is an initial state of an

experienced reversibility and a0 is its forward action.

Predict the outcome basing on the reversibilities found

(several methods can be used, see further text for details).

3. Wait for the action to finish. Get the current state Si+1

after making action Ai and a new intended value Ai+1. If Ai+1

is not a reverse-action for Ai then go to step 1.

4. Execute step 2 with Ai+1 and Si+1 instead of Ai and Si.

5. Wait for the action to finish. Calculate drev(Si,Si+2) and add

obtained reversibility to the set of experienced ones.

6. Go to step 1.

Steps 2 and 4 are doing the same thing – predicting the outcome of the next

action, the only difference is that step 3 does it for a forward action and step 5 – for a

reverse-action; this is done by analyzing the reversibilities found. The general way is

to compute some value predictionv , representing basic joint revd return value of the

reversibilities found. This value can be used to predict the outcome: no collision if

origpredictionv ε≤ , a collision otherwise. If there are no reversibilities found, then a

random prediction can be made, or no prediction at all.

predictionv value for a set of reversibilities found can be calculated in many ways.

For example, a method might select reversibilities from available ones:

• the one(s), having the shortest drev distance

• the ones, having distance drev less than some predefined value

• up to some predefined number of them

• the ones, forming the largest identifiable cluster

and return

 22

• some percentile value (for example, 0 – minimal value, 100 – maximal value)

• the mean value

• the median value

of the set of selected values.

There are many permutations and combinations of them and new ways of

limiting the set and calculating predictionv , but the general algorithm remains the same.

One of the algorithms also considered is a hybrid of IRR an RL algorithm

denoted further as REW. It uses RL logic (i.e. reward signal) for its predictions, but

IRR logic for getting the prediction value, i.e. it is RL with a continuous state space:

REW algorithm

A set of experienced state-action-reward triplets is always

available. Initially the set is empty, used (hemi)metrics are

defined and used thresholds are set.

1. Get the current state Si and the intended action Ai.

2. Search through experienced state-action-reward triplets to

find the ones where the action is the same and

dorig(Si,s0)≤εorig, where s0 is an initial state of the triplet.

Predict the outcome basing on the triplets found (several

methods can be used, similar to the IRR algorithm, but using

reward instead of irreversibility).

3. Wait for the action to finish. Add obtained triplet to the

set of experienced ones.

4. Go to step 1.

4.3 Comparability of algorithms

As one might have noticed already, IRR, REW and RL algorithms are not very

different and can be safely compared to each other and to REW algorithm.

Actually, RL and IRR are quite similar, the main difference is that the former

one is based on an artificial reinforcement signal and the latter one is based on the

action reversibility. To be more specific, the reversibility-based algorithm can be

considered as RL algorithm with reversibility as a reward signal.

 23

It also means that they can be easily compared, since the comparison will not

be between different algorithms, but between two types of reinforcement signal –

external (artificially generated by the environment, based on how close real wheels’

counter values are to the desired ones after executing an action) and internal (generated

by algorithm itself, based on action reversibility in situations similar enough without

any prior knowledge about sensors or motors). The REW algorithm is considered to

indicate where the state distinction is more important than the feedback and vice-versa.

The comparison also implies that the wheel slippage is not an issue in the

experiment, because in such case the reinforcement signal for RL an REW will give a

false positive reward for physically incomplete actions. I would also like to draw

attention to the fact that wheel slippage is not a problem for IRR. Though, wheel

jamming for both forward and reverse actions will be registered as almost perfectly

reversible action by reversibility-based algorithm, but will be processed absolutely

correctly by external reward-based RL and REW algorithms.

4.4 Software architecture

One of the secondary objectives of this thesis is to create a framework to allow

a simple comparison of different algorithms for the task and to implement the

reversibility-based algorithm so that it would be easy to extend. The architecture of the

program is as simple as possible and extendable; it is shown in figure 1.

Figure 1: Interconnections between the different modules of the program.

The central building block is a “Switch”, through which all other modules

communicate with each other. The “Switch” itself doesn’t initiate any actions; it works

as a hub able to record and multiplex messages from one module to another. The

“Actor” decides which action to perform next and can request sensor data from

“Switch”. The commands of action execution and sensor data retrieval are actually

Actor

Switch

Environment

Policy 1
Policy 2

Policy 3

 24

routed to “Environment” module, where they are processed and communicated from/to

the physical robot.

Policy modules are proxies to represent different algorithms. Each of them

receives a complete communication between “Actor” and “Environment” modules,

which allows them to analyze the data and predict whether the proposed action will

succeed and even advise which action to make.

4.5 Physical experimental setup

All our real-world experiments are conducted with a small standard robot

“Khepera II” that has 8 infrared sensors and two wheels independently driven by a

step-motor. It is connected to the computer through a serial interface and power cables,

i.e. sensor readings and motor commands are communicated directly from/to the

computer. During the experiments the robot is placed into a standard carton box with

all the walls of the same texture and colour. A partition of the same material (and

length of shortest box wall) was also used to make the available working area smaller,

if needed.

Figure 2 presents two views of the Khepera robot. The physical experimental

setup can be seen in figure 3: it is one box in another, the purpose of having the outer

box is to protect robot sensors from light interference and thus reduce sensor noise and

uncertainty.

In figure 4 photos A, B and C show different configurations for setting up the

available working area for local reversibility 1D/2D experiments. Photo D in figure 4

explains box setup for the global reversibility experiment; the robot is at “HOME”,

determined by a small construction that permits precise positioning.

In figure 5 photos A and B show the solution to the problem of overheating

power elements of power/control adapter for Khepera robot. It was the reason of

constant robot reboots with a wrong feedback as a consequence. Though, the problem

of robot reboots was not finally solved, and it still rebooted approximately once in

100-2000 steps, depending on how many obstacles it ran into.

 25

A B
Figure 2: Khepera robot

A B
Figure 3: Experimental setup

A B C D
Figure 4: Box with different available working areas

A B
Figure 5: Adapter with extra cooling

 26

4.6 Implementation details

The program operates with a list of discrete actions, which are pairs of robot

wheel movements in a form of ()movementwheelrightmovementwheelleft __,__

They can be easily replaced with sequences of actions, because algorithms don’t really

care how complex the action is and operate with indices of available actions. The

actions used are:

()300,3001 =a – long step forward,

()100,1002 =a – short step forward,

()100,1003 −−=a – short step backward,

()300,3004 −−=a – long step backward,

()200,2005 =a – medium step forward,

()200,2006 −=a – rotate counter clockwise,

()200,2007 −=a – rotate clockwise, and

()200,2008 −=a – medium step backward.

The numbers are internal robot wheel counter units of length ~0.08mm. Positive

numbers mean wheel rotation that moves the robot forward.

Sensor input data for algorithms is also reduced: the maximum number of

logical sensors is 4 to make the learning processes faster. Two parallel front sensors

and two parallel rear sensors form two logical sensors and left/right sensors form

another two logical sensors, one for each side. Two sensors next to the front sensors on

both sides are left unused, since front and side sensors are already used and it would

just increase the number of input channels without adding significant value to the

experiments.

The experiments can be divided into two separate groups: local 1D/2D

experiments – to compare the reversibility-based algorithms with others, and a global

reversibility-based experiment without a comparison. The purpose of the latter

experiment is to show that the higher level of behaviours can emerge basing on the

same principle, though there is no comparison made, since global reversibility

experiments are more difficult to benchmark: there is no “standard” and it is hard to

invent a straightforward one.

 27

4.6.1 Local reversibility 1D/2D experiments

In 1D experiments only front and back sensors are used and the only actions

available are moving forward and backward, i.e. { },,,, 43211 aaaaA D = . The 2D

experiments use all available sensors and another set of actions: { },,,, 87652 aaaaA D = .

It can clearly be seen that ()41,aa , ()32,aa , ()85,aa , ()76,aa are pairs of actions that are

expected to reverse each other.

In the beginning of an experiment, the robot is provided with initial worlds DW1

and DW2 with reversibility models DR1 and DR2 accordingly (i.e. sets of reversibilities

that hold initially). In these initial worlds there is a single state S′ , thus:

() () () (){ }SaSaSSaSaSSaSaSSaSaSR D ′′′′′′′′′′′′= ,,,,,,,,,,,,,,,,,,, 233214411

() () () (){ }SaSaSSaSaSSaSaSSaSaSR D ′′′′′′′′′′′′= ,,,,,,,,,,,,,,,,,,, 677658852

In these initial worlds W (hemi) metrics and thresholds do not matter, since

there is only one state and distance calculated by any (hemi)metric is 0. This initial

world can be imagined as an environment where robot does not have any feedback

from the environment – no sensors are used.

In these experiments, refined worlds ′DW1 and ′
DW2 with refined reversibility

models accordingly ′
DR1 and ′

DR2 are constructed. In these worlds the state vector is

extended with 4 proximity sensor values:

()RLBF ddddS ,,, ,

where Fd is a front sensor, Bd – rear sensor, Ld – left sensor and Rd – right sensor.

1D metrics calculations did not involve those side sensors, since they were not

important. A refinement state-function p is a projection returning the single state of the

initial world:

()() SddddSp RLBF ′=,,, .

Thus, since () SSpWS ′=′∈∀ : , new initial reversibility models are:

() () () (){ }2213023120211402411012101 ,,,,,,,,,,,,,,,,,,,:,, SaSaSSaSaSSaSaSSaSaSWSSSR DD
′∈∀=′

() () () (){ }2617027160251802815022102 ,,,,,,,,,,,,,,,,,,,:,, SaSaSSaSaSSaSaSSaSaSWSSSR DD
′∈∀=′

 During the experiments, failed reversibilities are marked as invalid ones to

prevent the robot to make similar actions that can also be irreversible.

 28

In the new world new metrics and constants should also be defined. In all the

tests conducted ∞=destε , which makes the choice of destd irrelevant, in other words,

intermediate state in reversibility tests is totally discarded. Different origd and revd

(hemi)metrics, mostly Manhattan and Euclidean distances, with different constants

revε and origε are considered during the experiments, though graphs only for Euclidean

distance with constant thresholds are presented in the test results section of this thesis.

The algorithm for the “Actor” module in these experiments is fairly simple:

“Actor” module algorithm

1. Identify current state iS .

2. Select a random iA action from available ones.

3. Query algorithms, if the action iA form state iS should

succeed.

4. Execute the action iA , compare the answers to the real

result.

5. Identify current state (1+iS).

6. Select action 1+iA , a reverse-action for iA . Repeat steps

3 and 4 with 1+iS and 1+iA instead of iS and iA .

7. Identify current state (S2).

8. Select a random action from available ones and execute it

9. Go to the step 1.

Step 8 is needed for the robot to explore the area around, because without this

step and without any obstacles in a one-step distance the robot would move in the

same very small area for a very long time without any exploration. The pattern of robot

movement is clearly suitable for IRR, since it includes an action and a counter-action

in each cycle.

The diagrams in figure 6 are intended to explain how it physically looks like.

Dark grey circle with black borders is the robot, which has actually a form of a circle,

if viewed from the top, thick black lines are box walls. Dotted lines in the right

diagram show possible positions of the additional wall to limit the area (area to the

right of that additional wall was accessible to the robot).

 29

Figure 6: Robot moves in 1D/2D experiments and possible 2D area setups

It was necessary to feed the algorithms with a data set, where there are a lot of

failed actions, since the area of the full box was large enough for the robot to make

hundreds of steps without touching any walls.

The longest 2D test run made was using the setup with dashed additional

border, with a form of a triangle. The problem was that if there were too many

successful/unsuccessful actions, then it was hard to tell, if the algorithm worked fine,

or it was just too optimistic/pessimistic. This small triangular area allowed varying

actions’ success rate in a wide range to show that the results are not too correlated to

the success rate.

All compared algorithms, except for RND (random algorithm), are

implemented by the same class by using different (hemi)metrics implementations and

joint (prediction) value calculator implementations. This is done on purpose to

minimize possible differences between them and to make the comparison as straight as

possible.

4.6.2 Global reversibility experiment

The purpose of this experiment is to study the global reversibility. Ideally, if all

the last steps of the sequences, starting from a single action sequence, are reversible,

then all those sequences should also be reversible but in practice, imprecise mechanics

of a robot or environmental conditions can change that.

For example, if a robot has 5% localization error at each step and the thresholds

are high enough to accept such errors for a sequence (action, counter-action) to be

marked as reversible, then a ten-action sequence can finish with an error of 100% of

the step length, which is quite a big error to consider. The reason for such error is,

actually, irrelevant, since it can be mechanical malfunction or some environmental

influence, like uneven or incline ground/floor. What is relevant is the ability of a robot

to find a safe area for itself, where it can move confidently. Thus, this experiment was

a1

a2

a3

a6

a4

a5

a7

a8

1D actions Possible 2D area limitations 2D actions

 30

made to back up the suggestion that this safe area can be partly identified by a robot

itself, if it travels only along the paths with global reversibility under control, i.e. if the

distance between the start and end states of those sequences is less than some

predefined constant using some predefined metric.

For the experiment to be of a reasonable duration, all sequences start from the

same point called “HOME”. It is set in one of the box’s corners (figure 4 D), where the

robot is placed by hand with ~1-2mm precision at the beginning of each sequence run.

The same set of actions as in 2D local reversibility experiments is used and states are

uniquely identified by a sequence of actions that were made from “HOME” state to

that particular state. Sensor data is used only to calculate local reversibility for the last

step of a sequence and local reversibility of the whole sequence, but not for the

identification of states.

The algorithm tested in this experiment is fairly simple and intuitively

deductible from the definition of globally recursive reversibility (see diagram in figure

7).

 31

Figure 7: Algorithm of global reversibility experiment

Initial state

Close enough
to “HOME”?

NO

Explore?

YES

NO

Choose one action from the list
of such available actions

Choose one
action from the
list of available
safe actions and
execute it

Execute selected action and its
counter-action. Calculate
selected action reversibility.

() revrev SSd ε≤20,

current state has
any safe actions?

YES

Current state has
any untried

actions?

Generate a list of
untried actions

Generate a list
of safe actions

Generate a list of
unsafe actions

Current state has
any untried

actions? YES

YES YES
NO

NO

The action from
that state is
marked as safe

YES

If the action is bad for the
first time, then it stays
untried , but the second
time it is marked as bad

NO

Go “HOME” using current
state’s path counteractions in

backward order

NO

In the end, there are two states and a composite action with its counteraction available.
The local reversibility of the whole sequence is calculated and remembered.

Remember initial
“HOME” sensor

readings.

 32

5 TEST RESULTS

5.1 Local reversibility 1D/2D test results

Charts below represent the success rate of prediction for the algorithms during

every 100 actions. There are 6 different algorithms in those charts, identified by

following acronyms:

• “RL” – simple reinforcement learning algorithm

• “IRR” – reversibility based algorithm

• “REW” – a modification of “IRR”, that uses reward signal instead of

reversibility for prediction

• “RND” – random prediction algorithm

• “RL2” – a modification of RL, that receives the same feedback as IRR

• “REW2” – a modification of REW, that receives the same feedback as RL

Algorithms RL and REW2 gain experience with every step, but algorithms

IRR, REW and RL2 – with every obtained reversibility, i.e. every 2-3 steps, depending

on the order of actions.

There were several test runs made, but only two are presented here, one for 1D

and one for 2D. Those runs were chosen, because both of them include periods with

both wheel jamming and normal performance.

Both local reversibility 1D and 2D experiments used Euclidean distance as

(hemi)metric for all distance calculations. ∞=destε also for both 1D and 2D

experiments. In 1D experiments 100=revε , 1000=origε . In 2D experiments

2200=revε , 10000=origε . For RL algorithms 1.0=α .

Figure 8 represents success rate of predictions for IRR and RND algorithms.

This is a feasibility check to show that IRR algorithm performs significantly better

than RND algorithm. It should also be noted that the algorithm reached approximately

80% success rate quite quickly and continued to perform further this way. The

downward peaks at steps ~1300-1600 (values 13-16 on X axis) and ~1700-1800

(values 17 on X axis) show performance of the algorithms during periods, where

wheels were jammed.

 33

5.1.1 IRR vs. RND

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

actions (x100)

pr
ed

ic
tio

n
co

rr
ec

tn
es

s
%

IRR

RND

Figure 8: 1D experiment, comparison with random prediction algorithm

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

actions (x100)

pr
ed

ic
tio

n
co

rr
ec

tn
es

s
%

IRR

RND

Figure 9: 2D experiment, comparison with random prediction algorithm

The test run for the 2D algorithm (figure 9) also included a period where

wheels were jammed at steps ~3800-4000 (values 39-40 on X axis). These jamming

areas are clearly identified by two downward peaks in the middle of the diagram. The

diagram also shows that learning rate increased gradually and reached the steady range

of 60-80% by the middle of the diagram, i.e. after ~ 3000 steps.

5.1.2 IRR vs. REW vs. REW2

Figures 10 and 11 show the comparison between irreversibility-based IRR

algorithm and its reward-based counterparts – REW and REW2. REW2 is very close

to IRR and they differ only in the way the prediction is calculated, i.e. they use exactly

the same states for prediction. The first half of the diagram shows how the algorithms

work during normal robot operation without wheel jamming. This part shows that IRR

algorithm is more successful in its predictions, than REW, but less successful, than

REW2. Superiority of REW2 algorithm over IRR and REW is very logical, since

REW2 algorithm is fed with 2-3 times more information than IRR, but the superiority

 34

of IRR over REW2 was a surprise, this means that in this test run reversibility values

are more relevant than reward signals. REW and REW2 algorithms predict failure

while wheels are jammed significantly more successfully, it was not a surprise and the

reason for this is already explained in item 4.3.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

actions (x100)

pr
ed

ic
tio

n
co

rr
ec

tn
es

s
%

IRR

REW

REW2

Figure 10: 1D experiment, comparison with hybrid algorithms

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

actions (x100)

pr
ed

ic
tio

n
co

rr
ec

tn
es

s
%

IRR

REW

REW2

Figure 11: 2D experiment, comparison with hybrid algorithms

There is one downward peak in the 2D diagram (figure 11) at value 32 of X

axis. Wheels are not actually jammed there, but the situations experienced were new:

the IRR algorithm did not predict any outcome at all and that decreased success rate

heavily. This can also be confirmed by the behaviour of the graphs – all of the

algorithms experienced drops in success rate, which contrasts with the area, where

wheels were jammed – REW and REW2 algorithms performed steadily, but IRR

experienced a significant drop in the success rate of predictions.

5.1.3 IRR vs. RL vs. RL2

Figures 12 and 13 show the success rate of prediction for IRR, RL and RL2

algorithms. The data of 2D experiments is noisier, which is why the algorithm with

less state precision and the same information (RL2) outperforms IRR. This contrasts

 35

with the worse performance of the REW algorithm (which is similar to IRR and RL2)

against IRR. The difference between state identification is clearly a reason here, RL

and RL2 have discrete states. Their whole space state is divided into 1296 regions,

with not more than 1/3 used during the experiment. It is very logical that the RL

algorithm outperforms IRR because of 2-3 times more info fed into it.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

actions (x100)

pr
ed

ic
tio

n
co

rr
ec

tn
es

s
%

IRR

RL

RL2

Figure 12: 2D experiment, comparison with RL algorithms

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

actions (x100)

pr
ed

ic
tio

n
co

rr
ec

tn
es

s
%

IRR

RL

RL2

Figure 13: 2D experiment, comparison with RL algorithm and its modification

5.2 Global reversibility test results

This section represents the test results of global reversibility experiments by

visualizing robot motion. Every run started at “HOME” – a big black dot in the upper

left corner of the picture. All endpoints are marked by small dots, the colour of the dot

and the last segment depends on local reversibility of that particular last action of the

sequence – red means that the last action was irreversible, blue means the opposite.

At every step the robot makes a pseudo-random move. i.e. pseudo-random

decision either to follow an already known (tried) path or an unknown path to explore

the neighbourhood. Figure 14 visualises irreversible sequences of pseudo-random

robot runs. Borders of the box can be clearly identified by just looking at the figure,

 36

red irreversible ends of sequences show where actions were unsafe – when the robot

tried to go through a wall. By marking these actions as undesirable, like it was done in

the previous experiments would lead to obstacle avoidance behaviour. However, due

to the global reversibility introduce here, more complicated behaviour would emerge.

Long blue sequences show that recursively globally reversible sequences of actions are

not always locally reversible, and thus unsafe.

Figure 14: Randomized runs, globally irreversible sequences

Figure 15: Randomized runs, globally reversible sequences

 37

Figure 15 visualises reversible sequences of the same pseudo-random runs. It

contains mostly short sequences not ending in the walls. Though there is one sequence

that ended in the wall, but was locally reversible anyway. There can be two

explanations: either the last action was successful and that last action is judged as

irreversible because of noise, or it is just a coincidence.

Figure 16: Predefined run #1

Figure 17: Predefined run #2

Figure 18: Predefined run #3

 38

Figures 16-18 visualise 3 test runs for the predefined path approximately along

the wall of the box without any obstacles in the way, i.e. the whole path is supposed to

be safe.

Each figure consists of two subfigures, with locally reversible sequences of

actions on the left and irreversible ones on the right. Green and red dots represent

endpoints of locally reversible and irreversible sequences of actions respectively.

“HOME” is a blue dot in the upper left corner of each subfigure. These three runs

show that the robot was able to identify unsafe regions of the sequences along the

predefined path – it is clearly visible that longer actions, despite being globally

recursively reversible, are not back-path globally reversible and cannot be expected to

bring the robot back home.

 39

6 CONCLUSIONS AND FURTHER WORK

This master thesis validates the idea of using reversibility for developing safe

behaviours for autonomous robots. It shows that:

1. by applying reversibility models and suppressing irreversible actions

the robot develops obstacle avoidance behaviour

2. by comparing the test results of obstacle avoidance with

reinforcement leaning algorithms it shows that the robot using

reversibility models converges to the obstacles avoidance behaviour

as fast as the robot using the reinforcement leaning algorithm

especially developed for obstacle avoidance

3. by applying reversibility models to action sequences and suppressing

irreversible actions the robot develops safe navigation and obstacle

avoidance behaviour

4. more generally, it shows that both elementary and complex

behaviours can be developed using reversibility models and

suppressing irreversible actions

5. even more generally, it shows that abstract “moral” principles can be

used to develop robust behaviours for autonomous robots

During research and source code development some of the issues were not

solved and scheduled to to-do list, some ideas for future development were not even

tried out. Below is the list of things to do further (in the close or more distant future):

1. To introduce a notion of “strong” holding with moved hemimetric (see item

3.6). Implement it and conduct experiments.

2. To introduce (and incorporate into the theory) a metric (and a threshold) to

measure distance between different actions to allow usage of continuous

actions. Implement it and conduct experiments.

3. Conduct more simulations with many different metrics and many different

algorithms to select reversibilities from a set of available ones to find the

best ones.

4. Optimize the source code for faster execution and possible real-time usage.

 40

5. Change the source code to compile on other operating systems (code

compiles in Visual Studio 2005, but most of the code is ready or almost

ready for Gnu C++ compiler).

6. Conduct research on higher level of behaviours and try to use the concept

of reversibility in common real-life tasks and experiments.

Certainly, the list is not complete and many other things can be done in the future.

 41

SUMMARY

This thesis investigates the concept of reversibility as a reason of safe

behaviour. It validates the idea that by suppressing irreversible actions the robot will

develop safe behaviours. More generally, it investigates the idea if concrete safe

behaviours can be developed from abstract principles.

This thesis formalizes the approach by defining reversibility models,

developing an algorithm for learning it and defining the notions of global and local

reversibilites as well as metrics on the sensor-action spaces.

Further on, it implements the above mentioned algorithms and validates the

performance on a real robot. The results show that the robot develops an obstacle

avoidance behaviour and territorial behaviour by learning reversibility models and

suppressing irreversible actions.

 42

SISUKOKKUVÕTE

See magistritöö käsitleb pööratavuse printsiipi kui turvaliste käitumiste eeldust

autonoomsetele robotitele. Töö teema kuulub kognitiivrobootika valdkonda, mis

üldiselt tegeleb tehissüsteemide iseõppimise ja arengu küsimustega. See magistritöö

testib hüpoteesi, et õppides selgeks pööratavuse mudelid ja vältides pöördumatuid

tegevusi, arenevad robotil välja turvalised käitumised.

Selles magistritöös formaliseeritakse probleem, defineeritakse pööratavus,

globaalne ja lokaalne pööratavus ning pööratavuse mudel ning esitatakse algoritmid

nende mudelite õppimiseks. Seejärel testitakse algoritme reaalsel robotil ning

võrreldakse nende tulemust traditsiooniliste algoritmidega.

Tulemused näitavad et jälgides pööratavuse printsiipi kujuneb robotil välja

käitumine takistuste vältimiseks, mis oma soorituselt on sarnane traditsiooniliste

algoritmidega, mis on spetsiaalselt mõeldud takistuste vältimise õppimiseks. Kui

pööratavuse printsiipi rakendada ka tegevuste jadadele kujuneb peale taksituste

välimise välja ka territoriaalne käitumine, s.t. keelatakse need tegevused mille tõttu

robot ei oska tagasi koju pöörduda.

Katsetulemusi võib vaadelda kui osalist kinnitust et konkreetseid käitumisi saab

tuletada üldistest abstraktsetest printsiipidest ja et pööratavuse printsiibi rakendamine

aitab tuletada turvalisi käitumisi.

Selle magistritöö tulemused võivad olla kasulikud rakendatuna

teenindusrobotitel, kes töötavad inimestega koos või nende läheduses või osaliselt

tundmatus ja ebaturvalises keskkonnas.

 43

REFERENCES

[BC1] Epigenesis definition. Available from

http://www.biochem.northwestern.edu/holmgren/Glossary/Definitions/Def-

E/epigenesis.html (25.02.2007)

[ER1] About Epirob 2006. Available from

http://www.csl.sony.fr/epirob2006/aboutEpirob.htm (25.02.2007)

[ER2] F. Kaplan and P.-Y. Oudeyer (2006). Trends in Epigenetic Robotics: Atlas

2006. In Proceedings of the Sixth International Workshop on Epigenetic

Robotics.

[ER3] F. Kaplan and P.-Y. Oudeyer (2003). Motivatonal principles for visual know-

how development. In Proceedings of the Third International Workshop on

Epigenetic Robotics.

[ER4] A. Eppendahl and M. Kruusmaa (2006). Obstacle Avoidance as a Consequence

of Suppressing Irreversible Actions. In Proceedings of the Sixth International

Workshop on Epigenetic Robotics.

[WI1] State transition system – Wikipedia, the free encyclopedia. Available from

http://en.wikipedia.org/wiki/State_transition_system (25.02.2007)

[RL1] Richard R. Sutton and Andrew G. Barto (MIT Press, Cambridge, MA, 1998, A

Bradford Book). Reinforcement Learning: An Introduction.

 44

APPENDIX A: Source code and test data explanations

The CD, attached to this thesis contains source code, test data and some

additional files, like an electronic copy of this paper in DOC and PDF formats as well

as an electronic copy of the article from appendix B.

Folder structure of the CD with description of the most important files and

folders:

File name and place Description

JuriGavshin.doc DOC version of this thesis

JuriGavshin.pdf PDF version of this thesis

\Appendix A Folder, containing source code and test data

files

 \Source Code Folder, containing implementation source

code with configuration files

 MScDiploma.sln VisualStudio2005 solution file. This file

should be opened to compile and run the

code.

 \Testing Folder of the Visual Studio 2005 C++

Project with the source code that transforms

test data from the old format to the new

one.

 \TheApplication Folder of the Visual Studio 2005 C++

Project with the source code that

implements algorithms for experiments and

the framework for testing.

 \src Folder, containing source code (.cpp, .h)

 \logs Folder, containing logs and settings

 \New Test Data Folder containing test data in the new

format

 \Old Test Data Folder containing test data in the old

format, undocumented

\Appendix B

 ICRA07_0181_FI_50.pdf PDF version of the article from appendix B

 45

Source code explanations

The code is located at \Appendix A\Source Code\TheApplication\src\.

File main.cpp contains 4 functions – main(), run(), simulate() and

explore(). Function main() is the entering point of the application, where one of

the other functions is executed. Function simulate() simulates 1D/2D local

reversibility test runs, function run() makes 1D/2D local reversibility test runs and

function explore() makes or simulates global reversibility test runs.

Class Communicator, defined and implemented in files Communicator.cpp

and Communicator.h, is a proxy to communicate with Khepera II robot and

implements its most relevant commands available.

Class OpenGL_Display, defined and implemented in files

OpenGL_Display.cpp, OpenGL_DisplayCommon.cpp, OpenGL_Display.h and

OpenGL_DisplayCommon.h, is a utility class, allowing to simply display different

objects in 3D space using OpenGL API. This class implements the functionality to

take care about the entire infrastructure including window creation, lightning and fog

setup with mouse and keyboard handling, allowing to browse the 3D space freely. This

class can be sub-classed and the subclass should only implement the execution of

OpenGL commands to draw what is needed to be visualised.

Class PathExplorerVisualiser, defined and implemented in the file

PathExplorer.h, is a subclass of the OpenGL_Display class and visualises global

reversibility test runs. The same file also contains class PathExplorer, that

implements the functionality to make and simulate global reversibility test runs.

File ShitchBase.h contains SwitchBase class, which implements the most

basic “Switch” module functionality – retrieving sensor data from connected

environment and sending action commands while registering this communication at

connected “experiences” – proxies for algorithms in the local 1D/2D experiments.

File ShitchBaseStruct.h contains classes that SwitchBase class operates

with: experience implementation must sub-class the EnviromentBase class,

“experience” implementations must subclass ExperienceBase class, sensor data

class must subclass SensorDataPackBase<T> class and the action class must be a

subclass of ActionPackBase<T> class.

File ShitchDiscrete.h contains SwitchDisrete class, which implements the

functionality to deal with discrete choice of actions, thus, operating with action

 46

indexes. This class also implement additional functionality for automatic logging of

inter-module communications, with a possibility to simulate logged history. This file

also contains the KheperaLoggingActor class, that was used to make test runs for

1D/2D experiments. It produced and still produces a log file in the old format.

File ShitchDiscreteStruct.h contains classes that SwitchDiscrete class

operates with: experience implementation class ExperienceDiscrete that operates

with discrete actions by their indexes as well as KheperaEnvironment class that is a

proxy for Communicator class mentioned above to communicate with Khepera

robot. It also contains KheperaSimulationEnvironment class that can be used to

simulate environment by using output log in the old format to simulate a test run,

though, new log format in conjunction with the simulation feature of

SwitchDiscrete class is strongly recommended.

File Irr_Discrete.h contains two classes: IrreversibilityPolicy – the

class implementing reversibility ideas, and Irr_DiscreteExperience – the proxy

class for IrreversibilityPolicy to communicate with SwitchDiscrete class.

Class IrreversibilityPolicy does not implement any calculations and does not

select reversibilities itself, but uses so called „calculators” to do this (they are

implemented in the file Irr_iscreteStruct.h). This fact allows to use this same class

for all IRR, REW and RL algorithms implementations by using different „calculators”

(see function simulate(), where those algorithm implementations are initialized).

 Test data explanations

The test data (i.e. log) files are located at \Appendix A\New Test Data\ and

\Appendix A\New Test Data\.

The first folder contains test data in the new format: global reversibility

experiments data in the Global subfolder and transformed (from the old format) data

for 1D/2D local reversibility experiments in the Local subfolder.

The second folder contains test data in the old format for 1D/2D local

reversibility experiments.

 47

APPENDIX B: “Don’t Do Things You Can’t Undo:

Reversibility Models for Generating Safe Behaviours” article

for ICRA’2007 by Maarja Kruusmaa, Juri Gavšin and

Adam Eppendahl.

Next pages contain the article that is an appendix to this thesis.

