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1 PREFACE

Global trends in robotics research show that rasds getting more concerned
with applications in real-world environments. Rabare moving from industrial
environments and research laboratories closer tnaha. They are moving to the
streets, hospitals, homes, supermarkets and otlidicpplaces where they closely
interact with humans. In these environments sadety reliability of robots as well as
robustness of their behaviour is getting more irtgr

This thesis deals with an aspect of this reseamsidtby investigating an idea
of implementing a general law that would increasdety and reliability of robots.

1.1 Objectives

The primary objective of this thesis is to show,algpe and discuss
experimental evidence that following some abstrdea can lead to a concrete and
safe behaviour. The secondary objective is to baildrogramming framework for
implementing and comparing different learning algons using a Khepera-
compatible (or similar) robot and to implement etsgxtend reversibility-based

algorithm.

1.2 Contribution and overview

This master thesis is concerned with a particulay of generating reliable behaviours
of robots based on abstract ideas. The thesigyisray about the idea, that the ability
of undoing its actions can be useful for generatelgble behaviours for robots. In
particular, in this thesis we demonstrate thatlastract rule “Don’t do things that you
can’'t undo” leads to a concrete safe behaviourstaale avoidance, and can also lead
to higher level of behaviours.

However, the algorithms and cases described arpleinthan in a real life
scenarios, e.g. during interaction with moving otge(humans, other robots). This
thesis does not intend to present a ready-to-useryth but to prove a concept and
make some suggestions for further development.

My contribution of this thesis is:

1. validation of the idea of reversibility presented KKruusmaa and

Eppendahl

2. extension of the idea of reversibility to acti@ysences



3. definition of the global and local reversibility

4. development of the programming and test environntenvalidate the

above mentioned ideas and concepts

5. conducting experiments with the developed tools

6. analysis and interpretation of the experimentalltes

Chapter 2 contains introductory information forstlhesis: it shortly describes
the research field — developmental robotics, anttoduces the concept of
reversibility.

Chapter 3 contains theoretical part of the thestspducing formal definitions
for the notions used further. It also contains arsbiscussion about weaknesses and
strengths of our approach. The first half of tHiqter is based on theory developed
by Maarja Kruusmaa and Adam Eppendahl (see app@&)dsimplified in some areas,
but extended and changed in others.

Chapter 4 contains the descriptions of the experisn@nd algorithms.

Chapter 5 contains test results with a short arglys

This thesis also contains conclusions, suggesfionfurther development, as
well as the list of references used in this the$ise summary is in English and
Estonian languages.

The CD which is provided along with this documeontains the source code,
test data, required input files, a copy of this woent, as well as some additional
sources. Contents of the CD is described and exgaan appendix A.

Appendix B is a copy of the article, written by M@aKruusma, Juri Gavsin
and Adam Eppendahl, which is based on the expetsmeade by the author of this

thesis.



2 INTRODUCTION

2.1 Epigenetic robotics

Epigenetic Robotics (a.k.a. Developmental Robotic}, is a relatively new
approach in robotics (and artificial intelligenceyhich combines developmental
psychology, neuroscience and biology with robo#ind computer science. The terms
Epigenetic Roboticsand Developmental Roboticsare essentially equal, with the
difference that the latter one is more concerneth witegration of developmental
psychology and robotics (like formalization of thes in developmental psychology,
which are often informal), and the former one hasaader interdisciplinary emphasis.

Epigenetic Robotics studies control systems’ dgualent through interaction
with the environment, which implies that the systmrembodied, the environment
situations can be identified and the system iswewglthrough a prolonged epigenetic
developmental process. It also implies that thehim@s must go through a learning
process (supervised or unsupervised) as infantsTkhe.research includes practical
goals of:

e enabling robots and other artificial systems to tdsetadapt to their
environments, and to better adapt to changes setasvironments
e simplifying the problem of programming robots bygramming the robots to
develop skills for any particular environment irggteof programming robots
for specific environments
[ER1]

In [ER2], authors do not divide this area into dite partitions, but distinguish
several main regional trends in a continuous resespace:

e Interaction studies — basic social interactions, like low-level imitat, joint
visual/shared attention, early language developnetait
e Sensorimotor Development — basic sensor-motor joint work coordination, like

gaze fixation, hand-eye coordination, navigatido, e

! Epigenesis — a biological ,theory holding that developmengigradual process of increasing
complexity. (This contrasts with preformationismhieh holds that the organism is already present in

the gamete(s), merely growing and unfolding dudiegelopment.) For example, organs are formed de

novo in the embryo rather than increasing in si@enfpre-existing structuresfBC1]



e Active Vision — real-time, continuously operating vision systeabte to adjust
their visual parameters to aid task-oriented behavi

e Moativation — internal motivational value/reward systems felf-eotivation,
stability/exploration/exploitation balancing, etc.

e Emergence of the self — high level cognitive abilities associated withbot
self-discovery, like self-identification, distinots between “I” and “You”, etc.

e Dynamics of development — study of the steps in the emergence of peraeptio
throughout the learning process.
This thesis addresses the problem of motivationragdlation of sensorimotor

interaction, associated with two of the above teerfdensorimotor Developmentand

Motivation .

2.2 Reversibility as a basis for safe behaviour

In [ER3], a number of basic visual behaviours Knag of the moving light,
exploration for other light sources) are seen tergm from abstract motivational
principles — stability, predictability and familigr. The general idea is to identify
principles that can be expressed without refereaaate ground meaning of sensor-
motor values, with the expectation that code baseduch principles will function
reliably in a broad range of environments and dfedint robots or on different parts
of the same robot.

In [ERA4] it is proposed that the principle “dont @vhat you can’t undo” is one
of those basic abstract principles that can be useguide the robot’s behaviour.
Authors also proposed that obstacle avoidance isataral consequence of that
principle and conducted a 1-dimensional test (th®tr moved back and forth between
two objects) to back up their hypothesis.

The suggestion is that reversibility, being a nsags condition of
controllability, is a fundamental concept when pesgming robots to behave safely
and reliably. The most undesirable actions in &8 world (for example, those that
damage the robot or the environment) are charaetérby irreversibility. Thus,
instead of teaching the robot specific routineshsas avoiding collisions, avoiding
falls, etc., it is better to teach the robot a mgeneral principle of avoiding

irreversible actions.



2.3 (Irr)reversibility examples

For example, falling down the stairs is not goodéaese the robot does not
know how to climb back. Closing the door is not ddoecause it does not have
knowledge of how to open it.

Though, reversibility of the action should not bensidered a binary
reversible/irreversible choice, but a continuouti@asince some of the actions are
reversible very easily without any significant effdout some of them take a lifetime
to reverse them. For example, if the stone floosasded by spilled coffee then this
action is usually easy to reverse by using a wehgcbut a carpet soiled in similar way
is much more difficult to clean back, sometimes asgble, and if the carpet is
burned, then this action is most definitely irresiele. By considering this, one could,
at least theoretically, calculate what is the adsipilling coffee and how desirable this

action is.

2.4 Reversibility as an extension of stability

The above examples demonstrate that one of the mansequences of
reversibility is stability. It can be even argudrtt they are equal, but, actually, they
are different. Since stability is mostly an objeetnotion, it does mean, that relevant
values must be stable, i.e. to stay within somewadt limits. Reversibility doesn’t
have that limitation and it can be defined so, that “goodness” of values does not
decrease, and, since “goodness” is always a sugeadtion, the reversibility itself
can be subjective.

Reversibility can be informally defined as a “sianity” of the state before the
action and the state after making the action amdatinteractions. Thus, if the action
has a known counteraction, and the agent (persboi,retc) knows (from his own or
somebody else’s experience) that this action aaadinteraction in this situation will
put the things back the way they were (or acceptabke to that), the action is safe.

One of the problems is that most of the situatiares not exactly the same as
experienced ones for a robot, especially autonomaleveloping one. If the state can
somehow be identified as non-novel (the best sympry my opinion, is “familiar”),
i.e. if the state in question is acceptably simitasome of the experienced states with
known feedback for the action in question, therorimfation for those states can be

somehow interpolated to predict the outcome.



It can also be argued, that not all actions havactexounteractions and if
someone is doing something, he/she usually wantsatce things better. For example,
if the mobile phone does not work properly and ti@is be fixed by soldering one wire
back, the phone after fixing will not be the salmét, definitely better. These cases can
be dealt with in the same way, as the ones, whérgha actions have exact
counteractions, by slightly modifying the definiiof reversibility.

For example, if the latter state differs from thiegimal one only positively (in the last
example: the phone was virtually the same, buttbirey fixed, i.e. better), then the
states can be considered similar (reversible) dmotigis addition makes it unclear
how to decide what is good and what is bad; whevirgpa specific problem such

modified definition is certainly context dependent.



3 REVERSIBILITY MODELS

3.1 Introduction

A reversibility model tells the robot which actions are reversible and ho
reverse them if they are.

In a fixed, known, exact, deterministic world, mbel@ by a graphG of states
as nodes and actions as links, an action from stdtestates’ is reversible if there is
a path back frons’' to s. Finding reversibilities inG is equivalent to finding loops in
G, a standard problem in graph theory. This is ellywvell for playing games like
Sokoban, but real robots face a non-deterministiexact, partially known and
changing world.

Therefore, we model non-determinism using labetiahsition systems, we
allow inexactness with (hemi)metrics on the spafestates, and we define a
reversibility model pragmatically to be a set opested reversibilities that may grow
or shrink as the robot gains experience.

In this thesis we consider one such change in ®hadrld, addition of sensors
to the definition of the world’s state, and intraéua notion of refinement that captures
the relationship between the robot’s world befand after the change. In the learning
experiments we describe, a reversibility modeldorunrefined world is adapted to a
refined world (with side-effects of producing olidéaavoidance and a “stay in a safe

area” behaviour).

3.2 Definition of reversibility

Def: A robot’sworld is a labelled transition systériS,A,—), where S is a

set of experienced environment statasis a set of labels (a label represents an action

or a sequence of actions), an#l is a set of labelled transitions between states.

% A labelled transition system is a turﬂS,A,—)) where S is a set (of states)\ is a set (of

labels) and—>c Sx A x S is a ternary relation (of labelled transitiond.)p,g € S and a € A,

then (p,a, q) €—> is written as: p—=> (. This represents the fact that there is a tramsitiom
state p to stateqwith label & a. Labels can represent different things dependimghe language of

interest... [WI1]
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Def: Let action be an atomic action or a composite action (seqehatomic
actions).

When the result of an actioa in state s is not wholly determined by the
robot, multiple transitions frons are labelled with the same acti@n and it is the
world that determines which transition actually peps.

Def: Action a, is acounter-action of action a, (denoteda, =-a,), if g, is
expected to undo the actiay, i.e. the sequenca,a, is expected to end in the same
state where it started (or acceptably close to it).

Def: A reversibility for a worldW is a pentuple of three experienced states and

two actions that initiated transitions between thésy, a,,s,,a,,s,), so thata, = -a,,
i.e. the composite action,a, produced a transition frors, to s, throughs, in W
and, in such transition, stats, is expected to be acceptably closesjofor any states

x and y with dy, (X, S) < 64y AN Ay (V,S) < €4 » Whered,,,, dge are metricd

orig
on states and,;,, ¢4 are their thresholds.

Def: Thereversibility (s,,a,,s,,a,,s,) holdsin W if d_(s,.s,)< &,.,, Where
d.., is a hemimetriton states and, is a threshold; anfils otherwise.

Generally speakingd,, (s,,s,)< ¢, means that the distance from the initial

state of the reversibility sequence to the finatests “acceptably close”.

3.3 Initial and refined reversibility models

Def: A reversibility model for a world W is a set of reversibilities that are
expected to hold ifwV.
In practice, a reversibility model could be givenadvance, communicated to

the robot, learned empirically, deduced from knalgke about the world, or obtained

% A metric space (S, d) is a setS together with a functiordl : Sx S— R (ametric) which
satisfies three following conditions:
1. vxyeS:d(xy)=0< x=y
2. ¥xyeS:d(xy)=d(y,x)
3. WxYy,zeS:d(xz)<d(xy)+d(y,2)

* A hemimetric space (S,d) is a setS together with a functiond: SxS—> R (a
hemimetric) which satisfies two following conditions:

1. ¥xeS:d(x,x)=0
2. VX Yy,zeS:d(x,z)<d(xy)+d(y,z)

11



in some other way. In the experiments describethénthesis, the robot is given a
model for world where all actions in all states ezgersible and uses this to learn a
model for a refined world.

Def: A refinement (of states) from a worldW to a world W' is a surjective

function p from the states ofV' to the states oV .

In other words, every state W is the image of one or more statesVifi,
which “refine” thestate inW .
Def: For any reversibility modeR for a world W and for any refinement from

W to W', with state functionp, there is annitial refined set of reversibilities R’ in

W' defined asR = {(s,,a,,5,8,5,): (P(%,). 8, P().a, P(S;)) € R}

To obtain a reversibility model for the new woNd’ we may formR’ and
then remove reversibilities that fail in the refineorld. An important aspect of this
procedure is that “it gives the robot somethingl®d, though, making its judgements
too optimistic: the original modeR provides a list of actions together with the
circumstances in which they should be tried.

A refined reversibility model in a refined worldalid be used in conjunction
with new (hemi)metrics and thresholds, since oldsoare, generally, void or trivial in

the new world.

3.3.1Example of refinement
The kind of refinement we have in mind is produdsdextending a robot’s
sensor vector. Suppose we have a trivial world \aithempty sensor vector and the
single stateS' and actions (labels) given by pairs of integer eVhdisplacement

commands(m,_,mg). This world is deterministic, all actions are resible and a good
non-trivial reversibility modelR can be given by takings, = (- m_,—m,) when
Q= (mL 1 mR)'

Now suppose we include one proximity value (sag,ftont sensor) in the state
vector (d; ). Assuming the new sensor does not affect the ®lsstvironment, we
obtain a refinement of the original world. The statnctionp is the projection

p((d-))=()=5".

When the simple moddR described above is refined according to this new

world, some of the refined reversibilities hold amme do not. In our experiments, the

robot tests these refined reversibilities to disgcovhich hold and which fail.

12



The interesting point here is that the ones thatdgenerally correspond to
collisions of some sort. Consider the following f@ases (in which wheel commands’
values and proximity values are given, without loggenerality, in comparable units
— moving n wheel command units forward decreases the distamtiee wall byn
proximity sensor units).

(1) The robot does not touch anything, we obtagngiiccessful reversibility:

(S(15),A(10,10),5(5), A(-10,-10),S(15)),
where the robot approaches and retreats from atibjthout touching it.

(2) The robot touches an object and the objeceslidie obtain a failed reversibility:

(S(8),A(10,10),5(0), A(-10,-10),5(10)),
where the robot runs into an object, pushing inRsuforward, then retreats, and then
finds that its proximity sensor now reads 10 indteathe original 8.

(3) The robot touches an object and its wheelgsfrdm the robots point of view, this

is identical to case 2.

(4) The robot touches an object and jams, if mammmands time-out and report
success, adjusting the wheel encoder counts assage then this case is again
similar to case 2 (and may be thought of as a kinohternal sliding) — we obtain a

failed reversibility:

(S(8),A(10,10),5(0), A(-10,-10),5(0)).

Not only does the robot discover that it is "bad’push things — without ever
knowing what pushing is — but the refined statevadl the robot to distinguish those
cases in which ‘bad things happen’ from those inctithey do not (by using the
additional sensor(s) to distinguish different s¢atea refined world).

Once the robot learns a valid reversibility modelmay use the model to
censor its actions. Note that it is our methodrefting a "pushing is bad” model out

of initially refined R" (by pruning it).

3.4 Local and global reversibility of composite actions

It is sometimes beneficial to explicitly be awahattan action is a sequence of
some more detailed actions. For example, actiork&m00 steps ahead” consists of
100 single-step actions and each single-step aetotumally consists of several even

smaller actions like “strain muscbe”, “relax muscley”, etc.

13



Actually, the same definitions of reversibility céwe used, by assuming that
each action is a sequence of sub-actiom§E(aolo,aoyl,ao'z,...,aoln) and everya,; has
a reverse-action), and discarding any knowledge about intermedstees while
considering the reversibility of the actida,) as a whole.

Def: A trivial reverse-action of a composite actioa, = (ao'o,ao'l,aoyz,...,aoyn) is
another composite actiom,, consisting of a, sub-actions’ reverse-actions in an
inverse order, i.ea, =(a,;,a,;,,8,,,..,.a,,), where a, =—a,, ,. This is also denoted
by & =—a,.

A reversibility of a single non-composite actiontbe composite action in a
context where the composition does not matteralked local, a reversibility of an
explicitly composite action is calleglobal. The notions oflocal and global
reversibility are relative and are heavily dependent on theeggnin which they are
considered, i.e. globally reversible compositeagican be a part of more complex
actions, where their own complexity is not impottand their reversibility in such
context is considered local.

Def. A composite actiorg, =(aoyo,a0,1,a0'2,...,a0’n) from states is back-path
globally reversible if reversibility (s,a,,s,,a,,s,) holds anda, = —a, .

In other words, it is a special case of local rellity, where actions are
explicitly composite and actioma, is a trivial counter-action ofa,, but any

information about intermediate states is discar@&eherally, for a local reversibility

to hold a, is not required to be a trivial counter-actionagf

This definition allows to construct global reveiiles for action sequences of
any complexity and of finite length. The notionlmck-path global reversibility also
relies on the fact that the sub-actions by theneseban be reversed.

Def: A composite actiorg, = (aovo,aovl,aoyz,...,aoyn) from states is recursively
reversible, if n=0 or the reversibility(sn_l,aovn,sn,aw,sml) holds and the composite
actiona, = (aoyo,aoyl,aoyz,...,aovn_l) from the same state (or a state acceptably ctogg t
is also recursively reversible, where s, , is the state after making action

(20, @6, @, -, ) from .

14



The composite actiom, :(ao'o) with length 1 isrecursively reversible if the
single actiona,, is reversible, since the length of the remaininoacsequence is

zero and, therefore, iecursively reversible by definition.

3.5 (Hemi)metrics and thresholds

Sincemetrics d d,, and hemimetricd,, on states and thethresholds

orig !
(Soig» Caetr €re) @re important to understand reversibility defonis, an explanation

can be useful. Let us consider a reversibi{itya, y,—a, z).

Metric dorig(x,so) calculates how far is initial state from initial states, of
some already experienced reversibilig,a,s,-a,s,), i.e. how novel is the stase if

the distance between statgsand s, is greater thare,,,, then selected reversibility

orig !

cannot be used to predict how reversible is themaa from statex.

Metric d,(y,s) calculates how far is intermediate statefrom intermediate
state 5 of some already experienced reversibilits,,a,s,~a,s,) where
Ui (X, %) < &g 5 if the distance between statgsand s is greater thare,, then

selected reversibility cannot be used to prediatv meversible is the actiom from
statex.

Hemimetric d,,(x,z) calculates whether the reversibility holds, itew
reversible is the actiora from the statex by action —a; if d (x,z)<s,, then

reversibility holds, and fails otherwise. The reado use hemimetric instead of a
metric is to allow non-stable, but safe state ttaonss.

The implementation can calculate novelty/revergibiliscretely as yes/no or
continuously as, for example, interval [-1, 1] gsthe thresholds involved to calculate
how far the value is from O.

Thresholds can be adjusted according to the implementationreased or
decreased, or set to O or infinity.

If the value ¢,;, > mav>v<(d0,ig(s, s')) (for example, infinity), then it essentially
s,S'ée

means that none of the states are novel, if att leas suitable reversibility (i.e.

forward action of that reversibility and the actimnquestion are the same) has been

15



experienced before. I ,0then it means that the state is not novel onlghat

orig =

particular state has already been experienced.

If the value ., > m,am>/<(ddﬁ(s, s)) (for example, infinity), then familiarity of

the intermediate state plays no role in familianfythe whole reversibility and only

the familiarity of the initial state matters. Theseusually no point in making,, too

small, if the number of states is large, since thils heavily reduce the number of
suitable states available for comparison; buth& humber of states is small, then it
might be useful.

If the values,,, > myav>v<(d,a,(s, s)) (for example, infinity), then all reversibilities

rev —

hold. If ¢, = 0 then it doesn’t yet mean that the acti@ns reversible from state if

and only if action-counteraction sequence ends he same state, i.ex=z;
hemimetric definition allows two non-equal stateshfive zero distance and it is not

symmetric. Informally speaking, if state is “better” thans then drev(s,g) may be 0,
but it does not imply thadl, (s, s) is also 0, i.e. it is safe to go from the worseesta

the better, but not vice versa.

Extreme ¢,,, and ¢, values are often quite meaningless because of thei

orig

triviality, thus, in general, some intermediatewed are strongly recommended.

3.6 Limits/discussion

The generality of the concept of reversibility e tsource of both the strength
and the weakness of our approach. Although, ibiscompletely general, it allows a
wide range of implementations to use the notioregérsibility without modifying the
theory. For example, since the definitions are dase (hemi)metrics, both discrete
and continuous spaces can be used. Raw sensoraddtanternal non-physical
“sensors” are usable as inputs for interstate wegta@omputations.

At the same moment, our approach definitely showldbe considered as some
sort of a panacea. As any other algorithm/condelpas its own limitations and there
definitely is a long way ahead to develop the theord implementations further.

The disadvantage is that the quality of the atgaoristrongly depends on the

implementation, especially on the choice of righgrfi)metrics ¢ dyys d.o) and

orig !

thresholds £ E4eqr Erey)- The problem is, as with most algorithms impleteeron

orig !
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real robots, noise and dynamic nature of realddéea. Thus, the (hemi)metrics must
somehow deal with the dynamics of the environmerd the choice of threshold
values must also take noise into account.

Linearity of the sensors’ data is also importahtt is very non-linear then the
same physical distance between states would rgsclbinsiderably different internal
distance depending on the sensors’ values, thugnmé almost impossible to choose
the right general thresholds.

There is also a major problem in our approach tstirdjuish between
successfully reversed actions and the sequencetiohg, where both the action and
the counteraction do not succeed. Since in therlatise the state is, generally, stable
and the sequence ends in the same state afteariedst the action is considered
reversible. This can, actually be fixed by introhgcanother (hemi)metric to measure
s,S) with

move (

a distance between the start and the end poirastmins, for exampled
a thresholds, . -

A new notion of reversibility holding “strongly” cabe introduced so that:
reversibility (s,,a,,5,a,s,) holds strongly if it holds and d,,.($,,S)> &m0 OF

doe(S.8)> €. If, for example, d,.=d, and &,.=¢, then this would

efficiently solve the problem of distinguishing jamimg from successful reversible

actions.
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4 EXPERIMENTS

4.1 Introduction

The main purpose of the thesis is to collect aralyae experimental data to
back up the suggestion that abstract principlescifipally “Don’t Do Things You
Can’t Undo”, can generate concrete and safe behesidt implies that the algorithm,
based on such abstract principle must perform coabba to other well-known
algorithms in some non-trivial task. To have theuts that can be trusted, the
comparison must be as fair as possible, which maltemder to choose the task to be

used in comparison and the algorithm (or algorithtncompare with.

4.2 The Task and Algorithms

After considering different tasks, the task of @l avoidance was chosen.
This task is simple enough to understand and toridbes At the same time, it is a very
natural and safe feature of an autonomous objebbfy to avoid obstacles. Though,
even this simple task can be understood differehthyll describe in detail my version
of this task to compare different algorithms asriya as possible.

The task details are simple: the robot makes pseamidom (using C/C++
random(’) function) moves in non-dynamic real-life enviroemh and the algorithms
predict if the action will succeed or not. Roboftaare receives some input from the
environment (through sensors) and can make sommnsct(through motors
commands). The randomness is used to automatgatigrate test runs. No algorithm
affects the robot behaviour (thus, none of thempréferred), which makes it possible
to seamlessly simulate the same test runs withvesgions of the algorithms. In this
task algorithms can be easily compared by the p&ge of correctly predicted action
successes.

The very obvious algorithm for comparison is thedam prediction that
returns the possibility of success of the actioseldaonly on some internal pseudo-
random value. Because of its simplicity, this altdon can be considered a feasibility
check, i.e. if the efficiency of some algorithm fwireal return values) is below
“random”, there is no point to use it and it isad reason to redesign the algorithm or

try another one.
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After choosing a feasibility check algorithm, theeference” algorithm must
also be chosen, but this is much more difficulidto The problem is that it should
perform well in real-life environment and it woulle convenient if it is also simple
enough to be easily understood.

Also, for the comparison to be “fair”, this “referxee” algorithm must be of
self-learning/trial-and-error type, i.e. it shouldarn using previously obtained
experience without supervision. A very simple remement learning algorithm,

described further, is chosen as such an algorithm.

4.2.1 Reinforcement learning algorithm (RL)

The reader can find a very good and through intttdo to reinforcement
learning in general in [RL1].

Shortly, reinforcement learning is concerned witholgpems in  which
autonomous agent searches for the best strateapt in the surrounding environment
by trial-and—error process. The only feedback ier dgent is a numeric “reward” for
every transition from one state to another andptimaary objective of agent’s mission
is to maximise the long-term reward.

Reinforcement learning algorithms attempt to geteeean optimal policy that
consists of the best action choice for each statgvie the highest sum of rewards in
the future. The most popular approach to creaté gadicies is a “value function”
approach, by which only a set of estimates of etgueceturns for the policy is
maintained and the policy is modified by actualines. This approach contrasts with
“direct approach”, that suggests sampling retuonsfch possible policy by following
it, and then selecting the one with the largestetqd return).

Value function approach has two variations: staue functionV(s) and
state-action pair value functio(s,a); the former one estimates the expected return

starting from states and following the policy thereafter, and the |atteexpected
return when taking actioa in states and following the policy thereafter.

My simple algorithm, denoted further as “RL” is at&te-action pair value
function” type, though it is different from clasaldRL algorithms. First, the algorithm
does not have a terminal state, so collision avadas considered to be a continuous
task of getting as much cumulative non-negativearewas possible. Second, it is
concerned only with immediate rewards without cdesng in what order the states
and actions are sequenced. It is made this wayubecaf the fact that policies are
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observers and predictors in the experiments norteerh is allowed to influence the
flow of the experiment.

The algorithm itself is the following:

RL algorithm

Initially Q(S,A)=0 for every state-action pair.
0<a<l is the constant learning rate value.

1. Get the current state S; and the intended action A;.

2. If the current value of the action value function Q(Si,A:)>0,
predict no collision. If Q(Si,A;)=0 then make a random
prediction (or predict nothing). Predict a collision
otherwise.

3. After executing A; get the reward signal r for that action.

4. Update the action value function: Q(Si,A:i) — a*r + Q(Si,A;).

5. Go to step 1.

The states in this algorithm are discrete — the@espace is divided to regions
of the same size. The reward signal for an acsodeifined by checking if the motor
command was successfully implemented, i.e. if witeeinters’ values are acceptably
close to the projected ones:

B (W, + W, +& +&,)/10Q,if thereisnocollision
~ |(e_ +&,)/10q,if thereisacollision

where w, and w; are modules of accordingly left and right wheeamooands in the

action ande, and e; are modules of positioning errors of accordingdft and right

wheel movements. Thus, a successful action is gadamore if it moves the robot for
greater distance and an unsuccessful action islipedalepending on the size of the

error.

4.2.2 Reversibility-based algorithm (IRR)

Reversibility-based algorithm, denoted further BR1is also quite simple.
Acronym IRR stands for IRReversibility, since itnsre correct to say, that it is based
on irreversibility — prediction are based on howewersible the similar experienced
actions were.

The algorithm itself is the following:
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IRR algorithm

A set of experienced reversibilities 1is always available.
Initially the set is empty, used (hemi)metrics are defined and
used thresholds are set.

1. Get the current state S; and the intended action A;.

2. Search through experienced reversibilities to find
reversibilities where forward action is the same (age=A;) and
dorig(Si,Se)<€orig, Where s, 1is an 1initial state of an
experienced reversibility and ap, is its forward action.
Predict the outcome basing on the reversibilities found
(several methods can be used, see further text for details).

3. Wait for the action to finish. Get the current state S;i.:
after making action A; and a new intended value Aj;;. If Aiyg
is not a reverse-action for A; then go to step 1.

4. Execute step 2 with Ai;; and S;; instead of A; and S;.

5. Wait for the action to finish. Calculate dpv(Si,Si+2) and add
obtained reversibility to the set of experienced ones.

6. Go to step 1.

Steps 2 and 4 are doing the same thing — predittiagoutcome of the next
action, the only difference is that step 3 dodsrita forward action and step 5 — for a
reverse-action; this is done by analyzing the ra@bdities found. The general way is

to compute some value representing basic joind , return value of the

prediction ?
reversibilities found. This value can be used tedpmt the outcome: no collision if

\Y a collision otherwise. If there are no reverdiieié found, then a

prediction < 8orig ’
random prediction can be made, or no predicticadlat

% value for a set of reversibilities found can bigkated in many ways.

prediction

For example, a method might select reversibiliiem available ones:

the one(s), having the shortegt distance

the ones, having distancg.ess than some predefined value

up to some predefined number of them

the ones, forming the largest identifiable cluster

and return
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e some percentile value (for example, 0 — minimaligall00 — maximal value)
e the mean value
e the median value
of the set of selected values.
There are many permutations and combinations aihthed new ways of
limiting the set and calculating, ., . but the general algorithm remains the same.
One of the algorithms also considered is a hybfidRiR an RL algorithm

denoted further as REW. It uses RL logic (i.e. nelvsignal) for its predictions, but

IRR logic for getting the prediction value, i.eigtRL with a continuous state space:

REW algorithm

A set of experienced state-action-reward triplets 1is always
available. Initially the set is empty, used (hemi)metrics are
defined and used thresholds are set.

1. Get the current state S; and the intended action A;.

2. Search through experienced state-action-reward triplets to
find the ones where the action 1is the same and
dorig(Si,Se)<€orig, Where sg is an initial state of the triplet.
Predict the outcome basing on the triplets found (several
methods can be used, similar to the IRR algorithm, but using
reward instead of irreversibility).

3. Wait for the action to finish. Add obtained triplet to the
set of experienced ones.

4. Go to step 1.

4.3 Comparability of algorithms

As one might have noticed already, IRR, REW andaRjorithms are not very
different and can be safely compared to each @thérto REW algorithm.

Actually, RL and IRR are quite similar, the mairifelience is that the former
one is based on an artificial reinforcement sigamad the latter one is based on the
action reversibility. To be more specific, the nesieility-based algorithm can be

considered as RL algorithm with reversibility asewvard signal.
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It also means that they can be easily comparede gime comparison will not
be between different algorithms, but between twoesy of reinforcement signal —
external (artificially generated by the environmepmised on how close real wheels’
counter values are to the desired ones after exgcah action) and internal (generated
by algorithm itself, based on action reversibilitysituations similar enough without
any prior knowledge about sensors or motors). TE®VRalgorithm is considered to
indicate where the state distinction is more imguairthan the feedback and vice-versa.

The comparison also implies that the wheel slippsgeot an issue in the
experiment, because in such case the reinforcesigmal for RL an REW will give a
false positive reward for physically incompleteiaes. | would also like to draw
attention to the fact that wheel slippage is ngtrablem for IRR. Though, wheel
jamming for both forward and reverse actions wal tegistered as almost perfectly
reversible action by reversibility-based algorithbut will be processed absolutely

correctly by external reward-based RL and REW dtlgars.

4.4 Software architecture

One of the secondary objectives of this thesis isréate a framework to allow
a simple comparison of different algorithms for ttesk and to implement the
reversibility-based algorithm so that it would leesy to extend. The architecture of the

program is as simple as possible and extendabesitown in figure 1.

Figure 1: Interconnections between the differentiudes of the program.

The central building block is a “Switch”, throughhigh all other modules
communicate with each other. The “Switch” itseledn’t initiate any actions; it works
as a hub able to record and multiplex messages &oenmodule to another. The
“Actor” decides which action to perform next andnceequest sensor data from

“Switch”. The commands of action execution and eerdata retrieval are actually
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routed to “Environment” module, where they are pssed and communicated from/to
the physical robot.

Policy modules are proxies to represent differdgbrithms. Each of them
receives a complete communication between “Actard dEnvironment” modules,
which allows them to analyze the data and prediwetiver the proposed action will

succeed and even advise which action to make.

4.5 Physical experimental setup

All our real-world experiments are conducted withsmall standard robot
“Khepera II” that has 8 infrared sensors and twce&lk independently driven by a
step-motor. It is connected to the computer throaigkrial interface and power cables,
i.e. sensor readings and motor commands are cornoatadi directly from/to the
computer. During the experiments the robot is plao¢o a standard carton box with
all the walls of the same texture and colour. Atipan of the same material (and
length of shortest box wall) was also used to nthkeavailable working area smaller,
if needed.

Figure 2 presents two views of the Khepera robbe physical experimental
setup can be seen in figure 3: it is one box intfaro the purpose of having the outer
box is to protect robot sensors from light integfeze and thus reduce sensor noise and
uncertainty.

In figure 4 photos A, B and C show different configtions for setting up the
available working area for local reversibility 1MZxperiments. Photo D in figure 4
explains box setup for the global reversibility ekment; the robot is at “HOME”,
determined by a small construction that permitgigeepositioning.

In figure 5 photos A and B show the solution to greblem of overheating
power elements of power/control adapter for Khepmtaot. It was the reason of
constant robot reboots with a wrong feedback asngequence. Though, the problem
of robot reboots was not finally solved, and ill sgbooted approximately once in

100-2000 steps, depending on how many obstacdtas into.
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A

A
Figure 3: Experimental setup

Figure 5: Adapter with extra cooling
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4.6 Implementation details

The program operates with a list of discrete astjomhich are pairs of robot
wheel movements in a form o(1|eft_whee|_movement,right_whee| _movement)

They can be easily replaced with sequences ofre;tlmecause algorithms don’t really
care how complex the action is and operate withcexl of available actions. The
actions used are:
a, =(300300) —long step forward,
=(100100) —short step forward,

a, = (- 200200) — medium step backward.

The numbers are internal robot wheel counter uaftdength ~0.08mm. Positive
numbers mean wheel rotation that moves the roboizial.

Sensor input data for algorithms is also reducéed: maximum number of
logical sensors is 4 to make the learning procefsser. Two parallel front sensors
and two parallel rear sensors form two logical semsand left/right sensors form
another two logical sensors, one for each side. 3evisors next to the front sensors on
both sides are left unused, since front and side@s are already used and it would
just increase the number of input channels withexding significant value to the
experiments.

The experiments can be divided into two separatupg. local 1D/2D
experiments — to compare the reversibility-basgoradhms with others, and a global
reversibility-based experiment without a comparisdine purpose of the latter
experiment is to show that the higher level of éthars can emerge basing on the
same principle, though there is no comparison mailece global reversibility
experiments are more difficult to benchmark: thisreo “standard” and it is hard to

invent a straightforward one.
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4.6.1 Local reversibility 1D/2D experiments
In 1D experiments only front and back sensors aexwand the only actions
available are moving forward and backward, .4, ={a,a,,a,a,,. The 2D

experiments use all available sensors and anottef aictions: A, = {a;,a,,a,,a,,} .

It can clearly be seen théa,,a,),(a,,a,), (a,a,),(a,,a,) are pairs of actions that are
expected to reverse each other.

In the beginning of an experiment, the robot isvited with initial worldsW,,
and W, with reversibility modelfR, and R,;, accordingly (i.e. sets of reversibilities
that hold initially). In these initial worlds therg a single stat&', thus:
Ro={(S.a.5.2,5)(S.a,.5.a,5)(S.a,5.a,5),(S.2,S.2, S
Ry ={(S.,5.8,5).(S.2 S.2,S).(S.a,5.a,,5).(S.2,S.,5)

In these initial worldsW (hemi) metrics and thresholds do not matter, since
there is only one state and distance calculatedrtyy(hemi)metric is 0. This initial

world can be imagined as an environment where rdioes not have any feedback

from the environment — no sensors are used.

!

In these experiments, refined worldé, andW,, with refined reversibility

models accordingly?m' and RQD' are constructed. In these worlds the state vestor
extended with 4 proximity sensor values:

S(dF’dB’dL’dR)’
where d. is a front sensorg, — rear sensord, — left sensor andl; — right sensor.
1D metrics calculations did not involve those siknsors, since they were not

important. A refinement state-functigns a projection returning the single state of the

initial world:

p(S(dF'dB’dL’dR)): S
Thus, sincevSeW’: p(S)=S', new initial reversibility models are:

Ro = 79,5,S W (8,2,5,2,5)(8,2,5,8,5)(S,2,,5,2,5,)(5,2.5,2,,S)|
R = 75,55, €Wao 1(S2,5,2,5,)(S 20, 9,8, S, (5,2, 5,21, 5152, 5,8,,S,)|

During the experiments, failed reversibilities amarked as invalid ones to

prevent the robot to make similar actions thataan be irreversible.
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In the new world new metrics and constants sholdd be defined. In all the

tests conducted,, =, which makes the choice af, irrelevant, in other words,

intermediate state in reversibility tests is totalliscarded. Differentd,,, and d.,,

orig
(hemi)metrics, mostly Manhattan and Euclidean dista, with different constants

£ ande,,, are considered during the experiments, thoughhgraply for Euclidean

orig
distance with constant thresholds are presentdteitest results section of this thesis.
The algorithm for the “Actor” module in these exip@ents is fairly simple:

“Actor” module algorithm

1. Identify current state S,.
2. Select a random A; action from available ones.
3. Query algorithms, if the action A, form state S, should

succeed.

4. Execute the action A;, compare the answers to the real
result.

5. Identify current state (S,,).

6. Select action A,,, a reverse-action for A, . Repeat steps
3 and 4 with S,,, and A,,, instead of S, and A, .

7. Identify current state (S;).

8. Select a random action from available ones and execute it

9. Go to the step 1.

Step 8 is needed for the robot to explore the areand, because without this
step and without any obstacles in a one-step distéime robot would move in the
same very small area for a very long time without exploration. The pattern of robot
movement is clearly suitable for IRR, since it i#s an action and a counter-action
in each cycle.

The diagrams in figure 6 are intended to explaiw liophysically looks like.
Dark grey circle with black borders is the robohieh has actually a form of a circle,
if viewed from the top, thick black lines are boxalis. Dotted lines in the right
diagram show possible positions of the additionall wo limit the area (area to the

right of that additional wall was accessible to tbkot).
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1D actions 2D actions Possible 2D area limitations

Figure 6: Robot moves in 1D/2D experiments andipts&D area setups

It was necessary to feed the algorithms with a datawhere there are a lot of
failed actions, since the area of the full box wage enough for the robot to make
hundreds of steps without touching any walls.

The longest 2D test run made was using the settip gashed additional
border, with a form of a triangle. The problem wsat if there were too many
successful/unsuccessful actions, then it was hatdll, if the algorithm worked fine,
or it was just too optimistic/pessimistic. This dhtaangular area allowed varying
actions’ success rate in a wide range to showttieatesults are not too correlated to
the success rate.

All  compared algorithms, except for RND (random caithm), are
implemented by the same class by using differeatnffmetrics implementations and
joint (prediction) value calculator implementationghis is done on purpose to
minimize possible differences between them andd&enthe comparison as straight as

possible.

4.6.2 Global reversibility experiment

The purpose of this experiment is to study the globversibility. Ideally, if all
the last steps of the sequences, starting froomglesaction sequence, are reversible,
then all those sequences should also be revetsible practice, imprecise mechanics
of a robot or environmental conditions can charnge. t

For example, if a robot has 5% localization erfioeach step and the thresholds
are high enough to accept such errors for a segu@ution, counter-action) to be
marked as reversible, then a ten-action sequenctdirdiah with an error of 100% of
the step length, which is quite a big error to adexs The reason for such error is,
actually, irrelevant, since it can be mechanicalfum&tion or some environmental
influence, like uneven or incline ground/floor. Wi relevant is the ability of a robot

to find a safe area for itself, where it can mowafiently. Thus, this experiment was
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made to back up the suggestion that this safe caede partly identified by a robot
itself, if it travels only along the paths with bkl reversibility under control, i.e. if the
distance between the start and end states of theqaences is less than some
predefined constant using some predefined metric.

For the experiment to be of a reasonable duratbrsequences start from the
same point called “HOME". It is set in one of thexts corners (figure 4 D), where the
robot is placed by hand with ~1-2mm precision atlleginning of each sequence run.
The same set of actions as in 2D local reversjbdkperiments is used and states are
uniquely identified by a sequence of actions thatemmade from “HOME” state to
that particular state. Sensor data is used ontakculate local reversibility for the last
step of a sequence and local reversibility of theol sequence, but not for the
identification of states.

The algorithm tested in this experiment is fairlyngle and intuitively
deductible from the definition of globally recursiveversibility (see diagram in figure
7).
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Figure 7: Algorithm of global reversibility experent
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5 TEST RESULTS

5.1 Local reversibility 1D/2D test results

Charts below represent the success rate of prediédr the algorithms during
every 100 actions. There are 6 different algorithmgshose charts, identified by
following acronyms:

e “RL” - simple reinforcement learning algorithm

e “IRR” —reversibility based algorithm

e “REW” — a modification of “IRR”, that uses rewardgsal instead of
reversibility for prediction

e “RND” —random prediction algorithm

e “RL2" - a modification of RL, that receives the safeedback as IRR

e “REW?2” — a modification of REW, that receives trere feedback as RL

Algorithms RL and REW?2 gain experience with evetgps but algorithms
IRR, REW and RL2 — with every obtained reversipjlite. every 2-3 steps, depending
on the order of actions.

There were several test runs made, but only twgaasented here, one for 1D
and one for 2D. Those runs were chosen, becausedbdhem include periods with
both wheel jamming and normal performance.

Both local reversibility 1D and 2D experiments udedclidean distance as

(hemi)metric for all distance calculations:,, =~ also for both 1D and 2D

experiments. In 1D experimentg,, = 100¢,,=1000. In 2D experiments

orig

& =2200, ¢, =10000 For RL algorithmsae = 0.1

orig
Figure 8 represents success rate of prediction$RBrand RND algorithms.
This is a feasibility check to show that IRR algmm performs significantly better
than RND algorithm. It should also be noted thatdlgorithm reached approximately
80% success rate quite quickly and continued tdoper further this way. The
downward peaks at steps ~1300-1600 (values 13-1& @xis) and ~1700-1800
(values 17 onX axis) show performance of the algorithms duringiqaks, where

wheels were jammed.
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5.1.11IRR vs. RND
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Figure 8: 1D experiment, comparison with randondptgon algorithm
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Figure 9: 2D experiment, comparison with randondptgon algorithm

The test run for the 2D algorithm (figure 9) alswluded a period where
wheels were jammed at steps ~3800-4000 (valueD3®4&K axis). These jamming
areas are clearly identified by two downward peakihe middle of the diagram. The
diagram also shows that learning rate increasedugtly and reached the steady range
of 60-80% by the middle of the diagram, i.e. aft€3000 steps.

5.1.2IRR vs. REW vs. REW2

Figures 10 and 11 show the comparison betweeneirséility-based IRR
algorithm and its reward-based counterparts — REWREW2. REW?2 is very close
to IRR and they differ only in the way the predictiis calculated, i.e. they use exactly
the same states for prediction. The first halfief diagram shows how the algorithms
work during normal robot operation without wheehjaing. This part shows that IRR
algorithm is more successful in its predictiongntREW, but less successful, than
REW2. Superiority of REW2 algorithm over IRR and \REs very logical, since
REW?2 algorithm is fed with 2-3 times more inforneettithan IRR, but the superiority
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of IRR over REW2 was a surprise, this means thahistest run reversibility values
are more relevant than reward signals. REW and REMy@rithms predict failure
while wheels are jammed significantly more sucadbsgfit was not a surprise and the

reason for this is already explained in item 4.3.

:
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Figure 10: 1D experiment, comparison with hybrigioaithms
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Figure 11: 2D experiment, comparison with hybrigioaithms

There is one downward peak in the 2D diagram (&glt) at value 32 ok
axis. Wheels are not actually jammed there, butstheations experienced were new:
the IRR algorithm did not predict any outcome &taald that decreased success rate
heavily. This can also be confirmed by the behaviolithe graphs — all of the
algorithms experienced drops in success rate, wbatirasts with the area, where
wheels were jammed — REW and REW2 algorithms perdéor steadily, but IRR
experienced a significant drop in the successafpeedictions.

5.1.3IRR vs. RL vs. RL2

Figures 12 and 13 show the success rate of predittir IRR, RL and RL2
algorithms. The data of 2D experiments is noismnich is why the algorithm with

less state precision and the same information (Riperforms IRR. This contrasts
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with the worse performance of the REW algorithmiflihs similar to IRR and RL2)
against IRR. The difference between state ideatifbn is clearly a reason here, RL
and RL2 have discrete states. Their whole spade &adivided into 1296 regions,
with not more than 1/3 used during the experiménis very logical that the RL
algorithm outperforms IRR because of 2-3 times niafie fed into it.
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Figure 12: 2D experiment, comparison with RL altjoris
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Figure 13: 2D experiment, comparison with RL algori and its modification

5.2 Global reversibility test results

This section represents the test results of globatrsibility experiments by
visualizing robot motion. Every run started at “HE@M- a big black dot in the upper
left corner of the picture. All endpoints are matkey small dots, the colour of the dot
and the last segment depends on local reversilofithat particular last action of the
sequence — red means that the last action wa®igible, blue means the opposite.

At every step the robot makes a pseudo-random miaepseudo-random
decision either to follow an already known (trigg)th or an unknown path to explore
the neighbourhood. Figure 14 visualises irreveesibéquences of pseudo-random

robot runs. Borders of the box can be clearly ifiedt by just looking at the figure,
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red irreversible ends of sequences show whererscti@re unsafe — when the robot
tried to go through a wall. By marking these acti@s undesirable, like it was done in
the previous experiments would lead to obstacledavwe behaviour. However, due
to the global reversibility introduce here, morengicated behaviour would emerge.
Long blue sequences show that recursively globralgrsible sequences of actions are

not always locally reversible, and thus unsafe.

_l(
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Figure 14: Randomized runs, globally irreversildguences

Figure 15: Randomized runs, globally reversibleuseges
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Figure 15 visualises reversible sequences of theegaseudo-random runs. It
contains mostly short sequences not ending invidks. Though there is one sequence
that ended in the wall, but was locally reversildeyway. There can be two
explanations: either the last action was succesafdl that last action is judged as

irreversible because of noise, or it is just a cigience.

Figure 16: Predefined run #1
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Figure 17: Predefined run #2
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Figure 18: Predefined run #3
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Figures 16-18 visualise 3 test runs for the presefipath approximately along
the wall of the box without any obstacles in theywize. the whole path is supposed to
be safe.

Each figure consists of two subfigures, with logaiéversible sequences of
actions on the left and irreversible ones on tightriGreen and red dots represent
endpoints of locally reversible and irreversiblejsences of actions respectively.
“HOME” is a blue dot in the upper left corner ofchasubfigure. These three runs
show that the robot was able to identify unsafdoreg of the sequences along the
predefined path — it is clearly visible that longections, despite being globally
recursively reversible, are not back-path globatlyersible and cannot be expected to

bring the robot back home.
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6 CONCLUSIONS AND FURTHER WORK

This master thesis validates the idea of usingrsedviéity for developing safe

behaviours for autonomous robots. It shows that:

1.

by applying reversibility models and suppressimgversible actions
the robot develops obstacle avoidance behaviour

by comparing the test results of obstacle avoidamneih
reinforcement leaning algorithms it shows that todot using
reversibility models converges to the obstaclesdarace behaviour
as fast as the robot using the reinforcement Igaralgorithm
especially developed for obstacle avoidance

by applying reversibility models to action sequenaad suppressing
irreversible actions the robot develops safe ndwmigaand obstacle
avoidance behaviour

more generally, it shows that both elementary ampiex
behaviours can be developed using reversibility edand
suppressing irreversible actions

even more generally, it shows that abstract “magpakiciples can be

used to develop robust behaviours for autonomobistso

During research and source code development sontbeofssues were not

solved and scheduled to to-do list, some ideadufiore development were not even

tried out. Below is the list of things to do furthi{@ the close or more distant future):

1.

2.

4.

To introduce a notion of “strong” holding witd, . hemimetric (see item

3.6). Implement it and conduct experiments.

To introduce (and incorporate into the theory) driroéand a threshold) to
measure distance between different actions to allsage of continuous
actions. Implement it and conduct experiments.

Conduct more simulations with many different metramd many different
algorithms to select reversibilities from a setawhilable ones to find the
best ones.

Optimize the source code for faster execution ass$iple real-time usage.
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5. Change the source code to compile on other opgraystems (code
compiles in Visual Studio 2005, but most of the e&as ready or almost
ready for Gnu C++ compiler).

6. Conduct research on higher level of behaviourstandb use the concept
of reversibility in common real-life tasks and expeents.

Certainly, the list is not complete and many otiémngs can be done in the future.
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SUMMARY

This thesis investigates the concept of revergypihs a reason of safe
behaviour. It validates the idea that by suppressireversible actions the robot will
develop safe behaviours. More generally, it ingsggs the idea if concrete safe
behaviours can be developed from abstract prirgiple

This thesis formalizes the approach by defining ersiility models,
developing an algorithm for learning it and defmithe notions of global and local
reversibilites as well as metrics on the sensapadpaces.

Further on, it implements the above mentioned #lyms and validates the
performance on a real robot. The results show tiratrobot develops an obstacle
avoidance behaviour and territorial behaviour bgriéng reversibility models and

suppressing irreversible actions.
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SISUKOKKUVOTE

See magistritdo kasitleb podratavuse printsiipi tkuvaliste kaitumiste eeldust
autonoomsetele robotitele. T60 teema kuulub kagrofbootika valdkonda, mis
Uldiselt tegeleb tehissisteemide isedppimise jagareklisimustega. See magistritdo
testib hipoteesi, et dppides selgeks pooratavusdelid ja valtides podrdumatuid
tegevusi, arenevad robotil vélja turvalised kaitsemal.

Selles magistrito6és formaliseeritakse probleem,indefitakse poodratavus,
globaalne ja lokaalne pdératavus ning pooratavagdel ning esitatakse algoritmid
nende mudelite Bppimiseks. Seejarel testitakse ritige reaalsel robotil ning
vorreldakse nende tulemust traditsiooniliste algudega.

Tulemused néitavad et jalgides pdoratavuse pmmtgiujuneb robotil valja
kaitumine takistuste valtimiseks, mis oma soorituges sarnane traditsiooniliste
algoritmidega, mis on spetsiaalselt mdeldud takistuvéltimise Oppimiseks. Kui
pooratavuse printsiipi rakendada ka tegevuste gdadujuneb peale taksituste
valimise valja ka territoriaalne kaitumine, s.tel@akse need tegevused mille t6ttu
robot ei oska tagasi koju p66érduda.

Katsetulemusi vdib vaadelda kui osalist kinnitust@nkreetseid kaitumisi saab
tuletada Uldistest abstraktsetest printsiipidesttjptoratavuse printsiibi rakendamine
aitab tuletada turvalisi kaitumisi.

Selle magistritod  tulemused vbivad olla kasulikudakendatuna
teenindusrobotitel, kes tdodtavad inimestega kodsnehde laheduses vdi osaliselt

tundmatus ja ebaturvalises keskkonnas.
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APPENDIX A: Source code and test data explanations

The CD, attached to this thesis contains sourcee,ctebt data and some

additional files, like an electronic copy of thiager inDOC andPDF formats as well

as an electronic copy of the article from apperilix

Folder structure of the CD with description of thmst important files and

folders:

File name and place

Description

JuriGavshin.doc

DOC version of this thesis

JuriGavshin.pdf

PDF version of this thesis

\Appendix A

Folder, containing source code and test (

files

\Source Code

Folder, containing implementation souf

code with configuration files

MScDiploma.sin

VisualStudio2005 solution file. This fil
should be opened to compile and run
code.

\Testing

Folder of the Visual Studio 2005 C+

Project with the source code that transfof
test data from the old format to the n

one.

Jata

ce

the

+
ms

W

\TheApplication

Folder of the Visual Studio 2005 C+

Project with the source code th
implements algorithms for experiments a

the framework for testing.

at
nd

\src

Folder, containing source code (.cpp, .h)

\logs

Folder, containing logs and settings

\New Test Data

Folder containing test data in the n

format

\Old Test Data

Folder containing test data in the ¢

format, undocumented

\Appendix B

ICRAO7_0181_FI_50.pdf

PDF version of the article from appendix

B
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Source code explanations

The code is located 8\ppendix A\Source Code\TheApplication\src\

File main.cpp contains 4 functions #ain(), run(), simulate() and
explore(). Functionmain() is the entering point of the application, where af
the other functions is executed. Functigimulate() simulates 1D/2D local
reversibility test runs, functionrun() makes 1D/2D local reversibility test runs and
functionexplore() makes or simulates global reversibility test runs.

ClassCommunicator, defined and implemented in fil&ommunicator.cpp
and Communicator.h, is a proxy to communicate with Khepera |l robatda
implements its most relevant commands available.

Class OpenGL_Display, defined and implemented in files
OpenGL_Display.cpp, OpenGL_DisplayCommon.cpp, OpenG Display.h and
OpenGL_DisplayCommon.h is a utility class, allowing to simply displayfi@irent
objects in 3D space using OpenGL API. This clasplements the functionality to
take care about the entire infrastructure includingdow creation, lightning and fog
setup with mouse and keyboard handling, allowingraawse the 3D space freely. This
class can be sub-classed and the subclass sholyldngulement the execution of
OpenGL commands to draw what is needed to be vesahl

Class PathExplorerVisualiser, defined and implemented in the file
PathExplorer.h, is a subclass of thepenGL_Display class and visualises global
reversibility test runs. The same file also cordaiclass PathExplorer, that
implements the functionality to make and simuldtigl reversibility test runs.

File ShitchBase.hcontainsSwitchBase class, which implements the most
basic “Switch” module functionality — retrieving rsor data from connected
environment and sending action commands while r@yig this communication at
connected “experiences” — proxies for algorithmghmlocal 1D/2D experiments.

File ShitchBaseStruct.h contains classes th&witchBase class operates
with: experience implementation must sub-class #eviromentBase class,
“experience” implementations must subcldsgerienceBase class, sensor data
class must subclasensorDataPackBase<T> class and the action class must be a
subclass oActionPackBase<T> class.

File ShitchDiscrete.hcontainsSwitchDisrete class, which implements the

functionality to deal with discrete choice of acp thus, operating with action
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indexes. This class also implement additional fimetlity for automatic logging of
inter-module communications, with a possibilitydinulate logged history. This file
also contains th&heperalLoggingActor class, that was used to make test runs for
1D/2D experiments. It produced and still producésgydile in the old format.

File ShitchDiscreteStruct.h contains classes th&@witchDiscrete class
operates with: experience implementation clgserienceDiscrete that operates
with discrete actions by their indexes as welkhsperaEnvironment class that is a
proxy for Communicator class mentioned above to communicate with Khepera
robot. It also containkheperaSimulationEnvironment class that can be used to
simulate environment by using output log in the @ddnat to simulate a test run,
though, new log format in conjunction with the siation feature of
SwitchDiscrete class is strongly recommended.

File Irr_Discrete.h contains two classeSrreversibilityPolicy — the
class implementing reversibility ideas, alr_DiscreteExperience — the proxy
class forIrreversibilityPolicy to communicate witlbwitchDiscrete class.
ClassIrreversibilityPolicy does not implement any calculations and does not
select reversibilities itself, but uses so callemhlgulators” to do this (they are
implemented in the fildrr_iscreteStruct.h). This fact allows to use this same class
for all IRR, REW and RL algorithms implementatidng using different ,calculators”

(see functiorsimulate (), where those algorithm implementations are inzéed).

Test data explanations

The test data (i.e. log) files are located/Appendix A\New Test Data\and
\Appendix A\New Test Data\

The first folder contains test data in the new farmglobal reversibility
experiments data in th@lobal subfolder and transformed (from the old formatjada
for 1D/2D local reversibility experiments in thecal subfolder.

The second folder contains test data in the oldn&brfor 1D/2D local

reversibility experiments.
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APPENDIX B: “Don’t Do Things You Can’t Undo:
Reversibility Models for Generating Safe Behavioursarticle
for ICRA’2007 by Maarja Kruusmaa, Juri Gavsin and
Adam Eppendahl.

Next pages contain the article that is an appetadikis thesis.
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