
UNIVERSITY OF TARTU
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science
Computer Science Curriculum

Karl Puusepp

ICD systems' remote control and monitoring
tool for Android

Bachelor’s Thesis (6 ECTS)

Supervisor: Margus Niitsoo, PhD

Tartu 2014

2

ICD systems' remote control and monitoring tool for Android

Abstract:

This thesis describes how an Android application for monitoring and controlling automat-

ed control systems developed using ICD Software’s Control Design Platform was devel-

oped.

Keywords:

Automated control systems, Android, Java

ICD kontrollsüsteemide seire- ja juhtimisrakendus Androidile

Lühikokkuvõte:

Selles bakalaureusetöös kirjeldatakse Androidi mobiilirakenduse loomist, mis võimaldab

ICD Software’i Control Design Platform raamistikuga loodud automaatjuhtimissüsteemide

olekut kuvada ja muuta.

Võtmesõnad:

Automaatjuhtimissüsteemid, Android, Java

3

Table	
 of	
 Contents	

1	
 Introduction ... 4	

2	
 Control Design Platform ... 5	

2.1	
 CDP Overview ... 5	

Overview ... 5	

Example system .. 6	

2.2	
 The need for StudioAPI ... 6	

2.3	
 StudioAPI design ... 8	

WebSocket .. 8	

Protocol Buffers .. 9	

2.4	
 Protocol description ... 9	

The CDP system tree ... 9	

Other features .. 10	

Example ... 11	

2.5	
 Porting StudioAPI to Java .. 11	

3	
 StudioAPI Client in Java ... 12	

3.1	
 Technologies used .. 12	

3.2	
 Library interface ... 12	

3.3	
 Library implementation .. 13	

Threads in StudioAPI .. 14	

Type system limitations .. 15	

4	
 Using StudioAPI in Android ... 17	

4.1	
 Why Android? .. 17	

4.2	
 Choosing an Android version ... 17	

4.3	
 Graphical user interface ... 18	

Android Fragments .. 18	

Design description ... 19	

Fragment lifecycle optimisations .. 20	

Example usage .. 20	

4.4	
 Android framework limitations .. 21	

4.5	
 Future developments .. 22	

5	
 Summary ... 23	

6	
 References ... 24	

License .. 25

4

1 Introduction	

CDP (Control Design Platform) is a framework and middleware layer developed by Nor-

wegian-based ICD Software AS, designed for easily setting up and configuring reliable

high-performance control systems independent of the operating system.

CDP runs a network of interconnected applications and controllers, which interact via real-

time signal transmission and processing. Such systems are deployed marine vessels across

the world, where each controller is responsible for a subsystem of the ship - monitoring

sensors, adjusting hydraulics, logging data, handling user input and so forth.

Over the years CDP has grown into a complex system. Accessing it externally can only be

done via an application already in the network or through a cumbersome web interface,

which limits extensibility and remote servicing. This is the reason why the company is

developing a lightweight, flexible and portable interface called StudioAPI.

The aim of this thesis is to describe this interface and exemplify how it could be imple-

mented and used. The first part of this paper details how the client-side implementation of

this interface is written in a Java library. The second part describes how this library is can

be used for developing a simple proof-of-concept mobile application on the Android plat-

form, which can connect to a CDP system, display its structure and display and change

remote signal values.

5

2 Control	
 Design	
 Platform	

2.1 CDP	
 Overview	

Overview	

CDP (Control Design Platform) is a platform for designing, developing and deploying

automated control systems. It offers a C++ framework, prebuilt libraries for different sig-

nal IO protocols, hardware driver wrappers and various tools for designing systems and

generating code based on those designs. CDP core library acts as a middleware layer

which abstracts OS-specific components like sockets, threads and timers and runs user-

defined components on top.

Systems created using CDP consist of applications (binaries), which can discover and in-

teract with each other over a local network. Application behaviour is described by compo-

nents - state machines that are run by the system at frequencies configurable up to 1000

Hz. Components contain digital signals and properties that can be routed within the appli-

cation as well as across the network.

CDP aims to make creating and configuring reliable distributed control systems as simple

as possible. CDP components are configured almost entirely in XML (eXtensible Markup

Language). While it is possible to build a fully automated system using XML and tools

provided by CDP with almost no C++ knowledge at all, more complex behaviour and cus-

tom components do require writing code [1].

CDP systems do not require any special hardware to run. Applications can be developed

and run on ordinary consumer PC’s either in Windows or Linux (ARM support is current-

ly unofficial), although they require higher privileges for true real-time performance. Inter-

application communication can use standard networking solutions. All this makes devel-

oping custom control systems affordable and easy to learn for most developers.

Although not limited to any specific industrial sector, most ICD Software customers use

CDP in the offshore industries where the performance, reliability and redundancy features

of CDP are important. CDP-driven control systems are installed on marine vessels and are

responsible for navigation, propulsion, tank levelling, anti-roll systems and more. CDP

controls large motion-compensated gangways, cranes and helicopter decks deployed on

ocean-going ships, allowing them to safely operate even in harsh weather conditions [2].

6

Example	
 system	

CDP allows connecting various hardware and software components easily. An example

would be a system servicing a large industrial crane (in later sections, this system will be

used for the purposes of exemplification).

One application (referred to as “Crane” from now on) in the example system has a single

component that processes data from the crane’s hardware sensors and emits the current

absolute crane position as an output signal.

The second application (referred to as “Logger”) has a component which connects to this

signal and calculates it into a relative value, as well as a component managing an SQLite

database which logs this relative value at a configurable interval. This database component

can be used in other components to get an overview of how often the crane spends in a

given position.

2.2 The	
 need	
 for	
 StudioAPI	

StudioAPI is part of an ongoing project to consolidate CDP tools into a powerful IDE (In-

tegrated Development Environment) called CDP Studio which could be used to design,

compile and test an entire control system. For this to work seamlessly, the IDE would have

to interact with a CDP system at runtime, browse its structure, display and plot signal val-

ues, change the configuration etc.

At the time of this writing, there are two solutions that offer graphical interaction with

CDP. The first is through a web page served by a WebServer component within CDP

(Figure 2.1) [1]. This is not a very effective way of communicating real-time data howev-

er, as the repeated client-side polling and web page generation is performance-heavy for

the application. It also has to be manually updated for each new functionality that becomes

available in CDP.

7

Figure 2.1. WebServer interface connected to a CDP Application

The second solution is to use CDP2Qt. This library ships with CDP and allows displaying

various CDP objects like alarms, signals and properties in Qt application framework widg-

ets such as labels and lists (Figure 2.2). This is how GUI front ends have interacted with

CDP thus far - applications run the Qt framework (which handles the user interface) in the

main thread and a full-fledged CDP application in another thread that serves the custom

widgets [3].

Figure 2.2. CDP2Qt widgets demo application that ships with CDP

8

Obviously running a CDP application alongside a fully-featured IDE incurs considerable

overhead, not to mention adding new features to the framework would require creating

new widgets for the IDE, so CDP Studio required a new, reliable, lightweight and flexible

API (Application Programming Interface) for interfacing with any CDP system both local-

ly and over the Internet. StudioAPI was designed to be the new standard “window to

CDP”.

2.3 StudioAPI	
 design	

StudioAPI is a client-server protocol specifically designed by ICD Software for external

access to a CDP system at runtime. The StudioAPI server runs as a regular component in

newer CDP applications, asking the rest of the application for its structure data via a node

data interface that all objects implement. It then serialises the data and sends it to clients,

which are completely independent of CDP and can be written in almost any major pro-

gramming language.

The client-server communication of StudioAPI depends on two key technologies. It uses

WebSocket for transport and Google Protocol Buffers (Protobuf for short) for data de-

scription. WebSocket offers a reliable and lightweight full-duplex channel over a single

TCP connection and Protobuf provides effective and portable serialisation of data.

WebSocket	

WebSocket is a protocol used for bidirectional data transmission over a single TCP con-

nection. It was standardised by the Internet Engineering Task Force in 2011 and is current-

ly implemented in all major web browsers. While it is mainly designed for use in web ap-

plications, it is not limited to this domain and can be used elsewhere [4].

Because WebSocket allows two-way communication, it’s well suited for pushing periodic

updates (such as signal values) or unexpected events (such as alarms) from the server

without the client explicitly having to poll for them. These features are hard to implement

with traditional technologies while maintaining high performance and low overheads.

WebSocket also offers splitting messages over multiple packets and SSL encryption. It’s

these qualities that made it the transport of choice for StudioAPI. StudioAPI server cur-

rently uses an LGPL-licensed WebSocket library called libwebsockets, which is written in

C.

9

Protocol	
 Buffers	

Protocol Buffers are Google’s platform-neutral mechanism for serialising custom data

structures. This data is defined in Protocol Buffers’ own interface description language

(IDL) as messages - classes with required, optional and repeated fields. Google’s protoc

compiler can then generate C++, Java and Python source code based on this description

(many other languages also have third-party support). The generated code turns the mes-

sages into native objects, which can be constructed from and serialised, to binary data.

Protobuf technology has many benefits; the most important are the effective serialisation

of data, easily implementable forwards and backwards-compatibility between different

description versions and very low overhead for optional and repeated message fields [5].

As both WebSocket and Protobuf technologies are open and portable, the client-side im-

plementation of StudioAPI can be written in almost any major language without much

effort. This paper exemplifies the process of writing one such implementation in Java and

demonstrates its usage in an Android mobile application.

2.4 Protocol	
 description	

The main description of the StudioAPI protocol is written in the aforementioned Protobuf

IDL. The initial design was described by ICD Software in 2013. It has seen smaller modi-

fications since then and is not yet finalised at the time of this writing, but the existing prin-

ciples are expected to remain the same.

The	
 CDP	
 system	
 tree	

The protocol maps the hierarchic CDP system structure to a tree of generic nodes (de-

scribed in the PBNode Protobuf message type). A single node can correspond to an entire

application or simply the input routing address of a single integer-type signal. This de-

pends on the node’s type name string and location in the tree. Each node is assigned a

unique ID by the CDP runtime, which is used to identify nodes between server requests

and responses.

The tree structure is polled using these node IDs. The exception is the initial structure re-

quest, which does not specify a node ID (taking advantage of Protobuf messages’ optional

fields feature). A structure response from the server contains the node for which structure

was polled as well as all its immediate child nodes. Further structure can be polled for

each received child node separately via their node IDs.

10

A simplified example of the node tree is in Figure 2.3. Actual CDP systems can have hun-

dreds of thousands of nodes, since every signal has multiple properties and every property

has multiple settings. This means client implementations should limit the depth of struc-

ture polling as much as possible to keep their memory footprint small and limit the server

load.

Figure 2.3. Part of an example node structure for a CDP system.

The initial structure response is almost the same for all applications in the network, mean-

ing that they return a CDP system node (with a node ID of zero) as well as application

nodes for the entire network known to them. Each server also returns any top-level com-

ponents belonging to that application. These are not separate applications but components,

which reside under the root level similarly to applications.

Other	
 features	

For nodes that have a defined value type, single value requests and value change subscrip-

tions can be sent. The protocol encapsulates all 12 possible value types for a node as a

variant value (Table 3.2). This variant also has a timestamp in the form of a double, which

counts the number of seconds from the CDP application’s start time. The variant is

equipped with a node ID and sent as a response to structure requests. Variants can also be

used for setting node values on the client-side.

11

Lastly, the protocol describes a way of subscribing to changes in system structure and how

these events are reported. Subscriptions can be made to any node with a supplied depth. A

depth of zero subscribes to the entire subtree, while a depth of one only subscribes to the

event of the node itself getting deleted. Structure change events are reported as a PBNode

of the new structure along with a timestamp and the author of the change.

Example	

To change the logging interval for the database component described in section 1.1.2, the

client would have to send the following protocol buffer messages to the “Logger” applica-

tion’s StudioAPI server:

1. An empty structure request to get the node ID of the “Logger” application.

2. A structure request for the “Logger” application’s node ID to get the ID’s of its

component nodes.

3. A structure request to the component responsible for the SQLite database to get the

node ID of the logging interval property.

4. A structure request to the component responsible for the SQLite database to get the

node ID of the logging interval property.

2.5 Porting	
 StudioAPI	
 to	
 Java	

StudioAPI enables a whole ecosystem of different clients to interact with CDP. They can

be built in many languages and run on most modern platforms. Java is one of the most

popular platforms in use today, so providing a reference implementation of the client for it

would benefit existing solutions developed by ICD’s customers as well as allow new solu-

tions to be created with little effort.

The following sections detail how this reference implementation was created and used in a

simple mobile application which allows project engineers to get an overview of a CDP

system.

12

3 StudioAPI	
 Client	
 in	
 Java	

The following paragraph describes the principles employed for implementing the Studi-

oAPI client-side protocol in a simple Java library.

3.1 Technologies	
 used	

The first consideration in designing the library was choosing a WebSocket implementa-

tion. There were two important requirements for it:

1. It must be compatible with libwebsockets (written in C) used by StudioAPI server.

2. It must be portable and work in Android as well in any desktop Java environment.

The second requirement turned out to be harder to fulfil than expected. While there are

popular WebSocket implementations for both Android and Java EE separately, the number

of portable options is low. The most solid candidate at the time was a library called Java-

WebSocket, which fit both key requirements.

Apache Maven was chosen as the build automation and dependency management tool.

Maven simplifies build automation considerably, as it uses conventional source and test

folder hierarchies for defining project structure instead of explicit build commands. It’s

also capable of including dependent libraries from the Internet with minimal configura-

tion. In 2013, Maven was the most popular Java build tool according to [6].

Another bonus of Maven is its compatibility with Gradle, the build system used for An-

droid projects, and the fact that both Google Protobuf and Java-WebSocket are already

available in the official Maven repository. This means that Maven can automatically re-

solve those dependencies whenever StudioAPI Java client is included in a Maven or Gra-

dle project.

3.2 Library	
 interface	

The StudioAPI client interface is designed to be as simple to use as possible. The bulk of

the functionality is in two classes:

1. The Client class is responsible for initialising the connection(s) and holding the

root node of the cache.

2. The Node class is the cache storage element. It has accessor methods for all its

main attributes as well as other cached child and parent nodes.

13

Nodes also expose an asynchronous interface for making structure requests and both value

and structure subscriptions. These requests, once resolved, will call a callback that the user

must supply with the request. For structure requests where the data had already been re-

ceived from the server, the request is resolved and user notification will happen instantly,

no data is sent to the servers.

3.3 Library	
 implementation	

As described before, a CDP system’s first-level nodes (CDP Applications) all correspond

to separate connections; therefore it’s the responsibility of the library to hide these as an

implementation detail. As a result, all user requests are either done to the main client in-

stance or to the cached nodes, other public classes and interfaces are mainly used for event

callbacks.

The client caches all the structure data it receives and exposes references to that cache. If

cache data is added or removed, appropriate user callbacks are called. The client avoids

making any requests to nodes that were not explicitly requested by the user, with the ex-

ception of the top-level structure (application and top-level component nodes under a

shared system node), which must be cached first.

The initial WebSocket connection can be opened to any StudioAPI server in a given sys-

tem. This server responds with the top-level structure of its own CDP application, as well

as the root nodes of other applications in the network. These nodes contain connection

parameters that are used to open secondary connections.

Once all connections have been created and the top-level structure has been cached, the

appropriate user callback is called to signal successful client instantiation. The user can

then access the cache and make new requests to the nodes in it.

Internally, each node has a reference to a connection handler that holds a single connection

to an application. When an asynchronous value request, structure request or a subscription

is made to a node, the node forwards it to its responsible handler, which in turn forwards it

for serialization and sending (if the request was valid and the necessary data wasn’t al-

ready cached). The handler creates a pending request object and returns it to the user,

while keeping a reference to it in memory.

If new data is received from a WebSocket connection, it is deserialised and sent to the

responsible connection handler. The handler updates its cache structure and marks any

14

request objects that were expecting the received data as resolved. If the connection that the

handler uses was dropped, it removes the subtree of the general cache that it was manag-

ing and the user is notified that this part of the structure is no longer valid.

Threads	
 in	
 StudioAPI	

The chosen WebSocket implementation, Java-WebSocket, uses threads extensively to

provide non-blocking event-driven IO. Data writes are sent to a concurrent queue, which is

emptied by another thread handling socket writes. Data is received in the WebSocket cli-

ent thread, which calls various user callbacks when events have occurred (Table 3.1).

Table 3.1. Threads used in Java-WebSocket

Thread Usage

Original thread The WebSocket client is created on this thread.

WebSocket events Constantly polls the external server and triggers events.

WebSocket write Pulls data from write queue and sends it to server.

As WebSocket is asynchronous by design, any client-side implementations of StudioAPI

should follow the same principles. This means data is provided to the user in the form of

callbacks that are called from the context of an event loop. A similar design is employed in

many UI frameworks, such as Java Swing GUI framework, the Qt framework as well as

Android itself.

This means that the Java client needs to run its own event processing method. Although it

mainly receives events from Java-WebSocket, it would constrain the API to build it on top

of the limited event callbacks and thread scope of the transport layer. Since the layer

doesn’t offer any “default action” callback to write a custom event loop on top of (in case

events need to be processed but no input has been received from the server), the client

library runs its own event loop in a thread separate from Java-WebSocket.

To help simplify library usage, the main client class both implements the Java Runnable

interface as well as exposes its main event processing method. This means that the client

can be either started in a new thread or, alternatively, the process method can be added to

15

an already existing event loop like the main Looper instance found in Android application

using periodic timers.

Such a design has the benefit of offloading thread synchronisation responsibility to the

user while also making it completely optional. When launching the client in a separate

thread, the user is responsible for writing all event handling into the supplied callbacks,

but running the client from an already existing thread removes the need for thread-safety

mechanisms and requests can be safely made from other methods in the user’s event loop.

Type	
 system	
 limitations	

Although Protocol Buffers are equally supported for both Java and C++ applications, there

are problems with making C++ and Java type systems compatible. For most use cases,

these problems are trivial, but CDP uses templates extensively in internal code and offers

11 different value types for CDP signals and 12 types for CDP properties and CDP set-

tings. Some of these types are not officially supported by Protobuf and many of them are

not supported by Java.

Table 3.2. Corresponding value types in C++, Protobuf and Java

C++ value type in CDP Protobuf equivalent Java equivalent

double double double

float float float

int sint32 int

long long sint64 long

bool boolean boolean

std::string string String

unsigned int uint32 -

unsigned long long uint64 -

16

char - -

unsigned char - -

short - short

unsigned short - -

In the C++ implementation of StudioAPI, all node values are wrapped in a type-safe vari-

ant class which holds a value type identifier (enum), a pointer to the value itself and an

optional timestamp corresponding to how many seconds after application start the value

was assigned. The variant class’ constructor is defined for all 12 supported value types and

the correct enum is deduced implicitly. When setting a value to a node, the variant’s type

identifier is checked against the node’s value type. When sending variants over the net-

work, unsupported value types (signed and unsigned chars and shorts) are safely casted to

larger integer fields.

In Java, many of these value types are not available, meaning variant instances must be

constructed with an explicit type identifier. As setting node values does not happen often

(in contrast to value updates which may happen hundreds of times per second), the library

only permits the user to construct values by supplying the type identifier and a string

which is parsed accordingly. For encapsulating unsigned 16-bit, 32-bit and 64-bit integers

the library follows the same logic as Protobuf - they are represented as their signed coun-

terparts with the top bit stored in the sign bit [8].

17

4 Using	
 StudioAPI	
 in	
 Android	

The created StudioAPI Java client can be used with any standards-conforming implemen-

tation of the Java runtime. This paragraph describes how the library is used in a mobile

application called CDP Remote that displays CDP component structure, lists signals, rich

signals and properties of each component with their latest values and allows setting new

values to them. While it does not take advantage of the full feature set of the library, it can

be a useful tool for monitoring a CDP system remotely and for getting an overview of its

state.

4.1 Why	
 Android?	

Android was chosen as the development platform for two reasons. The first is simply be-

cause the Java implementation can be natively run on Android already. The second con-

sideration is more practical - Android is available on a wide range of hardware. CDP is

mainly used in industrial settings and Android tablets and phones can be purpose-built to

withstand dropping, water or dust.

4.2 Choosing	
 an	
 Android	
 version	

Android is considered to be a much more fragmented ecosystem than its competitors

(Figure 4.1). Although Google’s efforts and time have improved the situation, the problem

still remains. Different versions of Android 2.3 (codenamed Gingerbread) are still used on

19% of all devices, which is a considerable share of the market. However, Gingerbread is

essentially not used on tablets and extending support for it would limit the number of

available toolkit features greatly.

18

Figure 4.1. Google Play Android version statistics over 7 days before March 3rd, 2014 [7].

Android 3.0 (Honeycomb) was the first version of the OS specifically aimed at tablets, but

couldn’t gain any traction on the market. Honeycomb is currently run on only 0.1% of all

devices using Google Play. Android 4.0 (Ice Cream Sandwich) was the first serious at-

tempt to unify the phone and tablet versions of the OS. It introduced a unified UI frame-

work and made it simpler to target multiple devices with a single application. This is also

the reason why it was picked as the lowest targeted version, as CDP Remote should offer a

consistent experience on both tablets and phones, but also run on most hardware currently

available.

4.3 Graphical	
 user	
 interface	

Android	
 Fragments	

The GUI (Graphical User Interface) of CDP Remote follows a simple utilitarian design

and uses Android Fragments for its main view. Fragments were introduced in Android 3.0

(Honeycomb) to help create more flexible and reusable design elements.

In Android, the current view visible on screen generally corresponds to a single Activity -

an object that handles the View drawing and state, as well as transitions to and from other

Activities (which may live in different applications). Fragments allow much of the Activi-

ty behaviour to be extracted into a smaller, separate reusable container. An Activity may

compose of a single Fragment or display multiple Fragments at a time when a larger

screen size permits it.

A general design pattern that uses Fragments is a master-detail view. On smaller devices

(mainly smartphones) it consists of two linked Activities. The first is the master view -

19

usually a list of data elements. Clicking on an item opens a detail view, which displays the

content or detailed data for the element. On larger devices (mainly tablets) the separate

master and detail Fragments are combined into a single Activity. This design makes navi-

gation easier for the user and uses the additional screen real estate in a more optimal man-

ner [9].

Design	
 description	

When starting CDP Remote, an Activity asking for the server address and port is dis-

played. Once the connection has been successfully established, the user is transitioned to a

master-detail view. The master view lists all CDP applications and components in the sys-

tem. Clicking on a component opens the detail view where all properties, signals and rich

signals (otherwise known as CDPSignals) of the Component are listed along with their

most common fields. In a smartphone, these are displayed in a separate Activity. The user

can return to the listing by using the hardware or software “back” button (Figure 4.2). On

a tablet, the two views are combined (Figure 4.3).

Figure 4.2. CDP Remote user interface on a Nexus 4 smartphone.

20

Figure 4.3. CDP Remote on a Nexus 7 tablet computer.

Fragment	
 lifecycle	
 optimisations	

A single active connection to a StudioAPI server can be very taxing to the system with

multiple active value subscriptions sending dozens or even hundreds of TCP packets every

second. Although the StudioAPI Java client already caches all structure information and

most recent values it has received, the API users should also avoid maintaining value sub-

scriptions whenever possible.

The Android framework is heavily event-based and both Activities and Fragments have

lifecycles with appropriate state transition callbacks. When a Fragment goes out of view, it

is destroyed and an appropriate subclass method is called. So every fragment keeps track

of all the values that are asked of it, subscribes to them and unsubscribes once the view

goes out of scope.

Example	
 usage	

When connecting to the system described in section 2.1, the master view lists both “Log-

ging” and “Crane” applications as well as the components under each application. The

user can navigate to the crane hardware component and see the current absolute crane po-

sition changing in real-time in the detail view.

The user can also navigate to the component responsible for SQLite logging and see the

logging interval property. Clicking on the property’s value field will allow the user to set a

new interval value. If multiple users are changing interval, the value updates will be dis-

21

played to both of them. If the SQLite database is nearing a capacity limit, an alarm may be

displayed under the property listing of the component.

4.4 Android	
 framework	
 limitations	

As this was the author’s first foray into Android development, there were some aspects of

the framework that came as a surprise and required awkward workarounds.

Firstly, transitioning from one Activity to another is done through Intents. When some

event occurs which should transition away from the current Activity, the Activity creates

an Intent, sets the class of the new Activity to be transitioned to and packages any addi-

tional data that it wishes to pass on. The event loop later creates an instance of the new

class and calls its creation callback, where the packaged data is available.

However, this data can only be passed on as plain value types or serialised data, meaning

everything is reconstructed in the new Activity and no references are kept. This is obvi-

ously a problem when trying to pass shared objects like open sockets or specific references

to cached tree nodes, both of which are required by StudioAPI, so the recommended solu-

tion is either to inherit from the Application class and store global data there or use static

singleton instances. For the sake of simplicity, the CDP Remote implements the latter.

The second limitation is the lack of a shrink-to-fit functionality for the standard Android

text view. This means that long strings will be broken to multiple lines, sometimes at

completely arbitrary points, and setting the text size from code requires more complex

conditional branching. This was worked around by testing the program on both a

smartphone emulator with a 4.7” display size and a tablet emulator with a 7” display size

and picking a sensible default that suited both of those configurations in portrait and land-

scape orientations.

4.5 Future	
 developments	

At the time of writing this thesis, StudioAPI is still being finalised and communication

between the server and CDP itself has not been fully implemented, so the created Java

library is only as feature-complete as the current protocol and server-side implementation

let it. The next key features for the library and Android app are:

• Support for SSL encryption (already supported by the client and server technolo-

gies used, but not supported in StudioAPI server yet).

• User authentication (not yet defined in the protocol).

• Plotting signal and property value changes on a graph on Android.

• Customisable table views on Android

23

5 Summary	

The purpose of this bachelor’s thesis was to implement the client-side interface for con-

necting to automated control systems developed using the Control Design Platform (CDP)

framework as a Java library and develop a mobile application for the Android platform

called CDP Remote which uses this library.

This thesis details how the StudioAPI protocol abstracts a CDP system’s structure and

what technologies are used by it. It describes how the client library implements this proto-

col, optimises its usage and safely abstracts more complex elements of the type system and

multithreading from the user.

The developed mobile application is a useful tool for getting a general overview of a CDP

system’s state at runtime and tweaking property and signal values. It has a simple graph-

ical user interface which adapts to both smartphones and tablet devices. It is not yet ready

for real-world use however, as the StudioAPI protocol and integration with CDP hasn’t

been finalised.

24

6 References	

[1] ICD Software AS (2014, January) CDP System Manual

[2] ICD Software AS, Cases. [Online].

http://www.icdsoftware.no/products/cases (04.05.2014)

[3] ICD Software AS, CDP2Qt V3.5.0.0 User Manual (2013)

[4] Internet Engineering Task Force (2011, December) RFC 6455 - The WebSocket Proto-

col. [Online].

http://tools.ietf.org/html/rfc6455

[5] Google Developers (2012, April) Developer Guide - Protocol Buffers. [Online].

https://developers.google.com/protocol-buffers/docs/overview

[6] RebelLabs (2014, January) Java build tools. [Online].

http://zeroturnaround.com/rebellabs/java-build-tools-part-2-a-decision-makers-

comparison-of-maven-gradle-and-ant-ivy/

[7] Android Developers (2014, April) Dashboards. [Online].

http://developer.android.com/about/dashboards/index.html

[8] Google Developers (2014, April) Language Guide - Protocol Buffers. [Online].

https://developers.google.com/protocol-buffers/docs/proto

[9] Android Developers, Supporting Tablets and Handsets. [Online].

http://developer.android.com/guide/practices/tablets-and-handsets.html (27.04.2014)

25

License	

Non-exclusive licence to reproduce thesis and make thesis public

I, Karl Puusepp (date of birth: 09.04.1992),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,
including via the DSpace digital archives until expiry of the term of validity of
the copyright,

of my thesis

ICD systems' remote control and monitoring tool for Android,

supervised by Margus Niitsoo,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 14.05.2014

