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INTRODUCTION 
 
The most multifunctional molecules in the living cells are proteins. Proteins can 
have numerous functions, participating in cellular enzymatic catalysis, trans-
port, storage, protecting, building molecules etc. Cellular homeostasis as well as 
any kind of metabolic reconstitution directly depends on the activity of proteins. 
Both production of proteins and regulation of their activity are tightly 
controlled.  

A recurring motif in cellular control systems is regulation of protein function 
via its interaction with a small regulatory molecule. On the following pages I 
shall discuss two examples of such regulation. First is regulation of the trans-
lational GTPases IF2, EF-G and Hbs1 via their interactions with G nucleotides: 
GDP, GDP and, in the case of IF2 and EF-G, the stringent response alarmone 
ppGpp. The second part of the thesis is devoted to my investigations of the 
Escherichia coli stringent response enzyme RelA regulation by its product, 
ppGpp. 
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REVIEW OF LITERATURE 
 

1. Regulation of protein function via regulation  
of protein structure 

Proteins are highly flexible molecules, in principle able to attain astronomical 
numbers of various conformations but somehow managing to fold into the 
functional, native structure; a phenomenon referred to as ‘Levinthal’s paradox’ 
(Levinthal, 1969). The native, active state represents a sub-set of possible 
protein structures residing on the bottom of the ‘folding tunnel’ – an energy 
landscape relating protein conformation to its potential energy (Fig. 1).   
 

 
 
Figure 1. The protein folding energy landscape. The surface represents multitudes of 
conformations “funneling” towards the native state via formation of intramolecular 
contacts. Figure is adapted from (Jahn, 2005) with modifications.  
 
 
In recent years numerous theoretical (Daily & Gray, 2007; Weinkam et al, 
2012) and experimental (Popovych et al, 2006; Volkman et al, 2001) 
investigations have started uncovering how the geometry of the folding tunnel is 
exploited by the protein-binding ligands to regulate protein structure, and, 
therefore, activity. One of specific case of such regulation of protein function by 
ligands is so-called allosteric regulation, from Greek allos (ἄλλος), “other”, 
and stereos (στερεὀς), “solid (object)”. It is a mechanism of enzyme regulation 
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effected via binding of a ligand to a region which is reported as non-overlapping 
and stereochemically remote from the active site. With recent advances, several 
general features of ligand-mediated regulation of proteins have become in-
creasingly evident.  

First, rather than by inducing a novel protein conformation, absent in the 
structural ensemble of ligand-free proteins, protein ligands exert their regulatory 
role via “conformational selection” by shifting the distribution between several 
discrete pre-existing conformations (Fig. 2) (del Sol et al, 2009). Recent 
development of the experimental techniques able to follow protein dynamics 
with sufficient temporal and structural resolution, such as NMR (Kalodimos, 
2011), or Small Angle X-ray Scattering (Fetler et al, 2007) was instrumental for 
demonstrating this mechanism. 

 
 

 
 

Figure 2. Mechanism of conformational selection upon the biding of ligand. Pre-
existing distribution of protein conformations is altered by biding of the substrate, 
driving the ensemble to one predominant conformation. Since different conformations 
have different functional activity, conformational selection leads to change in the 
activity of the protein ensemble as a whole. 
 
 
The conformational selection mechanism is in remarkable agreement with so 
called  “MCW” model for allosteric regulation that was proposed in 1965 by 
Monod, Wyman and Changeux (thus the name MCW) (Monod et al, 1965). It 
described allostericaly regulated proteins as being in an equilibrium between the 
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two differing in activity conformations, referred as T and R (T, taut and R, 
relaxed). Binding of the allosteric regulator was postulated to shift the distri-
bution between the T and R, resulting in change of the protein activity overall. 
Despite the simplification postulating existence of the protein in only two rather 
than multiple conformations, the MCW model often captures the essence of the 
ligand-induced regulation (Changeux, 2012).  

Second, allosteric regulation does not necessarily work via changes in the 
protein structure per se – surprisingly, efficient regulation is possible without 
changing the average structure of the protein ensemble (Tsai et al, 2008). The 
mechanism in play relies on the ligand-induced changes in so called vibrational 
activity, mostly represented by protein side-chain mobility, inducing its 
regulatory effects via alterations in the protein’s entropy (Popovych et al, 2006). 
Therefore one should be cautious when interpreting allosteric regulation using 
static snapshots of protein conformations captured by x-ray investigations.  

Linking the structural information with enzyme activity assays via muta-
tional analysis and quantum mechanics & molecular dynamics simulations 
brings the protein structures to life.  

 
 

2. GTPases: function and structure  

2.1. GTPase functional cycle and its regulation 

GTPases are a large and broadly distributed group of proteins separated into 
three main sub-families: small GTPases involved in cellular differentiation and 
growth (Paduch et al, 2001), translational GTPases (trGTPases) involved in 
protein biosynthesis (Margus et al, 2007) and multisubunit G-proteins which are 
mediating signal transduction (Simon et al, 1991).  

The main characteristic feature of GTPases is their ability to bind and 
hydrolyze the GTP nucleotide to GDP. This conversion of the bound G nucleo-
tide in turn is translated into the conformational changes in the protein, and in 
the simplified, MCW-inspired scheme GTPases are assumed to toggle between 
the two conformations, inactive GDP- (D) and active GTP- (T) bound (Bourne 
et al, 1991). The apo (nucleotide unbound) state is usually treated as functio-
nally identical with to the GDP-bound D state, and indeed, x-ray structures of 
these two states are often very similar. Transitions between the T and D 
conformations are regulated by several mechanisms (Fig. 3).  
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Figure 3. A GTPase’s functional cycle. Stabilization effect of GDI is represented with 
wavy arrows.  
 
 
First, the intrinsic ability of a GTPase to hydrolyze triphosphate is very low and 
is strongly activated by the GTPase activation proteins (GAPs) (Siderovski & 
Willard, 2005). Second, Guanine nucleotide exchange factors (GEFs) promote 
the exchange of GDP to GTP, driving a higher affinity of GTP to the 
nucleotide-free protein and stabilizing this transition state or increasing the rates 
of nucleotides dissociation and further exchange and preparing the protein for 
another round in active T form (Cherfils & Chardin, 1999). Third, guanine 
nucleotide dissociation inhibitors (GDI) prevents G nucleotides dissociation 
from GTPase, thus stabilizing both the GTPase:GTP and GTPase:GDP comple-
xes (Siderovski & Willard, 2005). 
 
 

2.2. Structure of the G domain 

All members of the GTPase family share a structurally and functionally con-
served G-domain, differing markedly in their repertoire of auxiliary domains. 
Small GTPases, such as Ras, consist of just one domain. Translational GTPases, 
on the other hand, contain up to 5 domains, and receptor G-proteins can be even 
more complex. However, despite of significant difference in secondary and 
tertiary structures, they share a highly conserved core – 166–168 residues 
nucleotide binding construct or G domain.  
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Figure 4. Topology diagram of the G domain. β-strands B1-B6 are in green, α-helices 
A1-A5 in red, G1-G5 motifs and N and C termini as indicated. Picture is adopted from 
(Wittinghofer & Vetter, 2011). 
 
 
The G domain consists of α-helices (A1–A5) and β-sheets (B1–B6) intercon-
nected with each other via highly conserved loops (Dever et al, 1987) (Fig. 4). 
The main contribution in nucleotides recognition and binding comes from the 
loop elements. Non-discriminating binding to G nucleotides is mediated by G1 
conserved sequence motif together with flanking regions of A1 and B1 (so 
called P loop) chelating the α- and β-phosphates. G4 and G5 motifs are 
interacting with the guanine base. Discrimination between di- and triphosphate 
guanine nucleotides is achieved by the G2 (or Switch I) and G3 with the part of 
A3 (or Switch II) motifs which Mg2+-dependently bind the γ-phosphate. These 
two elements undergo significant conformational changes upon GTP/GDP 
binding, fuelling the GTPase’s conformational ‘switching’ (Sprang, 1997). 
 
 

3. Role of translational GTPases  
in the functional cycle of bacterial ribosome 

In silico searches of bacterial genomes have identified nine subfamilies of trans-
lational GTPases in bacteria: EF-G, EF-Tu, IF2, RF3, SelB, Tet, TypA/BipA, 
LepA and CysN/NodQ (Margus et al, 2007). Out of these, three – elongation 
factors EF-Tu and EF-G, and initiation factor IF2 – are universal across all life, 
indicating that they are indispensable for the bacterial, eukaryotic and archaeal 
cell. Indeed, these factors facilitate the four basic steps of translation: initiation, 
elongation, termination and ribosomal recycling (Fig. 5).  
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Figure 5. Schematic view of bacterial translation.  Key steps of translation are shown 
as solid arrows and numbers from 1 to 8. 1 – formation of 30S initiation complex 
containing small ribosomal subunit (30S), mRNA, initiation factors IF1 (light pink), IF2 
(violet) in complex with GTP and IF3 (orange) and initiator fMet-tRNAi (green). 2 – 
joining of 50S subunit and formation of 70S initiation complex containing mRNA and 
initiator fMet-tRNAi in the P-site with subsequent GTP hydrolysis by IF2 and release of 
all initiation factors. IF2:GDP complex is shown in violet with grey ball. Inorganic 
phosphate is shown as yellow ball. Elongation cycle is represented by 3 – 5 stages. 3 
stands for aa-tRNA delivery by EF-Tu in complex with GTP (blue with red ball) to the 
ribosomal A-site and EF-Tu:GDP dissociation after codon-anticodon cognition 
followed by transpeptidation. 4 to 5 stages represents translocation with participation of 
EF-G:GTP complex (light blue) and subsequent post-translocation complex formation 
with peptidyl tRNA in P-site, deacylated tRNA in E-site and free A-site. 6 – association 
of releasing factors complex RF1/2:RF3:GTP (red and yellow) in respect to the 
presence of stop codon in A-site. 7 – nascent polypeptide (multicolor chain) and E-site 
tRNA (green) release and incorporation of RRF (light green) and EF-G:GTP complex 
catalyzing splitting the ribosome into two subunits – 8.   
 
 

3.1. Initiation: IF2 

During the initiation step mRNA is loaded on the ribosome and the initiator 
codon is recognized by the P-site incorporated initiator tRNA (fMet-tRNAi) 
(Milon & Rodnina, 2012). In bacteria this process is facilitated by several 
initiation factors. Initiation Factor 3 (IF3) prevents non-productive subunit joining 
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and contributes to selection of the correct initiator tRNA (Antoun et al, 2006a; 
Antoun et al, 2006b). Selection of the cognate tRNA and initiator codon is aided 
by another initiation factor, IF1 (Antoun et al, 2006a; Antoun et al, 2006b). Both 
of these factors exert their roles by interacting with translational GTPase IF2.  

The GTPase cycle of IF2 drives its function during translation initiation. IF2 
achieves its functionally active form via interactions with initiator tRNA, GTP,  
and – to a much lesser extent – GDP (Pavlov et al, 2011). Several lines of evidence 
suggest that this conformational change, rather than hydrolysis of GTP per se is 
necessary for IF2 to perform its function (Antoun et al, 2003; Pavlov et al, 2011), 
perhaps the most striking being recent a report documenting that an IF2 mutant 
incapable of GTP hydrolysis still supports E. coli viability (Fabbretti et al, 2012).  

After assembly of the ribosomal initiation complex programmed with 
mRNA and P- (Peptidyl) site fMet-tRNAi and subsequent release of initiation 
factors 1 and 3, the ribosome is ready to accept an aminoacylated tRNA into its 
free A- (Aminoacyl) site to form first peptide bond. Recent single-molecule 
investigations demonstrated an overlap between IF2 dissociation and binding of 
the elongator tRNA in the complex with EF-Tu GTPase, somewhat blurring the 
linear perspective of the ribosomal cycle (Tsai et al, 2012). 

 
 

3.2. Elongation: EF-G and EF-Tu  

During the elongation stage the polypeptide chain grows by one amino acid at 
time, with amino acids being delivered in a ternary complex consisting of 
aminoacyl-tRNA (aa-tRNA) bound to elongation factor Tu (EF-Tu) with GTP. 
Complementarity between the mRNA codon triplet in the A-site and anticodon 
sequence in aa-tRNA acts as a signal for GTP hydrolysis by EF-Tu, leading to 
release of the GTPase in the GDP form. GTP hydrolysis by EF-Tu acts as an 
irreversible step during the decoding process, increasing the overall accuracy of 
the process by means of proofreading (Thompson & Stone, 1977; Wohlgemuth 
et al, 2011). Binding of GTP to EF-Tu is strongly stimulated by formation of 
the EF-Tu:aa-tRNA complex, and a specialized GEF, EF-Ts catalyzes the GDP 
to GTP exchange reaction (Gromadski et al, 2002; Ruusala et al, 1982). After 
accommodation on the ribosome, the A-site aa-tRNA engages in the trans-
peptidation reaction with the P-site tRNA, resulting in a polypeptide-tRNA 
situated in the A-site and deacylated tRNA in the P-site.  

Next, the ribosome completes the elongation cycle by moving one codon 
along the mRNA, relocating the peptidyl-tRNA into the P-site and deacylated 
tRNA into the E- (Exit) site. This process – translocation – in bacteria is cata-
lyzed by elongation factor G (EF-G). Translocation was extensively studied 
over the last decades, and is in general well-understood (Rodnina & Winter-
meyer, 2011). GDP purified from traces of GTP by monoQ ion exchange 
chromatography fails to stimulate productive EF-G-catalyzed translocation, 
suggesting that GTP hydrolysis but not just the conformational change is 
required (Ermolenko & Noller, 2011; Pan et al, 2007; Spiegel et al, 2007; 
Zavialov et al, 2005a). 
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3.3. Termination: RF3 

Translation termination occurs when the ribosome arrives at a so-called stop 
codon (UAA, UAG or UGA). Instead of the aa-tRNA, these codons are 
recognized by class-1 termination factors. In bacteria UAG is recognized by 
release factor 1 (RF1), UGA triplet is recognized by release factor 2 (RF2) and 
UAA can be read by both (Scolnick et al, 1968). Upon recognizing the stop 
codon, class-1 factors induce hydrolysis of the peptidyl-tRNA, thus releasing the 
nascent polypeptide from the ribosome. Bacterial class-2 termination factor RF3 
is a GTPase which accelerates removal of the class-1 factors from the ribosome 
(Freistroffer et al, 1997). RF3 is not essential for bacterial viability (Grentzmann 
et al, 1994) and is far from universal (Margus et al, 2007), suggesting that its role 
in translation termination is auxiliary. In line with that, recent experiments 
suggested that the main role of RF3 is not in translation termination, but rather in 
protein quality control (Zaher & Green, 2009; Zaher & Green, 2011). 

In eukaryotes, translation termination is governed by a pair of factors – eRF1 
and eRF3 – that are non-orthologous to the bacterial termination factors 
(Atkinson et al, 2008). The class-1 factor, eRF1 recognizes all the three 
termination codons (Frolova et al, 1994), and the class-2 factor, eRF3, is a 
translational GTPase assisting eRF1 (Alkalaeva et al, 2006; Zhouravleva et al, 
1995). Unlike their bacterial counterparts, eRF1 and eRF3 form a tight complex 
off the ribosome (Zhouravleva et al, 1995), and formation of the complex 
promotes the GTP binding to eRF3 (Hauryliuk et al, 2006; Mitkevich et al, 
2006; Pisareva et al, 2006). Detailed kinetic analysis reveals that eRF3 acts as 
GDI, dramatically reducing the GTP dissociation rate from eRF3 (Pisareva et al, 
2006), and thus promoting formation of the eRF1:eRF3:GTP ternary complex. 

In addition to termination, eRF1 and eRF3 are involved in Nonsense-
Mediated mRNA Decay, NMD – degradation of the mRNAs containing in-
frame premature stop codons (Kobayashi et al, 2004). Their homologues 
Dom34 and Hbs1 mediate another quality control mechanism, No-Go Decay 
(Doma & Parker, 2006). NGD degradation happens to mRNA found in complex 
with a ribosome stalled at structural obstructions like irresistible hairpins, stem 
loops or more complicated elements. Just like eRF1 and eRF3, Dom34 and 
Hbs1 form a ternary complex, with Dom34 promoting GTP binding to the Hbs1 
GTPase (Graille et al, 2008). 

 
 

3.4. Ribosome recycling: EF-G 

After translation termination and polypeptide release, the ribosome is split into 
subunits during the so-called ribosomal recycling step (Hirokawa et al, 2006; 
Jackson et al, 2012). In bacteria ribosomal recycling is orchestrated by three 
factors: specialized ribosomal recycling factor, RRF, (Ishitsuka & Kaji, 1970) 
together with EF-G splits the ribosome into subunits (Zavialov et al, 2005b), 
and initiation factor 3 prevents subsequent re-association and induces dis-
sociation of the mRNA (Peske et al, 2005).  
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3.5. Ribosomal elements regulating translational GTPases 

All translational GTPases bind to the ribosome in the same region in the vicinity 
of the A-site. This binding region consists of part of 23S rRNA domain II, part 
of domain VI (the sarcin-ricin loop), proteins L10, L11 and L7/L12. Numerous 
structural and biochemical investigations over the years have identified the key 
players involved in ribosome-mediated regulation of GTPase activity.  

Ribosomal protein L7/L12 is believed to act as a baseball glove catching 
trGTPases and delivering them to the ribosome (Diaconu et al, 2005). Over the 
years it was first suggested to act as a GAP for trGTPases (Mohr et al, 2002), or 
ribosomal element controlling phosphate release after the GTP hydrolysis 
(Savelsbergh et al, 2005). The ribosomal rRNA region referred to as the sarcin-
ricin loop (SRL) forms extensive contacts with trGTPases (Gao et al, 2009) and 
was suggested to be directly involved in GTPase activation (Clementi et al, 
2010). However, this point of view was recently challenged, and SRL was 
suggested to act merely as an anchoring point for trGTPase binding (Chan & 
Wool, 2008; Shi et al, 2012). In vitro investigations using EF-G and  an RNA 
oligonucleotide mimicking SRL demonstrated that complex formation between 
these two components is strongly inhibited in the presence of GDP, suggesting 
that SRL could potentially play a role in discrimination by the ribosome 
between EF-G:GDP and EF-G:GTP (Munishkin & Wool, 1997). Ribosomal 
protein L11 is associated with the rRNA region called the thiostrepton loop, and 
the interaction between L11 and trGTPases is affected by the binding of the 
antibiotic thiostrepton (Harms et al, 2008). This results in destabilization of the 
70S:trGTPase complex, leading to inhibition of translation (Walter et al, 2012). 
In addition to its importance for regulation of trGTPases, L11 is crucial for 
function of the stringent response factor RelA (Smith et al, 1978) (see below). 
Although the exact mechanisms of GTPase activation are still unknown, it is 
apparent that both rRNA and proteins seem to work in collaboration to facilitate 
positioning of the factors relative to other ribosomal components, thereby 
contributing to catalysis, and stabilization of the active conformation of factors. 
The requirement for multiple signals for GTPase activity stimulation such as 
contacts with L7/L12, SRL, and L11 may help to avoid premature GTP 
hydrolysis during initial factor binding.  
 
 

4. The stringent response 

Bacterial cells sense tightly controlled intracellular nucleotide concentrations. 
Concentrations of ‘general use’ nucleotides can act as triggers of physiological 
responses, e.g. decrease in GTP concentration induces sporulation (Lopez et al, 
1981) and genetic competence (Inaoka & Ochi, 2002) in Bacillus subtilis. In 
addition to sensing the ‘general’ nucleotides, several nucleotides are utilized in 
bacteria specifically as intracellular messengers (Pesavento & Hengge, 2009). 
Cyclic AMP (c-AMP), interacting with multiple target proteins possessing a 
cAMP Receptor Protein (CRP) domain regulates transcription of numerous 



 19

catabolic pathways, flagellum biosynthesis, biofilm formation, and virulence 
(McDonough & Rodriguez, 2012). Cyclic di-GMP (c-di-GMP) is bound by 
several different sensory domains and acts as an allosteric regulator of enzyme 
function (Amikam & Galperin, 2006), modulator of transcription factor activity 
(Sudarsan et al, 2008) and localized proteolysis (Duerig et al, 2009). 

Two highly-charged G nucleotides, dubbed magic spot I and II (MSI and 
MSII) were identified in E. coli during amino acid starvation (Cashel & Gallant, 
1969). Subsequent analyses showed that these compounds are produced during 
the idling step of protein biosynthesis (Haseltine et al, 1972) and are formed by 
addition of two extra phosphate groups to GDP and GTP at the 3’ position, with 
ATP acting as a donor of the diphosphate group (Sy & Lipmann, 1973) MS1 
and MS2 (or ppGpp and pppGpp) are mediators of the stringent response, a 
global regulatory mechanism in bacteria.  

 
 

 
 

Fig. 6. Synthesis of ppGpp. Guanosine tetraphosphate (in red) is formed by 
phosphotransferases from ATP and GDP nucleotides. Guanosine pentaphosphate, 
pppGpp, is formed from ATP and GTP instead of GDP. 
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4.1. RSH proteins 

In the broadest definition, the stringent response is a regulatory mechanism 
mediated by changes in the intracellular concentrations of ppGpp and pppGpp 
(Potrykus & Cashel, 2008). There are several proteins involved in both 
synthesis and degradation of these nucleotides. Historically, the first proteins to 
be discovered are E. coli RelA (Stent & Brenner, 1961) and SpoT (Laffler & 
Gallant, 1974). These two gave the name to the protein family, RelA-SpoT 
Homologue, RSH (Atkinson et al, 2011; Mittenhuber, 2001). 

RelA has a strong, ribosome-dependent ppGpp synthetic activity (Haseltine 
et al, 1972). Its catalytic cycle is tightly regulated by the ribosome’s functional 
state: by inspecting the CCA’ end of the A-site tRNA, RelA reads the 
translational status of the cell and converts this signal into the rate of the 
production of the messenger nucleotide ppGpp (Haseltine et al, 1972; Wendrich 
et al, 2002). Deacylated A-site tRNA acts as a strong activator of ppGpp 
production, and active translation acts as a strong inhibitor of RelA (Haseltine et 
al, 1972).  

Despite almost forty years of research, our understanding of the mechanistic 
details of the RelA cycle is still quite limited. First is the lack of structural 
information. We lack a full length x-ray structure of RelA, nor do we have a 
cryoEM reconstruction of the ribosome-bound protein. Our understanding of 
the RelA:70S topology is mainly based on papers mapping the RelA binding 
site using competition experiments with other translational factors (Richter et al, 
1975) or investigating which of the ribosomal proteins can activate RelA in 
vitro (Richter et al, 1975). It is clear that RelA binds to the large subunit 
(Ramagopal & Davis, 1974), and the L11 ribosomal protein is one of the key 
components of the ribosome necessary for RelA activation, since it can activate 
RelA in the absence of the ribosome (Jenvert & Schiavone, 2007) and 
disruption of the L11 gene results in compromised stringent response, so-called 
‘relaxed phenotype’ (Smith et al, 1978). Second, due to an absence of 
comprehensive biochemical investigations, even the basic mechanism of the 
RelA active cycle is a matter of debate. According to the ‘hopping model’ 
backed up by in vitro biochemical data, RelA synthesizes one ppGpp molecule 
while in complex with the ribosome, the act of ppGpp production dislodges 
RelA from the ribosome and then it ‘hops’ to the next ribosome, this way 
sampling the whole ribosomal population (Wendrich et al, 2002). Alternatively, 
according to the ‘extended hopping model’ based on in vivo single molecule 
investigations, multiple rounds of ppGpp production are performed by RelA off 
the ribosome, and only transient binding to the ribosome with deacylated tRNA 
in the A-site is necessary to convert RelA into the catalytically active form 
(English et al, 2011). Clearly, further experiments are required to reach a 
coherent understanding of the RelA mechanism. 

SpoT has both weak synthetic and strong ppGpp hydrolytic activities (An et 
al, 1979; Xiao et al, 1991). The synthetic activity of SpoT is activated by 
numerous stresses, e.g. limitation of iron (Vinella et al, 2005) and fatty acids 
(Battesti & Bouveret, 2006). Detailed in vitro investigations of SpoT’s 
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mechanism are largely hindered by difficulties with purification of the protein, 
and most of what we know about it comes from in vivo experiments used to 
identify the stress conditions inducing SpoT activity, determine the interaction 
partners (Battesti & Bouveret, 2006) and to map different activities on the 
protein’s primary sequence (Angelini et al, 2012; Xiao et al, 1991). 

Both RelA and SpoT are products of duplication and divergence of the 
ancestral bifunctional, ribosome-dependent Rel protein (Atkinson et al, 2011; 
Mittenhuber, 2001) (Fig. 7). 

Rel proteins from Mycobacterium tuberculosis and its non-pathogenic 
relatives have been quite extensively investigated in vitro (Avarbock et al, 
2005; Avarbock et al, 2000; Jain et al, 2007; Sajish et al, 2009), and a 
crystallographic structure is available for truncated Rel from Streptococcus 
dysgalactiae subsp. equisimilis (Hogg et al, 2004). Just like RelA, Rel’s 
synthetic activity is strongly activated by the ribosome, with deacylated A-site 
tRNA acting as an ultimate inducer (Avarbock et al, 2000). An inter-domain 
auto-inhibitory cross-talk was suggested to regulate Rel activity (Jain et al, 
2007), similarly to RelA (Mechold et al, 2002). This inbuilt auto-inhibition was 
suggested to work as an internal timer for switching the activated RelA after 
dissociation from the ribosome during prolonged ‘hops’ (English et al, 2011).  

 
 

 
 
Figure 7. Schematic diagram for the evolution of long RSHs in bacteria. Thick gray 
branches indicate the divergence of bacterial groups, while the inner line shows the 
divergence of long RSH proteins and their functionality, as per the inset box. 
Reproduced with permission from (Atkinson, Tenson et al. 2011).  
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In addition to ‘long’ RSHs (RelA, Rel and SpoT) numerous ‘short’ RSHs have 
been discovered recently (Lemos et al, 2007; Murdeshwar & Chatterji, 2012). 
These proteins are monofunctional, i.e. have only synthetic or hydrolytic 
activity, and are considerably smaller, containing no ribosome-binding domains. 
Rarely, they can contain additional domains, such as RNAse (Murdeshwar & 
Chatterji, 2012). 
 
 

4.2. Targets of ppGpp  

The main molecular target of ppGpp is RNA polymerase (Reddy et al, 1995). 
However, despite almost forty years of research, the exact molecular 
mechanism of ppGpp-mediated regulation of RNA polymerase and the location 
of the ppGpp-binding site are still a matter of debate (Vrentas et al, 2008). In E. 
coli, binding of ppGpp and auxiliary factor DksA to the polymerase changes its 
specificity, down-regulating transcription of rRNA (Murray et al, 2003) as well 
as of genes coding for ribosomal proteins (Lemke et al, 2011), while activating 
transcription of genes involved in amino acid biosynthesis (Paul et al, 2005). 
Conversion of GTP to ppGpp during the stringent response results in a decrease 
in the GTP concentration, affecting transcription of mRNAs using G as an 
initiator nucleotide – an effect which works together with ppGpp-mediated 
regulation in E. coli (Murray et al, 2003), and is the sole regulatory mechanism 
in Bacillus subtilis, since B. subtilis RNA polymerase is insensitive to ppGpp 
(Krasny & Gourse, 2004). Numerous global transcriptome analyses of ppGpp-
mediated regulation of the transcriptional program both in E. coli and other 
organisms, reveal global regulatory effects on cellular metabolism (Traxler et 
al, 2006; Traxler et al, 2011; Vercruysse et al, 2011), as well as specific regu-
latory pathways, such as regulation of antibiotics production in Streptomyces 
coelicolor  (Hesketh et al, 2007). 

Regulation of transcription is not the only regulatory pathway exploited by 
ppGpp (Dalebroux & Swanson, 2012). Several other targets of ppGpp have 
been identified over the years: translational GTPases (Legault et al, 1972), DNA 
primase (Wang et al, 2007), polynucleotide phosphorylase (Gatewood & Jones, 
2010) and lysine decarboxylase (Kanjee et al, 2011) to name a few. Therefore it 
is no surprise that the stringent response is involved in regulation of bacterial 
virulence (Dalebroux et al, 2010), antibiotic tolerance (Nguyen et al, 2011), the 
bacterial cell cycle (Ferullo & Lovett, 2008) and biofilm formation (He et al, 
2012). Therefore control of the stringent response is potentially a very powerful 
tool, with both biotechnological (Hoffmann & Rinas, 2004) and medical 
(Wexselblatt et al, 2010) applications. 
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RESULTS AND DISCUSSION 
 

Aims of the study 

In this thesis I have investigated by means of in vitro experimentation several 
cases of molecular regulation by nucleotides. The specific questions addressed 
in this work are: 
 

 What are the affinities of E. coli translational GTPases IF2 and EF-G to 
GTP, GDP and ppGpp? (Papers I, II) 

 Is there an interplay among G nucleotide and initiator tRNA binding to IF2? 
(Paper II) 

 What is the interplay among G nucleotide and SRL of  rRNA binding to IF2 
and EF-G? (Paper V) 

 How does complex formation between Hbs1 and Dom34 affect the kinetics 
of GTP dissociation from Hbs1? (Paper III) 

 Is there a regulatory effect of ppGpp on E. coli stringent response enzyme 
RelA? (Paper IV) 

 
 

Regulation of translational GTPases  
by G nucleotides and other ligands 

1.1 Binding of G nucleotides and initiator tRNA  
to IF2 are independent 

A powerful method for investigation of interactions in vitro is Isothermal 
Titration Calorimetry (ITC) (Ghai et al, 2012). There are several benefits of this 
method. First, one can use natural, non-labeled substrates. Second, it provides 
full thermodynamic characterization of the system, determining directly the heat 
that is absorbed or generated during any binding reaction. This parameter, 
which is proportional to the enthalpy of binding (∆H) is used to calculate the 
rest of thermodynamic values such as entropy (ΔS) and Gibbs free energy (ΔG) 
from the following equation  

 
ΔG = ΔH-TΔS = – RTlnKa    (1) 

 
(where R is the gas constant and T is the absolute temperature). The association 
constant (Ka) and reaction stoichometry (n) can be calculated as well providing 
a full set of data for thermodynamic profiling of binding in a single experiment.  

Partitioning the entropic and enthalpic members into the Gibbs free energy 
of the interaction is useful for understanding the nature of binding reaction 
(Ladbury et al, 2010). And third, plotting the enthalpy of interaction vs the 
temperature of measurement one can calculate the change in heat capacity of the 
interaction (Δcp),  
 

Δcp =d(ΔH)/dΔT    (2) 
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The heat capacity parameter is a powerful tool for assessment of the change in 
the solvent-accessible area of the molecule upon ligand binding. In turn this 
value reflects protein structural rearrangement accompanying complex 
formation. Large negative value of Δcp corresponds to a reduction in the 
solvent-accessible value of the protein typical, for instance, for protein-protein 
interaction or simple folding of peptide chain. Th relation between the Δcp 
parameter and change in solvent-accessible area is described by expression  
 

Δcp = 0.27 ΔAaromatic + 0.4 ΔAnonaromatic   (3) 
 
where ΔAaromatic  and ΔAnonaromatic are protected areas for aromatic and non-
aromatic aminiacids, respectively, in Å2 (Samanta et al, 2002). The main 
drawback of using ITC is that this method requires very high amounts  
(≈5000 pmoles per experiment) of the starting material.  

In papers I (Hauryliuk et al, 2009) and II (Mitkevich et al, 2010) we have 
investigated EF-G and IF2 interactions with G nucleotides and initiator tRNA 
by means of ITC. By analyzing the interactions at different temperatures and 
calculating the Δcp values, we have demonstrated that binding of GDP to IF2 
promotes structural rearrangements in the protein (Hauryliuk et al, 2009). This 
result was later supported by other groups using different methods – Nucleic 
Magnetic Resonance, NMR (Wienk et al, 2012) and SAXS (Vohlander 
Rasmussen et al, 2011). Available cryoEM reconstructions of apo-, GDP- and 
GDPNP-bound IF2 on the ribosome also support the existence of a GDP-
induced rearrangement in IF2 (Myasnikov et al, 2005). Comparing affinities of 
EF-G and IF2 to GTP, GDP and ppGpp determined by ITC (Table 1) with in 
vivo concentrations of these nucleotides (Buckstein et al, 2008), we came to the 
conclusion that of the two trGTPases, IF2 is the main in vivo target of ppGpp-
mediated inhibition (Mitkevich et al, 2010). This result provides quantitative 
support for an earlier work suggesting that IF2 acts as a ppGpp sensor in vivo 
(Milon et al, 2006). Lastly, we demonstrated that the interaction between IF2 
and initiator tRNA is insensitive to binding of G nucleotides, including binding 
of ppGpp, which is known to be a strong inhibitor of translation (Mitkevich et 
al, 2010). This somewhat surprising result, however, corroborates well with 
earlier observations that complex formation between IF2 and initiator tRNA is 
insensitive to GDP and GTP (Petersen et al, 1979; Wu & RajBhandary, 1997). 
Despite slight differences in affinities, binding of G nucleotides to the IF2 
significantly changes entropy-enthalpy partititioning of initiator tRNA binding 
to the different IF2 forms. 
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Table 1. Thermodynamic parameters of IF2 and EFG binding to GTP, GDP and 
ppGpp nucleotides determined by ITC. All measurements were performed two to 
four times in phosphate buffer with following composition: 5 mM K2HPO4, 10% 
glycerol, 1mM DTT, 95 mM KCl, 5 mM MgCl2, pH 7.5. Ka and Kd stand for 
association and dissociation equilibrium constants, respectively. Standard deviation for 
Ka did not exceed ± 20%, for ∆H did not exceed ± 10%. Kd was calculated as 1/Ka.   
 

GTPase Ligand Kа, M
-1 Kd, M 

oG , 
kcal/mol 

oH , 
kcal/mol 

oT S , 
kcal/mol 

IF2 
GTP 1.5 ˟ 105 6.7 –7.05 –19.3 –12.25 
GDP 6.1 ˟ 105 1.6 –7.88 –4.62 –12.20 

ppGpp 3.6 ˟ 105 2.8 –7.57 –12.81 –5.24 

EF-G 
GTP 1.2 ˟ 105 8.3 –6.95 –1.70 5.25 
GDP 1.1 ˟ 105 9.1 –6.86 –5.90 0.96 

ppGpp 7.2 ˟ 105 13.9 –6.62 –5.09 1.53 
 
 
 

1.2. Binding of G nucleotides and SRL rRNA to  
IF2 and EF-G are mutually exclusive 

The original report by Munishkin and Wool (Munishkin & Wool, 1997) 
demonstrated that complex formation between EF-G and the SRL RNA 
oligonucleotide is inhibited in the presence of GDP, and is insensitive to the 
non-hydrolysable GTP analogue, GDPNP. Several questions, however, 
remained unanswered. First, provided that formation of the SRL:EF-G complex 
is inhibited by GDP, is the reverse true as well, i.e. is binding of GDP to EF-G 
inhibited in the presence of the SRL RNA oligonucleotide? Second, does GTP – 
not GDPNP - affect SRL binding to EF-G? Given that the SRL RNA 
oligonucleotide does not induce EF-G GTPase (Clementi et al, 2010), this 
experiment should be technically feasible. And third, is this a general 
mechanism, i.e. is the interaction between other trGTPases and SRL governed 
by the same rules? 

We have answered all these questions by means of ITC measurements (paper 
V). First, we show that, indeed, binding of GDP to EF-G is inhibited by SRL. 
Second, we show that GTP, just as GDPNP, has no effect on EF-G:SRL 
complex formation. Lastly, we show that interaction of IF2 with SRL follows 
the same rules as interaction of EF-G with SRL does, indicating the general 
nature of the phenomenon (Fig. 8). 
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Figure 8. A scheme of the interplay among G nucleotides and SRL binding to the 
bacterial translational GTPases IF2 and EF-G. The affinity constants for IF2 
complexes are shown in blue and for EF-G in red, as measured at 25°C. 
 
 
We have also examined by ITC EF-G interactions with another ribosomal 
element, ribosomal protein L7/12. An earlier report demonstrated that 
interaction between apo-EF-G and isolated L7/12 is weak (Kd in mM range) 
(Mulder et al, 2004), but it was hypothesized that it could be promoted in the 
presence of GDP or GTP. We have performed measurements both with apo-EF-
G and in the presence of GTP and GDP and detected no stable binding (Fig. 9).  
 
 

 
 
Figure 9. EF-G and L7/12 interact weakly. ITC titration curves (upper panel) and 
binding isotherms (lower panel) for L7/12 titration into EF-G (A), L7/12 dilution in to 
the buffer (B) and L7/12 titration into to EF-G after subtraction of L7/12 dilution (C). 
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1.3 Cross-talk between binding  
of G nucleotides and Dom34 to Hbs1 

The eukaryotic translational GTPase Hbs1 forms a tight complex with Dom34, 
and formation of this complex promotes GTP binding by Hbs1 (Graille et al, 
2008). Given the high degree of homology between eRF1/eRF3 and 
Dom34/Hbs1 pairs (Atkinson et al, 2008; Inagaki et al, 2003) and high degree 
of structural similarity between the two complexes (Chen et al, 2010; Cheng et 
al, 2009), it was highly likely that just like eRF1 for eRF3 (Pisareva et al, 2006), 
Dom34 acts as a GDI for Hbs1. 

We have validated this hypothesis by measuring the GTP dissociation rate 
from the Dom34:Hbs1:GTP ternary complex (Chen et al, 2010) (Fig. 10). The 
dissociation rate constant (k-1) was similar to that determined for the 
eRF1:eRF3:GTP complex (Pisareva et al, 2006), underscoring the functional 
similarities of these two systems. Guided by the X-ray structure of the 
Dom34:Hbs1 complex, we have investigated the effects of the two point 
mutations in Dom34 (R162A, R169A) and validated the functional importance 
of these two residues in Dom34 functionality as a GDI. 
 
 

 
 

Figure 10. GTP and Dom34 bind to Hbs1 cooperatively and Dom34 acts as a GDI. 
The effect of Dom34 Kinetics of GTP dissociation from the Dom34-Hbs-GTP complex. 
Dissociation kinetics were followed in the presence of wild type and mutant (R169A 
and R192A) Dom34.  
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2. Regulation of E. coli stringent response  
protein RelA by ppGpp 

Examination of the time courses of ppGpp production in in vitro stringent 
response systems (Payoe & Fahlman, 2011) revealed deviations from linearity 
in earlier time points due to a lag effect. A priori there can be several possible 
reasons for this behavior. Frist, it can be the effect of incubation at 37°C on the 
active RelA concentration. It has been suggested that RelA forms dimers 
(Gropp et al, 2001), and one could envision that over the course of the reaction, 
the  ratio of dimers vs monomers changes, thus affecting RelA activity. Indeed, 
this kind of behavior was suggested for RelA homologue from M. tuberculosis, 
Rel (Avarbock et al, 2005). Second, it could be that accumulation of one of the 
products of RelA activity – ppGpp or AMP – results in activation of the RelA 
ppGpp-synthetic activity. To investigate the nature of the lag effect, we used a 
poly(U)-dependent in vitro stringent response system similar to that used in 
(Jenvert & Schiavone, 2007). 

We have shown that production of ppGpp is responsible for the effect. The 
stimulatory effect is specific for ppGpp, and other nucleotides neither induce 
RelA activation nor interfere with the activating effect of ppGpp (Fig. 11).  

 
 

Figure 11. Effect of CTP, UTP and GMP on RelA phosphotransferase activity in 
the presence (solid red bars) and absence (hollow bars) of 100 μM ppGpp. The re-
action mixture contains RelA, 70S, ppGpp, 3H-GDP, ATP and competing nucleotides. 
 
  
Unlike the case of Rel (Avarbock et al, 2005), the preincubation time did not 
affect RelA activity. The ppGpp-mediated activation is strongly L11-dependent, 
and our titration experiments suggest that ppGpp acts by increasing RelA’s 
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catalytic constant (kcat) rather than altering its sensitivity to ribosome-mediated 
activation, i.e. changing the Michaelis constant, KM (Fig. 12). 

 
Figure 12. RelA synthetic activity as a function of the 70S ribosome concentration 
(left panel) and L11 concentration (right panel) in the presence (solid red cycles) or 
absence (hollow black cycles) of 100 μM ppGpp. Error bars represent standard 
deviation of the turnover estimated by linear regression. Each experiment was 
performed at least three times.  
 
 The activating effect of ppGpp is not masked in the presence of other RelA 
activators, such as A-site tRNA, suggesting that these two regulatory 
mechanisms act via different routes (Fig. 13).  

 
 

Figure 13. Effect of 70S ribosomes, poly(U) and deacylated tRNAPhe on on RelA 
synthetic activity in the presence (solid red bars) or absence (hollow bars) of ppGpp.  
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Our surprising result raises numerous questions, and opens new avenues in 
research on the stringent response.  

First is the mechanism of ppGpp-mediated activation. Product-mediated 
enzyme activation is an exceedingly rare phenomenon. One previously 
documented mechanism is activation via change in the oxidative environment 
(Coleman et al, 1978), which is unlikely to be at play in the case of RelA – 
ppGpp is hardly an oxidative agent. Another possible – and more likely – 
mechanism is direct allosteric regulation of RelA by ppGpp.  Several proteins 
are regulated by ppGpp this way, including RNA polymerase (Reddy et al, 
1995). This hypothesis can be proven using the same techniques used for 
studying the RNA polymerase:ppGpp interaction: demonstrating the interaction 
using fluorescently-labelled ppGpp (Reddy et al, 1995), co-crystallization of 
ppGpp and its target (Artsimovitch et al, 2004) or crosslinking with thio-6-
ppGpp (Toulokhonov et al, 2001). However, given how challenging it is to 
work with RelA in vitro (Pedersen & Kjeldgaard, 1977), implementation of 
none of these would be easy. Yet another possibility is that ppGpp activates 
RelA by means of some exchange reaction, and more detailed investigation of 
the molecular mechanism of ppGpp synthesis by RelA is due.  

The second question is highly complementary to the first: which RSH 
molecules are activated by ppGpp, and which are not? What is the architecture 
of ppGpp-mediated cross-talk between RSH proteins? In order to answer this 
question, we plan to test several ‘small’ and ‘long’ RSH proteins from several 
organisms in vitro. Unfortunately, some of the RSH proteins are notoriously 
hard to purify, e.g. E. coli SpoT. Our in vitro experimentation is to be com-
plemented by following RSH activity in the living cells on the single molecule 
level (English et al, 2011) using engineered E. coli strains coding several RSH 
genes. 
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CONCLUSIONS 
 
 Of the trGTPases initiation factor IF2 is the main target of ppGpp-mediated 

inhibition of translation in bacteria 
 Binding of G nucleotides and initiator tRNA to IF2 are independent of each 

other 
 Binding of GDP and the rRNA element SRL to translational GTPases IF2 

and EF-G are mutually exclusive 
 Dom34 acts as a GDI for eukaryotic translational GTPase Hbs1 
 ppGpp stimulates the bacterial stringent response enzyme RelA, creating a 

direct positive feedback loop 
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SUMMARY IN ESTONIAN 
 

Translatsiooniliste GTPaaside ja poomisvastuse faktori RelA 
reguleerimine G nucleotiidide poolt 

 
G-nukleotiidide GTP, GDP ja alarmooni ppGpp kontsentratsioonid mõjutavad 
oluliselt translatsiooni bakterirakus. Käesoleva töö raames uurisin mehhanisme 
ppGpp sünteesiks, selle alarmooni märklaudu ning translatsioonis osalevate 
GTPaaside regulatsioonimehhanisme. 

Stressitingimustes, eeskätt toitainete nappuse korral, tõuseb alarmooni 
ppGpp tase bakterirakus. Käesolevas töös näitasime, et ppGpp stimuleerib 
iseenda RelA valgu vahendatud sünteesi. Selline positiivse tagasisidestusega 
mehhanism tagab kiire stressivastuse. 

Eelnevalt oli teada, et ppGpp inhibeerib mitmeid ribosoom-seoselisi trans-
latsioonifaktoreid. Samas ei olnud teada, milline neist võiks olla selle alarmooni 
peamine märklaud. Käesoleva too käigus tegime kindlaks, et initsiatsioonifaktor 
kaks (IF2) seondab seda alarmooni oluliselt tugevamini kui teised translat-
sioonifaktorid. Seega võiks olla tegemist ppGpp põhilise märklauaga. 

IF2 on üks translatsiooni masinavärgi põhikomponente. Eelpool märkisin 
ära, et stressitingimustes võib selle valguga võib seonduda ppGpp. Tavaolekus 
toimuva translatsiooni käigus seondub IF2 initsiaator tRNA, GTP/GDP ja 
ribosoomiga. Käesoleva töö käigus tegime kindlaks, et G-nukleotiidide ja 
initsiaator-tRNA seondumine on üksteisest sõltumatud sündmused. Samas 
näitasime, et G-nukleotiidid mõjutavad IF2e ja elongatsioonifaktor G (EF-G) 
seondumist ribosoomile. Täheldasime, et oma märklauaks oleva ribosomaalse 
RNA fragmendiga seonduvad need valgud eelistatud GTP vormis. 
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