
G
E

O
R

G
I H

U
D

JA
ŠO

V
	

M
aps of m

itochondrial D
N

A
, Y-chrom

osom
e and tyrosinase variation in Eurasian and O

ceanian populations

Tartu 2013

ISSN 1024–6479
ISBN 978–9949–32–402–6

DISSERTATIONES  
BIOLOGICAE  

UNIVERSITATIS  
TARTUENSIS

247

GEORGI HUDJAŠOV

Maps of mitochondrial DNA, 
Y-chromosome and tyrosinase variation 
in Eurasian and Oceanian populations

 



DISSERTATIONES BIOLOGICAE UNIVERSITATIS TARTUENSIS 
247 

  



DISSERTATIONES BIOLOGICAE UNIVERSITATIS TARTUENSIS 
247 

 
 
 
 
 
 
 

GEORGI HUDJAŠOV 
 
 

Maps of mitochondrial DNA,  
Y-chromosome and tyrosinase variation  
in Eurasian and Oceanian populations 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          



Institute of Molecular and Cell Biology, University of Tartu 
 
Dissertation is accepted for the commencement of the degree of Doctor of Philosophy 
in Molecular and Cell Biology on September 9, 2013, by the Council of the Institute of 
Molecular and Cell biology, Faculty of Science and Technology, University of Tartu. 
 
Supervisors:  Toomas Kivisild, 
  Professor, Institute of Molecular and Cell Biology, 
  Faculty of Science and Technology, University of Tartu, Estonia 
  and 
  University Lecturer, Division of Biological Anthropology, 
  University of Cambridge, United Kingdom 
 
  Prof. Richard Villems, 
  Institute of Molecular and Cell Biology, 
  Faculty of Science and Technology, University of Tartu, 
  Estonia 
   
Reviewer:  Prof. Ants Kurg, 
  Institute of Molecular and Cell Biology, 
  Faculty of Science and Technology, University of Tartu, Estonia 
 
Opponent:  Prof. Peter de Knijff, 
  Department of Human Genetics, 
  Center for Human and Clinical Genetics, 
  Leiden University Medical Center,  The Netherlands 
 
Commencement: Room 105, 23B Riia street, Tartu, on 7th of November 2013, at 12.00. 
 
The publication of this dissertation is granted by the University of Tartu 

  
 
 

 
ISSN 1024–6479 
ISBN 978–9949–32–402–6 (print) 
ISBN 978–9949–32–403–3 (pdf) 
 
 
Copyright: Georgi Hudjašov, 2013 
 
University of Tartu Press 
www.tyk.ee 

  
 
 
 
 
   

 
 
 
 
 
 

 
 

 
 
 
 
 
 

 

  
 
 
 
 
 

 
 
 

 

 
 
 



5 

TABLE OF CONTENTS 

LIST OF ORIGINAL PUBLICATIONS  ......................................................  6 

ABBREVIATIONS  .......................................................................................  7 

1. INTRODUCTION  .....................................................................................  8 

2. LITERATURE OVERVIEW  ....................................................................  9 
2.1. Haploid genetic loci in the study  of recent human evolution  ...........  9 
2.2. Out of Africa to Australasia  ..............................................................  10 

2.2.1. Settlement of Sahul: archaeological evidence  .........................  13 
2.2.2. Settlement of Sahul: a haploid perspective  .............................  15 
2.2.3. Evidence for pre-historic gene flows  ......................................  20 

2.3. Out-of-Africa: adaptation to  new environments  ..............................  23 
2.3.1. Associate examples of skin color evolution  ............................  25 
2.3.2. A model for the evolutionary architecture  of human skin 

pigmentation  ...........................................................................  30 

3. AIMS OF THE STUDY  ............................................................................  32 

4. MATERIALS AND METHODS  ..............................................................  33 

5. RESULTS AND DISCUSSION  ...............................................................  34 
5.1. Settlement of prehistoric Sahul  as seen from the variation  of 

human haploid genomes (Refs. I and II)  ...........................................  34 
5.2. Global patterns of diversity in the pigmentation associated 

tyrosinase gene (Ref. III)  ..................................................................  38 

6. CONCLUSIONS  .......................................................................................  42 

7. SUMMARY IN ESTONIAN  ....................................................................  44 

8. REFERENCES  ..........................................................................................  48 

ACKNOWLEDGEMENTS  ..........................................................................  59 

PUBLICATIONS  ..........................................................................................  61 

CURRICULUM VITAE  ...............................................................................  99 



6 

LIST OF ORIGINAL PUBLICATIONS 

I. Hudjashov G, Kivisild T, Underhill PA, Endicott P, Sanchez JJ, Lin AA, 
Shen P, Oefner P, Renfrew C, Villems R and Forster P. 2007. Revealing 
the prehistoric settlement of Australia by Y chromosome and mtDNA ana-
lysis. Proc Natl Acad Sci U S A. 104: 8726–8730. 

 
II. Soares P, Trejaut JA, Loo JH, Hill C, Mormina M, Lee CL, Chen YM, 

Hudjashov G, Forster P, Macaulay V, Bulbeck D, Oppenheimer S, Lin M 
and Richards MB. 2008. Climate change and postglacial human dispersals 
in southeast Asia. Mol Biol Evol. 25: 1209–1218. 

 
III. Hudjashov G, Villems R and Kivisild T. 2013. Global patterns of diver-

sity and selection in human tyrosinase gene. PLoS ONE. 8: e74307. 
 
My contributions to the listed articles are as follows: 
Ref. I   performed most of the experiments and statistical analysis of the data, 

wrote the first draft of the paper. 
Ref. II    performed experiments and statistical analysis of the data. 
Ref. III  designed the study, performed experiments and statistical analysis of 

the data, wrote the paper with the contribution of other co-authors. 



7 

ABBREVIATIONS 

bp base pair(s) 
BP before the present 
CI confidence interval 
hg haplogroup(s) 
ISEA Island Southeast Asia 
kb thousand (kilo-) base pairs 
ky(a) thousand (kilo-) years (ago) 
LGM Last Glacial Maximum 
mtDNA mitochondrial DNA 
NRY non-recombining region of the Y chromosome 
SNP single nucleotide polymorphism 
TMRCA time to the most recent common ancestor 
UV(R) ultraviolet (radiation)  



8 

1. INTRODUCTION 

Analysis of genetic variation in modern human populations has become a valu-
able tool for the study of the prehistory of our species. Recent genetic work has 
offered new insights into various evolutionary processes, including peopling of 
the world by anatomically modern humans, but also allowed for better characte-
rization of diverse adaptive processes which took place during the prehistory of 
living hominins. Thanks to advancements in cost-effective sequencing and 
high-coverage whole-genome genotyping techniques, an unprecedented amount 
of population genetic data has been generated during the last decade, covering 
different human population groups and addressing numerous important evo-
lutionary questions. 

Genetic studies on human evolution are tightly interconnected with an array 
of scientific disciplines, including, among others, anthropology, archaeology 
and linguistics. For example, the prehistory of Australia and New Guinea has 
been extensively studied during the last decades. Fossil evidence for the pre-
sence of anatomically modern humans in this area has been dated to appro-
ximately 50 kya, showing that Greater Australia was probably colonized soon 
after the African exodus. Meanwhile, the overall knowledge of genetic variation 
in Australia and New Guinea has been relatively scarce until recently. The first 
part of this dissertation concentrates on the characterization and classification of 
haploid mitochondrial DNA (mtDNA) and Y-chromosome lineages among the 
aboriginal populations of Australia and New Guinea. Complete mitochondrial 
genome sequencing and Y-chromosomal haplotyping have been utilized in 
order to place the respective gene pools into a global framework of the cor-
responding haploid genetic systems.  

The second part of the dissertation addresses a different scientific problem. 
There is little evidence on the evolution of human skin color from classical 
archaeology and paleoanthropology. Only limited and indirect knowledge can 
be acquired from the cave paintings and other cultural artifacts. Biological 
studies of model organisms and albinism have highlighted hundreds of genetic 
loci, which may also determine normal skin color variation in humans. 
Nevertheless, only a small fraction of this phenotypic diversity is currently 
understood. The second part of the current research concentrates on the analysis 
of the human tyrosinase gene. This gene is a cornerstone of melanin biosynthe-
sis and might play a significant role in shaping natural skin color variation. 
Questions of natural selection acting upon human tyrosinase will be addressed 
at both the local and the genome-wide level, and patterns of genetic diversity 
within the TYR locus will be discussed in terms of the evolutionary architecture 
of human skin pigmentation. 
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2. LITERATURE OVERVIEW 

2.1. Haploid genetic loci in the study  
of recent human evolution 

Although studies of human populations based on complete genome sequences 
are starting to emerge (Abecasis et al. 2010; Wong et al. 2013), to a large extent 
our current understanding of human dispersals and genetic variation within and 
among populations relies on mtDNA and Y-chromosome haploid markers. The-
se loci have some unique features that make them preferable in the study of 
different evolutionary processes, including the prehistory of anatomically mo-
dern humans. 

The human mitochondrial genome is a tiny, about 16.6 kb long, circular 
double stranded DNA molecule (Anderson et al. 1981; Andrews et al. 1999). 
Compared to the nuclear genome, mtDNA is highly compact, about 93% of its 
sequence is coding; there are no introns, intergenic sequences are either absent 
or very small. Mitochondrial DNA is inherited from the population of mito-
chondria present in the oocyte just prior to fertilization, so only mother will pass 
her mtDNA to offspring (Giles et al. 1980). Elimination of male mitochondria 
early in embryogenesis is responsible for the lack of recombination between 
maternal and paternal mtDNA molecules. There is a marked reduction in the 
number of mtDNA molecules being transmitted from mother to offspring, the 
process is known as mitochondrial genetic bottleneck. The size of the bottle-
neck is predicted to be around 200 molecules in primordial germ cells, which 
further differentiate into mature oocytes containing 100,000–700,000 copies of 
mtDNA in humans. Consequently, the combination of random genetic drift and 
clonal expansion of mtDNA explain the fast segregation of mutant mtDNA 
molecules between generations (St John et al. 2010 and references therein). The 
overall rate of mtDNA heteroplasmy has recently been estimated at around 0.2–
2% in humans and, although rare examples of non-pathogenic inherited hetero-
plasmy were previously known (Ivanov et al. 1996), an ultra-deep re-se-
quencing approach hints that this inherited low variation may nevertheless 
contribute to the overall mutation load in any one individual (Payne et al. 2013). 

Besides the lack of recombination, another specific feature of mtDNA 
important for evolutionary studies is its relatively high mutation rate. The non-
coding control region of mitochondrial DNA evolves approximately two orders 
of magnitude faster than the nuclear genome. Calibration of its mutation rate 
yielded 1.6–2.3 × 10–7 vs. 0.4 × 10–9 substitutions per site per year for the auto-
somal genome on average, while the mtDNA coding region evolves at lower 
rates varying from 1.9 × 10–8 to 8.9 × 10–9 between different protein-coding 
codon positions, rRNA and tRNA coding regions (Soares et al. 2009; Scally and 
Durbin 2012 and references therein). In absolute terms, the mitochondrial 
genome acquires on average one synonymous substitution per 7990 years 
(Loogväli et al. 2009), thus allowing to estimate the age of relatively recent 
demographic events in the prehistory of anatomically modern humans.  
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In contrast to the maternally transmitted mitochondrial genome, Y chromo-
some is male-specific and thus paternally inherited in humans. It is a part of the 
XY sex-determination system, containing genes that cause testis development. 
The human Y chromosome is about 60 million base pairs long. While 95% of 
its sequence does not recombine during meiosis and is therefore called the non-
recombining region of Y (NRY) or the male-specific region, X-Y crossing over 
is a normal and frequent event in the telomeric pseudoautosomal regions 
(Jobling and Tyler-Smith 2003 and references therein; Skaletsky et al. 2003). In 
contrast to the faster evolving segments of mtDNA, the rate of evolution of Y 
chromosome is estimated at around 1.0 × 10–9 substitutions per site per year, 
which is comparable to the autosomal average (Xue et al. 2009). 

The effective population size of both human mitochondrial DNA and Y 
chromosome is expected to be one-quarter of that of any autosome and one-
third of that of the X chromosome. This feature results in lower sequence diver-
sity in comparison to the autosomal genome and makes them much more prone 
to genetic drift, which involves random changes in the frequency of alleles from 
one generation to the next, and founder effect (for review see Jobling and Tyler-
Smith 2003). In summary, the evolutionary history of human haploid loci, 
mtDNA and the male-specific region of Y chromosome, is affected only by 
mutations accumulating with time, but not by the recombination process. Their 
uniparental mode of inheritance allows precise gender-specific phylogenetic 
reconstruction and, due to the higher mutation rate of mitochondrial genome, 
past demographic events in our species can be effectively dated, while their 
higher susceptibility to genetic drift due to lower effective population size acce-
lerates their differentiation between human populations. 
 

2.2. Out of Africa to Australasia 
Phylogenetic analysis of human matrilineal (mitochondrial) and patrilineal (Y-
chromosome) lineages, which is the reconstruction of the hierarchical structure 
of relationship between variants, allows to infer the order and approximate 
temporal and spatial point of population descent. The pioneer analyses of 
worldwide human mtDNA (Brown 1980; Cann et al. 1987) lineages, which 
were later complemented by evolutionary studies of Y chromosome (Hammer 
1994; Jobling et al. 1996; Underhill et al. 1997), showed that the human genetic 
variation is rooted in the African continent, pointing to the African origin of our 
species. Comparison of human mitochondrial genome variation to that of 
Neanderthals shows that the root of the human mtDNA tree lies between the 
African monophyletic cluster of haplotypes (haplogroup, hg) L0 and all other 
haplogroups (hgs), including haplogroups L1 to L6 (Figure 1) (Behar et al. 
2012). The time to the most recent common ancestor (TMRCA) of all human 
mitochondria was estimated between 160 and 200 kya (Mishmar et al. 2003; 
Endicott and Ho 2008; Soares et al. 2009). Y-chromosome analyses have gene-
rally yielded slightly younger common ancestor ages, ranging from 101–115 to 
140 kya (Cruciani et al. 2011; Wei et al. 2013). Lower diversity in Y could be 
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due to differences in male and female long-term effective population sizes, but 
possibly may also reflect our still imperfect knowledge of the mutation rates of 
the two uniparental genetic systems. Recently, an extremely rare and ancient 
African branch of the Y-chromosome tree has been detected, shifting the age of 
the most recent common ancestor back to around 330 kya and pointing to either 
ancient population sub-structure or introgression of archaic Y chromosomes 
into anatomically modern Africans (Mendez et al. 2013). Alternatively, the 
large discrepancy with previous estimates could partially be explained by a too 
low mutation rate used in the calculations of this study (Sayres 2013). 
 

 
 
Figure 1. Schematic representation of the global mtDNA phylogenetic tree. Western 
Eurasian haplogroups are not included. The oldest autochthonous haplogroups from 
South, East and Southeast Asia, Melanesia and Australia are shown (color coded ac-
cording to the legend). Hgs E and B4a represent traces of recent gene flow from Asia to 
Melanesia. Gradient shading of hgs P3 and P4 indicates shared distribution in popu-
lations of Australia and Melanesia. The root of the human mtDNA phylogenetic tree 
lies between the African hgs L0 and L’1–6. All variation outside of Africa is repre-
sented by macro-haplogroups M and N, and is rooted in the African hg L3. Note that 
only a small sub-set of Asian-specific haplogroups is depicted. Greater Australian 
branches represented only by a single complete mitochondrial genome are omitted. Data 
from: Ingman et al. (2000), Ingman and Gyllensten (2003), Kong et al. (2003), Pala-
nichamy et al. (2004), Friedlaender et al. (2005), Macaulay et al. (2005), Kivisild et al. 
(2006), van Holst Pellekaan et al. (2006), Friedlaender et al. (2007), Behar et al. (2008) 
and Chandrasekar et al. (2009). The latest high-resolution phylogenetic tree of all hu-
man maternal lineages can be found elsewhere (van Oven and Kayser 2009). 
 
 
The oldest African mitochondrial hg L0 lineages coalesces at about 140 to  
160 kya (Behar et al. 2008; Soares et al. 2009), while the oldest bifurcation con-
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necting both African and non-African individuals occurs in hg L3, which dates 
back to around 60 to 70 kya (Torroni et al. 2006; Scally and Durbin 2012 and 
references therein; Soares et al. 2012). Virtually all human mtDNA variation 
outside of Africa can be divided into two branches, namely macro-haplogroups 
M and N, the latter including the macro-haplogroup R (Figure 1). This is mir-
rored in the Y-chromosome tree, where only hgs C, D and F are found in non-
Africans, except in likely recent migrants (for review see Underhill and Kivisild 
2007). Both mitochondrial M and N trunks of the tree stem from the African hg 
L3. The age of Eurasian M and N founders is close to the age of their ancestral 
haplogroup, L3, putting the timeframe for the out of Africa dispersal of anato-
mically modern humans between 55 and 65 kya (Torroni et al. 2006; Soares et 
al. 2009; Soares et al. 2012). Similar estimates for human expansion in Eurasia, 
between 57 and 74 kya, were obtained by complete re-sequencing of Y chromo-
somes (Wei et al. 2013).  

Although the precise location and number of migration waves from Africa to 
Eurasia are still being debated (Rasmussen et al. 2011; Henn et al. 2012), one 
model that has been suggested on the grounds of archaeological, paleoclimatic, 
geographic and genetic evidence is that of a southern route dispersal. According 
to this model, the dispersal started from the Horn of Africa and lead on to South 
Arabia, crossing the narrow mouth of the Red Sea, and further on towards 
South and Southeast Asia along the shoreline of the Indian Ocean, reaching 
Greater Australia (joint Pleistocene landmass of Australia and northern Mela-
nesia, including New Guinea; also referred to as Sahul) approximately 50 kya 
(Macaulay et al. 2005; Oppenheimer 2012 and references therein). This dis-
persal of modern humans was accompanied by replacement with limited gene 
flow of local archaic human species, such as Neanderthals (Green et al. 2010) 
and Denisovans (Reich et al. 2010; Reich et al. 2011; Meyer et al. 2012). 

Some general geographical patterns of the spread (i.e. phylogeography) of 
the mitochondrial macro-haplogroups M and N must be emphasized here: 
macro-haplogroup M and its subdivisions are found primarily in South and East 
Asia, while macro-haplogroup N is dominant in West Eurasia and Oceania, and 
to a lesser extent in East Asia (Metspalu et al. 2004; Underhill and Kivisild 
2007 for review). Apart from macro-haplogroups M and N, no other hg L3 
branches are present outside Africa, suggesting that the earliest Eurasian colo-
nizers already carried basal M and N variants. The N branch quickly gave rise 
to the third human mitochondrial macro-haplogroup, hg R. During the southern 
route migration, the differentiation of basal M, N and R lineages into mtDNA 
branches specific to South, East and Southeast Asia and Oceania took place 
(Figure 1). On the other hand, only the N branch (and its sub-clade R) gave rise 
to western Eurasian mtDNA types (Metspalu et al. 2004). Populations from the 
Indian sub-continent carry diverse ancient, >50 ky old, autochthonous branches 
of Eurasian macro-haplogroups M, N and R, e.g. M2, M6, R5, U2a’b’c, etc. 
(Palanichamy et al. 2004; Chandrasekar et al. 2009). The TMRCA of the oldest 
South Asian haplogroups suggests that this area was settled soon after the 
African exodus and points to the major role of Indian sub-continent in expan-
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sion of anatomically modern humans in Eurasia (Macaulay et al. 2005; Ma-
jumder 2010 for review). The topology and more than 50 ky deep coalescence 
age of human mtDNA haplogroups in India, East and Southeast Asia and 
Greater Australia, which are related only on the basal level of macro-haplo-
groups M, N and R, but not nested inside each other, indicates that the overall 
southern dispersal should have been relatively rapid. This migration carried 
ancestral M, N and R types along the shores of the Indian Ocean into South and 
Southeast Asia and, finally, into prehistoric Sahul, followed by independent in 
situ differentiation of local mtDNA branches as can be seen from the distinct 
geographical distribution of contemporary mtDNA variation outside Africa 
(Figure 1) (Kong et al. 2003; Palanichamy et al. 2004; Macaulay et al. 2005; 
Chandrasekar et al. 2009; Peng et al. 2010; Kong et al. 2011). 
 

2.2.1. Settlement of Sahul: archaeological evidence 

The time frame of Out-of-Africa migration has been subject to much debate and 
inferences have been made from fossil, archaeological and genetic evidence. 
Apart from the fossils from the Skhul and Qafzeh caves in Israel, no other fossil 
of anatomically modern human outside Africa has been securely dated to  
>70 kya. Even the few fossils dated to 50–70 kya are often debated and much of 
the controversy and uncertainty around early dates is due to the limits of the 
radiocarbon method. One of the oldest anatomically modern human remains in 
Eurasia have been found in the Callao Cave, Philippines, and dated to approxi-
mately 67 kya (Mijares et al. 2010; Oppenheimer 2012 and references therein), 
while Greater Australia, which is the easternmost end of the Out-of-Africa 
migration (the Americas and Remote Oceania were settled much later), has a 
number of sites with dates up to 49 kya (Bowler et al. 2003; O'Connell and 
Allen 2004; Summerhayes et al. 2010). The lack of ancient archaeological sites 
on the route of human migration to Southeast Asia and Sahul, along the coast of 
the Indian Ocean, is not surprising, bearing in mind that much of the Late 
Pleistocene evidence from the coastal area of South and Southeast Asia must 
now be submerged beneath the high sea levels that have persisted since the end 
of the last glacial period approximately 12.5 kya (Stringer 2000).  

Pleistocene was a period of fluctuating sea level. Starting from the beginning 
of the last glacial cycle, some 120 kya, the sea level fell gradually to an 
extremely low stand during the Last Glacial Maximum (LGM) about 18 kya. 
The modern landmasses of Australia, Tasmania, New Guinea, and intervening 
islands were connected by a land bridge forming the prehistoric Sahul continent 
(Figure 2). Ice melting and rising sea level after the end of the Last Glacial 
Maximum have led to the inundation of lowland territories and the separation of 
islands from mainland Australia: Tasmania became separated by the Bass Strait 
approximately 10 kya and New Guinea was connected with the continent until  
8 kya, when the Torres Strait started to emerge (Mulvaney and Kamminga 
1999). The oldest archaeological sites, including Lake Mungo and the Devil’s 
Lair (47–42 ky) in southeastern and southwestern Australia, respectively, Ivane 
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2.2.2. Settlement of Sahul: a haploid perspective 

Aboriginal Australians are currently one of the most underrepresented popu-
lations in the genetic research: for example, only 38 complete mtDNA sequen-
ces are available for Aboriginal Australians out of at least 16,810 complete 
mitochondrial genomes listed in Build 15 of the PhyloTree database on 30th 
September, 2012 (van Oven and Kayser 2009). The main limiting factor for 
their study is a very restricted access of the scientific community to endogenous 
Australian samples due to the distrust and resistance to genetic studies of many 
local people. This is caused by various problems, including poor research 
practices of the past, failure to present the benefits of genetic research to its 
participants, discomfort caused by publication of intimate ancestry data, fears 
that genetic research might produce results that erode identity, but also the 
reluctance of scientists for lengthy and tedious negotiation and engagement 
processes required by strict local regulatory bodies (van Holst Pellekaan 2012). 
Many already published sample sets are shared between successive studies and 
were collected from a limited number of geographical locations long before the 
advancement of large-scale DNA sequencing techniques.  
 

2.2.2.1. mtDNA variation in Australia and New Guinea 

Although a number of authors have analyzed the partial control region sequence 
variation (Stoneking et al. 1990; Vigilant et al. 1991; Lum et al. 1994; Sykes et 
al. 1995; Betty et al. 1996; van Holst Pellekaan et al. 1998; Redd and Stoneking 
1999; Lum and Cann 2000; Forster et al. 2001; Huoponen et al. 2001; 
Tommaseo-Ponzetta et al. 2002), our knowledge about complete mtDNA and 
NRY sequence phylogeny in Aboriginal Australia is still very limited (Ingman 
et al. 2000; Kayser et al. 2001; Underhill et al. 2001; Redd et al. 2002; Ingman 
and Gyllensten 2003; Kivisild et al. 2006; van Holst Pellekaan et al. 2006; 
Friedlaender et al. 2007; Taylor et al. 2012), and genome-wide data is restricted 
to only a few studies (McEvoy et al. 2010; Rasmussen et al. 2011; Pugach et al. 
2013). Taking only matrilineal lineages into consideration, the resolution 
provided by control region sequencing alone is phylogenetically less reliable 
than that of complete mtDNA analysis (Ingman et al. 2000). This is caused by a 
higher frequency of unresolved homoplasy (convergent evolution), which could 
sometimes be misinterpreted as shared ancestry, and recurrent mutations due to 
the higher control region mutation rate (Soares et al. 2009). The same problems 
also occur in the genealogy of complete mtDNA sequences, but to a far lesser 
extent, and complete mitochondrial genome analysis has become a standard tool 
since the advancement of more cost-effective sequencing techniques (Torroni et 
al. 2006). The main topic that will be addressed here is high-resolution 
complete mtDNA sequence phylogeny of endogenous matrilineal lineages in 
the ancient Sahul area and, in particular, in Australia, and its links to Eurasian 
mtDNA variation. As noted above, there is very limited matrilineal and patri-
lineal genetic information available from different Aboriginal Australian popu-
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lations. The majority of the data were generated using outdated partial control 
region sequencing sometimes complemented by the analysis of a few coding 
region SNPs. This information does not always allow comprehensive assign-
ment of different mtDNA types to haplogroups or may even lead to cladistic 
misclassifications of identified haplotypes. 

The landscape of mtDNA haplogroup frequencies in the extant populations 
of prehistoric Sahul is characterized by the presence of deep autochthonous 
lineages that are not found elsewhere in the world and a clear distinction of the 
haplogroup profiles of Aboriginal Australian and New Guinean populations. 
These autochthonous haplogroups of Sahul derive, however, from the same two 
mtDNA macro-haplogroups (M and N) characteristic to virtually all anato-
mically modern humans outside of Africa. High nucleotide diversity, com-
patible to that of the Asian population, points to the great antiquity of human 
groups inhabiting different areas of Greater Australia (Ingman and Gyllensten 
2003). Data indicates that there is only limited lineage sharing between popu-
lations from Australia and northern Melanesia and that endogenous people from 
highland New Guinea and Australia are more closely related to each other than 
to any other Asian population. On the contrary, populations from coastal New 
Guinea have higher genetic affinity with populations from East and Southeast 
Asia and Polynesia (Ingman and Gyllensten 2003; Friedlaender et al. 2007). 
This Asian legacy can likely be traced back to the recent mid-Holocene 
migration and represents a common genetic pool of mitochondrial hg B4a sub-
branches: hgs B4a1a1a (the so-called Polynesian motif) and B4a1a1 (Figure 1). 
These lineages are found in Remote Oceania, coastal New Guinea, Island 
Southeast Asia (ISEA) and Taiwan, but are virtually missing in Aboriginal 
Australians and rare in New Guinea highlanders (Friedlaender et al. 2007; 
Kayser 2010 and references therein; Soares et al. 2011). Hg B4a sub-branches 
were probably introduced to Near Oceania during the Austronesian language 
expansion, which, according to some models, started from the region of 
southern China and Taiwan about 5,000 to 6,000 years ago and resulted in the 
settlement of Remote Oceania and Polynesia (Merriwether et al. 2005; Trejaut 
et al. 2005). The 9-bp deletion at positions 8281–8289 that is characteristic to 
all hg B lineages was found at very low frequency among Australian Aborigines. 
Nevertheless, the lack of additional downstream hg B4a defining mutations 
points to its convergent evolutionary history in Australia, which is further 
supported by the high incidence of this 9-bp deletion in worldwide human 
mtDNA phylogeny (Betty et al. 1996; van Oven and Kayser 2009).  

Additionally, another maternal haplogroup that is occasionally found in Near 
Oceania, but not in Australia, is hg E, a sub-branch of M9 (Figure 1) (Merri-
wether et al. 2005; Friedlaender et al. 2007; Kayser 2010 and references 
therein). It has likely reached northern Melanesia during the series of dispersals 
and expansions of coast-dwelling human populations that began in eastern 
Sundaland/northwest Wallacea (islands between Sunda and Sahul, including 
Sulawesi) around the peak of the last glaciation. The expansion was most likely 
triggered by the rising sea level after the end of Last Glacial Maximum and 
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entered Near Oceania during the Holocene, probably in association with the 
Austronesian impact (Friedlaender et al. 2007; Hill et al. 2007). 

The most frequent autochthonous maternal lineages in Greater Australia 
belong to hg Q, a sub-cluster of macro-haplogroup M, and hg P, a sub-cluster of 
macro-haplogroup R (Figure 1). Hgs P and Q were originally defined using 
restriction fragment length polymorphisms (Forster et al. 2001), and their 
internal phylogeny has later been updated by several complete mtDNA analyses 
(Friedlaender et al. 2005; Merriwether et al. 2005; van Holst Pellekaan et al. 
2006; Friedlaender et al. 2007; Corser et al. 2012). Both lineages are rare in 
populations living west of New Guinea, indicating their Greater Australian 
homeland. Hg Q shares a single mutation with another Melanesian-specific 
branch, M29, therefore potentially forming an ancient M29’Q clade (Figure 1), 
although the possibility of convergent evolution cannon be ruled out (Merri-
wether et al. 2005). Hgs P and Q are common in Near Oceania (Friedlaender et 
al. 2005; Friedlaender et al. 2007), and found at lower frequencies in the ISEA 
region (Hill et al. 2007; Tabbada et al. 2010), thus possibly reflecting shared 
ancestry between aboriginal populations of Near Oceania and insular Southeast 
Asia (Mona et al. 2009). Hg Q is characterized by the presence of three sister-
clades, Q1–3, whereas hg P is more diverse and includes eight different sub-
branches, P1–8, among the populations of prehistoric Sahul. The oldest sub-
clades of P and Q (P1, P3 and Q1), along with the Australian-specific M42, are 
all dated by various methods to approximately 50 kya and earlier, i.e. to the 
time of the initial settlement of prehistoric Sahul by anatomically modern 
humans (Friedlaender et al. 2005; van Holst Pellekaan et al. 2006; Friedlaender 
et al. 2007). Only two sub-lineages, except those on the level of macro-haplo-
groups M and N and hg P, namely P3 and P4, are shared between Aboriginal 
Australian and northern Melanesian populations. Both branches are very deep, 
suggesting an ancient connection between the two regions and almost complete 
isolation since then (Ingman and Gyllensten 2003; Friedlaender et al. 2005; van 
Holst Pellekaan et al. 2006; Friedlaender et al. 2007). While the majority of 
New Guinean maternal genomes can be classified to hgs P1–2, Q, E and B4a, 
the Aboriginal Australian mitochondrial landscape carries unique auto-
chthonous branches not found elsewhere, including hgs M42, S and O (sub-
groups of macro-haplogroup N), and P5–8 (Figure 1) (Palanichamy et al. 2004; 
Friedlaender et al. 2005; Kivisild et al. 2006; van Holst Pellekaan et al. 2006). 
Three other deep ancient macro-haplogroup M lineages, M27, M28 and M29, 
are widespread in Northern Island Melanesia (Bismarck Archipelago and 
Solomon Islands), but virtually absent in New Guinea and completely lacking in 
Australia (Merriwether et al. 2005).  

Although there are a few dozens of complete mtDNA genomes available 
from Australia, several problems complicate matters. Firstly, complete mtDNA 
variation in Aboriginal Australia is, at least partially, not yet established 
according to the common rules of human mitochondrial phylogeny (e.g. 
haplogroup names like AuA, AuC, etc. are used instead of S, P4, etc.), and/or 
the neighbor-joining distance-based tree reconstruction algorithm is sometimes 
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used instead of the more informative median-joining character state approach 
(Ingman et al. 2000; Ingman and Gyllensten 2003; van Holst Pellekaan et al. 
2006). Secondly, none of the published studies has explicitly analyzed all 
currently available data, therefore making it difficult to readily incorporate 
Aboriginal Australian complete mtDNA genomes into the worldwide phylo-
geny of human matrilineal variation. 
 

2.2.2.2. Y-chromosome variation in Australia and New Guinea 

Although the resolution of the NRY tree branches specific to Australia and New 
Guinea is less developed than that of mitochondrial DNA, paternal variation in 
prehistoric Sahul and its relation to other Eurasian populations largely supports 
the results of matrilineal analysis, with some differences. The overall Y-
chromosome heterogeneity there appears to be smaller than that of mtDNA: 
Aboriginal Australians are represented by two main NRY clades: K-M9 and M-
M130 (for review see Kayser 2010), with hg C-M130 bearing the Australian-
specific DYS390.1 deletion (C-DYS390.1del) reaching up to 69% of the total 
variation (Figure 3) (Kayser et al. 2001). The spread of hg C-DYS390.1del 
among different Aboriginal populations across the Australian continent indi-
cates the antiquity of this NRY clade (Forster et al. 1998; Kayser et al. 2001; 
Redd et al. 2002; Taylor et al. 2012). Contrary to the maternal prehistory of the 
Aboriginal Australians, a very strong recent introgression of European Y 
chromosomes was detected in some Aboriginal sample sets, also reflected by 
whole-genome data (Underhill et al. 2001; McEvoy et al. 2010). For example, 
71% out of 757 male samples in the Aboriginal forensic database were assigned 
to European-specific haplogroups (Taylor et al. 2012). Due to the lower 
resolution, a considerable amount of male samples can only be classified to the 
macro-haplogroup K-М9 level, which is frequent outside of Africa (Kayser et al. 
2001; Underhill and Kivisild 2007; Taylor et al. 2012). Virtually no Y-chromo-
some lineages shared between the New Guinean and Aboriginal Australian 
NRY pools were detected, except those on the level of macro-haplogroups K-
M9 and C-M130, the minute frequencies of eastern Indonesian/Melanesian- 
(C2-M38) and Asian-specific (O-M175) haplogroups likely represent historic 
admixture in the 20th and 21st centuries (Taylor et al. 2012). This contrasts the 
distribution of mitochondrial hgs P3 and P4, which are present both in Australia 
and New Guinea (for review see Kayser 2010).  

Although the occurrence of different paternal lineages varies substantially 
between populations of New Guinea, the following haplogroups can be noted: 
C2-M38, including C2a-M208, M1-M4, S-M230, and sub-branches of hg O-
M175 (Figure 3) (Karafet et al. 2010; Kayser 2010). Hg C2a-M208 has northern 
Melanesian ancestry; C2-M38, M1-M4 and S-M230 were also detected in 
eastern Indonesia, pointing to either a more westward origin or gene flow from 
Near Oceania towards eastern Indonesia, probably the same process that might 
have introduced the Melanesian-specific mitochondrial hg Q to the ISEA region. 
In contrast with C, M and S, hg O3a-P201 was likely introduced from East Asia 
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during the Austronesian language expansion along with the pre-Polynesian 
B4a1a1 motif of mitochondrial hg B4a, while O1a-M119* Y chromosomes 
represent pre-Austronesian gene flow, the process probably responsible for the 
introduction of mtDNA hg E to Near Oceania (Hill et al. 2007; Karafet et al. 
2010; Soares et al. 2011). Finally, some New Guinean Y chromosomes cannot 
be resolved beyond the macro-haplogroup K-M9 level. Leaving aside the K-
M9* chromosomes, which most likely form a heterogeneous paraphyletic group 
of unidentified haplogroups, the only haplogroup common in both regions is C-
M130, represented by the sister-clades C-DYS390.1del and C2-M38 (including 
C2a-M208) in Australia and New Guinea, respectively. Hg C-M130 most likely 
originated in Asia after the African exodus and stands out as a very ancient link 
between the two Y-chromosome pools of prehistoric Sahul (Karafet et al. 2008; 
Kayser 2010 for review). 
 

 
Figure 3. Simplified human Y-chromosome tree. Haplogroups specific to Aboriginal 
Australia and Melanesia are shown in details, also shown hg C5-M356 found among 
populations of South Asia. Haplogroup geographical origin is color-coded according to 
the legend. Modified from Karafet et al. (2008). 
 
 
The overall picture that emerges from the analysis of human haploid loci is con-
sistent. Both regions of Greater Australia possess ancient autochthonous mater-
nal (Figure 1), paternal (Figure 3) and autosomal variation, supporting the very 
early occupation dates by anatomically modern humans (Friedlaender et al. 
2005; van Holst Pellekaan et al. 2006; McEvoy et al. 2010; Summerhayes et al. 
2010; Rasmussen et al. 2011). Aboriginal Australians show a high level of 
genetic differentiation not only from East and Southeast Asia and Eurasia in 
general, but likewise from neighboring New Guinea, offering further support 
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for a rapid southern route dispersal of modern humans to Southeast Asia and 
Sahul (Ingman and Gyllensten 2003; Friedlaender et al. 2005; Macaulay et al. 
2005; Merriwether et al. 2005; Friedlaender et al. 2007; Jinam et al. 2012). 
Only one maternal haplogroup is shared between Aboriginal Australia and New 
Guinea, namely hg P (Friedlaender et al. 2005; Friedlaender et al. 2007). This 
mostly non-overlapping pattern of haplogroup distribution in two geographic 
regions suggests that the link between modern Aboriginal Australians and New 
Guineans is very ancient – a conclusion supported independently by the spread 
of different Y chromosomes in prehistoric Sahul (Kayser et al. 2001; Fried-
laender et al. 2005). The distribution and age of the shared haplogroup P imply 
that both areas were occupied initially by a single migration wave which most 
likely already carried the derived hg P allele. This founder group, which also 
included other ancestral M, N and R types, has further split and given rise to the 
proto-Australian (which inherited all three macro-haplogroup M, N and R 
(including P) lineages) and proto-Near Oceanian mtDNA pools (inherited only 
M and R (including P) lineages) (Figure 1). Alternatively, available genetic data 
is as yet limited to exclude the scenario of multiple independent migration 
waves that started from closely related source populations at about the same 
time, but brought separate mtDNA packages to different areas of prehistoric 
Sahul (Ingman and Gyllensten 2003; Friedlaender et al. 2005; van Holst Pelle-
kaan et al. 2006). Approximately 50 ky old dates for the oldest autochthonous 
mtDNA haplogroups in Greater Australia do not contradict the age of the first 
anatomically human remains in this area (O'Connell and Allen 2004; Fried-
laender et al. 2005; van Holst Pellekaan et al. 2006; Friedlaender et al. 2007; 
Summerhayes et al. 2010). Furthermore, the distribution of mitochondrial and 
Y-chromosome motifs points to the considerable isolation of proto-Australians 
since the initial split from the proto-Near Oceanian population despite the land 
bridge connection that persisted until 8 kya. This idea is further supported by 
the analysis of autosomal loci (Roberts-Thomson et al. 1996; McEvoy et al. 
2010) and the phylogeography of a human bacterial parasite, Helicobacter 
pylori, in populations of prehistoric Sahul (Moodley et al. 2009), and prevails in 
some recent studies by Australian archaeologists (Mulvaney and Kamminga 
1999).  

2.2.3. Evidence for pre-historic gene flows 

The evolutionary history of Aboriginal Australians and New Guineans diverges 
greatly after the initial colonization of prehistoric Sahul. There are traces of 
relatively recent admixture between the original inhabitants of Near Oceania, 
New Guinea in particular, and populations originating from East Asia. The evi-
dence derives from mtDNA, NRY and autosomal analyses, and is supported by 
the distribution of different language families in this region (Kayser 2010 and 
references therein). While the New Guinean mainland is dominated by endo-
genous Papuan-speakers (sometimes referred to as non-Austronesians) repre-
senting a very rich linguistic diversity of about 850 languages, the majority of 
the islanders around New Guinea as well as the inhabitants of the northeast and 
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southeast coast of New Guinea speak Austronesian languages, which are 
thought to have arrived from East Asia not earlier than 3,500 years BP (Specht 
and Gosden 1997; Paul et al. 2013). The Austronesian language expansion is 
assumed to have started about 5,500 years ago from Taiwan and distributed to 
Island Southeast Asia, and further to northern Melanesia. These people then 
continued to expand eastwards into the Pacific. The migration introduced spe-
cific mtDNA and NRY lineages to New Guinea and Near Oceania in general, 
but not to Australia. These included the mtDNA hg B4a1a1, from which most 
likely in situ emerged the so-called Polynesian motif, and the Y-chromosome 
hg O3a-P201 (Friedlaender et al. 2007; Kayser et al. 2008; Karafet et al. 2010; 
Soares et al. 2011). Although there is an ongoing debate concerning the 
demographic vs. cultural impact of the Austronesian migration, and the spatial 
and temporal details of its origin, including which haploid markers are as-
sociated with this mid-Holocene migration and which could be ascribed to the 
early-Holocene/late-Pleistocene gene flow from (insular-)Southeast Asia (Tre-
jaut et al. 2005; Hill et al. 2007; Tabbada et al. 2010; Soares et al. 2011; Jinam 
et al. 2012; Oskarsson et al. 2012), it is clear that these lineages are not endo-
genous to the populations of Near Oceania and were introduced there recently. 
Interestingly, the proportion of Asian-specific types differs significantly 
between the paternal and maternal gene pools: the average frequency of Asian 
mtDNA haplogroups varies from 42 to 58% between non-Austronesian and 
Austronesian speakers of Near Oceania, whereas Asian NRY lineages comprise 
only between 16 and 2%, respectively, suggesting a female-biased gene flow 
from incoming Austronesians to local Papuan-speaking populations (Kayser et 
al. 2008). On the other hand, the abundance of autochthonous Melanesian pater-
nal lineages in Austronesian-speaking groups can be explained by the matrilocal 
nature of these communities, where non-Austronesian men, rather than women, 
have moved to Austronesian villages, thereby diluting the original Asian-
specific NRY gene pool (Trejaut et al. 2005; Kayser et al. 2008; Kayser 2010). 

While Austronesian language expansion has received much attention, there 
is another possible evidence of post-LGM Southeast Asian gene flow stemming 
from the distribution of mitochondrial hg E, a subset of Asian-specific M9, and 
the O1a-M119* Y chromosomes (Hill et al. 2007; Karafet et al. 2010). Hg E is 
the most common lineage entirely endogenous to ISEA with an average 
frequency of about 14%. Analysis of mtDNA control region indicates that hg E 
most likely evolved within the population of the eastern coastline of Sundaland 
approximately 25 kya and has thereafter experienced serial expansion north-
wards to Taiwan and, to a lesser extent, eastwards into Near Oceania 
(Friedlaender et al. 2007; Hill et al. 2007).  

Because of a substantially lower amount of genetic data available from Ab-
original Australians, the possibility for gene flow into this population is heavily 
debated (Brown 2013). In 1870, the outstanding English naturalist Thomas 
Huxley noted: “The only people out of Australia who present the chief cha-
racteristics of the Australians in a well-marked form are the so-called hill-
tribes who inhabit the interior of the Dekhan, in Hindostan” (Huxley 1870). 
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This observation has received much attention since. Archaeological data indi-
cates an intensification of the density and complexity of different stone tools in 
Australia during the mid-Holocene period and the emergence of microlithic 
technology around 4,000 to 5,000 years ago (Mulvaney and Kamminga 1999 
and references therein). The first Dingoes (Canis lupus dingo) similarly appear 
at about the same time (3,500–4,000 years ago) (Gollan 1985) and, along with 
new stone tool types, were proposed to have been introduced from India by a 
single package (Glover and Presland 1985; Mulvaney and Kamminga 1999 and 
references therein). However, later studies have suggested that there is “no 
reason to infer that any of the innovations in stone technology derive from over-
seas” (Mulvaney and Kamminga 1999). The dating of the oldest backed stone 
tools has recently shifted to approximately 15,500 years BP, supporting the idea 
for the independent appearance of the Dingo and microlithic technology in 
Australia (Hiscock 2008 and references therein). Genetic studies also indicate 
that the ancestry of the Dingo and its closest relative, the New Guinean singing 
dog, can be traced back to South China, rather than to the Indian sub-continent. 
Estimates of the arrival time of the Dingo to Australia from genetic data have a 
wide range of 4,600 to 18,300 years BP (Savolainen et al. 2004; Ardalan et al. 
2012; Oskarsson et al. 2012). Therefore, support for the proposed Indian-
Australian mid-Holocene connection remains elusive from the latest archaeo-
logical and paleozoological evidence.  

Initially, closer affinity of Aboriginal Australians to South Indians rather 
than to New Guineans was inferred from partial control region sequences of the 
mitochondrial genome (Redd and Stoneking 1999). However, as already noted 
above, analysis of control region data alone may be misleading. Indeed, no 
evidence from complete mtDNA analyses confirmed this early speculation 
(Ingman and Gyllensten 2003; van Holst Pellekaan et al. 2006). Patrilineal 
microsatellite analysis similarly suggested that Australian C-M130* Y chromo-
somes share a mid-Holocene ancestry with populations from Hindustan (Redd 
et al. 2002). However, later studies confirmed that the majority of the Indian C-
M130* chromosomes harbor the ancient M356 derived allele (hg C5), while 
Aboriginal Australians are characterized by the presence of C-DYS390.1del 
chromosomes, therefore undermining claims of a recent common ancestry with 
India (Kayser et al. 2001; Sengupta et al. 2006). 

The limited number of whole-genome studies available for the Aboriginal 
Australian population report conflicting results. McEvoy et al. (2010) found no 
evidence for any gene flow from outside of Australia, including South India, 
except the recent admixture with European settlers. The same study also 
provided support for a shared ancestry of populations from Australia and Mela-
nesia and pointed to the considerable isolation of Australia since the initial Late 
Pleistocene settlement until the first Europeans arrived in 1788, as confirmed by 
the single complete genome sequence of an ancient Aboriginal Australian 
(Rasmussen et al. 2011). On the contrary, traces of an Indian-Australian mid-
Holocene connection were detected in a recent genotyping-based study using, 
among others, structure-like analysis (Pugach et al. 2013). However, the results 
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of this approach cannot be readily interpreted as evidence of recent admixture 
between two populations and might as well reflect deep shared proto-Eurasian 
ancestry (Yunusbayev et al. 2012). Strong marker ascertainment bias, which is 
inevitably introduced during the design of genome-wide genotyping arrays, 
should also be taken into the account when studying diverse populations such as 
the endogenous inhabitants of prehistoric Sahul. It could distort both measures 
of human diversity and the conclusions drawn from them (Albrechtsen et al. 
2010). Therefore, further comprehensive studies of genetic variation, preferen-
tially based on whole genome re-sequencing, including autosomes, Y chromo-
somes and mtDNA, are needed to better understand the genetic prehistory of 
Aboriginal Australians and, in particular, to resolve their potentially hitherto 
hidden connections with other Eurasian populations, including those inhabiting 
South Asia. 
 

2.3. Out-of-Africa: adaptation to  
new environments 

During their migration out of Africa, anatomically modern humans expanded to 
vast areas and encountered a diverse range of new environmental conditions, 
which have triggered a number of novel genetic adaptations. Multiple examples 
of local adaptive processes are known, including pathogen-driven selection 
(Fumagalli et al. 2011), adaptation to high altitude (Simonson et al. 2010), cli-
mate (Hancock et al. 2008) and diet (Hancock et al. 2010), selection for short 
stature (Jarvis et al. 2012; Migliano et al. in press), and adaptation to low ultra-
violet environment (for review see Sturm and Duffy 2012). One of the most 
striking differences between modern human populations is skin color. Approxi-
mately 88% of the phenotypic variation of this trait lies between different 
geographical regions in comparison to only 10–15% for craniometrical and 
genetic loci – a very uncommon pattern, assumed to have been shaped by 
natural selection (Relethford 2002). The color of our skin is mainly determined 
by the mix of carotenoids, oxy- and deoxyhemoglobin (erythema), and, most 
importantly, melanin content. While erythema varies largely during inflam-
mation, thermoregulation and other physiological processes, it is the con-
centration of different melanin molecules that is responsible for the light to dark 
color component of human skin. Two types of melanin exist, dark photoprotec-
tive pheomelanin and light eumelanin. Both melanins arise from a common 
metabolic pathway and are synthesized by melanocytes in specialized or-
ganelles, melanosomes. Melanosomes are further transferred to keratinocytes 
residing in the upper layer of the epidermis and thus also determine the color of 
hair. Differences in skin color do not result from the number of melanocytes (it 
is equal among different skin types), but from other factors, including the size, 
number and shape of melanosomes and their aggregation into larger clusters, as 
well as from the intracellular distribution of melanosomes, melanogenic activity 
and the rate of melanosome degradation in keratinocytes. For example, light 
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skin is enriched in light-brown 5,6-dihydroxyindole-2-carboxylic acid 
(DHICA)-eumelanin and yellow to reddish pheomelanins packed into smaller 
and densely aggregated melanosomes; on the contrary, dark-brown 5,6-dihydro-
xyindole (DHI)-eumelanin prevails in the large and non-aggregated melano-
somes of heavily pigmented individuals (Jablonski 2004; Parra 2007 and 
references therein). The concentration of eumelanin, in comparison to pheo-
melanin, is generally higher in all skin types, while net melanin content varies 
largely: heavily pigmented black skin has an approximately six-fold higher total 
melanin load than the lightly pigmented type (Ito and Wakamatsu 2003). 
Furthermore, melanins differ in their physico-chemical properties. For example, 
DHI-eumelanin, which is prevalent in dark skin, has the highest ultraviolet 
(UV) photoabsorption, followed by light-brown DHICA-eumelanin, while 
pheomelanins have insignificant UV-protecting capacity. The optical properties 
of a mixture of different melanins are very complex and include the ability to 
absorb, scatter and reflect light at different wavelengths, including UVA and 
UVB, therefore acting as a physical barrier to DNA damaging and carcinogenic 
UV radiation (UVR) (Ortonne 2002; Brenner and Hearing 2008).  

The correlation between levels of skin pigmentation and UV radiation is 
extremely straightforward, pointing to a likely causative connection between the 
two variables (Chaplin 2004). Several evolutionary drivers have been put 
forward to explain this association and it is most likely that a combination of 
various factors has influenced the pigmentation of our skin (for review see: 
Steindal and Moan 2008; Juzeniene et al. 2009). While Charles Darwin, in his 
book “The Descent of Man, and Selection in Relation to Sex”, ascribed the 
differences in skin color among humans to sexual selection (Darwin 1871), 
more than a century later there is as yet no compelling evidence to support this 
hypothesis, neither sufficient evidence to completely exclude it. The two most 
renowned hypotheses involving natural selection include: (a) selection for 
vitamin D3 biosynthesis which is relevant for explaining the evolution of lighter 
skin color at higher geographical latitudes with low UVR levels (Loomis 1967), 
and (b) selection against folate (vitamin B9) photolysis, and therefore for darker 
skin color, at lower geographical latitudes, e.g. (near-)equatorial areas with high 
UVR levels (Branda and Eaton 1978). Vitamin D3 is a fat-soluble molecule 
responsible for the regulation of bone health, calcium homeostasis and other 
physiological processes. It is photochemically produced from 7-dehydrocholes-
terol in the skin under reaction with UVB. The deficiency of this vitamin is 
associated with rickets, but likewise involved in cancer, autoimmune diseases, 
hypertension, and infectious diseases (Holick and Chen 2008; Yuen and Jab-
lonski 2010), while folate is essential for the synthesis and repair of nucleic 
acids, DNA methylation, and metabolism of amino acids, and its deficiency 
could lead, among others, to potentially fatal birth defects such as neural tube 
defects, pregnancy complications and male infertility (National Institutes of 
Health 2013). The metabolism of both molecules is affected by the photopro-
tective properties of human skin, which must have been under strong influence 
of natural selection. Therefore, the pattern of skin color variation among areas 
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of different UVR load (and geographical latitudes) can be explained as a ba-
lance between skin dark enough to protect from folate degradation, but light 
enough to permit sufficient vitamin D3 biosynthesis (Jablonski and Chaplin 
2010). This is generally supported by insufficient vitamin D3 levels among 
heavily pigmented individuals living in UV-poor areas: for example, African 
Americans have a more than two times lower 25-hydroxyvitamin D con-
centration than African populations living in their ancestral UV-rich environ-
ment (Durazo-Arvizu et al. 2013). However, there are ongoing debates con-
cerning the importance of both vitamin D3 and folate concentration as evolu-
tionary drivers for human skin (de-)pigmentation. Incidences of rickets in 
heavily pigmented individuals living at high latitudes are sometimes contra-
dictory and the European archaeological record does not indicate a prevalence 
of rickets and osteomalacia before the Industrial Revolution and urbanization. 
The latter suggests that changes in lifestyle and associated environment during 
the last few hundred years might be causative for this disease (Aoki 2002 and 
references therein). The folate hypothesis, which was originally proposed based 
on an ex vivo study of folate photodegradation in human plasma, similarly 
shows inconsistent support from the latest in vivo analyses (Juzeniene et al. 
2010 and references therein).  

Interestingly, there are hypotheses associating skin lightening in northern 
Europe with the rise and subsequent spread of agriculture starting from about 
10–12 kya (Cavalli-Sforza et al. 1994; Juzeniene et al. 2009 and references 
therein; Khan and Khan 2010). Terrestrial game and fish are rich in vitamin D, 
while cultivated grain and livestock are a very poor supply of this micronutrient. 
Therefore, dramatic changes in diet and increased incidence of vitamin D 
deficiency may have led to additional selection upon skin depigmentation. In 
addition to vitamin D3 and folate concentrations, other factors may also have 
influenced the evolution of skin color on the local scale. These possibly in-
cluded: protection from xeric stress by enhanced permeability barrier function 
of heavily pigmented skin in arid sub-Saharan Africa (Elias et al. 2010), sexual 
preference for lighter-than-average skin color as originally suggested by 
Charles Darwin (Aoki 2002; Frost 2007; Madrigal and Kelly 2007; Madrigal 
and Kelly 2007), and the importance of vitamin D-mediated human antimicro-
bial response (Liu et al. 2006).  
 

2.3.1. Associate examples of skin color evolution 

Skin color is a polygenic trait with more than 170 currently known associated 
mouse genes and their human orthologs (Montoliu et al. 2012). This list in-
cludes genes involved in various cellular and physiological processes, e.g. the 
biosynthesis of melanin from tyrosine and cysteine, melanosome ion-trafficking, 
maturation and export, formation of the structural matrix and melanosome 
turnover (for review see Sturm and Duffy 2012). Pigmentation level is tightly 
controlled by a complex system of different factors such as hormones, cytokines, 
growth factors and their receptors, including, among others, the melanocortin 1 
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receptor (MC1R), its agonist α-melanocyte stimulation hormone (α-MSH) and 
antagonist agouti-signaling protein (ASIP) (Figure 4). UVR-induced damage in-
creases the level of α-MSH, which upregulates the expression of brown eumela-
nin and enhances the photoprotective function against the damaging effects of 
subsequent UVR exposures by escaping UVR-induced melanocyte apoptosis 
(Brenner and Hearing 2008 and references therein). In contrast, the binding of 
the antagonist molecule reverts melanocytes to red pheomelanin production and 
downregulation of eumelanogenesis (Lu et al. 1994).  

The MC1R gene was the first one to be connected with natural skin color 
variation among humans (Valverde et al. 1995). Mutations in this gene are 
generally associated with red hair, fair skin, freckling and poor tanning. The 
frequency of “red hair” alleles exhibits a south to north gradient in Europe and 
appears to be consistent with general pigmentation levels in the local popu-
lations (Gerstenblith et al. 2007). Interestingly, a study of ancient DNA sug-
gested that approximately 1% of Neanderthals were homozygous for the loss-
of-function MC1R allele and possibly had pale skin and/or red hair similar to 
that of modern humans (Lalueza-Fox et al. 2007). Furthermore, the MC1R gene 
has an uncommon variation pattern: sub-Saharan Africans possess the lowest 
diversity and completely lack non-synonymous substitutions, pointing to very 
strong functional constraints and purifying selection, while Europeans have an 
excess of non-synonymous variation, pointing to either relaxation of constraints 
(that is, the absence of strong purifying selection) (Harding et al. 2000) or 
balancing selection that, arguably, would have maintained enhanced genetic 
variability (Rana et al. 1999; Rees and Harding 2012). Traces of non-neutral 
evolution within the MC1R gene have been detected by various means in diffe-
rent human populations (Makova and Norton 2005): a re-sequencing-based 
Tajima’s D approach indicates positive selection in Europe (Savage et al. 2008), 
while genome-wide FST data points to the selective sweep of a single non-syno-
nymous allele in eastern Asia (Coop et al. 2009). The overall pattern of MC1R 
variation is quite unusual on the genome-wide scale, as generally autochthonous 
African populations have the highest nucleotide diversity level, indicating the 
African origin of our species (Abecasis et al. 2010). 

In addition to MC1R, other pigmentation genes have been found to show 
higher than genome-wide average levels of among population differences and 
be enriched for signals of positive selection (Voight et al. 2006; Sabeti et al. 
2007; Williamson et al. 2007; Pickrell et al. 2009). The most notable examples 
are: TYR, coding for the melanogenic enzyme tyrosinase, SLC24A5, SLC45A2 
and OCA2, coding for membrane transporter proteins, and KITLG, coding for a 
growth factor involved in the regulation of the number of melanocytes during 
development (Figure 4) (for review see: Sturm 2009; Anno et al. 2010; Rees 
and Harding 2012; Sturm and Duffy 2012).  
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Figure 4. Schematic representation of human melanogenesis. The enzyme tyrosinase 
constitutes a critical rate-limiting step in melanin production from tyrosine. The stimu-
lation of the melanocortin 1 receptor (encoded by the MC1R gene) by α-melanocyte 
stimulation hormone (α-MSH) leads to the activation of the cAMP pathway, enhanced 
expression of melanogenic tyrosinase (TYR), dopachrome tautomerase (DCT) and 
tyrosinase-related protein 1 (TYRP1), and the synthesis of dark eumelanin. TYRP1 and 
DCT are only involved in eumelanin production. The antagonist of MC1R, the agouti-
signaling protein (encoded by the ASIP gene), precludes α-MSH initiated signaling and 
reverts melanogenesis towards the basal state of light pheomelanin synthesis. Other 
important factors include melanosome transporter proteins NCKX5 (encoded by the 
SLC24A5 gene), MATP (encoded by the SLC45A2 gene) and p-protein (encoded by the 
OCA2 gene), which are responsible for the transport of small molecules, ions and pH 
regulation. The Kit ligand (encoded by the KITLG gene) binds to the tyrosine receptor 
kinase KIT and promotes the migration, survival and proliferation of melanocytes. The 
SLC24A5, SLC45A2, TYR and TYRP1 genes (gray shading) show traces of natural 
selection in the European population, while the OCA2 and DCT loci (yellow shading) 
show traces of natural selection among East Asians. The KITLG gene shows traces of 
natural selection in both European and East Asian populations (for review see: Scherer 
and Kumar 2010; Sturm and Duffy 2012).  
 
 
The SLC24A5 gene variation offers probably the best example of adaptive evo-
lution among pigmentation genes. It codes for the potassium-dependent sodium/ 
calcium exchanger (NCKX5), essential for Ca2+ uptake coupled with proton 
transport and the regulation of melanosomal pH (Ginger et al. 2008). A single de-
rived non-synonymous SLC24A5 substitution (rs1426654, p.Ala111Thr) is 
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almost entirely fixed in European populations, but not in Africa and Asia 
(Lamason et al. 2005). Melanosomal pH level is known to be more alkaline in 
heavily pigmented individuals, while lightly pigmented Europeans have lower 
pH. Activity and/or maturation of several melanosomal proteins, including the 
rate-limiting tyrosinase, are optimal at neutral pH level (Fuller et al. 2001). The 
European-specific 111Thr allele impairs NCKX5 function, leading to the acidi-
fication of the melanosomal environment, decreased tyrosinase activity and net 
melanin production, which would be advantageous at higher geographical lati-
tudes with lower UVR levels. On the contrary, optimal tyrosinase activity, 
which is facilitated by a fully functional NCKX5 protein and high total melanin 
load, is essential near the equator, as explained by the vitamin D3/folate 
hypothesis (Ginger et al. 2008; Cook et al. 2009; Jablonski and Chaplin 2010). 
Interestingly, lightly pigmented East Asian individuals share the ancestral allele 
with heavily pigmented Africans (Lamason et al. 2005). This is not surprising, 
taking into account that anatomically modern humans dispersed independently 
multiple times into non-tropical latitudes of Eurasia, and, therefore, may have 
evolved depigmented phenotypes by means of convergent evolution (McEvoy 
et al. 2006; Norton et al. 2007; Jablonski and Chaplin 2010). Quantitative esti-
mates show that the p.Ala111Thr amino acid change accounts for up to 38% of 
the European-African difference in skin melanin index (Lamason et al. 2005), 
and for approximately 33% of the difference between lightly and heavily pig-
mented individuals with South Asian ancestry (Stokowski et al. 2007). An 
unusually long linkage disequilibrium block and high European-specific diffe-
rentiation pattern around this gene indicate a very strong recent selective 
sweep – an observation that has been confirmed by multiple independent stu-
dies (Norton et al. 2007; Sabeti et al. 2007; Coop et al. 2009; Pickrell et al. 
2009; Grossman et al. 2013).  

Another protein essential for maintaining ionic homeostasis within melano-
somes is a membrane-associated transporter protein, or MATP, encoded by the 
SLC45A2 gene (Dooley et al. 2013). Signs of European-specific positive se-
lection were detected in the SLC45A2 locus both by genotyping (Norton et al. 
2007; Sabeti et al. 2007) and re-sequencing methods (Soejima et al. 2006; 
Grossman et al. 2013), and a strong latitudinal cline of a single non-synony-
mous SLC45A2 substitution (rs16891982, p.Leu374Phe) was found in the 
European sub-continent (Lucotte et al. 2010). The derived 374Phe allele was 
shown to be associated with lower melanin content and lighter skin color by 
functional assay, supporting the importance of different transporter proteins in 
the regulation of melanogenesis (Cook et al. 2009). 

Although two genes listed above – SLC24A5 and SLC45A2 – show traces of 
strong European adaptation, Asian-specific skin lightening alleles are known as 
well. For example, the non-synonymous rs1800414 mutation (p.His615Arg) in 
the OCA2 gene is both restricted to East Asia and under selection in that region 
(Lao et al. 2007; Edwards et al. 2010; Yuasa et al. 2011; Donnelly et al. 2012). 
Other genes, including DCT and TYRP1 coding for components of the melano-
genic enzyme complex, as well as ADAM17 and ADAMTS20 similarly show 



29 

non-neutral evolution in lightly pigmented East Asians, although no causative 
association with pigmentation has been established yet (Norton et al. 2007; 
Edwards et al. 2010). Notably, ADAM17 (UniProtKB P78536) and ADAMTS20 
(UniProtKB P59510) also play a role in physiological processes other than 
pigmentation (UniProt Consortium 2013 and references therein), and it is 
therefore possible that signatures of selection detected in these genes are due to 
various biological functions (Edwards et al. 2010). In addition, studies of the 
TYRP1 gene coding for tyrosinase-related protein 1 indicate selection in lightly 
pigmented Europeans (Voight et al. 2006; Lao et al. 2007) and, possibly, Afri-
cans (Alonso et al. 2008). Interestingly, the European specific rs12913832 
mutation in the OCA2 enhancer significantly decreases the level of gene 
expression (Cook et al. 2009). This substitution segregates almost perfectly with 
blue eye color and possibly affects skin color as well (Sturm et al. 2008; 
Branicki et al. 2009), once again pointing to the convergent evolution of light 
skin in Eurasia (McEvoy et al. 2006; Norton et al. 2007). The product of the 
OCA2 gene, the p-protein (UniProtKB Q04671), plays a role in the transport of 
melanosomal metabolites, although its exact function is not fully understood yet 
(UniProt Consortium 2013 and references therein). 

The main rate-limiting enzyme in melanogenesis, catalyzing the first two 
steps and at least one subsequent step in the conversion of tyrosine to melanin, 
is tyrosinase, encoded by the TYR gene (Ray et al. 2007). Along with 
tyrosinase-related protein 1 (encoded by TYRP1) and dopachrome tautomerase 
(encoded by DCT), it forms the melanogenic enzyme complex. Several SNP 
genotyping studies have suggested the role of this gene in normal variation of 
skin pigmentation. One TYR non-synonymous rs1042602 (p.Ser192Tyr) poly-
morphism has been associated with differences between lightly and heavily 
pigmented individuals from South Asia, yet explaining only up to 2.5% diffe-
rence between two cohorts (Stokowski et al. 2007). The same SNP has provided 
a strong signal of European-specific diversity and is associated with eye color, 
freckles and skin pigmentation in Europe (Shriver et al. 2003; Norton et al. 
2007; Sulem et al. 2007). However, the results of scans for natural selection on 
this gene have been inconsistent: a few studies have detected a signal of 
selection (Myles et al. 2007; Norton et al. 2007; Alonso et al. 2008), while 
others have not been able to reject the neutral hypothesis (Izagirre et al. 2006; 
Voight et al. 2006; Lao et al. 2007; Sabeti et al. 2007; Williamson et al. 2007; 
Candille et al. 2012). The level of tyrosinase expression is similar, but enzyme 
activity varies among different skin color types. This can be a result of either 
varying melanosomal ionic environment between different phenotypes (optimal 
activity is present at neutral pH level), or functional differences within the 
enzyme itself (Fuller et al. 2001; Alaluf et al. 2003). For example, the two most 
common non-synonymous mutations, rs1042602 (p.Ser192Tyr) and rs1126809 
(p.Arg402Gln), have a significant negative effect on enzyme activity as shown 
by in vitro analyses (Tripathi et al. 1992; Chaki et al. 2011). Therefore, addi-
tional studies are needed to investigate the patterns of diversity and selection 
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within the TYR gene and its relation with (de-)pigmentation processes among 
modern human populations. 

The Southern route migration out of Africa implies that a group of anato-
mically modern humans expanded from UV-rich near-equatorial Ethiopia 
approximately 65 to 70 kya, moving northeastwards to South Arabia and further 
into Eurasia (Macaulay et al. 2005; Soares et al. 2009; Oppenheimer 2012; Soa-
res et al. 2012; Wei et al. 2013), indicating that the ancestral proto-Eurasian 
population had to move and adapt to a novel UV-environment during this pro-
cess. Examples of regional-specific convergent skin color evolution were 
discussed above, but are there any traces of evolutionary processes acting upon 
pigmentation genes in the proto-Eurasian population before its split into re-
gional human populations? Miller et al. (2007) found a strong association 
between a non-coding substitution in the 5’ flanking region of the KITLG gene 
(rs642742) and skin color, and estimated that the double-derived Eurasian allele 
lightens a person’s color by an average of 6 to 7 melanin units in comparison to 
a difference of approximately 30 melanin units between heavily pigmented 
Africans and Europeans (mean spectrophotometrically measured melanin index 
is around 30 in European Americans and 58 in African Carribeans (Shriver et al. 
2003)). The derived rs642742 allele is frequent among Eurasian populations, 
whereas the ancestral allele is virtually fixed in Africa, but not elsewhere. 
Previous studies have likewise highlighted this locus as a very strong candidate 
for selection in both Asian and European populations, therefore indicating that 
selection acting upon the KITLG gene may have been invoked in the proto-
Eurasian population moving away from the UV-rich equator after the African 
exodus (McEvoy et al. 2006; Miller et al. 2007; Williamson et al. 2007; Coop et 
al. 2009; Pickrell et al. 2009). 
 

2.3.2. A model for the evolutionary architecture  
of human skin pigmentation 

The general pattern of variation among pigmentation genes, including melano-
somal transporter proteins (SLC24A5, SLC45A2, OCA2) and signal transmitting 
receptors and ligands (MC1R, KITLG) agrees well with the vitamin D3/folate 
hypothesis for the evolution of human skin color. It indicates that partial loss of 
function is tolerated or even favored by means of different evolutionary pro-
cesses, that is either positive selection, balancing selection or relaxation of func-
tional constraints, in lightly pigmented populations, to ensure lower total mela-
nin content, decreased photoprotection and, as a result, biosynthesis of vitamin 
D3 in low UV environment, such as East Asia and Europe. On the contrary, 
loss-of-function mutations are not tolerated in UV-rich (near-)equatorial areas, 
like sub-Saharan Africa, to ensure protection from UVR-induced folate photo-
lysis (for review see: Sturm 2009; Anno et al. 2010; Rees and Harding 2012; 
Sturm and Duffy 2012).  

The evolutionary history of human skin pigmentation is complex and may 
have involved several independent episodes of natural selection acting on 
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different genes at different time periods. Firstly, it is likely that pigmentation 
genes were affected by selection in the common ancestors of all living humans 
after they lost their protective fur (McEvoy et al. 2006) and split from other 
archaic hominins (Meyer et al. 2012). Secondly, selection for lighter skin acting 
upon the KITLG gene may have been invoked in the proto-Eurasian population 
moving away from the equator as a result of the African exodus (McEvoy et al. 
2006; Lao et al. 2007; Miller et al. 2007; Williamson et al. 2007; Pickrell et al. 
2009; Beleza et al. 2013). And, thirdly, selection on vitamin D3 synthesis may 
have been an important evolutionary driver associated with the colonization of 
low UVR environments after the split of the proto-European and proto-East 
Asian populations 25 to 38 kya (Rasmussen et al. 2011). Several lines of evi-
dence point to convergent evolution during the last stage of depigmentation. 
While the East Asians display high frequencies of population-specific alleles in 
pigmentation genes OCA2, DCT, ADAM17, ADAMTS20 and in some other loci, 
the signals for European-specific selection are centered on a different set of 
genes – SLC24A5, SLC45A2 and TYRP1 (Figure 4) (Norton et al. 2007; 
Edwards et al. 2010; Beleza et al. 2013). Coalescence estimates suggest that the 
European-specific pigmentation alleles have reached high frequencies around 
19 to 11 kya (Soejima et al. 2006; Beleza et al. 2013) or even later, between 12 
and 3 kya (Norton and Hammer 2007). The last stage of skin depigmentation 
may have been driven by various factors, including climate, cultural and demo-
graphic changes during and after the Last Glacial Maximum. The decrease in 
winter UVR level, which peaked between 12 and 9 kya, and the extensive use 
of protective clothing and shelter seeking have both negatively affected vitamin 
D3 bioavailability, therefore promoting further skin lightening (COHMAP 1988; 
Jablonski 2004). In addition, the growth of effective population size after the 
end of the LGM period may have been sufficient for advantageous mutations to 
become fixed in a relatively short time (Beleza et al. 2013), and the onset of 
agriculture and the associated diet shift in the early Holocene period may have 
contributed to the final stage of depigmentation in Europe (Cavalli-Sforza et al. 
1994; Khan and Khan 2010). 

The virtual lack of skin color associated genetic data from heavily pig-
mented populations outside of Africa, e.g. from Australasia, and the fact that the 
majority of available selection scans were performed on the HapMap dataset, 
which was until recently largely limited to only three populations from Africa 
(YRI), Europe (CEU) and East Asia (JPT+CHB), limits our knowledge about 
the evolution of human skin color on the global level. Therefore, additional 
follow-up re-sequencing and functional studies are needed to better understand 
the process of selection acting upon various pigmentation genes among diffe-
rent human populations and to determine how natural variation within candidate 
genes affects the expression and/or functional properties of proteins, i.e. to 
establish and explicitly explore the genotype-phenotype relationship within 
pigmentation associated loci. 
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3. AIMS OF THE STUDY 

The general aim of the current study was to describe and analyze genetic varia-
tion among modern human populations relevant for the following scientific 
problems: 
1. Settlement of prehistoric Sahul as can be seen from the variation of human 

haploid genomes (Refs. I and II), including: 
a. Identification of novel mtDNA and NRY lineages in endogenous popu-

lations of New Guinea and Australia and their phylogenetic and phylo-
geographic placement within the maternal and paternal gene pools of 
anatomically modern humans; 

b. Estimation of the possible time of arrival of anatomically modern 
humans to prehistoric Sahul; 

c. Assessment of recent gene flow to prehistoric Sahul from Eurasian 
populations, particularly those of South Asia, as can be deduced from 
human mtDNA and Y-chromosome variation. 

2. Patterns of diversity and selection in the pigmentation associated human 
tyrosinase gene (Ref. III), including: 
a. Characterization of the worldwide phylogeny of different TYR haplo-

types using extensive re-sequencing and genotyping of a global popu-
lation sample; 

b. Assessment of signatures of natural selection acting upon the TYR gene 
using both local and genome-wide selection tests; 

c. Association of neutral genetic variation in this autosomal locus with the 
evolution of different skin color phenotypes in the main continental 
groups of anatomically modern humans. 
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4. MATERIALS AND METHODS 

The origin of the human DNA samples analyzed in the present study, along 
with the experimental and analytical methods used, are described in detail in the 
respective research articles and/or their supporting materials. 
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5. RESULTS AND DISCUSSION 

5.1. Settlement of prehistoric Sahul  
as seen from the variation  

of human haploid genomes (Refs. I and II) 
Both genetic and archaeological data support the occupation of prehistoric 
Sahul by anatomically modern humans ca 50 kya (ref. I; Hiscock 2008). Mito-
chondrial DNA lineages found among Aboriginal Australian and Melanesian 
populations are largely unique, pointing to their autochthonous origin. This 
observation is further supported by the lack of recently shared NRY variation, 
except on the macro-haplogroup C-M130 and K-M9 level and obvious Euro-
pean introgressions during the very recent demographic events. The maternal 
gene pool of the populations of Greater Australia can be classified by the 
presence of mitochondrial hgs M29’Q, M42, P, S, O (referred to as N12 in ref. 
I) and haplotypes which are only characterized by a single complete mtDNA 
genome, including M14, M15 (referred to as M13 in ref. I), N13, N14, R12 and 
R14 (Figure 5) (ref. I and references therein). There are in total 38 complete 
mtDNA sequences available from Aboriginal Australian populations at present 
(ref. I; van Oven and Kayser 2009 and references therein), which makes them 
one of the least studied human groups.  

All Aboriginal Australian maternal and paternal lineages fall into Eurasian 
mtDNA founder branches M and N, and NRY hgs C-M130 and F-M89, respec-
tively (Figure 5). This suggests that both Australian and New Guinean popula-
tions are descendants of the same founder group of anatomically modern hu-
mans that left Africa approximately 70 kya. The coalescence dates of major 
mitochondrial macro-haplogroups M, N and R in the populations of prehistoric 
Sahul are all within the range of 53 to 58 kya (Table 1 in ref. I). These time 
estimates (a) support the general timeframe for Out-of-Africa expansion of 
anatomically modern humans, and (b) coincide with the time of arrival of 
anatomically modern humans to Greater Australia ca 50 kya as suggested by 
archaeological evidence. Moreover, the presence of multiple autochthonous 
branches of the same mitochondrial founder hg P in both Australia (P3, P4b, 
P5–7 and P8 (originally referred as P9 in ref. I)) and New Guinea (P1–3, P4a) 
most likely argues for a single founder population settling the whole region of 
prehistoric Sahul at least 50 kya as indicated by the deep coalescence age of the 
P clade (Figure 6) (ref. I). In addition, the M and N (excluding R) portions of 
the mtDNA phylogeny are also largely unique in both Australia (represented by 
hgs M42, S and O) and New Guinea (represented by hg Q), indicating their 
local origin and the substantial isolation of the two groups since the first 
colonization of Greater Australia. Notably, apart from hg P4, which likely arose 
close to the time of initial settlement, only two lineages are shared between 
northern and southern Sahul beyond macro-haplogroup M and N, and hg P level. 
These include hg P3 and a newly identified complete Australian mtDNA 
genome belonging to the Melanesian-specific hg Q (Figure 5) (ref. I). The age 
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of these clades was estimated to be 39,200±8,200 and 30,400±9,300 years BP 
(Table 1 in ref. I), respectively, indicating ancient secondary gene flow from 
New Guinea (Figure 6), i.e. well before the land bridge between the two regions 
was submerged by rising sea level approximately 8,000 years ago.  

 
 

 
 
Figure 5. Simplified tree of autochthonous mtDNA and Y-chromosome haplogroups in 
Greater Australia (left and right spheres, respectively). All currently classified maternal 
branches are included. Mitochondrial haplogroup names are updated according to Build 
15 (30/09/2012) of PhyloTree.org (van Oven and Kayser 2009). Haplogroup geo-
graphical origin is color-coded according to the legend. Gradient shading denotes: (a) 
secondary gene flow of Asian-specific mtDNA (B4a and E) and Y-chromosome (O) 
haplogroups into Melanesia, and (b) mtDNA sub-clades (P3 and P4) shared between 
populations of Australia and Melanesia. Recently identified shared common Late 
Pleistocene ancestry of the Aboriginal Australian M42a and South Asian M42b lineages 
is also shown (Kumar et al. 2009). Figure adapted from refs. I and II and updated as 
described above. 
 
 
Similarly to mtDNA, the NRY phylogeny supports substantial pre-historic 
isolation and emergence of regional-specific branches (C4-M347, C4a-
DYS390.1del in Australia, and C2-M38, M1-M4, S-M230 (originally referred 
to as K5-M230 in ref. I) in New Guinea) (Figure 5) (ref. I). Such long-standing 
isolation of Aboriginal Australians is in agreement with the archaeological 
record, which indicates only a very limited cultural contact with New Guinea 
islanders in the direct vicinity of Torres Strait, the historic ‘Macassan’ contact 
between populations of northwestern Australia and fishermen from the eastern 
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macro-haplogroup root level, contradicts the possibility of recent, mid-Holo-
cene period gene flow from Hindustan to Sahul, as it has been argued since 
early studies of human demographic history (Huxley 1870). Contrary to earlier 
claims that Y-chromosome hg C-M130* signals recent Indian gene flow to 
Australia (Redd et al. 2002), here we report a new biallelic marker M347 which 
defines the Australian-specific hg C4 and describes all Aboriginal C-M130* Y 
chromosomes, including those with the common Australian-specific deletion 
DYS390.1. Moreover, Indian C-M130* haplotypes are now known to harbor 
the hg C5 defining biallelic marker M356 (Figure 5) (Sengupta et al. 2006). 
Therefore we suggest that Indian and Australian C-M130* Y chromosomes 
form a paraphyletic group that has been resolved using the new Australian-spe-
cific M347 and the published Indian-specific M356 biallelic markers. Assuming 
the updated resolution of NRY hg C reported here, the dissimilarity between 
South Asian and Australian C-M130 Y chromosomes is not consistent with the 
hypothesis of mid-Holocene gene flow from India to Australia (ref. I). Interes-
tingly, a phylogenetic connection between Australian- and Indian-specific 
maternal hgs M42a and M42b has been recently identified and dated to approxi-
mately 55 kya, that is long before the proposed Holocene migration around 
4,000 to 5,000 years BP (Kumar et al. 2009; van Holst Pellekaan 2013). 

Although all Australian mtDNA and Y-chromosome samples analyzed by us 
belonged to haplogroups specific to Sahul, people of Near Oceania and New 
Guinea are known to bear significant traces of Holocene gene flow from East 
and insular Southeast Asia. For example, the Austronesian language migration 
and its genetic impact on the autochthonous Melanesian gene pool have re-
ceived much broader attention than the initial Late Pleistocene settlement (for 
review see Kayser 2010). Apart from hg B4a sub-branches, which can be as-
sociated with the Austronesian expansion, the second most frequent non-
endogenous hg in Near Oceania is hg E, a sub-clade of the Asian-specific M9 
(Figure 5). This haplogroup accounts for approximately 15% of mtDNA line-
ages in Island Southeast Asia and Taiwan, albeit extending occasionally to the 
Malay Peninsula and northern Melanesia, where it is sometimes found at a 
considerable frequency (e.g. up to 40% in Papuan-speakers from New Britain) 
(Friedlaender et al. 2007; Hill et al. 2007; ref. II). We estimate the age of this 
haplogroup to be 33,150±8,200 years BP. Using complete mtDNA sequences, 
we determined that hg E has two major sub-clades, E1 and E2, coalescing 
around 17 and 9.5 kya, respectively. These can be further sub-divided into 
E1a’b and E2a’b (Figure 2 in ref. II). The geographical distribution, diversity 
and age estimates of different E sub-clades suggest their in situ origin in Island 
Southeast Asia, either on the northeastern coast of Sundaland or in the neigh-
boring northwestern Wallacea (northern Sulawesi) (Figure 3 in ref. II), whereas 
the unusually high frequency of hg E and its spotty distribution in Near Oceania 
can be explained by the extreme level of genetic drift among insular populations 
(Friedlaender et al. 2007). Coalescence age estimates of the two most frequent 
sub-clades, E1a and E2, suggest that the expansion of hg E started in early 
Holocene, around 11,000–12,000 years BP, and introduced its sub-types north-
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wards into Taiwan roughly 4,000–8,000 years ago, and eastwards into Near 
Oceania (ref. II). The latter region was probably reached about 5,000 year BP or 
slightly later (Friedlaender et al. 2007). It is possible that hg E expansion was 
triggered by rising sea level after the end of the Last Glacial Maximum: the 
inundation of the Sunda shelf forced the displacement of coastal-dwelling 
populations into new habitats and, therefore, the spread of hg E across Island 
Southeast Asia and northern Melanesia (Hill et al. 2007; ref. II). 
 

5.2. Global patterns of diversity in the pigmentation 
associated tyrosinase gene (Ref. III) 

Tyrosinase is the main rate-limiting melanogenic enzyme that plays a pivotal 
role in the conversion of tyrosine to melanin. We have studied worldwide pat-
terns of variability in the pigmentation associated TYR gene, using three diffe-
rent sample sets and analytical methods: (a) re-sequencing of approximately 
24.3 kb, including complete coding, partial intronic, partial 5’ and 3’ flanking 
regions, was performed in 81 human DNA samples from six major continental 
groups (Africa, America, Europe, South Asia, East Asia and Oceania) and 
complemented by an array of sequence-based selection tests, (b) Illumina 
genotyping data from 351 samples from the same six populations were used to 
study patterns of selection using whole-genome haplotype length (iHS and XP-
EHH) and population differentiation FST-based approaches, and (c) Illumina 
TYR genotyping data from 1108 individuals, including the HGDP-CEPH Hu-
man Genome Diversity Project panel, were analyzed using an ancestral re-
combination graph in order to reconstruct and visualize phylogenetic relation-
ships within our sample. To increase phylogenetic resolution, the latter analysis 
was complemented by re-sequencing of additional informative SNPs and was 
performed using seven population groups: Africa was sub-divided into northern 
(represented by the HGDP-CEPH Mozabite sample) and sub-Saharan regions. 
Phasing of individual singleton mutations during the re-sequencing project was 
performed in vitro by cloning. This allowed us to improve the assignment of 
singletons to individual chromosomes and, therefore, to obtain unbiased 
coalescence ages estimates. 

The highest coding nucleotide diversity in our re-sequencing panel was 
detected in the European sample (0.00067), followed by Africans (0.00021). 
The non-synonymous variation within the TYR gene was largely restricted to 
only two SNPs, rs1042602 (p.Ser192Tyr) in exon 1 and rs1126809 
(p.Arg402Gln) in exon 4. Both mutations are known to significantly affect 
enzymatic activity of tyrosinase in vitro and are largely conserved among diffe-
rent species (Tripathi et al. 1992; Chaki et al. 2011; ref. III). Three additional 
non-synonymous polymorphisms that were detected have low frequency: two 
are singletons (one in the African and another in the European sample) and one 
is a doubleton found in Europe. The ancestral recombination graph shows that 
the majority of non-synonymous polymorphisms are centered in Europe or 
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North Africa: 72% of total non-synonymous variation was confined to these 
two populations (Figure 3 in ref. III). The high incidence of European-specific 
non-synonymous alleles in northern Africa is not surprising. North Africans 
derive from multiple founders, including those with recent European descent: 
the amount of European-specific ancestry in HGDP-CEPH Mozabite sample 
was estimated around 80% (Price et al. 2009). Interestingly, Mozabites are also 
characterized by lightly pigmented skin. Therefore, allele sharing between 
Europe and North Africa reflects common demographic history, rather than 
convergent evolution. 

We also found a region 6.9 kb upstream from the first codon position that 
shows the lowest diversity in all six continental groups studied (Figure 1 in ref. 
III). As no regulatory motifs have so far been described in this region to our 
knowledge, our analyses highlight it as a new potential candidate of functional 
importance. 

The observed pattern of variation within the TYR gene can be summarized as 
follows. Firstly, Europeans have the highest coding nucleotide diversity (Figure 
1 in ref. III). In contrast, on a genome-wide scale, populations from the African 
continent usually possess higher diversity estimates. Secondly, sub-Saharan 
Africans almost totally lack non-synonymous alleles in the tyrosinase gene 
likely because of purifying selection (Figure 3 in ref. III). Thirdly, lightly pig-
mented East Asian individuals are virtually depleted for non-synonymous 
variants (Figure 3 in ref. III). Genetic diversity within both lightly pigmented 
Europeans and heavily pigmented sub-Saharan Africans can be explained by the 
general evolutionary model of human skin pigmentation: mutations leading to 
decreased photoprotection will be deleterious near the equator due to extensive 
folate photolysis. In contrast, polymorphisms of this kind will be well tolerated 
due to relaxed pressure of purifying selection at higher UV-poor latitudes. 
Furthermore, mutations depressing tyrosinase functional activity and, therefore, 
allowing for enhanced vitamin D3 synthesis might be even favored in this 
environment. Interestingly, a similar pattern of diversity has previously been 
observed in pigmentation associated MC1R loci (Rana et al. 1999; Harding et al. 
2000). The lack of non-synonymous allele sharing between lightly pigmented 
Europeans and East Asians should not be surprising (Figure 3 in ref. III). There 
is a substantial amount of evidence supporting convergent evolution of skin 
depigmentation in Eurasia: SLC24A5, SLC45A2, TYRP1 and, as we also show 
here, TYR alleles are associated with skin lightening in Europe, while OCA2, 
DCT and some other genes are involved in skin depigmentation in East Asia 
(Figure 4) (Norton et al. 2007; Edwards et al. 2010; Beleza et al. 2013).  

Detected positive Tajima’s D test value indicates possible traces of 
balancing selection in the TYR 5’ flanking region and exon 1 in our European 
sample (Table 1 in ref. III). However, European D statistics is only significant 
before the correction for multiple testing, and thus should be treated as sug-
gestive. The significance of Tajima’s D selection tests was assessed by com-
parison to coalescent simulations under the best-fit model in the COSI software, 
which has been calibrated to reproduce extant human genetic variation under 



40 

neutrality (Schaffner et al. 2005). Nevertheless, other processes, e.g. population 
sub-divisions, can likewise yield positive D values and, although no diffe-
rentiation was detected within our European TYR sample, caution is needed 
while interpreting the observed result. Several lines of evidence, including 
highest incidence of non-synonymous alleles in populations with European 
descent, positive Tajima’s D estimates and at least threefold higher coding 
nucleotide diversity in Europe than in any other studied sample, imply that 
variation in the TYR gene has potentially played an important role in the 
adaptation to low UV environment in European subcontinent. Relaxed selective 
constraint in this UV-poor geographical region can be put forward as the most 
parsimonious explanation for the detected pattern of tyrosinase genetic variation, 
a process which has been previously described in the MC1R locus (Harding et 
al. 2000). The role of balancing selection in the evolution of the TYR gene must 
be further examined using larger sample size and/or complete gene re-se-
quencing strategy. 

Significantly positive Tajima’s D values were similarly observed in studied 
Oceanian group in both 5’ flanking region and exon 1, and complete re-
sequencing alignment. However, taking into the account complex demographic 
history of Oceanian population, which included small founding population, 
severe bottlenecks and long-term isolation as described in the first part of the 
present thesis, interpretation of these results should be considered with caution. 
Furthermore, additional bias may have been introduced by the lack of the 
specific parameters of Oceanian demographic history in the best-fit model, 
genetic heterogeneity and relatively small size of studied Oceanian sample 
(n=14 chromosomes), which included Papuans and Bougainville Islanders.  

In addition to sequence-based demography-corrected Tajima’s D test, haplo-
type length-based tests looking for longer than average span of linkage 
disequilibrium were employed. None of them reflected any deviation from 
neutrality (Table 2 in ref. III). This approach operates at a shallow evolutionary 
time depth, since recombination will quickly degrade long haplotype blocks 
produced during selective sweeps. Therefore, inconsistency between different 
tests for selection is not surprising and has already been reported earlier (de 
Gruijter et al. 2011). Still, our European sample had the highest population 
differentiation FST-based and cross-population extended haplotype homo-
zygosity (XP-EHH) scores, belonging to the top 71th and 87st percentiles of 
genome-wide distribution, respectively.  

Human TYR phylogenetic tree coalesces between 1.4 to 1.6 MYA, i.e. close 
to the mean coalescence time of human autosomal genes (Blum and Jakobsson 
2011). We further calculated the age of the two monophyletic clusters defined 
by non-synonymous substitutions rs1042602 (p.Ser192Tyr, defining hg B1) and 
rs1126809 (p.Arg402Gln, defining hg C2a), using rho statistics and median-
joining network of TYR re-sequencing alignment (Figure S4 in ref. III), and 
Bayesian coalescent approach implemented in BEAST (Drummond et al. 2012). 
Both alleles are common in Europe and North Africa. The first and the most 
frequent cluster, referred to as hg B1 in the ancestral recombination graph 
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(Figure 3 in ref. III), coalesces at 6,100±3,600 years BP as estimated by rho and 
15,600 years BP (95%CI=400–46,600) as estimated by Bayesian coalescent 
approach. The second one, hg C2a, coalesces at 20,400±13,600 and 29,400 
(95%CI=1,900–68,600) years BP as estimated by rho and Bayesian coalescent 
approach, respectively. The discrepancies between rho- and Bayesian-based 
estimates could be largely contributed to the different parameter settings of the 
two computation methods. The coalescence age of both non-synonymous 
substitutions postdate the split of Western and Eastern Eurasian populations 
between 25,000 to 38,000 years BP (Rasmussen et al. 2011) supporting the 
convergent evolution of light skin in Europe and East Asia. Moreover, although 
the mean estimates of these statistics should be treated with caution, the most 
recent common ancestors of hgs B1 and C2a appear to, at least partly, overlap 
with the age of expansion of other European-specific skin depigmentation 
alleles in the SLC24A5, SLC45A2 and TYRP1 loci, which has been dated by 
various authors as between 19,000 and 11,000 years BP, or between 12,000 and 
3,000 years BP (Soejima et al. 2006; Norton and Hammer 2007; Beleza et al. 
2013). Therefore, it is possible that the genetic variation within the TYR gene 
and its 5’ flanking region has contributed to the same adaptive process in the 
ancestry of the European population as the SLC24A5, SLC45A2 and TYRP1 
pigmentation loci. This stage of European-specific adaptation may have been 
driven by different climatic and socio-cultural processes during and after the 
Last Glacial Maximum and was likely complemented by convergent skin 
depigmentation in East Asia. 
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6. CONCLUSIONS  

Settlement of prehistoric Sahul as seen from the variation of human 
haploid genomes (Refs. I and II): 
 

1. All matrilineal and patrilineal genetic variation in prehistoric Sahul derives 
from the same founders (macro-haplogroups M and N in mtDNA, and C-
M130 and F-M89 in the Y-chromosome tree) as other non-African 
populations. 

2. Inferred coalescence age estimates of human mtDNA variation in Greater 
Australia concur with the time frame attributed to the Out-of-Africa 
expansion and archaeological evidence for the first human occupation of 
prehistoric Sahul. 

3. The distribution and age estimates of different mtDNA haplogroups are 
consistent with the model implying a single early settlement of prehistoric 
Sahul approximately 50,000 years ago. 

4. The lack of common mtDNA branches with other Eurasian populations 
(except those on the macro-haplogroup level) points to a considerable 
isolation of Australia and New Guinea after the initial settlement. 

5. Limited mtDNA haplogroup sharing and the absence of shared NRY 
lineages among Australian and New Guinean populations imply rapid 
segregation of a single founder population to proto-Australians and proto-
Melanesians. 

6. There are only two potential signals of ancient secondary migration from 
New Guinea to Australia, reflected by the spread of matrilineal types P3 
and Q2. 

7. Analysis of Aboriginal Australian mtDNA and NRY variation did not 
reveal any traces of prehistoric mid-Holocene gene flow from South Asia to 
Australia. 

8. Populations from New Guinea and northern Melanesia have traces of mid-
Holocene gene flow from Island Southeast Asia, which is reflected by the 
spread of mitochondrial hg E. 

9. Phylogenetic resolution of maternal hg E has been refined here using 
complete mtDNA sequences. This haplogroup likely arose approximately 
33 kya in Island Southeast Asia and started to expand around 12 kya. The 
expansion may have been driven by rising sea level after the end of the Last 
Glacial Maximum. 

 
Global patterns of diversity in the pigmentation associated tyrosinase gene 
(Ref. III): 
 

1. The global phylogenetic tree of the human TYR locus was reconstructed 
using re-sequencing and genotyping approaches. Different sequence-based 
and whole-genome genotyping-based selection tests were employed to 
assess the patterns of natural selection acting upon the TYR gene. 
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2. The highest coding nucleotide diversity was found in the European sample, 
which also had the highest number of non-synonymous variants among all 
continental groups studied. Sub-Saharan Africans and East Asians virtually 
lack derived amino-acid variants. 

3. Observed geographic patterns of TYR variation support the general 
evolutionary model of human skin pigmentation. This model predicts that 
non-synonymous mutations in pigmentation genes leading to diminished 
protein function and photoprotection will be deleterious near the equator. 
On the contrary, such variants will be tolerated due to the relaxed functional 
constraints in low UV environments, e.g. Europe. The virtual lack of TYR 
non-synonymous alleles in East Asia is concordant with previous studies 
and provides additional evidence in support of convergent evolution of light 
skin in Eurasia. 

4. Excess of non-synonymous alleles, which profoundly depress tyrosinase 
functional activity, along with the highest coding nucleotide diversity 
detected in our European sample, suggest that relaxation of functional 
constraints has shaped the pattern of TYR variation in the Europe. 

5. Two common non-synonymous variants, rs1042602 and rs1126809, in our 
worldwide sample are largely restricted to populations with European 
descent. The coalescence age of both alleles postdate the split between 
Western and Eastern Eurasian populations and is consistent with the age of 
European-specific sweeps in the SLC24A5, SLC45A2 and TYRP1 pig-
mentation associated loci. 
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7. SUMMARY IN ESTONIAN 

Mitokondriaalse DNA, Y-kromosoomi ja türosinaasi 
varieeruvus Euraasia ja Okeaania populatsioonides 

 

Inimese evolutsiooni erinevate tahkude uurimisel on tema tänase geneetilise 
mitmekesisuse väljaselgitamine olnud väga oluline. Valdav enamus meie 
olemasolevatest teadmistest kaasaegse inimese rännuteede ja tema geneetilise 
varieeruvuse kohta tänaste inimpopulatsioonide sees ja vahel on saadud tänu 
haploidsetele geneetiliste markerite uurimisele – mitokondri DNA (mtDNA) ja 
Y-kromosoomi varieeruvusandmetele tuginedes. Alles päris hiljuti on seda 
andmestikku hakanud täiendama ka kogu inimgenoomi järjendamise alusel 
tehtud populatsioonigeneetilised tööd. Mitokondri ja Y-kromosoomi DNA-l on 
mõned ainulaadsed omadused, mis annavad neile teiste geneetiliste markeritega 
võrreldes evolutsiooniprotsessi uurimisel olulise eelise: a) põlvnemine ainult 
üht vanemliini pidi, b) rekombineerumise puudumine (v.a. väike osa Y-kromo-
soomist) ja c) mitokondri genoomi teatud piirkondade suhteliselt suur moleku-
laarse evolutsiooni kiirus muu inimgenoomiga võrreldes. Nende kahe haploidse 
markeri varieeruvuse uurimine maailma erinevais paigus täna elavates populat-
sioonides on meil aidanud mõista anatoomiliselt kaasaegse inimese demo-
graafilist ajalugu – tema väljarännet Aafrika algkodust ja muu maailma asusta-
mist peale seda.  

Käesoleva töö esimeses osas käsitletakse Austraalia ja Uus-Guinea põlis-
elanike eelajalooga seotut läbi haploidsete andmete analüüsi. Selle piirkonna 
vanimad inimfossiilid on dateeritud 50,000 aasta vanuseks ja pärinevad ajast, 
mil Austraalia ja Uus-Guinea koos Tasmaania ja paljude väikesaartega moodus-
tasid ühtse mandri – Sahuli. Austraalia aborigeenidele ja uus-guinealastele ühise 
mtDNA haplogrupi P levikumuster viitab sellele, et nii Austraalia kui Uus-Gui-
nea asustati kas ühe migratsioonilainega või siis mitmest geneetiliselt sarnasest 
lähtepopulatsioonist. Emaliinide fülogeneesipuu paikse tekkega sügavate haru-
de esinemine mõlemas eelajaloolise Sahuli populatsioonis viitab nende täieli-
kule isoleeritusele peale algset asustamist. Lisaks sellele peetakse tõestatuks, et 
Uus-Guinea rahvastikku on mõjutanud ka kaks hiljutist Aasiast lähtunud 
migratsioonilainet. Nendest viimane, umbes 5,500 aastat tagasi ilmselt 
Taiwanilt lähtunud uustulnukate sissevool tõi kaasa austroneesia algupäraga 
geenid, samas varasem, umbes 12,000 aastat tagasi Kagu-Aasia saarestikust 
alanud sisseränne aga nn. pre-austroneesia geenid. Võimalik hiljutise geneetilise 
ühisosa temaatika Austraalia aborigeenide ja teiste aasialaste vahel on olnud 
tuliste vaidluste pärusmaa. Juba 1870 aastal tõi Thomas Huxley esile Austraalia 
aborigeenide ja mõnede India rahvaste märgatava sarnasuse. Hiljem pakuti selle 
põhjusena välja holotseeni keskel toimunud rahvastiku rännet Lõuna-Aasiast 
Austraaliasse. Ehkki see hüpotees ei ole kaasaegsete Austraalia arheoloogide 
seas suurt poolehoidu leidnud, on selle tõestuseks välja toodud India ja 
Austraalia Y-kromosoomi haplogrupi C-M130* sarnaste harude olemasolu. 
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Käesoleva töö esimese osa põhiline eesmärk oli uuendada meie teadmisi 
kahe eelajaloolise Sahuli populatsiooni geneetilise varieeruvuse kohta, kasu-
tades selleks mtDNA täisjärjestuste ja Y-kromosoomi järjestuste fülogeneetilist 
analüüsi. Selleks sekveneeriti täiendavalt uute indiviidide DNA nimetatud 
markerite osas ja tulemusi analüüsiti koos kirjanduses avaldatud andmestikuga. 
Saadud andmed inkorporeeriti inimese ülemaailmse valimi põhjal koostatud 
ema- ja isaliinides päranduva varieeruvuse alusel rekonstrueeritud mtDNA ja 
Y-kromosoomi fülogeneesipuudesse. Töö tulemustest lähtuvalt võib välja tuua 
järgmised olulised punktid: 
1. Austraalia ja Uus-Guinea tänaste põliselanike mtDNA varieeruvus on välja 

kasvanud samadest asutaja-makrohaplogruppidest M ja N, millest peaaegu 
kõik teised Euraasias levinud emaliinidki. Erinevate mtDNA haplogruppide 
levikumuster ja arvatavad ekspansiooniajad on kooskõlas mudeliga, mille 
kohaselt Sahuli asustamine leidis aset ühekordse varajase asustamislainena 
umbes 50,000 aasta eest. 

2. Mõlemas uuritud regioonis on levinud mitmed paikse tekkega sügavad 
emaliinide fülogeneesipuu harud: M42a, S, O, P4b ja P6 Austraalias, P1, P2, 
P4a ja Q Uus-Guineas. Nende liinide puudumine Euraasias viitab mõlema 
uuritud regiooni valdavale isoleeritusele pärast algset asustamislainet. 

3. Uue, Austraaliast leitud Melaneesia-spetsiifilise haplogrupi Q2 haru vanus 
näitab, et geenisiire kahe eelajaloolise Sahuli populatsiooni vahel on toimu-
nud väga ammu ja leidis aset juba enne Austraalia ja Uus-Guinea vahelise 
maasilla kadumist umbes 8,000 aasta eest. Seda hüpoteesi toetab ka sügav 
ajaline lõhe Austraalias ja Uus-Guineas levinud haplogrupi P3 fülo-
geneesipuu harude vahel. 

4. Uus-Guinea populatsioonide geenitiiki on mõjutanud nii Taiwanilt lähtunud 
austroneesia kui ka Kagu-Aasia saartelt lähtunud geenide sissevool, 
viimane neist tõi endaga kaasa mtDNA haplogrupp E liinid. See haplogrupp 
on ilmselt tekkinud eelajaloolise Sundamaa – ühise Kagu-Aasiat ning Su-
matra, Borneo, Jaava ja Bali saari ning paljusid väikesaari ühendanud maa-
massi – põhjarannikul umbes 33,000 aastat tagasi. Haplogrupp E liinide 
põhja- ja idasuunalise leviku Melaneesia põhjaosa ja Taiwani suunas 
vallandas ilmselt viimase jääaja järgne merepinna tõus. 

5. Meie leidsime uue Y-kromosoomi bialleelse markeri M347, mis määratleb 
Austraalia-spetsiifilise Y-haplogrupi C4 ja mille alusel saab kirjeldada kõiki 
Austraalia põliselanike seas levinud C-M130* tüüpi Y-kromosoome. Veelgi 
enam, praegu teatakse, et India C-M130* haplotüübid kuuluvad haplogrup-
pi C5, mida defineerib bialleelne marker M356. Sellele toetudes pakume 
me välja, et India ja Austraalia C-M130* Y-kromosoomid moodustavad 
parafüleetilise grupi ning seetõttu võib väita, et Lõuna-Aasia ja Austraalia 
C-M130 Y-kromosoomid on erinevad ja nende levik ei ole kooskõlas oleta-
tava, holotseenis aset leidnud geenivoo hüpoteesiga Indiast Austraaliasse. 

 
Teine osa tööst käsitleb pigmentatsiooniga seotud türosinaasi (TYR) lookuse 
geneetilist varieeruvust. Inimese nahavärv on polügeenne tunnus ja on põhiliselt 
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määratud erinevat tüüpi melaniini – tumeda, valguskaitset pakkuva eumelaniini 
ja heleda feomelaniini – osakaalu ja jaotusega nahas. Inimese nahavärvuse üle-
maailmset jaotust arvestades on üldlevinud seisukohaks, et meie nahk peab 
ekvaatori lähedal olema piisavalt tume selleks, et kaitsta meid kahjuliku UV-
kiirguse ja selle poolt indutseeritava folaatide lagunemise eest, kuid piisavalt 
hele suurematel geograafilistel laiuskraadidel, näiteks Euroopas ja Ida-Aasias, 
et võimaldada efektiivset vitamiin D3 sünteesi. Globaalset nahavärvi varieeru-
vust mõjutanud evolutsiooniprotsessid on olnud komplekssed, pigmentatsiooni-
geenide adaptiivse evolutsiooni kohta võib tuua mitmeid näiteid. On näiteks 
selgeid tõendeid, et Euraasia eri paigus esinev hele nahavärv on tekkinud kon-
vergentse evolutsiooni tulemusena. Kui Ida-Aasias on kõrge sagedusega levi-
nud kindlad pigmentatsioonigeenide OCA2, DCT, ADAM17, ADAMTS20 ja 
veel mõne muu lookuse populatsioonispetsiifilised variandid, siis Euroopas on 
loodusliku valiku adaptiivsele toimele olnud allutatud hoopis teised geenid – 
SLC24A5, SLC45A2, TYRP1, ja nagu me selles töös näitame, TYR. Liiati on 
tõendeid heledamale nahavärvile viinud positiivse valiku mõjust KITLG geenile 
ida-aasialaste ja eurooplaste eellaspopulatsioonis. Töö teise osa põhiliseks ees-
märgiks on kirjeldada türosinaasi, üht põhilist melanogeenset ensüümi kodee-
riva TYR lookuse ja sellega piirneva 5’ regulaatorala loomulikku mittepatogeen-
set geneetilist varieeruvust. Kokkuvõtvalt võib välja tuua järgmised tulemused: 
1. Resekveneerimise ja genotüpeerimise tulemuste alusel koostati inimese TYR 

lookuse globaalne fülogeneesipuu. TYR geeni mõjutanud loodusliku valiku 
rolli määramiseks kasutati erinevaid geenijärjestuste ja kogu genoomi 
varieeruvusandmestikul põhinevaid valikuteste. 

2. Suurim TYR lookuse kodeeriva ala nukleotiidne diversiteet leiti Euroopa 
valimist, mida iseloomustas ka suurim mittesünonüümsete asendustega 
variantide arv kõikide uuritud kontinentaalsete gruppide seas. Sahara-tagune 
Aafrika ja Ida-Aasia elanikel mittesünonüümsete asendustega variandid pea-
aegu puudusid. 

3. TYR alleelide geograafiline levikumuster toetab inimese naha pigmentat-
siooni üldist evolutsioonilist mudelit. See mudel eeldab, et pigmentatsiooni-
geenides toimunud mittesünonüümsed asendused viivad ensüümi aktiivsuse 
ja valguskaitse vähenemisele, selliste asendustega variandid eemaldatakse 
ekvaatori lähedal asuvatest populatsioonidest negatiivse looduliku valiku 
poolt. Vastupidiselt sellele on mittesünonüümsed asendused sallitud madala 
UV-kiirgusega keskkonnas – nagu seda on näiteks Euroopa – või loodusliku 
valiku poolt isegi soositud, sest võimaldavad efektiivset vitamiin D3 sünteesi. 
Mittesünonüümsete asendustega TYR alleelide puudumine või väga väike 
esinemissagedus Ida-Aasias on kooskõlas varasemate uuringutega ja kal-
lutab vaekaussi veelgi Euraasia heleda nahavärvi konvergentse evolutsiooni 
kasuks. 

4. Euroopa valimis täheldatud türosinaasi aktiivsust märgatavalt pärssivate 
mittesünonüümsete alleelide suur hulk koos kodeeriva ala suurima nukleo-
tiidse mitmekesisusega viitab sellele, et Euroopas on TYR varieeruvuse 
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mustrit võinud mõjutada funktsionaalsete piirangute nõrgenemine sellele 
geenile suurematel laiuskraadidel. 

5. Meie ülemaailmse valimi kaks mittesünonüümsete asendustega TYR lookuse 
varianti, rs1126809 ja rs1042602, on levinud peamiselt Euroopa päritolu 
populatsioonides. Keskmine türosinaasi geeni haplogruppide koalestseeru-
mise aeg, mis nende asenduste kaudu määrati, on vastavalt 29,400 või 
20,400 ning 15,600 või 6,100 aastat, sõltuvalt kasutatud arvutamise meeto-
dist. Need ajamäärangud jäävad perioodi, mil Lääne- ja Ida-Euraasia popu-
latsioonid olid juba lahknenud ning langevad ligilähedaselt kokku ajaga, mil 
arvatavalt toimis Euroopa-spetsiifiline valikuline “luuatõmme” pigmen-
tatsiooniga seotud lookustele SLC24A5, SLC45A2 ja TYRP1 – see on erine-
vate autorite poolt dateeritud kas 19,000 kuni 11,000 aasta või siis 12,000 
kuni 3,000 aasta tagusesse perioodi. Selle Euroopale omase kohastumuse 
teke võis olla tingitud erinevatest klimaatilistest ja sotsiaal-kultuurilistest 
protsessidest viimase jääaja maksimumi lõppjärgus ja seda täiendas kon-
vergentselt Ida-Aasia populatsioonide naha depigmentatsioon.   
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