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Introduction

The idea of insurance is that persons can share the risk that they are exposed
to. Every insured person pays a premium for being covered by the insurer,
and those who suffer an accident receive compensation. The difficulty with
this idea is that the future is unknown and the insurer therefore does not
know the future costs. Accurate loss reserves are hence essential for insurers
to maintain adequate capital, to efficiently price their insurance products and
to remain solvent at any time moment in the future.
Loss reserving for non-life insurance is usually based on models with data
aggregated in a run-off triangle. In practice, there is a long tradition of
actuaries calculating reserve estimates according to deterministic methods
without explicit reference to a stochastic model. The most common such
method is the chain-ladder method. However, stochastic models are needed
in order to assess the variability of the claims reserve. In the first part of the
dissertation we concentrate on the prediction error of the estimate and use
bootstrapping in the claims reserving context. We discuss and implement
different types of residuals and show that the choice of residuals and their
adjustments have a significant effect on the prediction error. We also address
model validation in order to rank the competing reserving models and the
assessment is conducted on data from different lines of business.
Many variations of the chain-ladder method have been proposed in the
literature. One of these extensions is the continuous chain-ladder method.
This method is designed for data recorded in continuous time but can also
be applied to aggregated data. We investigate the continuous chain-ladder
method and interpret it also for the discrete framework. This is useful in
practice since insurance companies do not always keep track of insurance data
in continuous time. Furthermore, we investigate whether and how much the
use of different aggregation levels of claim data can improve the reserving
process using both the continuous chain-ladder and the classical chain-ladder
method.
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10 Introduction

The dissertation is set out as follows. In Chapter 1, we give a broader
introduction to loss reserving in insurance and motivate the research prob-
lem. Chapter 2 is devoted to stochastic reserving methods on the basis of
generalized linear models in the bootstrapping framework. In Section 2.1,
we present a review of generalized linear models and their application to
claim reserving, while in Section 2.2, we discuss some aspects linked to the
bootstrap methodology. Section 2.3 describes the empirical study, where we
demonstrate the application of different stochastic reserving models based on
a data set provided by an Estonian insurer. In Section 2.4, the comparative
analysis for model validation with the Schedule P database is carried out.
Section 2.5 concludes this chapter. Chapter 3 investigates the influence of
different levels of data aggregation. In Section 3.1, we discuss, describe and
clarify the CCL method. Section 3.2 specifies the measure of the prediction
error applied in the following simulation and empirical studies and describes
the data aggregation idea. In Sections 3.3 and 3.4, the simulation studies
based on different methodologies is carried out along with the comparison
of the model performances. Section 3.5 contains an empirical study with a
micro-level data from an insurance company. It is followed by conclusions
in Section 3.6. The main body of this dissertation is followed by an outlook,
where we summarize the main findings of this dissertation and conclude our
work by presenting several suggestions for future research related to this topic.
In the appendix, we formulate the step-by-step algorithm for the bootstrap
procedure conducted in Chapter 2.



Chapter 1

Loss reserving in insurance

1.1 Background

Insurance companies bring security to society in the form of insurance products
and contracts. Insurance contract sold by the insurer to the insured promises
to pay the insured or a third party for a loss covered by the contract. Unlike
other goods, insurance is sold when the ultimate cost is unknown. Every
non-life insurance company is obligated to compensate its policyholders for
claims that meet the terms of the policy. In order to meet and administer
its contractual obligations to policyholders the insurance company has to
set up loss reserves. Since loss events with the number and amount of
claims are random, it is important to calculate the claims reserve carefully
as underestimation would lead to solvency problems and overestimation
unnecessarily holds the excess capital instead of using it for other purposes.
Claims reserves are the largest liabilities on the balance sheet of a non-life
insurance company. The claims estimation is one of the basic yet difficult
and important actuarial tasks in the insurance industry, because it gives the
certainty to be solvent at any time moment in the future. The process of
estimating the outstanding liabilities is called loss reserving.
Figure 1.1 illustrates the development process of a regular non-life claim. The
insurance premium is paid at the beginning of the insurance period. Typically,
the accident date of a non-life insurance claim and its reporting date do not
coincide and the claim cannot be settled immediately. Thus, when a claim
occurs at some concrete time and is reported to the insurer at some time
later, then one or several transactions follow to make payments for the claim
until the settlement. The time gap between occurrence date and reporting

11



12 Loss reserving in insurance

Run-off timePeriod insured

Occurrence Reporting Loss payments Claims closure

Reporting delay Settlement delay

Figure 1.1: Time line representing the development of a non–life claim.

date is called the reporting delay, and the time gap between reporting date
and settlement date is called the settlement delay. As the possible claims
cash flows are only paid later, the insurance company should build claims
reserves to be able to fulfill these outstanding loss liabilities. Insurers often
distinguish between reserves for RBNS, claims that are reported to the insurer
but not settled, and IBNR, claims that incurred but are not reported to
the company. An IBNR claim has occurred before the present moment, but
its declaration and settlement follow afterwards. This kind of distinction of
claims is necessary in the prediction routine.
Accurately estimated loss reserves are extremely important for insurers for
many reasons. The claims reserves should be sufficiently high to fulfill all
liabilities and allow appropriate dividends to the shareholders at the same
time. Moreover, the claims reserves should be best-estimate such that they
can be used for pricing the future insurance contracts. In general, accurate
loss reserves are essential for proper decision-making in almost every aspect
of insurance practices, including underwriting, rate-making and investment.
Besides the owners and management of the insurance company, many other
stakeholders, such as investors, customers and regulators, are making decisions
that depend on the insurer’s loss reserves. See Chapter 1 of Friedland (2010)
for a detailed overview for the importance of loss reserving.
There is a variety of methods for the actuary to choose amongst for reserving
purposes. Many of the reserving methods mentioned below in Sections 1.2–1.3
have been applied and discussed widely in the academic literature over the
past thirty years. The new solvency guidelines (Solvency II) have added a
dynamic component to claims reserving entailing tremendous developments
in the field. Roughly speaking, reserving models can categorized into three
classes: non-stochastic macro-level models, stochastic macro-level models, and
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stochastic micro-level models. A non-stochastic claims model expresses data
as a deterministic algebraic combination of parameters, whereas stochastic
claims model quantifies the uncertainties in deterministic claims reserving
algorithms using appropriate stochastic models. Micro-level models use claims
related data on an individual basis, rather than aggregating by underwriting or
accident year and development year. The remainder of this chapter introduces
various reserving methods and reviews their strengths and limitations.

1.2 Aggregate claims reserving

The most widely used claims reserving models are non-stochastic macro-level
models which are merely deterministic algorithms using aggregate claims data.
Macro-level models are often based on claims data organized in a run-off
triangle. A run-off triangle, such as presented in Table 2.1, is a table showing
aggregate losses for a series of loss periods at various valuation dates, reflecting
the change in claims amounts and in claims payments as claims mature. The
terms “claims development” and “claims run-off” are used interchangeably.
For an extensive overview of techniques based on the run-off triangle see
England and Verrall (2002) and Wüthrich and Merz (2008). The period
considered in the run-off triangle is usually a year, but it could be also a day,
a week, a month, a quarter or some other preferred amount of time. Also,
the data does not have to be claim payments, even if it often is. It could also
be the number of reported claims at the time.

1.2.1 Non-stochastic macro-level models

Traditional macro-level methods are dominant among practitioners in loss
reserving and the chain-ladder (CL) method, being a non-stochastic macro-
level model, is the most widely used loss reserving model. Besides the
chain-ladder method, another commonly-used macro-level reserving method
is the expected claims technique. It projects the ultimate claims based on
actuaries’ prior estimates rather than the claims experience. Other macro-level
models, such as Bornhuetter-Ferguson method and Cape-Cod method, are
constructed as a blend of the chain-ladder and the expected claims techniques
(Friedland (2010)). An important assumption for the use of these techniques
is that the actuaries can provide a reliable expected claims estimate. However,
when the environment undergoes many rapid and complex changes, it may be
questionable to assume that actuaries’ expectations are reliable to reflect the
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impact from the environment. There are many other non-stochastic macro-
level methods, e.g., Frequency-Severity, and Berquist-Sherman techniques.
See Friedland (2010) for a detailed review of the existing non-stochastic
reserving methods.
The chain-ladder method relies on the simplest assumption that payments will
emerge in a similar way in each accident year. The proportionate increases
in the known cumulative payments from one development year to the next
can then be used to calculate the expected cumulative payments for future
development years. See Wüthrich and Merz (2008) for a detailed step-by-step
introduction of the chain-ladder technique. In general, macro-level models are
easy to understand and models can also be implemented in a single spreadsheet.
Nevertheless, macro-level models have also major drawbacks. Many articles
in the literature have discussed issues of the chain-ladder method and other
macro-level reserving models, for instance, unstable predictions for recent
accident years (Bornhuetter and Ferguson (1972)), over-parametrization due
to the small sample size (Wright (1990)), difficulties in separating RBNS from
IBNR claims (Schnieper (1991); Liu and Verrall (2009)), problems with the
presence of zero or negative cells in run-off triangles (Verrall and Li (1993),
Kunkler (2004)), and difficulties in the simultaneous use of incurred and paid
claims (Quarg and Mack (2008)). Neglected detailed available information
and high prediction errors were re-addressed in Charpentier and Pigeon (2016)
in the context of comparing micro and micro-level models. This literature
also provides adjustments to address some of the issues, but the adjustments
are often suggested in a heuristic fashion and not applied simultaneously.

1.2.2 Stochastic macro-level models

The disadvantages of macro-level models discussed in Section 1.2.1 apply to
both stochastic and non-stochastic macro-level models. However, as the non-
stochastic methods give only a point estimate and one of the main interests
in loss reserving being the likely variability of the claims reserves, stochastic
macro-level models were first to assess the variability of the claims reserves.
An overview of stochastic macro-level models is given by England and Verrall
(2002), Wüthrich and Merz (2008) and Kaas et al. (2008), different stochastic
chain-ladder methods were compared in Hess and Schmidt (2002). Stochastic
claims reserving starts with constructing a model that produces the actuary’s
best estimate and then using this model for estimating the prediction error
of the model. While working with different stochastic reserving models, the
chain-ladder mean is often kept as a benchmark.
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Researchers have extended the chain-ladder method with distributional as-
sumptions regarding the underlying stochastic process generating the chain-
ladder estimate. Mack (1993) was the first to model the stochastic process
underlying the chain-ladder method, presenting a distribution-free formula
to derive the standard errors of the chain-ladder estimates. Furthermore,
the use of generalized linear models (GLM) has been a popular approach to
model the stochastic process underlying the chain-ladder method. Within
this group of models, Kremer (1982) introduced a standard lognormal model,
Mack (1991) described a parametric model for the claims amount using the
gamma distribution, Renshaw and Verrall (1998) used a quasi-likelihood
approach to fit an over-dispersed Poisson model and Verrall (2000) considered
a range of stochastic models including a quasi negative binomial model. The
distribution-free method by Mack specifies only the first two moments whereas
the last four models specify the full distribution of the incremental losses.
Another popular alternative approach to obtain inference is to use the boot-
strap technique. The bootstrap technique has proved to be a very useful
tool in many fields and can be particularly interesting to assess the variabil-
ity of the claim reserving predictions and to construct upper limits at an
adequate confidence level. When England and Verrall (1999) and England
(2002) introduced bootstrapping in claims reserving, it soon became a popular
method in practice as well as in the literature. Pinheiro et al. (2003) used the
bootstrap technique to obtain prediction errors for different claim reserving
methods, namely methods based on the CL technique and on GLMs. They
extended the work of England and Verrall in many aspects, for instance, they
addressed the use of proper residual definitions and discussed the consequences
of the introduction of the residual corrections. Björkwall et al. (2009) relaxed
the model assumption in England and Verrall (1999), England (2002) and
Pinheiro et al. (2003) in order to obtain a bootstrap approach which could
be used for other development factor methods than the chain-ladder, and
investigated a bootstrap procedure which is based on unstandardized pre-
diction errors and defined a parametric bootstrap approach. Björkwall et al.
(2010) implemented a bootstrap procedure for the deterministic separation
method, which also considers calendar year effects. Given the possible sensi-
tivity of standard procedures to the possible presence of outliers, Peremans
et al. (2016) implemented several robust bootstrap procedures in the claims
reserving framework.
The chain-ladder method has been extended as well as combined with other
methods. The Munich chain-ladder method proposed by Quarg and Mack
(2004) is based on and generalizes the classical Mack’s chain-ladder model. It
is a joint model for paid and incurred triangles that takes into account the
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dependence of the development factors on the paid/incurred ratios. Then there
is an arithmetic chain-ladder, where the development factors are considered as
ratios of arithmetic means of claims in the current development period relative
to claims in the previous period, see Kuang et al. (2009) and Taylor (2011)
for a recent discussion on how the arithmetic chain-ladder technique arises
through maximum likelihood estimation in a Poisson model. In addition, a
well-known alternative to the arithmetic chain-ladder is a model involving
the same parametrization but using lognormal distributed variables. This
alternative approach was developed further by Kuang et al. (2015) providing
closed form expressions for estimators for individual parameters. They derived
log development factors which are differences of logs of geometric means and
therefore it was referred to as the geometric chain-ladder model. One of the
recent developments of the classical chain-ladder method is the extension of
considering both the triangle of paid losses and a triangle of incurred claim
counts, leading to the double chain-ladder method (Martínez Miranda et al.
(2012)).
Regardless of all the stochastic methods suggested over the years, the work of
finding a better version of or adding an appealing extension to the classical
chain-ladder method keeps evolving and the method itself continues to being
the subject of many research papers.

1.3 Individual claims reserving

All these macro-level models discussed in the Section 1.2 are based on ag-
gregate data formulated in a run-off triangle, which makes the models easier
to handle, but can be somewhat limiting and is considered as a possible
weakness. One of the main advantages of aggregate methods are the low data
requirements and computational power, which on the other hand causes a
loss of useful (detailed) information and therefore individual claims prediction
is not available. It has been questioned by several authors about possible
use of a detailed micro-level information. Moreover, these days insurance
companies do have access to extensive micro-level data. Micro-level models
handle claims related data on an individual basis, rather than aggregating
by underwriting year and development period. Due to the aggregation of
the data, useful information regarding the claim development process is lost,
but micro-level models work on the individual claim level to deal with the
development throughout each claim’s lifetime. One single insurance claim may
have a life that develops over a number of years with a multiple transactions
related to the claim.
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Despite many advantages of micro-level loss reserving models, practitioners
and researchers have paid rather little of attention to this topic, primarily
due to the modeling complexity. In most research articles on this topic, the
marked Poisson point process has been the dominant modeling technique.
Research papers by Arjas (1989), Jewell (1989) and Norberg (1993, 1999) are
the first contributions in the area of micro-level loss reserving. It was proposed
in Arjas (1989) to model the development of a claim by a marked Poisson
process, in which the occurrence of transactions follows a non-homogeneous
Poisson process and the payment amount in each transaction is treated as
the “mark”. Jewell (1989) focused on modeling the number of IBNR claims
with a marked Poisson process, in which the occurrence of claims is modeled
by a non-homogeneous Poisson process and the reporting delay is treated
as the “mark”. Also the use of parametric Bayesian approach to predict the
number of IBNR claims was proposed in the latter.
Later, the work of Arjas and Jewell was extended by Norberg (1993, 1999),
who built a mathematical framework for applying a marked Poisson process in
loss reserving on the individual claim level. He modeled claims using a marked
Poisson process, in which claims occur in accordance with a non-homogeneous
Poisson process and other stochastic characteristics about the claims are
treated as the time dependent “marks”. The first detailed implementation of
a micro-level loss reserving model was done by Haastrup and Arjas (1996).
The authors used the theoretical framework set up by earlier contributions
and provided a case study with a portfolio of accident insurance to illustrate
the implementation of a marked Poisson process.
Only in recent years, micro-level loss reserving has attracted more research
interest again. Literature in the field of micro-level models contains several
proposals of reserving models that are based on individual level claims data
and several studies based on simulation or empirical data have been conducted.
For instance, a substantial case study of the marked Poisson process method is
provided by Antonio and Plat (2014), where a detailed stochastic hierarchical
model for each part of the development of a claim is specified: occurrence time,
reporting delay, transaction times and their severity, and the final settlement
of the claim. The model is then calibrated using historical claim-level data
of material and injury claims from a personal-line general liability insurance
portfolio and the model is used to simulate the development process of each
open claim. Jin and Frees (2013) estimate a similar model without the use
of exposure data from the insurance portfolio. Verrall and Wüthrich (2016)
construct an inhomogeneous marked Poisson process to explicitly model
the claims arrival process and reporting delay in continuous time based on
individual claims data. Two real individual claims data sets from property



18 Loss reserving in insurance

and casualty insurance are calibrated to the statistical model of Jewell and
Norberg.
Slightly differing from the regular Poisson process approach, Badescu et al.
(2016a,b) and Avanzi et al. (2016) propose to model the claim arrival process
along with its reporting delays as a marked Cox process to allow for over-
dispersion and serial dependency. A Cox process, or doubly stochastic Poisson
process, extends a Poisson process by modeling the intensity as a non-negative
stochastic process. Badescu et al. (2016b) use a weekly piecewise constant
stochastic process generated by a hidden Markov model (HMM) with state-
dependent Erlang distributions. The discrete process of the number of
observed claims during each week then follows a Pascal-HMM with scale
parameters depending on the exposure and the reporting delay distribution.
Recently, new innovative approaches have been presented in claims reserving.
Namely, machine learning techniques have been introduced by Wüthrich (2016)
in individual claims reserving. Many contributions that are based on individual
claims data assume a rather fixed structural form, for example, Pigeon et al.
(2013) fit a multivariate skew normal distribution to the claims payments.
Such fixed structural forms are not very flexible and the consideration of
detailed feature information is difficult to implement. Machine learning
techniques make it feasible to calculate claims reserves on individual claims
data. Paper by Wüthrich (2016) illustrates how machine learning techniques
can be used by providing an explicit example in individual claims reserving
using regression trees. This approach has not yet been fully developed, but is
an interesting contribution in the given field.

1.4 Motivation

Despite the fact that micro-level models have recently emerged in an increasing
steam of academic literature, these models are not substantially used by
practitioners. It can be explained by several reasons, for instance, the complex
structure of the proposed model, which make the application of the models
difficult. Proposed detailed models are usually computationally not efficient,
and practitioners are slow in adapting with the novel approaches. Insurers
consider developing new models only when they believe the models are
implementable. It is clear that the industry-wide standard to estimate the
future claim counts in the lower triangle is the chain-ladder model and its
related extensions.
Reserving is a practical activity and the ultimate goal of studies on reserv-
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ing models is to help insurers improve their reserving practice. The aim
of this research is to shift the focus from creating new methodologies to
testing effectiveness of existing ones in practical situations. Like mentioned
beforehand, one of the main interests in actuarial practice is to estimate the
likely variability of the claims reserve. The prediction error has been used as
the precision measure for the reserve estimates in most literature. The first
part of this dissertation concentrates mainly on the prediction error issue.
The prediction error can be decomposed into two components: parameter
uncertainty and process uncertainty (see, e.g., England and Verrall (2002),
Taylor (2014)). The former comes from the uncertainty in the estimation of
parameters of the reserving model due to the limited sample size, whereas
the latter comes from the intrinsic randomness of the claims development in
the future. However, obtaining estimates for the standard error of prediction
can be a difficult task. There are several analytical results for computing the
prediction error (see England and Verrall (1999)), but those estimates can be
difficult to calculate or are only approximate values. In addition, calculating
the prediction error certainly provides great insight into the performance of
reserve estimates, but other information such as the cash flow or risk measures
are also of interest. For both the prediction errors and the full predictive
distribution of reserve estimates, bootstrapping can be used for a solution.
The bootstrap technique has been extensively studied in the claims reserving
framework by various authors, such as Ashe (1986), England and Verrall
(1999) and Pinheiro et al. (2003). The definition of the proper residuals to base
the bootstrap technique on is definitely an open subject when bootstrapping.
We extend the work of Pinheiro et al. (2003) by using another useful type of
residual with bootstrapping, and we carry out a comparative study among
several stochastic models. We will use claims data from an Estonian insurance
company for the empirical study, where we discuss the impact of the chosen
models and the residuals on the reserve estimates and prediction errors.
Moreover, as contributions involving case studies are usually based on one or
two data sets, we provide an extensive case study with the Schedule P database.
In addition, similar comparison studies do not straightforwardly report the
best model, indicating a clear need for more proper tools to validate and assess
the quality of predictions when comparing different reserving methods. In
order to validate the reserving method and identify any needed modifications,
we need to rank the competing predictive models. We propose to consider
scoring rules to measure the accuracy of probabilistic predictions.
There are many recent contributions conducting a comparison of macro and
micro-level models (see, e.g., Charpentier and Pigeon (2016)). Several studies
with empirical comparisons between macro- and micro-level models (see, e.g.,
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Jin and Frees (2013)) show that their calibrated micro-level model produces
a more realistic reserve compared to the macro-level models. For instance,
the proposed micro-level model by Antonio and Plat (2014) outperforms the
macro-level models providing the actuary with detailed information regarding
the development process of each claim and obtained on real data analysis
lower variance on the total amount of reserves than with the macro-level
model. On the other hand, Johansson (2015) shows with the empirical study
that the variances of the chain-ladder reserve and the double chain-ladder
reserve are larger than the variance of the micro-level method reserve, but
the micro-level method does not estimate a better reserve than the two other
methods. Thus, it is not straightforward that micro-level models generate
reserve estimates with better quality in every situation, but it is indeed a
natural and sensible direction to pursue a better reserve estimate. Given the
data availability and advances of computational power, it does make sense to
use that data.
It could be that micro-level methods perform better than macro-level models
but it is not clear whether using sophisticated models is worth the extra effort.
Perhaps it would be more sustainable to use the available granular data but
hold to a simpler method, which can be extended or corrected to overcome
its shortcomings. At the end of the day, the claims reserving actuary wants
to keep the company solvent and profitable giving the best estimate for the
reserves.
One of the most recent chain-ladder extensions is the method by Martínez Mi-
randa et al. (2013), which extends the traditional chain-ladder framework
towards the continuous use of individual claims data, where granular data is
given in a run-off triangle and reserves are estimated with non-parametric
estimation of the underlying density. The continuous chain-ladder (CCL) is
the first chain-ladder extension up to our knowledge that does not assume
the data aggregation and the model can be considered as a micro-level model
due to the use of continuous time. In theory, the CCL model is designed
for data recorded in continuous time. However, insurance companies do not
always keep track of insurance data in continuous time and the lowest level of
data aggregation that could be considered, is daily data. The CCL method
has not been extensively developed and investigated from the first moment
it was published and we have not seen contributions involving simulation or
comparison studies using the CCL model. In this thesis, we look into the
CCL method, implement the method and discuss several associated problems
using kernel functions. As this dissertation serves a practical input to the ex-
isting literature, we describe the method in a discrete framework for practical
situations.
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The classical chain-ladder method has mostly been used with annual data
and we have not seen contributions where the reserve estimation is based on
more refined level of data, such as quarterly, monthly or even daily data. We
investigate whether and how much the use of different aggregation levels of
claim data can improve the reserving process with both the CCL and the CL
method. The data is simulated on daily basis and evaluation of the impact
of each level of data aggregation (monthly, quarterly and annual) on the
predictive distribution of the IBNR claim counts will follow. We provide a
simulation study and also an empirical study to examine the possible gain
of a micro-level approach and to judge whether the different levels of data
aggregation influence the reserve estimates.
While the existing literature has contributed a solid mathematical framework
for both macro and micro-level reserving models, this dissertation supplements
this literature by providing a more practical approach to demonstrate how
to implement some of the discussed reserving models and the benefits that
one receives from them. The reserving methods suggested in the research
literature seldom fit practical applications perfectly and, hence, the actuaries
often have to make ad hoc adjustments. Moreover, in the literature the
suggested methods tend to be illustrated using neat and uncomplicated data
sets and are therefore not so often questioned. In insurance practices, each
data set poses specific challenges to modeling and model selection, imposing
an another flaw of the current literature: there is a wide range of methods
giving slightly different results, but the current literature lacks any systematic
guide to choosing between them. In this thesis, the emphasis is on analyzing
real-life insurance data which is complemented by simulation studies, as the
main drive of this research has been the practical relevance and applicability.
An important objective of the proposed work is the guidance in practical
situations making our findings accessible to insurance practitioners. Only a
correct use of the available data, proposed models and prediction methods,
with an appropriate study of the statistical uncertainties involved, will lead
to the expected benefits. In addition, the use of proper statistical techniques
should help to get reliable uncertainty estimates. The overall objective
is to improve actuarial practices for reserving by using sound and flexible
statistical methods shaped for the actuarial data. These objectives clearly
require an interdisciplinary research approach, combining actuarial science and
mathematical statistics. The highly advanced information that is currently
gathered by insurance companies justifies the challenges formulated in this
thesis as well as the statistical methodology.





Chapter 2

Stochastic reserving methods
and bootstrapping

In this chapter, we consider the well-known stochastic reserve estimation
methods on the basis of generalized linear models, such as the (over-dispersed)
Poisson model, the gamma model and the lognormal model. For the likely
variability of the claims reserve, bootstrap method is considered. In the
bootstrapping framework, we discuss the choice of residuals, namely the
Pearson residuals, the deviance residuals and the Anscombe residuals. In
addition, several possible residual adjustments are discussed and compared
in a case study. We carry out a practical implementation and comparison of
methods using real-life insurance data to estimate reserves and their prediction
errors. We propose to consider proper scoring rules for model validation, and
the assessments will be drawn from an extensive case study.
This chapter is an extended version of Tee, L., M. Käärik, and R. Viin (2017).
On comparison of stochastic reserving methods with bootstrapping. Risks
5 (1), 2.
In comparison with the original publication, we have adjusted descriptive
sections, developed the subsection of residuals and extended the case study
section with Schedule P database to involving data from different lines of
businesses.
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2.1 Chain-ladder method as a generalized lin-
ear model

In this section, we introduce briefly the basic chain-ladder method, recall
how the chain-ladder method is reformulated in the context of generalized
linear models and give a brief review of stochastic macro-level models, which
will be used in the analysis. For a general introduction to GLM, we refer
to McCullagh and Nelder (1989).
Stochastic macro-level models use aggregate claims data, and some of the
main advantages over non-stochastic macro-level models are the possibilities
to obtain first two moments or the predictive distribution of the reserve
estimate. Several often-used and traditional actuarial methods to complete
a run-off triangle can be described by GLM. The actuarial literature has
also shown a close connection between the chain-ladder method and the
multiplicative Poisson model.
Without loss of generality, we assume that the data that have been collected
for i = 1, ..., n and j = 1, ..., n consist of a triangle of incremental claims:

{Cij : i = 1, ..., n; j = 1, ..., n− i+ 1} ,
where the row index i refers to the year of origin and, depending on a particular
situation, indicates the accident year, reporting year or underwriting year.
The column index j refers to the development year, indicating the delay, more
precisely loss disbursal, reporting year or accident year. Claims data are given
as a run-off triangle as shown in Table 2.1.

Development Period j

Year of Origin i 1 2 3 . . . n

1 C11 C12 C13 . . . C1n
2 C21 C22 . . .
3 C31 . . .
...

...
n Cn1

Table 2.1: Run-off triangle with incremental claim amounts.

The cumulative claim amounts with accident year index i reported up to, and
including, the delay index j are defined as:

Dij =
j∑

k=1
Cik.
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Thus, Dij is the total claims amount of accident year i, i = 1, . . . , n, either
paid or incurred up to development year j, j = 1, . . . , n. The development
factors of the chain-ladder technique are estimated as:

λ̂j =
∑n−j
i=1 Di,j+1∑n−j
i=1 Dij

, j = 1, . . . , n− 1.

Generalized linear modeling is a methodology for modeling the relationships
between variables. It generalizes the classical normal linear model, by relaxing
some of its restrictive assumptions, and provides methods for the analysis
of non-normal data. GLM is important in the analysis of insurance data,
because with insurance data, the assumptions of the normal model are often
not applicable. See De Jong and Heller (2008) for a detailed description of
generalized linear models for insurance data.
Following Renshaw and Verrall (1998); Pinheiro et al. (2003), the structure
of the stochastic models for claim reserving in the terminology of GLM can
be given by:

(1) incremental claim amounts Cij belong to the exponential family,

(2) E(Cij) = µij,

(3) ηij = g(µij), where g(·) is the link function,

(4) linear predictor ηij = c+ α̃i + β̃j with an intercept c and factor effects
α̃i and β̃j.

The given structure of GLM can be used to describe several often used
actuarial methods. We consider the following multiplicative model (Kaas
et al. (2008)), with a parameter for each row i, each column j and each
diagonal k = i+ j − 1:

Cij ≈ αi · βj · γk, (2.1)
where parameter αi describes the effect of year of origin i, parameter βj
corresponds to development year j and γk describes the effect of calendar year
k = i+ j− 1. The approximation sign in Equation (2.1) expresses a difference
caused by a chance, i.e., there is a possible deviation of the observation on
the left-hand side from its mean value on the right-hand side. The model
involves three time scales, which give rise to the well-known identification
problem. Parametrization using three time scales has been introduced for
instance by Zehnwirth (1994). The identification problem has been revisited by
several authors; see, for example, Kuang et al. (2008b,a), who have proposed
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a canonical parametrization that is uniquely identified. In the framework
of three time scales, we also face a problem with extrapolating the calendar
estimates. Namely, we have no data on the values of γk for the future calendar
years, e.g., if k > n. This can be overcome by assuming that the γk have
a geometric pattern, with γk ∝ γk for some real number γ. Typically, the
model (2.1) is simplified by taking γk ≡ 1, and the condition ∑n

j=1 βj = 1
is imposed. If the parameters αi > 0 and βj are estimated by using the
maximum likelihood method, then the simplified model is a multiplicative
GLM with log-link.
In the terminology of GLM, to linearize the multiplicative model (2.1), the
logarithm is chosen as a link function (log-link). Hence:

E(Cij) = µij = αi · βj · γk
= exp(lnαi + ln βj + ln γk),

or, equivalently,
lnE(Cij) = lnαi + ln βj + ln γk. (2.2)

Parameters of the given model are estimated by using the maximum likelihood
method. After obtaining the estimates of the parameters, it is easy to complete
the run-off triangle, simply by taking:

Ĉij := α̂i · β̂j · γ̂k. (2.3)

This simple model allows one to generate quite a few reserving techniques,
depending on the assumptions set on the distribution of Cij. It is common
in claim reserving to consider the Poisson, gamma or lognormal distribution
for the variable Cij. We proceed with reviewing the following methods from
model (2.1).

The (over-dispersed) Poisson model: Already in 1975, a stochastic
model corresponding to the Poisson model, which leads to the chain-ladder
technique, was proposed. This model works on the incremental amounts Cij
from a Poisson distribution, where E(Cij) = αiβj with unknown parameters
αi and βj. Here, αi is the expected ultimate claims amount (up to the latest
development year so far observed), and βj is the proportion of ultimate claims
to emerge in each development year with the restriction ∑n

k=1 βk = 1. The
restriction immediately follows from the fact that βj is interpreted as the
proportion of claims reported in development year j. Obviously, the aggregate
proportion over all periods has to be one.
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Throughout this chapter, we use the notation ∆ for the triangle of known data,
i.e., the set of all (i, j), where Cij is known, and O for the triangle of unknown
data, i.e., the set of all (i, j), where Cij is unknown. We also distinguish
∆i = {j : (i, j) ∈ ∆} and ∆j = {i : (i, j) ∈ ∆}. Using this notation, we can
define the reserve Ri in origin year i by Ri = ∑

j∈Oi
Cij , and the total reserve

by R = ∑
(i,j)∈OCij . The corresponding estimates are given by R̂i = ∑

j∈Oi
Ĉij

and R̂ = ∑
(i,j)∈O Ĉij, respectively.

We estimate the unknown parameters αi and βj from the triangle of known
data with the maximum likelihood method. Assume that all Cij are inde-
pendent with a Poisson distribution, and E(Cij) = αiβj holds. Then, the
maximum likelihood estimators α̂i and β̂j are given by

α̂i =
∑
j∈∆i

Cij∑
j∈∆i

βj
, i = 1, . . . , n (2.4)

and
β̂j =

∑
i∈∆j Cij∑
i∈∆j αi

, j = 1, . . . , n. (2.5)

The maximum likelihood estimates for unknown parameters αi and βj are de-
rived with the likelihood function L = L (α,β), where (α,β) = (α1, α2, . . . , αn,
β1, β2, . . . , βn), as follows

L =
∏

(i,j)∈∆

(αiβj)Cij

Cij!
exp(−αiβj).

Therefore, the log likelihood function is:

` = ln(L ) = −
∑

(i,j)∈∆
αiβj +

∑
(i,j)∈∆

Cij ln(αiβj)−
∑

(i,j)∈∆
ln(Cij!),

where the summation is for all (i, j) where Cij is known. The maximum likeli-
hood estimator consists of values of αi, βj , which maximize L or equivalently
ln(L ). They are given by the equations:

0 = ∂`

∂αi
= −

∑
j∈∆i

βj +
∑
j∈∆i

Cij
1
αi
, i = 1, . . . , n

and:
0 = ∂`

∂βj
= −

∑
i∈∆j

αi +
∑
i∈∆j

Cij
1
βj
, j = 1, . . . , n.

Thus, the likelihood estimator αi and βj is given, respectively, by Formulas
(2.4) and (2.5). The proportion factors βj express the ratio of the sum of
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observed incremental values for certain development year j with respect to
certain ultimate claims, i.e., βi denotes the proportion of claims reported in
development year j. The parameters αi refer to the ratio of the sum of observed
incremental values for a certain origin year i to corresponding proportion
factors. In other words, if the incremental claim amounts and respective
proportions factors are known, it is simple to derive the corresponding ultimate
claim αi for origin year i. One can note the principal similarities with the
chain-ladder technique, where development factors are also the outcomes of
certain ratios.
The Poisson model can be cast into the form of a GLM, and to linearize
the multiplicative model, we need to choose the logarithm as a link function,
ηij = ln(µij), so that:

E(Cij) = µij = exp(ln(αi) + ln(βj))

or, equivalently,
ln(E(Cij)) = ln(αi) + ln(βj) (2.6)

where the structure of linear predictor (2.6) is still a chain-ladder type, because
parameters for each row i and each column j are given. Hence, the structure
(2.6) is defined as a GLM in which the incremental values Cij are modeled
as Poisson random variables with a log-link. Reparametrizing (2.6) gives us
a structure of property (4) defined in a GLM setting, i.e., we obtain a linear
predictor:

ηij = c+ α̃i + β̃j, (2.7)

where parameter c can be considered as an intercept, which corresponds to
the incremental amount in the cell (1, 1). This means, we take

c = lnα1 + ln β1,

α̃i = lnαi − lnα1, i = 1, . . . , n,
β̃j = ln βj − ln β1, j = 1, . . . , n.

The Poisson model was studied in further detail by Kuang et al. (2009), where
also a new canonical parametrization was proposed.
We recall that the only distributional assumptions used in GLMs are the
functional mean-variance relationship and the fact that the distribution
belongs to the exponential family. When defining a GLM, we can omit the
distribution of Cij ’s and use only the most elementary information about the
response variable, namely the relationship between variance and mean. This
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introduces a quasi-likelihood as an alternative, and using this elementary
information alone can be often sufficient to stay close to the full efficiency of
maximum likelihood estimators. Therefore, we can estimate the parameters
by the maximum quasi-likelihood (McCullagh and Nelder (1989)) instead of
the maximum likelihood, and the estimators remain consistent. However, it
is necessary to impose the constraint that the sum of the incremental claims
in every row and column has to be non-negative. This means that quasi-
likelihood could not be used, for instance, when modeling incurred data with
a large number of negative incremental claims in the later development periods.
In the case of the Poisson distribution, the mentioned relationship is Var(Cij) =
E(Cij), and allowing for more or less dispersion in the data can be general-
ized to Var(Cij) = φE(Cij) without any change in form and solution of the
likelihood equations. This kind of generalization allows for more dispersion
in the data, and one speaks of an over-dispersed Poisson (ODP) model. The
ODP model is a generalization of the Poisson model and overcomes many
of the limitations while retaining the same basic structure and the desirable
feature that the reserve estimates are identical to the estimates obtained
with the CL method. The restriction to non-negative values takes the much
weaker form that only the column totals must be positive in the triangle
of incremental claim amounts, but note that this implies that the expected
value of the incremental claims amounts cannot be negative. It is shown in
Schmidt (2002) that every ODP model can be transformed into the Poisson
model by dividing all incremental claims by a certain parameter. The general
form for the ODP model can be given as follows:

E(Cij) = µij = αiβj, (2.8)

Var(Cij) = φαiβj, (2.9)
where:

n∑
k=1

βk = 1.

The over-dispersion is introduced through the parameter φ, which is unknown
and estimated from the data. The scale parameter φ may either be constant,
or allowed to vary by development period. In practice it is usually more
appropriate to allow the scale parameter to vary by development period.
Considering a single incremental payment Cij with the origin year i and
claim payments in development year j (yet to be observed), we obtain the
estimates of future payments from the parameter estimates by inserting them
into Equation (2.6) and exponentiating, resulting as:

Ĉij = α̂iβ̂j = exp(η̂ij). (2.10)
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Given the Equation (2.10), the reserve estimates for any origin year can be
derived by:

R̂i = α̂iβ̂n+2−i + . . .+ α̂iβ̂n, i = 2, . . . , n, (2.11)
and the reserve estimate for the total amount can be easily derived by
summation:

R̂ =
n∑
i=2

R̂i =
n∑
i=2

(α̂iβ̂n+2−i + . . .+ α̂iβ̂n), i = 2, . . . , n. (2.12)

The negative binomial model can be derived from the Poisson model, and thus,
these models are very closely related, but with a different parameterization.
The negative binomial model was first derived by Verrall (2000), by integrating
out the row parameters from the Poisson model. The predictive distributions
of both models are basically the same and give identical predicted values.

Lognormal model: When considering the lognormal distribution to de-
scribe claim amounts (see for a reference Kremer (1982)), we can still continue
to use GLM for the logs of the incremental claim amounts. The lognormal
class of models are given as:

ln(Cij) ∼ N (µij, σ2),

i.e.,
E(ln(Cij)) = µij = ln(αi) + ln(βj) and Var(ln(Cij)) = σ2.

Now, the identity link function is used, and the normal responses ln(Cij)
are assumed to decompose (additively) into a deterministic non-random
component with mean µij = ηij and normally-distributed random error
components with zero mean.
The fitted values on a log scale, given the estimates for the parameters in
the linear predictor ηij and the process variance σ2, are obtained by forming
the appropriate sum of estimates. Obtaining the estimates for the mean on
the untransformed scale is not that simple. We cannot just exponentiate the
linear predictor, since that would give an estimate of the median. Therefore,
the fitted values on the untransformed scale are given by:

Ĉij = exp(η̂ij + 1
2 σ̂

2), (2.13)

which is in the standard form of the expected value of a lognormal distribution.
The reserve estimate in origin year i is given by summing the predicted values
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in row i of O, i.e., R̂i = ∑
j∈Oi

Ĉij , and the total reserve estimate, summing the
predicted values in row i and in column j of O, is given by R̂ = ∑

(i,j)∈O Ĉij.
The lognormal model is also referred to as the geometric chain-ladder model;
see this additional analysis in Kuang et al. (2015).

Gamma model: Mack (1991) proposed a model with a multiplicative
parametric structure for the mean incremental claims amounts which are
modeled as gamma response variables. As noted in Renshaw and Verrall
(1998), the same model can be fitted as the GLM described in the ODP
model, except that the incremental claim amounts are modeled as independent
gamma response variables with a logarithmic link function and the same
linear predictor; and also requiring a slight change in (2.9). The gamma model
implemented as a generalized linear model gives exactly the same reserve
estimates as the gamma model implemented by Mack (1991). The gamma
model is given with the mean:

E(Cij) = µij = αiβj,

subject to:
n∑
k=1

βk = 1,

and with the variance:

Var(Cij) = φ(E(Cij))2 = φµ2
ij.

Estimates for the single incremental payments Cij are then given by:

Ĉij = α̂iβ̂j = exp(η̂ij). (2.14)

To obtain reserve estimates with the gamma model for any origin year or for
the overall amount, the same formulas as defined in the ODP model, (2.11) and
(2.12), respectively, can be used. The limitation of both the gamma and the
ODP model is that each incremental value should be non-negative. As with
the lognormal model, the predicted values provided by the gamma model are
usually close to the chain-ladder estimates, but it cannot be guaranteed.

2.2 The bootstrap technique

Bootstrapping is a popular technique in stochastic claims reserving because of
the simplicity and flexibility of the approach. We are using bootstrapping to
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estimate the prediction error and to approximate the predictive distribution.
An analytical derivation of the prediction error of the total reserve estimate
may be preferable from a theoretical perspective, but it is often impracticable
due to complex reserve estimators. For the classical chain-ladder method,
Mack (1993) derived an analytical expression of the Mean Squared Error
of Prediction (MSEP) within an autoregressive formulation of the claims
development using a second-moment assumption. The first order Taylor
approximation of the corresponding MSEP within the GLM framework was
derived by England and Verrall (1999). As said, known theoretical estimators
are difficult to calculate and are still merely approximate values.
For both the classical and generalized linear model, it is common to adopt
either a paired bootstrap where resampling is done directly from the observa-
tions or the residuals bootstrap where resampling is applied to the residuals of
the model (Pinheiro et al. (2003)). The paired bootstrap is more robust than
the residual bootstrap, but only the residual bootstrap can be implemented
in the context of the claim reserving, given the dependence between some
observations and the parameter estimates. If the type of residuals adopted
is the same, then mixing GLMs with bootstrapping is similar to combining
the chain-ladder method with bootstrapping. The residuals obtained from
applying a GLM to the past claims data are used in the resampling process
of bootstrapping. With each re-sampled set of residuals, an upper triangle
can be constructed, and the stochastic chain-ladder can be applied again.
The lower triangle is then simulated from the assumed distribution with the
first two moments determined by the stochastic chain-ladder. Thereafter,
an empirical distribution is formed, from which the required inferences can
be drawn.

2.2.1 Residuals

The process of creating a distribution for the reserve can be done by either
parametric bootstrapping or non-parametric bootstrapping. Given the context
of this research, we use a non-parametric bootstrapping method, i.e. use the
residuals to bootstrap a claims reserves distribution.
The most often used residuals in model diagnostics are the Pearson residuals
and the deviance residuals. Furthermore, the Anscombe residual is often
mentioned as a possible residual to consider, but is rarely applied in further
work due to being known as a less commonly-used residual. However, following
De Jong and Heller (2008), the Anscombe and the deviance residuals are
mathematically different, but numerically, they give similar results. The
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Anscombe residual tries to make the residuals “as close to normal as possible”,
and given that the response distribution has been correctly specified, the
deviance residuals are also approximately normally distributed. Thus, contrary
to the usual practice, we explore in the following the use of the Anscombe
residuals. A version of the deletion residual is also available under the GLM
setting, which is related to the Pearson residual, but their forms are rather
complicated and therefore omitted.
The Pearson residuals are just rescaled versions of the raw or response residuals
and are defined as:

rPij = Cij − µ̂ij√
V (µ̂ij)

, (2.15)

where V (·) is a variance function. The Pearson residuals need to be adjusted
in order to obtain (approximately) equal variance, and there are different
adjustments suggested by several authors. It was proposed by England and
Verrall (1999, 2002) to adjust the residuals by multiplying them by a correction

factor
√

n∆

n∆ − p
, where n∆ is the sample size and p is the number of estimated

parameters. In correspondence with the classical linear model, often the “hat”
matrix of the model is used to standardize the Pearson residuals, which are
given as:

rP∗ij =
rPij√

φ̂(1− hij)
, (2.16)

where φ̂ is a scale parameter estimated from the data, and the factor hij is
the corresponding element of the diagonal of the “hat” matrix. The scale
parameter can be estimated, for example, as the Pearson chi-squared statistic
divided by the degrees of freedom:

φ̂ =
∑(rPij)2

n∆ − p
, (2.17)

where n∆ is the number of data points in the sample and p is the number of
parameters estimated, and the summation is over the number of residuals.
The “hat” matrix is given for classical linear models by H = X(XTX)−1XT,
and it can be generalized for GLM as follows:

H = X(XTWX)−1XTW,

where X is a design matrix and W is a diagonal matrix with elements:

wii =
V (µij)

(
∂ηij
∂µij

)2
−1
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on the diagonal (see McCullagh and Nelder (1989) for details). In this thesis,
residual adjustment procedure (2.16) is used in Chapters 2.3 and 2.4.
The distribution of Pearson residuals for non-normal distributions is often
markedly skewed and, thus, may fail to have properties similar to those
of a normal-theory residual. Then, the Anscombe residual can be a good
alternative to the Pearson residual. The Anscombe residuals do not use the
variable Cij directly, but instead a transformation A(Cij). The function A(·)
is chosen to make the distribution of A(Cij) as normal as possible and is given
by

A(x) =
∫ x

−∞
V −

1
3 (t)dt,

where V (t) is the variance function. In the context of GLM the Anscombe
residual is defined as

rAij = A(Cij)− A(µ̂ij)
A′(µ̂ij) ·

√
V (µ̂ij)

, (2.18)

where A′(µ) is the derivative of A(µ). For the Poisson model, the Anscombe
residuals are defined by:

rAij =

3
2

(
C

2
3
ij − µ̂

2
3
ij

)
µ̂

1
6
ij

and for the gamma model the residuals are defined as:

rAij = 3
(Cij

µ̂ij

) 1
3

− 1
 .

It is easy to see that in case of the normal model, the Anscombe residuals
(2.18) are equivalent to the classical residuals, and thus, for the lognormal
model the residuals are defined as:

rAij = ln(Cij)− µ̂ij,

since V (µij) = 1. Note that similar standardization procedure (2.16) could
be defined for the use of another kind of residuals, such as the Anscombe
residuals. For a detailed overview of residuals, see De Jong and Heller (2008).
Prediction errors obtained with the bootstrapping method are compared based
on the type of residuals used and if or how we have adjusted the residuals.
It is important to notice that the residuals of the calculated values of the
first column in the last row and of the first row in the last column are always
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equal to zero, i.e. µ̂1n − C1n = 0 and µ̂n1 − Cn1 = 0. These are zeros due to
the defined linear structure adopted in the models implying the estimates
for some of the parameters depend on one observation only. The reason for
the correction of zeros is that the bootstrap method assumes the random
variables (in this case, residuals) to be i.i.d. random variables, but in this
case, there are two non-random residuals, which are always fixed as zeros.
Thus, we remove zero-residuals and replace them with residuals resampled
from the remaining ones. In the following of this chapter, the correction of
zeros is referred to as the zero-correction.

2.2.2 Prediction error and confidence limits

Once the model has been chosen the variability of the claims reserve can be
obtained either analytically or by simulation. The bootstrap is often adopted
when a standard error is difficult or impossible to estimate analytically. A
commonly-used measure of variability is the prediction error, also known as
the root mean square error of prediction. In this context, we use the expected
value as the prediction. The prediction error consists of two parts: the process
variance and the estimation variance. The root mean squared error of the
prediction (RMSEP) R̂ is given by:

RMSEP(R̂) =
√
E((R− R̂)2)

=
√

(E(R)− E(R̂))2 + Var(R− R̂)

≈
√

Var(R) + Var(R̂), (2.19)

where Var(R) denotes the process variance and Var(R̂) denotes the estimation
variance. The explicit form of the two components of the variance in 2.19
depends on which prediction model is used; see for instance Renshaw (1994);
England and Verrall (1999).
The bootstrap process involves resampling, with replacement, from the resid-
uals. A bootstrap data sample is then created by inverting the formula for
the residuals using the resampled residuals, together with the fitted values.
Having obtained the bootstrap sample, the model is refitted and the reserve
estimate is calculated. It is necessary to repeat the process a large number of
times, each time creating a new bootstrap sample, and obtaining the reserve
estimates. Then, the bootstrap standard error (SEbs) is the standard deviation
of the bootstrap reserve estimate, thus being an estimate of the square root
of the estimation variance. However, the bootstrap standard error cannot be
compared directly with the analytic equivalent since the bootstrap standard
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error does not take into account the number of parameters used in fitting the
model, i.e., the bootstrap process simply uses the residuals with no regard as
to how they are obtained. To obtain the bootstrap prediction error (PEbs),
it is necessary to add an estimate of the process variance. Therefore, the
bootstrap prediction error is the square root of the sum of the process variance
and the squares of estimation variance:

PEbs(R̂) =
√

Var(R) + (SEbs(R̂))2, (2.20)

where R stands for the total reserve and R̂ for its corresponding estimate.
Note that the formula (2.20) can be applied analogously in case of origin
year reserves Ri. PEbs(R̂) is the bootstrap standard error of the total reserve
estimate, and process variance Var(R) has an explicit form depending on the
considered model. In the case of ODP model, the estimate of the process
variance would be

V̂ar(R) =
∑

(i,j)∈O
φ̂µ̂ij = φ̂

∑
(i,j)∈O

µ̂ij = φ̂R̂,

and in the case of gamma model

V̂ar(R) =
∑

(i,j)∈O
φ̂µ̂2

ij = φ̂
∑

(i,j)∈O
µ̂2
ij.

In the case of lognormal model, the process variance is

V̂ar(R) =
∑

(i,j)∈O

(
exp(σ̂2)− 1

)
exp(2µ̂ij + σ̂2).

Following Davison and Hinkley (1997); Pinheiro et al. (2003), we consider
an alternative bootstrapping procedure to obtain an upper confidence limit
for the forecasts of the aggregate values. This approach (in the following
named as the PPE-method) includes two resampling procedures in the same
bootstrap iteration, but the results should be more robust against deviations
from the hypothesis of the model. The idea is to define an adequate prediction
error as a function of the bootstrap estimate and a bootstrap simulation of
the future reality and to record the value of this prediction error for each
bootstrap iteration. Then, use the desired percentile of this prediction error,
and combine it with the initial prediction to obtain the upper limit of the
prediction interval. See the appendix for a step-by-step explanation of this
alternative approach as well as the first bootstrap procedure which we refer
to as the regular method.
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2.3 Empirical study

To enable a comparison with previously-discussed methods in the framework
of bootstrapping with defined residuals, we use the real-life data set from
an Estonian insurance company. We want to avoid using the well-known data
sets that have been used by many others in the literature over the years and to
contribute an analysis with a new data set. The data considered describe the
paid out claims and are shown here in incremental form. We are interested in
the impact of the choice of the model and, mainly, in the effect of the choice
of residual and its adjustments.
We use both the Pearson and the Anscombe residuals (see definitions (2.15)
and (2.18), respectively) first without any corrections, then with the zeros
corrected and lastly standardized residuals together with the zero-correction
(see (2.16) for the definition of standardization). It is clear that using just
standardized residuals will lead to the same results as obtained with the
zero-corrected residuals; thus, we do not consider standardized residuals
independently in the comparative study. In addition, we compare the obtained
prediction errors and upper limits using both bootstrap approaches, i.e., the
regular bootstrap standard error of prediction (2.20) and the alternative
(using pseudo-reality) PPE-method. We present the PPE prediction errors
only for the total reserve. When comparing the bootstrap prediction errors
PEbs and the PPE prediction errors, we have to take into account that
different units are used: bootstrap prediction error equals one standard
deviation, and PPE prediction error equals (approximately) 1.645 standard
deviations (95%-quantile of normal distribution). This means that we have
to multiply the obtained bootstrap prediction error (2.20) by 1.645 and add
it to the reserve estimate to obtain an upper confidence limit for the total
reserve. In the case of PPE-method, we simply sum the prediction error and
the mean to obtain the upper limit.
Reserve estimates obtained using the over-dispersed Poisson model, the
gamma model and the lognormal model in the framework of bootstrapping
with residuals outlined in this chapter are shown in Tables 2.3 – 2.8 below.
As one can see, the data considered are rather inconvenient (see Table 2.2),
i.e., the large fluctuation of the values in the triangle is obvious: the smallest
incremental value is 1022, and the largest one is 10,660,074, which is a 10,430-
fold difference. The second column in Tables 2.3 – 2.8 shows a point estimate
for the reserve. These estimates are obtained directly from the defined model
(not depending on the bootstrap procedure), and the point estimates do not
depend on the choice of residual or on its correction.
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1 2 3 4 5 6 7 8 9 10

2000 4,734,994 1,885,305 281,240 504,341 524,449 365,049 100,761 32,449 3,697 56,901
2001 4,344,093 1,783,774 243,849 339,985 49,482 178,961 508,272 78,125 1,022
2002 5,288,867 1,795,855 303,246 351,320 316,038 33,501 88,774 31,102
2003 5,357,617 2,548,383 336,749 403,501 348,378 236,017 12,982
2004 5,737,732 2,574,724 971,320 280,140 226,212 152,127
2005 5,635,064 2,758,392 241,734 268,113 429,503
2006 6,629,504 3,045,252 356,119 200,420
2007 6,824,829 2,669,579 166,400
2008 8,116,439 3,428,535
2009 10,660,074

Table 2.2: Full run-off triangle for paid out claims.

The most problematic stage in the bootstrap method is the formation of the
pseudo-data. If the magnitudes of the incremental values differ significantly, it
is quite likely that the values of simulated residuals (simulated from the initial
set of residuals) are sufficiently high compared to the predicted incremental
values to cause the negative values to appear in the (pseudo-)data due to
the use of the inverse function. Most of the probability distributions used
in loss reserving are non-negative (or positive) valued; thus, the problem
with negative values in the (pseudo-)data can often appear. For example, in
the case of the Poisson distribution, the negative incremental values are often
replaced by zeros and in case of the gamma model they are replaced by ones
in practice. This kind of replacement can of course cause the non-convergence
of the parameters, but well chosen initial values help to avoid it. See Table
2.9 for an overview of the experienced negative values in the pseudo-data for
each considered model with the given data set in Table 2.2.
Tables 2.3 – 2.8 present the point estimates (“Est. Reserve”) along with
the bootstrap prediction errors (“PE”) as well as the upper limits (“Upper
95%”) for a confidence level of 95%. To compare the behavior of the two
discussed bootstrapping approaches, we have the last two lines of each table
presenting the prediction errors and the upper confidence limits of the total
reserve obtained by the PPE-method and the ratio of the results by the
PPE-method and the bootstrap prediction error. We first have a look at
the results obtained by the ODP model with using the Pearson residuals
(see Table 2.3) and the Anscombe residuals (Table 2.4). The total reserve
estimate with the given model is 13.4 millions and the prediction error using
the uncorrected Pearson residuals is 1.95 millions. Table 2.3 shows that the
prediction errors are not reflected significantly when the zero-correction or
standardization is applied to the residuals, and consequently, also the upper
limits are rather similar. The bootstrap prediction error decreases slightly if
we use standardization with the zero-correction.
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Year Est. Reserve Without Corrections Zero-Correction Zero-Correction & Stand.

PE Upper 95% PE Upper 95% PE Upper 95%

2 50,795 93,020 203,813 92,998 203,777 92,216 202,490
3 57,836 100,596 223,316 100,731 223,538 100,100 222,501
4 120,028 138,277 347,494 138,874 348,476 137,976 346,999
5 348,993 223,848 717,223 225,245 719,521 223,718 717,009
6 552,215 275,089 1,004,736 275,921 1,006,105 273,860 1,002,715
7 1,024,516 379,154 1,648,224 379,513 1,648,815 377,637 1,645,729
8 1,406,289 443,167 2,135,299 444,117 2,136,861 442,360 2,133,971
9 2,283,616 582,104 3,241,177 585,913 3,247,443 581,658 3,240,443
10 7,560,816 1,254,499 9,624,467 1,256,388 9,627,574 1,244,243 9,607,596
Total 13,405,108 1,959,079 16,627,793 1,962,403 16,633,261 1,939,728 16,595,961

PPE 2,991,495 16,396,603 3,028,286 16,433,395 2,998,899 16,404,008
PPE/PE 1.527 0.986 1.543 0.988 1.546 0.988

Table 2.3: Over-dispersed Poisson model with Pearson residuals.

The prediction errors (PE) in the case of the Poisson model with Pearson
residuals are varying from 1.94 million–1.96 million, depending on the residual
adjustment, whereas in the case of the Anscombe residuals (see Table 2.4),
the prediction errors vary from 1.74 million–1.94 million. This means that
the 95% confidence limits for the total reserve prediction are between 16.60
million and 16.63 million in the case of the Pearson residuals and 16.27 million
and 16.60 million in the case of the Anscombe residuals, given the Poisson
model and residual adjustments. Thus, the Anscombe residuals are slightly
more sensitive to the use of the residuals adjustments as the results vary more
than with the Pearson residuals.

Year Est. Reserve Without Corrections Zero-Correction Zero-Correction & Stand.

PE Upper 95% PE Upper 95% PE Upper 95%

2 50,795 88,545 196,452 90,094 199,000 91,999 202,133
3 57,836 96,181 216,054 98,013 219,067 98,917 220,554
4 120,028 133,040 338,879 135,019 342,134 137,301 345,888
5 348,993 214,176 701,313 216,583 705,272 225,633 720,159
6 552,215 262,405 983,871 264,390 987,137 273,456 1,002,050
7 1,024,516 358,928 1,614,953 362,319 1,620,531 378,666 1,647,422
8 1,406,289 418,820 2,095,248 422,350 2,101,055 445,735 2,139,523
9 2,283,616 545,624 3,181,167 550,420 3,189,057 580,020 3,237,749
10 7,560,816 1,118,001 9,399,928 1,124,329 9,410,337 1,239,100 9,599,136
Total 13,405,108 1,743,656 16,273,422 1,772,161 16,320,313 1,941,261 16,598,482

PPE 2,376,659 15,781,768 2,400,911 15,806,020 2,979,436 16,384,544
PPE/PE 1.363 0.970 1.355 0.968 1.535 0.987

Table 2.4: Over-dispersed Poisson model with Anscombe residuals.

The zero-corrected and standardized Anscombe residuals result in higher
prediction errors. The uncorrected Anscombe residuals give the lowest pre-
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diction errors. We see that the zero-correction do not effect the prediction
errors significantly also in this case. The prediction error of the total reserve
estimate obtained without any residual corrections with the Anscombe resid-
uals are 11% smaller than with the Pearson residuals. The corresponding
number with the zero-correction is 10%, but with the standardization and
the zero-correction, the prediction errors of the total reserv estimate are
about the same. We can see that the upper confidence limits for the total
reserve are lower with the PPE-method (all of the corresponding ratios PPE

PE

are smaller than one). On the other hand, the prediction errors (depending
on the residual adjustments) obtained by the PPE-method are higher than
the estimates obtained by (2.20). The ratios seem to increase if we correct
the residuals. In the case of Pearson residuals using the zero-correction and
standardization, the corresponding ratio is the highest (1.546) as well as in
the case of the Anscombe residuals (1.535).
Fitting the gamma model gives considerably higher reserve estimates (see
Tables 2.5 – 2.6) compared to the results obtained by the ODP. The point
estimate for the total reserve with the gamma model is 12.1 million, whereas
with the Poisson model it was 13.4, indicating that the point estimate with
the gamma model is 10.7% lower. In case of the gamma model and the
Pearson residuals, the prediction errors for the total reserve vary from 5.77
million–6.06 million. Note that the zero-corrected and standardized residuals
give the highest prediction errors, which was vice versa in the ODP model
with the Pearson residuals. Also the prediction errors by the PPE-method
are higher with the gamma model.

Year Est. Reserve Without Corrections Zero-Correction Zero-Correction & Stand.

PE Upper 95% PE Upper 95% PE Upper 95%

2 50,011 44,643 123,449 45,671 125,140 46,180 125,977
3 37,118 31,996 89,751 32,803 91,079 33,134 91,623
4 93,432 55,698 185,055 56,962 187,134 57,583 188,156
5 332,152 177,861 624,733 180,928 629,779 182,393 632,188
6 454,013 214,667 807,140 220,470 816,686 222,762 820,456
7 782,168 368,402 1,388,189 377,559 1,403,253 381,636 1,409,959
8 1,031,663 494,109 1,844,472 504,639 1,861,794 510,817 1,871,957
9 2,090,954 1,127,346 3,945,438 1,153,719 3,988,822 1,172,064 4,018,999
10 7,270,704 5,522,714 16,355,569 5,694,928 16,638,861 5,771,588 16,764,966
Total 12,142,220 5,767,157 21,629,193 5,970,660 21,963,956 6,056,343 22,104,904

PPE 7,552,630 19,694,850 7,876,209 20,018,430 8,041,991 20,184,211
PPE/PE 1.310 0.911 1.319 0.911 1.328 0.913

Table 2.5: Gamma model with Pearson residuals.

In case of the gamma model and the Anscombe residuals, the prediction errors
for the total reserve vary from 4.80 million–5.03 million. It seems that the
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lower prediction errors are obtained with the Anscombe residuals. The upper
limit for the total reserve in case of the gamma model reaches 22 million. We
conclude, that based on the comparison of the Poisson and the gamma model
in this particular data set, the latter gives us a smaller total reserve estimate,
but higher prediction errors and, thus, higher upper limits for the reserve.

Year Est. Reserve Without Corrections Zero-Correction Zero-Correction & Stand.

PE Upper 95% PE Upper 95% PE Upper 95%

2 50,011 39,307 114,671 39,667 115,263 40,032 115,864
3 37,118 28,228 83,553 28,454 83,925 28,706 84,339
4 93,432 49,537 174,920 50,035 175,740 50,478 176,468
5 332,152 161,253 597,413 163,026 600,330 164,015 601,957
6 454,013 192,684 770,978 196,031 776,484 197,565 779,007
7 782,168 324,763 1,316,403 330,583 1,325,977 333,394 1,330,601
8 1,031,663 424,982 1,730,758 433,923 1,745,466 438,507 1,753,007
9 2,090,954 943,237 3,642,579 962,403 3,674,107 976,113 3,696,660
10 7,270,704 4,614,429 14,861,440 4,752,683 15,088,868 4,810,173 15,183,439
Total 12,142,220 4,808,814 20,052,719 4,970,282 20,318,334 5,033,233 20,421,888

PPE 6,337,605 18,479,826 6,607,874 18,750,094 6,727,019 18,869,239
PPE/PE 1.318 0.9216 1.329 0.923 1.337 0.924

Table 2.6: Gamma model with Anscombe residuals.

In the case of both models, the PPE-method tends to give higher prediction
errors than the bootstrap prediction errors. Likewise with the ODP model,
also the gamma model with the uncorrected residuals result in lower prediction
errors compared to adjusted residuals. We also note, that the PPE

PE
ratio of the

corresponding upper limits are around one, indicating that similar confidence
limits are obtained with both bootstrap methods.
From Tables 2.7 and 2.8, we can see the results of the lognormal model.
The point estimate among all of the considered models is the highest with
the lognormal model. The total reserve estimate using the lognormal model
is 13.6 million and is 1.5% and 11% higher of the total reserve estimates
obtained by the ODP and the gamma model, respectively. Note the high
increase in the prediction errors, especially in the case of zero-corrected and
standardized residuals. The prediction errors for the total reserve with the
lognormal model with the Pearson residuals vary from 12 million–14 million,
depending on the type of residual adjustment and the upper limits for the
total reserve vary from 33.5 million–36.6 million; this shows a great difference
of the estimates obtained by different models.
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Year Est. Reserve Without Corrections Zero-Correction Zero-Correction & Stand.

PE Upper 95% PE Upper 95% PE Upper 95%

2 54,060 85,331 194,429 90,471 202,885 96,159 212,242
3 46,399 71,200 163,523 75,678 170,889 80,440 178,723
4 101,016 98,142 262,460 102,990 270,435 108,580 279,630
5 271,424 198,419 597,823 207,885 613,395 216,101 626,910
6 442,472 285,962 912,879 298,890 934,146 307,842 948,872
7 756,516 486,210 1,556,331 498,810 1,577,058 513,128 1,600,612
8 1,031,985 696,039 2,176,969 703,776 2,189,697 726,645 2,227,316
9 2,255,719 1,813,279 5,238,563 1,889,497 5,363,942 1,979,344 5,511,740
10 8,658,523 12,584,162 29,359,469 13,392,437 30,689,082 14,340,838 32,249,202
Total 13,618,118 12,073,216 33,478,558 12,957,863 34,933,803 13,976,414 36,609,319

PPE 7,912,197 21,530,315 8,053,281 21,671,399 8,191,420 21,809,538
PPE/PE 0.655 0.643 0.621 0.620 0.586 0.596

Table 2.7: Lognormal model with Pearson residuals.

The Anscombe residuals lower the prediction errors roughly 40%. The pre-
diction errors with the Anscombe residuals are between 7.2 million and 8.1
million; thus, the 95% confidence limit for the total reserve is between 25.5 mil-
lion and 26.9 million, depending on the type of residual adjustment. However,
higher values of the prediction errors should not be surprising, as the log-
normal model is a more conservative model than, for example, the Poisson
model or the gamma model. We see that the same pattern follows as before;
if we use the zero-correction and standardization, then the prediction errors
(and consequently, the upper limits, as well) are the highest. The lowest
prediction errors are obtained with the uncorrected residuals. Note the change
in the PPE

PE
ratios: the PPE-method gives lower prediction estimates than

the regular bootstrap prediction error, which is not the case with the Poisson
and the gamma model. Also the difference in obtained upper limits with the
PPE-method is increased with the lognormal model.

Year Est. Reserve Without Corrections Zero-Correction Zero-Correction & Stand.

SEP Upper 95% SEP Upper 95% SEP Upper 95%

2 54,060 60,881 154,209 62,416 156,734 64,501 160,164
3 46,399 51,105 130,467 52,185 132,243 53,947 135,142
4 101,016 73,835 222,475 75,545 225,288 77,599 228,666
5 271,424 161,902 537,753 164,606 542,201 167,711 547,309
6 442,472 240,304 837,772 245,296 845,984 249,108 852,255
7 756,516 403,916 1,420,958 409,625 1,430,349 416,062 1,440,938
8 1,031,985 549,315 1,935,608 558,675 1,951,005 569,359 1,968,581
9 2,255,719 1,329,510 4,442,763 1,368,829 4,507,443 1,410,281 4,575,631
10 8,658,523 8,317,733 22,341,194 8,632,691 22,859,300 9,013,141 23,485,140
Total 13,618,118 7,227,323 25,507,064 7,611,566 26,139,144 8,062,255 26,880,527

PPE 6,425,181 20,043,298 6,316,504 19,934,622 6,464,284 20,082,402
PPE/PE 0.889 0.786 0.830 0.763 0.802 0.747

Table 2.8: Lognormal model with Anscombe residuals.
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We see from Tables 2.3 – 2.8 that on the 10th year, the estimated reserve
is the highest and is approximately three times higher than the estimated
reserve on the previous year. The reserve estimate on the 10th year makes
nearly 56.7% of the total reserve estimate in the case of Poisson model, 60.3%
in the case of gamma model and 64% in the case of lognormal model, which
is the highest percentage. This high proportion of the total reserve estimate
on one particular year can be explained by having a look at the initial data
set, Table 2.2, where we see that on the last year, 2009, we have the largest
value in the whole data set.
We can draw four main conclusions from analyzing this particular data set:

1. The gamma model produces the lowest estimated claim reserve, and the
lognormal model produces the highest estimated claim reserves. The
corresponding figures of the gamma model are not that different from
the ODP model.

2. The standard errors of prediction are quite different and consequently the
estimated upper limits. These differences tend to be greater especially
on the first years, since estimations are based on few predictions. The
highest prediction errors are produced by the lognormal model, and the
lowest prediction errors were obtained by the over-dispersed Poisson
model.

3. With this particular data set, the prediction errors are the lowest with
the Anscombe residuals. In general, no matter which residual of the
two is used, the highest prediction errors are obtained by using the
zero-correction with standardization.

4. When comparing the two bootstrap procedures, we can conclude that using
the (alternative) PPE-method, the upper confidence limits for the total
reserve are lower with each considered model.

As we mentioned beforehand the possible problem associated with the negative
values in the pseudo-data, we present Table 2.9, which gives an overview of the
amount of the negative values appearing in the procedure of creating a pseudo-
data in the case of 10,000 iterations. Roughly speaking, we observe that with
the Poisson models 1–2, negative incremental pseudo values appeared with
every iteration step. This is rather expected since the incremental values in
the data differ largely. Note that using the Pearson residual caused more
negative values than using the Anscombe residuals. There were no negative
values in the pseudo-data in the case of the gamma model and the Anscombe
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residuals. We do not present the appeared negative values of lognormal model,
as its non-negative incremental pseudo values are obvious.

Model Residual Type of Adjustment

1 2 3

Poisson Pearson 22,557 23,184 22,306
Anscombe 11,632 12,172 12,110

Gamma Pearson 20,112 21,315 21,315
Anscombe 0 0 0

Table 2.9: Amount of negative values appearing in the pseudo-data during 10,000
iterations. 1 - without corrections; 2 - zero-correction; 3 - zero-
correction & standardization.

2.4 Comparative analysis with the Schedule
P database

In the previous section, we implemented different stochastic reserving methods
on a real-life insurance data and we assessed the impact of the considered
predictive models and residuals. Apart from the analytical perspective of
the methods, it is also essential to compare and rank competing forecasting
methods. Academic contributions in reserving context often lack a thorough
comparative study to evaluate and compare the performance of the models.
In most of the comparative studies, up to our knowledge, the chain-ladder
mean is often kept as a benchmark, but this should not be the only criteria
when deciding which model is the best (or the most precise). There are
enough statistical tools and methods to measure the prediction accuracy, we
conduct a model validation with a specific scoring rule.

2.4.1 Schedule P database

We apply the defined models, residuals and their adjustments to the run-off
triangles from practice. We use data sets of paid net loss triangles from
the Schedule P – Analysis of Losses and Loss Expenses in the National
Association of Insurance Commissioners (NAIC) database, which is available
on the website of the Casualty Actuarial Society 1. The data include major

1http://www.casact.org/research/index.cfm?fa=loss_reserves_data

http://www.casact.org/research/index.cfm?fa=loss_reserves_data
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personal and commercial lines of business from U.S. property and casualty
insurers. The database contains data on six lines of business, and we chose
to use (1) workers’ compensation; (2) commercial auto/truck liability/medical
and (3) private passenger auto liability/medical. The triangle data correspond
to the claims of the accident years 1988–1997 with a 10-year development
lag. Not all of the data sets there were applicable; some of them contained
too many negative values in the upper triangle, which lead to a problem
in the parameter estimation procedure with the given models, and many
triangles contained a high number of zeros both in the upper and the lower
triangle. Thus, we had to carefully extract the data sets, which would fulfill
the requirements of the models’ assumptions. Both upper and lower triangles
are included, so that we can use the data to test the models’ performance
retrospectively, i.e., the validation process is based on the back-testing idea,
and all of the methods provide reserve estimates by predicting in the same
lower triangle. We extracted the full triangles (from each line of business)
with the following identifiers: (1) 337; 1767; 2135; 2712; 7080; 8672; 34576;
21172; 18767; 14176; (2) 353; 388; 1767; 2003; 2135; 2712; 26077; 26433; (3)
620; 1767; 2003; 7080; 25275; 33499; 34592. Anyone interested could easily
find these chosen data sets from the corresponding website.

2.4.2 Model validation

This subsection describes the validation process for the three methods dis-
cussed in Section 2.1 in combination with the possible residual definitions in
the bootstrap procedure discussed in Section 2.2. We consider the scoring rule
to measure the accuracy of probabilistic predictions. There are many scoring
rules available to apply, including entire parametrized families of proper
scoring rules. In accordance with the Dawid (1984) prequential principle,
the evaluation of probabilistic forecasts is required to be based only on the
predictive distributions and the observations.
Scoring rules provide summary measures of predictive performances, by
assigning numerical scores to the probabilistic forecasts and on the value that
materializes. Sharpness and calibration are combined here in one measure.
Sharpness refers to the concentration of the predictive distributions and is
a property of the forecasts only. The less variability in the predictions, the
more concentrated the predictive distributions are. Consequently, forecasts
will be more sharper, and subject to the calibration, the sharper the forecasts
the better. Following Gneiting et al. (2007), we denote s(P, x) as the assigned
score for the issued predictive distribution P and materialized observation x
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drawn from Q. We take scores to be penalties that the forecaster wishes to
minimize. A scoring rule is proper if the expected value of the penalty s(P, x)
for an observation x is minimized if P = Q. We talk about a strictly proper
scoring rule if the minimum is unique. For an introduction to scoring rules,
we refer to Gneiting and Raftery (2007); Riebler et al. (2012).
Czado et al. (2009) study the tools for the evaluation of probabilistic forecasts
for count data. We consider the scoring rule that depends on the predictive
distribution P only through the first and the second moment. This type of
proper scoring rules were studied by Dawid and Sebastiani (1999). In this
thesis, we use the Dawid–Sebastiani scoring rule (DSS), which is defined as:

DSS =
(
x− µP
σP

)2
+ 2 ln(σP ),

where x is the observation that realizes, µP is the mean and σP is the standard
deviation of the predictive distribution. To assess the predictive performance
of each model with different residual adjustments discussed in this thesis,
we obtain an overall performance measure by averaging the DSS scores over
all of the cells in the lower triangle and over each considered data set. Let
k = 1, . . . , ds denote the number of data sets used. Then, the DDS scoring
rule specifies to:

DSS = 1
ds

ds∑
k=1

∑
(i,j)∈O

((Cij)k − (Ĉij)k
(σ̂ij)k

)2

+ 2 ln((σ̂ij)k)
 , (2.21)

where Cij, (i, j) ∈ O denote the cells in the lower triangle, i.e., the observation
that realizes (true observation in the lower triangle), Ĉij is the estimate of the
corresponding mean obtained by the predictive model and σ̂ij is the estimate
of the corresponding standard deviation. Under the over-dispersed Poisson
model the mean estimate Ĉij is given by (2.10) and the standard deviation is
estimated by the bootstrap prediction error for cell Cij:

σ̂ij = PEbs(Ĉij) =
√
φ̂µ̂ij + (SEbs(Ĉij))2.

Likewise, under the gamma model the mean estimate Ĉij is given by (2.14)
and the standard deviation is estimated by:

σ̂ij = PEbs(Ĉij) =
√
φ̂µ̂2

ij + (SEbs(Ĉij))2,

and under the log-normal model the mean estimate Ĉij is given by (2.13) and
the standard deviation is estimated by:

σ̂ij = PEbs(Ĉij) =
√

(exp(σ̂2)− 1) exp(2µ̂ij + σ̂2) + (SEbs(Ĉij))2,
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The first term in (2.21) focuses on calibration and the second term on sharp-
ness. The DSS score therefore measures the quality of the predictive distribu-
tions as a trade-off between calibration and sharpness.

2.4.3 Results

In this section, we present the model assessment results obtained by the scor-
ing rule (2.21). In Tables 2.10 – 2.12 below, we present the overall performance
measure for the over-dispersed Poisson model, the gamma model and the log-
normal model with the considered residuals adjustments, i.e., using residuals
without corrections, the zero-corrected residuals and then the zero-corrected
residuals with taking into account the influence of the observation (i.e., using
the standardization). Thus, we have 18 different setups and combinations.
Table 2.10 presents the model scores obtained using the workers’ compensation
data. The ODP model fits clearly data the best, but the scores of the lognormal
model are quite the same. The gamma model is fitting the data rather poorly
compared to the ODP and the lognormal model. The use of zero-corrected
and standardized residuals give the best results with all three models. The
differences are small, but the highest values of the scores are obtained with the
uncorrected residuals. The smallest score is obtained using the zero-corrected
and standardized Pearson residuals. In case of the ODP and the log normal
model, results by the Anscombe and the Pearson residuals are nearly the
same, the biggest difference in the given residuals is seen with the gamma
model.

Model Residual Type of Adjustment

1 2 3

ODP Pearson 13.76 13.74 13.75
Anscombe 13.98 13.97 13.96

Gamma Pearson 22.30 21.98 21.59
Anscombe 25.11 24.58 24.47

Lognormal Pearson 14.55 14.53 14.53
Anscombe 14.60 14.58 14.58

Table 2.10: Model validation on workers’ compensation data using the Dawid–
Sebastiani scoring rule (DSS). The three lowest scores are indicated in
bold. 1 - without corrections; 2 - zero-correction; 3 - zero-correction
& standardization.
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Table 2.11 describes the model assessment results when the data from the
business line (2) was used. Also in the case of this data, the ODP model
remains the best model, no matter which residual or its adjustment is used.
Note that the use of Pearson residuals gives still more precise predictions
than the use of Anscombe residuals, only in case of the ODP model the score
measures obtained by the Pearson and the Anscombe residuals are very close.
Likewise with the workers’ compensation data, the lognormal model fits the
data better than the gamma model and all three models predict with the
zero-corrected and standardized residuals the most precisely.

Model Residual Type of Adjustment

1 2 3

ODP Pearson 12.59 12.58 12.58
Anscombe 12.62 12.61 12.62

Gamma Pearson 59.75 58.49 57.84
Anscombe 73.86 72.16 71.96

Lognormal Pearson 26.27 25.74 25.32
Anscombe 30.91 30.38 30.02

Table 2.11: Model validation on commercial auto/truck liability/medical data us-
ing the Dawid–Sebastiani scoring rule (DSS). The three lowest scores
are indicated in bold. 1 - without corrections; 2 - zero-correction; 3 -
zero-correction & standardization.

The business line (3) does not bring any surprises: the ODP model continues
to being the best model in the sense of the score. We have used the data from
three different lines of business and the considered models have performed in
a similar manner with each given line of business.
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Model Residual Type of Adjustment

1 2 3

ODP Pearson 14.71 14.70 14.72
Anscombe 14.77 14.76 14.77

Gamma Pearson 25.52 25.10 24.99
Anscombe 28.44 28.02 27.88

Lognormal Pearson 17.43 17.38 17.32
Anscombe 17.92 17.87 17.83

Table 2.12: Model validation on private passenger auto liability/medical data us-
ing the Dawid–Sebastiani scoring rule (DSS). The three lowest scores
are indicated in bold. 1 - without corrections; 2 - zero-correction; 3 -
zero-correction & standardization.

As we are interested in which model minimizes the score the most, we pointed
out in bold in the tables three setups with the smallest numerical value; see
Tables 2.10 – 2.12. In general, we can draw the following conclusions from
validating the considered models:

1. The over-dispersed Poisson model fits the data best. This confirms the
results obtained in the previous section, where we obtained the smallest
prediction errors precisely with the ODP model.

2. Surprisingly, the ODP model and the lognormal model are behaving
rather similarly. The gamma model is fitting the data slightly worse.

3. With the gamma and the lognormal model, the lowest values of the
scores are obtained with the zero-corrected and standardized residuals,
however the differences are small. In Section 2.3, the highest prediction
errors were given by the models with the zero-corrected and standardized
residuals.

4. Overall, the smallest score was obtained using the zero-corrected Pearson
residuals. The ODP model fits different insurance data the best.

5. If comparing just the choice of residuals, we see that the Anscombe
residuals perform slightly worse than the Pearson residuals, but in
case of the ODP and the lognormal model, the score measures of both
residuals are quite close.
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In Section 2.3, the results showed that the lowest prediction errors were
obtained with the Anscombe residual and its score measures were rather
comparable with the Pearson residuals in this section. The highest values
of the score measures are obtained strictly with the uncorrected residuals.
Recall that in Section 2.3, we saw that the lowest prediction errors were
obtained specifically by the uncorrected residuals, with the given data set of
an Estonian insurer. This is a good example to show that in the comparative
study, the focus should not be only on which model gives the lowest errors,
but which method actually fits the data the best. An actuary has to be
always ready to use his/her own expertise and experience in addition to
well-known or most-used models in the estimation problems, as every data set
is different. We considered 18 different setups in the model validation, and as
we wanted to rank the models, then we rank the first three models based on
the used scoring rule: the ODP model with the Pearson residual with the zero-
correction and standardization; the ODP model with the Pearson residuals
with the zero-correction and the ODP model with the Pearson residual without
any corrections. In general, this model validation section shows clearly that
the Anscombe residuals could be considered as an alternative to the Pearson
residuals.
According to this case study and comparative analysis, we can say that given
the obtained results in Sections 2.3 and 2.4, the method that gives the lowest
prediction errors should not be confused with being the model that fits the
best. Like in our case study, methods that result in the lowest variability
may be, for instance, suffering from the underestimation and may not fit the
data after all. We considered only one scoring rule, but more investigation is
required in the model validation part.

2.5 Conclusions

In this chapter, we studied the impact of the methods and the residuals on
the reserve estimates and their predictive distributions. Caution is necessary
when dealing with the latest development periods of the earlier accident
years. The residuals of the tail are often volatile, and adjustment is hence
required if they are used in the bootstrapping process. Therefore, we im-
plemented and compared the (over-dispersed) Poisson, the gamma and the
lognormal distributions in combination with the residual adjustments in the
bootstrapping framework. We saw that the (over-dispersed) Poisson model
and the gamma model tend to give similar point estimates, as expected, but
there are bigger differences in the estimates of the prediction errors. In our
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case study (Section 2.3), we obtained the highest prediction errors using
the standardized residuals with zero-correction, but in the model validation
(Section 2.4), we saw that the use of zero-corrected and standardized residuals
lead to the lowest score with the gamma and the lognormal model. The ODP
model works the best with the zero-corrected residuals. In general, based on
the case study and the model validation part, we could conclude that the
over-dispersed Poisson model with the Pearson residual fits the data the best,
and it seems to not matter too much, which adjustments is applied in the
residuals. The Poisson model with the Pearson or the Anscombe residuals
appears to be a good choice in the sense that it yields the most reliable results
based on the scoring rule. The gamma model shows the poorest fit and the
lognormal model should be used by a more conservative scientist.
We can conclude that there are many different possibilities that we have to
take into account before applying the bootstrap method as the prediction
errors obtained by using different combinations of possible options are quite
different. It is up to an actuary which result should be taken into account
when making decisions in setting up the fund for reserves. The choice of
a particular model remains the main struggle, but based on our research, we
can draw the following conclusions:

• The large fluctuation of the values in the data substantiates the use
of the over-dispersed Poisson model. The gamma model and the ODP
model tend to give similar point estimates, whereas the lognormal model
produces the highest estimated claim reserves. Here, the expertise of
an actuary would help to finalize a decision in model selection, depending
on the company’s balance of hazard and conservatism.

• When the emphasis is on prediction errors, then the ODP model should
be used for the lowest prediction errors. The lognormal model tends to
give much higher errors.

• The choice of residuals matters in bootstrapping. The Pearson residual
could be preferred, but in some cases (see Tables 2.10 – 2.12), the
Anscombe residual could be considered as well.

• The adjustment of residuals is as important as the choice of the residual;
the most precise predictions are obtained with zero-corrected and stan-
dardized residuals if the gamma or the lognormal model is applied, but
they also bring an increase in the prediction errors. The ODP predicts
the best with the zero-corrected residuals.
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• Different types of claims data require different methods. Understanding
the data and using professional expertise are crucial in claims reserving.

• It is important to realize that each method is appropriate only under
certain conditions, and that a thorough understanding of a variety of
models and their disparities leads to more flexibility in handling different
situations.

• The proposed model validation and assessment ideas are generic and
do not depend on a particular data set, thus constituting a useful tool
in reserve estimation.

The analysis between the estimates and the actual future payments has to be
carried out by the expert in the long run, in order to validate the functionality
of a reserving method and identify any needed modifications. It is contended
in England and Verrall (2002) that the effectiveness of a particular reserving
method and modeling can be completely tested only with an extensive case
study with data from various lines of business and companies. Then, the
estimated results are compared with the claims development over time, and
only then, we can get closer to the best choice of the reserving models.
Comparative studies could have a higher value when the model validation
is included in the analysis. The model assessment should become a default
procedure when deciding on (reserving) models. In this thesis, we considered
only one scoring rule, but other statistical approaches for the model assessment
could be considered in the future.



Chapter 3

Loss reserving on different
levels of data aggregation

Recently there have been many proposals of reserving models that are based
on individual level claims data. Organizing claims data in discrete time is just
an approximation to the real situation, where data are recorded in continuous
time. In recent developments, an extension towards the continuous use of
individual claims data in the chain-ladder framework has been proposed. The
classical chain-ladder method (CL) is regularly applied to annual data, but
the question arises whether the reserve estimates based on granular (daily or
monthly) data outperform results obtained by annual and quarterly data. We
investigate whether and how much different aggregation levels of claim data
can improve the reserving process and compare the performances of the CL
method and the continuous chain-ladder method (CCL) on each level of data
aggregation (daily, monthly, quarterly and annual) in simulation study. To
further investigate the impact of aggregation, we present an empirical study
with the application of discussed models using an insurance data. Finally, our
analysis shows that the point estimation precision increases if the basic chain-
ladder method is applied to more granular data and results are comparable
with the continuous model approach.
This chapter is a considerably extended version of Tee, L. and M. Käärik
(2017). Loss reserving on different levels of data aggregation: chain-ladder vs.
its continuous extension. Submitted.
In comparison with the original publication, we have adjusted descriptive
sections, added a number of graphs and figures, added many corrections and
conducted an additional simulation study.

53
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3.1 Loss reserving: aggregate vs. individual
data model

The access to micro-level information in insurance companies allows to go
more granular with the data, i.e., daily, weekly or monthly data could be
used instead of annual data. It could be that the micro-level methods
perform better, but it remains an open question whether it is worth of all
the extra effort. However, using a solid statistical framework, but keeping
the model straightforward could be appealing to practitioners. The paper
of Martínez Miranda et al. (2013) reformulates the well-known chain-ladder
method as a histogram type approach and improves the well-known classical
technique by replacing the histogram by a kernel smoother, leading to a
continuous chain-ladder method. The model assumes that the data have not
been aggregated and it uses data recorded in continuous time, see Table 3.1
and Figure 3.1 for explanatory examples. It is clear from Figure 3.1 that
the data are arranged in a two dimensional space, but the data still forms
a triangle. When the data are not grouped, it can be treated as having a
density on the triangle.

Origin Development year
year 1 2 3 4 5
1 147 79 56 44 21
2 166 120 69 10
3 202 142 82
4 251 170
5 310

Table 3.1: Aggregated data.
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Figure 3.1: Individual claim data.

3.1.1 Estimating the density in the observation trian-
gle

We consider a random sample of m i.i.d. observations {(Xi, Yi), i = 1, . . . ,m}
from a population (X, Y ) having a density f with support on a subset S =
{(x, y)|x, y ≥ 0, x+ y ≤ T} of the whole square S = {(x, y) | 0 ≤ x, y ≤ T},
where x is the accident or the underwriting time and y is the claims de-
velopment time within the time frame [0, T ], T > 0. The CCL method is
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developed for the individual (or continuous) claims data context, but can
still be applied to aggregated data as well. In this chapter, we consider
only claim counts in order to keep the density approach straightforward
and we assume, without loss of generality, that the data are available as a
triangle. Then the aggregated reported counts triangle can be written by
{Cij : (i, j) ∈ ∆}, where the business has been observed during n time pe-
riods, i.e. ∆ = {(i, j)| i = 1, . . . , n, j = 1, . . . , n− i+ 1} and Cij is the total
number of claims of insurance incurred in period i, which are reported in
period i+ j − 1, i.e. with j − 1 periods delay from year i. Clearly, i denotes
the origin period and j the delay period. If we assume that the claims are
settled within the n observed time periods, then the aim is to predict the
sum of the delayed claim counts in the lower, unobserved future triangle
{Cij : (i, j) ∈ O}, where O = {(i, j)| i = 2, . . . , n; j = n− i+ 2, . . . , n}. See
Tee et al. (2017) for more detailed explanation concerning the notation.
In the context of the CCL method, the reserving problem is reformulated in
terms of a multivariate density estimation problem, where the target function
is a continuous two-dimensional density function. One of the simplest density
estimators is a histogram, which can handle the underlying distribution of
continuous data. The classical CL model can be described as a histogram
of the granular data projected on a multiplicative structure for forecasting
the future. The densities in the underwriting and development directions
are piece-wise constant. Considering a histogram estimator of the density in
the triangle gives an insight for a regression view of the density estimation
problem. There are several contributions that have described the connection
between the density and the regression problems, moreover, the classical CL
method clearly approaches the density through regression. The classical CL
method estimates a two-dimensional density f supported in the triangle ∆
using a multiplicative structure. Technically speaking, an equally-spaced grid
points are set up which define the bins (contiguous intervals) such that the
support of f is contained in defined bins, and the bin centers zij and the
bin counts Cij (the number of data falling in the corresponding interval) are
constructed. Figure 3.2 depicts the idea of describing the CL method as a
histogram of the granular data. Thus, when considering aggregated claim
count data Cij in the form of a run-off triangle, the classical chain-ladder
method approaches the density problem through the regression model

Cij = r(zij) + εij,

based on the data {(zij, Cij), i, j ∈ ∆}, where zij = (xi, yj) are the points
in the (run-off) grid. The points zij are the coordinates of the data point
Cij and we assume that Cij is a middle point of the corresponding area
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(of a data cell in a triangle), see Figure 3.3 for a clarifying example. The
regression function r(zij) = mΛ2f(zij) is defined through the bin length Λ
in the grid and m = ∑

(i,j)∈∆Cij. We refer for the detailed explanation to
Martínez Miranda et al. (2013) and Fan and Gijbels (1996).
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Figure 3.2: The CL method described as a histogram of the granular data pro-
jected on a multiplicative structure.

The assumption of the CCL method for forecasting the target density in the
future is a multiplicative structure, i.e. f(x, y) = f1(x) ·f2(y) for origin period
x and development period y. Since histogram leads to discrete time effects,
the continuous approach improves on histogram with a kernel estimator and
assumes continuous densities. The general estimator at any point (x0, y0) ∈ S
using the kernel density estimator is defined as follows

f̂(x0, y0;h) = m−1
m∑
i=1

Kh1(Xi − x0)Kh2(Yi − y0),

where Kh1(x) = h−1
1 K

(
x
h1

)
and Kh2(y) = h−1

2 K
(
y
h2

)
are one-dimensional

kernels. Here K is a function satisfying
∫
K(x)dx = 1 and bandwidth pa-

rameters h = (h1, h2) ∈ R2
+, where h1 controls the degree of smoothing in

the origin direction and h2 controls the development direction. Usually K
is chosen to be a unimodal probability density function that is symmetric
about zero, ensuring that f̂(x0, y0;h) is also a density itself. For a general
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introduction to kernel smoothing, we refer to Wand and Jones (1994). Kernel
smoothing is a natural way to improve on histograms, however, it brings some
issues to tackle which will be discussed in the following.

The boundary problem. The simple kernel methods suffer from the well-
known boundary problems. The kernel density estimator does not take into
account the potential finite support of the variables. Given that we have
non-negative data and the model aims to estimate two-dimensional density f
based on the observed triangle, the boundary bias problem becomes severe
as the boundary region increases with the dimension of the support. This
leads to a bias in the boundary region, since the support of variables is
bounded and the standard kernel estimator continues to give weight outside
the supports. As clarified in Martínez Miranda et al. (2013), reserving could
be seen as a density estimation problem, where the claims triangle defines
the boundary region. There have been proposed several solutions to this
problem. In the nonparametric regression context, the problem of boundary
bias for multivariate data is developed by Staniswalis and Messer (1996)
and Bouezmarni and Rombouts (2010), among others. Also Müller and
Stadtmüller (1999) proposes boundary kernels for multivariate data defined
on arbitrary support. The local linear estimator introduced in Nielsen (1999)
proposes a non-parametric multivariate density estimation with arbitrary
boundary regions. Nielsen’s local linear estimator at each point (x0, y0) ∈ S
is obtained by solving the following minimization problem:

Θ̂ = arg min
Θ

lim
b→0

∫
S

{
f̃b(z)−Θ0 −Θ1,1(x− x0)−Θ1,2(y − y0)

}2
(3.1)

× Kh1(x− x0)Kh2(y − y0)dz

where Θ = (Θ0,Θ1,1,Θ1,2), Θ̂ = (Θ̂0, Θ̂1,1, Θ̂1,2) and f̃b(z) = m−1∑m
i=1Kb1(Xi−

x)Kb2(Yi − y) is the standard kernel estimator at the point z = (x, y) ∈ S
with bandwidth parameters b = (b1, b2) ∈ R2

+. The local linear density of
f(x, y) is then given by

f̂(x, y;h) = Θ̂0, (3.2)

where h = (h1, h2) ∈ R2
+.

The data in an insurance company is usually aggregated at some level (such
as on daily, weekly, monthly, quarterly or yearly basis) and the aim of this
research is to compare the performances of the classical chain-ladder method
and the continuous chain-ladder method on different levels of data aggregation.
Therefore, for practical situations the rewritten version of the local linear
estimator (3.1) using the regression formulation for aggregated data is given
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below. The regression formulation for aggregated data is closely related to
the marginal regression method of Nielsen and Linton (1998). Recall that
zij = (xi, yj) are the points in the run-off grid, i.e. zij are the coordinates
of the data point Cij, and we assume that Cij is a middle point of the
corresponding data cell in a triangle. Since we want to estimate density in
any random point in the upper triangle, we need to define the coordinates
of the corresponding points. For density estimation in a discrete framework
we have to extend the run-off grid to estimation grid ∆grid with the points
where the density will be estimated at. The estimation grid ∆grid with its
points are defined as follows:

∆grid =
{

(dk, dl) | dk = Λ
(
k − 1

2

)
, dl = Λ

(
l − 1

2

)
, k = 1, . . . , nΛ ,

l = 1, . . . , 1
Λ(n− bΛ(k − 1)c)

}
.

The points dkl in the estimation grid ∆grid can be set as tightly as preferred,
but one has to take into account the highly increasing computational time, for
that reason we assume Λ = 1

2 in the following. It is clear that for the points
zij = (xi, yj) in the run-off grid, we have xi = i− 1

2 , yj = j− 1
2 , i, j = 1, . . . , n.

We are using monthly data with the CCL method in Sections 3.3 – 3.5 and
for illustrative explanation see Figure 3.3 below, where the length of period
(in our case, months) is chosen n = 4.
The local linear estimator for the density f (with a support in a triangle) for
any given point dkl = (dk, dl) ∈ ∆grid can be derived by solving the following
minimization problem:

Θ̂ = arg min
Θ

∑
(i,j)∈O

{Cij −Θ0 −Θ1,1(xi − dk)−Θ1,2(yj − dl)}2 (3.3)

× Kh1(xi − dk)Kh2(yj − dl).

Here the solution Θ̂0 gives an estimator for r(dkl). Then the density f(dkl)
can be estimated by

f̃(dkl) = r̂(dkl)
mΛ2 , dkl ∈ ∆grid. (3.4)

Note the square of the bin length Λ in the formula – since we are estimating
two-dimensional density, bin lengths are considered in both directions (origin
and development direction).

The bandwidth selection problem. The kernel density estimator requires
the specification of the bandwidth h as the choice of smoothing parameter
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Figure 3.3: The grid layout. The black dots denoted by zij represent the data
points in the centers of each cell in the run-off triangle. The red dots
denoted by dkl represent the grid points, at which the density is being
estimated.

determines a trade-off between bias and variance. Bandwidth selection controls
the smoothness or roughness of a density estimate and bears danger of under-
or oversmoothing. There are many occasions where the bandwidth could be
chosen by eye, but that approach requires prior knowledge about the structure
of the data and a subjective choice can be very time consuming. Often the
bandwidth selection problem is solved by automatic selection. Among the
earliest automatic and consistent bandwidth selectors were those based on
cross-validation ideas. The most commonly used cross-validation method (see
for example Wand and Jones (1994)) is also considered in Martínez Miranda
et al. (2013), where the data-driven least square cross-validation score is
defined by

LSCV(h) =
∫

S
f̂(x, y;h)2dz − 2

m∑
i=1

∫
S
f̂ [−i](x, y;h)dF̃n(x, y) (3.5)

with f̂ [−i](x, y;h) being the leave-one-out version of the estimator f̂(x, y;h)
and F̃n being the empirical distribution function from the sample. Therefore it
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is reasonable to choose h which minimizes LSCV(h) and we denote the chosen
bandwidth by ĥLSCV. It was recommended in Mammen et al. (2015) to also
consider integrated squared error (ISE) for finding the optimal bandwidths in
this framework, but we have limited ourselves to using only cross-validation
score (3.5) in this study. Clearly the choice of the smoothing parameter is a
central issue in kernel smoothing and it is still a burgeoning area of research.
There is a great deal of literature on choosing bandwidths under various
conditions (for a comprehensive description, see Scott (2015) or Wand and
Jones (1994)), but the development of a bandwidth selector is beyond the
scope of this thesis.

The choice of kernel. The choice of the shape of the kernel function is not
a particularly important compared to the choice of value for the bandwidth.
Kernel density estimators are sensitive to the choice of bandwidth, but the
choice of a kernel function does not usually affect the results considerably.
Most unimodal kernels perform about the same as every other kernel and
the choice between kernels can be made on other grounds such as computa-
tional efficiency. The CCL model assumes a multiplicative structure, thus
multiplicative kernels are considered. The Epanechnikov kernel is often the
default kernel function in the statistical software if no other kernel is specified.
The perfomance of kernel is measured by MISE (mean integrated squared
error) or AMISE (asymptotic MISE) and the Epanechnikov kernel is the most
efficient kernel in minimizing MISE and AMISE. We bring out various popular
kernels in multiplicative form and we present kernels’ efficiency relative to
the Epanechnikov kernel, see Table 3.2. All the kernel functions are derived
for the multiplicative structure. The efficiency is a value that represents the
ratio of sample sizes necessary to obtain the same minimum AMISE (for a
given density) with a chosen kernel as when using the Epanechnikov kernel.

Kernel Formula Efficiency

Epanechnikov K(x, y) =
(

3
4

)2
(1− x2)(1− y2)1{|x|<1 ∧ |y|<1} 1.000

Biweight K(x, y) =
(

15
16

)2
(1− x2)2(1− y2)2

1{|x|<1 ∧ |y|<1} 0.994

Triweight K(x, y) =
(

35
32

)2
(1− x2)3(1− y2)3

1{|x|<1 ∧ |y|<1} 0.987

Gaussian K(x, y) =
(

1√
2π

)2
e−

1
2 (x2+y2) 0.951

Uniform K(x, y) = 1
41{|x|<1 ∧ |y|<1} 0.930

Table 3.2: Efficiencies of several kernels compared to the Epanechnikov kernel.
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3.1.2 Estimating the density in the whole square

In the previous subsection the methodology of the CCL method was explained.
The first part of the method included estimating the two-dimensional density
in the observed run-off triangle. In this section, a technique to obtain the
estimates of the IBNR claim counts in the lower triangle is given.
The IBNR claim counts in the framework of the CCL method are obtained by
integrating a two-dimensional density, i.e. extrapolating the estimated density
(3.2) (or (3.4)) to the full support (or to the full triangle) allows us to forecast
the future. More precisely, the marginal integration method introduced by
Linton and Nielsen (1995) is extended to the density estimation problem. If
the data is assumed to be continuous, the two-dimensional density in the
observation set S should be estimated by an estimator (3.2). Then, assume
the target density to be multiplicative, f(x, y) = f1(x)f2(y), and estimate f1
and f2 through the following iterative algorithm:

1. Choose an initial estimator of the component f1 denoted by f̂ (0)
1 . For

simplicity, the estimator (3.2) derived above is denoted by f̂ (0).

2. Using f̂ (0)
1 , f(x, y) ≈ f̂

(0)
1 (x)f2(y) so that

∫
Sy
f(x, y)dx ≈ f2(y)

∫
Sy
f̂

(0)
1 (x)dx

with Sy = {x|(x, y) ∈ S }. Then the density f2 is estimated by

f̂
(1)
2 (y) =

∫
Sy
f̂ (0)(x, y)dx∫

Sy
f̂

(0)
1 (x)dx

.

3. Using f̂ (1)
2 , calculate the updated estimator for f1 by

f̂
(1)
1 (x) =

∫
Sx
f̂ (0)(x, y)dy∫

Sx
f̂

(1)
2 (y)dy

with Sx = {y|(x, y) ∈ S }.

4. Repeat steps 2 – 3 until the desired convergence criterion is achieved.

This iterative method provides estimates for any point in the square S =
{(x, y) | 0 ≤ x, y ≤ T}. Like mentioned before, the data in an insurance
company is usually aggregated, thus we derive the algorithm above also
for practical situations. If the data is assumed to be aggregated, the two-
dimensional density in the estimation grid ∆grid is estimated by an estimator
f̃(dkl) following (3.4). Assuming the target density to be multiplicative,
f(dk, dl) = f1(dk)f2(dl), the components f1(dk) and f2(dl) are estimated by
rewriting the steps 2 and 3 above respectively in the following way:
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2. Using f̂ (0)
1 (dk) = 1 ∀ dk, we obtain

f̂
(1)
2 (dl) =

∑ 1
Λ (n−bΛ(l−1)c)
k=1 f̃(dkl)∑ 1

Λ (n−bΛ(l−1)c)
k=1 f̂

(0)
1 (dk)

.

3. Using f̂ (1)
2 (dl), calculate the updated estimator for f1(dk) by

f̂
(1)
1 (dk) =

∑ 1
Λ (n−bΛ(k−1)c)
l=1 f̃(dkl)∑ 1

Λ (n−bΛ(k−1)c)
l=1 f̂

(1)
2 (dl)

.

The steps 2 – 3 should be repeated until the desired convergence criterion
is achieved. This provides estimates for any point in the square in case of
aggregated data. In general, a convenient choice for the initial value of f̂ (0)

1 (dk)
is a constant function.

3.2 The prediction accuracy and data aggre-
gation

A fundamental concern in predicting is the measure of prediction error for
a given data set and a given prediction method. Accuracy can be defined
as “goodness of fit” or how well the predictive model is able to reproduce
data that is already known. In Sections 3.3 and 3.4 two different simulation
approaches for simulating claim count data will be used. The advantage of
using simulated data is that we can simulate data “to ultimate”, and set
aside the (otherwise unknown) losses at ultimate as a standard against which
we can compare our model’s predictions. The estimation and prediction
routines are based on a number of simulated samples each containing the
full development processes, drawn from the population distribution, which
is explicitly specified with distributional assumptions in Sections 3.3 and
3.4. With respect to the valuation date, the actual IBNR claim counts for
a concrete sample can be computed with the future development. After the
generation, estimation, and prediction steps, a series of total IBNR claim
count estimates, R̂(1), R̂(2), . . . , R̂(p), where p denotes the number of simulated
samples, is obtained for each considered reserving method. The last step is to
compare the performances of these methods. The performance is evaluated
by comparing the prediction errors using the mean absolute percentage error
MAPE(R̂) = E

(
|R−R̂|
R

)
, where R denotes the total number of IBNR claim
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counts estimated by an estimator R̂ at a given valuation date. The final
MAPE estimate for each method is expressed as the average estimation error
of generated samples,

MAPE(R̂) = 1
p

p∑
i=1

(
|R(i) − R̂(i)|

R(i)

)
. (3.6)

The MAPE is a relative measure which expresses errors as a percentage of
the actual data and we find the MAPE an easy and intuitive way of judging
the extent, or importance of errors. We cannot use here, for example, the
mean squared error as it is not scale-dependent.
There is one question remaining: how to properly compare the results from
different aggregation levels. We suggest aggregating data by calendar periods.
This way the whole set of generated data is used on each aggregation level
and aggregating by calendar period also avoids over or under estimation
(especially in case of the annual data). In Figure 3.4 we have explained the
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Figure 3.4: Example of data aggregation by calendar period, where the considered
time period is n = 16 and the initial (granular) data is aggregated to
the next aggregation level by 4 periods.

technique for aggregating the claims data by calendar period. Aggregated
areas are denoted by {Aij : (i, j) ∈ ∆} in the shape of parallelograms, and in
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the given figure the time period considered n = 16 serves as a simple example
for giving the idea. The daily claims data are aggregated into monthly data
based on its date and making sure that each claim falls into a respective
calendar month; monthly claims data are aggregated into quarters by every
3 months and quarterly claims data is aggregated to yearly claims data by
every 4 quarters.

3.3 Simulation study I

This chapter presents a simulation study, which is the first approach among
the two simulation techniques considered in this research on loss reserving.
The purpose of the simulation study is to highlight and discuss the data
aggregation levels in which micro-level models outperform traditional macro-
level model by evaluating the performance of both the macro and micro-level
model with the simulated data. The modeling procedure and the results of
the following simulation studies provide guidance for the empirical study in
Chapter 3.5.

3.3.1 Methodology

In this simulation study, the IBNR claims are modeled. The first simulation
technique used is rather simple by nature. We simulate the claim count data
over a period of nyears = 5 years in the framework of homogeneous Poisson
process. The data generation scheme is described in the following:

1. We simulate monthly claim count data for each considered occurrence
month, Xi, i = 1, . . . , nmonths, where nmonths = 12 · nyears and make an
ad hoc assumption about the monthly claim frequency, λclaims = 3000.
We generate the number of claims (for each month) from Poisson
distribution, Xi ∼ Po(λclaims).

2. We make the simplifying assumption that there are 30 days in a month
and use uniform distribution to distribute claims uniformly among each
month into daily level, obtaining daily claims data as a result.

3. Given the obtained daily data, we generate the delay (in days) for each
claim in the data set. We make the assumption that 95% of the claims
are reported in the given time frame (the maximum observed time frame
is the number of occurrence days, ndays = 30 ·nmonths). The delay Xdelay
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is assumed to have an exponential distribution, Xdelay ∼ Exp(λD), and
the delay parameter λD is determined from

0.95 = P {Xdelay ≤ ndays} = 1− exp(−λD · ndays)

as follows
λD = − ln(0.05)

ndays
.

We use generated daily claims data to aggregate it into monthly, quarterly
and annual data to compare the performance on outstanding liabilities of the
classical chain-ladder method on yearly, quarterly, monthly and on daily level;
the continuous chain-ladder model is considered only on a monthly level due
to computational reasons.

3.3.2 Simulation results

In this section, we present and discuss the estimation results of the first
simulation study. We simulate the full distribution of IBNR claim counts over
5 calendar years. Then we aggregate the simulated loss counts like specified in
Section 3.2 to obtain the total number of IBNR claim counts for the portfolio.
To estimate the uncertainty, the simulation routine is repeated 2000 times to
generate a predictive distribution of the IBNR claims. The low number of
simulated reserves is due to the extensive computational time. The predictive
distributions for the IBNR claims are investigated with each model and the
prediction accuracy of the forecasting methods are compared.
For the bandwidth selection, the cross-validation (leave-one-out) score defined
in Section 3.1.1 was used. Since the data is simulated 2000 times, it would be
too time consuming to evaluate the optimal bandwidths for each simulated
data set. Therefore, to obtain optimal bandwidths for the simulation study,
50 data sets were simulated and optimal bandwidths were obtained with
each simulated data set. Among those 50 pairs of bandwidths, the most
frequently appeared bandwidth pair were chosen for the simulation study. We
obtained h1 = 3.5 (months) and h2 = 8.0 (months) as optimal bandwidths.
The Epanechnikov kernel was the chosen kernel function in the study as we
applied several kernel functions (see Table 3.2) but did not see a significant
difference on results when using another kernel function.
Figure 3.5 shows the distribution of the IBNR claims as obtained with the
different methods (from left to right: the actual total IBNR claim counts
and predictions by the CCL with the monthly data, the CL with the daily
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data, the CL with the monthly data, the CL with the quarterly data and the
CL with the annual data). The histograms are based on 2000 simulations
of the total IBNR claim counts. The total IBNR claim count predicts the
complete lower triangle. The solid red line in each plot indicates what has
really been observed, i.e. the average actual total number of IBNR claims.
These unrealistically low number of claim counts are a disadvantage of the CL
method with the annual data; the actually observed amount is in the right tail
of the corresponding histogram. The predictive distribution obtained with the
CCL model and the CL model with the monthly data are the most realistic.
The CL model with the quarterly data has some jumps in the histogram and
the same holds for the CL with the daily data. The more aggregate models
(the CL with quarterly and annual data) tend to understate the total number
of IBNR claim counts.
In Figure 3.6 the prediction errors of the total IBNR claim counts are given.
The performance of the models is evaluated by comparing the prediction error
MAPE. The box plots in Figure 3.6 clearly state that the CL method with
the annual data has the highest prediction error, on average 7%. The CCL
method with the monthly data and the CL method with the monthly tend
to estimate the total IBNR claim counts the most accurately, the average
MAPE is around 1% for both methods. The CL method with the daily data
and the quarterly data are also predicting the the total IBNR claims rather
precisely (compared to using the annual data). We conclude from Figures
3.5 and 3.6 that the estimate of the total IBNR claim counts with the CCL
method using the monthly data as well as the CL method using the monthly
data is close to the true realization. It is also very clear from Figure 3.6 that
the CL method with the highly aggregated data (annual data) gives a poor
prediction.

3.4 Simulation study II

This section presents the second simulation study to evaluate the performances
of the considered models on simulated data. We conduct a similar simulation
study as in the previous section, but change the simulation methodology.
Using distinct simulation techniques allows to efficiently analyze the output
of different methods used in the study. In this simulation study we use a more
complex method for generating the claims data in contrast to the previously
used simplistic simulation technique.
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Figure 3.5: Forecasts of the total number of IBNR claims. Actual denotes actual
IBNR claim counts based on the data; CL denotes the classical chain-
ladder method with daily, monthly, quarterly and yearly data; CCL
denotes the continuous chain-ladder method using monthly data and
the selected bandwidths of the Epanechnikov kernel are h1 = 3.5 and
h2 = 8.0. The red solid line on each histogram indicates the average
actual reported claim counts based on the simulated data.

3.4.1 Methodology

It is a common practice to use the Poisson process for modeling a claim
number process. For historical reasons, but also since it has very attractive
mathematical properties, the Poisson process plays a central role in insurance
mathematics. There are many contributions using the marked Poisson process
for both simulation and empirical studies. In this simulation study, we use
the approach proposed by Badescu et al. (2016b), where the claim arrival
process together with its reporting delay is modeled as a marked Cox process
(or a doubly stochastic Poisson process) in which the intensity function is
stochastic. The stochastic intensity function Ψ(t) is a piecewise stochastic
process: Ψ(t) = Ψl, for al−1 ≤ t < al, l = 1, 2, . . . and a0 = 0. Here t is time
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Figure 3.6: Mean absolute percentage error of total number of IBNR claims.
CL denotes the classical chain-ladder method using daily, monthly,
quarterly and yearly data. CCL denotes the continuous chain-ladder
method using monthly data and the selected bandwidths of the
Epanechnikov kernel are h1 = 3.5 and h2 = 8.0.

and al, l = 0, 1, . . ., are interpreted as data collecting times and the length of
each period is taken to be one week. The intensity is generated by a hidden
Markov model (HMM) with Erlang state-dependent distributions with shape
parameter mi and scale parameter ωlθ, where ωl represents the risk exposure
for the lth period. This implies that conditional on the state of the HMM
in the lth period, Ψl follows an Erlang distribution of which the parameters
depend on the state; unconditional on the state of the HMM in the lth period,
Ψl follows a mixed Erlang distribution. Badescu et al. (2016b) show that
under these assumptions the number of claims arriving during each period
follows a Pascal distribution where the parameters depend on the state of the
HMM. Conditional on state i = 1, 2, . . . , g, the probability function of the
number of claims in period l is given by the following Pascal distribution

P (Nl = k|Hl = i) = p(k;mi, (al − al−1)ωlθ),



3.4. Simulation study II 69

where

p(k;m, θ) =
(
k +m− 1
m− 1

)( 1
1 + θ

)m ( θ

1 + θ

)k
.

Note that Nl is the number of claims that arrived during [al−1, al), no matter
reported or not. The hidden parameter process {H1, H2, . . .} is a time-
homogeneous Markov chain with a finite state space {1, 2, . . . , g}, initial
distribution π and transition probability matrix Γ.
Badescu et al. (2016a) calibrate the marked Cox process model on a real
insurance data set. Using weekly time intervals, the fitted model contains the
following parameters:

The common scale parameter θ̂ = 3.204× 10−5,

Shape parameters (m̂1, m̂2) = (49, 64),

Transition probabilities Γ̂ =
(

0.986 0.014
0.007 0.993

)
,

Initial state probabilities π̂ = (1, 0).

We refer to Badescu et al. (2016a) for all the details. The out-of-sample test
for the total number of IBNR claims supports their claim that the proposed
marked Cox model is more realistic compared to an over-dispersed Poisson
model. We use this fitted model to generate realistic claims arrival data for
our study. Additionally, we set the exposure ωl in each week equal to 500,000.
As said, the considered model allows us to generate the number of weekly
claim arrivals, but we are interested in daily data. In order to transform the
weekly data to daily data, we use the daily insurance data from the general
liability insurance portfolio used in the case study of Section 3.5. Based on
the claims with occurrence dates in between 01/01/1998 and 31/12/2002
which are reported before 31/08/2009 we report the empirical probabilities of
claims arrival on each weekday in Table 3.3. By sampling from a multinomial
distribution with these probabilities, we transform the weekly claim counts
to daily claim counts.

Weekday
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Probability 0.14044 0.13265 0.13995 0.13354 0.14571 0.16969 0.13803

Table 3.3: Probabilities of claims arrival on each weekday.

Badescu et al. (2016a) model the reporting delay distribution using mixture
of Erlang distributions. The fitted mixture contains seven Erlang components,
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but the corresponding estimates are not disclosed in the given paper. There-
fore, for the reporting delay distribution in our simulation setup, we again
resort to the daily insurance data from the general liability insurance portfolio
used in the case study of Section 3.5. We use the empirical reporting delay
distribution based on the claims with occurrence dates in between 01/01/1998
and 31/12/2002 which are reported before 31/08/2009. We generate report-
ing delays for each claim in our simulation study based on this empirical
distribution.

3.4.2 Simulation results

In this section, we discuss and present the estimation results of the second
simulation study. We use the calibrated model described in Section 3.4.1 to
simulate the full distribution of IBNR claim counts over 5 calendar years.
Data aggregation is done as explained in Section 3.2. The simulation routine
is repeated 2000 times to generate a predictive distribution of the IBNR claim
counts. The predictive distributions for the IBNR claims are investigated
with each model and the prediction errors of the forecasting methods are
compared.
For the bandwidth selection cross-validation (leave-one-out) score defined
in Section 3.1.1 was used. We selected two sets of bandwidths: h1 = 1.2
(months), h2 = 0.7 (months) and h1 = 0.9 (months), h2 = 0.7 (months). The
Epanechnikov kernel was the chosen kernel function in the study. Figures 3.7
and 3.8 show the distribution of the total number of IBNR claims obtained
with the different methods (from left to right: the actual total IBNR claim
counts and predictions by the CCL with the monthly data, the CL with the
daily, the CL with the monthly data, the CL with the quarterly data and the
CL with the annual data). The histograms are based on 2000 simulations
of the total number of IBNR claims. The histogram figures clearly show
that the data generating methodology used in this simulation study is more
complex than the methodology used in the previous section. We observe that
the predictive distributions are bimodal, which hints that the corresponding
univariate Pascal mixture has at least two components (see Theorem 6.1
in Badescu et al. (2016b)). Since the hidden Markov chain in the fitted
model has only two states, each of its simulated path fluctuates between
values of 1 and 2, which can be interpreted as the “favorable” state and
the “unfavorable” state. If the number of “favorable” states dominates, the
number of IBNR claims will be relatively small and its simulated value will be
centered around the first mode. In contrary, if there are more “unfavorable”
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states than “favorable” states, the number of IBNR claims tends to be large
and its simulated value will be closer to the second mode. In this case, it
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Figure 3.7: Forecasts of the total number of IBNR claims. Actual denotes actual
IBNR claim counts based on the data; CL denotes the classical chain-
ladder method with daily, monthly, quarterly and yearly data; CCL
denotes the continuous chain-ladder method using monthly data and
the selected bandwidths of the Epanechnikov kernel are h1 = 1.2 and
h2 = 0.7.

is irrelevant to plot the average actual total number of the IBNR claims.
We concentrate on comparing the full predictive distributions of the total
IBNR claim counts. In contrast to the results obtained in Section 3.3, the
CL method with the annual data tends to give more accurate predictions
with this simulated data. If we look at the shape of the actual total IBNR
claims distribution and compare it to the predictive distributions of different
methods, we see that all the methods are performing surprisingly well, but the
predictive distribution obtained with the CCL model and the CL model with
the daily data as well as with the monthly data look the closest to the actual
distribution. The more aggregate models (the CL with the quarterly and the
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annual data) tend to slightly underestimate the total number of IBNR claim
counts.
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Figure 3.8: Forecasts of the total number of IBNR claims. Actual denotes actual
IBNR claim counts based on the data; CL denotes the classical chain-
ladder method with daily, monthly, quarterly and yearly data; CCL
denotes the continuous chain-ladder method using monthly data and
the selected bandwidths of the Epanechnikov kernel are h1 = 0.9 and
h2 = 0.7.

Figures 3.9 and 3.10 present the prediction accuracy of methods in 2000
simulations. Based on the computed MAPE as the prediction accuracy, both
figures show that the classical CL method predicts the future claim counts
more precisely with the granular data, i.e. if using the data on daily or
monthly basis, and even with the quarterly data. The given outliers of the
graph show that the prediction errors obtained using annual data amounts to
even 30% error, whereas the prediction errors of the other methods do not
exceed 17%. In case of the CCL method, the prediction errors are as low
as with the classical CL method using granular data. The given prediction
errors can be large for the annual data due to small number of observations
used in run-off triangles. The chosen bandwidths have an effect on the IBNR
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claim counts estimates obtained by the CCL method, since on Figure 3.9
we notice less outliers, which gives an insight that the chosen bandwidths
h1 = 1.2 and h2 = 0.7 must have been more suitable overall. If only the
prediction precision is compared, then the classical CL method with the daily
data seems to be the most precise.
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Figure 3.9: Mean absolute percentage error of total number of IBNR claims.
CL denotes the classical chain-ladder method using daily, monthly,
quarterly and yearly data. CCL denotes the continuous chain-ladder
method using monthly data and the selected bandwidths of the
Epanechnikov kernel are h1 = 1.2 and h2 = 0.7.

It is remarkable that the classical CL forecasts are comparable with the
CCL forecasts in this simulation study. Clearly the CCL method has great
advantages over the classical CL method, such as ability to predict cash-flow
(in combination with the double chain-ladder method, for instance) and the
likely variation in the point estimate among many other advantages. However,
if an actuary is interested merely in a point estimate, then using the classical
CL method with more granular data than the usual annual data can give
reasonable predictions. We note that given the two different simulation
studies, the CCL method remained precise in its predictions in both studies.
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Figure 3.10: Mean absolute prediction errors of total number of IBNR claims.
CL denotes the classical chain-ladder method using daily, monthly,
quarterly and yearly data. CCL denotes the continuous chain-ladder
method using monthly data and the selected bandwidths of the
Epanechnikov kernel are h1 = 0.9 and h2 = 0.7.

The CL method predicted best with the monthly data in the first study and
with the daily data on the second study. This shows the stability of the
CCL method. We conclude that based on these two simulation studies with
different simulation methodologies the well-known CL method gives more
precise estimates with granular data. Simulations studies have shown that
the CL method with the usual annual data understates the total number of
IBNR claim counts and is far from the true realization.

3.5 Empirical study

To further investigate the research problem, we demonstrate the comparison of
the macro- and micro-level reserving framework using the real-world insurance
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data from a general liability insurance portfolio (for private individuals) of a
European insurance company. This data set has also been studied in Pigeon
et al. (2013) and Antonio and Plat (2014). The models are estimated with
historic data and validated with a hold-out sample.

3.5.1 Claims data

The data consist of two types of claims, material damage and bodily injury
claims, filed with the insurer between January 1997 and August 2009. Both
types of claims are modeled jointly in this study as the empirical distribution
of observed reporting delays is similar for material and injury claims. For
each claim, a detailed record that tracks the development of the claim up
to August 2009, including claim occurrence (accident) date, reporting date,
payment amount of each transaction and claim’s closure date (settlement
date), is provided. The claim file consists of 1,525,374 records corresponding
with 491,911 claims. We model the IBNR claims and consider the claim
occurrence time and the reporting delay as the key development information
for each claim. In the following we give a brief description of the data.

Claim occurrence time. Figure 3.11 shows the number of observed claims
that occurred in each month from January 1997 to August 2009. We have
not distinguished the claims types as we model all the claims jointly. Similar
seasonal fluctuations are observed over each year, i.e., the highest occurrence
in summer months and lowest occurrence in winter months. We can further
observe an increasing trend in claim occurrences over time, which can be
explained by the expanding business volume of the insurer. Note that the
downward spikes correspond to the month February.

Reporting delay. The reporting delay is an important driver of the IBNR
prediction. The reporting delay is calculated as the number of days from
occurrence to reporting. Obviously, the delay is only available for claims
that have been reported to the insurance company before the end of the
observation period. Figure 3.12 shows the reporting delays in months since
occurrence of the claim. For the visualization matters the reporting delay
is censored at 6 months. Majority of the claims are reported within a week
after the accidents occur. Table 3.4 shows the distribution of claims with a
reporting delay of zero to seven days. About twelve percent of the claims have
been reported at the occurrence day and the highest percentage of claims
reporting takes place a day after the claim occurrence, 19.2% of the claims
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have a reporting delay 1 day. Almost 70% of the claims have been reported
within a week. It is clear that the IBNR claims have developed rather fast.
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Figure 3.11: Number of claims occurred in each month from January 1997 to
August 2009.
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Figure 3.12: The reporting delay censored at 6 months.
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Reporting delay in days # of Claims % of Claims Cum % of Claims
0 61,142 12.4 12.4
1 94,599 19.2 31.6
2 57,824 11.8 43.4
3 39,355 8.0 51.4
4 27,585 5.6 57.0
5 20,672 4.2 61.2
6 16,379 3.3 64.5
7 15,504 3.1 67.6

Table 3.4: The distribution of the reporting delay for the first seven days since
occurrence of claim.

3.5.2 Estimation results

We use claims from the accident years 1998 – 2002 in this study, assume
a valuation date of 31/12/2002 and divide the data into a training set and
a validation set according to this valuation date. The training set includes
claims development up to the valuation date and the validation set includes
claims development after the valuation date and up to 12/31/2006. We are not
using the year 1997 for this study as there were not too many claims recorded
in that year and few months had a low quality of data. Table 3.5 below shows
the training set and validation set (shaded cells) when they are compiled to a
run-off triangle. The same models as used in the simulation study Sections
3.3 – 3.4 are fitted to the training set. For the CCL model the Epanechnikov
kernel function was chosen again and the bandwidths were obtained with the
cross-validation, leading to the optimal bandwidths h1 = 1.9 (months) and
h2 = 1.5 (months).

Origin Development year
year 1 2 3 4 5
1998 27,805 1,105 25 12 10
1999 31,115 1,315 34 22 3
2000 31,396 1,438 59 4 2
2001 33,122 1,792 53 17 5
2002 37,964 1,672 56 16 9

Table 3.5: Run-off triangle of incremental reported losses for claims from accident
years 1998–2002 over development years 1–5.
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Table 3.6 shows that the closest estimate to the actual total number of the
IBNR claims is obtained with the CCL method. The classical CL method

Future Reserving method
Actual CL day CL month CL quarter CL year CCL month

2003 1,732 1,451 1,463 1,631 1,810 1,722
2004 75 81 81 81 80 72
2005 21 32 32 33 35 29
2006 9 12 13 14 14 11
Total 1,837 1,576 1,590 1,759 1,939 1,834

Table 3.6: Predicted number of reported claims at each future calendar year from
2003 – 2006. Actual denotes actual reported claim counts based on the
data; CL denotes IBNR estimate by the classical chain-ladder method
with daily, monthly, quarterly and yearly data; CCL denotes IBNR
estimate by the continuous chain-ladder method with monthly data.
Bandwidths for the Epanechnikov kernel: h1 = 1.9 and h2 = 1.5.

seems to strongly underestimate the total number of the IBNR claims when
using daily or monthly data. Since the classical CL method is based only
one simple assumption – the proportionate relationships between values in
consecutive development years will repeat in the future – then this assumption
might be working against the method when too granular data is used. Namely,
if the daily (or weekly and monthly) data are used, then the run-off cells have
small values and if the model is using the proportions (or so called development
factors) for the predictions, then it clearly causes a lot of instability in the
predictions. The CL method assumes a lot of information (lots of claims
in the run-off triangle) to give reasonable predictions. For the future years
2004 – 2006, the predictions obtained by different methods are nearly equal.
The biggest difference in predictions is in the first year, 2003. The estimate
of the IBNR claims for the first year makes the biggest difference for the
total estimate. We see that the CL method with the annual data is slightly
overestimating the total number of IBNR claim counts, but in absolute values
the prediction is more precise than using daily or monthly data. However,
the CL method with quarterly data is predicting the best. This gives an
insight to using the classical CL method with more refined data than the
usual annual data.
Figure 3.13 shows the comparison of the IBNR claims on quarterly basis from
January 2003 till December 2006 by the CCL method with the monthly data
(the monthly estimates are aggregated to quarters) and the CL method with
the quarterly data. The black dot indicates the actual IBNR claim counts on
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quarterly basis, the red line with the triangular dots indicates the estimates
by the CL method and the blue line with square dots indicates the estimate
obtained with the CCL method. Since the biggest difference in estimates is in
the first future year, we plot first the 4 first quarters and then the remaining
12 quarters. From quarter 5 till the quarter 16, the CL method and the
CCL method are predicting rather similarly, the CL method showing slightly
higher estimates. Also the quarters 2 – 4 are predicted in the same manner
and really close to the actual number of the IBNR claims, but the biggest
difference is seen on the first quarter. The CCL method predicts the first
quarter very precisely, giving the estimate close to the actual number of IBNR
claims.
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Figure 3.13: Predicted number of reported claims at each future calendar quarter
from January 2003 till December 2006. The black squares indicate
the actual quarterly reported claim counts, the red triangles indicate
the quarterly reported claim counts estimated by the CL method
using the quarterly data and the blue rectangles indicate the quar-
terly reported claim counts estimated by the CCL method using the
monthly data.
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Figure 3.14 describes the IBNR claims on monthly basis from January 2003
till December 2006 estimated by the CCL method with the monthly data and
the CL method with the monthly data. The black dot indicates the actual
monthly reported claim counts, the red line with the triangular dots indicates
the estimates by the CL method and the blue line with round dots indicates
the estimate obtained with the CCL method. The first plot in the Figure 3.14
shows the comparison on the first 12 months and the second plot depicts the
estimates for the last 36 months. The biggest difference in estimates comes
in only in the very first month. Clearly, the CL method is less accurate in
predicting the first calendar periods.
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Figure 3.14: Predicted number of reported claims at each future calendar month
January 2003 till December 2006. The black squares indicate the
actual monthly reported claim counts, the red triangles indicate
the monthly reported claim counts estimated by the CL method
using the monthly data and the blue rectangles indicate the monthly
reported claim counts estimated by the CCL method using the
monthly data.
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3.6 Conclusions

The simulation results suggest that a macro-level model with more granular
data than the annual data is able to estimate the total number of IBNR
claim counts with better quality (or more precisely). It is not surprising that
the use of micro-level model reduces the prediction uncertainty, leading to
estimates with higher precision, this was seen in simulation studies as well
as in the empirical study with the insurance data. The CCL method looks
like an interplay between the good old chain-ladder method and micro-level
framework with the use of sophisticated yet powerful statistical estimation
tools. There is no doubt that the CCL method is able to provide us a more
precise cash flow with all the desired statistical indicators, but it remains a
question whether the advantage is great enough to cope with the increasing
computational time and difficulty level of the used statistical methods. Like
mentioned beforehand, the critical point of the CCL method is the choice of
the bandwidth. We saw that using the simple (yet time consuming) cross-
validation score can lead us to more precise estimation but the difference
in point estimates with the simple chain-ladder is not that drastic. To
increase the predictive power of the CCL method, the investigation of the
bandwidth selection is required. Given the intensive computational time,
some rule-of-thumb bandwidth selection ideas could become useful.
There was only small steam of contributions about micro-level models not
too long ago. Today, developing micro-level models is one of the key topics in
reserving literature. Many advanced reserving methods have been developed,
but nothing compares to having a good knowledge and understanding for the
underlying data set. The insurance companies have the access to monthly
or daily data, if not to development of each individual policy (or claim).
The recent contributions encourage the use of individual data model in loss
reserving over the classical ones based on aggregate data models, provided
that individual data are available. One should not forget that at the end of
the day, an actuary is interested in the best reserve estimate. Micro-level
models can be more precise, but they should be easily applicable in industry
as well. We have seen in this study, that using (more) granular data with
simple macro-level models can also lead to accurate estimates. The problem is
the instability of the CL method, thus using the daily data do not give more
precise predictions with every data set. However, a fair compromise between
the use of annual data and the use of daily data could be, for instance, the
quarterly data.





Outlook

This chapter summarizes the main findings of this dissertation and concludes
our work by presenting several suggestions for future research related to this
topic. The main purpose of this dissertation is to introduce broadly the
stochastic chain-ladder reserving models and its extension that can work
on the individual claim level. Throughout the whole dissertation we work
with real-life actuarial data. While each data set poses specific challenges to
modeling and model selection, this thesis aims at providing practical solutions
to actuarial problems that appear in practice.
In the first part of this thesis, we concentrate on modeling the claim payments
and the focus is on testing the effectiveness of the existing methodologies. We
have extended the previous reserving related contributions in bootstrapping
context by broadening the choice of the residuals. A bundle of empirical
studies with real actuarial data are presented to illustrate the impact of the
considered predictive models. It is not possible to make a comparison with all
the existing macro-level models in a single study but we conduct an extensive
case study involving insurance data from three different lines of businesses
along with introducing model validation in the reserving literature. Our
findings suggest the use of corrected residuals and we have shown that the
Anscombe residuals could be considered as an alternative to the well-known
Pearson residuals. The proposed model validation and assessment ideas are
generic and do not depend on a particular data set, thus constitute a useful
tool in reserve estimation.
In the second part of this thesis, we shift to modeling the IBNR claim
counts and concentrate on the continuous approach to the classical chain-
ladder method. We consider the continuous chain-ladder method as the first
chain-ladder extension in the micro-level framework and provide a thorough
and in-depth demonstration of this micro-level loss reserving method. We
derive the corresponding algorithms of this continuous model in order to
apply it in the discrete framework and make it feasible for practitioners. We
conduct two different simulation studies and an empirical study to describe
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the effectiveness of the continuous approach as well as to discover and compare
the performance of the chain-ladder method applied to different levels of data
granularity. Our findings in this part of the thesis suggest that the use of more
granular data than regularly used annual data can increase the estimation
precision of the classical chain-ladder method and both the simulation and
empirical study show the estimation stability as a strength of the continuous
chain-ladder method. The quality of the estimation results obtained with
the CL method using daily or monthly data depends on the underlying data.
The CL method with the daily data outperformed all the other considered
models in the simulation study, but strongly underestimated the reserve in
the empirical study. Using quarterly data instead results in more similar
prediction accuracy across different data sets. Our study results show that
the CCL method performs well and leads to a good prediction accuracy in all
the considered data setups.
Compared to the traditional models, the continuous approach of the chain-
ladder method requires by nature more refined data and more groundwork
concerning the used statistical methodology and the CCL also requires highly
intensive computation. Fitting the model with the chain-ladder method is
instant, but it can take days to estimate the continuous model and generate the
reserve estimate. As one may have noticed, I have to make some compromise
in both the simulation and the empirical study due to issues of computational
power.
There are still many questions about both macro and micro-level reserving
that are not addressed by this dissertation. Below we discuss some limitations
of the conducted studies and point out several directions for future research.
The CCL method was first implemented for count data. Recently there have
been some contributions regarding the payments as well, but they lack a strong
link with practical implementation. It would be interesting to implement the
CCL method also for the claim payments. As stressed already beforehand,
the key piece of the model structure is the kernel function, which implies
the bandwidth selection. The choice of bandwidths have the most impact on
the obtained estimates and thus also requires investigation. Right now we
have used cross-validation but the heavily increased computational time is a
great downside of the method. It would be useful to derive a rule-of-thumb
approach for the bandwidth selection. In addition, it is not straightforward
how to quantify the variability of the point estimate with the CCL method.
Describing any other statistical characteristics besides the point estimates
requires additional work. Future research concerning these questions could
support considering the CCL method as a valid alternative micro-level method
in the CL framework. We conclude that it is also important to keep track
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of the development of macro-level models and to understand under what
circumstances these models may fail.





Appendix

Formulation of the different steps and stages of both the regular and alternative
bootstrap procedure corresponding to Section 2.2 following Pinheiro et al.
(2003):

Step 1. Preliminary steps before the bootstrap cycle:

1) Choose a reserving method for estimating the outstanding liabilities.

2) Choose a type of residuals and decide on the possible residual adjust-
ments. The overview of different residuals, the zero correction and the
standardization is given in Section 2.2.1. Denote the residual function
by h.

3) Estimate the model parameters c, αi, βj for i, j = 1, 2, . . . , n, and φ on
the initial data.

4) Calculate the fitted values µ̂ij in the upper triangle for (i, j) ∈ ∆, and
the predicted values µ̂ij , Ĉij , R̂i and R̂ in the lower triangle for (i, j) ∈ O.
Note that µ̂ij and Ĉij only differ in the lognormal case.

5) Calculate the residuals rij = h(Cij, µ̂ij) for (i, j) ∈ ∆.

6) Fix the number of bootstrap repetitions B.

Step 3. The following steps are made in the bootstrap cycle, where b = 1, . . . , B.

Step 3.1 Bootstrap iteration for the regular bootstrap procedure:

7) Resample n(n+1)
2 pseudo-residuals r(b)

ij for (i, j) ∈ ∆ from the residuals
obtained in stage 5) using replacement.

8) Apply the inverse function h−1 to the obtained pseudo-residuals r(b)
ij

to create the pseudo-data in the upper triangle C(b)
ij = h−1(r(b)

ij , µ̂ij) for
(i, j) ∈ ∆.

87



88 Appendix

9) Use the obtained pseudo-data C(b)
ij to re-estimate the model and obtain

the predicted values µ̂(b)
ij , Ĉ

(b)
ij , R̂

(b)
i and R̂(b) in the lower triangle for

(i, j) ∈ O.

Step 3.2 Additional stages 10) - 12) for the alternative bootstrap method
(pseudo-reality):

10) Resample n(n−1)
2 pseudo-residuals r∗(b)ij for (i, j) ∈ O from the residuals

obtained in stage 5) using replacement.

11) Apply the inverse function h−1 to the obtained pseudo-residuals r∗(b)ij to
create the pseudo-reality in the lower triangle C∗(b)ij = h−1(r∗(b)ij , µ̂ij) for
(i, j) ∈ O. Note that µ̂ij are the predictions obtained in stage 4) and
not those obtained in the bootstrap iteration.

12) Compute the prediction errors r∗(b) = R∗(b)−R̂(b), where R∗(b) is the sum
of the incremental pseudo-reality C∗(b)ij in the lower triangle and R̂(b) is
the estimate of the total reserve in the bth iteration of the bootstrap
cycle.

13) Return to the beginning of Step 3 until the B repetitions are completed.

Step 4. Bootstrap data analysis.

Step 4.1 For the regular bootstrap method:

14) Obtain the bootstrap standard deviations for the incremental amounts,
the yearly reserves and the total reserve as the empirical standard
deviations of Ĉ(b)

ij , R̂(b)
i and R̂(b), respectively. Use these to compute the

bootstrap prediction errors (2.20).

Step 4.2 For the alternative bootstrap method (PPE):

15) Compute the (1 − α)-percentile of the empirical distribution of the
prediction errors obtained in stage 12). Calculate the (1 − α) upper
limit of the provisions by adding this percentile to the prediction of the
total reserve R̂ obtained in stage 4).
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Stohhastilised ahel-redel meetodid
kahjukindlustuses

Kokkuvõte

Reservide hindamine on hetkel väga aktuaalne teema seoses 2016. aasta
algusest jõustunud Solventsus II direktiiviga, kuna uues riskipõhises Solventsus
II mudelis on reserviriski hindamine üks olulisemaid ülesandeid.
Kindlustusreservide hindamisel kasutatakse kõige sagedamini mudeleid, kus
agregeeritud andmed esitatakse kahjukolmnurga kujul ja rakendatakse reser-
vide leidmiseks teatud determineeritud meetodeid (ahel-redel) süvenemata
stohhastilisse struktuuri. Samas on üha enam hakatud uurima võimalusi
mudelite täpsustamiseks ja üldistamiseks, kusjuures arengud on olnud nii
erinevate stohhastiliste struktuuride arvestamise ja sobitamise osas kui ka
andmete agregeerimise osas. Viimaste aastate suurim trend on agregeerima-
ta “mikro-tasandi” andmetega mudelid. Põhjalik ülevaade antud valdkonna
arengutest ja erinevatest mudelitest on toodud doktoritöö esimeses peatükis.
Käesoleva väitekirja üheks eesmärgiks on anda ülevaade erinevatest (stoh-
hastilistest) reservihindamise meetoditest, võrrelda meetodite omadusi ja
käitumist ning leida kriteeriume, mis hõlbustaksid otsuste langetamist prak-
tilises reservide hindamise ülesandes. Töö käsitleb reservide stohhastilist
hindamist üldistatud lineaarsete mudelite ja bootstrap-meetodi kombineeri-
misel. Vaatluse all on ülehajuvusega Poissoni mudel, gammajaotuse mudel ja
log-normaalse jaotuse mudel. Võrreldes deterministlike meetoditega, on stoh-
hastilisl lähenemisel võimalik lisaks punkthinnangutele hinnata ka hinnangute
varieeruvust. Hinnanguvea saab jagada kaheks komponendiks: protsessiviga,
mis tuleb mudelist, ja hinnanguviga, mis tuleb parameetrite hindamisest. Hin-
nanguvea leidmisel kasutatakse bootstrap-meetodit hinnangujääkidel, ning
tuuakse välja ja selgitatakse erinevaid võimalusi, millele Bootstrap-meetodi
kasutamisel võiks tähelepanu pöörata. Seejuures vaadeldakse nii Pearsoni kui
Anscombe’i jääke ja nende erinevaid täpsustusi. Lisaks mudelite teoreetilisele
püstitusele rakendatakse mudeleid ühe Eesti kindlustusfirma andmetele ja
erinevaid meetodeid valideeritakse Schedule P andmebaasi erinevate kah-
juliikide reservikolmnurkade peal. Empiirilise analüüsi põhjal on sobivaim
mudel ülehajuvusega Poissoni mudel, sedasama kinnitavad ka valideerimise
tulemused, mis lisaks soovitavad kasutada “null-korrigeeritud” Pearsoni jääke.
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Väitekirja teine eesmärk on uurida ahel-redel meetodi rakendamist erinevatel
andmete agregeerimise tasemetel, seejuures käsitleda ka ahel-redel meetodi
üldistust pideva ajaga juhule. Kuna kindlustusfirmalt ei saa eeldada and-
mete kogumist pidevas ajas, siis käesolevas töös on pidev ahel-redel meetod
interpreeritud ka diskreetse ajaga juhule. Eesmärk on uurida erinevate ag-
regeerimistasemete mõju kogureservi hinnangule ning võrrelda klassikalise
ahel-redel meetodi ja pideva ahel-redel meetodi hinnanguid. Analüüs näitab,
et nii kvartaalsete, kuiste kui päevaste andmetega on tulemused täpsemad kui
aastase agregeerimise korral, aga kvartaalsete andmete korral on tulemused
oluliselt stabiilsemad kui suurema detailsusega lähenemiste korral. Ka pideva
ahel-redel meetodi korral on tulemused stabiilselt head erinevate simulatsioo-
nide korral. Kas pideva ahel-redel meetodi mõnevõrra suurem stabiilsus ja
täpsus kaalub üles teoreetilise keerukuse ja arvutuslikud probleemid, jääb
siiski lahtiseks küsimuseks ja sõltub täpsemast ülesande püstitusest.
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