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Preface to the English edition

The Thesis was an attempt to combine data from three previously independent areas:
the structure and kinematics of stellar populations of the Galaxy, models of galaxies,
and models of the evolution of galaxies. This synthesis was made with the goal
to understand better the structure and evolution of galaxies. When the work was
finished it was clear that there are difficulties and open problems in the classical
picture. Thus, immediately after the Thesis was completed, I started together with
my Tartu collaborators searching for solutions to open problems. This search led to
accepting the presence of dark matter in galaxies. To understand the properties of
dark matter in galaxies, it was needed to study the environment of galaxies and the
distribution of galaxies in space, which culminated with the discovery of the cosmic
web. A short overview of the development of ideas directly connected with the topic
of the Thesis is given in the Epilogue.

In some sense the Thesis is a time-capsule of the state of affairs just at the verge
of the paradigm shift in cosmology. The Thesis was written in Russian and its most
important parts were never published. Thus, it would be useful to make this study
available for the astronomical community by translating the Thesis into English.

According to Soviet rules, doctoral theses must be written in Russian and typed
with a typewriter. It was common to base the thesis on previously published papers,
thus these papers must be retyped to form a collection needed for the thesis. In
early 1970’s, I had finished several cycles of papers on stellar kinematics and galactic
models, suited as the basis of the Thesis. Also, I had unpublished results on the study
of the dynamical and physical evolution of stellar systems. I prepared my Thesis
on the basis of this work. About half of it was based on my papers published in
Tartu Observatory Publications in Russian, and a few papers in English in conference
proceedings. New results were written in 1971 as additional chapters of the Thesis.
The text was typed only once with five carbon copies, all equations hand-written.
Copies of better quality were given to thesis reviewers and to the Moscow office,
where all theses completed in USSR were collected and revised for acceptance. The
original copy of the Thesis in Russian is scanned and can be accessed in Dspace link:
http://hdl.handle.net/10062/6113. The translated English version is available in the
same link.

The Thesis consists of four parts, and is divided to 23 chapters. Chapters 4, 7,
20, 21, 22, 23 were unpublished and the present translation is their first publication.
These chapters were translated in full. Chapters 7, 11, 17, 19 were published in Tartu
Observatory Publications or conference proceedings, but form the methodical and
data basis to understand the main topic of the Thesis, thus these chapters were also
translated in full. The rest of chapters, published in Tartu Observatory Publications,

ix



Preface to the English edition

describe the general background of the topic, and are written in this English version
as short summaries of respective papers in Russian.

No original figures are available, only copies of very different quality from paper
copies and microfilms to figures on typed pages of the Thesis. Copies were scanned
and used to prepare figure files suitable for publication. Tables were partly retyped
and partly scanned from the Thesis copy available.

The translation from Russian into English was made by myself, while my col-
league Peeter Tenjes translated chapter 11. My grandson Peeter corrected figure files.
My colleagues in Tartu Observatory helped to polish the text and to fix errors. The
remaining errors are my own responsibility.

November 2021

x



Preface

It is customary to divide the stellar astronomy into the theory of stellar systems and
observational astronomy. The classical theory of stellar systems covers stellar dy-
namics and statistics, while observational astronomy covers direct information about
the structure and composition of stellar systems and various astronomical and astro-
physical methods of obtaining it.

Parenago (1948) introduced the concept of practical stellar dynamics to denote the
study of the structure of stellar systems based on observational data with the appli-
cation of theoretical relations, derived in the dynamics of stellar systems. Currently,
the addition of stellar dynamics and other theoretical disciplines — theories of stellar
evolution and chemical nucleosynthesis, gas dynamics, relativistic astrophysics, etc.
— are also applied to the study of the structure of stellar systems. Retaining the con-
venient term of practical stellar dynamics, it is reasonable to accept for its goal the
application of the results of the theory in the study of the structure and evolution of
particular stellar systems.

The basic method of practical stellar dynamics is the construction of models of the
objects under study. When considering theoretical problems, usually only a certain
aspect of the model is essential, and there is no need to achieve representativeness
of the model in other details, secondary to the problem. The goal of practical stellar
dynamics is the developing of models of stellar systems, as representative as possible,
in which the synthesis of heterogeneous observational information is based on the
results of the theory of stellar systems.

The main tasks of practical stellar dynamics include the study of the evolution of
stellar systems. The problem of evolution is considered primarily as an observational
one, i.e. evolutionary conclusions are drawn on the basis of a theoretical interpreta-
tion of suitable observational data.

The body of works, which served as the basis for the present dissertation, is devoted
to the development of methods of practical stellar dynamics and their application to
investigate the structure and evolution of regular galaxies like our Galaxy. We did not
set as a goal the further development of theory and obtaining new observational data,
since the already available theoretical and observational information is much more
than could be processed and combined in one cycle of studies.

The author’s interest in this subject arose already in the first half of the 1940s,
when the author, being a young amateur astronomer, read with enthusiasm the ar-
ticles by Ernst Öpik, Taavet Rootsmäe, Aksel Kipper and Grigori Kuzmin on the
structure and evolution of stars and stellar systems in the pages of Calendars of Tartu
Observatory. Here I would like to mention the pioneering works of Öpik (1938)
and Rootsmäe (1961), which laid the foundation for revealing the relation between
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Preface

ages and kinematical and spatial properties of stellar populations in the Galaxy. The
immediate impetus for beginning the research on practical stellar dynamics was re-
ceived in 1951, when the author discussed with Pavel Parenago and Alla Massevich
the possible topic for my diploma thesis. They suggested a detailed study of the kine-
matics of stars of the main sequence. Parenago (1951) had just discovered that the
main sequence is kinematically inhomogeneous and wanted to have more detailed
information on this effect. This problem was very close to my own interests as well
as to the topic of the research of Prof. Rootsmäe, so I agreed. This resulted in my
diploma thesis (Einasto 1952), as well as in my PhD thesis (Einasto 1954). From this
work grew a series of studies on stellar kinematics, which served as the basis for the
first section of the first part of the present Thesis.

In 1952 and 1955—1956 author performed calculations for models of the Galaxy
by Kuzmin (1952a, 1956a). In the course of this work, I discovered that models
can be refined by using some additional data that were not taken into account at
that time. The idea of integrated use of observational information and theoretical
results was later applied in developing the concept of a consistent system of local
Galactic parameters and in constructing new empirical models of the Galaxy. The
corresponding series of studies is included in the second section of the first part of
the Thesis.

The construction of the Galactic model was hampered by two difficulties. First, the
result strongly depends on the method of model building, in particular, on the choice
of the initial description function. Second, due to our position inside the Galaxy, it
is difficult to get a picture of its structure as a whole. To enrich our understanding of
the global structure of the Galaxy, the study of other similar galaxies, among which
Andromeda galaxy M31 is the most suitable, plays an essential role. Thus, two cycles
of works arose, on the methods of building models of galaxies and on the study of
the structure of the M31 galaxy, which form the content of the second and third parts
of the dissertation.

Eggen et al. (1962) showed that we can draw certain conclusions about the evo-
lution of the Galaxy from observational data on the spatial kinematical structure of
subsystems of stars of different ages. The success of these authors prompted us to
use the collected material to identify the possible evolutionary path of the Galaxy. In
addition to the dynamical evolution, we also investigated the physical evolution, fol-
lowing the example of Tinsley (1968). The addition of the evolution issues allowed
us to give the Thesis a more contemporary character.

Constructed models of our Galaxy and the Andromeda Galaxy are more detailed
and representative than models known from the literature. However, the available
observational possibilities to improve the models are far from being exhausted. On
the other hand, the methodology developed can also be applied to study the structure
and evolution of other galaxies.

Most of the results presented in the Thesis have been published. The relevant
papers have been reproduced partly unchanged, partly in abridged or revised form.
Some results obtained recently have not yet been published, so that the Thesis is of

xii



independent value. The arrangement of the material is generally chronological with
some exceptions.

November 1971
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Part I.

Spatial and kinematical structure of the

Galaxy

1





1. Kinematical structure of the main sequence

It is well known that the velocity distribution of stars has approximately the
Schwarzschild character. The analysis of tangential velocities of main sequence stars
has shown that stars of the early spectral type (hot giants) can be indeed presented
by the Schwarzschild law (Einasto 1952, 1954). Stars of spectral classes F, G, K, M
have velocity distributions, which can be presented as a sum of two Schwarzschild
distributions with different velocity dispersions. A similar picture is observed in
populations of giant stars. Non-homogeneity of kinematical characteristics of stellar
populations is evidently caused by the large dispersion of population ages. Hot giant
stars of main sequence are relatively young. In contrast, populations of stars of later
spectral types of the main sequence as well as ordinary giant star populations are
mixtures of stars of rather various ages.

In calculations of kinematical characteristics of stars, the selection of observational
data is taken into account as well as the influence of random observational errors
(Einasto 1955a). The Chapter is published by Einasto (1954), and is applied by
Einasto (1955a,b), and Tiit & Einasto (1964).

Main results of the study can be summarised as follows.

1. A method is elaborated for treating the distribution of tangential velocities under
the assumption that the sample consists of two groups of stars, with Schwarzschild
velocity distributions with different dispersions. By comparing the observed and the-
oretical distributions of tangential velocities, the method makes it possible to deter-
mine these dispersions as well as the fractions of stars belonging to both groups. The
position of the centroids and the ratio of the axes of the velocity ellipsoid were taken
as given, since the distribution of tangential velocities was only weakly dependent
on these parameters. In the method, the distorting effects are taken into account: er-
rors in selection of proper motions, tangential velocity errors, and irregularities in the
distribution of stars across the sky. The method also makes it possible to determine
the average errors of the unknown quantities and to take into account the influence
of possible errors in the given parameters. In addition, it is possible to calculate the
mean variance of velocities corresponding to both groups of stars taken together.

2. The analysis of tangential velocities of main sequence stars in the spectral range
from A5 to M leads to the following results. The distribution of velocities of A stars
is well represented by a single Schwarzschild distribution. Starting from F stars, the
observed velocity distribution can be represented as the sum of two Schwarzschild
distributions with different dispersions: the stars are separated here statistically into
two kinematical groups. The dispersions of velocities of both kinematical groups
practically do not depend on the spectral type, but the fraction of stars with low ve-
locities varies. It is minimal in spectral class G and increases towards the earlier and
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1. Kinematical structure of the main sequence

later spectral classes. In this connection the mean velocity dispersion (both kinemat-
ical groups taken together) is maximal at spectral class G and noticeably decreases
in the transition to spectral F and A classes, as well as to K and M. Stars of the
middle part of the main sequence can also be divided into two groups, however, the
spectral division does not coincide with the kinematical one. The spectral separation
is observed, firstly, only in the spectral range from F to G5. Secondly, the veloc-
ity dispersion of one spectrally separated group of stars coincides with the velocity
dispersion of the first kinematical group (small velocities), while the velocity disper-
sion of the other group is much smaller than the dispersion of the second kinematical
group (high velocities), and is close to the average dispersion in the second part of
the main sequence.

3. The discrepancy between the spectral and kinematical separation is apparently
due to the fact that only the spectral separation corresponds to the partitioning of the
main sequence into two genetically unrelated parts, whereas the kinematical separa-
tion does not correspond to this division. The first part of the main sequence has a
homogeneous kinematical structure and probably ends at the G5 spectral class. The
second part of the main sequence starts at spectral class F and is characterised by
a significant heterogeneity in the kinematical structure, with a possible continuous
transition from stars with small velocity dispersion to stars with large velocity dis-
persion. The reason for the kinematical heterogeneity of the second part of the main
sequence is most likely due to the difference in ages of the constituent stars. The
youngest stars in the second part of the main sequence are red dwarfs with emission
lines in their spectra and the lowest velocity dispersion. This allows us to conclude
that velocities of stars of the second part of the main sequence increase with time.

1954
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2. Velocity dispersions from their observed velocities

In our recently published paper (Einasto 1954), we proposed a simple method of de-
termining the velocity dispersion from the total tangential velocities of stars. The
method is based on the fact that the mean value of the squared tangential velocity is
proportional to the square of the velocity dispersion, if other parameters are identical.
The formulas are given to calculate the coefficient of proportionality and to take into
account the errors in parallax and the mean error of the dispersion. In a quite similar
way, the mean velocity dispersion can be found from radial and total spatial veloci-
ties. For the proportionality coefficient velocities, a different expression is obtained
than for the tangential velocities. The aim of the present work (Einasto 1955a) is to
describe the method in more detail and to extend it to the case of radial and spatial
velocities.

The advantage of this method is, first of all, that it is very easy to find the mean
dispersion. The result is only very slightly dependent on the values of other parame-
ters of velocity distributions. Another advantage of the method is that the calculation
of the dispersion separately from radial and tangential velocities allows one to detect
possible systematic errors in the material, for example, in stellar parallaxes. Finally,
in this way of calculating the dispersion, it is very easy to account for observational
errors in radial velocities, proper motions and parallaxes. Here we give a short sum-
mary of the paper.

The mean velocity dispersion of stellar populations can be calculated as follows:

σ2 = 1/3(σ2R + σ2θ + σ2z), (2.1)

where σ2R, σ2θ , σ2z are velocity dispersions in cylindrical coordinates. The mean ve-
locity dispersion is related to the mean observed velocity of stars, V :

V 2 = βσ2, (2.2)

where V is the stellar velocity from observations, and β is a dimensionless coeffi-
cient, depending on the nature of V . As V we can use the full spatial velocity of
stars, Vs, tangential velocity, Vt, or radial velocity, Vr. Values of the coefficient β are
calculated for all these cases, using the generalised Kleiber theorem. The kinematics
of Me dwarfs is studied using this method (Einasto 1955b).

The results obtained in this paper can be seen as a generalisation of the Kleiber
theorem for moments of any order, including mixed moments, and for velocity dis-
tributions, which are not spherical. It is shown that the respective coefficients have
in the case of arbitrary velocity distribution, including ellipsoidal, the same numer-
ical values, as in the case of spherical velocity distribution, if stars are distributed

5



2. Velocity dispersions from their observed velocities

uniformly over the whole sky, and if the velocity distribution function is the same in
all regions of the sky. Since these conditions are in many cases well satisfied, one
cannot agree with the occurrence in the literature the statement, that in the light of
the modern understanding of velocity distributions, the Kleiber theorem has lost his
meaning.

1955
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3. On the asymmetric shift of stellar velocity

centroids

In this paper (Einasto 1961), we shall discuss one aspect of the velocity distribution
– the asymmetric shift of the centroid of the velocity ellipsoid. A critical analysis of
kinematical data, collected in the next Chapter, shows that only part of the available
data can be used to study the asymmetric shift. Here we give a short summary of the
paper.

For all populations we calculated the following data: the mean velocity dispersion,

σ =

√

1

3
(σ2R + σ2θ + σ2x), (3.1)

and the mean heliocentric centroid velocity in rotational direction, Vθ, where σR,
σθ, and σz are velocity dispersions in galactic cylindrical coordinates. The velocity
dispersions were corrected for observational errors using a method, proposed by us
(Einasto 1955a). The age of populations was determined from Iben’s evolutionary
tracks, see Chapters 4 and 22. For halo populations, the individual age determinations
coincide within possible errors. The relative age of these populations was estimated
theoretically, adopting for oldest halo populations the age of the Galaxy, 1010 yr, and
for other halo populations an age needed for the population considered to collapse
with free fall acceleration to its observed dimensions.

The Strömberg diagram for populations studied is given in Figure 3.1. Populations
with metal deficit are represented by open circles, populations with normal metal
content by points, the interstellar gas by a cross. The smooth curve shows the mean
dependence between σ and Vθ of populations of different ages; the latter is indicated
in 109 yr, starting from the formation of oldest galactic populations known.

The main results of this study may be formulated as follows.
1. If we attribute all metal deficient subpopulations to the halo, then it appears

that the halo is rather heterogeneous in its kinematical properties; it contains all sub-
populations with velocity dispersion σ ≥ 50 km/s. The corresponding axial ratio ǫ
of equidensity ellipsoids, calculated from our recent model of the Galaxy (Einasto
1970a), is equal to or larger than 0.10. Studying the structure of the Andromeda
galaxy M31, we also came to the conclusion that its halo consists of a mixture of
subpopulations with ǫ ≥ 0.10 (Einasto 1974b). These results show that intermediate
subsystems of the Galaxy according to Kukarkin (1949) also belong to the halo.

2. Direct age determinations of stellar populations are too inaccurate to estimate
the duration of the initial galactic collapse. There exists, however, indirect observa-
tional (Sandage 1969) and theoretical (Eggen et al. 1962) evidence that the collapse
proceeded in a short time scale compared with the age of the Galaxy.

7



3. On the asymmetric shift of stellar velocity centroids

Figure 3.1.: The Strömberg diagram for populations. In the horizontal axis, we show
the heliocentric centroid velocity of the population in the direction of the
Galactic rotation; in the vertical axis, we plot the mean velocity disper-

sion σ =
√

1
3(σ

2
R + σ2θ + σ2z). Open circles are for metal-poor popula-

tions, dots for populations with normal metal abundance. The numbers
give the birth-dates in 109 years starting from the formation of the old-
est populations, assuming for the age of the Galaxy 1010 years (Einasto
1974b).

3. The populations of the galactic disc have mean velocity dispersions, 15 ≤ σ ≤
50 km/s, and respectively axial rations, 0.02 ≤ ǫ ≤ 0.10 (Einasto 1970a). The
age dependence of spatial and kinematical properties of these populations may be
caused by the action of irregular gravitational forces (Spitzer & Schwarzschild 1953;
Kuzmin 1961).

4. The subsystem of interstellar gas and young stars rotate with a velocity smaller
than the circulation one. Therefore, young stellar subsystems are non-steady, and
time is needed for them to obtain a steady structure. This result supports the recent
discovery of the non-stationary state of young populations by Dixon (1967b,a, 1968)
and Jõeveer (1968).

August 1961
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4. Kinematical characteristics and ages of Galactic

populations

The spatial and kinematical properties of galactic populations evolve very slowly.
Therefore, the study of these properties gives us certain information on the past dy-
namical evolution of the Galaxy, in particular on the evolution of star generating
medium (interstellar gas, as generally accepted). The detailed study of spatial struc-
ture of stellar populations in our Galaxy is possible in most cases only in the Solar
neighbourhood. But the study of kinematical properties is possible practically for all
populations, which makes these studies very useful for cosmogonic purpose.

In order to obtain adequate quantitative information for the study of dynamical his-
tory of the Galaxy, the statistical data on stellar velocities must satisfy the following
requirements: populations under study must be physically homogeneous; statistical
samples of stars must be free from selection effects, especially from velocity selec-
tion; in order to correct the results for accidental observational errors, the information
on rms errors of observed quantities must be known; the data to determine of the age
of the sample must be available.

We collected published data on stellar velocities and determinations of kinematical
parameters back to the fundamental work by Parenago (1951), which is the topic of
this Chapter.

4.1. Introduction

Characteristics of the spatial and kinematical parameters of star samples are principal
indicators in deciding to which Galactic populations they belong. Parameters of the
spatial structure can be found from observational data as a rule only for a restricted
volume of space near to the observer. In contrast, kinematical parameters, found in
nearby volume, characterise the structure of the whole population. This allows to use
kinematical parameters to investigate the evolution of the Galaxy.

The first large surveys of kinematics of stellar populations were made using ra-
dial velocities. Presently these studies have only historical interest, since the samples
were selected using parameters which are not sufficient to select homogeneous pop-
ulations. The first modern compilation of stellar spatial velocities was compiled by
Parenago (1951), a more recent one by Delhaye (1965).

To apply kinematical characteristics of star samples to the study of the structure
and evolution of the Galaxy, the samples must be representative. This means that
they should be free from observational selection effects, and the influence of random
and systematic errors must be known. Samples collected by Parenago (1951) and
Delhaye (1965) do not satisfy these conditions accurately enough.

9



4. Kinematical characteristics and ages of Galactic populations

In this paper, we collect published kinematical data of stellar populations with
the aim of finding representative samples. Also, we shall try to find the ages of
populations.

Table 4.1.: Kinematical data on Galaxy populations
ID Sample Method n σ −Vθ kθ kz t Ref.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
0 Interst. H 21-cm 5.5± 0.4 14.5± 2.6 3 – 6

Interst. Ca 6.0± 1.0 15.5± 0.8 7 – 9
5.6± 0.4 15.4± 0.8 0.00

1 δ Cep Vi 20 8.4± 0.8 16.4± 1.6 0.53 0.20 10
Vr 100 10.0± 0.5 13.8± 1.2 11, 12

9.5± 0.4 14.4± 1.0

2 Supergiants Vi 213 9.8± 0.3 11.7± 0.6 0.66 0.36 1
3 B Vr 560 10.3± 0.4 14.2± 0.8 0.01 13, 14
4 Open clusters Vr 11.9± 1.4 0.03 15
5 Ap Vi 62 11.2± 0.7 7.6± 0.8 0.3 16

Vr 147 10.0± 0.7 15.0± 2.5 17
10.6± 0.6 8.0± 0.8

6 B7-A8 Vi 114 12.4± 0.5 9.4± 1.0 0.31 0.14 0.18 1
7 A5-A9 Vt 150 11.1± 0.6 0.53 18
8 B9-F0, Ap Vi 111 11.9± 0.6 7.9± 1.0 0.31 0.18 19
9 A0-F3 Vi 89 14.0± 0.7 7.7± 1.6 0.21 0.20 0.40 20
10 A0 Vi 475 15.2± 0.8 14.2± 0.8 0.44 0.25 0.18 21
11 F0-F4 Vt 264 12.9± 0.6 0.95 18

A9-F4 Vi 290 18.5± 0.6 10.4± 0.9 0.36 0.18 1
12.9± 0.6 10.4± 0.9

12a F5-F7 Vt 230 15.6± 0.8 1.54 18
12b F5-F7 Vi 177 24.1± 0.8 17.7± 1.6 0.46 0.28 1
12c F4-F8 Vi 88 20.8± 1.0 12.2± 2.4 0.42 0.41 20
13 F8-G2 Vt 261 20.4± 1.0 2.6 18
14 G3-G9 Vt 175 22.9± 1.3 3.1 18
15 E0-E7 Vt 123 18.1± 1.1 18
16 F8-K6 Vi 522 35.7± 0.7 31.4± 1.3 0.35 0.23 1

F9-K6 Vi 228 22.2± 0.7 20.2± 1.6 0.34 0.26 20
22.2± 0.7 20.2± 1.6 0.34 0.26

4.2. Kinematical characteristics of Galaxy populations

Our compilation of kinematical data on samples of stars is given in Tables 4.1, 4.2 and
4.3. In the compilation, we used samples from the compilation by Parenago (1951)
which satisfied our criteria of representativeness. A special attention was given to
samples for which it was possible find ages, and which in this way contributed to the
understanding of the evolution of the Galaxy.

Designations in the Table are as follows. In the first column, we give the number
of the sample, used also in Figures. The second column gives the type of samples, the
third column the method to find kinematical characteristics: 21-cm – using radio-line
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4.2. Kinematical characteristics of Galaxy populations

Table 4.2.: Kinematical data on Galaxy populations
ID Sample Method n σ −Vθ kθ kz t Ref.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
17 M Vt 347 15.6± 1.0 18

M Vi 170 32.9 22.5 0.31 0.24 1
K8-M67 Vi 112 24.5± 1.0 16.2 ± 2.5 0.46 0.31 20
M Vi, Vt 305 26.3± 0.5 17.1± 1.4 0.62 0.34 22, 23

24.5± 1.0 16.2 ± 2.5 0.46 0.31
18 dMe Vi 106 15.2± 0.9 10.2 ± 1.4 0.37 0.18 24, 25
19 Strong-line Vt 898 16.8± 0.9 9.9± 0.6 26

-”- Vs 258 17.3± 1.0 27, 28
17.0± 0.7 9.9± 0.6

20a Weak-line Vt 300 27.2± 2.1 4 18
-”- Vt 581 25.9± 0.8 18.1 ± 1.0 26
-”- Vs 267 27.4± 0.8 27, 28

26.8± 0.6 18.1 ± 1.0

20b HV dwarfs Vr 91 25.7± 2.3 29± 5 29
21 gA-gG8 Vi 404 19.6± 0.4 11.5 ± 0.8 0.46 0.29 1
22 gG9-gM Vi 921 23.7± 0.4 17.5 ± 0.7 0.47 0.29 1

MIII Vi 226 24.0± 0.7 21.0 ± 1.7 0.85 0.34 19
23.8± 0.4 18.7 ± 0.7 0.55 0.30

23 Red var. Vi 130 30.8± 1.2 22.6 ± 2.3 0.55 0.44 1
24a HV giants Vr 308 38.5± 2.0 66± 4 29
24b -”- Vi 20 74± 8 103± 16 0.36 0.25 1
25a gM Vi 6 62± 12 74± 21 42
25b gM Vi 22 40± 4 35± 7 42
25c gM Vi 73 26± 1.4 18± 2.5 42
25d gM Vi 67 22± 1.3 15± 2.3 42
25e gM Vi 18 17± 1.9 8± 3.4 42
26a Subgiants Vi 112 31.7± 1.3 27.0 ± 2.5 0.41 0.31 5 1
26b -”- Vi 51 40.4± 2.7 41± 5 0.42 0.31 30

34± 1 32± 2

of neutral hydrogen; Vi – using components of spatial velocities; Vr – using radial
velocities; Vt – using tangential velocities; Vs – using full spatial velocities. In the
fourth column, we give the number of objects in samples n. The fifth column is the
mean velocity dispersion

σ =

√

1

3
(σ2R + σ2θ + σ2z). (4.1)

In the sixth column V θ – the heliocentric centroid velocity in the direction of the
Galaxy rotation. In two following columns – ratios of velocity dispersions

kθ =
σ2θ
σ2R

, kz =
σ2z
σ2R

. (4.2)

In the column (9) – the age of the sample in billions of years; in the last column (10)
the reference.
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4. Kinematical characteristics and ages of Galactic populations

Table 4.3.: Kinematical data on Galaxy populations
ID Sample Method n σ −Vθ kθ kz t Ref.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
27 Plan.nebul. Vr 96 35± 3 29± 3 0.60 0.20 31

W-dwarf Vt 50 33± 3 40± 3 0.38 0.20 32
-”- Vt 27 37± 5 37± 5 0.43 0.25 33

35± 2 34± 2 0.50 0.21 5
28 Subdwarf Vi 141 98± 5 136 ± 9 0.59 0.26 34

-”- Vr 46 75± 10 127 ± 19 29
93± 4 134 ± 8 0.59 0.26 9.5

29a LPer var. Vr 37 54 50 0.42 0.55 35, 36
29b -”- -”- 76 88 79 0.94 0.42 9.2 -”-
29c -”- -”- 129 55 63 1.10 1.47 -”-
29d -”- -”- 129 46 34 0.59 0.19 -”-
29e -”- -”- 134 37 31 0.49 0.76 -”-
29f -”- -”- 83 38 19 1.59 0.36 -”-
29g -”- -”- 51 35 15.6 2 -”-
30a RR Lyr var Vi, Vr 34 77± 11 72± 21 37
30b -”- Vi, Vr 98 118± 10 162 ± 24 0.77 0.25 37
30c -”- Vr 38 38± 5 30± 11 0.83 0.25 38
30d -”- Vr 21 129± 16 217 ± 31 0.41 0.59 10.0 38
30e -”- Vr 16 55± 11 55± 11 9.0 39
30f -”- Vr 10 85± 22 115 ± 22 39
30g -”- Vr 27 105± 17 185 ± 17 39
30h -”- Vr 14 55± 12 104 ± 29 40
30i -”- Vr 11 44± 11 45± 27 9.0 40
30j -”- Vr 37 100± 14 120 ± 29 40
30k -”- Vr 46 108± 13 182 ± 30 40
30l -”- Vr 21 93± 17 220 ± 45 10.0 40
31 Glob.cl. Vr 70 120± 12 182 ± 30 9.7 40
32 HB stars Vr 12 92± 12 41

We note that in the Table 4.2 samples No. 25 CN limits of M giants are as follows:
25a: CN ≤ −0.17, 25b: −0.17 < CN ≤ −0.09, 25c: −0.09 < CN ≤ −0.01,
25d: −0.01 < CN ≤ 0.07, 25e: 0.07 < CN . In the Table 4.3 in samples No. 29
periods of long-period variables are: 29a: P < 150, 29b: 150 ≤ P < 200, 29c:
200 ≤ P < 250, 29d: 250 ≤ P < 300, 29e: 300 ≤ P < 350, 29f: 350 ≤ P < 410,
29g: 410 ≤ P , periods are in days. In the same Table in samples 30 RR Lyrae
variables are the following: 30a: type I, 30b: type II, 30c: type I, 30d: type II,
30e: the ∆ s parameter by Preston (1959) is the following: 30e: 0 ≤ ∆S ≤ 2,
30f: 3 ≤ ∆S ≤ 4, 30g: 5 ≤ ∆S ≤ 10, 30h: type c, 30i: type ab with period
P < 0.4 days, 30j: type ab with 0.4 ≤ P < 0.4, 30k: period 0.4 ≤ P < 0.6, 30l:
period 0.6 ≤ P .

Reference numbers in Tables are the following: 1 – Parenago (1951), 3 – Kwee
et al. (1954), 4 – Westerhout (1957), 5 – Schmidt (1957a), 6 – Venugopal & Shuter
(1967) , 7 – Plaskett & Pearce (1931), 8 – Melnikov (1947), 9 – Blaauw (1952), 10
– Parenago (1947), 11 – Takase (1963), 12 – Kraft & Schmidt (1963), 13 – Feast
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4.3. The influence of selection and observational errors

& Shuttleworth (1965), 14 – Rubin & Burley (1964), 15 – Johnson & Svolopou-
los (1961), 16 – Eggen (1959), 17 – Day (1969), 18 – Einasto (1954), 19 – Eggen
(1960b), 20 – Wehlau (1957), 21 – Alexander (1958), 22 – Dyer (1956), 23 – Mum-
ford (1956), 24 – Einasto (1955b), 25 – Gliese (1958), 26 – Vyssotsky & Skumanich
(1953), 27 – Roman (1950), 28 – Roman (1952), 29 – Michałowska & Smak (1960),
30 – Eggen (1960a), 31 – Wirtz (1922), 32 – Parenago (1947), 33 – Pavlovskaya
(1956), 34 – Parenago (1949), 35 – Feast (1963), 36 – Smak & Preston (1965), 37 –
Pavlovskaya (1953), 38 – Notni (1956), 39 – Preston (1959), 40 – Kinman (1959),
41 – Philip (1969), 42 – Yoss (1962).

The dispersion σ was calculated using published values of σr, σθ, σz , or found
using velocity components Vi or Vr of individual stars, applying methods described
in Chapter 2.

Errors of σ and V θ were taken from published data or calculated using methods
described in Chapter 2. The determination of age estimates is described below.

In Fig 4.1 the solid line shows the mean relation between V θ and σ. We did not
try to find a mathematical expression for the relationship, since in this case some
important details needed to understand the evolution of the Galaxy would be lost, see
Chapter 21.

4.3. The influence of selection and observational errors

In the study of the kinematical structure of main sequence star samples, we paid
essential attention to the influence of selection and random errors (Einasto 1954,
1955a). Both effects were taken into account by Wehlau (1957). In other studies these
factors were ignored, or discussed using methods which did not guarantee sufficient
accuracy of results.

To illustrate the effect of these factors, we show in Fig. 4.2 kinematical charac-
teristics of the stars of the main sequence according to Parenago (1951), Wehlau
(1957) and Einasto (1954). We see that velocity dispersions σ according to Parenago
are much higher than dispersions obtained by other investigators. Data by Wehlau
(1957) and Einasto (1954) are generally in good mutual agreement, there are only
minor differences. We do not have original data by Wehlau (1957), thus we cannot
estimate the cause of remaining differences. It is possible that the correction for ob-
servational errors by Wehlau was not correct. On the other hand, it is not excluded
that we have overcorrected our samples for errors. For now, we accepted data from
our determinations for main sequence stars.

Kinematical characteristics, corrected for selection and observational error effects,
are printed in Tables 4.1, 4.2 and 4.3 in boldface.

The need to take into account these factors was known long ago, however, in most
studies it was ignored. An exception is the work by Michałowska & Smak (1960),
where the absence of stars with low velocities was taken into account. In similar
studies by Yasuda (1961) and Eggen (1964), the selection effect was not taken into
account, and we could not use these samples. Moreover, Eggen (1969a) divides
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4. Kinematical characteristics and ages of Galactic populations

Figure 4.1.: The relationship between the mean velocity dispersion σ and the helio-
centric rotation velocity Vθ for various subsystems of the Galaxy. Sub-
systems of different chemical composition are marked with different
symbols, numbers are according to Tables 4.1, 4.2 and 4.3. The line
shows the mean relationship of subsystems of various ages in billions of
years, starting from the formation of the oldest populations.

stars into flat and disc populations using components of spatial velocities (VR, Vθ):
stars within a defined region belong to the flat component, and stars outside this
region to the disc component. This division ignores the presence of tails in velocity
distribution of the flat component, and the presence of stars with low velocities in the
disc component.

Also, we could not use the large catalogue of spatial velocity components by Eggen
(1962), since the system of photometric parallaxes is voluntary, as shown by Weller
et al. (1968).

4.4. Determination of population ages

One of the main goals of the present paper is the establishment of a relationship
between kinematical characteristics and ages of populations.

The ages of samples of stars from the upper part of the main sequence were found
either from the zero-age curve, shown in Fig. 22.1, or from the mean spectral type.
The maximal age of main sequence stars can be found from Iben evolutionary tracks,
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4.4. Determination of population ages

Figure 4.2.: The mean velocity dispersion of main sequence stellar populations ac-
cording to three authors. Due to ignoring observational errors, disper-
sions found by Parenago are considerably higher, and dispersions found
by Wehlau slightly higher.

see Chapter 22. Fast movement away from the main sequence starts at point Nr.
3 of Iben (1967c) track. We found that the respective age is related to the visual
luminosity with a simple equation (MV ≤ 5):

log t3 = 8.19 + 0.353MV .

This equation gives the maximal age of stars. Early stars of the main sequence have
the mean age equal to half of the maximal age.

Stars of late spectral type of main sequence have large velocity dispersions and
form a thick subsystem. For this reason, the spatial density of stars of this type is
relatively small. Samples of stars are collected near the Solar vicinity, thus old stars
are represented with a smaller frequency. For this reason, for F8 to G9 type stars of
the main sequence we accepted mean ages slightly less than half of the maximal age.
For stars of later spectral type, it is difficult to estimate this effect quantitatively, thus
we did not try to find their mean age.

We attribute to sub-giants, white dwarfs and planetary nebulae an age equal to a
half of the age of the whole Galaxy. These objects have large spread of ages, however,
older stars dominate, which confirms our estimate.

The youngest Mira type variables with initial masses about 2.5M⊙ have ages
slightly less than a billion years. However, the spread of periods of Miras of identi-
cal ages is large (Smak (1966b), Feast & Shuttleworth (1965)). For this reason, we
accepted for Miras of the type 29g a larger age – 2 billion years.

To star samples with the largest velocity dispersion and centroid velocity (short
period cepheids with P ≥ 0.6 days), we attribute ages equal to the age of the whole
Galaxy. As explained in Chapter 23, we accepted for the age of the Galaxy the round
value 10 billion years.
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4. Kinematical characteristics and ages of Galactic populations

Figure 4.1 shows that approximately at the point with coordinates −V θ = σ =
50 km/sec, a transition takes place from stars with metal deficit to stars of normal
metal content. We attribute stars with metal deficit to the halo, and stars with normal
metal content to the disc and the core. Calculations of the physical evolution of the
Galaxy show (Sandage & Eggen (1969), Cameron & Truran (1971)) that the metal
enrichment proceeds in the early phase of Galaxy evolution very rapidly, and that the
mean chemical composition changes little later. For this reason, the second phase of
the chemical evolution of the Galaxy has a long duration about 9 billion years, see
Chapter 23. We conclude that at the point with −V θ = σ = 50 km/sec, the halo
formation was finished, and the formation of disc started.

Figure 4.3.: The dependence of the mean velocity dispersion σ and heliocentric ro-
tation velocity Vθ on the age t of populations, according to Table 4.1.
Open circles in the top panel show populations where it was possible to
correct data for observational errors.

The problem of the duration of the formation of the halo, and the possibility that
some halo and disc stars formed at the same time, is widely discussed. Eggen et al.
(1962), and Sandage (1969, 1970) argued that the halo formed quickly during sev-
eral hundred million years. On the other hand, Rood & Iben (1968) support a more
extended period of halo formation, and that some halo stars formed after the start of
disc star formation. Our data, shown in Fig. 4.1, suggest that some overlap in the
formation of halo and disc stars is possible. Our calculations of the Galaxy evolution
suggest that the formation of the halo could be slower than accepted by Eggen et al.
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4.5. Ratios of semiaxes of velocity ellipsoids

(1962). However, the argument by Eggen et al. concerning the short formation scale
of the halo must be correct.

Using these arguments, we accepted the ages of halo objects. Globular clusters
have the largest axial ratios of equidensity ellipsoids (Chapter 20) and the smallest
heavy element abundance. For globular clusters, we accepted ages longer than the
mean age of the whole halo. To Mira variables with periods 150 – 200 days, we
accepted an age 9.2 × 109 yr. Miras of this type can be located in relatively rich
globular clusters (Arp et al. (1963), Sandage et al. (1966), Rosino (1966)), which
according to other data are younger than normal globular clusters.

We show in Fig. 4.3 the dependence of σ and V θ on the age of subsystem tS . For
disc objects, we used data by Einasto (1954), where observational selection and error
effects were studied in great detail. In the determination of the function V θ(t), we
notice that selection and error effects shift values of σ and V θ in a similar way, thus
data points do not exit from the mean relationship curve. We can consider the Fig 4.3
as a parametric presentation of the mean relationship in Fig. 4.1.

Table 4.4.: Kinematical data on Galaxy populations

ID kθ −∆ e −∆h (kθ)0 kz −∆ e (kz)0
10 0.44 0.01 0.00 0.43 0.25 0.005 0.245
12 0.44 0.01 0.00 0.43 0.32 0.005 0.315
16 0.34 0.01 0.01 0.32 0.26 0.005 0.255
17 0.46 0.01 0.03 0.42 0.31 0.005 0.305
18 0.37 0.01 0.00 0.36 0.18 0.005 0.175
21 0.46 0.01 0.00 0.45 0.29 0.005 0.285
22 0.55 0.01 0.10 0.44 0.30 0.005 0.295
23 0.55 0.01 0.10 0.44 0.44 0.005 0.435
26 0.41 0.01 0.02 0.38 0.31 0.005 0.305
27 0.50 0.01 0.06 0.43 0.21 0.005 0.205

4.5. Ratios of semiaxes of velocity ellipsoids

Ratios of semiaxes of velocity ellipsoids are important parameters, characterising the
local structure of the Galaxy. Our collection of kinematical data allows to get new
estimates of these parameters.

As we see later in Chapter 21, very young stellar populations are not in a station-
ary state. On the other hand, very old populations have ratios of velocity ellipsoid
semiaxes, different from ratios found for young flat populations. For this reason, we
shall use in the determination of mean values of ratios kθ and kz only subsystems in
the velocity dispersion interval from 15 to 50 km/sec. Mean values of kθ and kz in
this σ interval, collected from data given in Table 4.1 - 4.3, are given in Table 4.4.
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4. Kinematical characteristics and ages of Galactic populations

To find mean values of kθ and kz , the influence of observational errors must be
taken into account. This error makes the velocity ellipsoid rounder. Furthermore,
it is needed to take into account the kinematical heterogeneity of observation data.
The asymmetric shift of the velocity ellipsoid increases the dispersion ratio kθ . A
theory of this factor was developed by Eelsalu (1958). We estimated corrections ∆ e
and ∆h using data on the inhomogeneity of star samples, and mean errors of stellar
parallaxes. Results are given in Table 4.4 as well as the corrected values of (kθ)0 and
(kz)0. The overall mean values and their estimated errors are: (kθ)0 = 0.410±0.015
and (kz)0 = 0.278 ± 0.010.

4.6. Circular velocity in the Solar vicinity

Our collection of data allows to calculate the circular velocity near the Sun, using the
theoretical Strömberg asymmetry equation (Einasto & Kutuzov 1964b)

V 2
i − (Gi +m0)σ

2
Ri = V 2, (4.3)

where Vi is the galactocentric rotation velocity of subpopulation i, σRi is the velocity
dispersion in radial direction of this subsystem, V is the circular velocity,

Gi = G{ρ(R)}i =
∂ ln ρi
∂ ln R

(4.4)

is the logarithmic gradient of the density, and

m0 = (1− kθ) + nR(1− kz) (4.5)

is a quantity, equal for all Galaxy subsystems. Here we used designations identical
to Eq. (11.19).

Galactocentric centroid velocity Vi can be expressed through the θ-component of
the heliocentric centroid velocity V ⊙ using the equation

Vi = V + (V ⊙ − V⊙), (4.6)

where V⊙ is the θ component of the Solar velocity in respect to the circular velocity.
Using our collected data as well as data by Blaauw & Schmidt (1965) on the den-

sity gradient, we found for flat populations

V⊙ = −9.0± 0.2 km/sec, (4.7)

which yields, using data of intermediate and spherical populations,

V = 226 ± 21 km/sec. (4.8)

Error of this determination of the circular velocity is fairly large, it is determined by
errors in the density gradient and velocity dispersion.

We note that this method to determine the circular velocity in the Solar neighbour-
hood was applied earlier by Parenago (1951).

September 1971
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5. Model of the Galaxy and the system of Galactic

parameters: Preliminary version

This Chapter presents our first attempt to bring together the available data on the
structure of the Galaxy in a model, and to find the system of Galactic parameters.
The model was presented in the talk by Einasto (1965) in the conference “Kinematics
and dynamics of stellar systems and physics of the interstellar medium” in Alma-Ata
in summer 1963.

5.1. Introduction

In order to bring together the available data on the structure of stellar systems and to
determine their gravitational field, appropriate models are used. Naturally, particular
attention is paid to the building of the model of our Galaxy. Work in this direction
has been going on in Tartu for more than ten years. At first we were interested mainly
only in the radial distribution of masses in the Galaxy (Kuzmin 1952a, 1956b). As
for the spatial distribution, the models were not specified, or special models were
used by Kuzmin (1956a); Kuzmin & Kutuzov (1962). At the present time we set the
task of building a more detailed model of the Galaxy without trying to base it on any
special assumptions.

The problem of constructing a model of the Galaxy is closely related to the problem
of constructing a system of Galactic parameters, and the application of the equations
of stellar systems hydrodynamics. The hydrodynamics of stellar systems is consid-
ered in the paper by Kuzmin (1965), and the problem of determining the Galactic
parameters is discussed in the paper by Kutuzov (1965). The present paper considers
the problem of constructing a model of the Galaxy and determining the system of
Galactic parameters from a practical point of view, and provides some preliminary
results of calculations.

The main task in the construction of the Galactic model is the determination of
the mass distribution function in it. In the first rough approximation we can assume
that surfaces of equal densities in the Galaxy are similar ellipsoids of rotation, hav-
ing a common axis and a symmetry plane. In such an assumption, the radial mass
distribution is found from the circular velocity by a solution of the integral equation:

V 2(x) = G

∫ x

0

µ(a) da√
x2 − e2a2

, (5.1)

where V is the circular velocity in the symmetry plane of the system; G is the gravi-
tational constant; x is the distance from the symmetry axis; a is the semi-major axis
of an ellipsoid of equal density; e =

√
1− ǫ2, with ǫ being the ratio of the ellipsoid
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minor to major axes and, finally, µ(a) da is the mass contained between ellipsoids
with semi-major axes a and a+ da . It is reasonable to express the values of a and x
in units of the Sun’s distance from the center of the system R0. In this case, for the
mass function µ(a) we have the expression:

µ(a) = 4π R2
0 ǫ ρ0 a

2 ρ⋆(a). (5.2)

where ρ⋆(a) is the volume mass density on the surface of an ellipsoid with semi-
major axis a in units of the circumsolar density ρ0.

Several variants of equation (5.1) and methods of its solution have been proposed
by different authors. For example, Wyse & Mayall (1942) and Schwarzschild (1954)
consider a flat model of the stellar system. In this case ǫ → 0 and ρ → ∞, but
µ remains finite. Instead of µ they use the surface density P , making an integral
equation for it. The surface density is related to the mass function by a simple integral
relation (see Kuzmin (1956b)).

Kuzmin (1952a, 1956b), Perek (1951, 1954) and Takase (1955) already repre-
sented the Galaxy as an inhomogeneous ellipsoid. In this case we have a spatial
model of the system. However, the surfaces of equal density are not in fact simi-
lar ellipsoids. To eliminate this drawback, Kuzmin (1956b) proposed a generalised
spheroidal model consisting of a large number of individual spheroids. The presence
of spheroids was taken into account by introducing some mean values of ǫ and e2 as
functions of a.

In Kuzmin’s generalised model we already have three unknown functions — ρ(a),
ǫ(a), and e2(a). It is clear that it is impossible to solve one integral equation with
three unknown functions. If we attract additional observational material on the den-
sity distribution, and the ratio of semi-major axes of individual subsystems, and are
interested not only in determining the mass or surface density function but also the
spatial density of the Galaxy, it is more natural and simple to consider subsystems
in explicit form, without resorting to the average ǫ and e2. This is the path followed
by most of the authors who have recently studied the mass distribution in the Galaxy
(Schmidt (1956), Perek (1954), Idlis (1961a)).

With respect to individual subsystems of the Galaxy, if they are physically homo-
geneous groups of stars, we can assume with a much better approximation than for
the Galaxy as a whole that surfaces of equal density are similar ellipsoids of rotation.
The mass function µ(a) and the ratio of ellipsoid semiaxes ǫi are, of course, different
for different subsystems. Summing up the contributions of individual subsystems to
V 2, we obtain:

V 2(x) = 4π GR2
0

∑

i

ǫiρ0i

∫ x

0

a2ρ⋆i (a)da
√

x2 − e2i a
2
. (5.3)

In equation (5.3), both the circular velocity functions V and the subsystem density
distribution functions ρ⋆i are known with some accuracy. The parameters of this for-
mula, R0, ǫi and ρ0i, are also known approximately. Therefore, the expression (5.3)
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5.2. Observational data

should be considered not as an integral equation for determining the mass distribu-
tion in the Galaxy but as an equation for mutual agreement and specification of the
functions and parameters appearing in it.

5.2. Observational data

The following observational data are available to build a model of the Galaxy:
(a) for the nearest neighbourhood of the Sun, there are kinematical data with re-

spect to all subsystems of the Galaxy, and data on the spatial distribution of most
subsystems (excluding subsystems of absolutely faint stars);

(b) for wide regions of the Galaxy, comparable to the size of the whole stellar
system, the spatial distribution is known only for a few subsystems, among which,
fortunately, representatives of all main components of the Galaxy appear; in addition,
the rotation of some flat component subsystems is known;

(c) data on rotation and surface density distribution of other galaxies, which to
some extent supplement the information about our Galaxy, especially for central and
peripheral regions.

As we can see, the observational data are very limited, so the full description of the
Galaxy in the six-dimensional phase space is out of the question. However, they are
sufficient to determine the overall trends of the mass density distribution for the main
components of the Galaxy. It is possible to determine a number of other functions
characterising the structure of the Galaxy.

As a function approximating the density distribution of Galactic components, we
have chosen a generalised exponential law

ρ⋆(a) = e−
m0
ν

(aν−1), (5.4)

where ν is some positive number, characterising the degree of mass concentration to
the center of the system, and m0 is the density logarithm gradient near the Sun:

m = −∂ ln ρ(a)

∂a
= − R

Mod

∂ log ρ(R)

∂R
. (5.5)

In particular cases ν = 2 and ν = 1, we have Gaussian and ordinary exponen-
tial distributions, which have already been repeatedly applied to describe the spatial
density of galaxy subsystems (Perek (1951), Takase (1955), Perek (1958)). On the
other hand, de Vaucouleurs (1948, 1953) showed that surface brightness of elliptical
galaxies and spherical components (core and halo) of spiral galaxies can be repre-
sented using function (5.4) with ν = 0.25. If we assume that the mass-to-light ratio
for the spherical component of a given galaxy does not change with the distance from
the system’s centre, the surface brightness is proportional to the surface mass density.
By solving the corresponding integral equation, we found the spatial density distri-
bution. It turned out that the same function, (5.4) is obtained with sufficient accuracy

21



5. Model of the Galaxy and the system of Galactic parameters: Preliminary version

but with ν = 0.18. Thus, the spherical components of galaxies can be described by
the formula (5.4) with a small value of ν.

The generalised exponential distribution (5.4) is convenient, because it is defined in
an infinite interval, and therefore takes into account the presence in the stellar system
of stars with very elongated orbits, whose velocities are close to the parabolic. On the
other hand, the density decreases quickly enough at large distances, so that the mass
of the model is finite, and the model does not have such an extensive envelope as the
Kuzmin model, derived from the third integral theory (Kuzmin 1956a). Furthermore,
the distribution at different ν gives a very different course of the density logarithm
gradient, decreasing (ν < 1) or increasing (ν > 1) with increasing a.

It is sufficient to represent the Galaxy as a composite model for three components:
planar (Flat), intermediate (Disc), and spherical (Sph). The parameters characterising
the structure of the components are given in Table 5.1. The values obtained on the
basis of observational material are given in the column 0, and the values obtained by
equating the observed values are given in the column 1.

Table 5.1.: Parameters of Galaxy populations

Pop. i νi |z|i ǫi0 ǫi1 mi0 mi1 ρ0i0 ρ0i1
Mi

M
Ref.

Flat 1 2 145 0.022 0.022 2.35 2.35 30± 5 25.0 0.041 17 - 20
Disc 2 1 400 0.09 0.13 4.00 3.30 55± 10 53.3 0.692 17, 21, 22
Sph. 3 1/3 2300 0.60 0.60 3.10 3.91 2± 2 1.89 0.267

Notes: |z|i is given in parsecs; densities ρ0i0 in M⊙ per kiloparsec3 .
References are: 17 – Oort (1958), 18 – Westerhout (1957), 19 – Schmidt (1957a), 20
– Kopylov & Kumaigorodkaya (1955), 21 – Kopylov (1955), 22 – Kukarkin (1949);
references for spherical components are: Kukarkin (1949), de Vaucouleurs (1953),
Perek (1954), Schmidt (1956), Schmidt (1957a), Notni (1956), Oort (1958), Baade
(1958), Oort (1960a), Johnson & Svolopoulos (1961), Wallerstein (1962), Lozin-
skaya & Kardashev (1963).

To calculate the flattenings of the components, we determined the flattenings of
the various subsystems of the Galaxy, using the formula

ǫ =

√
mζ

sR0
, (5.6)

where ζ is a parameter characterising the distribution of stars in the direction per-
pendicular to the Galactic plane, and s is a dimensionless coefficient of the order
of unity. The formula (5.6) is derived under the assumption that within subsystems
the surfaces of equal density are similar ellipsoids. The parameter ζ can take, for
example, one of the following values:

ζl =
R0

l =
(

−∂2 ln ρ(z)
∂z2

)−1/2

z=0
, ζ0 = z0 =

1
ρ(0)

∫∞
0 ρ(z)dz ,

ζ1 = |z| =
∫
∞

0
zρ(z)dz

∫
∞

0
ρ(z)dz

, ζ22 =
∫
∞

0
z2ρ(z)dz

∫
∞

0
ρ(z)dz

.

(5.7)
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5.2. Observational data

Here l is the parameter introduced by Kutuzov (1965), z0 is the equivalent half-
thickness of the Galaxy (Kuzmin 1952a). The numerical value of the coefficient ζ
depends on the particular kind of density distribution. If we accept the law (5.4) for
the density, then for ν = 2 and ν = 1 we have the values given in Table 5.2. It should
be said that ζ0 = 1, regardless of the particular kind of density distribution.

Table 5.2.

Comparing our derived values ǫ with the results of Schmidt (1956) and Idlis
(1961b), we can say the following. The ratio of semiaxes for the planar compo-
nent agrees well with the results of other authors. Only for the central regions of
the Galaxy Idlis took ǫ = 0.25 in order to have a smaller spatial density for a given
surface density. It is difficult to agree with this, however, as direct estimates (West-
erhout (1957), Lozinskaya & Kardashev (1963)) indicate that the thickness of the
interstellar hydrogen layer, the main subsystem of the flat component of the Galaxy,
does not increase as we approach the centre of the system, but, on the contrary, de-
creases. The data on the ratio of half-axes for the intermediate component agree with
Schmidt’s data (Idlis does not consider this component in his model). The data for
the spherical component differ strongly. Schmidt took ǫ = 0.16 in this case, which
is clearly insufficient. Idlis took for the peripheral regions of the Galaxy an average
of ǫ = 0.5, which is quite acceptable. However, in the centre of the system he took
an underestimated value of ǫ = 0.25. Photographs of spiral galaxies, visible from
the edge, show that the nuclei of these systems have an ǫ of the order of 0.5 − 0.7
(Johnson (1961), de Vaucouleurs (1959)). The apparent decrease of ǫ for the inner
regions in the subsystems of globular clusters and short-period cepheids, noted by
Idlis, is caused by the fact that these subsystems are not homogeneous but consist of
a mixture of objects of intermediate and spherical components (Notni (1956), Baade
(1958)).

The ν parameter was chosen so that the law (5.4) satisfactorily represented
the available data on the density distribution of the planar (Westerhout (1957),
Schmidt (1957a)), intermediate (Kukarkin (1949), de Vaucouleurs (1959)), and
spherical (Kukarkin (1949), de Vaucouleurs (1948, 1953), de Vaucouleurs (1959),
Oort (1960a)) subsystems.

The gradient m for the intermediate component was taken from Idlis (1961b) sum-
mary, while for the planar and spherical ones it was calculated anew. It turned out

23



5. Model of the Galaxy and the system of Galactic parameters: Preliminary version

that the earlier determinations of this gradient for the spherical subsystems were ex-
aggerated.

In addition to data on the structure of the individual components, in order to de-
rive a system of Galactic parameters and build a model of the Galaxy, we also need
knowledge of the course of the circular velocity. The observational material needed
for this purpose is available in the form of radio astronomical determinations of the
differential rotation of interstellar hydrogen. We used the data of Dutch scientists in
the treatment by Kwee et al. (1954) and Agekyan & Klosovskaya (1962). Based on
this material, we compiled for eight values of x the normal points of the Galactic
differential rotation function U . This function is related to the circular velocity V by
the formula

V (x) = U(x) + xV0, (5.8)

where V0 is the circular velocity in the vicinity of the Sun. The results, together with
estimates of their average errors, are given in Table 5.3. The values obtained on the
basis of observational material are given in the column 0, and the values obtained by
smoothing the observed values are given in the column 1.

Table 5.3.: Differential rotation function U(x) of the Galaxy

Finally, we used a number of other parameters, the circumsolar values of which,
together with their errors, are given in Table 5.4.

In deriving the distance to the centre of the Galaxy, only independent estimates
were taken into account, the dynamical determinations were not used. The latter de-
pend on other Galactic parameters; in the subsequent least-squares processing, how-
ever, it was assumed that all the estimates of the parameters to be equated must be
independent.

The circular velocity is determined mainly dynamically by the asymmetric shift of
the velocity centroids of the stars (Parenago 1951). These data as well as the corre-
sponding formula do not appear anywhere else in the construction of the system of
Galactic parameters, so that the velocity definition can be considered independent. In
addition, general dynamical considerations (Fricke 1949a,b) were taken into account,
according to which V0 cannot be much less than 275 km/s.
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5.2. Observational data

Table 5.4.: Near-solar values of galactic parameters

References: (30) Kwee et al. (1954), (31) Agekyan & Klosovskaya (1962), (32)
Baade (1951), (33) Whitford (1961), (34) Weaver (1954), (35) Feast & Thackeray
(1958), (36) Parenago (1951), (37) Fricke (1949a), (38) Fricke (1949b), (40) Stibbs
(1956), (41) Petrie et al. (1956), (42) Gascoigne & Eggen (1957), (43) Walraven et al.
(1958), (44) Janák (1958), (45) Pskovskii (1959), (46) van de Kamp & Vyssotsky
(1937), (47) Raymond & Wilson (1938), (48) Vyssotsky & Williams (1948), (49)
Morgan & Oort (1951), (50) Oort (1932), (51) Kuzmin (1952b), (52) Kuzmin (1955),
(53) Eelsalu (1961), (54) Dyer (1956).

The kinematical parameter, W = −1/2 (dU /dx )x=1, characterises the circum-
solar value of the Galactic differential rotation function, based on the behaviour of
the U function (see Table 5.3). This value is somewhat smaller than that usually ac-
cepted (Schmidt (1956), Lozinskaya & Kardashev (1963)) and nearly coincides with
the value obtained by Idlis (1961b) (see Table 5.4).

We consider the Oort-Kuzmin parameters A,B, and C in the dynamical sense, i.e.
corresponding to the gravitational acceleration along R and z.

When calculating the Oort parameter A, only values giving A > 15 km/sec/kpc
were taken into account. The significantly lower values obtained by some authors are
distorted, apparently, by local features of some subsystems of stars, or by drawbacks
in the methodology of material processing. In calculating the average error of A, we
took into account the fact that many authors used practically the same observational
material.

The parameter B is known to be different in the GC and FK3 system. Most as-
tronomers prefer the FK3 system, in which B = −7 is obtained. This value leads,
however, to various dynamical difficulties (Kuzmin 1956b). Therefore, we took the
average of theB values in the GC and FK3 systems, increasing the mean error, which,
in addition to the random error, also takes into account the unknown systematic error.
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5. Model of the Galaxy and the system of Galactic parameters: Preliminary version

The parameter C is taken from the determinations by Kuzmin (1952b) and Eelsalu
(1958), for definition see Chapter 6. The markedly larger values, obtained by some
authors, are distorted, as pointed out by Eelsalu (1958, 1961), by the imperfection of
the applied methodology.

The ratios of velocity dispersions of stars:

kθ =
σ2θ
σ2R

, kz =
σ2z
σ2R

, (5.9)

were taken from Parenago (1951) and Dyer (1956). In these works, the components
of the spatial velocities of stars are used, and the material is divided by physical fea-
tures into separate subsystems. The definitions of the dispersion relations, obtained
from the proper motions (Hins & Blaauw 1948), were not taken into account. Appar-
ently, they are distorted by systematic errors, which was pointed out by Trumpler &
Weaver (1953).

5.3. Construction of the Galactic model and determination of
Galactic parameters

When building a model of the Galaxy, it is assumed that there are a number of the-
oretical relations linking the parameters determined from observations. Equations
(5.1) or (5.3) and the Poisson’s formula are usually used as such relations. We use
the Poisson equation in the form, suggested by Kuzmin (1952b)

4πGρt = C2 − 2 (A2 −B2), (5.10)

where ρt is the total spatial density of mass. Also we use the Lindblad equation:

kθ =
−B
A−B

, (5.11)

and the following expressions derived from the definition of A, B, and W :

AR0 −W = 0, (5.12)

R0(A−B)− V0 = 0. (5.13)

To these we can add another differential consequence of Eqn. (5.3)

dV 2 (x)

dx
= 4πGR2

0

∑

i

ǫiρ0i

d
∫ x
0

a2ρ2i (a)da√
x2−e2i a

2

dx
(5.14)

and Kuzmin (1961) equation:

k−1
z = 1 + k−1

θ . (5.15)
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Due to random and unaccounted for systematic errors in the definition of param-
eters or description functions as well as the inaccuracy of the applied theory, these
equations are not fulfilled quite accurately. In order for the equations to be satisfied,
one has to change the parameters and description functions somewhat. So far this has
been done by trial-and-error procedure, and the result has depended heavily on the
taste of the author. Moreover, a certain system of rounded values of the main param-
eters was often taken (for example, by Schmidt (1956) for A, B, C , W ), while all
other parameters were not taken from observations but were calculated by formulas
(5.10) - (5.13).

An objective way to derive the best system of Galactic parameters and to construct
the corresponding model of the Galaxy is the application of the least-squares method.
In this case equations (5.3) and (5.10) - (5.15) are considered not as expressions for
determination of this or that quantity but as fundamental equations to the equalisation
of the system of Galactic parameters (Kutuzov 1965).

We performed the parameter equalisation twice, with and without the use of the
model of mass distribution in the Galaxy. Such a way of solving the problem was
chosen in order to find out the suitability of the model (5.4) to describe the structure
of the Galactic components.

In the first case, the following quantities were equated by the least-squares method:
the circumsolar densities of the intermediate and spherical components ρ02 and ρ03;
the circumsolar value of the circular velocity V0, kinematical parameter W ; the
Kuzmin parameter C; values of the function U for eight points (see Table 5.3). Equa-
tions (5.3), (5.10), and (5.14) were used as fundamental equations, and expression
(5.8) was substituted for V (x) in (5.3) and (5.14), and expression (5.4) was substi-
tuted for ρ∗i (a). Calculation results are given in Tables 5.1, 5.3, and 5.4 (option 1).

In the second case, the circumsolar values of the following quantities were fixed:
the Oort parameters A, B, the circular velocity V0, parameter W , the distance from
the centre of the Galaxy R0, and the ratios of velocity dispersions, kθ and kz . As
fundamental equations we used formulas (5.11) - (5.13) and (5.15). The results are
given in Table 5.4 (option II).

In addition, we calculated the mean values of the ratio of the semi-axes ǫ and the
gradient m (with the weight ρt), the total mass of the Galaxy,

M = 4π R3
0

∑

i

ǫiρ0iM
⋆
2j , (5.16)

and the parabolic velocity P =
√
2Φ (where Φ is the gravitational potential):

P 2(x) = 2

∫ ∞

x

V 2(x)dx

x
= 8π G R2

0

∑

i

ǫiρ0i Φ
⋆
i (x). (5.17)

In formula (5.17) Φ⋆
i (x) is the mass of the subsystem in units 4π R3

0ǫρ0i. The coef-
ficient M⋆

2j is a special case, j = 2, of the moments of M⋆
ji of the function ρ⋆j(a). If
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5. Model of the Galaxy and the system of Galactic parameters: Preliminary version

Figure 5.1.: Left: Distribution of the logarithm of the density in units of the circum-
solar total density, ρ is the total density; 1, 2, and 3 are the densities of
the planar, intermediate, and spherical components. Right: Dependence
of the circular and parabolic velocity on the distance to the centre of the
Galaxy.

we take expression (5.4) for ρ⋆j(a), in the general case we have:

M⋆
ji =

∫ ∞

0
ajρ⋆i (a)da =

1

ν
exp

(m0

ν

) (m0

ν

)− 1+j
ν

Γ

(

1 + j

ν

)

, (5.18)

where Γ is gamma-function.
The functions Φ⋆

i (x) in formula (5.17) are gravitational potentials of subsystems
in plane z = 0 in units 4πGR2

0ǫiρ0i. They are calculated by the formula

Φ⋆
i (x) =

∫ ∞

0
ρ⋆i (a)χi

(a

x

)

ada , (5.19)

where

χi

(a

x

)

=

{ 1
ei
arcsin(

eja
a ), a ≤ x,

1
ei
arcsin(ei), a ≥ x.

(5.20)

For x = 0 (Galactic center) we have as a special case

Φ⋆
i (0) =

arcsin(ei)

ei
M⋆

1i, (5.21)

and for large x we obtain the following asymptotic decomposition:

Φ⋆(x) ≈ M⋆
2

a

[

1 +
1

2

1

3

( e

x

)2 M⋆
4

M⋆
2

+
1

2

3

4

1

5

( e

x

)4 M⋆
6

M⋆
2

+ . . .

]

. (5.22)
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Figure 5.2.: Left: The dependence of the average ratio of the semi-axes on the dis-
tance to the centre of the Galaxy. Right: Dependence of the average
gradient of the logarithm of the density m on the distance to the centre
of the Galaxy.

5.4. Conclusions

The equalisation in the first variant with the original initial data (column 0 in Tables
5.1, 5.3, and 5.4) did not yield satisfactory results. The obtained system of Galactic
parameters differed markedly from that in the second variant, the calculated circular
velocity curve had an unacceptable discrepancy with the observed curve. However,
it turned out that the obtained circular velocity curve was very sensitive to changes in
the parameters of formulas (5.3) and (5.4) for the intermediate and spherical compo-
nents. The planar component makes such a small contribution to the expression for
V 2 (less than 5%) that the V 2 curve almost does not depend on its parameters. Af-
ter slightly changing ǫ and m (Table 5.1, variant I) of the intermediate and spherical
component, we carried out the equation anew; the results were satisfactory this time.
Their agreement both with the original data and with the results of equalisation with-
out the model (variant II) is good. Errors of parameters after adjustment in variant II
turned out to be notably smaller.

The logarithms of densities of components and total densities, the mean values
of the ratio of half axes and the gradient of the density logarithm, and the circular
velocity are given in Figures 5.1 and 5.2. In the calculations, we took the Galactic
parameters according to variant I. The values of density ρ3 and ρt at x = 0 corre-
spond to average density in ellipsoid with semi-major axis a = 0.0016, gradient m is
calculated for distance x = 0.001 (at ν < 1m→ ∞ if x→ 0).

Let us now compare the obtained preliminary systems of Galactic parameters with
those derived from the models by Kuzmin (1955), Schmidt (1956) and Idlis (1961b)
(see Table 5.4).

Kuzmin’s system differs from the others in the "classical" values of the parameters
A0, B0 and R0. The mean ǫ of the model is somewhat exaggerated, since the values
of A0 and B0 were taken too large, and, besides, a very rough model of the Galaxy
was taken when calculating ǫ (formula (56) in Kuzmin (1952b)).
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5. Model of the Galaxy and the system of Galactic parameters: Preliminary version

Schmidt’s system is markedly different from ours. It assumesB in the FK3 system,
which leads to underestimated values of the circular and parabolic velocity as well as
the ratio kθ but, on the other hand, to an unacceptably high value of the gradient m0.
Recently, Schmidt (1961, 1962) has become convinced of the necessity to reduce the
density gradient.

Schmidt’s model has too small dimensions and sharp boundaries due to large den-
sity gradient. This leads to an excessively fast decrease of the circular velocity with
increasing distance, and a small value of the escape velocity.

Our system of parameters agrees well with Idlis’s system. But Idlis’s model has
a significant drawback — by adopting Parenago’s law for the circular velocity, Idlis
was not able to take into account the presence in the Galaxy of a very dense and quite
massive nucleus and an extensive halo.

October 1963
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In this Chapter, we present a method of the determination of the system of Galactic
parameters, using equations, connecting parameters as fundamental equations to the
equalisation of the system of Galactic parameter, using observational estimates of all
parameters. The idea of the method was described by Kutuzov (1964). The new sys-
tem was presented by Einasto & Kutuzov (1964a,b) to the Commission 33 Meeting,
IAU XII General Assembly, Hamburg, 1964.

In the following years, I continued to collect observational data on all Galactic
parameters which enter in the system of parameters. Results of this search were
collected in Chapter 6 of the original Thesis on 56 pages of typed text with 14 tables
and a reference list with 159 entries. However, these data were not used to construct a
new model, because in 1971 I was busy calculating the physical evolution of galaxies,
and there was no time to find a new model of the Galaxy. Soon it was evident that
the model should include a massive, extensive and almost spherical component —
corona. This changes the gravitational potential field of the Galaxy, which influences
Galactic parameters, thus the collected data on parameters became obsolete. For this
reason, this collection is not reproduced in the current English version of the Thesis.
I present here only the main idea of the method to determine the system of Galactic
parameters, and the 1964 version of parameters. The preliminary 1963 version of the
Galactic model with parameters was published by Einasto (1965) and is presented in
Chapter 5, the 1970 version of Galactic parameters was described by Einasto (1970a)
and is presented in Chapter 7. A preliminary model of the Galaxy with massive
corona and respective system of parameters was presented by Einasto (1979) and is
described in the Epilogue. Our final model of the Galaxy with an improved system
of Galactic parameters was published by Haud & Einasto (1989).

As Galactic parameters, the following parameters or constants are usually consid-
ered:

R0 — the distance of the Sun from the Galactic centre,

A, B — Oort’s rotational parameters, referring to the circular motion,
ρ0 — the Galactic mass density in the solar neighbourhood.

Given the first three of these parameters, the circular velocity

V = R0(A−B) (6.1)

can be found.

To obtain the numerical values of these parameters, their direct estimates can be
used. On the other hand, the estimates of the following quantities can be applied for
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this purpose: the Kuzmin parameter

C =
σz
ζ
, (6.2)

the gradient of the function of differential rotation velocity

W = −1

2

(

dU

dξ

)

ξ=1

, (6.3)

and the ratio of velocity dispersions

kθ =
σ2θ
σ2z
. (6.4)

In these formulae σ2R, σ2θ and σ2z , are the velocity dispersions in Galactic cylindrical
coordinate system, ζ is the z-coordinate dispersion, U is the function of differential
Galactic rotation, obtained from radio observations (Kuzmin 1956a), and ξ = R/R0.
Three parameters, C, W and kθ, are connected with the former ones by equations
(see Chapters 5 and 7):

4π Gρ0 = C2 − 2 (A2 −B2), (6.5)

W = AR0, (6.6)

kθ =
−B
A−B

. (6.7)

In the old system of Galactic parameters (Schmidt 1956), the parameters A and B
were taken from proper motion studies (A = 19.5 and B = −6.9 km/sec/kpc), and
R0 was calculated by means of formula (6.6) from W = 160 km/sec, which yielded
R0 = 8.2 kpc, in good agreement with directly obtained value. For the circular
velocity the value V = 216 km/sec was obtained.

In the new system of Galactic parameters, accepted at the Australia symposium on
Galactic structure (Oort 1965), the following rounded values were proposed:

R0 = 10 kpc,
V = 250 km/sec,
A = 15 km/sec/kpc,
B = −10 km/sec/kpc,
ρ0 = 0.145M⊙/pc3.

This yields:
C = 90 km/sec/kpc,
W = 150 km/sec,
kθ = 0.40.

It should he emphasised, however, that it is possible to widen the amount of ob-
servational data used, introducing new equations and new parameters, for which ob-
served estimates are present. Furthermore, by applying the least-squares method, it
is possible to improve the procedure of obtaining the system of parameters,
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Besides the parameters characterising the Galactic structure in general, the pop-
ulation parameters may be used. Practically it is possible to use the heliocentric
centroid velocities Vi, the dispersions σ2Ri, and the radial logarithmic density gradi-
ents mi = −R0 d ln ρi /dR . From these parameters, the circular velocity V can be
calculated by means of theoretical Strömberg’s asymmetry equation:

V 2 = V 2
i + (mi −m0)σ

2
Ri, (6.8)

where Vi is the galactocentric rotation velocity of the population, and (Kuzmin 1962)

m0 = 1− kθ +
1

4
m (1− kz), (6.9)

m being the logarithmic gradient of the total mass density. The velocity Vi is con-
nected with the observed centroid velocity Vi by the obvious formula:

Vi = V + (Vi − V ), (6.10)

where −V is the θ-component of basic solar motion. This method for determination
of the circular velocity was used earlier by Parenago (1951).

In addition to the relation (6.7), the general Galactic parameter kθ is connected
with another general parameter kz = σ2z/σ

2
R by means of formula

kz =
kθ

1− kθ
, (6.11)

found by Kuzmin (1961) from the theory of irregular gravitation forces. Finally, we
can use the angular velocity of the circular motion

ω =
V

R
. (6.12)

To summarise, we conclude that the system of Galactic parameters can now be
considered as consisting of n = 10 parameters
R0, A, B, C , ω, V , W , kθ , kz , and ρ0.
These ten parameters are connected by l = 6 equations (6.1), (6.5) – (6.7), (6.11),

and (6.12), called in the theory of least squares as fundamental. In future, with the
development of the theory and the improvement of observational data, the number
of parameters in the system as well as the number of fundamental equations may
increase. If n − l = 4 parameters are known, then the remaining l ones can be
calculated from l fundamental equations. It is natural to call n − l parameters as
principal Galactic parameters. The principal parameters can be chosen arbitrarily
provided there are no functional relationships between them, but from the practical
point of view it is advisable to call so the most frequently used ones, namely
R0, A, B, C .
All the Galactic parameters considered have observational estimates, independent

of other Galactic parameters. In determining the system of Galactic parameters with
the method of least squares, one should use all these independent estimates.

33



6. System of Galactic parameters

Table 6.1.: Galactic parameters

Quantity Unit Observed Calculated
R0 kpc 9.4± 0.8 9.05 ± 0.4
A km/sec/kpc 15.2 ± 1.4 15.7 ± 0.4
B “ −10.3± 0.4
C “ 70± 5 71± 2
ω “ 26.0 ± 0.7 26.0 ± 0.6
V km/sec 226 ± 21 235 ± 10
W “ 142 ± 6 142 ± 6
kθ 0.408 ± 0.013 0.396 ± 0.011
kz 0.270 ± 0.009 0.284 ± 0.006
ρ0 M⊙/pc3 0.091 ± 0.010 0.088 ± 0.006

In Table 6.1 the observed estimates of Galactic parameters together with their stan-
dard external errors are given. The Table is based on a critical analysis of modern
observational data which will be published in detail elsewhere.

In the Table, the value of angular velocity of the circular motion, ω , is used as the
observed one instead of Oort’s parameter B. After our critical survey of published
data, the value of B is in fundamental systems GC, FK3 and N30 −11.7, −8.4,
and −5.4 km/sec/kpc respectively. On the other hand, ω , derived as the difference
between A and B from the same proper motion data, equals in these fundamental
systems to 26.4, 25.5 and 27.0 km/sec/kpc. The scatter is much smaller than in the
case of B, and the mean value is more reliable.

The results of least-square solution are also represented in Table 6.1. The values
obtained differ not very much from those adopted at the Australia symposium. There-
fore, it seems to us that it would too early to accept now a new system of Galactic
parameters. It would be very useful to concentrate the attention to the practical as
well as to the theoretical aspects of the problem in order to increase the amount and
the quality of the observational data and their treatment. Only on such basis, a new
revision of the Galactic parameter system can be made.

July 1964

Revised July 1971

Adapted September 2021
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7. Galactic model

This Chapter presents our first model of the Galaxy, where both spatial and hydrody-
namical descriptive functions were found. In calculations of hydrodynamical func-
tions, we used methods developed by Einasto (1970c), which form Chapter 11 of the
Thesis. Preliminary results of this model were reported at the IAU Commission 33
Meeting at the XIV General Assembly in Brighton by Einasto (1970a). Here we give
full data on the model.

7.1. Introduction

Galactic models have been constructed for various goals. Most detailed models can
be considered as a compact form of representing large quantities of observational
data for further theoretical analysis. One possibility to use models is the study of
evolution of galaxies. For this task, models must represent the structure of actual
galaxies rather accurately and must be physically correct.

The evolution of galaxies shall be discussed in the last Chapters of the Thesis. The
goal of this paper is to analyse existing models of the Galaxy and to find parameters
for a new one. Next we use the gravitational field of the model to calculate the spatial
and kinematical structure of test populations of various age.

7.2. Analysis of existing Galactic models

Recently a review of existing models of the Galaxy was published by Perek (1962).
The modern era of Galactic modelling was introduced by Schmidt (1956) and
Kuzmin (1956b), and we start our analysis with a description of these models.

The Schmidt (1956) model is the first one where detailed information on Galac-
tic populations was used. Model components represent real populations of various
flattening and isodensity surfaces. For some populations, kinematical characteristics
were calculated (velocity dispersions perpendicular to the plane of Galaxy).

Kuzmin (1956b) used in the calculation of his model several additional conditions
which allowed to find model parameters with a greater confidence, see below.

In Table 7.1 we give the main data on models of the Galaxy, constructed since
1956: Schmidt (1956), Kuzmin (1956b), Perek (1959), Idlis (1961a), Einasto (1965),
Schmidt (1965), Innanen (1966a), Takase (1967) and the present model Einasto
(1970a). We use the following designations:
R0 — solar distance from the centre of the Galaxy;
A, B, C — Oort-Kuzmin dynamical parameters;
V0 — circular velocity at R = R0;
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7. Galactic model

Table 7.1.: Galactic models

Vk — escape velocity at R = R0;
W — radial gradient of the function of differential Galactic rotation (see below);
kθ, kz — ratios of velocity dispersions (see below);
ρ0 — total density of matter near the Sun;

G{ρ(R)}0 =
(

∂ ln ρ
∂ lnR

)

0
— logarithmic density gradient at R = R0;

Rlim — radius of the outer boundary of the model (for models with infinite boundary
radius, an effective radius is given in parenthesis, which corresponds to the distance
in the symmetry plane where the spatial density is 102.5 times smaller than near
R = R0);
Rapogal — apogalactic distance of stars moving near the Sun with Oort’s limiting
velocity;
M — mass of the model;
M red — mass of the model, reduced to R0 = 10 kpc and V0 = 250 km/s, supposing
M ∝ R0 V

2
0 .

Following Kuzmin (1952b, 1954), we use Oort-Kuzmin parameters A, B, C in
dynamical sense. The dynamical parameter C was introduced by Kuzmin (1952b), it
is related to the gravitational potential Φ of the Galaxy as follows

C2 = −
(

∂2Φ

∂z2

)

z=0

, (7.1)

where z is the distance from the Galactic plane. The parameter C determines the de-
pendence of Φ on z near the Galactic plane. It is a supplement to the Oort parameters
A and B for the motion with circular velocity. Oort parameters A and B are related
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7.2. Analysis of existing Galactic models

to the potential as follows:

(A−B)2 = 1
R

(

∂Φ
∂R

)

z=0
,

(A−B)(3A+B) =
(

∂2Φ
∂R2

)

z=0
,

(7.2)

where R is the distance from the Galactic axis.
In all models, it is assumed that equidensity surfaces are concentric ellipsoids of

rotational symmetry with constant or changing flattening (ratio of vertical to radial
axes) (Perek 1962). Models differ from each other in three important ways: (i) in
the choice of principal Galactic parameters, (ii) in the extrapolation of mass function
to large galactocentric distances, and (iii) in the choice of the principal descriptive
function. These aspects are closely related.

In early models presented until mid-1960’s, Galactic parameters were accepted in
the old distance scale. However, there exist other more principal differences.

We use as the principal function in mass modelling of galaxies the mass function

µ(a) = 4πǫρ(a) a2, (7.3)

where ρ(a) is the spatial density, ǫ is the flattening parameter (the ratio of minor
to major semiaxis of the isodensity surface). The function µ(a) is the mass of a
spheroidal sheet per unit interval of a. Knowing the mass function of the spheroidal
model, we may calculate the circular velocity (see Kuzmin 1952b)

V 2 = G

∫ R

0

µ(a) da√
R2 − a2e2

, (7.4)

where G is the gravitational constant, and e2 = 1 − ǫ2. Here we can identify the
circular velocity V with the rotation speed Vθ of flat population objects. The most
reliable data on the rotation velocity are provided by the 21-cm radio data. Radio
observations give the differential rotation velocity function, U(x), which is connected
with the rotation velocity, Vθ, by formula (Kuzmin 1956b):

Vθ(x) = U(x) + V0 x, (7.5)

where x = R/R0, and V0 is circular velocity near the Sun. Radio data enable us to
determine U(x) only for x ≤ 1, i.e. inside the Sun orbit in Galaxy, for x > 1 the
mass distribution function is to be extrapolated.

As we see from Eq. (7.5), the model depends critically on the adopted value of the
circular velocity near the Sun, V0. This velocity can be determined on the basis of
the adopted values for the Sun’s distance R0, and Oort parameters, A and B, using
the definition formula

V0 = (A−B)R0. (7.6)

All three parameters, A, B and R0, may be influenced by systematic and random
errors, thus, an independent check of A, B and R0 or V0 is necessary.
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7. Galactic model

Parameters A, B and R0 can be checked using kinematical data and applying the
Lindblad formula

kθ =
σ2θ
σ2R

=
−B
A−B

, (7.7)

and the radio data on the radial gradient of the function U(x). This gradient provides
us with a new local Galactic constant, W , which is connected with other constants
by the following equation (Einasto & Kutuzov 1964a):

W = −1

2

dU

dx
|x=1 = AR0. (7.8)

Table 7.2.: Components of the Galaxy model

Schmidt (1956) accepted in his model the local parameter system, based on Oort
B, found from proper motions of stars in FK3 and N30 systems, and used for kθ
data on proper motions of faint stars by Hins & Blaauw (1948). In Kuzmin (1952a),
model parameter B was taken in GC system, and kθ was accepted using Parenago
(1951) analysis. These two systems differ from each other, thus, it is not sufficient to
use only Eq. (7.7) and (7.8) to check parameters.

The value of the circular velocity near the Sun, V0, can be checked independently
of local Galactic parameters in two ways (Kuzmin 1956b). Firstly, the radial gradient
of the mass distribution function must be in accordance with the mean observed radial
gradient of the spatial density, GR(ρ)0. Secondly, the limiting radius of the model,
Rlim, must be equal to Rapogal, the apogalactic distance of stars moving near the Sun
with maximal galactocentric velocities, given by Oort’s limiting velocity.

As recognised by Strömberg (1924) and Oort (1928), no stars with apices within
Galactic longitudes l = 20◦ − 85◦ and heliocentric velocities exceeding 65 km/s
are found. The limiting velocity may correspond to the velocity required to reach
the boundary of the Galaxy (Bottlinger 1933), or to the velocity of escape (Oort
1928). As shown by Kuzmin (1956b), only the first alternative, Rapogal = Rlim,
can be correct. Adopting the second alternative, as done by Schmidt (1956), we get
Rlim ≪ Rapogal ≈ ∞, but this situation is impossible since stars with velocities
smaller than the escape velocity belong to the system and must be included into the
mass distribution function. If these stars are included to the model, we get

Rlim = Rapogal. (7.9)
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7.2. Analysis of existing Galactic models

Table 7.3.: Descriptive functions of the Galaxy model

In left panel of Fig. 7.1 the mass distribution function, µ(a), is given for two values
of the circular velocity, V0. In both cases, the function of differential rotation, U(x),
is the same, and the extrapolation of µ(x) beyond the Sun’s distance, R > R0, is
smooth. In right panel of Fig. 7.1 the dependence of Rlim and Rapogal on V0 is
shown1.

Both methods, the use of the gradient of spatial density and Oort’s limiting veloc-
ity, give the circular velocity values V0 ≈ 250 km/s (Kuzmin 1956b). These possi-
bilities for checking the circular velocity were mentioned by Schmidt (1965). But in
respect of extrapolation of the mass distribution function, his new model is overcor-
rected, as Rlim > Rapogal. The cause is a too low decrease of the mass density in
outer regions of the model according to power law ρ ∝ a−4. The same behaviour has
the model constructed by Takase (1967).

1The possibility of determining the circular velocity, V0, with rather great accuracy on the basis of
Oort’s limiting velocity was discovered by the author, who made most calculations for the Kuzmin
(1956b) model. Details of the method were elaborated together with Kuzmin. Fig. 7.1 was prepared
by the author in February 1956 but was not published in the final version of Kuzmin (1956b) paper.
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7. Galactic model

Figure 7.1.: Left: The extrapolation of the mass distribution function beyond the
Sun’s distance R > R0 (dashed lines) with different values for the cir-
cular velocity near the Sun, V0. Limiting radii of models, Rlim, are in-
dicated. Right: The dependence of limiting radii, Rlim, and apogalac-
tic distances, Rapogal, on circular velocity near the Sun, V0. Two cases
of smooth extrapolation of the mass distribution function with different
Rlim are indicated. Apogalactic distances are given for two values of
Oort’s limiting velocity, ∆ v.

For our Galaxy, we have no direct argument against the power law ρ ∝ a−4 and
Rlim > Rapogal. Photometric observations of other galaxies show, however, that
galaxies have well-defined outer boundaries (Arp & Bertola 1971) with exponential
density law (de Vaucouleurs 1969). If we accept for density the power law ρ ∝ a−4,
and for the circular velocity the Bottlinger (1933) profile as in the model by Takase
(1967), then with increasing a the mass-to-light ratio becomes very great, which is
difficult to accept. On the other hand, if we accept Rlim > Rapogal, then in peripheral
regions of the Galaxy, all stars have small velocity dispersion, and no such stars can
reach in their orbits the Solar region. Data on other galaxies suggest that peripheral
regions of galaxies belong to halo population with large velocity dispersion. For these
reasons, it is not likely that among these halo stars there are none withRperigal ≤ R0.

The structure of the inner parts of models was discussed in detail by Einasto
(1965). Here we shortly discuss new models, suggested after the publication of the
model by Einasto (1965).

One of aspects of the structure of galaxies is the presence of a dense nucleus.
To describe this aspect of the structure of the Galaxy, Schmidt (1965) and Innanen
(1966a) used density laws with infinite density at centre. It is clear that in this region
their models have only the approximate meaning. Such models have the peculiarity
having zero velocity dispersion at the very center. This aspect was ignored by Innanen
& Kellett (1968), where velocity dispersions were estimated for the Innanen (1966a)
model. Presently we have little information on the density of matter near the centre
of the Galaxy. Available data are probably underestimates.
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7.3. A new model of Galaxy

Figure 7.2.: Circular and escape velocities as functions of distance from Galactic cen-
tre.

7.3. A new model of Galaxy

We suppose that the mass distribution of the Galaxy can be represented by a sum
of three ellipsoidal components with various axial ratios ǫ. One ellipsoid represents
spherical populations (halo and bulge), the second ellipsoid represents the disc, and
the third one the flat component.

For mass density distribution of components of the Galaxy, we use the modified
exponential profile:

ρ(a) = ρ0 exp[x0 − (x2N0 + ξ2)1/(2N)], (7.10)

where

ρ0 =
M

a30

h

4πǫ
(7.11)

is the central density, and

ξ = a/(k a0), a2 = R2 + z2/ǫ2. (7.12)

Here M is the mass of the components, a0 is its harmonic mean radius, defined by
the formula

a−1
0 = M

−1

∫ ∞

0
µ(a) a−1da , (7.13)

and N and x0 are structural parameters. h, k are dimensionless normalising pa-
rameters needed to get for the mass and harmonic mean radius definition formulae
Eq. (7.13) and

M =

∫ ∞

0
µ(a)da , (7.14)
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7. Galactic model

Figure 7.3.: Spatial densities ρ, and projected densities P of components as functions
of distance from Galactic centre.

as suggested by Einasto (1968d). We use the harmonic mean radius a0 is the effective
radius of the model. The parameter x0 is introduced to avoid a too sharp density peak
and the resulting minimum in velocity dispersion near the centre of the model. If we
take x0 = 0, we get the exponential density profile as suggested by Einasto (1965):

ρ(a) = ρ0 exp[−ξ1/N ]. (7.15)

We adopted structural parameters of components on the basis of analogy with the
Andromeda galaxy (Einasto 1969b, 1970c). The spherical component combines halo
and bulge populations, which for M31 had ǫ = 0.30 and ǫ = 0.80, respectively. For
Galaxy we used an intermedium value ǫ = 0.6. For disc and flat components we
used ǫ = 0.10 and ǫ = 0.02. These components represent actual populations in the
flatness range 0.05 ≤ ǫ ≤ 0.20 and ǫ < 0.05.

The mean radius of spherical component was determined using photometric data
by Arp & Bertola (1971) on the bulge of Galaxy, and data by Perek (1962) on the
distribution of RR Lyrae variables. The mass of this component was determined
using the rotation velocity in inner parts of the Galaxy (Schmidt 1965). Mean radii
and masses of other two components were estimated on the basis of available data
on the distribution of disc population and young stars. The final values were found
by a trial-and-error procedure to have at R = R0 the adopted values of Oort-Kuzmin
parameters. Parameter x0 was found by a similar procedure to have a monotonous
increase of the velocity dispersion by decreasing a0. The adopted parameters are
given in Table 7.2.
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7.3. A new model of Galaxy

Figure 7.4.: Isolines of angular velocity ω0 and escape velocity Vk are shown in left
and right panels, respectively

Table 7.4.: Parameters of test components of the Galaxy

Popul. ǫ a0 N x0 (σz)0 σz σR Vθ t
kpc km/s 109yr

Flat 0.02 8.0 0.5 0.0 8.8 8.8 16.4 250 0.9
Disc 1 0.05 7.4 1.0 1.5 20.4 19.9 37.3 239 3.9
Disc 2 0.10 6.4 1.5 3.0 34.7 34.4 64.5 216 7.6
Halo 1 0.20 4.5 2.0 4.5 52.8 51.7 84.3 185 9.1
Halo 2 0.40 1.9 3.0 7.5 75.2 71.4 92.8 142 9.4
Halo 3 0.60 0.9 4.0 10.5 92.6 85.9 100.9 96 9.7
Halo 4 0.80 0.6 5.0 13.5 108.3 98.5 109.8 46 10.0

We calculated for our model all principal descriptive functions. For the Galactic
plane z = 0 we found: Oort-Kuzmin parameters A, B, C , angular velocity ω0, cir-
cular velocity Vc, escape velocity Vk, and ratios of velocity dispersions kθ and kz .
These data are given in Table 7.3. Circular velocity and escape velocity as functions
of distance from the Galactic centre are shown in Fig. 7.2. Spatial densities ρ and pro-
jected densities P of components are shown in Fig. 7.3. Isolines of angular velocity
ω0 and escape velocity Vk are given in Fig. 7.4.

A few comments on the results obtained. Of special interest is the angular velocity
ω0. It was calculated using the first hydrodynamical equation by Einasto & Rümmel
(1970b), see Chapter 11, which for small velocity dispersion, σR → 0, has the form

V 2
θ = RKR = V 2

c , (7.16)
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Figure 7.5.: Descriptive functions for the test population of flattening ǫ = 0.02.

where KR = −∂Φ/∂R, and Φ is the gravitational potential. On the z = 0 surface
ω0 = Vc/R, where Vc is circular velocity. Fig. 7.4 shows that in the R, z surface
isolines of ω0 are slightly flattened ellipsis. From the theory of stationary galaxies
it follows that isolines of ω0 should be spheres (Kuzmin 1956b). Assumptions of
stationary galaxies are not exact, thus, small deviations from spheres are likely.

When we compare description functions of our Galaxy with similar functions for
the Andromeda galaxy (Einasto & Rümmel 1970b), we see that they are very similar.
The only large difference is in the structure of central regions. Presently we have little
data on the structure of the nucleus of the Galaxy. For this reason, the nucleus was
not included as a component. Available data suggest that the nucleus of the Galaxy is
similar to the nucleus of M31. If this is correct, then the central density of the Galaxy
would be of the order 106M⊙pc

−3, and the velocity of escape about 1500 km/s, i.e.
two times higher than adopted in the present model. To understand the structure of
the central regions of the Galaxy, new observational data are needed.
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7.4. Kinematics of population

Figure 7.6.: Descriptive functions for the test population of flattening ǫ = 0.05.

7.4. Kinematics of population

We used the model to find various characteristics of the spatial and kinematical struc-
ture of test populations. These test populations are listed in Table 7.4, they represent
various actual Galactic populations. The following data are listed: flattening ǫ, ef-
fective radius a0, structural parameters N and x0, normalising parameter k, vertical
velocity dispersion (σz)0 at the Sun distance in Jeans approximation, vertical veloc-
ity dispersion σz at the Sun distance, radial velocity dispersion σR at Sun distance,
rotational velocity Vθ at Sun distance, and estimated age t.

For test populations, we calculated various descriptive functions, shown in
Figs. 7.5 to 7.11. These Figures have three panels.
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Figure 7.7.: Descriptive functions for the test population of flattening ǫ = 0.10.

In the upper panel, we show with solid lines the density logarithm, ln ρ, with dot-
ted lines the vertical density gradient, l = −∂ log ρ/∂z, and with dashed lines the
velocity dispersion (σz)0 in Jeans approximation, see Chapter 11. Velocity disper-
sion (σz)0 was calculated within the range 0 ≤ z ≤ zu, where zu is the outer vertical
limit of the population. All functions are plotted as functions of z at R = 10 kpc,
the adopted distance of the Sun from Galactic centre. The vertical scale z is shown at
the top of the panel, the density scale is on the left border, and the velocity dispersion
scale on the right border.

Central panels of Figures show with solid lines the logarithm of the density, ρ,
with dotted lines radial density gradient, m = −∂ log ρ/∂R, and with various dot-
dashed lines velocity dispersions σR, σθ, σz . These data are given as functions of
R on the plane of the Galaxy, z = 0. The radial distance scale R is shown at the
lower border of the Figure, the density scale is on the left vertical border, and the ve-
locity dispersion scale on the right border. Densities are given in units of the central
density, gradients l and m in kpc−1, dispersions in km/s. Vertical velocity disper-
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7.4. Kinematics of population

Figure 7.8.: Descriptive functions for the test population of flattening ǫ = 0.20.

sions σz were calculated from the second hydrodynamical equation (11.5), using for
kz Kuzmin equation (16.4) from the theory of irregular forces. Radial velocity dis-
persions σR were found from definition equation (11.8) from σz and kz , taking into
account the Kuzmin equation (16.4). For the test populations with ǫ ≥ 0.10 radial ve-
locity dispersions were also calculated from the first hydrodynamical equation (11.4)
from circular velocity Vc and rotational velocity Vθ , this dispersion is marked as σ∗R.
Figs. 7.7 – 7.11 show that in disc populations both versions of the radial velocity
dispersion are very similar, but in halo populations σR is larger than σ∗R.

In bottom panels we show with dashed lines isolines, ρ = const and with solid
lines isolines (σz)0 = const, in the plane of R, z-coordinates, shown at the bottom
and the left border of the panel. Velocity dispersion σz was calculated within ranges
0 ≤ R ≤ 30 kpc and 0 ≤ z ≤ zu, where zu is the outer vertical limit of the
population. We see that in disc populations lines (σz)0 = const are vertical, i.e.
the velocity dispersion at given radial distance is constant. In halo populations lines
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Figure 7.9.: Descriptive functions for the test population of flattening ǫ = 0.40..

(σz)0 = const are similar to lines of constant density. A similar picture is observed
in the M31 galaxy, see Fig. 20.10.

Now we discuss our results in some detail.

Velocity dispersions of disc populations have maxima at center and decrease with
the distance from the Galactic center. In halo populations velocity dispersions near
the center have a moderate minimum, a maximum not far from the center, and de-
crease at larger distance. The radial density gradient is zero at R = 0, and increases
continuously with increasing distance for disc populations, ǫ = 0.02, 0.05. For
halo populations the gradient has a maximum at certain distance from the center, and
slowly decreases at larger distance.

A remarkable property is the form of isolines of vertical velocity dispersion
σz = const. Outside central regions of the Galaxy, isolines of velocity dispersion
of flat and intermediate populations are almost vertical, i.e. velocity dispersions de-
pend very weakly on z. Available observational data support this picture. A different
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Figure 7.10.: Descriptive functions for the test population of flattening ǫ = 0.60.

picture was obtained by Innanen & Kellett (1968). Velocity dispersion isolines for
his model (Innanen 1966a) were almost parallel to density isolines ρ = const, i.e.
velocity dispersion σz rapidly decrease with the increase of z. The reason for this dis-
crepancy between models is the Schmidt density law with a sharp boundary, accepted
by Innanen.

On the z = 0 surface, we can take into account corrections to σz, using the gradient
of the tilt of the velocity ellipsoid. Applying equations from Chapter 11, we have in
the Jeans approximation

Q⋆(σ2z)0 = R2C2, (7.17)
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Figure 7.11.: Descriptive functions for the test population of flattening ǫ = 0.8.

where C is the dynamical Kuzmin constant, (σz)0 — the vertical velocity dispersion
in Jeans approximation, and

−Q⋆ = R2

(

∂2 lnσ2z
∂z2

+
∂2 ln ρ

∂z2

)

. (7.18)

Taking into account the gradient of the tilt of the velocity ellipsoid, we get

Qσ2z = R2C2, (7.19)

where
Q = Q⋆ − q′, (7.20)

and q′ is given by the Eq. (11.29). In calculations, we used Q⋆ not from Eq. (7.18)
but from Eq. (7.17), since (σz)0 is already known. Parameter q′ was calculated using
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Figure 7.12.: The dependence of kz = σ2z/σ
2
R on ǫ at R = 10 kpc and z = 0.

Eq. (11.29). Results of calculations are given in upper panels of Figs. 7.5 to 7.11. We
see that the tilt of velocity ellipsoid decreases velocity dispersions slightly. Near the
axis of the system R = 0, this factor increases the velocity dispersion. In this way,
according to the virial theorem, the mean value of the dispersion does not change.

The first hydrodynamical Eq. (11.1) is usually applied to calculate the centroid
velocity, Vθ, from the velocity dispersion, σR. The last quantity is calculated using
the definition equation

kz =
σ2z
σ2R

, (7.21)

from σz and kz . The vertical dispersion can be found from the second hydrodynami-
cal Eq. (11.2), and kz from Eq. (11.26) and Eq. (11.11).

This method of finding σR gave satisfactory results only for flat populations. The
higher the velocity dispersion, the more the calculated centroid velocity differs from
the observed one. Starting from some σR, the pressure component of the hydrody-
namical equation becomes larger than the right part of the equation, and the centroid
velocity becomes imaginary. This absurd result shows that we have made an error in
our calculations.

This hydrodynamical equation can be written in the form Eq. (11.4)

V 2
θ − p σ2R = V 2

c , (7.22)

where the dimensionless coefficient p has on the symmetry plane of the galaxy the
form Eq (11.19). Initially, we suspected that the non-correct result was caused by the
wrong calculation of the coefficient p. However, a careful analysis brought us to the
conclusion that non-accuracy in the calculation of p cannot be so large to bring us to
such an absurd result. It remains to check the correctness of the determination of the
dispersion σR.

As written above, we calculated the dispersion σR using Eq. (7.21). The vertical
dispersion σz is determined accurately. There remains to search the error in the co-
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7. Galactic model

efficient kz . It was calculated using the Kuzmin Eq. (11.26), which was defined only
for flat populations.

In the Solar neighbourhood, the dispersion σR can be calculated directly using
Eq. (7.22), since Vθ can be found from observations, and the coefficient p calculated
either from observational data or from model. In the latter case, the Eq. (11.19) is
applied. The obtained dispersion σR was used to adjust kz using Eq. (7.21).

The relationship between the velocity dispersion and the centroid velocity was de-
termined using the mean velocity dispersion σ. Thus, we need a relationship between
the mean dispersion σ and the dispersion in the radial direction σR. It has the form

σ2z =
3kz

1 + kθ + kz
σ2. (7.23)

The coefficient kθ was calculated from the relation
(

1− kθ
1− kz

)

=

(

1− kθ
1− kz

)

0

, (7.24)

where index 0 is for kθ and kz on the plane of the population.
To determine the dispersion σR, another method can be used, which applies the

first hydrodynamical equation as a differential equation for σR. To solve this task,
we need to express Vθ as a function of R. We are interested in solving this equation
for spherical populations, which have low rotational velocities, Vθ ≪ V . Since Vθ
is low, small non-accuracies in this quantity do not influence our result. Thus we
accepted

Vθ(R) = β Vc(R), (7.25)

where β is a parameter, constant for a given population. Its value can be estimated
from kinematical data of populations near the Sun. The solution of the first hydrody-
namical equation can be written in the form

σ2R(R) = α

∫ ∞

R
KR(R

′)
ρ(R′)

ρ(R)

L(R′)

L(R)
dR′ , (7.26)

where
α = 1− β2 (7.27)

and

L(R) = exp

[

−
∫ R1

R
p(R⋆)

dR⋆

R⋆

]

. (7.28)

Here R1 is a certain distance which later disappears, and

p(R) = (1− kθ) + nR(1− kz), (7.29)

where nR is expressed by Eq. (11.21). If we take p = 0, then L = 1 and we get the
velocity dispersion in Jeans approximation. We calculated σR for p = 0 and for p
according to Eq (7.29).
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7.5. Density distribution of populations

Results of these calculations are shown in Figs. 7.5 to 7.11. These results show,
first, that the radial velocity dispersion of populations is not constant as expected
from the theory, using the assumption that the ellipsoidal distribution of velocities is
fulfilled accurately. Furthermore, our results show that ratios of velocity dispersions
depend on dispersion. If the dispersion is small, then kz approximates to the value
given by Kuzmin equation. When the dispersion increases, then kz also increases, see
Fig. 7.12. Such a result is expected, since iso-surfaces of densities approach spheres,
which in the limit approach spheres, determined by the escape velocity.

7.5. Density distribution of populations

For all test populations, we calculated spatial densities in meridional surfaces R, z,
projected densities P , and density gradients in radial and vertical directions.

Consider first the density distribution in radial directions. Density gradients near
the Sun,

m = −∂ log ρ
∂R

, (7.30)

are close to values expected from observations (Kukarkin 1949; Parenago 1954b;
Blaauw & Schmidt 1965). In central regions of the Galaxy, the density gradient m
of the halo populations is much larger than near the Sun. This is in good agreement
with results by Baade (1958) for the Galaxy and Sharov (1968a,c) for M31. This
agreement demonstrates that our test population model and its scale parameters were
chosen properly.

The vertical density distribution is often accepted according to an exponential law
(Kukarkin 1949; Parenago 1954b)

ρ(z) = ρ0 exp−|z|/β, (7.31)

where β is a parameter, inversely proportional to the gradient of density logarithm,

β−1Mod = l = −∂ log ρ
∂z

. (7.32)

If the density behaves according to Eq. (7.31), then the gradient l should be constant.
Our calculations show that the gradient is not constant. This shows that Eq. (7.31)

can be used only as the first approximation. Density gradients found in this paper
describe well the observed distributions of stars. We cannot expect a full coincidence,
since the observed populations of stars are not completely homogeneous but consist
of several close populations with slightly variable properties, for instance, sums of
several our close test populations.

September 1971
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Methods to calculate spatial and

hydrodynamical models of regular stellar

systems
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8. Classification of models. Conditions of physical

correctness

The usual method to describe the structure of galaxies quantitatively is to construct
respective mathematical models. A review of models of galaxies is given by Perek
(1962). A more detailed discussion of modelling methods is made by Kutuzov &
Einasto (1968), which forms Chapter 8 of the original Thesis. In this English ver-
sion, we describe one aspect of the calculation of models — conditions of physical
correctness.

In general, models of galaxies can be characterised as spatial/hydrodynamical, the-
oretical/empirical, general/detailed. Theoretical models are devoted to explaining
particular theoretical properties, such as the model by Kuzmin (1952c, 1954) to ex-
plain the third integral of motions. Examples of empirical spatial models are models
of the Galaxy by Idlis (1956), Schmidt (1956) and Einasto (1965). An example of a
hydrodynamical model is the model of M31 by Einasto & Rümmel (1970b).

The conditions of physical correctness can be expressed in the following way
(Einasto 1969a):
(a) the spatial density ρ(a) must be non-negative and finite,

0 ≤ ρ(a) <∞; (8.1)

(b) the density should decrease with growing distance from the centre of the system:

G{ρ(R)} =
∂ ln ρ

∂ lnR
≤ 0; (8.2)

(c) the descriptive functions should not have breaks;
(d) some moments of the mass-function should be finite:

M i =

∫ ∞

0
µ(a) aida <∞, (8.3)

where µ(a) = 4πǫρ(a) a2 is the mass function;
(e) the model should allow stable circular motions. In that case

G{F 0
R(R)} =

∂ lnF 0
R

∂ lnR
> −1. (8.4)

Here F 0
R(R) = FR(R)/M is the normalised acceleration function – the ratio of

radial acceleration of the model to the radial acceleration of a mass-point model with
the same mass M . For a mass point F 0

R(R) ≡ 1.
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8. Classification of models. Conditions of physical correctness

Real stellar systems have finite dimensions and finite densities. Therefore, all mo-
ments of the mass function, M i, i ≥ −2, are finite. But the requirement of the
finiteness of all moments is too strict. Therefore, we suppose that only moments of
the order, −2 ≤ i ≤ 2, must be finite. Moments M−1 and M 0 determine the central
potential and the mass of the model, respectively. Moment M 1 defines the effective
radius of the model, see Eq. (7.13).

July 1969
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9. Description functions and parameters

The problem of constructing an empirical model of a particular stellar system consists
of fixing description functions and determination of their parameters. The aim of this
paper is to discuss description functions and parameters of stellar systems and their
models in general terms. The full text of this Chapter is published by Einasto (1968a).
We here give a short summary of the main points.

We assume in galactic modelling that galaxies consist of a sum of ellipsoidal com-
ponents of axial symmetry around the z-axis, and that all components have the identi-
cal symmetry plane z = 0. Components have the vertical to radial axis ratio: ǫ = c/a,
where c is the minor semiaxis of the density ellipsoid, and a is the major semiaxis of
the density ellipsoid: a2 = x2 + y2 + (z/ǫ)2.

The main description functions for Galactic modelling are the following:
ρ(a) — spatial density of mass;
µ(a) — mass function;
P (a) — projected mass density (definition below);
l(a) — spatial luminosity density;
L(R) — projected luminosity density;
V (R) — circular velocity.
In these equations, a is the major semiaxis of the equal density ellipsoid, and R is the
radial distance from the centre of the galaxy.

Description functions are connected by the following equations: the mass function,

µ(a) = 4πǫρ(a) a2, (9.1)

the projected density function,

P (A) =
1

2π E

∫ A◦

A

µ(a) da

a
√
a2 −A2

, (9.2)

here A is the major semiaxis of the projected density,

A2 = X2 + E−2 Y 2, (9.3)

where E = ǫ/A is the axial ratio of the projected density ellipsoid. The projected
and spatial density ellipsoid axial ratios are related as;

E2 = cos2i+ ǫ2 sin2i, (9.4)

where i is the inclination angle of the symmetry axis of the galaxy to the line of sight.
Spatial mass and luminosity densities are related as:

ρ(a) = f l(a), (9.5)
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9. Description functions and parameters

where f is the mass-to-light ratio of a given component.
The circular velocity is related with the mass function as follows:

V (R)2 = G

∫ R

0

µ(a) da√
R2 − a2e2

, (9.6)

where G is the gravitational constant, and e2 = 1−ǫ2. In these equations, we assume
that the stellar system can be divided into a number of homogeneous components,
each with its axial ratio ǫ and mass-to-light ratio f = ρ(a)/l(a) = P (A)/L(A).

The descriptive parameters of stellar systems and their models can be divided into
three groups:

a) the model-parameters — parameters in the analytical expressions of descriptive
functions in the special models of stellar systems;

b) the gross-parameters — integral quantities, characterising the structure of a stel-
lar system as a whole;

c) the local galactic parameters — values of the galactic descriptive functions or
their combinations for the surrounding of the Sun.

The model- and gross-parameters can be divided into three kinds of parameters:
scale-, concentration-, and flattening parameters, the latter two kinds of parameters
can be called together as the structural ones. There are two scale parameters, one
of them determines the scale of the model in the space, the other the scale of the
density (or the mass). The concentration and flattening model-parameters determine
the concentration of mass to the centre of the model and the form of the equidensity
surfaces.

The gross-parameters are defined by means of the moments of the mass-function,
µ(a). It is proposed to use the effective radius, Re, and the mass, M , of the system as
scale gross-parameters. A dimensionless concentration gross-parameter is the index
ν in the generalised exponential model, Eq. (5.4). Dimensionless flattening parameter
is the axial ratio of equidensity ellipsoid ǫ.

In practical use, it is common to accept mass functions of components using suit-
able approximation density profiles, and to find the circular velocity from Eq. (9.6)
by summing the contribution of all components.

April 1967
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10. Calculation of models of spatial structure

In previous papers in this series, I discussed the classification of stellar system mod-
els, the description functions and parameters of models, and the type of relations
between the description functions. This article is devoted to the methodology of
model building. In this case, the model of a stellar system is defined as a collection
of mass or luminosity distribution functions, constructed for a particular stellar sys-
tem and given in a numerical form. We assume that the stellar system has axial and
planar symmetry, and that it consists of a finite number of physically homogeneous
spheroidal components. The full text of the Chapter is published by Einasto (1968d).
Here we give a short summary.

The basic input data to find a composite model of a galaxy are luminosity distribu-
tions of components, and in some cases rotation velocities of components. The total
luminosity distribution of the galaxy is the sum of distributions of its components:

L(X,Y ) =

n
∑

k=1

Lk(Ak), (10.1)

where n is the number of components,

A2
k = X2 + E−2

k Y 2, (10.2)

is the major semiaxis of the projected equidensity ellipse, X and Y are rectangular
projected coordinates, and

E2
k = cos2 i+ ǫ2k sin

2 (10.3)

is the axial ratio of the projected density ellipsoid of the component, and i is the
inclination angle of the symmetry axis of the galaxy to the line of sight. The projected
luminosity distribution is related to the spatial mass function as follows:

Lk(Ak) =
1

2π Ek

∫ A◦

Ak

µk(a) da

fk a
√

a2 −A2
k

, (10.4)

where
µk(a) = 4πǫkρk(a) a

2, (10.5)

is the mass function of the component k, fk is the mass-to-light ratio of the compo-
nents, and ǫk is the axial ratio of its spatial density ellipsoid.

Similarly, the total velocity function is a sum of circular velocity functions of com-
ponents:

V (R)2 =

n
∑

k=1

Vk(R)
2, (10.6)
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10. Calculation of models of spatial structure

where the circular velocity function of components is:

Vk(R)
2 = G

∫ R

0

µk(a) da
√

R2 − a2e2k

. (10.7)

The task of modelling a stellar system is to calculate from the available observa-
tional data all necessary functions and parameters to describe a stellar system. The
modelling procedures vary widely depending on the availability of observational ma-
terial, on the way of solving the main integral equations (10.4) and (10.7), and the
resulting form of model representation. The procedures of extrapolating and interpo-
lating the observed description functions are quite different. All these aspects allow
further methodological refinement and specification in the classification of the mod-
els, proposed by Einasto (1968a).

Let us now consider in a little more detail some aspects of stellar system modelling.
A. It is well known that in the case of stellar systems visible from the outside,

observations allow to determine:
1) the projected luminosity distribution function LS(X,Y ) in photometric system

S (it is assumed that LS(X,Y ) is corrected for the effects of light absorption);
2) the rotational velocity of selected subsystems Vθ, from which, under known

assumptions, it is possible to calculate the circular velocity V (R);
3) the dispersion of velocities of stars in the system;
4) the integral spectrum of the system, which allows to find the stellar composition

of the system for the given velocity function and the ratio of mass to light f .
The most complete model can be constructed if all these data are known. In this

case one can speak about a synthetic model of the stellar system. If only the projected
density is known from observations, one can construct a photometric model of the
system. In case only the spectral data are given (points 2-4), then a dynamical model
can be constructed.

A special case in the stellar systems modelling is the construction of a model of
our Galaxy, because neither the L(A) function nor the V (R) function can be found
directly from observations. The velocity function can be calculated indirectly from
the differential rotational velocity of the subsystems U(x), using the formula

V (x) = U(x) + xV0, (10.8)

where V (x) is circular velocity, x = R/R0, V0 is circular velocity in the vicinity of
the Sun, and R0 is the distance of the Sun from the centre of the Galaxy. The be-
haviour of the function L(A) can only be judged from the analogy with other galax-
ies. On the other hand, it is possible to determine circumsolar values for a number of
other description functions.

The coupling formulas (10.4) to (10.7) are integral equations in respect to the basic
description function µk(a). The integral equations can be solved numerically, in this
case we obtain the description functions also in a numerical form, and the result is
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a numerical model. The integral equations can also be solved parametrically. By
setting the analytical form of one description function, we can calculate all other
description functions. The model parameters can be found by approximating the
observed functions by the corresponding analytic description functions.

B. The construction of the model has other important aspects. It is well known that
the functions L(X,Y ) and V (R) cannot be deduced from observations up to the outer
limit of the system. The peripheral regions of the system are so weak that they are lost
against the general background of the sky. When constructing a model of the whole
stellar system, the description functions are therefore extrapolated. The extrapolation
can be done numerically, as done in the model of the Galaxy by Kuzmin (1952a),
following the rules of physical correctness, see Chapter 8. The other possibility is to
use analytical expression for the main description function the spatial density ρ(a) or
some other description function, again following rules of physical correctness.

In most models of galaxies, the mass density function of components, ρk(a), is
given by a suitable analytical expression, and the construction of the model reduces
to the determination of parameters of the density function for all components.

September 1967

63



10. Calculation of models of spatial structure

64



11. Calculation of hydrodynamical models

The theoretical foundation of the hydrodynamics of stellar systems was discussed
among others by Kuzmin (1952a,c, 1954, 1956b,a, 1962, 1963b,a, 1965). In this
Chapter, we analyse the application of the hydrodynamical theory to find practical
solutions to calculating models of real stellar systems. This analysis was made with
the goal to calculate hydrodynamical models of the Andromeda galaxy M31 (Einasto
& Rümmel 1970b) and our own Galaxy (Chapter 7). The Chapter was published by
Einasto (1970c).

11.1. Equations to calculate kinematical functions

As known, gravitational acceleration can be calculated from the mass distribution
(Schmidt 1956; Perek 1962). Components of gravitational acceleration in radial and
vertical directions KR = −∂Φ/∂R and Kz = −∂Φ/∂z (Φ — gravitational po-
tential) are related to kinematic functions according to hydrodynamical equations
(Kuzmin 1965; Einasto 1969a):

1

R

(

σ2R − σ2θ
)

+
1

ρ

∂

∂R

(

ρσ2R
)

+
1

ρ

∂

∂z

[

ργ
(

σ2R − σ2z
)]

− V 2
θ

R
= −KR, (11.1)

1

R
γ
(

σ2R − σ2z
)

+
1

ρ

∂

∂R

[

ργ
(

σ2R − σ2z
)]

+
1

ρ

∂

∂z

(

ρσ2z
)

= −Kz. (11.2)

In these equations σR, σθ, σz are velocity dispersions in cylindrical galactocentric
coordinates R, θ, z; Vθ is the centroid velocity; ρ is the matter density and

γ =
1

2
tan 2α, (11.3)

where α is the inclination angle of the major axis of the velocity ellipsoid with respect
to the galactic symmetry plane. It is assumed that the major axis of the velocity
ellipsoid lies in the meridional plane of the galaxy, and the remaining components of
the centroid velocity are VR = Vz = 0.

Calculating the necessary derivatives, Eqs. (11.1) and (11.2) can be written as

V 2
θ − pσ2R = RKR = V 2

c , (11.4)

and
1

ρ

∂(ρσ2z )

∂z
+ q

σ2z
R

= −Kz, (11.5)
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11. Calculation of hydrodynamical models

where

p = (1− kθ)+GR{ρ}+GR{σ2R}+
R

z
γ (1− kz) [Gz{ρ}+Gz{γ}+Gz{1− kz}] ,

(11.6)
and

q = γ

(

1

kz
− 1

)

[

1 +GR{ρ}+GR{γ}+GR{σ2R − σ2z}
]

. (11.7)

In these equations

kθ =
σ2θ
σ2R

, kz =
σ2z
σ2R

, (11.8)

and G{ } is the logarithmic derivative, e.g.

GR{ρ} = G{ρ(R)} =
∂ ln ρ

∂ lnR
. (11.9)

Equations (11.4) and (11.5) include five unknown kinematical functions: σz , Vθ,
kθ, kz , γ. To calculate these functions, we have only two equations at present, thus the
system of hydrodynamical equations is not closed. To solve the problem, one needs
to have three additional independent relations between these unknown functions. It
is convenient to give these additional relations for kθ , kz , and γ, which determine the
shape and the orientation of the velocity ellipsoid. In this case Eq. (11.5) allows to
calculate the dispersion σz , giving the scale of the velocity dispersion, and Eq. (11.4)
allows to calculate the centroid velocity Vθ, giving the shift of the velocity ellipsoid
with respect to the local standard of rest.

The calculation of the hydrodynamical model of a galaxy reduces thus to the prob-
lem of finding equations for auxiliary kinematical functions kθ, kz , and γ. In papers
about stellar dynamics, this problem has not yet been discussed with sufficient thor-
oughness. For this reason, we first give a review of various solutions of the problem.

11.2. Methods to close the system of hydrodynamical equations

11.2.1. The method by Jeans-Oort

From the classical stellar dynamics, the following relations result for ratios kz and
kθ:

kz = 1, (11.10)

kθ =
−B
A−B

, (11.11)

where A and B are Oort kinematical parameters. Expressing A and B in terms of the
centroid velocity Vθ and its radial gradient, we have

kθ =
1

2
[1 +GR{Vθ}] . (11.12)
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11.2. Methods to close the system of hydrodynamical equations

In this way Eqs. (11.6) and (11.7) will have the form

p = (1− kθ) +GR{ρ}+GR{σ2R}, (11.13)

q = 0, (11.14)

and the quantity γ vanishes altogether from the system of corresponding equations.
The first hydrodynamical equation can be solved by successive approximations (Vθ
contains also in p) by taking p = 0 as a zero-approximation. The second equation
has a simple solution

σ2z = ρ−1

∫ ∞

z
Kz ρdz , (11.15)

being appropriate to be called as the Jeans solution. This method has been used by
Oort (1940) and Innanen & Fox (1967).

11.2.2. The method by Innanen and Kellett

In spherical stellar systems (e.g. in globular clusters), the major axis of the veloc-
ity ellipsoid is directed toward the centre of the system (Michie 1961; Agekyan &
Baranov 1969), and in this case

tanα =
z

R
. (11.16)

In elliptical and spiral galaxies, the velocity ellipsoid is also tilted with respect to the
symmetry plane, but the corresponding inclination angle is different. Following Oort
(1965) and Innanen & Kellett (1968) we get

γ =
z

R
. (11.17)

From observations it is known that σz 6= σR, and thus Eq. (11.10) is not valid. For
this reason, Innanen and Kennett used the relation

kz = µ−2, (11.18)

where µ is a constant. Ascribing different values to µ with the help of successive
approximations, authors calculated σz by integrating Eq. (11.5). As a zero approxi-
mation the velocity dispersion was calculated from Eq. (11.15). Applying the method
to a three-component model of the Galaxy, authors found that in case of flat and inter-
mediate subsystems the method of successive approximations converges for µ < 3.
In the case of the halo the process converges only for µ < 1.2.

As the selection of the parameter µ remained open, and the centroid velocity was
not calculated, Innanen and Kennett did not finalise the problem of solving the hy-
drodynamical equations. In addition, Eq. (11.17) can be used only as a rather rough
first approximation (see below).
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11. Calculation of hydrodynamical models

11.2.3. The method based on the Kuzmin theory

The problem of solving the hydrodynamical equations was studied also by G. G.
Kuzmin. However, he studied the problem for a flat component only. As we see
below, the method can be generalised for a spatial mass distribution.

In case of z = 0, the velocity ellipsoid is not tilted with respect to the galactic
plane, and γ = 0, but ∂γ/∂z 6= 0. Thus, the Eq. (11.6) for the parameter p will have
the form

p = (1− kθ) + nR (1− kz) +GR{ρ}+GR{σ2R}, (11.19)

where

nR = R

(

∂γ

∂z

)

z=0

. (11.20)

On the basis of his theory of the third integral of motion of stars as a quasi-integral,
Kuzmin (1962) demonstrated that

nR = −1

4
GR{C2

c }
[

1 +
Bc(Ac −Bc)

C2
c

]−1

, (11.21)

where Ac, Bc, Cc are the Oort-Kuzmin dynamical parameters, i.e.
(

∂2Φ

∂z2

)

z=0

= −C2
c , (11.22)

and Ac and Bc correspond to the circular velocity. They are related with the gravita-
tional potential according to equations

(

∂2Φ
∂R2

)

z=0
= (Ac −Bc)(3Ac −Bc),

(

1
R

∂Φ
∂R

)

z=0
= −(Ac −Bc)

2.
(11.23)

The Poisson equation has in Ac, Bc, Cc terms for z = 0 the form

4π Gρt = C2
c − 2(A2

c −B2
c ), (11.24)

where ρt is the total matter density. Using the Poisson equation in this form, and tak-
ing into account that Ac, Bc ≪ Cc, Kuzmin (1962) derived an approximate formula

nR = −1

4
GR{ρt}. (11.25)

It is not possible to calculate the dispersion ratio kz on the basis of classical stellar
dynamics, since the form of the velocity ellipsoid in z-direction is determined by
irregular forces, which were not taken into account in the classical theory. The theory
of irregular forces gives us the following relation between the velocity dispersion
ratios (Kuzmin 1961, 1963a)

k−1
z = 1 + k−1

θ . (11.26)

This equation was derived for the case of flat subsystems, and its validity in the
general case is not clear yet. It allows to calculate kz when kθ is known. The quotient
kθ can be calculated in the case of flat components from the Lindblad’s formula
(11.12).
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11.3. Solution of hydrodynamical equation for z = 0

11.3. Solution of hydrodynamical equation for z = 0

Let us discuss now in a somewhat more detail the questions related with solving the
hydrodynamical equations in the galactic plane.

All three auxiliary kinematical functions kθ , kz and nR can be calculated from the
mass distribution model. To calculate kθ we may take Vθ ∼ Vc, as a first approxima-
tion.

The first hydrodynamical equation allows to calculate quite easily the centroid
velocities Vθ of galactic components. The density gradient GR{ρ} is given by the
mass distribution model; velocity dispersions and their gradients can be calculated
by solving the second hydrodynamical equation with respect to σz , assuming that
auxiliary functions kθ, kz , nR are known. Thus, the problem reduces to the solution
of the second hydrodynamical equation.

In the galactic plane, the second hydrodynamical equation (11.2) reduces to iden-
tity 0 ≡ 0. Hence, let us take a derivative from the equation with respect to z at
z = 0. This gives us

Qσ2z = R2C2
c , (11.27)

where

Q = −
(

q′ +R2∂
2 ln ρ

∂z2
+R2∂

2 lnσ2z
∂z2

)

, (11.28)

while

q′ = nR

(

1

kz
− 1

)

[GR{ρ} +GR{nR}+GR{1− kz}] . (11.29)

Equations similar to (11.27)–(11.29) were derived by Kutuzov (1964). However, they
were not used, as it was not known how to calculate ∂2 lnσ2z/∂z

2.
In the case of ellipsoidal density distribution, there exists a relation

R2∂
2 ln ρ

∂z2
= ǫ−2

ρ GR{ρ}, (11.30)

where ǫρ is the ratio of the semiaxis of isodensity surfaces. By making a similar
assumption in case of σ2z , we find

R2∂
2 lnσ2z
∂z2

= ǫ−2
σ GR{σ2z}, (11.31)

where ǫσ is the ratio of semiaxis of isosurfaces of dispersions σ2z . The gradient
GR{σ2z} can be calculated from Eq. (11.27). Ratio ǫσ can be calculated, if we know
also the distribution of the dispersions σ2z in the system axis R = 0.

In the case of spherical subsystems, all three terms in the formula for Q have
a similar order of magnitude. In the case of intermediate and flat subsystems, the
second term dominates, and in the last case all remaining terms are even negligible
(see Kuzmin 1952b). Thus, for flat subsystems we have

C = Cc, (11.32)
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11. Calculation of hydrodynamical models

where
C = σz/ζ (11.33)

is the Kuzmin’s kinematical parameter, and

ζ−2 = −∂2 ln ρ/∂z2. (11.34)

The second hydrodynamical equation allows also to calculate the mean velocity
dispersion in the symmetry plane of the galaxy.

According to the definition

Kz = −
∫ z

0

∂2Φ

∂z2
dz . (11.35)

Using the Poisson equation and neglecting dependences of ∂Φ/∂R and ∂2Φ/∂R2 on
z we have

Kz = 4πG

∫ z

0
ρt dz + 2(A2

c −B2
c ) z. (11.36)

We calculate the velocity dispersion within the Jeans approximation, i.e. by neglect-
ing the tilt of the velocity ellipsoid outside the plane of the galaxy. Substituting
(11.36) into (11.15) we derive

(

ρtσ2z

)

0
=
πGP 2

2

(

1 +
A2

c −B2
c

πGρt

z

ze

)

, (11.37)

where P is the total projected matter density, ze = P/2ρt is the effective half-
thickness of the galaxy, and

z =

∫∞
0 ρtz dz
∫∞
0 ρt dz

. (11.38)

Equation (11.37) cannot be used in the central regions of the galaxy, where it is not
justified to neglect dependences of ∂Φ/∂R and ∂2Φ/∂R2 on z. Equation (11.37) was
derived by Kuzmin (1956a), and the corresponding correction term was calculated for
a particular galaxy model.

The first hydrodynamical equation had been used by us earlier to estimate the
differences between the centroid velocity and the circular velocity for various galactic
subsystems (Einasto 1961). The second hydrodynamical equation was used only
in its simplest form (11.32) to estimate the value of the dynamical parameter Cc

(Kuzmin 1952b, 1955), but also in the form (11.37) to calculate the mean velocity
dispersion of stars (Kuzmin 1956a). In its complete form, the method of solving the
hydrodynamical equation is used here for the first time.

11.4. Solution of hydrodynamical equations for z 6= 0

We saw above that there is no satisfactory method to solve the hydrodynamical equa-
tions in case of z 6= 0 yet. In the present Section, we propose possible solutions to
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11.4. Solution of hydrodynamical equations for z 6= 0

the problem by using the theory of the quadratic third integral of motion of stars, and
ellipsoidal distribution of their velocities.

At any point of the space (R, z), the direction of the axis of the velocity ellipsoid
defines an orthogonal system of coordinates. Moving along the axis of the velocity
ellipsoid in case of axial and plane symmetry, we have a family of three orthogonal
surfaces called according to Eddington (1915) principal velocity surfaces. If we ac-
cept the existence of the quadratic third integral of motion of stars, then these surfaces
are meridional planes and confocal ellipsoids and hyperboloids. As Eddington (1915)
limited his analysis with a Schwarzschild velocity distribution, this was first derived
in general form by Kuzmin (1952c). Designating corresponding curvilinear coordi-
nates as xi, we have the following relations between xi and cylindrical coordinates
R, θ, z (Kuzmin 1952c)

R2

x2 − z20
+
z2

x2
= 1, x3 = θ, (11.39)

where

x2 =

{

x21 ≥ z20
x22 ≤ z20 .

(11.40)

In these formulae z0 is a constant, corresponding to common foci of ellipsoids and
hyperboloids. They lie on the galactic axis at distances z = ±z0 from the centre.

From the results presented above, it follows that one axis of the velocity ellipsoid
coincides with the axis Vθ in cylindrical coordinates, and the inclination angle of the
other axis with respect to the plane can be given as (Kuzmin 1952c)

γ =
Rz

R2 + z20 − z2
. (11.41)

Let us now look what expressions can be derived for velocity dispersions from the
theory of the quadratic third integral.

It follows from the Jeans theorem that the phase spatial density depends on veloc-
ities and coordinates only through integrals of the motion of stars (Kuzmin 1952c):

I1 = v21 + v22 + v2θ − 2Φ,
I2 = Rvθ,

I3 =
(

x2

z0

)2
v21 +

(

x1

z0

)2
v22 +

(

x1x2

z2
0

)2
v2θ − 2Φ∗,

(11.42)

where vi are velocity components along the main axis of the velocity ellipsoid, and
Φ∗ is a function, related to the gravitational potential Φ. We assume that the velocity
distribution is ellipsoidal with respect to all vi. In this case, it is necessary that the
phase density is a linear function of I1 and I3, and a quadratic function of I2

s = a1I1 + a2I3 − 2
b1
z0
I2 +

b2
z20
I22 . (11.43)
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11. Calculation of hydrodynamical models

In this case, the phase density is a function of velocity components according to a
quadratic expression (x1x2 = ±z z0)

s =

[

a1 + a2

(

x2

z0

)2
]

v21 +

[

a1 + a2

(

x1

z0

)2
]

v22+
[

a1 + a2

(

z
z0

)2
+ b2

(

R
z0

)2
]

[vθ − vθ]
2 ,

(11.44)

where

vθ = Vθ =
b1z0R

a1z20 + a2z2 + b2R2
. (11.45)

In this case, for the axial ratios of the velocity ellipsoid we find

k12 =
σ22
σ21

=
a1z

2
0 + a2x

2
2

a1z
2
0 + b2x

2
1

, (11.46)

k13 =
σ23
σ21

=
a1z

2
0 + a1x

2
2

a1z20 + a2z2 + b2R2
. (11.47)

Velocity dispersions in cylindrical coordinates are

σ2R = σ21 cos
2 α+ σ22 sin

2 α,
σ2z = σ21 sin

2 α+ σ22 cos
2 α,

σ2θ = σ23,
(11.48)

where α is the inclination angle of the major axis of the velocity ellipsoid with respect
to the plane z = 0. From (11.48) we have

kz =
sin2 α+ k12 cos

2 α

cos2 α+ k12, sin
2 α

(11.49)

and

kθ =
k13

cos2 α+ k12 sin
2 α

. (11.50)

In a special case of the galactic plane

x21 = R2 + z20 , k12 = kz
x22 = 0, k13 = kθ,

(11.51)

giving with the help of (11.46) and (11.47)

kz(R, 0) =
a1z

2
0

(a1 + a2)z20 + a2R2
, (11.52)

kθ(R, 0) =
a1z

2
0

a1z20 + b2R2
. (11.53)
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Using the Kuzmin formula (11.26) we see that a1 = a2 = b2 = a. Therefore
(b = b1/a),

Vθ =
bz0R

z20 + z2 +R2
, (11.54)

k12 =
z20 + x22
z20 + x21

, (11.55)

k13 =
z20 + x22

z20 + z2 +R2
. (11.56)

Equations (11.45)–(11.47) were derived already by Eddington (1915), and
Eqs. (11.52)–(11.56) by Idlis (1969), although in a somewhat different form and as-
suming a Schwarzschild velocity distribution.

11.5. Solution of hydrodynamical equations for z 6= 0; a general
case

It was demonstrated already by Eddington (1915, p. 47) that the assumption of the
Schwarzschild velocity distribution leads to an internal contradiction — it is not pos-
sible to find a mass distribution satisfying simultaneously the Poisson equation and
an equation, resulting from the calculations of the phase density. It is not difficult
to see that there will be a similar contradiction when assuming the existence of a
precise quadratic third integral of the motion of stars, and an ellipsoidal velocity
distribution. In the present Section, we study the possibility to calculate auxiliary
kinematic functions, starting from the quadratic third integral as a quasi-integral, and
an approximately ellipsoidal velocity distribution.

The assumption about the symmetrical velocity distribution in vθ direction is ob-
viously in contradiction with observations. Thus, when we calculate now the ratio
of dispersions kθ, we do not use the equations resulting from the ellipsoidal velocity
distribution. Instead, we start from the equation of micromotions (a term introduced
by Kuzmin (1965)), giving us

2kθ = 1 +GR{Vθ}+ γ(1− kz)
R
z Gz{Vθ}+ R

ρσ2
R
Vθ

∂(ρv2
R
vθ)

∂R +

2v2
R
vθ−v3

θ

σ2
R
Vθ

+ R
ρσ2

R
Vθ

∂(ρvRvzvθ)
∂z .

(11.57)

Near the plane z = 0, the first two terms on the right side of (11.57) are dominating,
and we have the usual Lindblad’s formula (11.12). In order to use this equation in a
general case, it is necessary, first, to analyse the vertical gradient of vθ, and also third
moments of velocity components, being beyond the scope of the present paper.

With respect to v1 and v2 axis, as the first approximation, velocity distribution
can be assumed to be ellipsoidal. When we derived the expression for the ratio of
dispersions kz in Section 4, probably a weak point was the assumption that the third
integral of motion is a precise integral. If we admit that the integral is a quasi-integral
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11. Calculation of hydrodynamical models

only, it is necessary in its expansion to take into account also higher-order terms. In
this case, coefficients of terms v21 and v22 in Eq. (11.44) are no longer linear functions
of x22 and x21, respectively, but have a more general form. We expect that the first
coefficient still is a function of x22 only, but the second coefficient will be a function
of x21 in a more general form of f(x2). The ratio of dispersions k12 in this case will
have the form

k12 =
f(x22)

f(x21)
. (11.58)

The theory of the integrals of motion of stars does not allow to fix uniquely the
form of the function f(x2), since the form of the velocity ellipsoid is determined
by irregular forces, which was not taken into account in the theory of integrals of
motions. The action of irregular forces has been studied so far only in the case of
very flat subsystems, giving us the Kuzmin’s formula (11.26), and we shall use it to
calculate f(x2).

In the case of z = 0, the ratio kz is finite and nonzero. Thus, without limiting
generality we may take f(0) = 1 and, taking into account Eq. (11.51), we have

kz(R, 0) = 1/f(R2 + z20). (11.59)

This equation allows to calculate f(x2) if kz and kθ are known, but kθ can be found
from the Lindblad’s formula (11.12).

Equation (11.59) defines the function f(x2) only for x2 ≥ z20 . In the region 0 <
x2 < z20 the function should be interpolated taking into account that according to
definition f(0) = 1.

It is necessary to point out a shortcoming in the calculations of f(x2) from (11.59)
with the help of (11.12) and (11.26). According to the latter equations kz(0, 0) = 0.5,
and hence f(z20) = 2, independent of z0. On the other hand, velocity distribution in
the centre of a spherical system should have also a spherical symmetry, and therefore,
in these systems z0 = 0 and f(z20) = 1, as it follows from the definition of the
function. But in this case, there should be a discontinuity at the centre of the system.
It seems to us that when looking for more and more spherical systems, the function
f(x2) approaches unity not with a jump but smoothly. In other words, the Kuzmin
equation (11.26) in central parts of stellar systems is not valid in the general case.

Finally, let us discuss the generalisation of the equation to calculate the quantity γ.
In the theory of the quadratic third integral, the parameter γ is found using

Eq (11.41), numerical values of γ at (R, z) are determined by the parameter z0. But
the orientation of the velocity ellipsoid is determined by the gravitational potential
of the whole system, and the value of γ can be calculated also directly from the po-
tential. For this we use the differential equation, derived from the theory of the third
integral of motion of stars (Eddington 1915; Kuzmin 1952c)

3

(

1

R

∂Φ

∂R
− 1

z

∂Φ

∂z

)

− 1

γ

∂2Φ

∂R∂z
+
∂2Φ

∂R2
− ∂2Φ

∂z2
= 0. (11.60)
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Strictly speaking, this equation can be used only in the case of the quadratic third
integral. However, differentiating (11.60) with respect to z, expressing potential
derivatives via Oort-Kuzmin parameters (11.22), (11.23), and calculating nR, we
shall have Eq. (11.21), which was initially derived from the theory of the third in-
tegral as a quasi-integral. In this way, when z → 0, Eq. (11.60) remains valid also
when we have the third integral as a quasi-integral. Therefore, we may assume that
we shall not make a significant error by using (11.60) for arbitrary z.

In order to use (11.60) for the calculation of the kinematical function γ it is nec-
essary to calculate first the potential derivatives at all points (R, z) interesting us.
However, these calculations can be largely simplified when using the model potential
as a sum of Kuzmin’s flat model potentials.

Kuzmin (1956a) demonstrated that the existence of the quadratic third integral to-
gether with the natural assumptions about the finiteness of the mass and non-negative
density significantly constrains the number of possible expressions for the galactic
potential. In the limiting case of ǫρ → 0 the expression for the potential has a spe-
cific form

Φ(R, z) =
GM

r
, (11.61)

where M is the mass of the galaxy, and

r2 = R2 + (z ± z0)
2, (11.62)

while sign z0 = sign z. The matter density is in this case

ρ(R, z) = ρ0

(

1 +
R2

z20

)−2

. (11.63)

Starting from the formulae above for the density and potential, Kuzmin constructed
a corresponding model of the Galaxy (Kuzmin 1956a). Comparison of the model with
the empirical one indicates significant deviations. In particular, in the Kuzmin model
there is nearly no nucleus and, on the other hand, the decrease of the density in outer
parts is too slow.

The existence of nuclei and clear outer limits seem to be general properties of
nearly all galaxies. For this reason, the Kuzmin model can be used as the first, quite
rough approximation only. On the other hand, a composite Kuzmin model gives us
quite satisfactory results. In this case

Φ(R, z) = G

n
∑

i=1

Mi

ri
, (11.64)

where Mi are masses of components, r2i = R2 + (z ± z0i)
2 and z0i are scale pa-

rameters of components, and n is the number of components. In the present case, the
separation of the galaxy into components is purely mathematical only, and compo-
nents do not necessarily correspond to real galactic subsystems.
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11. Calculation of hydrodynamical models

Substituting (11.64) into (11.60) and taking into account (11.41), we derive the
following rule to calculate the mean value of the parameter z20 :

z20 =

∑n
i=1 fiz

2
0i

∑n
i=1 fi

, (11.65)

where

fi =
Mi(z + z0i)

r5i
. (11.66)

The parameter z20 is defined in a way that it allows to calculate γ from (11.41) by

substituting z20 with z20 there. Hence, the expression for γ remained in its previous
form.

Figure 11.1.: Top: Isolines of z20 . Bottom: Isolines of the inclination angle, α, of the
major axis of the velocity ellipsoid with respect to the galactic symme-
try plane for z20 = z20(R, z) (solid lines) and for z0 = 0.5 kpc (dashed
lines).

The averaged parameter z20 is not a constant, but a function of coordinates z20(R, z),

see Fig. 11.1 for the M31 model, described in Chapter 18. Mean values of z20(R, z)
were calculated using Eq. (11.65) for the Kuzmin (1956a) model with parameters,
given in Table 18.1.

We saw above that z0 gives us the foci of confocal ellipsoids and hyperboloids;
in addition, at foci the velocity ellipsoids reduce to spheres. In the present case,
the principal velocity-surfaces are no longer ellipsoids and hyperboloids but have a
more complicated form. Velocity ellipsoids reduce to spheres at system axis at points
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z = ±z0e (z0e are points where z20(0, z) = z2). These points can be called effective
foci of the composite model.

Formulae derived here solve the problem, established at the beginning of the paper.
To our understanding, they allow to calculate a more realistic hydrodynamical model
of a galaxy, compared to previous ones. But of course, our method is also only a
preliminary one. Further development of the construction of hydrodynamical models
of stellar systems is difficult without further development of the theory of the third
integral as a quasi-integral, together with the theory of irregular forces in elliptical
galaxies. And at last, we would like to call attention to the paramount importance to
solve these problems.

March 1969
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12. Virial theorem and its application to the

determination of masses of stellar systems

In the determination of masses of stellar systems and their subsystems, the virial
theorem can be used if the system or subsystem is sufficiently isolated. Galaxies
consist of a number of populations with mutual influence. An exception is the nucleus
of a galaxy which is relatively isolated. Chapter 12 of the Thesis discussed general
properties of the virial theorem. Here we consider one special case – the application
of the virial theorem to find the mass of the nucleus of M31, as done by Einasto &
Rümmel (1970c).

The nucleus of a galaxy can be considered in a good approximation to be an iso-
lated dynamical system. In this case we may apply the tensor virial theorem (Kuzmin
1963b). Assuming a rigid body rotation and ellipsoidal shape for the nucleus we have

σ2R +
1

3
ω2 a2 =

1

2
βRGM a−1, (12.1)

σ2z =
1

2
βz GM a−1. (12.2)

In these formulae ω is the constant angular velocity, G the gravitational constant, M
the mass of the nucleus, and

a2 =
1

M

∫ ∞

0
µ(a)a2da , (12.3)

a−1 =
2

M 2

∫

M

0

M(a)dM(a)

a
, (12.4)

where

µ(a) = 4πǫρ(a) a2 (12.5)

is the mass distribution function, and

M(a) =

∫ a

0
µ(a)da (12.6)

is the integral mass distribution function.
The constants βR and βz depend on the shape of the system. Denoting e2 = 1− ǫ2

we have

βR =
1

2e2

[

arcsin e

e
− ǫ

]

, (12.7)
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βz =
ǫ2

e2

[

1

ǫ
− arcsin e

e

]

. (12.8)

From (12.1) - (12.2) we obtain

kz =
σ2z
σ2R

=
βz
βR

(

1 +
ω2a2

3σ2R

)

. (12.9)

As in the nucleus of the Andromeda galaxy ω2a2 ≪ σ2R, the mean axial ratio of
the velocity ellipsoid depends sufficiently only on the axial ratio of the system itself.
The value of kz , found for the nucleus of the galaxy, can be adopted for kz(0, 0).

May 1971

80



13. Some families of models of stellar systems

Methods of determining the mass-distribution in oblate stellar systems were summa-
rized by Perek (1962) who presented a classification of models of stellar systems. A
reclassification of models has been undertaken by Kutuzov & Einasto (1968). The
present paper deals with the methods for determining the mass-distribution, the point
of view being different from that of Perek.

As we will see later, almost all expressions proposed earlier for model construction
can be interpreted as particular cases of one general law. This enables us to study
various models from a single viewpoint.

To select suitable expressions for constructing the models, some conditions are
imposed, restricting the choice of model-parameters. Great attention is given to the
behaviour of models in their outer region. These aspects were discussed in Chapter
8.

Table 13.1.

α n ǫ Case Remarks Model
0;1 1 ǫ A a, c, d, e Schmidt (1956, 1965)
2 1 0 B c, e Schwarzschild (1954)
2 2 ǫ A c, e Perek (1962)
2 n 0 B + Wyse & Mayall (1942)
2 n ǫ A + Burbidge et al. (1959)

Usually the distribution of mass only in very oblate systems is considered. In such
a case, the mass distribution can be evaluated directly from the rotation data, since
the rotation velocity equals the circular one. In the ellipsoidal case, the pressure
term (velocity dispersion) cannot be neglected, as stated by Öpik (1922) and later
by Oort (1965). In the central parts of oblate stellar systems, the ellipsoidal compo-
nent, the bulge, is often prevailing, therefore, even in the oblate systems the exact
mass-distribution can be found only from a hydrodynamical model, using the data
on both rotation and dispersion. Furthermore, independent data on the distribution of
luminosity and mass-to-light ratio can also improve the model.

Basic results of the description of some families of models of stellar systems were
published by Einasto (1969a). Here we present in a condensed way the main results
of this study.

Some quite general families of the descriptive functions can be constructed by
means of the function

g(a) = g0 g
∗(ξ), (13.1)

81



13. Some families of models of stellar systems

Table 13.2.

β ν ǫ Case Remarks Model
> 0 2 1 A β > 2.5 Lohmann (1964),Veltmann (1965)

1 2 ǫ B + King (1962)
2 1 ǫ B d Hubble (1930)
2 2 ǫ A d Kuzmin (1956a)
2 3 1 A d Bottlinger (1933)

2.5 2 1 A d Lohmann (1964)
∞ ν ǫ A + Einasto (1965)
∞ 2 ǫ A + Gauss
∞ 1 ǫ A + Expon.
∞ 1/4 ǫ B + de Vaucouleurs (1948)
< 0 1 1 A, B β < −1 Wallenquist (1959)
< 0 2 ǫ A β < −1 Perek (1962)
−1 ν 1 A c, e van Wijk (1949)
−0 ∞ ǫ A c, e Homogen.

Table 13.3.

α β ν Remarks Model
3 3/ν ν d Brandt & Scheer (1965)
3 2 2 a, d Parenago (1950)
3 3/2 2 d Kuzmin (1956b)
3 1 3 d Bottlinger (1933)
3 −1 2 c, e Perek (1962)
2 −1 1 a, c, d, e Schmidt (1956)
0 −1 3 a, c, d, e Oort (1927)

where ξ = a/a0 is dimensionless distance, a0 and g0 are scale parameters, and

g∗(ξ) =

{

ξα
∏n

i=0(1 + χi/βi ξ
νi)−βi ξ ≤ ξ0,

0, ξ ≥ ξ0.
(13.2)

In the last formula, ξ0 is the smallest positive root of the equation

g∗(ξ) = 0, (13.3)

and α, χi, βi, νi are structural parameters.
The expression g(a) can be identified with various descriptive functions:

A) g(a) ≡ µ(a);
B) g(A) ≡ L(A);
C) g(R) ≡ FR(R);
D) g(R) ≡ Vθ(R);
E) g(R) ≡ σ2R(R).

The formula (13.2) is too general and contains too many parameters for practical
use. We will consider three families of special models based on the law (13.2):
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Figure 13.1.: The function F 0
R(R) and its logarithmic gradient as functions of t =

a/(1 + a) for the generalised Bottlinger model with parameters ǫ = 0
and various ν, shown as index of curves.

a) the polynomial model (cases A and B)

g∗(ξ) = ξα
n
∏

i=0

(1− χi ξ), (13.4)

b) the binomial model (cases A and B)

g∗(ξ) = ξα (1 + 1/β ξν)−β , (13.5)

c) the generalised Bottlinger model (case C)

F ∗
R(ξ) = ξα (1 + 1/β ξν)−β . (13.6)

In cases D and E, the binomial law (13.5) can also be used.
Most models of galaxies and star clusters proposed earlier are particular cases of

models (13.4) . . . (13.6). Their review is given in Tables 13.1 . . . 13.3. In Ta-
bles Remarks letters a, b, c, d, e indicate that the model does not agree with condi-
tion a, b, c, d, e, discussed in Chapter 8, + indicates that the model agrees with all
these conditions. Binomial models with β = ∞ are generalised exponential models
(Einasto 1965), having for spatial density (case A) the form

ρ(a) = ρ0 exp[−ξ1/N ]. (13.7)

The radial attraction function F 0
R(R) and its logarithmic gradient for the gener-

alised Bottlinger model are shown in Fig. 13.1, using as argument t = a/(1+a). For
the generalised exponential model several descriptive functions are shown in Chapter
15.

May 1968

Revised May 1971
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14. Polynomial models

The analysis of galactic models has shown that most models were constructed using
analytical expressions for descriptive functions of two families, polynomial or bino-
mial models. In this Chapter, I discuss concisely the polynomial models. A more
detailed discussion was published by Einasto (1968b, 1969a).

General families of the description functions can be constructed by means of the
function

g(a) = g0 g
∗(ξ), (14.1)

where ξ = a/a0 is the dimensionless distance, a0 and g0 are scaling parameters, and

g∗(ξ) =

{

ξαΠn
i=0

(

1 + χi

βi
ξνi
)−βi

, ξ ≤ ξ0,

0, ξ ≥ ξ0.
(14.2)

In the last formula, ξ0 is the smallest positive root of the equation g∗(ξ) = 0, and
α, χi, βi, νi are structural parameters.

Eq. (14.2) is too general and contains too many parameters for practical use. The
polynomial model is defined as

g∗(ξ) = ξα Πn
i=0 (1− χi ξ), (14.3)

The polynomial model with parameters α = 0, 1 and n = 1 was used in models of
the Galaxy by Schmidt (1956, 1965). These models are in conflict with our condi-
tions of physical correctness a), c) and d), discussed in Chapter 8. Wyse & Mayall
(1942) used this profile to describe the projected density distribution of M31. The
polynomial profile was also used by Burbidge et al. (1959, 1960) in their series of
studies of the rotation and mass distribution of galaxies. In the latter cases, most
conditions of physical correctness were fulfilled, however, the density function has a
break at ξ0.

April 1967
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15. Binomial models

Binomial models were discussed in detail by Einasto (1968c, 1969a), and formed the
basis of Chapter 15 of the original Thesis. Here I give a short summary, concentrating
on the case of the generalised exponential function.

Figure 15.1.: Distribution of the projected density P (α) for the generalised exponen-
tial model. Parameter N is shown as an index of curves.

Figure 15.2.: Left: Mass function µ◦(t) of generalised exponential model. The
shape parameter N is shown. Right: The logarithmic density gradient
G{ρ(α)} of the generalised exponential model.

Binomial models are defined by the description function

g∗(ξ) = ξα (1 + 1/β ξν)−β , (15.1)
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where ξ = a/a0 is the dimensionless distance, and β and ν are structure parameters.
If β → ∞, then the binomial model reduces to the generalised exponential model

g∗(ξ) = e−ξν . (15.2)

Often as the shape parameter, instead of ν its reciprocal value is used N = 1/ν.

Figure 15.3.: Circular velocity function v◦(t) of the generalised exponential model
for two values of the axial ratio ǫ. The shape parameter N is shown.

Figure 15.4.: Logarithmic gradient of the velocity G{v◦(t)} of the generalised expo-
nential model for two values of the axial ratio ǫ. The shape parameter
N is shown.

Cases ν = 2 and ν = 1 are ordinary Gaussian and exponential models. The case
ν = 1/4, when applied to projected density, is the de Vaucouleurs (1948) profile
for elliptical galaxies. It can be used also for the spatial density, as done by Einasto
(1965, 1969b).

In the following Figures, several descriptive functions of the generalised exponen-
tial function are given. As parameters we useN = 1/ν, α = a/a0 and t = α/(1+α).

88



Figure 15.5.: Circular velocity function v◦(α) for Parenago and Idlis models. The
axial ratio ǫ is shown.

Fig. 15.1 shows the projected density, Fig. 15.2 left panel gives the relative mass func-
tion µ◦(t) = 1

µ0
µ(α) (1 + α)2, where µ0 is a normalising constant. Fig. 15.2 right

panel shows the logarithmic density gradient G{ρ(α)}. Fig. 15.3 shows the circular
velocity function

v0(a) =
a

GM
V 2(a), (15.3)

where V is the circular velocity, G is the gravitation constant, and M is the mass
of the system. The circular velocity of a point mass M is V 2(a) = GM

a , thus the
circular velocity function is the relation of squares of circular velocities of the model
and the point-mass of the same mass. This definition of the circular velocity function
was suggested by Perek (1962). Next, in Fig 15.4 we give the logarithmic gradient
of the velocity function, G{v◦(t)}. Finally, in Fig. 15.5 we show circular velocity
functions of models by Parenago (1950) and Idlis (1956).

September 1967

Revised September 1971
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16. Hydrodynamical models on the basis of the

modified exponential function

In Chapters 5 and 7, I described methods to calculate spatial and kinematical models
of galaxies, using our own Galaxy as an example. In this Chapter, I shortly discuss
some additional aspects of constructing hydrodynamical models on the basis of the
modified exponential function.

The set of descriptive functions is fully determined if one dynamical function is
given. Theoretically, it is not important which function is given initially. The remain-
ing functions can be calculated by means of the formulae given in Chapters 5 and
7. But from the practical point of view, it is convenient to start from the luminosity
distribution function and from the data on the mass-to-light ratio.

The block diagram of the determination of a model of a stellar system from ob-
servations is given in Fig. 16.1, taken from Einasto (1969a). The observed functions
and parameters are shown as circles, the calculated and preliminary adopted quanti-
ties are presented by rectangular boxes. Three cases are considered:
a) simple (one component) model of an elliptical galaxy (classical method),
b) simple model of an oblate galaxy (classical method),
c) composed hydrodynamical model of a galaxy (new method).

In the first case, the flattening parameter ǫ and the mass-to-light ratio f is usu-
ally assumed to be constant. From the observed projected distribution of luminosity
L(X,Y ), the corresponding spatial distribution µ(a) can be found by solving the
integral equation

L(A) =
1

2π E

∫ ∞

A

µ(a)da

f a
√
a2 −A2

, (16.1)

where a andA are major semiaxes of equidensity ellipsoids and projected equidensity
ellipsoids, respectively, L(A) is the projected luminosity density, f is the mass-to-
light ratio, µ(a) = f h(a) is the mass function, and h(a) the luminosity function. If
f = const, the mass distribution µ(a) is similar to the luminosity distribution h(a),
and the radial acceleration function

FR(R) =
V 2
c R

G
=

∫ R

0

µ(a)da
√

1− (ǫ a/R)2
(16.2)

can be found. Here Vc is the circular velocity, and G is the gravitational constant.
The FR(R) function can be found independently from the kinematical data, using
the hydrodynamical equation

V 2
θ − p σ2R = V 2

c , (16.3)
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16. Hydrodynamical models on the basis of the modified exponential function

Figure 16.1.: Block diagram of the determination of a) a simple model of an elliptical
galaxy, b) a simple model of an oblate galaxy, c) a composed model of
a galaxy.

where Vθ is the rotation velocity of a galactic subsystem, σR is the velocity disper-
sion in R direction of the subsystem, and p is a parameter, depending on the density
gradient and the shape of the velocity ellipsoid, see Eqs. (4.3) and (11.4). The com-
parison of the results for FR(R) gives the possibility to determine f and to check the
initial assumptions ǫ = const, and f = const (feedback coupling).

In the second case, the usual assumption is σR ≪ Vθ; from Eqs. (16.3) and (4.3)
we see that then Vθ ≈ Vc. The mass distribution function, µ(a), and the luminosity
distribution function, h(a), can be determined independently from the integral equa-
tions (16.2) and (10.4) respectively. The mass-to-light ratio f is to be considered as
a function of the distance from the centre of the system.

Observations indicate that the axial ratio of isophotes E of elliptical and spiral
galaxies is not constant. Therefore, the assumption ǫ = const is justified only as
the first rough approximation. To obtain a better agreement with observations, ǫ is
to be considered as a variable, as it was taken by Perek (1962), Sizikov (1968) and
Kutuzov (1968). In this case, the block diagram of the model determination will not
change, but formulae should be replaced by more complicated ones.
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The variation of E and ǫ is caused mainly by the presence of various subsystems,
having different flattening ǫ, and different mass and luminosity distribution. There-
fore, the structure of a stellar system can be more precisely described by a composed
model. The determination of a composed hydrodynamical model of a galaxy (case
c in Fig. 16.1) differs from the determination of a simple classical model in many
respects.

As the distribution of luminosity of individual components Li(X,Y ) of the galaxy
is only partially known, it is difficult to start the model determination from these
functions as in previous cases. It would be better to calculate first the normalised
descriptive functions, h0(a), L0(A), F 0

R(R) and F 0
θ (R), for a set of concentration

and flattening parameters. The construction of the model reduces in this case to
the determination of parameters of the galaxy components. For this purpose, both
graphical and numerical methods can be used, as done by Einasto (1968d, 1969b).

The evaluation of z-velocity dispersion from the vertical acceleration can be made
by iterations, as stated by Innanen & Kellett (1968). In the first step, the term with p in
formula (16.3) may be neglected. From the approximate run of velocity dispersions,
the correction terms can be calculated. The dispersions σR, σθ, and the centroid
velocity Vθ are to be found from σz by using the formulae (16.3), and

1

σ2z
=

1

σ2θ
+

1

σ2R
, (16.4)

found from the theory of irregular forces for the case z ≪ R (Kuzmin 1961). Fur-
thermore, the Lindblad formula

kθ =
−B
A−B

=
1

2
[1 +G{Vθ(R)}] (16.5)

can be used, where G{Vθ(R)} is the radial logarithmic gradient of the rotation ve-
locity Vθ(R).

A comparison of the calculated descriptive functions with the observed ones (see
case c in Fig. 16.1) gives the possibility to improve the initial descriptive parameters.
So, the model will be determined by a trial-and-error procedure. To facilitate the
determination of models of stellar systems, we are computing the main dynamical
descriptive functions for the exponential model with ν and ǫ as parameters. This
work is in good progress now (Einasto & Einasto 1972b). Results are published for
our Galaxy by Einasto (1970a) and are presented in Chapter 7, and for the Andromeda
galaxy M31 by Einasto (1969b, 1970c), Einasto & Rümmel (1970b, 1972) and are
discussed in Chapters 18 and 20.

May 1971
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Part III.

Spatial and kinematical structure of the

Andromeda galaxy
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17. Model of mass distribution of M31: Preliminary

version

On the basis of the published photographic and photoelectric data on the luminosity
distribution along the major and minor axis of the galaxy M31, the model of the latter
was elaborated (Einasto 1969b), which is the topic of this Chapter. The model con-
sists of four components: the nucleus, bulge, disc, and flat component. The masses
of components were derived from the velocity data, collected from optical and ra-
dio sources. The velocity dispersion and the mass-to-light ratio, spectroscopically
obtained for the centre of M31, were also used.

It was found that the circular velocity curve has a maximum Vc = 380 km/sec at the
distance of 4’ from the centre. The rotational velocity of the spheroidal component
(the bulge) equals only 125 km/sec in this region. The great difference between the
circular and rotational velocities can be explained by the great velocity dispersion
and radial density gradient of the spheroidal component. The dynamical mass-to-
light ratio 17.3 is in good agreement with the spectroscopical one, 16.7.

For the mass of the galaxy M31, a value of 200 × 109 solar masses is found.
Considerably greater values obtained by other authors (see Table 17.3) are biased by
neglecting the fact that the galaxies are of finite sizes.

In the motion of interstellar hydrogen, local deviations from the circular motion
occur.

17.1. Introduction

The study of the structure of the large Andromeda galaxy M31 is of interest primarily
because it is the closest outer spiral galaxy to us. This allows us to find out its struc-
ture in details that are not visible or difficult to study in other, more distant galaxies.
In addition, it is well known that the M31 galaxy is very similar in structure to our
Galaxy. Due to this circumstance, the study of M31 galaxy complements the study
of our Galaxy and vice versa.

Among the results obtained in the study of the general structure of the M31 galaxy
there are the following two contradictory conclusions.

1. Estimates of the mass of the system, despite a very precisely defined rotation
curve, are very different, ranging from 200 to 600 billion solar masses.

2. According to the dynamical definition, the ratio of mass to luminosity f at the
centre of the system is very small, while on the periphery it approaches infinity (see
Fig. 17.6). On the other hand, according to the spectral definition of the composition
of the M31 core, the central value of f is approximately equal to its mean value, i.e.
the value of f must be approximately constant.
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17. Model of mass distribution of M31: Preliminary version

In the present series of articles, a model of the M31 galaxy will be constructed,
and an attempt will be made to clarify the reasons for the above contradictions. It is
assumed that the M31 galaxy consists of four main components: the nucleus, bulge,
disc, and flat component. In the course of the work, it turned out that the model can
be constructed by successive approximations. Therefore, this first article of the series
describes a preliminary model of the system. In the future, the model will be refined
and detailed.

17.2. Description functions and the equations of the relationship
between them

From observations it is possible to determine the following functions or their partial
values: the projected luminosity density LS(X,Y ) in the photometric system S (X
and Y are rectangular visible coordinates expressed in angular units, with the X axis
directed along the visible major axis of the galaxy, and Y along the minor axis);
the rotation speed of some subsystems Vθ; the stellar velocities dispersion σ, and
the stellar composition (for the galactic nucleus). It is also possible to study the
distribution and physical properties of individual bright stars.

In order to model the galaxy, it is necessary to introduce simplifying assumptions.
In this series of works, it is assumed that the M31 galaxy can be divided into a fi-
nite number of physically homogeneous components, whose equidensity surfaces are
similar coaxial ellipsoids of rotation. The ratio of semiaxes of ellipsoids of different
components ǫ can be different, the density changes smoothly.

Since the main description functions are additive (except for rotation velocity Vθ
and velocity dispersion σ), for simplicity we will write their connection equations not
for the total values but for the individual components.

Let ρ(x, y, z) be the spatial mass density of the component, and lS(x, y, z) —
the spatial luminosity density in the photometric system S (x, y, z are rectangular
galactocentric coordinates, the z axis is directed along the system axis). With the
above assumptions

ρ(x, y, z) = ρ(a) = fS lS(a), (17.1)

where
a2 = x2 + y2 + ǫ−2z2, (17.2)

and fS is the mass-to-light ratio of the component. The mass and luminosity densities
are related as (Einasto 1968a)

µ(a) = 4πǫ a2ρ(a) (17.3)

and
hS(a) = 4πǫ a2 lS(a). (17.4)

The projected density of components is expressed (Einasto 1968a)

LS(A) =
1

2π E

∫ ∞

A

hS(a)da

a
√
a2 −A2

, (17.5)
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17.2. Description functions and the equations of the relationship between them

where
A2 = X2 + E−2Y 2, (17.6)

E2 = cos2 i+ ǫ2 sin2 i, (17.7)

where i is the angle between the symmetry axis of the system and the line of sight.
The rotation velocity of the component and the circular velocity of the whole sys-

tem, V , are related as (Kuzmin 1962) (see also Chapters 7 and 11):

V 2
θ − p σ2R = V 2, (17.8)

where σR is the velocity dispersion of the component in the radial direction (R2 =
x2 + y2), and the dimensionless parameter p is expressed as

p =

(

1− σ2θ
σ2R

)

+R

(

1− σ2z
σ2R

)

∂α

∂z
+G{ρ(R)} +G{σ2R(R)}, (17.9)

where α is the inclination angle of the vertex in respect to the plane of the system
(outside the symmetry plane α 6= 0).

In the last equation we used for the logarithmic gradient G the expression

G{f(R)} =
∂ ln f(R)

∂ lnR
. (17.10)

The expression for p in the form (17.9) is inconvenient for practical applications,
since neither the ratio of velocity dispersion nor the gradient of the angle α can be
directly found from observations. When transforming the expression p, we will use
the relations found by (Kuzmin 1952b, 1961)

R
∂α

∂z
= −1

4
G{ρt(R)}, (17.11)

and
1

σ2z
=

1

σ2θ
+

1

σ2R
, (17.12)

and the Lindblad equation
σ2θ
σ2R

=
−B
A−B

. (17.13)

Formulas (17.11) - (17.13) are derived for flat subsystems. However, the calculations
show that in the vicinity of the Sun these formulas can be applied to less flattened
subsystems as well. Therefore, we can assume that the use of these formulas in
constructing the model of the M31 galaxy is not associated with large errors.

In the Lindblad formula for planar subsystems, the Oort parameters A and B can
be expressed through the circular velocity ω(R) = Vθ/R and the logarithmic gradient
of the circular velocity function G{v(R)}, with the circular velocity function defined
by the formula (Einasto 1968a) (see Eq. 15.3)

v(R) =
V 2R

GM
, (17.14)
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where G is the gravitation constant, and M the mass of the system. We get

A(R) = ω(R) =
3−G{v(R)}

4
(17.15)

and

B(R) = −ω(R)1 +G{v(R)}
4

, (17.16)

and using Eq. (17.12) and (17.13)

kθ =
σ2θ
σ2R

=
3−G{v(R)}

4
(17.17)

kz =
σ2z
σ2R

=
1 +G{v(R)}
5 +G{v(R)} . (17.18)

After these substitutions we get for p the expression

p =
3−G{v}

4
− G{ρt}

5 +G{v} +G{ρ} +G{σ2R}. (17.19)

The same expression is also valid for spherical subsystems if we suppose that Vθ ≈
V . In a more exact consideration, in the expression for p the circular velocity should
be replaced by the rotational velocity of the subsystem Vθ.

The circular velocity V (R) is related to the mass function by the equation (Einasto
1968a)

V 2(R) =
G

R

∫ R

0

µ(a)da
√

1− (ea/R)2
, (17.20)

where G is the gravitation constant and e2 − 1− ǫ2.
Finally, we also use the Poisson equation in terms of Oort-Kuzmin parameters

(Kuzmin 1952b)
4πGρt = C2 − 2 (A2 −B2), (17.21)

where C is the Kuzmin parameter. For flat populations, it can be found from the
relation

C = σz/ζ, (17.22)

where σz and ζ are dispersions of z-velocities and z-coordinates of stars, respectively.

17.3. Choosing the form of the main description function

A model of mass and luminosity distribution of the galaxy is completely defined if
the luminosity distribution of its subsystems is known, as well as the mass-to-light
ratio of subsystems. Using Eqs. (17.1), (17.4) and (17.5) the mass distribution of the
system can be found, and by Eqs. (17.3) and (17.20) the circular velocity V can be
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17.3. Choosing the form of the main description function

calculated. Due to the proportionality of ρ and lS , we shall write formulas only for
one of them, ρ.

To build a hydrodynamical model, in addition to the mass distribution function and
related functions, we must also know the rotation velocity and velocity dispersion
of subsystems. Then by Eqs. (17.8), (17.12) and (17.13) we can calculate other
hydrodynamical functions of interest. The Poisson equation (17.21) allows us to
check the obtained results.

To summarise, the hydrodynamical model is completely defined by specifying
functions ρ(a), Vθ(R), and parameters ǫ and f of all components of the galaxy.

The representativeness of the model depends essentially on the choice of the type
of these basic description functions. It is natural to demand that description functions
have no sharp jumps and kinks, that ρ(a) ≥ 0 and σ2R(R) ≥ 0. Since real stellar
systems have finite sizes (due to the perturbing action of neighbouring systems), it is
desirable to choose for ρ(a) an expression that decreases fast enough with increasing
a. On the other hand, ρ(a) should not decrease too fast, since in this case the circular
motion is unstable.

Taking into account all these considerations, we chose for ρ(a) a generalised ex-
ponential function (Einasto 1965, 1968c)

ρ(a) = ρ0 exp

[

−
(

a

a0k

)ν]

, (17.23)

where ρ0 (central density) and a0 (effective radius) are scale parameters, k is a dimen-
sionless normalising parameter (see Einasto (1968c), and ν is a structural parameter
of the model, determining the concentration of mass to the centre. Structural param-
eters of the model also include ǫ, which determines the thickness of the model.

In the case of the flat component, the simple ellipsoidal model represents the den-
sity distribution poorly. It is known that in the central regions of galaxies there are no
representatives of flat subsystems — emission nebulae and stellar associations (Arp
1964b; van den Bergh 1964). To take this circumstance into account in our model,
we used an artificial method: the density of the component was calculated as the
difference of two ellipsoidal models:

ρ(a) = ρ+(a/a0, ρ0, ν, ǫ)− ρ−(a/(a0κ), ρ0, ν, κǫ), (17.24)

where κ > 1. With such ρ(a) automatically ρR=0(z) = 0. With a suitable choice of
ρ(a), the conditions ρ(a) ≥ 0 and ∂ρ/∂z2 < 0 at z 6= 0 are still satisfied.

In the framework of the preliminary model of the M31 galaxy, it is sufficient to fix
hydrodynamical functions only for the spherical component, the core. In this case,
the rotation speed of the component can be represented by the formula (Brandt &
Scheer 1965)

Vθ = V0
R

[1 + (R/R0)n]3/2n
. (17.25)
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17. Model of mass distribution of M31: Preliminary version

17.4. Observational data

1. The photometric data on the brightness distribution along the major and minor
axes of the M31 galaxy were collected from all available sources. Only the data
that could be reduced to the UBV system were used (see de Vaucouleurs (1958)
and Kinman (1965)). In order to build a composite model, it would be desirable to
have photometric data in different colours. However, a sufficiently wide brightness
interval is covered only by the data in blue rays, so we had to limit ourselves to
a single photometric system B. We used from photographic observations results by
Redman & Shirley (1937), Fricke (1954), Johnson (1961), Richter & Högner (1963),
and from photoelectric observations those by Thiessen (1955) and de Vaucouleurs
(1958).

To form a summary curve of the brightness distribution of the M31 galaxy, the
data for the NE and SW halves of the major axis, as well as for the NW and SE
halves of the minor axis were combined, and the corresponding brightnesses were
averaged. The agreement between the NE and SW half-axes is good everywhere.
The agreement between the NW and SE hemispheres is less good, especially in the
strong absorption region of the NW hemisphere at 4.5 to 17’ from the centre. In the
preliminary M31 model, this region was excluded. Similarly, the general uniform
absorption was not taken into account, neither in our Galaxy nor in the M31 galaxy.

The derived summary values of the projected luminosity along the major axis are
indicated by dots in Fig. 17.1. Fig. 17.2 shows the change of the ratio of the semi-
axes of the isophotes E. As an argument we useR1/3, and respective angular distance
from the centre of the system along the major axis, expressed in arc minutes.

2. The rotational velocity was determined from optical (Babcock (1939), Wyse
& Mayall (1942), Mayall (1951) and Lallemand et al. (1960)) and radio data (van de
Hulst et al. (1957), Burke et al. (1963), Argyle (1965), Gottesman et al. (1966) and
Roberts (1966)). In the central region (R ≤ 10′) only optical data were used, because
the velocity changes rapidly and radio observations have too low resolution. In the
distance range 10′ < R ≤ 50′ both optical and radio data were used, in the region
R > 50′ only the radio data were used as more accurate. The mutual consistency
of the radio data obtained by different authors is very good. For the velocity of the
galaxy centroid a value −300 km/s was chosen. With this choice the regions of
maximum velocity on both sides of the centre agree best. The observed rotational
velocities are depicted in Fig. 17.3 by dots.

3. The distance of the M31 galaxy was assumed to be d = 692 kpc according to
the true distance modulus (m−M)0 = 24.2 (Baade & Swope 1963).

4. The inclination of the galaxy was determined according to the apparent ratio of
semi-axes isophotes E, and from the apparent distribution of emission nebulae (Arp
1964a). The found value, i = 77.◦2, agrees well with the Baade & Swope (1963)
estimate, i = 77.◦3, and with the result by (Arp 1964a), 74◦ < i < 79◦).
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17.5. Model construction

Figure 17.1.: Luminosity distribution along the major axis of M31 (Einasto & Rüm-
mel 1970c).

5. Additional data can be obtained for the central, brightest regions of the system.
The Minkowski velocity dispersion of the core stars is σR = 225 k/sec (Lohmann
1964), and the Spinrad (1966) mass-to-light ratio f = 16.7.

17.5. Model construction

The construction of a model with a fixed analytical form of the main description
functions is reduced to the determination of parameters of these functions. In this
case we need to find the following parameters for all four components of the model:
a) scale parameters l0 and a0;
b) structural parameters ν and ǫ;
c) dynamical parameter f .

For the spherical component it is also necessary to know the parameters of the
rotation law (17.25).

The analysis of observational data showed that both scale and structural param-
eters of the components cannot be found with sufficient accuracy from the rotation
velocity. In addition to the mass distribution, the relative motions of the stars also
influence the rotation velocity. de Vaucouleurs (1958) showed that model parameters
can be found quite successfully from the photometric data.
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17. Model of mass distribution of M31: Preliminary version

Figure 17.2.: Distribution of the axial ratio ǫ.

Using these considerations we determined parameters l0, a0, ν0 and ǫ from the
photometric material. The practical procedure was reduced to the following.

As the first step, we calculated for a number of values of the parameter ν the
normalised projected density function L0(α), and the velocity function v0(α), where
α is the dimensionless normalised distance (semi-major axis). The normalisation was
performed so that moments of order −1 and 0 of the mass function µ0(a) were equal
to one (see Einasto (1965)).

The calculated functions L0(α) were plotted in the logarithmic scale
log L0(log α). Similar plots were made for the observed projected luminosity M31
on the major and minor axes. Since the scale transformations (offsets on the logarith-
mic scale) do not change the shape of the log L0(log α) curve, the parameter ν can
be found by the comparison of the model curve with the observed one. The parameter
of apparent flatness E can be found from the comparison of density distributions on
minor and major axes. The true axial ratio of semiaxis ǫ can be found from Eq. (17.7).

The practical difficulty in the calculation of the model is due to the need to find
parameters of all four components simultaneously. However, density distributions of
components are very different, see Fig. 17.1. After several trials optimal parameters
of components were found.

This procedure cannot be applied to find the ǫ parameter for the flat component. In
this case ǫ was chosen in such a way that the effective half-thickness of the compo-
nents

ze =
1

2

P (R)

ρ(R)
, (17.26)

has an acceptable value. Here P (R) is the projected mass density of the system.
Parameter values for components are given in Table 17.1 (mass-to-light ratios f are

in photometric system B). The model is presented in a graphical way in Figs. 17.1
and 17.2. In Fig. 17.1 thin lines show the contributions of components to the total
luminosity (along the long axis), the bold line shows the summed total luminosity. We
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17.5. Model construction

Figure 17.3.: Distribution of the rotation velocity. Masses of components are taken
for variants A and B, see Table 17.1. Thin curves show contributions
of components, the bold solid curve shows the rotation curve of the
whole model. The dashed curve gives the Keplerian rotation curve,
corresponding to a point source with a mass, equal to the mass of the
model

see that the model represents observations (shown as points) rather well. Differences
between the model and observations are due to the fact that populations do not contain
information on individual spiral arms but only their mean structure.

Mass-to-light ratios of populations can be derived in two ways: A) using the rota-
tion speed; B) using the spectral information of stellar components from independent
sources.

In the first case, it is assumed that the rotation velocity is equal to the circular
velocity, Vθ = V . In practical use, this means that by a trial-and-error procedure
values of f are chosen (at fixed parameter a0 values), which yield for the circular
velocity values in accordance with the observed rotation velocity. Values of f found
in this way are given in Table 17.1 (variant A), respective rotation curves are shown in
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Table 17.1.: Parameters of the components of M31

Quantity Unit Total Nucleus Bulge Disc Flat+ Flat−
ǫ 0.84 0.57 0.09 0.01 0.02
ν 1 1/4 1 1 1
k 0.5 1.26 × 10−4 0.5 0.5 0.5
a0 kpc 0.025 5 50 40 20
L 109 L⊙ 13.13 0.003 4.95 6.46 2.29 −0.57
MA 109 M⊙ 201 0.009 2.4 58 188 −47
MB 109 M⊙ 201 0.05 85.5 111.5 5.73 −1.43
fA 15.3 2.5 0.5 9 82 82
fB 15.3 17.3 17.3 17.3 2.5 2.5

Fig 17.3. As in Fig. 17.1, thin lines show the contribution of individual components,
the bold line is the total calculated rotation curve, and the dots are observations. The
dashed line gives the Keplerian rotation curve, corresponding to a point source with
a mass, equal to the mass of our model. We see that the theoretical curve represents
observations well.

It should be said that the flat component of the model has a toroidal form. Inside
the toroid, the attraction vector is directed not towards the centre of the system but
towards the nearest side of the toroid. Therefore, in this region the velocity function
is negative, and circular motion is impossible (unless there are other components that
compensate for the negative region of the velocity function). In Fig. 17.3 this region
of the component contribution to the rotation curve is shown by a dashed line1.

In the second version B the parameters were found as follows. For the nucleus of
M31 f was obtained by Spinrad (1966) from spectral observations, f = 16.7. The
flat component consists mainly of hydrogen, whose mass according to van de Hulst
et al. (1957), Argyle (1965), Gottesman et al. (1966), and Roberts (1966) can be taken
as equal to M = 3.7 × 109 M⊙. The mass of the flat component of stars can be
estimated from the integral luminosity of the component, and the initial luminosity
and mass function (Salpeter (1955), Sandage (1957a)). As a result, we obtained for
the mass of the component M = 4.3 × 109 M⊙. Since L = 1.72 × 109L⊙, we get
f = 2.5. Knowing the luminosity of all components, and f of the nucleus and the flat
component, it is not difficult to calculate f of the disc. The result coincides almost
exactly with the value of f for the nucleus, found by Spinrad. Therefore, we assumed
that all components, except the flat component, have the identical mass-to-light ratio
(variant B in Table 17.1). The corresponding rotation curves are given in Fig. 17.3.

In this variant, in the region R < 50′, the circular velocity is noticeably greater
than the rotation speed, and reaches at R = 4′ a maximum value, V = 380 km/sec.
The observed rotational velocity at R = 4′ is only Vθ = 80 km/sec. Thus, a question

1Central holes in discs of spiral galaxies were studied in more detail by Einasto et al. (1980b)
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17.5. Model construction

Figure 17.4.: Rotation velocity Vθ and velocity dispersion σR for the spherical sub-
system.

arises, can the velocity centroid shift reach such a large value, ∆V = V − Vθ = 300
km/sec?

Calculations using formulas (17.8) and (17.19) showed that, within the accuracy
of the initial data, such a shift can indeed be explained. Fig. 17.4 shows one possible
variant of the rotational velocity Vθ, and the velocity dispersion σ of the spherical
component of M31. For Vθ , the profile (17.25) was taken; σR was determined by Eq.
(17.8). In our calculations, we took into account the fact that the observed Vθ and
σR are lower than their actual maximum values. This is caused by the fact that we
observe some mean value of the dispersion and velocity (van Houten 1961)

Vθ(R) =

∫∞
−∞ Vθ(R,Z) l(R,Z)dZ
∫∞
−∞ l(R,Z)dZ

, (17.27)

where Z is the coordinate along the line of sight. In the region R < 10′, it was also
necessary to slightly change the course of the density gradient, which is also quite
acceptable within the accuracy of the available data.

We conclude that the dynamical definition of f agrees well with the spectral def-
inition in the variant B. Calculated values of the description function are shown in
Table 17.2. Here, Vk denotes the critical velocity, calculated from the velocity func-
tion v(R), using the formula (Einasto 1965)

V 2
k (R) = 2

∫ ∞

R

v(x)dx

x2
. (17.28)

In the Table, logarithmic gradients of the density of components G{ρ(R)} are also
given. In studies of the Galaxy, the gradients m(R) = −∂ ln ρ(R)/∂ R can be easily
calculated by the equation

m(R) = −Mod

R
G{ρ(R)}. (17.29)
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Table 17.2.: Description functions of the M31 model

From the Table 17.2 we see that the values of the description functions of the An-
dromeda galaxy at a distance of 10 kpc from the centre agree very well with the
system of local circumsolar parameters in our Galaxy (Einasto & Kutuzov 1964a,b).

17.6. Analysis of the model

In Table 17.3 we give main parameters of M31 models, as found by various authors.
Here d is the distance of M31, accepted by authors, M is the mass of M31 according
to authors, and M

∗ is the mass, reduced to distance d = 690 kpc. In left panel
of Fig. 17.5 we show circular velocity V (R) of models by Schwarzschild (1954),
Brandt & Scheer (1965), Schmidt (1957b), and Roberts (1966) in comparison with
our model. In right panel of Fig. 17.5 we show the corresponding mass functions

µt(t) = (1 + a)2 µ(a) = (1 + a)2
n
∑

k=1

µk(a) (17.30)

and in Fig. 17.6 the projected on the symmetry plane of the system mass density

Pt(t) = 2π a (1 + a)2 P (a) = 2π a (1 + a)2
n
∑

k=1

Pk(a). (17.31)
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Table 17.3.: Parameters of models of M31

Author n d M M
∗

kpc 109M⊙ 109M⊙

Lohmann (1964) 3/2 460 330 500
Schwarzschild (1954) 460 140 210
Schmidt (1957b) 630 338 370
Takase (1957) 540 200 260
Poveda (1958) 500 200 280
Brandt (1960) 3/2 600 370 430
Brandt & Scheer (1965) 3/2, 3, 10 630 580 640
Gottesman et al. (1966) 3/2 630 480 530
Roberts (1966) 3/2, 3 690 220 220
Einasto (1969b) 690 200 200

Notes: n = is the structural parameter of the generalised Bottlinger model, Eq.
(18.13); d is distance of M31; M ∗ is mass of M31, reduced to distance d = 690 kpc.

In these formulas n is the number of components of the model, and we use as argu-
ment

t =
a

1 + a
, (17.32)

where a is expressed in degrees. This argument is used to represent better distribu-
tions on the periphery of the model.

A comparison of the models shows that there are differences in the mass distribu-
tion both inside the model and in the peripheral regions of the model. Differences of
the first kind change the mass-to-light parameter f ; total masses of systems, M , do
not depend on them much. Differences of the second kind influence both the mass-
to-light ratio f and the mass of the system. Since these differences are caused by
different reasons, let us consider them separately.

A. The structure of the inner regions of the model is determined to a large extent
by the way of treatment — whether the centroid velocity asymmetric shift will be
taken into account or not. In most of the works cited above, as well as in our version
A, the presence of asymmetric shift was ignored. This way of treatment meets the
following objections.

1) The inner regions of the galaxy are dominated by the bulge, whose stars have
a large velocity dispersion. This is also confirmed by direct determination of the
dispersion. Therefore, in equation (17.8), the second term on the left is greater than
the first one and neglecting it is not justified.

2) The assumption of Vθ = V leads to the conclusion that in central regions of the
galaxy the mass-to-light ratio f is small (see Schmidt (1957b) and Figs. 17.3 variant
A, and 17.6). The study of elliptical galaxies, however, shows that the mass-to-light
ratio of stars with enhanced metal content of the population II has a rather large value
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17. Model of mass distribution of M31: Preliminary version

Figure 17.5.: Left. Circular velocity V (R) of models by Schwarzschild (1954),
Brandt & Scheer (1965), Schmidt (1957b), Roberts (1966) (n = 3/2)
and Einasto (1969b) (variant B). Right: Mass function µ(t) for models
by Schmidt (1957b), Roberts (1966) (n = 3/2) and Einasto (1969b)
(variant B). Mass is given in units 109 M⊙. If the Schmidt model is
extrapolated according to the dashed line, then its mass is equal to the
mass of our model.

(f > 10, see Chapter 22). This is confirmed by direct spectral observations (Spinrad
1966). Therefore, the assumption of Vθ = V leads in the central regions of galaxies
to unacceptable values of the mass-to-light ratio.

We conclude that option A cannot be accepted. Variant B, on the other hand,
leads, as we have seen above, to a mass distribution that is acceptable from both the
dynamical and physical points of view. Hence, it follows that the concentration of
mass to the centre of M31 is much larger than previously thought.

B. The structure of the outer regions of the model is determined mainly by the
extrapolation of the velocity function. The extrapolation can be done in two ways
— by the velocity function or by the mass function (calculating the velocity function
from the known mass distribution).

In previous studies of the structure of galaxies, the first of these methods is usually
used. In this case, the extrapolation is performed by one or another circular velocity
profile, parameters of which are chosen according to the range of R, covered by
observations. In Figs. 17.3 and 17.5 we see that the observed rotational velocity
M31 at R > 100′ decreases very slowly with increasing distance from the centre.
Therefore, most authors have taken the circular velocity also with a very small radial
gradient. This means that there are significant masses at the periphery of the model,
as shown in Figs. 17.5 and 17.6.

The mass distribution is particularly well seen in Fig. 17.6. It follows from the
definition of the function Pt(t) that

∫ t2
t1
Pt(t)dt is equal to the mass enclosed be-
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17.6. Analysis of the model

Figure 17.6.: Left. Distribution of the projected density P (t) as function of t for
model by Brandt & Scheer (1965), Schmidt (1957b), and Einasto
(1969b) (both variants) in units of 109M⊙. Right: Mass-to-light ra-
tio f of models by Schmidt (1957b) (solid curve) and Einasto (1969b)
(dots).

tween concentric cylinders of radii R1 = t1 (1 − t1) and R2 = t2 (1 − t2). In the
Schmidt and Brandt and Scheer models, over half the mass lies outside the observed
region R > 2◦ (t > 0.67), significant mass is located even at very large distances
(t ≈ 1). Since all authors have assumed ellipsoidal mass distributions, the presence
of a massive halo also affects the distribution of Pt(t) at small t (Pt is obtained by
integrating the spatial density over z from −∞ to +∞).

The question arises, can such a mass distribution correspond to reality?

The presence of significant masses on the periphery meets the following objection.
It is known that the perturbing action of neighbouring galaxies leads to the conclu-
sion that the sizes of all galaxies are finite. The radii (outer limits) of stellar systems
obtained by extrapolation of photometric data agree well with the dynamical estimate
of radii (King 1962). In the case of M31, the photometric radius of the system is of
the order of R = 150′. It is unlikely that galaxies have an “invisible” massive halo
outside the photometric boundary of the system. Otherwise we would get fantasti-
cally large values of the mass-to-light ratio f at the periphery of the galaxies, as seen
in Fig. 17.6 in the case of the Schmidt model. The assumption of a significant in-
crease in f at the periphery of the model requires for its explanation the presence of
an active mechanism of “sorting” of stars by mass, which seems unlikely.

If we accept the mass distribution according to our model, then the calculated radial
gradient of the circular velocity at R > 100′ is greater than the observed rotation
velocity gradient. It seems to us that in this case there is a local deviation of the
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17. Model of mass distribution of M31: Preliminary version

motion of the objects of the planar component from the circular motion. Deviations
of the order of 5− 10 km/sec from circular motion take place in our Galaxy as well.
Such deviations can also explain the asymmetry of the velocity curve noted by many
authors (Gottesman et al. 1966; Roberts 1966).

The densities Pt(t), calculated from the photometric material, assuming a constant
mass-to-light ratio f = 15.3, are shown by dots in Fig. 17.6. A comparison of our
model with the photometric data shows that even our model has a too large halo. This
was expected since we assumed an unbounded exponential law for the density. The
assumed actual course of the projected density is shown by the dashed line.

The differences between our model and the points in Fig. 17.6 are obviously caused
by the fact that the parameter f is not constant but has local deviations, in particular,
in the spiral branches. Aligning the points with the calculated curve Pt(t) we can ob-
tain the “observed” values of f . They are shown in the logarithmic scale in Fig. 17.6
(dots). We see that the assumption of constancy of the mean value of f is not badly
fulfilled. The regions of minima of f correspond to the main spiral branches of the
galaxy.

So, we conclude that the increase of f at the periphery as well as the large masses
of the M31 galaxy, deduced by several authors, probably do not correspond to real-
ity2.

May 1968

2As described in the Epilogue, the reasons for contradictions in M31 models are the absence of dark
matter population in earlier models of galaxies, and erroneous high value of the observed velocity
dispersion near the center.
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18. Hydrodynamical model of M31

This Chapter presents our first attempt to calculate a hydrodynamical model of a
galaxy — M31. The method was described earlier by Einasto (1968a,d, 1969a,
1970c). The method was applied to the Andromeda galaxy to calculate a prelimi-
nary mass distribution model by Einasto (1969b), and by Einasto & Rümmel (1970b)
to calculate the hydrodynamical model, which formed the topic of the original Chap-
ter 18. The description of the method and the analysis of the hydrodynamical model
of M31 were improved by (Einasto & Rümmel 1970c). The present English version
of Chapter 18 is based on the improved version of the analysis by Einasto & Rümmel
(1970c).

18.1. Introduction

The most convenient way to express the various observational data on galaxies in a
condensed and mutually consistent form is the construction of their models. In the
case of bright galaxies, there are available the following data: the photometric data
for the galaxy as a whole, and for some subsystems (neutral and ionised hydrogen,
young bright stars, novae, cepheids), spectrophotometric data (mean spectral type,
stellar content) for the nucleus and the bulge, and kinematical data (the systematic
radial motion and the velocity dispersion) for the gaseous component, the nucleus,
and the bulge.

On the basis of these data, using the necessary dynamical and geometric equations,
it is possible to construct a composite hydrodynamical model of the galaxy.

18.2. Theory

A. ASSUMPTIONS AND DESCRIPTIVE FUNCTIONS
We assume that the galaxy has an axis and a plane of symmetry, common for all

subsystems, that the galaxy is in a steady state and consists of a number of physically
homogeneous subsystems. The equidensity surfaces of the subsystems are similar
concentric ellipsoids.

The hydrodynamical descriptive functions, determining the spatial density of
matter and the velocity dispersion tensor, are designated as follows:
ρ(a) — the spatial density of matter, a being the major semiaxis of the equidensity
ellipsoid with the axial ratio ǫ = b/a;
σR, σθ, σz — the velocity dispersions in a galactocentric cylindrical coordinate
system (a2 = R2 + ǫ−2z2);
Vθ — the rotation velocity;
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18. Hydrodynamical model of M31

α — the inclination angle of the major axis of the velocity ellipsoid in respect to the
plane of symmetry of the galaxy.

B. GEOMETRIC EQUATIONS
The spatial density of matter can be found from the observed projected luminosity

density L(A), whereA is the major semiaxis of the projected equidensity ellipse with
the apparent axial ratio E, E2 = sin2 i + ǫ2 cos2 i, where i is the angle between the
axis of the system and the line of sight. From geometric considerations, neglecting
the absorption of light, we have (Einasto 1969a)

L(A) =
2ǫ

Ef

∫ A0

A

ρ(a)ada√
a2 −A2

, (18.1)

where f is the mass-to-light ratio of the subsystem, considered as a constant, and A0

the major semiaxis of the limiting ellipsoid of the subsystem.

C. HYDRODYNAMICAL EQUATIONS
In a steady state galaxy, the gravitational attraction of the galaxy is counterbalanced

by the pressure (velocity dispersion) and the rotation. In cylindrical coordinates, the
hydrodynamical equilibrium equations are:

1

R

(

σ2R − σ2θ
)

+
1

ρ

∂

∂R

(

ρσ2R
)

+
1

ρ

∂

∂z

[

ργ
(

σ2R − σ2z
)]

− V 2
θ

R
= −KR, (18.2)

1

R
γ
(

σ2R − σ2z
)

+
1

ρ

∂

∂R

[

ργ
(

σ2R − σ2z
)]

+
1

ρ

∂

∂z

(

ρσ2z
)

= −Kz. (18.3)

where

γ =
1

2
tan 2α, (18.4)

and KR, Kz are radial and vertical components of the gravitational acceleration
of the whole galaxy. The latter quantities can be derived from the mass density
distribution function (Einasto 1969a). In the steady state galaxy, the functions
σR, σθ, σz, Vθ, γ fully determine the velocity ellipsoid as two axes of the ellipsoid
lie in the meridional plane of the galaxy, and the radial and vertical components of
the centroid motion are equal to zero.

D. ADDITIONAL EQUATIONS, CLOSING THE SYSTEM OF EQUATIONS
In order to obtain composite models of galaxies, the mass and light distribution of

subsystems is first to be determined from photometric and spectroscopic data. Then
the gravitational acceleration of the whole galaxy can be found. Finally, the kinemat-
ical functions of subsystems can be derived. Given the density and the acceleration,
the equations (18.2) and (18.3) involve five unknown kinematical functions. As we
have only two equations, the problem is not closed: to solve the system of equations,
three additional equations are needed, see Chapter 11 for detailed discussion.
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It is convenient to give the additional equations for the functions, which determine
the orientation of the velocity ellipsoid, γ, and its shape

kθ(R, z) = σ2θ/σ
2
R, kz(R, z) = σ2z/σ

2
R. (18.5)

From the theory of the third integral of motion of stars (Kuzmin 1952c) follows

γ = Rz/(R2 + z20 − z2), (18.6)

where z0 is a constant, depending on the gravitational potential of the whole galaxy.
The equations for kθ and kz are in the general case complicated (Einasto & Rüm-

mel 1970b), see Chapter 11. In the present paper, we have computed the kinematical
functions for the plane and the axis of the galaxy only. The theory of the steady state
galaxy gives (Einasto 1969a)

kθ(R, 0) = 1/2

[

1 +
∂ lnVθ
∂ lnR

]

. (18.7)

We assume that in the first approximation, the centroid velocity Vθ is proportional
to the circular velocity Vc. In this case, kθ(R, 0) are identical for all subsystems.
From the symmetry conditions on the axis of the galaxy we have

kθ(0, z) = 1. (18.8)

For flat subsystems the ratio kz(R, 0) can be found from the theory of irregular
gravitational forces. Kuzmin (1961) has derived the following approximate relation

[kz(R, 0]
−1 = 1 + [kθ(R, 0)]

−1. (18.9)

On the other hand, from the theory of the third integral, we have for the axisR = 0,
supposing the ellipsoidal distribution of velocities (Einasto & Rümmel 1970b)

kz(0, z) = kz(0, 0)/kz(
√

z2 − z20 , 0). (18.10)

Formulae (18.9) and (18.10) can be used, if R2 ≫ z20 , and z2 ≥ z20 correspond-
ingly. For small R and z, kz(R, z) is to be interpolated, using the value kz(0, 0),
derived from the virial theorem.

18.3. The model

The theory outlined has been applied to a model of the Andromeda galaxy, consisting
of four components: the nucleus, the bulge, the disc, and the flat component. Obser-
vational data used are published by Einasto (1969b). The distance 692 kpc of the
galaxy is accepted, corresponding to the true distance modulus (m −M)0 = 24.m2
(Baade & Swope 1963).
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The inclination of the galaxy has been estimated by combining the data on the axial
ratio of isophotes in the outer region of the galaxy, and the distribution of emission
nebulae (Baade & Arp 1964). The value i = 12.◦8 has been found. It is in good
agreement with an earlier estimate by Baade i = 12.◦7, quoted by Schmidt (1957b).
Somewhat larger values found by Arp (1964b) and by some other authors cannot
be accepted, as in this case the true axial ratio of the equidensity surfaces of the
disc population will be too small, of the order of 0.01. The disc component of a
galaxy consists of old population I stars. Their vertical dispersion of velocities at the
distance R = 10 kpc from the centre is of the order of 20 km/s. From these data,
we can estimate the thickness and the axial ratio of equidensity surfaces; the latter
quantity becomes of the order of 0.1.

The parameter z0 was derived from the gravitational potential of the system. An
effective value z0 = 0.5 kpc has been found.

The principal descriptive function, the spatial density of matter, has been chosen
in the form of a generalised exponential function

ρ(a) = ρ0 exp

[

−
(

a

a0k

)ν]

, (18.11)

where ρ0 is the central density of the component, a0 — the effective (harmonic mean)
radius of the component, ν — the structural parameter of the model, and k — a
dimensionless parameter depending on ν. The central density depends on the mass,
effective radius, and the axial ratio of the component:

ρ0 =
h

4πǫ

M

a30
, (18.12)

where h is a dimensionless parameter depending on ν.

Table 18.1.: Parameters of the components of M31

Quantity Unit Total Nucleus Bulge Disc Flat+ Flat−
ǫ 0.84 0.57 0.09 0.01 0.02
ν 1 1/4 1 1 1
k 0.5 1.26 × 10−4 0.5 0.5 0.5
h 4 3112 4 4 4
a0 kpc 0.005 1 10 8 4
L 109 L⊙ 13.13 0.003 4.95 6.46 2.29 −0.57
M 109 M⊙ 201.8 0.052 85.5 111.5 5.73 −1.43
f 15.4 17.3 17.3 17.3 2.5 2.5
ρ M⊙/pc

3 1.2× 106 35.8 0.296 0.267 −0.267

The derived parameters of the components are given in Table 18.1.
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18.4. Discussion

Figure 18.1.: Left: Vertical velocity dispersion σz of the components of M31 in the
z-axis of symmetry. Right: Vertical velocity dispersion σz of the com-
ponents of M31 in the plane of symmetry.

To obtain better agreement with observations, the flat component of the galaxy
has been represented by a sum of two functions (18.11), one of them being negative.
This allows to describe the ring-like shape of the flat population with zero density
at the centre. The parameters of this component are subject to the condition that the
ring-like mass distribution has everywhere non-negative total density.

The mass of the nucleus has been determined by means of the virial theorem.
In an earlier paper (Einasto 1969b), the mass has been found from the luminos-
ity of the nucleus and its accepted mass-to-light ratio (Spinrad 1966). The mass
M = 5.2×108 M⊙, obtained from the virial theorem for the nucleus, and the corre-
sponding mass-to-light ratio f = 170, does not agree with the value f = 17, derived
spectroscopically (Spinrad 1966). This discrepancy may be removed, supposing that
the nucleus contains besides stars an invisible central body — a dead quasar (Lynden-
Bell 1969). In this case, the virial theorem must be modified, and we get for the point
mass M = 1.4×108 M⊙, supposing M = 0.8×108 M⊙ for the mass of the stellar
component of the nucleus.

18.4. Discussion

A. MASS DISTRIBUTION
Our model differs in two points from the models by Schmidt (1957b), Brandt &

Scheer (1965), Roberts (1966) and Gottesman et al. (1966): the central concentration
of mass is much higher, and the total mass smaller (Einasto 1969b), see Table 18.1.
The differences can be explained by various circular velocity curves adopted.

In the central region, the velocities found earlier from the 21-cm radio line mea-
surements are underestimated due to the insufficient correction for the antenna smear-
ing effect. The rotation velocities, derived optically for the stellar component of the
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Figure 18.2.: Left: Axial ratios of the velocity ellipsoid in the plane of symmetry and
in the axis of M31. Right: Radial velocity dispersion σR as function of
R for components of M31: 2 — bulge and halo; 3 — disc; 4 — flat; Σ
— galaxy as a whole. Horizontal scale is given in units R1/3 and in R
on bottom and top, respectively.

galaxy, cannot be identified with the circular velocities, as the pressure term (velocity
dispersions) in hydrodynamical equations is predominating.

The great masses are found in most cases as a result of approximation the observed
rotation velocities with a generalised Bottlinger law

Vθ =
V0R

[1 + (R/R0)n]3/2n
, (18.13)

where V0 and R0 are constants, and rotation velocity is identified with the circular
velocity.

We have shown (Einasto 1969a) that the generalised Bottlinger law cannot be ap-
plied to the circular velocity, as in this case great masses at very large distances from
the centre of the galaxy occur. This is impossible due to the tidal effect of nearby
galaxies (King 1962).

The small radial gradient of the rotation velocity, observed in the periphery of
some galaxies, in particular, in the Andromeda galaxy, is probably to be explained in
another way, for instance, as the appearance of systematic streaming motion in the
galaxy.

B. MASS-TO-LIGHT RATIO
The mean mass-to-light ratio found, f = 15.4, is normal for a Sb galaxy. The

flat population and the disc have also acceptable values, f = 2.5 and f = 17.3,
respectively.

The mass-to-light ratio for the nucleus, f = 17.3, seems to be too large at first
glance. To explain this value, we must suppose that the nucleus: (a) consists of very
old physically evolved stars, and (b) is dynamically not evolved.
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Figure 18.3.: Rotation velocity Vθ for components of M31 in the plane of symmetry
(Einasto & Rümmel 1970c).

Figure 18.4.: Left: A specific angular moment of components in units 100 km/sec
per kpc. Right: Specific kinetic energy of M31 components in units
104 (km/sec)2, both are expressed as functions of t = a/(1 + a).

The mean relaxation time of the nucleus is of the same order (1010 yr) as the age of
the whole galaxy. Therefore, the nucleus is dynamically indeed little evolved and has
lost only a small fraction of his low-mass stars. As the nucleus has had too little time
to form dynamically by star-star encounters, it must be formed in the protogalaxy
stage of the galaxy evolution.

The metal content of stars in the nucleus is normal (Spinrad 1966). Therefore, if
the high mass-to-light ratio and the great age of the nucleus will be confirmed, we
must conclude that in the nucleus the metal enrichment has taken place in a very early
stage of the galaxy evolution.

March 1969

Revised January 1970
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19. The spiral structure of M31

The density distribution and the radial velocity field in the Andromeda galaxy, M31,
was studied on the basis of the 21-cm radio-line data from Jodrell Bank and Green
Bank by Einasto & Rümmel (1970a), which forms Chapter 19 of the Thesis. The
true density has been obtained from the observed one by solving a two-dimensional
integral equation. As the resolving power of the radio telescopes is too low to locate
all spiral arms separately, optical data on the distribution of ionised hydrogen clouds
have also been used. The mean radial velocities have been derived by solving a two-
dimensional non-linear integral equation with the help of hydrogen densities and a
model radial velocity field.

The inner concentrations of hydrogen form two patchy ring-like structures with
mean radii 30’ and 50’, the outer concentrations can be represented as fragments of
two leading spiral arms.

The rotational velocity, derived from the radial velocity field, in the central region
differs considerably from the velocity curves obtained by earlier authors. The differ-
ence can be explained by the fact that in this region, the correction for the antenna
beam width is much greater than adopted by previous investigators.

Figure 19.1.: Left; Observed (Roberts 1967) and corrected distribution of projected
density of neutral hydrogen along major axis of M31. Positions of op-
tical spirals according to Baade & Arp (1964) are also shown. Right:
Observed (Roberts 1967) and corrected distribution of projected den-
sity of neutral hydrogen along minor axis of M31. Positions of optical
spirals according to Baade & Arp (1964) are also shown.
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19. The spiral structure of M31

Figure 19.2.: Left; Spatial density of neutral hydrogen in the Galaxy plane. Right:
Distribution of ionised hydrogen clouds in M31 according to Baade &
Arp (1964). The X-scale is enlarged by a factor of 4.5 to take into
account the inclination of the plane.

19.1. Introduction

In the present paper, the density distribution and the radial velocity field of neutral
hydrogen in the Andromeda galaxy, M31, have been studied. The investigation is
based on the 21-cm radio-line data from Jodrell Bank and Green Bank Observatories,
kindly sent to us by Dr. R. G. Davies and Dr. M. S. Roberts. Optical data on the
distribution and motion of ionised hydrogen are also used.

When studying the distribution and motion of hydrogen in external galaxies, it is
necessary to take into consideration the angular resolving power of radio telescopes.
Gottesman et al. (1966) found that the correction for the beam width of the 250-feet
Jodrell Bank telescope both in the density and the velocity does not exceed 10 %.
Our calculations, however, have shown in some cases the correction needed is much
greater. This indicates that the Jodrell Bank investigators have used a too simplified
reduction method. The Green Bank data have been reduced neglecting the antenna
smearing effect (Roberts 1966). For that reason, the available radio data are to be
reduced once again. At present the program is not finished. In this paper the prelimi-
nary results are reported.

19.2. The integral equations for the density and the mean radial
velocity

Let X,Y be the rectangular galactocentric coordinates in minutes of arc, the Y−axis
being directed to the NE side of the major axis of the galaxy; V the true radial veloc-
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Figure 19.3.: Left; Distribution of neutral and ionised hydrogen in M31 according to
Baade & Arp (1964). Distribution of stellar associations according to
van den Bergh (1964) is also shown. Right: Profiles of 21-cm lines for
one point at the major axis of M31. The profile due to observational
and “cosmic” errors is also shown.

ity; D(X,Y ) the true projected density of neutral hydrogen; E(V − V ) the distribu-
tion function of residual radial velocities in the direction X, Y ; V = V (X,Y ) is the
mean radial velocity in this direction.

The radio telescope, directed to the point Xp, Yp and disposed to the frequency,
corresponding to the radial velocity Vk, will record the flux

T (Xp, Yp, Vk) =
∫

∞
∫

−∞

∫

D(X,Y )F (X −Xp, Y − Yp)

×E[V − V (X,Y )]G(V − Vk)dX dY dV ,

(19.1)

where F (X − Xp, Y − Yp) is the angular sensitivity function of the telescope, and
G(V − Vk) is the corresponding frequency sensitivity function.

Integrating (19.1) over all observed velocities Vk we obtain the observed projected
density of hydrogen D(Xp, Yp), which is connected with the true density D(X,Y )
by means of the equation

D(Xp, Yp) =

∫

∞
∫

−∞

D(X,Y )F (X −Xp, Y − Yp)dX dY . (19.2)

This is a two-dimensional homogeneous Fredhold integral equation of the first
kind for the determination of the true density D(X,Y ). If the density is known, the
Eq, (19.1) can be considered as a non-linear integral equation for the determination
of the mean radial velocity V (X,Y ).

The observations of point radio sources indicate that the function F can be fairly
well approximated by a two-dimensional Gaussian with half-intensity diameters 15’

123



19. The spiral structure of M31

Figure 19.4.: Left; Circular velocity of M31 according to models by Einasto & Rüm-
mel (1970b) and Gottesman et al. (1966) and present work (Einasto
1972b). Right: The radial velocity field of M31 according to model by
(Einasto 1972b) and observations.

and 10’ in the case of the Jodrell Bank and Green Bank telescopes respectively
(Davies (1969) and Roberts (1969b)). The function G has in the case of the Jo-
drell Bank telescope also a Gaussian shape with half-intensity width 200 kHz, which
corresponds to a velocity dispersion of 17 km/s. The Green Bank telescope has a
rectangular shaped function G of 95 kHz (20 km/s) wide.

19.3. The density distribution

From the analogy with our Galaxy, we may expect that the neutral hydrogen in M31
is concentrated in spiral arms. The optical observations of ionised hydrogen (Baade
& Gaposchkin 1963; Arp 1964b) indicate that the Andromeda galaxy has four to
five spiral arms in both sides of the galaxy. The mean distance between every two
arms is 20′ = 4 kpc, in projection only 4′ − 8′, except the region around the major
axis. The ionised hydrogen arms coincide with the neutral hydrogen arms within the
actual distance of 5’; the neutral hydrogen arms are situated closer to the centre of
the galaxy (Roberts 1967).

The resolving power of the radio telescopes used is not sufficient to separate all
spiral arms in the Andromeda galaxy; only the most dense arms N4, S4 and S5 (des-
ignated after Baade & Gaposchkin (1963)) can be “seen” individually (Roberts 1967).
To locate the outer neutral hydrogen arms, the optical data on the distribution of the
ionised hydrogen clouds can be used (Baade & Arp 1964).

The true density distribution has been determined from the integral equation (19.2)
by two methods. Near the minor axis, the equidensity lines are almost parallel to the
major axis, and the two-dimensional equation can be reduced to the one-dimensional

124



19.3. The density distribution

Figure 19.5.: Equidensity contours of neutral hydrogen in M31.

one. Representing the observed density distribution by a sum of Gaussian functions,
we get the solution of the equation also in the form of a sum of Gaussian functions.

For points far off from the minor axis, the solution of the Eq. (19.2) has been found
by successive approximations. The arms have been located by combining optical and
radio data, the corrected densities have been derived from the observed radio densities
by a trial-and-error procedure. The densities have been found for a network of points,
placed in X and Y at intervals 2’ and 10’ respectively.

The observed (Green Bank) and corrected density profiles (first approximation)
along the major and minor axes of the Andromeda galaxy are shown in Figures 19.1,
left and right panels, respectively. The picture is quite similar to the neutral hydrogen
density profiles found for our Galaxy; an example of them, drawn on the basis of the
Dutch survey by Schmidt (1957a) and Westerhout (1957) is given in Fig. 19.2.

The X, Y -distribution of ionised hydrogen clouds (Baade & Arp 1964) is given
in the right panel of Fig. 19.2. The map of equidensity contours of neutral hydrogen
is presented in Fig. 19.5. The R-distribution (integrated over all position angles θ)
of neutral and ionised hydrogen as well as of the stellar associations (van den Bergh
1964) is plotted in the left panel of Fig. 19.3. The original distributions are reduced
to an equal total number of objects, N = 1000.

The inspection of the data obtained leads us to the following conclusions:
(a) the spatial distribution of neutral hydrogen is similar to the distribution of ionised
hydrogen and stellar associations; at great distances from the centre, the relative den-
sity of neutral hydrogen is higher than that of the ionised hydrogen;
(b) the inner concentrations of hydrogen form two patchy ring-like structures with
the mean radii 30’ (the arms N3, S3 after Baade) and 50’ (the arms N4, S4);
(c) the outer hydrogen concentrations can be fairly well represented as fragments of
two leading spiral arms S5-N6, N5-S6.
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19. The spiral structure of M31

19.4. The radial velocity field

The density distribution function D and the angular sensitivity function F are inde-
pendent of the velocity V , and in Eq. (19.1) we can integrate first over the velocity

T (Xp, Yp, Vk) =
∞
∫

−∞

∫

D(X,Y )F (X −Xp, Y − Yp)

×H[Vk − V (X,Y )]dX dY ,

(19.3)

where

H[Vk − V (X,Y )] =

∫ ∞

−∞
G(V − Vk)E[V − V (X,Y )]dV . (19.4)

If the velocity dispersion is independent of position X, Y , the Eq. (19.3) can be made
more suitable for numerical computations. Let us use instead of X, Y the variables
S, V , where S is the length along the line V (X,Y ) = const. We have

T (Xp, Yp, Vk) =
∫∞
−∞ H(Vk − V )

×
[

∫

S D(X,Y )F (X −Xp, Y − Yp)J
(

X,Y

S,V

)

dS
]

dV ,

(19.5)
Assuming the Gaussian form both for the functions G and E with dispersions σG,
σE , respectively, then the function H has also the Gaussian form with the dispersion

σ2H = σ2G + σ2E . (19.6)

Interferometric observations show (Deharveng & Pellet 1969) that the radial velocity
dispersion has practically a constant value σE = 17 km/s (due to the projection effect,
the dispersion σE is greater than the true radial velocity dispersion in a small volume
element of the galaxy).

The formula (19.5) has been used to calculate the theoretical 21-cm line profiles.
An effective radial velocity dispersion, σH = 24 km/s, the corrected hydrogen den-
sity field, and a model radial velocity field have been used. The radial velocity field
has been calculated from a plane disc pure rotation model, using the obvious formula

V (X,Y ) = V0 + V (R)
Y

R
cos i, (19.7)

where V (R) is the circular velocity at the distance R from the centre of the galaxy,
V0 — the mean radial velocity of the galaxy, and i — the tilt angle of the plane of
symmetry of the galaxy to the line of sight. The velocity V (R) was taken from our
four-component model of the Andromeda galaxy (Einasto & Rümmel 1970b), the
constants are chosen as follows: i = 12.◦8, V0 = −300 km/s.

Gottesman et al. (1966) derived for 231 points Xp, Yp the line profiles (spectra)
T (Vk|Xp, Yp). For all these points, the theoretical profiles have been calculated.
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These are quite similar to the observed profiles but, in general, shifted in the velocity.
The comparison of the profiles enables us to correct the model radial velocity field.

In this way, we have found a solution to the integral equation (19.1). From the cor-
rected radial velocities near the major axis points, a new improved rotation velocity
curve has been derived.

The results are presented graphically. In the right panel of Fig. 19.3 the 21-cm line
profiles for a major axis point are given. The theoretical profiles are calculated by
using both the corrected and uncorrected (observed) hydrogen densities, the model
velocity field being identical. Mean radial velocities and the point velocity Vp (the
model radial velocity at the point Xp, Yp) are also indicated. In Fig. 19.4 the rotation
curves are presented, and in the right panel of Fig. 19.4 the model and observed radial
velocity field.

The analysis of the results can be summarised as follows:
(a) the change of the density causes both vertical and horizontal shifts in the line
profiles, therefore, an unbiased radial velocity field can be derived only by using
carefully corrected densities;
(b) when the radio telescope is directed to a point of low hydrogen density or large
density gradient, the mean radial velocity of the profile does not coincide with the
point velocity; in extreme cases near the major axis the difference exceeds 100 km/s.
This effect has caused large systematic errors in the previous reductions of radio data
by Argyle (1965), Gottesman et al. (1966) and Roberts (1966);
(c) the corrected radial velocity field has great irregularities in respect to the model
field.

July 1969
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20. Structural and kinematical properties of M31

populations

This Chapter presents our second attempt to construct a model of the Andromeda
galaxy M31. It was developed step-by-step, adding more data on structural and kine-
matical properties of populations. It was presented in IAU Symposium on “Exter-
nal galaxies and quasi-stellar objects”, held in Uppsala August 10 - 14, 1970, and
published by Einasto (1972b). Here the model is presented according to the Thesis
version of the Chapter, using also data and text of the Symposium version.

20.1. Introduction

To construct a meaningful physical theory of the structure and evolution of a galaxy,
one needs reliable data on parameters, describing the spatial and kinematical structure
of the galaxy and its subsystems of different ages. As such parameters one can adopt:
the mass of the subsystem M , its mean radius a0, the axial ratio of equidensity ellip-
soids ǫ (supposing equidensity surfaces of subsystems to be ellipsoids of rotational
symmetry and constant axial ratio), and suitable structural parameters determining
the degree of concentration of the mass to the centre of the system. As morpholog-
ical parameters, we can consider colour and mass-to-light ratio of subsystems. As
descriptive functions, we can use spatial density ρ, projected luminosity L, circular
velocity V , rotational velocity Vθ, velocity dispersions σR, σθ, σz , and some others.

In a series of papers, Einasto (1969a) and Einasto & Rümmel (1970b,a,c) studied
the structure of the Andromeda galaxy and its subsystems, and calculated prelimi-
nary values for descriptive parameters. Recently, new observational data have be-
come available for the nucleus, the subsystem of globular clusters, and interstellar
hydrogen. It appears reasonable to use these data to redetermine structural parame-
ters of the populations. Also the reconstruction of the physical evolution of galaxies
was made on the basis of the theory of evolution of stars of different mass and com-
position, described in the following Chapters. This allowed to calculate structural
and kinematical parameters of subsystems of the Andromeda galaxy M31, and to
construct its new model. Preliminary results of this work were published by Einasto
(1972b), here we describe the new model in more detail.

20.2. Reddening and luminosity dimming of M31

Einasto (1969b) did not correct data for the reddening effect, Einasto (1972b) used
for correction data by Arp (1965). A collection of reddening determinations is given
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20. Structural and kinematical properties of M31 populations

in Table 20.1, where we show the colour excess E(B−V ) of various objects in M31
and its vicinity.

Table 20.1.: Reddening determinations in M31

Object E(B − V ) References
Halo clusters 0.08± 0.02 van den Bergh (1969)
Field stars 0.11± 0.02 McClure & van den Bergh (1968)
Blue open clusters 0.12± 0.04 Schmidt-Kaler (1967)
Nucleus 0.13 Einasto (1972b)
Nucleus 0.20 Arp (1965)
Cepheids 0.16± 0.03 Baade & Swope (1963)
Cepheids 0.15 van den Bergh (1968)
Mean M31 0.17− 0.20 Einasto (1972b)

The colour excess E was determined as follows. Data by van den Bergh (1969),
Kinman (1965), Lallemand et al. (1960), Sandage et al. (1969) suggest that the ap-
parent colour excess of the nucleus of M31 is B − V = 1.04 and U − B = 0.78,
a mean colour excess of galaxies of Sb type is B − V = 0.97, U − B = 0.59
(de Vaucouleurs 1961), which gives E(B − V ) = 0.07 and E(U − B) = 0.19.
The colour excess E(U − B) can be found from E(B − V ), using the relation
E(U − B)/E(B − V ) = 0.72, which yields E(B − V ) = 0.26. The mean value
is E(B − V ) = 0.13, giving double weight to the direct estimation of E(B − V ).
de Vaucouleurs (1961) gives for the galaxy M31 as a whole B − V = 0.91 and
U − B = 0.50, and as a mean for Sb galaxies B − V = 0.81 and U − B = 0.27,
which gives a value E(B − V ) = 0.17.

A slightly larger value was found in a different way. Schmidt-Kaler (1967) used to
find E(B − V ) the most blue clusters of M31, which did not have reddening within
M31, but only within the Galaxy. The reddening in the Galaxy can be found also
using halo clusters (van den Bergh 1970) and field stars (McClure & van den Bergh
1968). On the basis of these data, we find that the reddening in the M31 direction
within our Galaxy is E(B − V ) = 0.10 ± 0.02. On the other hand, according to
Sharov (1968b), the mean reddening in the line of sight within M31 is AV = 1. If we
assume that the reddening within M31 is due to a thin layer of dust near the symmetry
plane, then objects within M31 can be divided into two classes, nearby ones with no
reddening, and more distant ones with reddening AV = 1. As the mean we get
AV = 0.39 and E(B − V ) = 0.13. However, some reddening occurs in spiral arms,
thus outer regions of M31 have smaller reddening. Taking these considerations into
account, we accept the mean reddening within M31 E(B − V ) = 0.10, and together
with the reddening within our Galaxy E(B − V ) = 0.20.

This overview shows that the light of different M31 subsystems is influenced by
reddening differently. As a mean reddening, we accept E(B − V ) = 0.15, which is
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twice less than accepted by Einasto (1972b). Using the apparent distance modulus
(after cepheids) (m−M)0 = 24.2 and R = AV /E(B − V ) = 3 we get for the true
distance modulus (m−M)0 = 24.2 ± 0.05.

Figure 20.1.: Luminosity profile of M31 in photometric system B is shown by a bold
curve, profiles of components by thin curves. The lower panel shows
the difference ∆m = BObs − BMod. Components are: 1 – nucleus, 2
– core, 3 – bulge, 4 – halo, 5 – disc, 6 – flat.

20.3. New model of M31

In the new model, we used the photometrical profile in B system by Einasto (1969b),
using additional data to calculate improved parameters of the M31 model. Parameters
of the new model are given in Table 20.2, the new photometric profile in Fig. 20.1, and
new axial ratio data in Table 20.2. We shall discuss details on individual populations
below. Here we consider principal model parameters.

In addition to photometrical and kinematical data used earlier (Einasto 1969b;
Einasto & Rümmel 1970a), we now used the following new data: spectro-
photometrical and photometrical data on the stellar content (van den Bergh (1970),
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Sandage et al. (1969), Spinrad (1966); Spinrad & Taylor (1969); Spinrad et al. (1970),
McClure & van den Bergh (1968) and de Vaucouleurs (1969)), kinematical data on
globular clusters (van den Bergh 1970) and interstellar hydrogen (Deharveng & Pellet
(1969) and Rubin & Ford (1970)). Additionally, we used our results on the physical
evolution of galaxies, discussed in Chapter 22.

The main difficulty in the determination of parameters of our preliminary models
was related to calculations of mass-to-light ratios of populations. New data allow to
find more accurate values of these parameters.

In Chapter 22„ we discussed three variants on the star formation function with
S = 0, 1 and 2. To apply results of Chapter 22 to study the structure of M31 we
must have a choice between these parameter values.

The mass of the neutral hydrogen in M31 can be taken equal to MHI
= 3.7 ×

109 M⊙ (Argyle (1965), Gottesman et al. (1966) and Deharveng & Pellet (1969)),
using for the distance d = 690 kpc. The mass of ionised hydrogen is less by several
orders, and the total mass of interstellar matter is MG = 5.3× 109M⊙, if we accept
normal chemical abundance with X = 0.70. If we accept the total mass of the
M31 M t = 218 × 109M⊙ according to Einasto (1972b), then we get for the mass
of the gas MG = 0.024M t . If we neglect the gas, expelled from stars during their
evolution, and take the total age of M31 equal to 1010 years, then with the exponential
decrease of gas mass (S = 1), this gas fraction corresponds to star formation function
parameter K = 2.7 × 109 yr. If we use S = 2, we get for the characteristic time
K = 0.25 × 109 yr.

In our model, the flat component has ǫ = 0.02, and the disc has ǫ = 0.08. We
can attribute all populations with ǫ < 0.4 to the flat component, with a maximal
age 1.7 × 109 yr according to Einasto (1970a). During last billions of years, the
star formation rate in galaxies like M31 was approximately constant, and we get
using data from Chapter 22 for the mass-to-light ratio fB = 0.43. The total mass
of stars formed during last 1.7 × 109 yr is M S = 4.7 × 109M⊙, and luminosity
LS = 10.9 × 109 L⊙, if we accept S = 1 and K = 2.7 × 2.7 × 109 yr. For S = 2
and K = 0.25 × 109 yr we get M S = 1.06 × 109 M⊙ and LS = 2.46 × 109 L⊙.
According to Einasto (1969b) the total luminosity of the flat component is LB =
3.0 × 109 L⊙ (using E(B − V ) = 0.15). This comparison suggests that the model
with S = 2 agrees much better with observations.

Using data given in Chapter 22, we find that the mass-to-light ratio of the whole
galaxy is fB = 9.5, when we accept normal solar composition Z = 0.02, S = 2,
TG = 10×109 yr, and star formation parameter K = 0.25×199. From observations,
using E(B−V ) = 0.15, we get fB = 11.08, which corresponds to composition with
a slightly higher metal content. This result is expected, since according to Spinrad &
Taylor (1969) the metal content in our Galaxy is slightly higher than the solar content,
and according to van den Bergh (1969) the metal content in M31 is higher than in the
Galaxy.

Calculations by Cameron & Truran (1971) demonstrate that the metal-enrichment
of interstellar gas with heavy elements was very rapid in the early phase of the evolu-
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tion of the Galaxy. In later stages of the evolution, the chemical content was almost
constant with time. For this reason, we can accept that the chemical composition of
flat and disc components did not change with time, and that this content is represen-
tative for the whole galaxy. In this case we can take that the sum of the flat and disc
components, as well as the galaxy as a whole, have constant ratio fB . Accepting the
values given above for the mass of the interstellar matter and the mass and luminosity
of young stars, we get for the mass of the flat component M F = 6.36 × 109 M⊙,
and luminosity LF = 2.4 × 109 L⊙. For the disc, we have the luminosity from the
photometric profile, LD = 7.57×109 L⊙, and for the summed luminosity of the disc
and flat components: LFD = 10.03 × 109 L⊙, which yields fB = 11.08, and mass
of these components, M FD = 112.2 × 109 M⊙.

Now we consider data on spherical components. New data suggest that in these
components, there exist large local anomalies in the chemical composition. For this
reason, we cannot consider this component as a homogeneous one. Our data sug-
gest that the spherical population can be well described by three sub-systems. The
inner-most subsystem has chemical composition and mass-to-light ratio fB, similar
to the nucleus (Spinrad et al. 1971). For the intermediate subsystem (bulge), we ac-
cept a normal chemical composition and fB, and for the most extended subsystem
(halo) we accept chemical composition and fB, close to that of halo globular star
clusters. After several trials, we accepted mass and mass-to-light parameters, given
in Table 20.21. Following Einasto (1972a, 1974a) we designate the inner bulge as
the core. Einasto (1972b) calculated preliminary versions of mass-to-light ratios and
masses for components, used to prepare Fig. 20.6, and listed in Figure caption.

Table 20.2.: Parameters of the components of M31

Quantity Unit Nucleus Core Bulge Halo Disc Flat Total
ǫ 0.80 0.80 0.80 0.30 0.08 0.02
ν 1/2 1/4 1/4 1/4 1 2
a0 kpc 0.005 0.15 0.8 3 9.2 8
LB 109 L⊙ 0.0057 0.501 2.94 6.18 7.57 2.46 19.65
LV 109 L⊙ 0.0073 0.642 3.63 6.34 9.08 1.88 21.57
M 109M⊙ 0.306 27.0 58.4 19.8 105.8 6.36 217.7
fB 53.8 53.8 19.88 3.20 13.98 2.59 11.08
fV 42.0 42.0 16.09 11.66 3.39 3.39 10.09
U −B 0.67 0.65 0.47 0.16 0.43 −0.17
B − V 0.89 0.89 0.85 0.65 0.82 0.33 0.72

The colour index of the nucleus and inner components of spherical components
(core and bulge) were found from photometric observations by Lallemand et al.
(1960), de Vaucouleurs (1961), Kinman (1965) and Sandage et al. (1969). For other

1The Table is from the Thesis version.
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Figure 20.2.: The apparent axial ratio of isophotes E as function of the distance along
major axis A. The curve is as found in our model, symbols show obser-
vational determinations.

components, there are no direct observational data, and colours were calculated using
the theory of the evolution of integral colours of components, as described in Chapter
22.

Luminosities, effective radii and axial ratios of components were found from pho-
tometric data. The radius of the metal-rich inner spherical component (subpopulation
2 — core) was found from spectrophotometric data by Spinrad et al. (1971). To get
in the model the minimum of the isophote axes ratio function, similar to the observed
minimum (see Fig. 20.2), the axial ratio of the halo was decreased to ǫ = 0.30, and
of the disc to ǫ = 0.08. Also, it was needed to decrease the angle between the system
plane and line of sight from i = 12.◦7 to i = 12.◦5.

Using the virial theorem and hydrodynamical model for all subsystems, mean ve-
locity dispersions σR, σz, σr were calculated. Velocity dispersions σz(R, z) of four
populations in the meridional plane are shown in Fig. 20.10.

20.4. Nucleus

At the Basel IAU Symposium on Spiral Structure of the Galaxy, we argued that dif-
ferent methods lead to different values for the mass of the nucleus of M31 (Einasto
& Rümmel 1970c). On the basis of photometric data by Redman & Shirley (1937),
Johnson (1961), and Kinman (1965), and spectrophotometric data on the stellar con-
tent and mass-to-light ratio, M /L = f = 16 (Spinrad 1966) we obtained (Einasto
1969b) for the mass of the nucleus the value M = 5× 107 M⊙. On the other hand,
the known mean radial velocity dispersion of stars in the nucleus is σr = 225 km/sec
(Minkowski 1962), the mean radius is a0 = 5 pc (obtained from photometric profile
of the nucleus), and axial ratio of equidensity ellipsoids is ǫ = 0.8. These data en-
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Figure 20.3.: Colour U − B and the intensity of spectral features Nα and CN in
central region of M31 as functions of the distance from the centre A.
Model curves were found under the assumption that subcomponents 1
and 2 (nucleus and core) have a composition, rich in heavy elements,
and the bulge has normal composition.

able us to apply the tensor virial theorem (see Chapter 12), which yield for the mass
M = 5× 108 M⊙ (Einasto & Rümmel 1970c).

The discrepancy in mass can be removed supposing, as Lynden-Bell (1969) does,
that a massive body exists in the centre of the galaxy. In this case, the tensor virial
theorem is to be modified. For the mean radial velocity dispersion of stars in the
nucleus we have

σ2r = Ga−1
0 βr(MC +H0M 0), (20.1)

where G is the gravitational constant, a0 is the harmonic mean radius of the stellar
subsystem of the nucleus, MC and M 0 are masses of the central body and the stellar
population of the nucleus, respectively, and H0 and βr are dimensionless parameters.
From photometric observations, we get for the nucleus ǫ = 0.8, and i = 12.◦8, which
gives βr = 0.375. The spatial density of stellar population of the nucleus can be well
represented by the exponential model, for which H0 = 0.312. Adopting for the mean
radius and the mass of the stellar component the values given above, we obtain for
the central mass MC = 1.4 × 108 M⊙.

After the Basel Symposium, I asked Dr. H. Spinrad to determine the maximum
value of mass-to-light ratio, consistent with spectroscopic observations. Recently
new data became available (Spinrad & Taylor 1971). According to the new model
of the stellar content, the mass-to-light ratio increases to a value of fV = 42, due to
the necessity of adding faint M dwarfs. An upper limit to the number of red dwarfs
is given by V − K,V − L colour observations (Sandage et al. 1969), which gives
fV ≤ 65.
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Figure 20.4.: The distribution of globular clusters in M31.

Figure 20.5.: The dependence of the metallicity parameterQ of M31 globular clusters
on the distance from the centre A.

A re-examination of the photometric data mentioned above gives for the luminosity
of the nucleus in visual light a value LV = 1.42 × 107 L⊙. This is four times
higher than our previous estimate. The difference is due to the absorption and colour
corrections: AV = 0.6 in our Galaxy, AV = 0.3 in M31 (Arp 1965), and B − V =
1.0 (Sandage et al. 1969). The luminosity profile of M31 is shown in Fig. 20.1.
Using these data, we obtain for the mass of the stellar component of the nucleus
M 0 = 6.4± 2.1× 108 M⊙, accepting E(B − V ) = 0.3). On the other hand, on the
basis of the virial theorem we get M 0 = 5.7± 1.9× 108 M⊙ (using MC = 0).

Good agreement between these two independent estimates shows that it is not nec-
essary to suppose the existence in the centre of M31 of a body of large mass. How-
ever, ultraviolet observations carried out from the OAO indicate the presence of a
UV-source in the nucleus of M31. If this source has small dimensions compared with
the mean radius of the stellar component of the nucleus, Eq. (20.1) may be applied to
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20.4. Nucleus

Figure 20.6.: The rotation curve of M31. Observed rotation data from optical and ra-
dio measurements according to a summary by Rubin & Ford (1970)
are shown by various symbols. Solid curves show rotation accord-
ing to the model by Rubin & Ford (1970), and two variants of the
model by Einasto (1972b). In this model mass-to-light ratios fV of
nucleus, bulge, halo, disc and flat populations are in variant I – 42,
4.2, 4.1, 10.1, 3.2, and in variant II – 42, 2.7, 0.07, 14.7, 6.5.

estimate an upper limit for the point mass, which may be attributed to the UV-source.
Assuming M 0 ≥ 4.0 × 108 M⊙, we find MC ≤ 0.5 × 108 M⊙. Thus, presently
available data are not sufficient to confirm the presence of a point-like mass in the
centre of M31. However, indirect data (recent explosion of the M82 galaxy) make
the existence of such a body very likely in galaxies of type Sb.

Sandage et al. (1969) concluded from the U −B colour variation along the major
axis that the stellar content of the nucleus differs from that of the bulge. However,
at present it is not clear whether the variation is due to a difference in stellar content
or to the existence of a non-stellar UV-source in the centre of M31. A difference in
stellar content is not excluded because the nucleus is dynamically almost isolated and
there is no appreciable exchange of stars between the nucleus and the bulge.

A rather great difference in chemical composition of stars on various distances
from the centre of galaxies raises the question: Can this difference have a permanent
character or will it change with time due to a mixture of stellar orbits? If most stel-
lar orbits in the central region are radially extended, then stars in different regions
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Figure 20.7.: Circular and escape velocities, V and Vk of M31 as functions of dis-
tance from the centre R according to the model by Einasto (1972b).

Table 20.3.: Apogalactic distances from the nucleus centre

V (km/sec) Rapogal (pc)
225 1.8
450 8

1080 85

will be mixed. However, our calculations showed this does not occur with stars of
the nucleus as well with stars of inner region of the halo. In other words, stellar
populations in different subsystems are dynamically isolated. To demonstrate this,
we calculated, with the aid of a model of the mass distribution and the gravitational
field of the nucleus, the apogalactic distances of stars moving through the centre of
the nucleus with various velocities, see Table 20.3. The majority of the nucleus stars
have velocities of some hundred km/sec and do not move far off from the centre.
Only stars having large velocities exceeding the escape velocity with respect to the
nucleus, 1080 km/sec, go far away.

The mass density near the centre of M31 according to our model is 2 ×
106 M⊙ pc−3, the angular velocity is 12 km/sec/pc (Lallemand et al. 1960). Us-
ing the tensor virial theorem and supposing a rigid-body rotation, we find that the
rotation energy is only 7.5 % of the total kinetic energy of the nucleus. The binding
energy of the nucleus (total negative energy per unit mass) is 7.5× 104 (km/sec)2.
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Figure 20.8.: Distribution of the projected density of M31 and its components.

20.5. Bulge

The bulge is the densest component of spheroidal populations of spiral galaxies, the
characteristic radius of the bulge of M31 is of the order of 1 kpc. Photometrical
data suggest that the bulge is fairly homogeneous. However, spectrophotometric data
indicate that there exist differences in chemical composition (Sandage et al. (1969),
Spinrad & Taylor (1971) and Spinrad et al. (1971)). Chemical composition influences
mass-to-light ratios. Data by Spinrad et al. (1971) suggest that in the inner part of
the bulge (at distance 1’ from the centre of M31) fV = 45, but data by Tinsley &
Spinrad (1971) suggest fV = 9.2. If we attribute for the whole bulge fV ≈ 40− 50,
we get for the mass of the bulge an absurd value, larger than the mass of the whole
galaxy M31. On the other hand, there is no doubt that the inner part of the bulge has
high value of fV . For this reason, we divide the bulge into two subsystems.
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20. Structural and kinematical properties of M31 populations

Figure 20.9.: Left and right panels show isolines of M31 angular velocity ω and es-
cape velocity Vk, respectively.

In the choice of fV for the inner bulge, we shall use the value fV = 42. If we
accept the value fV = 92, suggested by Tinsley & Spinrad (1971), then we get for
this subsystem velocity dispersion σr = 450 km/sec, which is too high.

Earlier we assumed (Chapter 17) that velocity dispersion can have a minimum
near the centre of the system. Later calculations (Chapter 18) suggested that this
is possible only in the case when the increase of the density towards the centre is
rather modest. The projected luminosity function has near the centre of M31 a high
maximum, as in other spiral and elliptical galaxies. The minimum in the velocity
dispersion near the centre can be avoided only in case the mass-to-light ratio in central
regions is much lower than in the galaxy as a whole. Actually, this is not the case, thus
a minimum of the velocity dispersion near the centre is unavoidable. This minimum
is not very deep, as suggested in our earlier model of M31, described in Chapters 17
and 18.

We determined the radius of the inner bulge using data on the chemical composi-
tion of M31 (Sandage et al. (1969) and Spinrad et al. (1971)). In Fig. 20.3 we show
the colour U −B, index Na and CN according to model (curve) and data (points).

There are no direct data on the chemical composition and mass-to-light ratio for
the outer component of the bulge. We accepted for this component normal chemical
composition, colour and parameters fB and fV , using data of calculations of the
evolution in Chapter 22. Comparison with parameters of other components of the
galaxy, and the virial theorem suggest that parameters accepted for this component
cannot have large errors.
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20.6. Halo

Figure 20.10.: Top: Isolines of velocity dispersion σz(R, z) and density ρ(R, z) in
the meridional plane R, z of M31 for three test populations of flatten-
ing ǫ = 0.02, 0.08, 0.30. Bottom: Similar isolines for ǫ = 0.80. For
explanations see Chapter 7.

20.6. Halo

The halo is the outer subsystem of the spherical component of galaxies. We found
the effective radius, total luminosity and the axial ratio from photometric data and
colour. Also we used mass-to-light ratios of globular clusters, which are essentially
part of the halo component.

Halo population stars have the same physical characteristics as globular clusters.
Also spatial and kinematical properties of halo populations stars are close to sim-
ilar properties of the globular cluster subsystem. The most characteristic property
of halo stars is the very low metal content. This follows from direct spectral obser-
vations as well as from the metal-index Q = (U − B) − 0.72 (B − V ) (van den
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Bergh 1969). The mass-to-light ratio of globular clusters is approximately equal to
unity (Schwarzschild & Bernstein 1955). Our calculations of the evolution of stellar
systems suggest that this value is underestimated. If we accept the heavy element
content Z = 0.001, exponential law of the star formation function with S = 1, char-
acteristic time K = 0.5× 109 yr, and minimal mass of forming stars M0 = 0.1M⊙,
then mass-to-light ratios are fB ≈ fV ≈ 3, see Chapter 22. This result seems to
be acceptable, see Chapter 23. If the metal content is higher, say Z = 0.005, and
parameter K = 0.5×109 yr, then with minimal mass of forming stars M0 = 0.3M⊙

we get fB ≈ 3, and with M0 = 0.1M⊙ we get fB ≈ 5. The true value of the
mass-to-light ratio lies probably in-between.

In the Andromeda galaxy M31, we have the possibility of studying the overall
spatial distribution of an old population, using the sample of globular clusters. Our
sample of globular clusters has been collected on the basis of Vetešnik (1962) cat-
alogue. Photometric data on clusters were collected from various sources (Sharov
1968a). Probable open clusters are excluded from the general list; they lie in the
V, (B − V ) diagram to the left of the reddening line AV /EB−V = 2.5 (van den
Bergh 1969), going through the point V = 18.0, B − V = 1.00. Hα-regions (Haro
1950), objects without any photometric data, and very faint clusters (B > 19.0), were
also excluded. The remaining sample was divided into two groups: bright clusters
(B ≤ 17.5), and faint clusters (17.5 < B ≤ 19.0), which consist of 101 and 92
clusters respectively.

On the basis of the measured (x, y) coordinates, published by Vetešnik (1962),
the galactocentric coordinates W, U along the major and minor axes of the galaxy,
and the projected distance from the centre A = (W 2 + E−2U2)1/2 were calculated.
E is the apparent axial ratio of equidensity ellipses. We found E = 0.57, which
corresponds to the true axial ratio ǫ = 0.54.

The distribution of clusters in A is somewhat different in two groups, which can
perhaps be explained by a selection effect in observations. In the central and outer
halo region, the relative number of faint clusters is smaller. After a slight correction
of numbers of faint clusters, both groups were united and general distribution was
found, see Fig. 20.4. The distribution can be fairly well represented by a modified
exponential density law (Einasto 1970b) with the mean radius a0 = 4.5 kpc, N = 4,
and x0 = 10.5.

This result shows that the system of globular clusters has a much greater mean
radius than the spheroidal component of M31. As we have no reason to believe that
the spatial structure of the system of globular clusters differs significantly from that
of other old first-generation stars, we come to the conclusion that the subsystem of
old stars cannot be identified with the spheroidal component of the galaxy. In the
central part of the galaxy, star formation has probably taken place much longer than
in the halo, giving rise to the formation of the bulge.

As to the kinematics of globular clusters, van den Bergh (1969) has recently deter-
mined radial velocities for 44 bright globular clusters in M31. From his data the mean
galactocentric radial velocity dispersion can be found. Adopting for the systemic ve-
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locity of the galaxy −300 km/sec (van den Bergh (1969), Rubin & Ford (1970)), we
get σr = 122 km/sec, which is only 0.54 of the mean radial velocity dispersion in the
nucleus Minkowski (1962)2.

Preliminary model calculations show that velocity dispersions of the nucleus and
the subsystem of globular clusters mainly depend on the total mass of the galaxy, and
are quite insensitive to the mass concentration towards the centre.

The difference between the mean velocity dispersions of the nucleus and the sub-
system of globular clusters has one important consequence. Velocity dispersions near
the nucleus have been used to determine the total mass of a galaxy. For example, by
this method Brandt & Roosen (1969) obtained for M87 M = 2.7 × 1012 M⊙, and
M /L = 85. However, a strong dependence of the dispersion on the distance R
shows that the velocity dispersion near the centre characterises the mass and the size
of the nucleus only. If relative velocity dispersion in other galaxies is the same as
in M31, the total mass of the galaxy and the respective mass-to-light ratio obtained
from the virial theorem are approximately four times higher than the true ones.

20.7. Disc and flat component

We attribute to the disc all subsystems with true axial ratios 0.04 < ǫ ≤ 0.15, and
to the flat component subsystems with ǫ ≤ 0.04. Data on our Galaxy suggest that
the flat component includes interstellar matter and populations of very young stars of
ages up to 1.7 × 109 yr. Oldest disc stars are only slightly younger than the whole
Galaxy. This suggests that star formation in the disc started soon after the formation
of the Galaxy. In spite of the great spread of ages of disc stars, their mean chemical
composition is rather constant and close the Galaxy as a whole. This allows to find
colour and mass-to-light ratio of these components.

Let us now discuss possible errors of parameters, in particular mass-to-light ratios.

According to photometric data, the luminosity of the summed disc and flat com-
ponents is 51 % of the total luminosity of the whole M31 galaxy. If these two com-
ponents have the same mean value of f as the galaxy as a whole, then their summed
mass is also 51 % of the mass of the whole galaxy. This value seems to be too low,
since usually it is expected that spherical populations have the total mass of about
30 % of the whole galaxy. However, in this estimate it is assumed, that all popula-
tions have identical fB = 7. Our data suggest that flat and disc populations have
fB ≈ 15. Thus, equal values of fB are not likely. On the other hand, de Vaucouleurs
(1958) has found that the mass of the spherical component has a mass about 70 %
of the whole M31 galaxy. In this case for the mass-to-light ratio of the bulge we
get fB = 30, and for disc and flat components fB = 6. This version of parameters
means that outer parts of the bulge are similar to inner parts, and that disc and flat

2More accurate measurements by Faber & Jackson (1976) indicate that the velocity dispersion of the
nucleus of M31 is σ = 180 km/s.
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components have a noticeable deficit of metals in respect to solar abundance. These
versions are not confirmed by observations.

We come to the conclusion that accepted models of disc and flat components can-
not have large errors. Our error estimate is of the order of 10 %, not including possible
systematic errors in the distance and absorption.

The total mass of M31 galaxy was determined using rotation data on the flat com-
ponent object, first of all the interstellar hydrogen. In addition to data used in our
preliminary model, we used new radio observations as well as optical measurements
by Rubin & Ford (1970) of radial velocities of ionised hydrogen, plotted in Fig. 20.6.
If in one stellar association there were several objects, we used the mean velocity
and mean distance R from the centre of M31. Clouds, distant from the main axis of
the galaxy, were not used. We show in the Figure also the model by Rubin & Ford
(1970), as well as two variants of our model (Einasto 1972b).

New data confirm the measurements by Babcock (1939), showing a maximum of
rotation velocity at the distance 0.5 kpc from the centre, and a deep minimum of
velocities at the distance about R = 2 kpc. If we identify the measured rotation
velocity with the circular velocity, we get for the spatial and projected densities neg-
ative values around R = 2 from the centre. Such a model cannot be accepted. First
of all, density cannot be negative. Thus, we cannot identify rotational and circular
velocities, since in central regions of the galaxy the velocity dispersion is large, and
the respective term in hydrodynamical equations cannot be neglected.

The minimum in rotation velocity correspond to the maximum of the velocity dis-
persion. These anomalies in kinematical characteristics lead to the conclusion that
the density should also have at this distance some anomaly, which is not confirmed
by observations. On the other hand, the anomaly in kinematics cannot be permanent
— orbital motions of stars swipe them out. Thus, we come to the conclusion that the
anomaly is likely related to the motion of gas only, which is caused not only by grav-
itational forces. One possibility to explain this anomaly was suggested by Oort (see
Rubin & Ford (1970)). According to this hypothesis, the gas was expelled from the
nucleus of M31, and the low rotational velocity of gas is due to low angular moment
of the expelled gas.

20.8. Description functions

Using the set of model parameters discussed above, we calculated all principal de-
scriptive functions of the model of the galaxy M31. Several model descriptive func-
tions are plotted in Figures Fig. 20.7 to 20.10.

August 1971
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Evolution of galaxies
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21. Reconstruction of the dynamical evolution of the

Galaxy

21.1. Introduction

The evolution of galaxies has been in the focus of astronomers’ interest for a long
time. The first steps were the understanding of the nature of galaxies as extragalactic
objects, classification of galaxies and determination of properties of galaxies. An
early review of the structure and evolution of galaxies was given by Eigenson (1960).
However, very little was known of the structure of galaxies, thus, these theories were
rather speculative and are of historical interest only.

In 1950s, the situation changed. The 5-m Hale telescope was launched and the new
field of radio astronomy gave the first important results. Considerable progress was
made in understanding the evolution of stars. This progress helped to investigate the
galaxy evolution as an observational problem. Observational studies of the evolution
of stellar systems can be divided to five groups.

The first group of observational studies is devoted to the investigation of the evolu-
tion of star clusters and associations. The study of star associations by Ambartsumian
(1968) and Parenago (1954a), and photometry of star clusters by Eggen (1950a,b,c)
and Sandage (1957a,b) are examples of such investigations. Theoretical analyses by
Öpik (1938), Schönberg & Chandrasekhar (1942) and Hoyle & Schwarzschild (1955)
helped to understand the evolution of stars. These studies helped to understand the
main character of the evolution of stars and star clusters.

The second approach to understand the evolution of galaxies is devoted to the
study of peculiar galaxies. This group of studies includes the work by Ambartsumian
(1968) on nuclei of galaxies, Lynds & Sandage (1963) on exploding galaxies, and
atlases of peculiar galaxies by Vorontsov-Veljaminov (1959) and Arp (1966). As a
result of these studies, it was clear that in some galaxies active processes are under-
way.

The third group of studies is concerned with the statistics of galaxies, which helps
to find evolutionary sequences of galaxies of various type. An example of such stud-
ies is the work by Holmberg (1964).

There is a possibility to reconstruct the evolution of galaxies by studying the spa-
tial structure and kinematics of stars of various ages in the Galaxy, as done by von
Hoerner (1960) and Eggen et al. (1962).

Finally, to understand the evolution of galaxies, it is needed to investigate evolu-
tionary processes in galaxies. As examples of such studies we mention works by
Spitzer & Schwarzschild (1953), Gurevich (1964) and Kuzmin (1961) on the in-
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fluence of irregular gravitational processes, and Lynden-Bell (1967b) on statistical
mechanics of violent relaxation in globular clusters and elliptical galaxies.

The goal of this Chapter is to find the evolutionary conclusions that can be made
on the basis of kinematical and spatial data on galaxies, using well-established theo-
retical results.

21.2. Evolutionary conclusions from kinematics of flat
population objects

Data presented in Chapter 4 suggest that there exist three population groups in the
Galaxy with different properties — flat populations, disc and halo. Kinematical char-
acteristics of flat and halo populations considerably vary with age, whereas properties
of disc populations are relatively stable.

The relationship between the velocity dispersion and rotational speed of popula-
tions was established by Strömberg (1924). The greater the (negative) galactocentric
rotational velocity −Vθ, the larger the velocity dispersion of a population of stars.
However, there exist important deviations from this relationship: stars with very
small velocity dispersion and interstellar gas have rotational speeds, smaller than
stellar populations with velocity dispersion of the order 15 km/s, see Fig. 3.1. This
problem was known long ago, see Rootsmäe (1961). Edmondson (1956) suggested
to explain this effect by non-accurate treatment of differential galactic rotation.

Oort (1964) emphasised that this effect can be explained by the hypothesis that
interstellar gas rotates with a velocity lower than the circular velocity. If this is the
case, then young stars just “fall” in the direction of the Galactic centre after their birth.
Dixon (1965, 1966, 1967b,a, 1968) investigated this phenomenon and gave strong
arguments in favour of the Oort’s hypothesis. Using statistics of stars with known
ages from Strömberg photometry, he demonstrated that young stars are in their orbits
at apogalactic positions. Young stars populate in velocity space an elliptical region
around the point, which corresponds to circular velocity. From these data, Dixon
concluded that gas rotates at the speed by ∆Vθ = 14 km/s lower than the circular
velocity. The possible reason for this effect is electromagnetic forces which support
gas in addition to rotation.

A similar effect is observed in the vertical direction. Radio observation suggests
that the shell of interstellar gas does not coincide exactly with the plane of the Galaxy
and has a wave form (Westerhout 1957). In the Solar neighbourhood, these waves
have an amplitude of about 50 pc. After formation, stars are free from electromag-
netic forces and fall towards the Galactic plane. Very young stars are still located
close to their places of origin (Dixon 1967a). The frequency of such oscillations,
measured by Kuzmin parameter C , does not depend on the amplitude (if it is small).
Thus, young stars should oscillate around the plane of the Galaxy. Such oscillations
were actually found by Jõeveer (1968, 1972). The vertical speed of such oscillating
stars has a maximum, when it crosses the plane of the Galaxy. This occurs for the
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first time, when the age of stars ts is one quarter of the full period. Taking C = 70
km/s/kpc Jõeveer (1968) found ts = 22× 106 years. Using data on stellar evolution
we conclude that such mean age have stars of main sequence of spectral type B3. Just
B3 subpopulation of main sequence stars has the maximal σz/ζ ratio (Jõeveer 1968).

After formation, stars fall towards the centre and plane of the Galaxy in a syn-
chronous way. After several circles around the axis, this synchrony is lost, partly
due to orbit mixing (Kuzmin 1962), partly due to difficulties to determine ages of
stars accurately enough. Stars fill all regions in phase space, determined by ini-
tial velocities and coordinates at birth. Velocity dispersions σR and σθ increase
up to values, determined by epicyclic orbits around the point of circular motion:
σθ = 2/π∆Vθ = 14 km/s, σR = 1/

√
kθ σθ = 9 km/s. Dispersion σz increases

from the initial value, determined by the velocity dispersion of gas clouds, (σz)0,
due to dispersion of positions in the vertical direction: σ2z +C2 ζ2 = (σz)

2 +C2 z20 .
The mixing process (real or mimicked, caused by the dispersion of ages of stars in the
subpopulation) and the approach of the subpopulation to a stationary stage takes 2−4
circles of stars around the centre of the system, in our case 0.5−1 billion years. Dur-
ing this time, the velocity of the population around the centre of the Galaxy obtains
its stationary value, determined by hydrodynamical equations. Fig. 4.3 shows that
the actual increase of the velocity dispersion is larger than expected from above con-
siderations. It is possible that this can be explained by irregular gravitational forces.
These forces fill the hole in the velocity space around the point with circular motion.
Such holes in velocity space are observed only in very young populations.

It is well known that the rotational curve of the southern part of the Galaxy is
shifted in respect to the northern part by about 10 km/s (Westerhout 1957). A simi-
lar picture is observed in other galaxies (Carranza et al. 1968; Roberts 1969a). These
data suggest that the rotation velocity of interstellar hydrogen cannot be used as an ex-
act representative for circular velocity, particularly in models of mass distribution of
galaxies. In particular, very flat rotation curves of galaxies, observed in some galax-
ies, including M31, cannot probably be identified with circular velocities. If used as
circular velocities, corresponding to mass distribution, this would raise mass-to-light
ratios in the periphery of galaxies to very high values of the order f > 1000, whereas
physical data on the distribution of mass of galactic populations show the opposite
trend of decreasing f with increasing distance from the centre (Einasto 1969a) (see
Chapter 20).

21.3. Evolution of the Galaxy from kinematics of disc and halo
objects

We mentioned earlier the work by von Hoerner (1960) and Eggen et al. (1962), who
made an attempt to reconstruct the dynamical evolution of the Galaxy by studying
kinematical data on galactic populations. Their arguments are based on the following
assumptions.
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1. Stellar populations of forming stars get spatial and kinematic characteristics of
gas clouds from which they formed.

2. Spatial and kinematical characteristics of stellar populations do not change with
time or change very slowly. In particular, the angular momentum of stellar popula-
tions and eccentricity of their orbits do not change, even if the gravitational field of
the whole Galaxy changes.

3. Mass and total angular momentum of the whole Galaxy is constant.
It must be said that these assumptions are valid not very accurately. As we dis-

cussed in the previous section, gas is supported, in addition to gravity, also by elec-
tromagnetic forces. Recently formed stars are free from electromagnetic forces, and
their populations obtain stable properties by contracting both in radial and in the
vertical direction. Due to irregular gravitational forces, the spatial and kinematical
properties of stellar populations change slowly. However, these changes are small,
and stellar populations “remember” conditions during their formation.

von Hoerner (1960) and Eggen et al. (1962) used in their study ages of stars: von
Hoerner (1960) used ages found from models of stellar evolution, Eggen et al. (1962)
applied qualitative relative ages of stars, estimated from ultraviolet excess. Authors
concluded that in the initial stage of its evolution the Galaxy collapsed at least 10
times in radial direction and 25 times in vertical direction. The collapse was very
rapid, of the order of several hundreds millions years.

Let us now consider what conclusions can be made, using data collected in this
work. In addition to assumptions, made by von Hoerner (1960) and Eggen et al.
(1962), we assume that:

4. The ratio of the rotation velocity of a population, Vθ i(R), to the circular velocity,
Vc(R), and respective ratios of angular momenta, do not depend on distance R, i.e.
Vθ i(R) = β Vc(R), where β is a constant.

Using a mass distribution model, we can calculate the function Vc(R), and from
kinematics of populations near the Sun find the parameter β for populations of var-
ious ages. In this way, we can calculate the rotational velocity and relative angular
momentum

hi(R) = RVθ i(R) (21.1)

for all populations of interest. Results of these calculations are shown in Fig. 21.1 for
seven test populations with parameters, given in Table 7.4.

Every line in Fig. 21.1 corresponds to a population of certain age, see Table 7.4.
According to our assumptions, stellar populations are indicators of the gas at its for-
mation time. In this way, the Fig. 21.1 shows at which distance from the galactic
centre, Rg , gas clouds of certain angular momentum h were at respective time of the
evolution t. Using data shown in Fig. 21.1, we can find the relationship between dis-
tance Rg and time t for gas clouds with given angular momentum h. For six values
of h this relationship is shown in Fig. 21.2.

In this way, we can reconstruct the evolution of gas population, starting from the
formation of first generation of stars, using their respective specific angular momen-
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Figure 21.1.: Angular momentum h of populations of various flatness ǫ as function
of the distance R.

tum. Earlier evolution of gas clouds can be estimated by the extrapolation using
a certain model for the initial conditions of gas clouds, and a certain regularity of
the change of Rg with time. We shall discuss this problem in the next section. In
Fig. 21.2 extrapolated parts of curves are plotted by dashed lines.

Our results confirm and extend the evolution picture by von Hoerner (1960) and
Eggen et al. (1962). In the initial phase of the evolution, the collapse of the gas was
very rapid. In later phases the speed of the collapse decreased; at the present epoch
the collapse has stopped completely. The collapse rate, i.e. the ratio of initial radius
Rg to the present one R, is very large for the nucleus of the Galaxy, and relatively
modest for more distant regions.

We can use our data to reconstruct the gas evolution in the vertical direction too.

To characterise the vertical extent of populations, we shall use the flatness (axial
ratio ǫ) of ellipsoids of various density. In Fig. 21.3 we plot on vertical axis ǫ, and
on horizontal axis t – the age of the Galaxy, counting from the formation epoch of
oldest populations; the present age of the Galaxy is taken equal to 10 billion years,
see Chapter 23. If we assume that dynamical and spatial parameters of populations,
including flatness ǫ, do not change with time, then evolutionary tracks of stellar pop-
ulations in Fig. 21.3 are horizontal lines, starting from the point corresponding to the
formation of the population. The length of these lines shows the age of the popula-
tion. The solid bold line along formation points shows the evolutionary track of the
gas. We see that in vertical direction, gas also has collapsed and that the collapse was
very rapid in the early phase of the evolution. From flatness ǫ = 0.2 onwards the
speed of vertical collapse decreased (dashed bold line).
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Figure 21.2.: The evolution of the distance from galactic centre R of gas clouds of
various angular momentum h.

This picture corresponds to the assumption that dynamical parameters of stellar
populations do not change with time. In this case the collapse of the gas after rapid
initial phase proceeds very slowly. Several authors, including Eggen et al. (1962),
stress that the collapse was very fast, and after the collapse the gas obtained its equi-
librium stage close to the present form. If we accept this assumption, then the evolu-
tionary track of the gas from point with ǫ = 0.20 to point with ǫ = 0.016 is slowly
decreasing; this section of the curve in Fig. 21.3 is drawn with a dashed bold line.
The other possibility is that the gas obtained its present flat configuration immediately
after the collapse, this variant is plotted in Fig. 21.3 by a solid bold line for ǫ < 0.20.
Respective evolutionary tracks of stellar populations are drawn with thin lines. We
see that in the second case the thickness of stellar populations increases with time.

Preliminary results of this study were presented by Einasto (1970a), using a
slightly different calibration of ages of stellar populations. The difference between
extreme populations was slightly larger than found now.
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Figure 21.3.: Possible evolution of the flatness ǫ of stellar and gas populations with
time. The evolution of stellar populations is shown by thin lines, that of
the gas by bold line. Evolution is shown for two cases: the bold solid
line is for the case when gas immediately arrives the final ǫ, the bold
dashed line is the case when for ǫ ≤ 0.2 gas gets the flatness as given
by respective present stellar population flatness.

The actual evolutionary track of gas probably lies between extremal cases consid-
ered. Since some dynamical evolution of stellar populations is probable, then the
lower evolutionary track of the gas is probably closer to the actual evolution. This
problem was discussed by Parker (1968), see also Chapter 23.

Our conclusions on the radial and vertical collapse of the gas during the evolution
of the Galaxy were based on arguments, different from arguments used by von Ho-
erner (1960) and Eggen et al. (1962). Our results on the fast initial collapse of the
gas depend on the accuracy of determinations of ages of old halo populations. Esti-
mates of absolute ages have a relative error about 10 %. Errors of determinations of
chemical composition also increase errors. For this reason we counted ages relative
to oldest halo populations, for which we used the age 10 billion years. In calcu-
lating relative ages we take into account results of modelling the evolution of stars,
discussed in more detail in the next section.
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21.4. Model of the evolution of the protogalaxy

In order to have a choice to select a model for protogalaxy evolution, we have to
consider the initial conditions we can have from cosmological data.

The detection of relict radiation, chemical composition of the primeval matter and
a number of other data give strong support to the primeval-fireball or “Big Bang”
model of the formation of the Universe. According to this model matter and radia-
tion were in thermodynamical equilibrium (Peebles (1965) and Doroshkevich et al.
(1967)), and formed an almost homogeneous medium. There existed small density
fluctuations, responsible for the formation of galaxies (Lifshitz 1946). The nature
of fluctuations is not clear, they can have a whirl character, as suggested by von
Weizsäcker (1951) and Ozernoi & Chernin (1967, 1968); Ozernoi & Chibisov (1970),
adiabatic, as emphasised by Peebles (1965); Peebles & Yu (1970) and Silk (1968), or
entropic (Doroshkevich et al. (1967), Peebles & Dicke (1968)), for review see Ozer-
noi (1970). For our goal, the nature of perturbations is of less interest, important is
their presence.

During the evolution, the Universe expands and its density and temperature de-
crease. At a temperature of about 4000 K◦ the recombination of gas starts. The
matter is free from radiation, and density fluctuation can start to amplify. In this way,
the density initially decreases due to the expansion of the Universe, and thereafter,
the density increases in some regions due to the self-gravity of gas clouds.

To find the possible speed of the collapse, we consider a simple model, starting
from the moment of the largest expansion with its turnover radius. At this epoch fluc-
tuations of the density were still small, and we can use a model with homogeneous
density, following Mestel (1963), Crampin & Hoyle (1964), and Innanen (1966b),
rotating with constant angular velocity, ω0. We assume that at the moment when the
protogalaxy had its largest extent at turnaround, it separated itself from the surround-
ing gas, and its mass and total angular momentum obtained their present constant
values.

Present data are not sufficient to find for each protogalaxy its initial radius R◦ and
density ρ0. But radiusR◦ can be found from observational data under certain assump-
tions. To estimate R◦ we can use apogalactic distances of high-velocity stars. We can
assume that these distances did not change essentially during the galaxy evolution,
since changes of the regular gravitational field as well relatively weak irregular forces
cannot change orbits substantially. Calculations by Eggen et al. (1962) indicate that
some stars have apogalactic distances of the order of 50 − 100 kpc. It is clear that
these values are not very accurate, since observational errors and errors in the model
of the Galaxy influence results.

We can get independent estimates of R◦ in an indirect way, using a model of the
protogalaxy with ω0 = const. Since angular moment keeps its value during the
evolution, we have

h = ωR2 = ω0R
2
0, (21.2)
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21.4. Model of the evolution of the protogalaxy

where ω and R are angular velocity and distance of gas clouds at the present epoch,
and ω0 and R0 at the initial moment. R0 values for various h can be found from data,
presented in Fig. 21.2. Results are given in Table 21.1.

Table 21.1.

h R0 ω0

km/sec kpc kpc km/sec/kpc
200 > 5 < 4
800 28 1.0
2000 45 1.0
3000 ≥ 50 ≥ 1.2

We see that ω0 = 1 km/sec/kpc can be accepted. The maximal value of the angular
momentum is slightly larger than 4000 km/sec kpc, which yields R0 ≈ 65 kpc. This
is in good agreement with the estimate from apogalactic distances.

Using this ω0 value we calculated for all h initial radii R0, and made extrapolation
of evolutionary lines in Fig. 21.2 for early epochs. Using Eq. (21.2) we can calculate
also the contraction degree of gas

d =
R0

R
=

(

ω

ω0

)1/2

. (21.3)

The initial distance R0 and logarithm of the contraction degree log d are shown in
Fig. 21.4 for four test populations of flatness ǫ = 0.02, 0.1, 0.55, 0.8. As argument
we use the present distance R.

We can use the model with constant angular momentum to estimate the contraction
time. The fastest contraction has the free-fall model. This case is realised when the
gas cooling time is much smaller than the free-fall time. To simplify calculations, we
assume that during the contraction gas shells are not mixed, in other words, the test
particle falls together with the shell it belongs to. In this case the internal mass M int

remains constant. Arguments for this case were given by Crampin & Hoyle (1964).
The contraction time from initial R0 (apogalacticum) to distance r is as follows

tcontr =

√

a3
GM int

(arccos x+ e
√

1− x2), (21.4)

where a and e are major semiaxis and eccentricity of gas particle orbits, and

x =
r − a

ae
. (21.5)

Major semiaxis a can be found from apogalactic distance R0, and we get

tcontr =

√

R3
0

GM int
f(x), (21.6)
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21. Reconstruction of the dynamical evolution of the Galaxy

Figure 21.4.: The initial distance, R0 (solid lines), and contraction degree, log d,
(dashed lines) of populations with various ǫ as function of the present
distance R.

where

f(x) =
1

(1 + e)3/2
(arccos x+ e

√

1− x2). (21.7)

The variable x can be expressed through e and contraction degree d as follows

x =
1 + e− d

e d
, (21.8)

and the eccentricity e

1− e =
h2

GM intR0
. (21.9)

For the internal mass we can take

GM int = R3ω2
c , (21.10)

where ωc is the angular velocity of circular motion. Using for h the expression (21.2)
through R0 and ω0 we get

1− e =
d3

d40
, (21.11)

where d0 is the contraction degree of objects of flat populations.
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21.4. Model of the evolution of the protogalaxy

Figure 21.5.: Contraction time of populations of various flatness ǫ as function of the
distance R. Populations as in Fig. 21.4.

Since d0 > d ≫ 1, then for all cases of practical interest e ≈ 1 and x ≈ −1,
and thus f(x) ≈ 1. This means that we can ignore the factor f(x) in the contraction
equation. Using Eq. (21.10) and expressing time in years and angular velocity in
km/sec/kpc, we can write Eq. (21.6) as follows

tcontr =
109

ωc
d3/2 =

109

ωc
(ω/ω0)

3/4. (21.12)

This equation was used to calculate contraction time, where ω(R) and ωc(R) were
taken from our model of the Galaxy. For several test populations results are given in
Fig. 21.5. Our calculation suggest that the nucleus forms very quickly, in 10 millions
years. Thereafter, new gas masses fall to the nucleus, shell after shell. In the Solar
neighbourhood star formation begins about 108 years after the condensation of the
nucleus. The formation of the halo takes about one billion years. The whole process
of gas contraction takes less than a billion years.

Similar calculations emphasise that the contraction of gas in vertical direction pro-
ceeds approximately with the same speed.

The model is certainly rather crude. Actually, the contraction time can be longer
if the gas cools slowly. The time can be shorter if initial volume of the gas was
smaller that adopted in our model. In a more accurate discussion of the problem, it
must be taken into account that the gas probably consisted of many clouds moving in
respect to each other. This aspect was recently studied by Brosche (1970). However,
he discussed the contraction of the whole galaxy, thus, his model cannot be used to
understand the differential picture.

The contraction model was discussed by Sandage et al. (1970) and Rood & Iben
(1968). Sandage argued that the formation of globular clusters and other halo objects
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was completed in about 2 × 108 years, whereas Rood and Iben supported a much
longer formation period. When we compare data used by these authors, we see that
the controversy is not real. Inner objects of the halo, studied by Eggen et al. (1962)
and Sandage et al. (1970), can really be condensed quickly, but the whole process of
halo forming is much longer.

Another aspect of the discussion on star formation is related with the eccentricity
e of stellar orbits. As discussed above, during the contractions of the protogalaxy, the
eccentricity e does not change much. In this case halo stars should have had large
eccentricity e already during their formation. In other words, gas clouds from which
halo stars formed should have moved in extended elliptical orbits, which took place
when the protogalaxy condensed quickly. If the gas was subject to non-gravitational
forces, then objects with large eccentricity could form also in case the gas did not
contract (Rood & Iben 1968). However, the influence of non-gravitational forces is
strong enough only if the gas is hot, but star formation in a hot gas is impossible
(Sandage et al. 1970). We conclude that the gas contraction was probably rather
rapid. But here we do not have a final answer, because of the lack of a quantitative
theory of star formation.

In connection with the contraction of the gas in the protogalaxy we have two addi-
tional remarks.

High-velocity hydrogen clouds were recently detected in high galactic latitudes
(Dieter 1969). The origin of these clouds is not clear. But it is possible that they are
remnants of protogalactic gas, which now fall towards the plane of the Galaxy. If this
is the case, then the total contraction time of the protogalaxy is longer than accepted
so far.

Some authors argue that spherical subsystems of the Galaxy were formed by an
outburst from the nucleus or disc (Gurevich 1964), or in other words, that the star
forming started only after the contraction of the protogalaxy. However, as demon-
strated by Rood & Welch (1971), this hypothesis does not explain the differences
in chemical composition of stars. Stars in the nucleus of the Galaxy are metal-rich,
in contrast to metal-poor halo stars. In the Solar neighbourhood all stars with metal
deficit have large z-velocities (Dixon 1965, 1966, 1967b). On the other hand, mini-
mal heavy element content of disc stars is about half of the Solar content. All these
facts suggest that the halo cannot be formed by the throw-out of stars from the nucleus
or disc. Only runaway stars can be formed in this way.

21.5. Distribution of the angular momentum of M31

Mestel (1963) and Crampin & Hoyle (1964) found that the distribution of the angular
momentum in spiral galaxies is in good agreement with the distribution of angu-
lar momentum in a homogeneous ellipsoid, rotating with constant angular velocity.
Crampin & Hoyle (1964) interpreted this result as an argument favouring the forma-
tion of galaxies from a homogeneous ellipsoid of gas clouds, and that in the formation
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21.5. Distribution of the angular momentum of M31

of galaxies the turbulence did not play an important role, which could redistribute the
kinetic moment.

On the other hand, Lynden-Bell (1967a) noticed that all elliptical galaxies and
cores of spiral galaxies are very similar, if we ignore differences in ellipticity. If we
do not assume that the formation conditions of elliptical galaxies and cores of spiral
galaxies were identical, we must conclude that the similarity is caused by violent re-
laxation during the formation of galaxies. Lynden-Bell (1967b) studied this problem
in detail, and found that a fast change of the gravitation field during the contraction
of the protogalaxy leads to the observed effect. This theory was checked with numer-
ical experiments by Hohl & Campbell (1968); Hohl & Feix (1968), Cuperman et al.
(1969), Henon (1969), and Goldstein et al. (1969). These experiments confirmed that
the statistical method by Lynden-Ball describes well the observed energy distribution
of stellar systems.

Results by Lynden-Bell suggest that during the formation of elliptical galaxies and
cores of spiral galaxies the turbulence played an important role. For spiral galaxies
this result is in contradiction with the Crampin & Hoyle (1964) study. In order to have
an independent check, we can use our models of the Galaxy and M31 and calculate
the distribution of the angular momentum. It is better to use the model of M31, since
the distribution of mass in central regions of M31 is known better.

Let us assume for simplicity that surfaces of ω = const are concentric cylinders
(Mestel (1963), Crampin & Hoyle (1964) and Innanen (1966b)). An essential fraction
of the kinetic moment is concentrated in a thin disc, where the difference between the
actual surface of ω = const and respective surface in a cylinder is small, see Chapters
7 and 20). A larger difference is expected only in the central core, where it is better
to identify surfaces ω = const with surfaces ρ = const.

With these assumptions, the distribution of the mass as function of the kinetic
moment h is the following (Mestel (1963) and Crampin & Hoyle (1964))

m(h) = P [R(h)]
dR

dh
, (21.13)

where
P (R) = 2π RP (R) (21.14)

is the mass of cylindric shell of unit thickness, and P (R) is the projected density.
Further we have

dh

dR
= R

(

Vθ
R

+
dVθ
dR

)

. (21.15)

Here we can accept the approximation

Vθ = β V, (21.16)

where V is the circular velocity. Applying Oort dynamical parameters A, B and
using kθ = −B/(A−B), we get

dR

dh
=

1

2kθ

R

h
. (21.17)
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Figure 21.6.: The mass distribution of M31 as function of the angular momentum h
(solid line). Dashed line shows a similar distribution of a body rotating
with constant angular speed.

The distribution of the mass as function of h using Eq. (21.13) and (21.17) is
shown in Fig. 21.6. The bold curve shows the total distribution, thin curves show the
distribution for the first and second population. To the first population we include
the disc and flat components, for them we used the value β = 01 on the basis of
results from Chapters 4 and 7. The second population includes the core (using data
from Chapter 20 we accepted β = 0.4) and the halo. The halo was divided into two
components of different mass with values of the parameter β = 0.3 and β = 0.6. We
see that the distribution of the momentum of the first and second population are very
different.

Mestel (1963) and Crampin & Hoyle (1964) compared distributions of the mass
vs. kinetic moment of galaxies with similar distributions for homogeneous spheroids,
rotating with constant angular velocity. For this distribution, we have

m(x) = 3/2M
√
1− x, (21.18)

1Actually only the nucleus and inner core have β ≈ 0, the rotation velocity of flat and disc components
is almost equal to the circular velocity, their β ≈ 1. Thus in Fig. 21.6 the curve for the first
population should be replaced by two curves. The mass distribution of the whole galaxy M31 has
a higher tail than the model presented, closer to the model with constant angular speed (correction
made in October 2021).

160



21.5. Distribution of the angular momentum of M31

where M is the mass of the spheroid, and

x = h/h0, (21.19)

where h0 is the maximal kinetic moment at the periphery of the model. The mass
of the M31 model is known, and we get for the maximal moment using data from
Fig. 21.6: h0 = 6000 km/sec per kpc. This function is also plotted in Fig. 21.6.

We see that the homogeneous model describes the function m(h) only in very gen-
eral terms. In the periphery of the galaxy the function m(h) approaches zero more
slowly than the homogeneous model. This suggests that the protogalaxy did not have
a sharp outer boundary, i.e. the density approached smoothly zero. Another differ-
ence between models is observed near the centre of the system, where the model has
essential deficit of mass with low kinetic moment. This difference can be due to the
presence of a dense nucleus in the protogalaxy. However, a more likely explanation
of the mass excess with small angular momentum is the redistribution of moment
during the fast contraction of the protogalaxy. The distribution of the moment is in
agreement with the Lynden-Bell hypothesis on the violent redistribution of matter
during the formation of the protogalaxy.

However, we note that the violent relaxation happens only in the central region of
the Galaxy. This factor cannot strongly change our picture on the general evolution
of the protogalaxy.

September 1971
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22. Physical evolution of stellar systems

22.1. Introduction

For the full description of the structure of galaxies and other stellar systems it is nec-
essary, in addition to kinematical and spatial description functions, add also functions
which describe the physical structure of galaxies and their populations. Such func-
tions include the distribution of various spectral characteristics, chemical content, age
and other similar quantities. During the evolution of galaxies these functions change
with time.

The change of physical characteristics of galaxies with time is caused by the dy-
namical evolution of galaxies (redistribution of mass), and by the change of physical
characteristics of stars due to stellar evolution. Advances in our understanding of
stellar evolution permit to follow the physical evolution of galaxies, and to build
models of the evolution of stars and gas in galaxies. Pioneering studies in this direc-
tion were made by Limber (1960) and Tinsley (1968). In this Chapter, we describe
our model of the physical evolution of galaxies. To construct the model, we need to
know the rate of star formation, evolutionary tracks of stars of various masses in the
Herzsprung-Russell diagram, and bolometric data and colours of stars as functions of
the effective temperature and bolometric luminosity.

22.2. Data and method

22.2.1. Initial mass function of stars

The initial distribution of stars according to their mass and luminosity and the division
of stars into giants and main-sequence stars was discussed already by Öpik (1938).
Using modern data, the luminosity function and stellar evolution was discussed by
Salpeter (1955). He found that the number of stars of mass M , F (M), formed in unit
time interval per cubic parsec, can be expressed by the following equation,

F (M) = a×M−n, (22.1)

where a and n = 2.35 are constants. In the derivation of this equation Salpeter
assumed that the rate of star formation is constant during the last 5 × 109 years and
that stars move from main sequence stars to giants when they have consumed 10 %
of their hydrogen.

This result was confirmed by Sandage (1957a) and van den Bergh (1957) and other
authors, using counts of stars in young star clusters. Later it was understood that the
rate of star formation is not constant but changes in time, see below. However, this
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does not change the form of Eq. (22.1). In an overview, Reddish (1966) concluded
that the equation (22.1) with exponent n = 2.5 can be used in the interval of stellar
masses M0 ≤ M ≤ Mu, where M0 and Mu are minimal and maximal masses of
forming stars. For medium mass stars observational data are better represented using
Eq. (22.1) with n = 2.33. The total mass of forming stars is equal to

∫ Mu

M0

F (M)M dM . (22.2)

We cannot use for the minimal mass a value M0 = 0, since the integral Eq. (22.2)
is not converging in this case. It is possible that the function F (M)M smoothly
approaches zero when M ⇒ 0. Our results do not depend on the exact form of the
function F (M) for small M . For this reason, we take M0 as the effective lower limit
of mass of forming stars and take F (M) = 0, if M < M0. In solar neighbourhood
of the Galaxy, we can use M0 = 0.03 in solar units (Reddish 1966).

According to Reddish (1966), there exists an upper limit of mass of forming stars,
Mu = 60− 100M⊙. A similar upper limit is predicted by theory. Stothers & Simon
(1968) demonstrated that blue supergiant stars are unstable for pulsations when they
have masses in excess of 65M⊙. However, as shown by Talbot (1971), stars cross
the instability zone very fast and cannot lose their mass during this period very much.
For this reason, we take as the upper limit of forming stars 100M⊙, not 65M⊙. We
chose the parameter a in Eq. (22.1) from the condition that the integral Eq. (22.2) is
equal to unity. In this case we get

a = (n− 2)(M2−n
0 −M2−n

u )−1. (22.3)

The choice of parameters M0, Mu and n is crucial in the modeling the physical
evolution of galaxies. Earlier it was assumed that these parameters are constants.
However, already Limber (1960) demonstrated that in this case it is impossible to
explain differences in mass-to-light ratios of globular clusters (fV = M /LV ≈
1), dwarf galaxies (fV ≈ 10), and giant elliptical galaxies (fV ≈ 100), all having
approximately similar ages.

Differences in the parameters of star formation function can probably be explained
by differences in the chemical composition of old stellar populations of galaxies. van
den Bergh (1961) hinted to the fact that the fraction of heavy chemical elements is dif-
ferent in globular clusters and in old open clusters, both having approximately equal
ages. Heavy elements are synthesised in stars. Rapid enrichment of interstellar gas
by heavy elements is done by massive stars with fast evolution. The large variability
of chemical compositions of stars of different old populations suggests that in the
early period of the evolution, various populations had different fractions of massive
stars, much higher than the present fraction of massive stars. This conclusion was
made by Schmidt (1963), Truran & Cameron (1970) and Cameron & Truran (1971).

Such effects can be explained if we assume that the minimal mass of forming
stars, M0, depends on time, or more accurately, on the fraction of heavy elements in

164



22.2. Data and method

the interstellar gas during the formation of stars of different populations. Truran &
Cameron (1970) suggested a mechanism to explain these differences.

22.2.2. Star formation rate

Salpeter (1955) assumed that the star formation rate in the Galaxy is approximately
constant. More accurate data showed that in the early phase of the evolution of the
Galaxy, the star formation rate was considerably higher (von Hoerner 1960). In the
early phase of the evolution of the Galaxy, the density of interstellar matter was much
higher than in the present epoch. Based on this argument, Schmidt (1959) concluded
that the star formation rate depends on the density of interstellar matter.

We define the local star formation rate as the time derivation of the density of stars.
Following Schmidt (1959) we assume that the star formation rate is proportional to
the density of gas in power S:

Rl =
dρs
dt

= γρSg , (22.4)

where ρs and ρg are star and gas densities, respectively, and γ and S are constants.
We assume that the full matter density in a volume element, ρ = ρs + ρg, does not
depend on time. In this case after integration of Eq. (22.4) we get

ρg = ρ[1 + (S − 1)τ ]
−1

S−1 , (22.5)

where
τ = t/K, (22.6)

and for the characteristic time K we have

K = (γρS−1)−1. (22.7)

In case S = 1 we get
ρg = ρ e−τ (22.8)

and
K = γ−1. (22.9)

Integrating Eq. (22.4) over the whole volume of the stellar system, and assuming
that the gas amount does not depend on time, we get for the whole gas mass

M g = M [1 + (S − 1)τ ]
−1

S−1 , (22.10)

where M = M s+M g is the full mass of the galaxy, and M s is its stellar mass. For
the characteristic time we get

K = (γρ̄S−1)−1, (22.11)
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where ρ̄ = M /V∗. Here V∗ is the mean volume of the gas, which can be calculated
as follows:

V
−(S−1)
∗ = M

−s
g

∫

ρS−1
g dM g . (22.12)

In particular case S = 1 we get

M g = M e−τ . (22.13)

The characteristic timeK is the essential parameter which describes the star forma-
tion rate in galaxies. The characteristic time depends on the parameter S. If S = 0,
then the star formation rate is lower for higher mass density; if S = 1, then the char-
acteristic time K is constant; if S = 2, then the star formation rate is the higher,
the higher is the matter density. Observational data on the density and mass of stars
and gas suggest that S = 2. This conclusion has been made by Schmidt (1959) and
Sanduleak (1969). However, we shall make calculations for all values, S = 0, 1, 2.
It is easy to show that if K ⇒ ∞ then all variants lead to S = 0.

22.2.3. Evolutionary tracks of stars

Presently several series of calculations of stellar evolutionary tracks are available.
The most used series of evolutionary tracks was calculated by Iben (1965a,b,
1966a,c,b, 1967c,a). For this series, the following chemical abundance was used:
X = 0.71, Y = 0.27 and Z = 0.02; models were calculated for stellar masses:
0.5, 1.0, 1.25, 1.5, 2.25, 3, 5, 9, 15M⊙. In another series, Iben with collabo-
rators calculated models of population II metal-poor stars: Faulkner & Iben (1966),
Iben & Faulkner (1968), Rood & Iben (1968), Iben (1968), Iben & Rood (1970a),
Rood (1970), Iben & Rood (1970b), Simoda & Iben (1970) and Iben (1971). Chem-
ical abundance parameters X, Y, Z were varied, most models were calculated for
initial stellar masses around the solar mass. Another similar series of models was
calculated by Demarque (1967), Demarque et al. (1968), Demarque & Schlesinger
(1969), Demarque & Miller (1969), Demarque et al. (1971), and Demarque & Men-
gel (1971a,b). Recently a series of evolution models was calculated by Paczyński
& Ziółkowski (1968) and Paczyński (1970a,b,c, 1971), who accepted abundance pa-
rameters X = 0.70, Y = 0.27 and Z = 0.03, calculations were made for stellar
masses 0.8, 1.5, 3, 5, 7, 10, 15M⊙.

In this work, we are mainly interested in the evolution of stars with normal chem-
ical abundance with Z = 0.02 − 0.03. Models by Iben and Paczynski are slightly
different. Paczynski calculated models until the carbon ignition for massive stars, and
until helium ignition for less massive stars. As a rule, Iben’s models were not calcu-
lated until these late evolution phases. On the other hand, Iben has calculated more
models for stars of low mass. For the present work just the evolution of low-mass
stars is important. Taking all these arguments into account we selected Iben’s mod-
els as the basis for our use and used Paczynski models for late evolutionary phases
of stars. For very massive stars (M = 30, 60M⊙), we used models by Stothers
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Table 22.1.: Evolutionary tracks

(1963a, 1964, 1966) and Stothers & Chin (1968, 1969). For stars of very small mass,
we used models calculated by various authors: Kumar (1963b,a), Hayashi & Nakano
(1963), Rose & Smith (1970), Grossman (1970); Grossman et al. (1970); Grossman
& Graboske (1971).

Tracks used in this paper are given in Table 22.1. We tabulated evolutionary tracks
for stars of mass: 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.5, 2.25, 3, 5, 9, 15,
30, 60M⊙. In all tracks 19 points were given, each point corresponds to a certain
stage in the evolution of stars, for comparison see Fig. 3 by Iben (1967b). In our
table point 3 corresponds to the arrival of star to the “zero-age” point on the main
sequence, point 13 corresponds to the maximum temperature in the helium burning
phase, point 16 to the tip of red giants (carbon ignition for massive stars), point 18
to the beginning of the white dwarf sequence, point 19 to the arrival of star to the
cold red region. In most cases, data were taken directly from respective papers, in
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some cases interpolation and combination from various sources was needed. Below
we give some details on the interpolation and combination of published evolutionary
tracks.

A. Gravitational contraction phase. The time spent on the gravitational contrac-
tion phase was calculated for stars of small mass using data by Kumar (1963b). For
massive stars, the contraction time was estimated by extrapolation in Iben’s models.

B. Core hydrogen burning. Most data on tracks were taken directly from pub-
lished sources. The track for mass 0.8M⊙ was found by interpolating tracks by Iben
for mass 1 and 1.25M⊙, and track for 0.8M⊙ by Paczynski. The time was estimated
as follows:

log t0.02 = log t0.03 +∆, (22.14)

where t0.03 is the time according to the respective model by Paczynski, and ∆ =
0.112 is a correction, calculated as follows. The time spent to burn ∆M solar mass
of hydrogen by a star of luminosity L is equal to τH ∝ ∆M/L. Most of this time the
star is located on the main sequence. In the range of stellar masses of interest L ∝
M4. If we suppose that in all stars the same fraction of mass is burned, then τH =
aM−3, where a is a certain constant. Relations given above have an approximate
character, and we get

τH M
3 = a(M), (22.15)

where a(M) is a slow function of mass and abundance. We found this function using
Paczynski models of Z = 0.03 in the mass range 0.8 ≤ M ≤ 3, and using Iben
models with Z = 0.02 in the mass range 1 ≤ M ≤ 3. The correction ∆ was
estimated by the extrapolation of the Z = 0.02 curve toward stars of smaller mass.

C. Helium burning phase. The initial phase of helium burning is well studied.
The last phase of helium burning is less known. The best data come from the Paczyn-
ski series. Iben models were calculated only to early phases of helium burning. To
find late phases of helium burning of Iben models, an extrapolation method is needed.
This can be done using evolutionary tracks by Paczynski.

Calculations by Paczynski and others suggest that evolutionary tracks of the last
phases are just continuing tracks, found for earlier epochs in the last phases of hydro-
gen burning in the giant branch. Uus (1970) and Paczyński (1971) showed that the
speed of the growth of star luminosity in the giant branch is almost independent of the
mass of stars. Hydrogen and helium ignition on this stage occurs at almost identical
luminosity (Hayashi et al. 1962; Paczyński 1970a). Authors found that for Z = 0.03
helium and hydrogen flashes occur at log (L/L⊙) = 3.10 and log (L/L⊙) = 5.0,
respectively. Using these data and tracks found by Iben for early stages on giant
branch, it was possible to continue tracks for later stages up to the tip of the red giant
branch.

It was more difficult to estimate the time spent on helium burning stage, since most
Iben tracks were calculated only for the early stages of helium burning. The most
advanced track was found for the star of mass 15 M⊙ (Iben 1966b). To continue the
track, only a short last stage of evolution must be added. According to Uus (1970)
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and Paczyński (1971) this stage is very short, thus an error in the estimate of the time
plays little role. The time spent in helium burning, τHe, can be compared with the
time spent in hydrogen burning, τH . For a star of mass M = 15M⊙ we get

(

τH
τHe

)

002

=

(

τH
τHe

)

003

. (22.16)

Paczyński (1971) showed that for Z = 0.03 and M ≥ 3M⊙ the following relation
exists

log
τH
τHe

= −0.174 + 0.633 log M + 0.182 (log M)2. (22.17)

The time τHe for Z = 0.02 and M ≥ 3M⊙ was found using Eq. (22.16) and (22.17).
If we apply these equations for stars of smaller masses, then the time τHe is too

large. On the other hand, Iben & Rood (1970b) showed that stars of approximate solar
mass have τHe ≈ 12×107 years, almost independently of the chemical composition.
For M = 3M⊙ stars we found τHe = 1.71 × 107 years. Since τHe ≪ τH , then
high accuracy of τHe plays little role, and we accepted for stars of mass M ≤ 3M⊙

τHe = 17.1 × 107 years.
Evolutionary tracks of stars of massM < 3M⊙ were calculated by Iben before the

helium ignition. Thus, the whole red giant branch of the evolution during the helium
burning must be estimated from other data. We used for stars of mass 0.8M⊙ the blue
end of the horizontal branch at point log L/L⊙ = 1.60 and log Te = 3.68. For tracks
of stars of other masses, we used observational data of colour-magnitude diagrams
of old star clusters by Sandage (1962), Eggen & Sandage (1964), and Newell et al.
(1969).

D. Last stages of stellar evolution. Available data suggest that the final evolution-
ary stage of all stars is the degenerate white dwarf. The path toward this stage can be
different. Very low mass stars of mass, M ≤ 0.08M⊙, and normal metal abundance
come to this stage of “black” dwarfs directly after the initial gravitational contraction.
The radius of such stars depends on its mass and chemical abundance, the star in this
stage uses its thermal energy. According to Schwarzschild (1958) the time spent in
this stage is

log τ = b+ 5/8 log (M/L), (22.18)

where b is a constant, depending on the chemical composition, and M and L are
expressed in solar units. Using data by Schwarzschild (1958) we found that for red
dwarfs of normal composition b = 7.42, if τ is expressed in years.

After the formation of carbon nucleus, stars of mass M > 1.4M⊙ explode as
supernovae, and their nuclei become pulsars. Stars of lower mass move after the
exhausting of nuclear energy through the planetary nebulae stage to white dwarfs.
Due to mass loss during the evolution, the limiting mass of stars at the stage where
evolutionary paths diverge, is higher than 1.4M⊙. According to Jones (1970), the
initial mass of white dwarfs of Hyades is larger than 1.8M⊙. Using novae statistics
by Payne-Gaposhkin (1957), Stothers (1963b) concluded that the limiting mass of
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stars to go through the supernova stage is 4M⊙. Now we shall find the limiting mass
using more recent data.

According to Tammann (1970), the frequency of supernova explosions in galaxies
of type Sb is 0.09 for 100 years for mass unit 1010M⊙. This statistics is based on
galaxy models by Roberts (1969a), who used Brandt (1960) mass distribution profile.
As shown by Einasto (1969a), this mass distribution model yields too high masses
for galaxies. For this reason, we use for the Galaxy a mass M = 15 × 1010M⊙,
and get the frequency 1 supernova per 74 years. This frequency is in good agreement
with the estimate by Caswell (1970) (40–80 years), based on radioastronomical data
on the frequency of supernova remnants in Galaxy. Using star formation function
Eqs. (22.1) and (22.3) with parameters n = 7/3,M0 = 0.03M⊙ andMu = 100M⊙,
and for the speed parameter of star formation in Eq. (22.11)K = 0.25×109 years, we
find that in our Galaxy in the present epoch 3.5 stars form per year. The frequency 1
supernova per 74 years corresponds to the lower bound of mass of supernova progen-
itor stars: 2.6M⊙. We accept this value for further calculations. Optical luminosity
of supernova remnants (pulsars) decreases very fast, and they are practically optically
invisible (Pacini 1971). Their luminosity is not known. In our calculation we used
for their luminosity the value log L/L⊙ = −9.

Let us now discuss the last evolutionary stages of stars of intermediate mass. Ac-
cording to Paczyński (1970a) the luminosity of stars during the path towards nuclei
of planetary nebulae depends only on the mass of the nucleus of the star Mc (the
future white dwarf):

L/L⊙ = 59250Mc/M⊙ − 30 950. (22.19)

It follows from the same data that the mass of the nucleus depends on the initial mass
of stars. Interpolating Paczyński (1970a) data we get for stars of initial masses 2.25,
1.25 and 1 M⊙ masses of nuclei 1.0, 0.7 and 0.65 M⊙, respectively. The time spent
on these evolutionary stages was taken from Table 2 of Paczyński (1970a).

Evolutionary tracks for white dwarfs were taken from Schwarzschild (1958). We
used data from Table 28 of Schwarzschild (1958), the time spent in this stage was
calculated using Eq, (22.18), where we used for the parameter b a value b = 7.05.
This equation is evidently approximate. In the last stage of their evolution, white
dwarfs start to crystallise (van Horn 1968), which initially slows the cooling but
later speeds it. These details play practically no role in the determination of integral
characteristics of galaxies and can be ignored. In our calculations we used as the last
point of the evolutionary track of white dwarfs log L/L⊙ = −4.6. The total time
spent by stars to reach this point exceeds 20 billion years, independent of the mass of
stars. This was the maximal epoch used in calculations of stellar evolutionary tracks.

22.2.4. Bolometric corrections and colour indexes

Theoretical evolutionary tracks are given in coordinates log Te, log L/L⊙, observa-
tional data are given as colours and absolute magnitudes, B − V, MV . To find the
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Table 22.2.: Intrinsic colours and bolometric corrections

relationship between these data as well as to calculate mass-to-light ratios of pop-
ulations and the energy distribution in spectra of model galaxies, we need to know
bolometric corrections, BC = Mb −MV , and intrinsic colours, (S − V )0, of stars
of all types. In the last equation S denotes the star magnitude in whatever colour in
the magnitude system UBVRIJKL by Johnson (1964).

As the main source of bolometric corrections, intrinsic colours and effective tem-
peratures we used the compilation by Johnson (1966a). Also, we used some more
recent sources which complement Johnson data in the infrared and ultraviolet range
of the spectrum.

Johnson (1966a) published BC , (S − V )0 and Te as functions of spectral type
and luminosity class. For our purpose we need these data as functions of log Te and
log L/L⊙. We found a respective relation by graphical interpolation. As the first
step we found the dependence of log Te on spectral type, separately for the main
sequence (luminosity class V), giants (III) and supergiants (I). Next we made graphs
of BC and (S − V )0 as functions of log Te. Instead of intrinsic colours we used
bolometric corrections in the S system

BCS =Mb −MS = BCV − (S − V )0. (22.20)

Results of calculations are given in Table 22.2. We give a logarithm of the luminosity
in ergs for a star of zero magnitude in the UBVRIJKL Johnson (1966a) system, and
the intrinsic colour of the Sun according to Mendoza (1968). Data in this Table need
some comments.

Intrinsic colours. Most intrinsic colours were taken from Johnson (1966a). Data
for colours (U−V )0 and (B−V )0 were taken from a more recent study by Fitzgerald
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(1970). For red stars we used the catalogue by Mendoza (1968) and data by Green-
stein et al. (1970). For A and F stars of the main sequence we used data by Davis &
Webb (1970).

Bolometric corrections and effective temperatures. The effective temperature of a
star is defined as the temperature of the black body, which emits from the unit surface
area the same amount of energy as the star. To find effective temperatures of stars,
their angular sizes and bolometric luminosities are needed. Bolometric luminosities
can be calculated by integrating the spectral energy distribution over wavelengths,
expressed in absolute units. Angular diameters can be found from interferometric
observations. When Johnson made his summary, diameters were available only for
14 stars, including Sun. Mendoza (1968) used angular diameters of 27 stars. These
data were not sufficient to find the scale of effective temperatures, thus results from
theoretical calculations of models of stellar atmospheres were also used.

The scale of effective temperatures and bolometric corrections for spectral classes
O5–G2 was determined by Morton & Adams (1968), using model atmosphere calcu-
lations. We used these data for the main sequence stars earlier than F2 type. For stars
of type F2–G2, corrections from radiometric observations were determined. The zero
point of theoretical BC was chosen in such a way that at spectral type F2 theoretical
model data coincide with observational data.

Recently van Citters & Morton (1970) suggested that it is better to connect BC
directly with bolometric data on the Sun, BC⊙ = −0.07. For this reason, we used
for B0.5–B6 stars BC directly from van Citters & Morton (1970), for O5–B0.5 stars
from Morton (1969), and for B8–F stars from Davis & Webb (1970), who used the
same method to determine BC.

For effective temperatures of B0.5–B7 stars, we used the scale by Morton &
Adams (1968), as this scale coincides with the scale found from angular diameters by
Hanbury Brown et al. (1967) and van Citters & Morton (1970). For very bright blue
stars of type O5– B0.5 Morton (1969) determined a new temperature scale, which is
favoured over the theoretical scale. However, Peterson & Scholz (1971) determined
effective temperatures of six stars of type O5–09.5, and found that they are higher
than temperatures by Morton (1969). We shall use the temperature scale by Peterson
& Scholz (1971), and to find BC we use the relationship between Te and BC, found
by Morton (1969).

For late M dwarfs we used Te and BC from the paper by Greenstein et al. (1970).
For red giants of type M0–M6 we used for Te and BC data by Lee (1970). For
M7–M8 giants bolometric corrections were taken from Smak (1966a). For most red
giants we determined the temperature scale, applying procedures given by Johnson
(1966a). The scale of effective temperatures was based on angular diameters, given
in Table V of Johnson (1966a) and in Table 2 of Mendoza (1968). Temperatures were
calculated with the black-body fit method, using data given in Tables VI and VII of
Johnson (1966a).
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Figure 22.1.: Isochrones of stars of normal chemical composition Z = 0.02. Masses
of stars are labeled 20, 15, 10 etc.

22.2.5. Isochrones

The collected information was used to derive isochrones of stars of various masses
in the model colour-luminosity (B − V,MV ) diagram, and to study the physical
evolution of stellar systems. In this section we discuss isochrones found, presented
in Fig. 22.1. For comparison we show in Fig. 22.4 below colour-magnitude diagrams
for selected star clusters.

We show in the Figure isochrones for the main phase of hydrogen burning of stellar
evolution. We also constructed isochrones for late stages of stellar evolution, corre-
sponding to helium burning, white dwarfs, and final stages of red “white” stars. In
these late stages isochrones cross each other several times. To avoid overcrowding of
the Figure these late stages are not shown.

Close to the hydrogen burning main sequence evolutionary tracks also cross. This
effect was detected by Sandage & Eggen (1969) from theoretical models and later
from empirical data. Around the turn-off point of the main sequence isochrones have
a zigzag form. This feature was confirmed by observational data by van den Heuvel
(1969), see also Iben (1967b).
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In the red giant region, our compiled data agree well with data by Schlesinger
(1969b). However, in a later paper Schlesinger (1969a) showed that, in contrast to
observations, the helium sequence, found by Iben (1966a), extends too far toward the
blue region. Schlesinger (1969a) modified his program and found for the blue tip
of the helium main sequence for M = 5M⊙ star a value log Te = 3.68, whereas
according to Iben (1966a) it is log Te = 3.92. The need to correct Iben’s data is
confirmed by our calculations, which show that integral colours of model galaxies
become too blue. For this reason, we applied for the blue end of the helium sequence
of M = 5M⊙ stars the value log Te = 3.68 by Schlesinger (1969a).

Observational data by Cannon (1970) suggest that stars of lower mass have a hor-
izontal sequence, which is usually identified with the helium burning phase of the
giant branch. It is not easy to determine the blue end of the horizontal sequence
for more massive stars. In this stage both hydrogen and helium burning phases are
closely located. We accepted the more extreme case, and identified the yellow and red
sequences of giant stars with the helium burning phase. According to Wildey (1964)
the colour of these red giants is redder than B − V = 1.00, which corresponds to
log Te = 3.68. We accepted this temperature value for the blue end of the helium
sequence of all stars of mass M ≥ 5M⊙.

Figure 22.2.: Colours of the main sequence turn-off point as functions of the star age
according to the present paper, Sandage (1963) and Gray (1965).

The colour of the turn-off point of the main sequence is often used as the crite-
rion of the cluster age. Using our model isochrones we made a new calibration of
this relationship, results are given in Fig 22.2. For comparison we show here also
calibrations according to Sandage (1963) and Gray (1965).
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22.3. Time evolution of physical characteristics of model
galaxies

We made calculations to follow changes in physical characteristics of model galaxies
for a series of initial data. Below we describe initial data used and results obtained.

22.3.1. Initial data

Most calculations were done using following initial data for star formation rate:
n = 7/3, M0 = 0.03M⊙, Mu = 100M⊙, S = 0 (K = 20), S =
1 (K = 0.5, 3), S = 2 (K = 0.3); here the characteristic time of galaxy
formation K is expressed in billion years. We calculated model galaxies for ages
0.01, 0.03, 0.3. 1, 2, 4, 6, 8, 9, 10, 15, and 20 billion years.

To find the dependence of physical properties of galaxies on the values of star
formation function parameters, we made calculations for a range of S and K , using
n = 2.05 instead of n = 7/3. Some calculations were made using a shifted blue end
of the helium burning sequence, as discussed above.

The upper limit of the star formation function, Mu, has little influence on integral
properties of galaxies. The change of the lower mass limit, M0, has little influence
on colour and spectral energy distribution, but has a large impact to the luminosity,
L, and mass-to-light relation, f = M/L, through the parameter a, see Eq. (22.3).
The luminosity of the model galaxy and its mass-to-light ratio can be find as follows:

L = L0/δ, f = δ f0, (22.21)

where L0 and f0 are values of these parameters for lower mass limit M0 = 0.03M⊙.
We give in Table 22.3 coefficients δ and ∆M = 2.5 log δ for a series of minimal
masses of star formation function, M0.

Table 22.3.

M0 δ ∆M

0.50 0.348 -1.145
0.30 0.426 -0.928
0.10 0.644 -0.478
0.03 1.000 0.000
0.01 1.473 0.420
0.003 2.234 0.873
0.001 3.256 1.283

Mass-to-light ratios of old stellar populations differ considerably. According to
Schwarzschild & Bernstein (1955) globular clusters have f = M/L ≈ 1, for giant
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elliptical galaxies Page (1967) found values up to f = M/L ≈ 100. Tinsley (1968)
explained the large variance of f in old populations with the large quantity of stars
of low mass in giant elliptical galaxies. If we accept these high values of f , we
have to use for the lower end mass of star formation function values like M0 ≈
10−6M⊙, which seem to be improbably low. If we change M0 within the range
given in Table 22.3, it is impossible to change mass-to-light in such large limits.
The change of the parameter n in star formation rate function cannot yield so large
changes in f either. Tinsley & Spinrad (1971) demonstrated in the case of M31 that
this parameter can be changed only in a very limited range.

On the other hand, it is well known that evolutionary tracks of stars of different
chemical composition are different, which also changes integral characteristics of
stellar systems. In the present time, there exists no complete series of evolutionary
tracks for extremal chemical compositions. Moreover, for such stars there are no
reliable bolometric corrections and intrinsic colours. However, to get an idea what
possible changes of integral characteristics of galaxies and stellar populations are
expected for extreme chemical compositions, we made calculations with the same
program as before, but with shifted evolutionary tracks.

To get tracks for population rich in heavy elements we added to tracks, calculated
for composition Z = 0.02, the following corrections:

∆ log t = −0.12, ∆ log Te = −0.10, ∆ log L = −0.20. (22.22)

These corrections were based on tracks found by Iben (1967b), Paczyński (1970a)
and Schlesinger (1969a). We attribute these corrections to stars of heavy element
content Z = 0.08. Since there are presently no tracks for this composition, the
shifted model can correspond to some other value of Z .

To get tracks for metal deficit stars we added to tracks for Z = 0.02 corrections:

∆ log t = −0.22, ∆ log L = 0.25. (22.23)

Correction for log Te was changed from zero-age main sequence point 0.085 until
the tip of the giant branch at 0.200. In addition, the blue end of the horizontal giant
branch was fixed at point log Te = 4.25, and in the luminosity by ∆ log L = −0.15
lower than for stars of normal composition. These corrections were found using
tracks by Demarque et al. (1971), and photometric observations by Sandage (1970).
We attributed these corrections to stars of composition Z = 0.001.

22.3.2. Model results

The following functions were calculated: luminosity function, integrated luminosity
in solar units and magnitudes, the contribution of stars of different luminosity to the
summed luminosity, mass-to-light ratio. All functions were found in bolometric units
and in photometric system UBVRIJKL. Also the distribution of energy in spectra of
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Figure 22.3.: The dependence of the luminosity function of galaxies in B system on
the age of the galaxy t in billion years. As argument we use the absolute
magnitude in B system. Star formation function parameters are taken
as follows: left : S = 0, n = 2.33, M0 = 0.03M⊙, R = 5M⊙ per
year; right S = 2, K = 0.3 × 109 years. The mass of the galaxy is
M = 1011M⊙.

model galaxies using calibrations according to Table IV by Johnson (1966a). Ta-
ble 22.2 gives a logarithm of the luminosity in ergs for a star of zero magnitude in
UBVRIJKL system, and the intrinsic colour of the Sun according to Mendoza (1968).

The amount of calculations and output results was rather large. We show the main
results in a graphical form in Figs. 22.3 to 22.9. The dependence of some quantities
(luminosity, mass-to-light ratio, colour) on time (age of the model galaxy) is not very
smooth. The reason for this behaviour is due to the use of a discrete distribution of
masses of stars in the program. For plotting we used in Figs. 22.3 to 22.8 smoothed
functions.

The most interesting model calculation results are colour indexes and energy dis-
tributions in spectra, as these quantities can be directly compared with observations.
This comparison is done in the next section.

22.4. Analysis of results

In this section we discuss various functions and parameters of model galaxies with
observations.

A. Luminosity function. An important property of luminosity functions is the
continuation of the function toward faint stars to very low luminosities. This suggests
that there exist stars of very low luminosity, contrary to earlier estimates by van Rhijn
and Luyten, who suggested that stars of magnitude fainter than M = 16 are very rare.
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Figure 22.4.: Left: Colour-magnitude diagrams for selected star clusters. Right: In-
tegral bolometric luminosities of galaxies of mass M = 1011M⊙ as
function of the age t in years for various parameters S and K of star
formation function.

In very young star systems, stars of high luminosity are dominating, there exist
also pulsars – supernova remnants. In young systems low mass stars are still in the
stage of gravitational contraction, their contribution to the luminosity of the system,
is surprisingly high. With increasing age of the system, the luminosity of red dwarfs
decreases, the number of pulsars increases, and first white dwarfs appear. All these
developments increase the number of stars of low luminosity. During the whole ex-
istence of our Galaxy, the luminosity of some types of stars has decreased by 38
magnitudes.

B. Bolometric luminosities. Tinsley (1968) calculated models of the evolution of
galaxies in the age interval 1 to 12 billion years with step 1 billion years. Our models
cover a much larger age interval that allows to follow the early phase of the evolution
of galaxies. In the early stage the luminosity of galaxies increases very rapidly, but
this stage is very short. In our models we used a constant density of matter during
the evolution. In real galaxies in the early stage of the evolution the density was
smaller, and galaxies contracted during the evolution. The contraction of the central
region is fast, only a few millions of years. For this reason, the overall change of the
luminosity depends only slightly on the variability of the density.

It is interesting to note that the maximal luminosity of the galaxy was approxi-
mately a hundred times higher than in the present epoch (for a galaxy with constant
mass).

C. Mass-to-light ratios. The dependence of the mass-to-light function on chem-
ical composition and star formation rate parameters is in good agreement with ex-
pectations, see Fig. 22.5. The general diapason of the function f = M/L of old
populations of different composition allows to explain differences of this function
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Figure 22.5.: Left: Mass-to-light ratio of galaxies, fB = M/LB , as function of the
age t for various parameters of the star formation function. In central
and right panels data are given for extremal values of the metal content
Z .

for globular clusters and elliptical galaxies of various mass. Variations needed to ex-
plain these very different populations can be obtained by changing parameters of star
formation function and respective evolutionary tracks in reasonable limits.

D. Colours of model galaxies and star clusters. The dependence of U − B and
B−V colours of model galaxies on the age is shown in Fig. 22.6, and in a two-colour
diagram in Fig. 22.7. To compare our results with observations, we compiled similar
data for real clusters. Stars of a given cluster have identical chemical composition
and age, and can be used to check models of evolution of stars of different mass.
Similarly, star clusters can be used to check evolutions of whole stellar systems. For
this purpose, instead of individual stars we have to compare integrated parameters of
model clusters with integrated parameters with real clusters. We show in Fig. 22.4
colour-magnitude diagrams for selected star clusters of various ages and chemical
composition.

We compiled a list of star clusters with known integrated intrinsic colours, I(U −
B)0 and I(B− V )0. Our compilation is given in Table 22.4. The age of clusters was
found using the turn-off point of main sequence, as seen in Fig. 22.1. For a number
of clusters, it was possible to find estimates of the metal content. We give in the Table
mean metal content as follows:

[Fe/H] = (log Fe/H)star − (log Fe/H)⊙. (22.24)

As usual, we accept the position that the iron content characterises the content of all
heavy elements. The metallicity parameter Z is related with the He/H parameter as
follows:

log Z/Z⊙ = [Fe/H], (22.25)
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Table 22.4.: Data on clusters

References are: 63 Newell et al. (1969), 101 Sandage (1970), 105 Arp (1964a), 106 Strom

& Strom (1970), 107 Sandage (1969), 108 Helfer et al. (1959), 109 Eggen (1970), 110 Gunn

& Kraft (1963), 111 Wallerstein & Conti (1964), 112 Philip (1970), 113 Nissen (1970a),

114 Conti & Strom (1968), 115 Nissen (1970b), 116 Alexander (1967), 117 Demarque &

Schlesinger (1969), 118 Aizenman et al. (1969), 119 Eggen (1968), 120 Demarque & Miller

(1969), 121 Spinrad et al. (1970), 122 Eggen (1969b), 123 Spinrad & Taylor (1971).

where we take Z⊙ = 0.02 according to Sandage & Eggen (1969).

The metal content in globular star clusters changes in rather large limits. There are
too few quantitative data on [Fe/H] to find a reliable relation between [Fe/H] and
the parameter

Q = (U −B)− 0.72 (B − V ), (22.26)

which is often used as the metallicity index (van den Bergh 1967). There are more
quantitative data on the Morgan (1959) metallicity type and the Q parameter. Using
available data we found mean relations between Morgan type, metallicity index Q,
and integrated colours of clusters, the results are given in Table 22.5. Here we give
integrated colours, corrected for interstellar reddening, I(U − B)0 and I(B − V )0,
calculated using Eq. (22.26).
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Table 22.5.: Mean metallicity and colour indexes

Figure 22.6.: The dependence of colour U − B (left) and B − V (right) of model
galaxies on the age for various star formation rate parameters.

Integrated colours are shown in Fig. 22.9. As we see, theoretical relations between
the colours are in good agreement with observed ones.

E. Energy distribution in spectra of model galaxies of age t = 10 × 109 years
is shown in Fig. 22.8 for different compositions and parameters of the star formation
function. The distribution is rather similar with the distribution found by Tinsley
(1968). Model distributions can be compared with the energy distribution at central
regions of elliptical galaxies by Sandage et al. (1969) and Johnson (1966b).

22.5. Conclusions

We can summarise our results as follows. By choosing in reasonable limits param-
eters of star formation function, it is possible to calculate model galaxies with inte-
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Figure 22.7.: Left: Evolution tracks of model galaxies of different chemical composi-
tion in a two-colour diagram. Right: The energy distribution in spectra
of a model galaxy of mass 1011M⊙ at different age, given in billion
years. Wavelength is shown in microns and in watts per cm−2 µ−1.

grated characteristics, similar to integrated characteristics of star clusters. Integral
parameters, including colours and spectral energy distributions, depend on the age,
chemical compositions, and rate of star formation. Model galaxies of identical colour
can have ages which differ by an order of magnitude, see Figs. 22.5 and 22.8. Our
results support the result by Sandage (1963) that blue colour of galaxies is not always
an argument to the small age of the system. Our data show that the view by Tinsley
(1968) that all galaxies have identical ages can be distorted by the non-optimal choice
of parameters of the star formation function.

August 1971
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Figure 22.8.: Energy distributions in model galaxies of identical age, t = 10 × 109

years, but for different composition (left), and for different parameters
of star formation function (right).

Figure 22.9.: Age dependence of integral colours of star clusters of various ages:
I(U − B)0 (left) and I(B − V )o (right). Globular clusters are divided
into groups according to Morgan metallicity index.
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23. Star formation function and galactic populations

23.1. Introduction

In earlier Chapters we discussed the reconstruction of the dynamical and physical
evolution of the Galaxy. The rate of star formation was discussed in a general form.
Calculations were done for a wide range of parameters of the star formation function.

In the present Chapter we shall discuss the star formation function in more detail.
We shall find numerical values of parameters of the function and estimate the depen-
dence of this function on the chemical composition of the interstellar gas. Also, we
discuss on the basis of star formation function how stellar populations of various age
and composition of the Galaxy could be formed.

An essential parameter of the Galaxy is its age. We start our discussion with an
overview of determinations of the age of the Galaxy.

23.2. The age of the Galaxy

We count the age of galaxies since the moment when star formation in its protogalaxy
started. According to the present understanding on the evolution of the Universe,
most galaxies formed simultaneously when fluctuations in the expanding primeval
cooling matter density were strong enough to start star formation in the densest re-
gions, which became nuclei of forming galaxies.

There exist today at least three independent methods to derive ages of galaxies.
The first is based on cosmological considerations: it is clear that ages of galaxies are
smaller than the age of the Universe. The age of the Universe can be expressed as
follows:

TU = α(q0)H
−1, (23.1)

whereH is the Hubble parameter (in the present epoch), and α(q0) is a dimensionless
coefficient, its value depends on the cosmic acceleration parameter q0 (and of cosmo-
logical density parameters). In Tabel 23.1 we give some recent determinations of the
Hubble constant, and respective ages of the Universe for three values of the acceler-
ation parameter q0. If we accept for the cosmological constant a value Λ = 0, and
for the acceleration parameter values q0 = 0.5 and qo = 1.5 (Sandage 1961; Peach
1970), we get the age of the Universe TU values given in Table 23.1. For comparison
we give also the age, corresponding to the acceleration parameter q0 = 0.

We see that the accuracy of present determinations of parameters H and q0 is not
sufficient to find the age of the Universe. The uncertainty is even larger when we take
into account the possible error in our assumption Λ = 0. Most often it is assumed
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Table 23.1.

H (km s−1 Mpc−1) TU (109 years) References
q0 = 0 q0 = 0.5 q0 = 1.5

95 10.5 6.9 5.3 van den Bergh (1970)
75 13.0 8.7 6.7 Sandage (1968)
47 20.8 13.9 10.7 Abell & Eastmond (1968)

that the Hubble constant is H = 75 km s−1 Mpc−1, and the acceleration parameter
q0 = 0.5, which yields TU = 8.7± 1.5× 109 years.

Another method to estimate the age of our Galaxy is to use determinations of ages
of its oldest halo populations. This method can be used for globular star clusters.

Earlier evolutionary tracks in Herzsprung-Russel diagram for globular clusters
were calculated using the assumption that the helium content is very low, which
yields to ages of the order 15 − 20 × 109 years (Schwarzschild 1958), exceeding
the age of the Universe TU . Recent data suggest that the helium content in globular
clusters is the same as in stars of population I (Rood & Iben 1968; Sandage et al.
1969). This shows that the helium is of primordial origin. New evolutionary tracks
are in good harmony with estimates of the age of the Universe from other sources.
Table 23.2 gives a summary of recent determinations of ages of globular clusters.
Different determinations vary in reasonable limits. According to Sandage (1970) the
probable age of globular clusters is T = 10± 0.8× 109 years.

Table 23.2.

T (109 years) References
8.5 Rood & Iben (1968)

11 − 13 Iben & Rood (1970b)
9.6 Sandage (1970)

11.6 Sandage (1970)

The most accurate age estimates of the Galaxy come with the radiative isotope
method. The idea to use this method to determine the age of the Solar system was
expressed by Burbidge et al. (1957). Initially only the isotope U235 was used, which
gave for the age of the Galaxy T = 6.6 × 109 years, if the uranium was formed
rapidly in the early phase of the history of the Galaxy. If the uranium was formed
with constant speed, then the isotope age of the Galaxy is T = 11.5−18× 109 years.

A review of determinations of the age of the Galaxy with the isotope method was
given by Dicke (1969). We do not use older determinations of the isotope age of the
Galaxy, since the number of isotopes used was too small, and errors in determinations
of ages of meteorites were large.
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The number of isotopes used in age determinations is increasing and the accuracy
in atomic parameters is improving, thus results are now more accurate. The theory
of the method is given by Schramm & Wasserburg (1970). The age estimates depend
on the speed of the formation of radioactive elements. If we suppose that most ra-
dioactive elements were formed rapidly, then the age of the Galaxy is 9× 109 years.
If isotopes were formed with constant speed, then the age of the Galaxy increases by
a factor of 1.5. This second possibility, however, is excluded by other data (Unsold
1969). For this reason we accept the first alternative. Most recent data on isotope
ages are summarised in Table 23.3.

Table 23.3.

T (109 years) References
8.7± 0.7 Hohenberg (1969)
9.7± 1.0 Wasserburg et al. (1969)

The mean value obtained with the isotope method is, T = 9.0 ± 0.5 × 109 years.
This age can be attributed to the disc of the Galaxy, which according to our estimates
is at the speed of the contraction of the Galaxy by 0.5 × 109 years younger than the
Galaxy. Thus we get for the whole Galaxy T = 9.5 ± 0.7 × 109 years.

When we use results of all three methods, we get for the age of the Galaxy T =
9.5 ± 0.75 × 109 years. Instead, we shall use in further calculations a round value
T = 10× 109 years. If q0 = 0.5 and Λ = 0, then this age corresponds to the Hubble
constant H = 65 km s−1 Mpc−1.

23.3. Rate of star formation

The local rate of star formation can be expressed as follows (Schmidt 1959, 1963):

Rl =
dρs
dt

= γρ2g, (23.2)

where ρs and ρg are densities of stars and gas, respectively, γ is a coefficient with
dimension (density x time)−1, and we accepted the star formation parameter, S = 2.
Since dρg = −dρs , then we can write Eq. (23.2) as follows:

−dρg
ρ2g

= γ dt . (23.3)

Let us assume that the full density of matter in the given element of space is constant
and that at the initial time t = 0 the whole matter was in a gaseous form. After
integration we get:

ρg =
ρ

1 + τ
, (23.4)
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where
τ = t/K (23.5)

is the dimensionless time, and the characteristic time is

K =
1

γ ρ
. (23.6)

Using (23.4) we can write the equation (23.2) as follows:

dρs
dt

= γ
ρ2

(1 + γ ρ t)2
=

ρ

K

1

(1 + τ)2
. (23.7)

Integrating Eq. (23.2) along the line of sight we get in a similar way

Pg =
P

1 + τ
(23.8)

and
dPs

dt
= κ

P 2

(1 + κP t)2
=
P

K

1

(1 + τ)2
, (23.9)

where Pg and Ps are projected densities of gas and stars, P = Pg + Ps,

κ =
γ

2 ζ∗
, (23.10)

and

K =
1

γρ̄
. (23.11)

In the last equation

ρ̄ =
P

2ζ∗
(23.12)

and

ζ∗ =
Pg

2ρ̄g
, (23.13)

where

ρ̄g =

∫

ρg dPg

Pg
, (23.14)

and integration is over the line of sight. If ρg has normal distribution, then

ζ∗ =
√
π ζ, (23.15)

where ζ is the dispersion of positions of gas particles along the line of sight.
We use now the modified exponential density profile

ρ(a) = h exp



x0 −
[

x2N0 +

(

a

k a0

)2
]1/(2N)



 , (23.16)
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where h and k are normalising constants, x0 and N are structural parameters, and
a0 is the major semiaxis of the equidensity ellipsoid. The parameter x0 regulates the
density law near the centre of the ellipsoid. If we take x0 = 0, we get the usual
exponential density profile

ρ(a) = h exp

[

−
(

a

k a0

)1/N
]

. (23.17)

If the line of sight is directed along the rotation axis, we get for large distance R

ζ = ǫ
√
NR

(

k a0
R

)1/(2N)

, (23.18)

and for the centre, R = 0

ζ = ǫ
√
N k a0x

N−1

2

0 . (23.19)

Integrating over the whole volume of the system we get

M g =
M

1 + τ
, (23.20)

and for the rate of star formation

R =
dM s

dt
= λ

M
2

(1 + λM t)2
=

M

K

1

(1 + τ)2
, (23.21)

where M g and M s are full masses of gas and star in the galaxy, and

λ = γ/V ∗, (23.22)

and K is expressed by Eq. 23.11. For the mean density we get now

ρ̄ =
M

V ∗
, (23.23)

where

V ∗ =
M g

ρ̄g
, (23.24)

and

ρ̄g =

∫

ρg dM g

M g
. (23.25)

Now we introduce standardised density and mass functions and get for the mean
density

ρ̄ =
1

4π ǫ

M

a30
χ, (23.26)

where

χ =

∫ ∞

0

(µ0
α

)2
dα , (23.27)

189



23. Star formation function and galactic populations

and ǫ, a0, and the standardised mass function µ0 describe the gas population, and only
M is the whole mass of the galaxy. Here we used the designation α = a/a0, where
a is the major semiaxis of the density ellipsoid, and µ(a) da = 4π ǫ a2 ρ(a) da is the
mass function – the mass of an ellipsoidal sheet of thickness da and ratio of vertical
to horizontal axes ǫ. If the gas is distributed according to the exponential law, then
we get

χ =
N h2 k3

23N
Γ(3N). (23.28)

For a series of N values the function χ is given in Table 23.4.

Table 23.4.

N χ

0.5 0.5555
1 0.5000
2 0.7146
3 0.6124
4 0.7596
5 0.9708
6 1.2644

23.4. Determination of the parameter γ

Direct observations allow to determine the full mass of the galaxy, M , the mass of
the gas, M g , and the mean density, ρ̄. In external galaxies, it is possible to find also
the projected density of gas and young stars. In our Galaxy it is possible to find the
spatial density of gas and young stars. In all equations, connecting these quantities,
the parameter γ, characterising the rate of star formation, plays an important role.
To determine the value of the parameter γ there are several integral and differen-
tial methods. We shall apply the integral method using data on M31 and the Small
Magellan Cloud (SMC), and the differential method using data on SMC.

Let us use first the integral method. Basic data used in calculations are given in
Table 23.5.

The mass of hydrogen of M31 was taken from our recent model of M31 Einasto
(1969b). The mass of hydrogen in SMC was taken from Hindman (1967). In the
calculation of the full mass of gas, the hydrogen parameter of chemical composition
was taken X = 0.70. The total mass of M31 was taken equal to the sum of its disc
and flat populations. The distribution of densities of these populations is similar to the
distribution of gas. The mass of SMC and its effective radius a0.5 (in de Vaucouleurs
spirit) are taken from de Vaucouleurs (1962). From a0.5 we found the harmonic radius
a0, accepting in the generalised exponential model the shape parameter N = 0.5.
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Table 23.5.

Quantity Units M31 SMC
MH 109M⊙ 3.7 0.48
M g 109M⊙ 5.3 0.68
M 109M⊙ 110 2.4
K 109 years 0.50 4
a0 kpc 9 1.5
ǫ 0.016 0.5
ρ̄ M⊙/pc3 0.38 0.062

γ
(

M⊙

pc3 × 109 yr
)−1

5.3 4.0

The axial ratio of the density ellipsoid of the M31 gas was taken as equal to ǫ =
0.016 in analogy to our Galaxy (Einasto 1970a, 1972a). It was calculated using
Eq. (23.18), which for N = 0.5 yields

ǫ =

√
2 ζ

k a0
. (23.29)

We calculated the dispersion of z−coordinates, ζ , using densities of hydrogen by
Schmidt (1957a), with result ζ = 100 pc. Effective radius of the gas population was
taken equal to a0 = 8 kpc, parameter k according to tables by Einasto & Einasto
(1972b,a). These calculations gave the value ǫ = 0.0157.

Table 23.5 shows that values of the parameter γ for M31 and SMC are rather
similar in spite of the very different type of these galaxies.

Now we shall find the parameter γ applying a differential method, using data on
young stars and projected density of gas in SMC.

From Eq. (23.8) to (23.10) we get

dPs

dt
=

γ

2 ζ∗
P 2
g . (23.30)

We found the projected density of the gas Pg from the hydrogen density PH (Hind-
man 1967), accepting the chemical abundance parameter X = 0.70. Parameter ζ∗

characterises the distribution of gas clouds along the line of sight, and was found as
follows. Fig. 2 by Hindman (1967) shows that hydrogen is concentrated to clouds
having approximately a round form. This hints to the spherical form of the hydro-
gen population (SMC as a total has a flattened form). The hydrogen population has
approximately normal distribution (its shape parameter of the modified exponential
function is N = 0.5). This allows to find effective radii a0 of gas clouds, and from
these data the dispersion of ζ and parameter ζ∗. Values found for individual clouds
vary between 2 ζ∗ = 1.0 kpc to 2.0 kpc; for the mean we accepted 2 ζ∗ = 1.6 kpc.
Following Hindman (1967) we accepted the distance to SMC d = 60 kpc.
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Next we have to find the projected density of stars formed in unit time, RP =
dPs /dt .

Sanduleak (1968) found from spectral observations the distribution of bright stars
of various spectral types in SMC. His list can be considered as complete up to mag-
nitude mpg = 13.0, corresponding to B = 13.1 (Schmidt-Kaler 1965). For distance
modulus (m−M)ph = 19.0 (van den Bergh 1965) this corresponds to completeness
of data up to MB = −6.0.

According to Sanduleak (1968), the total number of stars brighter than MB =
−6.0 is P = 126. We can compare this number with the expected number from the
theoretical star formation model. We take in the model S = 0, which corresponds
to constant star formation rate R◦ = 5 solar masses in a year. Using the luminosity
function ϕ(MB) we found that the expected number of stars brighter than MB =
−6.0 is P ◦ = 25500. The actual star formation rate in SMC is P ◦/P = 200 times
lower than in our model. This leads to SMC star formation rate R = 0.025M⊙ in
year.

This star formation rate of SMC can be underestimated, since the Sanduleak (1968)
list did not include supergiant stars. To estimate the possible selection effect, we
calculated the star formation rate R, applying Eq. (23.21), and used as characteristic
time of star formation parameter K our result from Table 23.5. We found R =
0.050M⊙ a year. If this estimate is correct, then the star formation rate, found from
Sanduleak (1968) list of stars, is to be multiplied by a factor of two.

Sanduleak (1969) found the distribution of stars brighter than mph = 13 for unit
surface density, Pl. It is clear that

QPl

P ◦
=
RP

R◦
, (23.31)

where Q ≈ 2 is the correction factor described above. We used this equation together
with Eq. (23.30) to estimate the parameter γ. Sanduleak (1969) got for the power
index of the star formation rate S = 1.84±0.14, which is almost equal to the value we
accepted, S = 2. Using Sanduleak (1969) distributions of Pl and Pg, and calibrating
gas densities to surface densities, we got γ = 2.9 in units (M⊙ pc

−3Gyr)−1.
This estimate of the parameter γ is in good agreement with data given in Ta-

ble 23.5. We accept a mean value of all data,

γ = 4 (M⊙ pc
−3Gyr)−1. (23.32)

Our result depends on the age of SMC (we accepted t = 1010 years), and on the
mean axial ratio of the equidensity ellipsoid ǫ of M31 gas. If we take for the age of
SMC two times lower value, and for ǫ of M31 gas two times larger value, then the
parameter γ increases by a factor of two. However, in this case the selection factor Q
also increases by a factor of two, which is not acceptable. But we can check this result
in another way. The total luminosity of young stars in M31 is in good agreement with
our model using parameters S = 2 and K = 0.25, and using the total mass of M31.
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If we use only the mass of the disc of M31, then a good agreement is obtained using
K = 0.5. The luminosity of young star population depends on the star formation rate,
which depends on the present mean density ρ̄. Using data on gas density in M31, we
found for the parameter γ a value, close to the value in Eq. (23.32). In summary, we
conclude that there are no reasons to accept for SMC an age smaller than for other
galaxies, and for the mean axial ratio of the gas population a value, different from the
present one.

Finally, we note that recently Hartwick (1971) found for the star formation param-
eter for M31 a value S = 3.5± 0.12, using a method similar to the Sanduleak (1969)
method. He used Roberts (1966) data on the distribution of neutral hydrogen, and
Baade & Arp (1964) data on the distribution of ionised hydrogen as an indicator for
the presence of young stars. The theoretical basis of his analysis was criticised by
Talbot (1971). However, more important is the effect of antenna smoothing, not used
by Roberts (1966) in the determination of the hydrogen distribution. In this way, the
hydrogen distribution was strongly smoothed without any peaks of densities along
spiral arms, see Einasto (1972b). If the smoothing is properly taken into account, the
value of the parameter S becomes fully normal.

23.5. The dependence of the star formation rate on chemical
composition of the gas

The basis of our present understanding of the synthesis of chemical elements in the
Universe and chemical evolution of galaxies was presented by Burbidge et al. (1957).
Authors demonstrated that all chemical elements heavier than hydrogen are synthe-
sised inside stars as a result of various nuclear processes. Part of synthesis products
are expelled from stars, where in this way the interstellar gas is enriched by heavier
chemical elements. A bit later it was understood that similarly to hydrogen, helium
also has a primordial origin, and only elements heavier than helium are produced in
stars. Various nuclear processes and problems of the chemical evolution of galaxies
are subjects of intensive studies.

The synthesis of elements heavier than helium takes place in all stars with nuclear
activity. The most important factor in the enrichment of interstellar medium with
heavy elements are massive stars, which after their active life explode as supernovae.
During the explosion, elements of high atomic weight are produced. The study of
stars of various chemical compositions and ages gives us information on the synthesis
of heavy elements and the star formation function at various stages of the evolution
of galaxies.

The possibility of the use of compositions of stars of various age to study the star
formation history was explored by van den Bergh (1961). He noted that already in
the early phase of the evolution of the Galaxy, the chemical abundance of some open
star clusters was close to the normal composition in the present epoch. This hints to
a high activity of supernova explosions in the early phase of Galaxy evolution. The
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same conclusion was made by Schmidt (1963). The chemical composition of stars
and gas in the early phase of the Galaxy evolution was studied by Dixon (1965, 1966).
Truran & Cameron (1970) and Cameron & Truran (1971) developed a model of the
chemical evolution of the Galaxy. According to their model, in the early phase of the
evolution, a large fraction of almost pure hydrogen-helium stars evolved rapidly and
enriched the halo gas with heavy elements.

Until recently, the attention of astronomers was directed to understand the chemical
aspects of the problem. Relatively little attention was given to possible changes of
parameters of the star formation function, which could cause the effects mentioned
above.

Based on the arguments, given by Dixon (1965, 1966) and Cameron & Truran
(1971), we can conclude that the heavy element content after the initial rapid con-
traction of the protogalaxy was relatively high, about three times less than the solar
content. To find possible errors of this estimate, let us consider two variants: A)
heavy element content at the end of the contraction was Zh = 0.010, i.e. two times
less than the present content, and B) Zh = 0.005. The mass of the halo of M31 is
10 % of the mass of the whole galaxy (Einasto 1970b, 1972b), let us assume that the
relative halo mass of our Galaxy is the same (direct data are less accurate). All heavy
elements of the gas in the Galaxy in this epoch (90 % of the total mass of Galaxy)
were produced by first-generation stars (10 % of the mass of the Galaxy). If we as-
sume that heavy elements were not consumed by compact objects of the halo, then
in variant A the fraction ψh = 0.090 of initial stellar mass was expelled from stars as
heavy elements. In variant B the fraction is ψh = 0.045.

The mean heavy element content in the disc of the Galaxy is Z = 0.02 (in the
present epoch the mean heavy element content of young stars is slightly higher). The
mass of the disc is about 53 % of the whole mass of the Galaxy (Einasto 1970a;
Einasto & Einasto 1972a; Einasto 1972a). Based on these data, we can calculate the
total mass of heavy elements in the disc. When we remove from this amount the
mass of heavy elements at the beginning of disc formation, we can find the amount
produced by disc stars. We find that in variant A, the fraction of mass of disc stars,
expelled as heavy elements, was ψd = 0.009, and in variant B ψd = 0.014. We
conclude that in comparison with halo stars, the effectiveness of the synthesis of
heavy elements has decreased in variant A 10 times, and in variant B 3 times.

Can this decrease of the star formation rate be explained by changes of parameters
of the star formation function?

Applying the star formation function F (M) of Chapter 22, we can calculate the
fraction of stars of large mass. Let us use for disc stars of Galaxy the lower mass limit
of forming stars, M0 = 0.03M⊙, upper mass limit Mu = 100M⊙, the exponent of
the mass function, n = 2.333, and the minimal mass of stars as future supernovae,
MSN = 2.6M⊙. The total mass of stars with masses M ≥MSN , is for these param-
eters Ed = 0.17 of the mass of all stars – the disc supernova producing capability.
All heavy elements are synthesised by these stars of masses M ≥ MSN . Accepting
for disc stars the heavy element synthesis fraction ψh as found above, we find that in
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variant A 5 % of star mass is expelled as heavy elements, and in variant B 8 % of star
mass.

Let us now consider possibilities to increase the fraction of heavy elements. There
are two possibilities for this: to increase the fraction of massive stars, and to increase
the heavy element synthesis capacity of supernova explosions.

The fraction of stars with masses above MSN can be increased by the increase
of minimal star forming mass M0, and by decreases of index n and supernova mass
limit MSN . Let us take M0 = 0.3M⊙ (this is the maximal possible value from
globular cluster data), n = 2 and MSN = 2M⊙ (only stars of this mass have time
to evolve during the time of the contraction of the halo – 1 billion years – to reach
the supernova explosion stage). Accepting these parameters we find for the halo
supernova producing capability EH = 0.68, which is four times higher than the disc
capability. This is more than needed to explain the heavy element content, needed at
the end of halo contraction phase for the variant B, but not large enough for the variant
A. A further increase of M0 or decrease of MSN are not possible. For this reason,
if the variant A of the fraction of mass expelled as heavy elements is to be favoured,
then the only possibility to explain the disc heavy element content in the framework
of the contracting halo scenario is to decrease n or to increase the effectiveness of the
creation of heavy elements during supernova explosions.

Requirements for changes of star formation function parameters are not too restric-
tive. For this reason, we think that there are no need to accept the hypothesis for the
initial prompt formation of all heavy elements, as suggested by Truran & Cameron
(1970) and Cameron & Truran (1971).

23.6. Formation of galaxies and their populations

The Schmidt Eq. (23.2) allows to explain in a quantitative way the formation of galax-
ies of various morphological type as well as the formation of galactic populations.

Let us discuss first the formation of galaxies of different morphological type: ellip-
ticals, spirals and irregulars. Galaxies of these types differ from each other by their
mean density. Bulges of elliptical and spiral galaxies have high mean density, for
the bulge of M31 we found ρ̄ = 6M⊙ pc

−3. The mean density of the disc of spiral
galaxies is lower by an order, and the mean density of irregular galaxies is lower by
another order. Using these mean densities and Eq. (23.6) we calculated the respective
characteristic time K , and then using Eq. (23.20) the change of the relative amount
of gas, and from Eq. (23.21) the rate of star formation R. Results of our calculations
are given in Figs. 23.1 and 23.2.

In Fig. 23.3 we show the change of the total luminosity of the galaxy with time. It
was calculated as follows:

LB(t) = δ

∫ t

t0

Rdt′ , t0 =

{

0, t ≤ ∆
t−∆, t ≥ ∆.

(23.33)
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Figure 23.1.: The fraction of gas mass in model galaxies of various mean density.

Here the factor δ and time interval ∆ were estimated from the comparison of results
of calculations with results in Chapter 23 for K = 0.3. Our calculations suggested
that ∆ must be taken as a linear function of time

∆ = 0.1 + 0.14 t, (23.34)

where both ∆ and t are expressed in units 109 years.
Properties of model galaxies for the age t = 1010 years represent rather well the

observed properties of elliptical, spiral and irregular galaxies. This raises the ques-
tion: How to explain differences in density in these three types of galaxies?

It should be stressed that differences in mean densities can be formed only in the
gaseous phase of the evolution of galaxies. Stellar populations are very conservative
in this respect, as kinematical and spatial characteristics of the structure of galaxies
change very slowly.

One of possible reasons for changes in mean densities could be differences in
primeval mass-angular moment distributions. Protogalaxies with low primeval angu-
lar moment could contract considerably and form elliptical galaxies. Protogalaxies
with high primeval angular moment could not contract in the radial direction. For
this reason, these galaxies formed after the contraction phase gas a thin disc, which
fragmented due to gravitational instability into spiral arms. Theoretical aspects of the
role of mass-angular moment distribution were discussed by Lynden-Bell (1967b),
observational aspects were studied by Sandage et al. (1970).

Let us discuss now the formation of galactic populations. First we consider the
halo. Using data by Einasto (1970b, 1972b) we found the mean density of halo,
ρ̄ = 0.13M⊙ pc

3, which yields K = 2 × 109 years. At the end of the halo forming
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Figure 23.2.: The rate of star formation R(t) in galaxies of different mean densities.

the mass of gas was 90 % of the mass of the galaxy, thus τ = 0.1. From τ and K we
can find the time of halo formation t = τ K = 0.2 × 109 years. This time is in good
agreement with our earlier estimate on the halo collapsing time. Different regions of
the halo formed at various times, first the central densest region, then more distant
and less dense regions, thus the contraction time is a certain mean value.

After the contraction phase, the remaining gas obtains the form which is close to
its present form. Thus, we do not make a considerable error when we consider the
projected density of gas, P (A), as time independent. Based on these arguments, we
consider the mean thickness of gas, ζ∗, also as time independent. Using Eq. (23.9)
we find that the projected density of stars, formed in the time interval ∆ t at moment
t as follows:

∆Ps = γ
P 2

2 ζ∗

[

1 + γ
P

2ζ∗
t

]−2

∆ t. (23.35)

Time in the equation is to be counted not from the formation of the whole galaxy but
from the beginning of the formation of the bulge and disc.

This equation allows to explain quantitatively the subsequent formation of popula-
tions of increasing sizes1. If t is small, then τ = γP t/(2ζ∗) ≪ 1, and we have

∆Ps = γ
P 2

2ζ∗
∆ t. (23.36)

1I am indebted to Grigori Kuzmin for the idea to use Eq. (23.35) for this purpose.
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23. Star formation function and galactic populations

Figure 23.3.: The evolution of galactic total luminosity for galaxies of different mean
density. Lines as in Figs. 23.1 and 23.2.

Due to very rapid decrease of P (A) with increasing A star formation occurs initially
only in central regions — in this way the nucleus forms. But in central regions of
the galaxy, the density of the gas decreases rapidly. For this reason, according to
Eq. (23.35), the central density of the following population also decreases. When
τ ≫ 1, then we get for the projected density using Eq. (23.8)

Pg ≈
2 ζ∗

γ t
. (23.37)

The density distribution of galactic populations can be described by the modified
exponential profile with ν = 1/N ≤ 1. Based on Eqs. (23.15) and (23.18) we see
that in this case the parameter ζ∗ decreases with increasing distance from the centre.
In this way during later phases of galactic evolution, the density of gas in central
regions of galaxies gets lower than in more distant regions. This situation is exactly
observed in spiral galaxies like M31 (Einasto 1970b, 1972b). The active process of
star formation moves from central regions to more distant ones, and the mean radius
of recently formed galactic populations increases. In peripheral regions of spiral
galaxies, the gas density is very low, and the star formation process has low intensity.
Thus, the fraction of gas in the total projected density decreases with distance, see
Eq. (23.8). For M31 at distance 25 kpc from the centre we obtained: 2 ζ∗ = 570 pc,
and P = 5M⊙/pc

2, which yields Pg/P = 0.75.
The star formation function gives us the possibility to determine the distribution of

galactic populations according to mass.
Let us discuss first the mass distribution of the disc populations of our Galaxy. We

integrate Eq. (23.21) in time from t = ti −∆ to t = ti:

M Si =

∫ ti

ti−∆
R dt = M S(ti)−M S(ti −∆), (23.38)
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23.6. Formation of galaxies and their populations

where M Si is the mass of stellar population i, and M S(ti) = M − M g(ti) is
the total mass of stars of the Galaxy at moment ti, and the mass of gas M g(ti) is
calculated using Eq. (23.20).

In calculations, we made the following simplifying assumptions. Effective radius
of all disc subsystems was taken as equal to a0 = 6.45 kpc in accordance with
our model described in Chapter 7. Structural parameters of all subsystems were
also taken as equal: N = 1, x0 = 0. The flattening parameter of the gas was
taken equal to ǫ = 0.0157, in accordance with the results discussed above. The
characteristic time of disc star formation was found using Eq. (23.11), where the
mean density ρ̄ was calculated using Eq. (23.26). We accepted the full mass of the
disc M = 108× 109 M⊙, and found ρ̄ = 1.0M⊙ pc

−3 and K = 0.25× 109 years.
The total age of the disc of the Galaxy was taken equal to 9× 109 years, and the time
spent on the formation of disc subpopulations was taken as equal to ∆ = 109 years.
Results of calculations are given in Table 23.6. We see that most subpopulations of
disc stars formed during the first billion years after the start of disc formation.

Table 23.6.

ti ǫi M Si/M M Si/M
109 a K = 0.25 K = 0.60

8.5 0.120 0.8000 0.6250
7.5 0.098 0.0889 0.1442
6.5 0.083 0.0342 0.0641
5.5 0.070 0.0181 0.0362
4.5 0.057 0.0112 0.0233
3.5 0.045 0.0076 0.0162
2.5 0.035 0.0055 0.0120
1.5 0.025 0.0042 0.0092
0.5 0.018 0.0033 0.0073
0.0 0.016 0.0270 0.0625

In Chapter 7 we obtained the relationship between the age of populations and the
flattening parameter ǫ of iso-density surfaces. Using this relationship we calculated
mean ǫ values for disc subpopulations, results are given in Table 23.6. Using mass,
radius, flattening and structural parameters of subpopulations we can calculate the
density, and by summing over all subpopulations, find the total matter density. We
made these calculations for the region near the Sun. Adding to this value the density
of population II (halo), which according to Oort (1958) is ρII = 0.0015M⊙ pc

−3,
we get for the mass density in the Solar vicinity

ρ⊙ = 0.065M⊙ pc
−3. (23.39)
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23. Star formation function and galactic populations

Using Oort constants A = 15 km/sec/kpc and B = −10 km/sec/kpc we find for the
Kuzmin parameter a value

C = 61 km/sec/kpc. (23.40)

We get the total mass of interstellar matter

M g = 2.9× 109M⊙, (23.41)

and the density of interstellar matter in the Solar vicinity, ρg = 0.010M⊙ pc
−3.

The comparison of these results with direct density estimates discussed in Chapter
7 shows that all quantities are underestimated except the total mass of gas, which
according to Westerhout (1957) is M g = 1.4 × 109M⊙.

To find possible reasons for this disagreement, we repeated calculations using the
gas density in Solar vicinity, ρg = 0.023M⊙ pc

−3. For the parameter K we got a
value K = 0.6 × 109 years. Results of calculations are given in Table 23.6. For the
total mass density in Solar neighbourhood we got now ρg = 0.082M⊙ pc

−3, which
yields Kuzmin parameter value C = 68 km/sec/kpc, and total gas mass in the Galaxy,
M g = 6.8× 109M⊙.

We see that values of the Kuzmin parameter and total density are fully acceptable,
but the total gas mass is too large. We recall that the total gas mass of M31 is only
M g = 5.3 × 109M⊙, see Chapter 20. Andromeda galaxy M31 is about 1.5 times
more massive than our Galaxy. If relative fractions of gas in both galaxies are equal,
then the gas mass of our Galaxy would be M g = 3.5 × 109M⊙. However, there
exists arguments suggesting that the relative gas content of our Galaxy is lower than
in M31. The linear size of M31 is about 15 % larger than the size of our Galaxy,
mutual distances of neighbouring spiral arms of M31 are about two times larger than
in our Galaxy (see Chapter 19 and Westerhout (1957)). For this reason, the estimated
total mass of gas in Galaxy Eq. (23.41) is fully acceptable (observational estimate by
Westerhout (1957) is probably underestimated, as well as the total mass of Galaxy
according to Schmidt (1956)). The first variant of the distribution of masses of disc
subpopulations should be closer to reality. How can we explain low values of gas
density and total density in Solar neighbourhood found for this variant?

Recently Woolley et al. (1971) demonstrated on the basis of statistics of nearby
stars that the relative number of young stars in Solar vicinity is larger than expected on
the basis of the hypothesis that the rate of star formation is constant. In other words,
the Sun is located in a region of enhanced star forming intensity. The enhanced star
forming activity in Solar neighbourhood is supported by the presence of Gould Belt,
as well as by the fact that the Sun is located inside a spiral arm of Galaxy (Becker
1970). Apparently, this allows to explain the disagreement between our theoretical
density estimate in a smooth Galaxy model, Eq. (23.39) and observations.

We conclude that the star formation function allows to explain satisfactorily both
integral properties of galaxies as well as properties of galactic populations. The gen-
eral picture of galaxy evolution is similar to the view by Sandage et al. (1970).

October 1971
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A. Epilogue

The defence of the Thesis on March 17, 1972 was successful. However, two related
problems remained — it was impossible to reproduce the observed rotation curves
of galaxies with known stellar populations, and data on mass-to-light ratios of pop-
ulations were uncertain. For this reason, I started searches to find solutions to these
open questions immediately after the defence. The story of events after the defence
of the Thesis is described in detail in my book (Einasto 2014) and in the review paper
(Einasto 2018). Here I give a short overview of the development of ideas directly
connected with the topic of the Thesis.

Both problems are connected with the possibility of the presence of dark matter
in galaxies. I had serious reasons to believe that there is only a limited quantity of
dark matter in galaxies like our own Galaxy. This problem had been studied by Tartu
astronomers long ago. Öpik (1915) was one of the first to study the dynamics of
the Galaxy with the goal to find the density of matter in Solar neighbourhood. He
understood that due to the flat shape of the Galaxy, the dynamical density can be
determined from the comparison of motions and spatial distributions of stars in the
vertical direction. He found that the vertical attraction of known stars is sufficient
to explain the observed distributions, and that there is no reason to add invisible
matter (the term “dark matter” had not yet been suggested). Kuzmin (1955) and his
student Eelsalu (1958) repeated this study with new and better data and confirmed
Öpik (1915) result. The problem was also discussed by Oort (1960b), who found that
the dynamical density near the Sun is larger than found by Kuzmin (1952b, 1955) and
Eelsalu (1958). In other words, there is a need for dark invisible matter. Since the
matter density and possible presence of dark matter are of fundamental importance,
my Tartu collaborator Jõeveer (1968, 1972) made a new analysis, using a completely
different method, see Chapter 21. Ages of young stars are known, this allows to
find parameters of vertical oscillations of young B stars and cepheids, which led
to parameter C = 70 km/s/kpc and dynamical density ρdyn = 0.09M⊙/pc3. On
the basis of these studies, I supported the classical paradigm with no large amounts
of dark matter in the Solar neighbourhood. More accurate recent data support this
conclusion (Gilmore et al. 1989).

More data accumulated on rotation velocities of galaxies. New data suggested the
presence of almost flat rotation curves of galaxies, thus, it was increasingly difficult
to accept my previous solution of the discrepancy with large non-circular motions.
I discussed the problem with my colleague Enn Saar in spring 1972, who suggested
abandoning my earlier idea that galaxies have relatively sharp boundaries but may
have extended envelopes.
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The possible presence of dark matter in the Galaxy in Solar vicinity at least in
some quantity was suggested by Oort (1932, 1960b), and in clusters of galaxies by
Zwicky (1933), Karachentsev (1966), and Rood et al. (1972). A numerical study
of the stability of flat galaxies suggest the presence of massive halos of galaxies
(Ostriker & Peebles 1973). Rotation velocity measurements of galaxies by Roberts
(1966, 1967, 1969a) and Rubin & Ford (1970) suggest that galaxies have indeed
large and massive envelopes. My detailed analysis of properties of known stellar
populations demonstrated that no known stellar population can be responsible for flat
rotation curves of galaxies. As I discussed in Einasto (2018), the tacit assumption
in earlier studies was that the stuff, responsible for this effect in clusters, galaxies in
general and near the plane of the Galaxy, is the same everywhere.

After the discussion with Enn, I noticed that here lies a controversy. Dynami-
cal data suggest that eventual dark matter in Solar vicinity is strongly concentrated
toward the plane of the Galaxy, thus dissipation is needed for its formation. By con-
trast, if the rotation of galaxies in outer regions is influenced by a new hypothetical
population, then this population should form a large, massive, and an almost spher-
ical population. In particular, for its formation, dissipation is not needed. Different
size, shape, mass and dissipation properties suggest a different formation history and
nature. Following these considerations, I concluded that there must exist two types
of dark matter: the “local dark matter” near the Sun close to the plane of the Galaxy,
and the “global dark matter”, forming envelopes of galaxies and clusters of galaxies
(Einasto 1972a, 1974a).

To have a better reproduction of observed rotation curves, it would be reasonable
to look at which properties the population of global dark matter should have using
available data on known stellar populations and galaxy rotation data. To avoid confu-
sion with the known halo population, consisting of old metal-poor stars, I called the
new population “corona” (Einasto 1972a, 1974a). To check this possibility, I used
my programs to calculate dynamical models of galaxies. It was easy to find a new set
of models with one addition component — dark corona. As the first approximation,
I assumed that the total mass of the M31 corona is equal to the mass of the sum of
known stellar populations (Einasto 1972a, 1974a). I made two versions of models of
galaxies in the Local Group and giant elliptical galaxy M87, variant A without corona
and variant B with corona, see Fig. A.1. This calculation showed that the adding of
coronas improves model rotation curves, but not enough.

I reported new results at the First European Astronomy Meeting in Athens on
September 8, 1972 (Einasto 1974a). It was clear that coronas cannot be made of
stars because outer stellar populations consist of old halo-type stars with very low
mass-to-light ratio, but the mass-to-light ratio of the corona is very high. The coronal
matter cannot be in the form of neutral gas, since this gas would be observable. Ini-
tially I suspected that it could be ionised hot gas (Einasto 1972a, 1974a). However,
the total mass of coronas was not known yet, and the evidence for the presence of
coronas was not strong.
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Figure A.1.: The distribution of mass-to-light ratio, fB = M/LB , in galaxies of the
Local Group and M87: models without (A) and with (B) dark corona
(Einasto 1974a).

So far, I had concentrated my efforts on the study of the structure of galaxies. It was
now clear that the environment of galaxies was also important. The dark matter prob-
lem was discussed a long time ago in clusters of galaxies. Also masses of groups of
galaxies, measured from the velocity dispersion of galaxies, were larger than summed
masses of individual galaxies, see Holmberg (1937, 1969) and Karachentsev (1966).
A similar discrepancy was found in the Local Group (the M31 - MW system) by
Kahn & Woltjer (1959). Reading these papers on the mass discrepancy in clusters,
groups and galaxies, I realised that the problem of dark matter in galaxies is the same
as in clusters. This allows to find masses and radii of dark coronas of galaxies. I
noticed that if galactic coronas are large enough, then companion galaxies should lie
inside coronas of the main galaxies. Thus, companion galaxies can be considered as
test particles to measure the gravitational attraction of the main galaxy.

I collected data for pairs of galaxies. The analysis was soon ready, see Fig. A.2.
Our analysis suggested that galactic coronas have masses about ten times larger than
masses of their visible populations. In those years, Soviet astrophysicists had the
tradition to organise Winter Schools. In 1974, the School was held in the Terskol
winter resort. I presented my report on the masses of galaxies on January 29, 1974. I
stressed in my talk arguments, suggesting that the presence of coronas around galax-
ies is a general phenomenon. Also, I suggested that galactic coronas probably have
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Figure A.2.: The mean internal mass M(R) as a function of the radius R from the
main galaxy in 105 pairs of galaxies (dots). The dashed line shows the
contribution of visible populations, the dotted line the contribution of
the dark corona, solid line the total distribution (Einasto et al. 1974a).

the same origin as dark matter in clusters and groups, and that coronas are probably
not of stellar origin.

Prominent Soviet astrophysicists like Yakov Zeldovich, Iosif Shklovsky, and others
participated in the Winter School. After my talk, the atmosphere was as if a bomb had
exploded. For Zeldovich and his group, the presence of a completely new, massive
non-stellar population was a surprise. Two questions dominated: What is the physical
nature of the dark matter? and What is its role in the evolution of the Universe?

I had to hurry with the publication of our results, since massive halos were already
discussed by Ostriker & Peebles (1973) to stabilise orbits of flat population stars.
Following a suggestion by Yakov Zeldovich we sent the paper to “Nature” (Einasto
et al. 1974a). Soon it was clear that it was just in time. Ostriker et al. (1974) got
similar results using similar arguments; their paper was published several months
after our “Nature” paper, and has a reference to our preprint. Both papers suggest that
the total cosmological density of dark matter in galaxies is about 0.2 of the critical
cosmological density.

In the “Nature” paper, we noted that dark matter in clusters cannot be explained
by hot X-ray emitting gas, since its mass is insufficient to stabilise clusters. Ostriker
et al. (1974) did not notice that dark matter forms a new population of unknown
nature; authors write in the discussion that the very great extent of spiral galaxies can
perhaps be understood as due to a giant halo of faint stars.

Soon the reaction to the results of both papers appeared: Burbidge (1975) for-
mulated difficulties of the dark corona/halo concept. The main problem is in the
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statistical character of dynamical determinations of masses of multiple galaxies. If
companion galaxies used in mass determination are not real physical companions but
random interlopers, as suggested by Burbidge, then the mean velocity dispersion re-
flects random velocities of field galaxies, and no conclusions on the mass distribution
around giant galaxies can be made.

Figure A.3.: Distribution of luminosity of companion galaxies of different morphol-
ogy vs. distance from the central galaxy; spiral and irregular compan-
ions are marked with open circles, elliptical companions with filled cir-
cles (Einasto et al. 1974b).

Our “Nature” paper (Einasto et al. 1974a) together with a similar paper from the
Princeton group by Ostriker et al. (1974) and the response by Burbidge (1975) started
the “dark matter” boom. As noted by Kuhn (1970), a scientific revolution begins
when leading scientists in the field start to discuss the problem and argue in favour of
the new over the old paradigm.

Difficulties connected with the statistical character of our arguments were evident,
thus we started a study of properties of companion galaxies to find evidence for some
other regularity in the satellite system which surrounds giant galaxies. Soon we
discovered that companion galaxies are segregated morphologically (Einasto et al.
1974b). Elliptical (non-gaseous) companions lie close to the primary galaxy whereas
spiral and irregular (gaseous) companions of the same luminosity have larger dis-
tances from the primary galaxy. The distance of the segregation line from the primary
galaxy depends on the luminosity of the satellite galaxy, see Fig. A.3. This means
that there exist physical interactions between companions and the coronal gas of the
main galaxy — ram-pressure removal of gas from companion galaxies by the coronal
gas of the main galaxy.
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It was also clear that coronas form an extended population of the main central
galaxy. But here lies a contradiction: inside a luminous galaxy with its non-luminous
corona there exist companion galaxies, orbiting within the corona of the main galaxy.
In other words, a dwarf galaxy inside the giant galaxy. To avoid confusion, we pro-
posed with Arthur Chernin to call giant galaxies together with their coronas and satel-
lites “hypergalaxies” (Chernin et al. 1976). We found that almost all dwarf galaxies
are located near luminous galaxies. This led us to the conclusion that galaxies do not
form in isolation, but as systems, and that hypergalaxies are the main sites of galaxy
formation. However, the term “hypergalaxies” is not accepted by the astronomical
community, instead the term “halo” is used.

The dark matter problem was discussed in a special session of the Third European
Astronomy Meeting in Tbilisi, Georgia, in summer 1975. This was the first interna-
tional discussion between the supporters of the classical paradigm with conventional
mass estimates of galaxies, and of the new one with dark matter. Arguments favour-
ing the classical paradigm were presented by Materne & Tammann (1976). Their
most serious argument was: Big Bang nucleosynthesis suggests a low-density Uni-
verse with the density parameter Ω ≈ 0.05; the smoothness of the Hubble flow also
favours a low-density Universe. If one excludes inconvenient data by Zwicky (1933)
on the Coma cluster, Kahn & Woltjer (1959) data on the mass of the double system
M31-Galaxy, and recent data on flat rotation curves of galaxies by Roberts (1966)
and Rubin & Ford (1970), as written explicitly by Materne & Tammann (1976), then
everything fits well into this classical cosmological paradigm. It was clear that the
problem cannot be solved by dispute — new data were needed.

Soon new radio measurements of neutral hydrogen for a large number of galaxies
were published by Bosma (1978). Another series of extended rotation curves of spiral
galaxies was made by Roberts & Whitehurst (1975) using radio data, and by Rubin
et al. (1978, 1979, 1980) using optical measurements. Observations confirmed the
general trend that the mean rotation curves remain flat over the whole observed range
of distances from the centre up to ≈ 40 kpc for several galaxies. The internal mass
within the radius R increases over the whole distance interval. However, the nature
of dark matter was still unknown.

The dark matter problem was discussed during the IAU General Assembly in
Grenoble, August 27, 1976, at the Commission 33 Meeting. In my talk I presented
arguments for the non-stellar nature of dark corona (Einasto et al. 1976b). After the
lecture, Ivan King came to me and asked to repeat the main arguments against the
stellar origin of dark matter. The basic arguments are as follows.

Physical and kinematical properties of stellar populations depend almost continu-
ously on the age of the population, see Fig. 3.1. The continuity of stellar populations
of various age is reflected also in their kinematical characteristics, such as the ve-
locity dispersion and the heliocentric centroid velocity, expressed in the Strömberg
diagram. The oldest halo populations have the lowest metallicity and M/L-ratio, see
Table 20.2 and Fig 22.5, the highest velocity dispersion, and the largest (negative) he-
liocentric velocity, see Fig. 4.1 and A.4. There is no place to put the new population

206



0 50 100 150 200 250
-V

0

50

100

150

200

σ

Objects with normal metal abundance

Objects with metal deficite

Stromberg fit

Corona

Figure A.4.: Strömberg diagram for galactic populations according to data presented
in Chapter 4. Kinematical data for the corona are taken from the model
by Einasto (1979). The Strömberg fit was taken from original Russian
version of Chapter 4, it does not take into account the non-stationary
status of very young populations.

into this sequence. The dark population is almost spherical and non-rotating. It has a
much larger radius than all known stellar populations. In order to be in equilibrium
in the Galactic gravitational potential, these coronal stars must have a high velocity
dispersion, about σ ≈ 200 km/s, much more than all known stellar populations, up to
125 km/s, see Figs. 3.1, 4.1 and A.4. Jaaniste & Saar (1975) investigated the possible
stellar nature of the corona. Authors found no fast moving stars, possible candidates
for coronal objects.

TheM/L value, and the spatial and kinematical distribution of the dark population
differ greatly from respective properties of all known stellar populations, and there are
no intermediate populations. Thus, the corona must have been formed much earlier
than all known populations to form the gap in relations between various physical,
kinematical and spatial structure parameters. The total mass of the new population
exceeds the masses of known populations by an order of magnitude, thus we have a
problem: How to transform at an early stage of the evolution of the Universe most
of the primordial matter into invisible stars? It is known that star formation is a
very inefficient process: in a star-forming gaseous nebula only about 1 % of matter
transforms into stars.

As discussed above, neither neutral nor hot ionised gas is a suitable candidate for
dark matter. Thus, the nature of coronas remained unclear. It was only much later that
the non-baryonic nature of dark matter became evident, as discussed in a conference
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in Tallinn, April 7 – 10, 1981, and in Vatican Study Week, September 28 – October
2, 1981. Leading Soviet physicists and astronomers attended the Tallinn conference.
Several talks were devoted to the formation of the structure of the Universe with
neutrinos as dark matter (Yakov Zeldovich, Andrei Doroshkevich, Igor Novikov). In
the Vatican Study Week neutrinos as dark matter candidates were discussed by Martin
Rees, Joe Silk, Jim Gunn and Dennis Sciama. Difficulties of the neutrino-dominated
dark matter were evident, and soon the Cold Dark Matter (CDM) was suggested by
Bond et al. (1982), Pagels & Primack (1982), Peebles (1982), and Blumenthal et al.
(1984).

Table A.1.: Galactic parameters

Parameter Unit Observed Smoothed Adopted Reference
R0 kpc 8.8± 0.7 8.5± 0.3 8.5 1, 2
V km/sec 220± 10 221± 5 225 3
W “ 120± 15 133± 4 131.8 4
A km/sec/kpc 16± 1 15.7± 0.4 15.5 5 - 7
C “ 70± 5 74 14
ω “ 26± 2 26.0± 0.7 26.5 8 -10
kz 0.282± 0.020 0.285± 0.008 0.293 11
ρ0 M⊙/pc3 0.1± 0.02 0.097 12, 13

References: 1. Oort & Plaut (1975), 2. Harris (1976), 3. Einasto et al. (1979), 4.
Haud (1984), 5. Crampton & Fernie (1969), 6. Balona & Feast (1974), 7. Crampton
& Georgelin (1975), 8. Asteriadis (1977), 9. Fricke (1977), 10. Dieckvoss (1978),
11. Einasto (1972c), 12. Jõeveer (1974), 13. Woolley & Stewart (1967), 14. Jõeveer
(1974).

Table A.2.: Parameters of galactic components

Quantity Unit Nucleus Bulge Halo Disc Flat Corona
ǫ 0.6 0.6 0.3 0.10 0.02 1
N 1 1 4 1 0.5 0.5
a0 kpc 0.005 0.21 1.9 4.62 6.4 75
M 1010M⊙ 0.009 0.442 1.2 7.68 1.0 110

The presence of massive dark matter coronas influences galactic models. Thus, I
continued together with my collaborators Urmas Haud and Ants Kaasik to develop
new models which included dark coronas. To develop the model of our Galaxy, a
system of galactic parameters is needed. One of important parameters is the circular
velocity near the Sun. Using the method described in Chapter 7 and shown in Fig. 7.1,
we found for the circular velocity V0 = 220 ± 7 km/sec (Einasto et al. 1979). This
value is lower than our previous estimate, discussed in Chapter 7, due to the addition
of dark corona in the new model. The model of the Galaxy was described in the
preliminary form by Einasto et al. (1976b) and in a more polished form by Einasto
(1979). In this model, we found an improved system of galactic parameters with
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R0 = 8.5 kpc, presented in Table A.1. Parameters of galactic populations according
to this model are given in Table A.2. For disc and flat populations parameters are
given for positive mass components.

Figure A.5.: Top panels: Circular velocity surface density of the Galaxy and its com-
ponents. Bottom panels: Velocity dispersion, σz and σR, of galactic
populations (Einasto 1979).

In the top left panel of Fig. A.5 we show the circular velocity (solid line) and
observed rotation velocity (symbols) of the model by Einasto (1979). In the right
panel of the Figure we give the surface density of the Galaxy and its components of
the same model. In the bottom left panel of Fig. A.5 we show the velocity dispersion
σz as the function of the distance from the galactic plane, and in the right panel the
velocity dispersion σR as the function of the distance from galactic centre (Einasto
1979). Data are given for the main populations: flat, bulge, disc, halo and corona.
Also we show the mean dispersion, and the critical dispersion by Toomre (1964). We
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see that the mean velocity dispersion is larger than the critical Toomre dispersion,
thus the model is stable against small radial perturbations.

The critical point in model construction is the determination of mass-to-light ratios
for individual populations. For the nucleus and core this ratio can be determined
from observations by two methods, from spectrophotometric data and from virial
theorem. For the halo we can use the value for globular clusters, determined from
velocity dispersions. For the disc and bulge we can use the value for open clusters, as
found from velocity dispersion, from the rotation velocity at distance from the center
where the disc or bulge dominate, and from calculations of the physical evolution of
populations. We assume that the bulge and disc have the same chemical composition
and mass-to-light ratio as open clusters with similar colour and spectral properties.
The dependence of fB of individual galactic populations on the total mass of galaxies
is shown in Fig. A.6 and on B-V and U-B colours in Fig. A.7 (Einasto 1974a).

Figure A.6.: Dependence of mass-to-light ratio fB of old galactic populations on the
total mass of galaxies (Einasto 1974a).

Figure A.7.: Dependence of mass-to-light ratio fB of old galactic populations on their
B-V and U-B colours (Einasto 1974a).

Mass-to-light ratios fB = M/LB of galactic populations are formed during the
evolution of stars, and are incorporated in dynamical models of galaxies. M/LB-
ratios depend on the age and the chemical content of populations, and are fixed by
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the minimal mass of stars in the star-formation function, M0, see Eqs. (22.2) and
(22.3). I accepted for stellar populations with a normal metal content a lower star
formation limit M0 = 0.03M⊙, for metal-rich populations a limit M0 = 0.001M⊙,
and for metal-poor populations a limit M0 = 0.1 M⊙. Most limits are lower than
the lowest masses needed to start hydrogen burning in stars, M∗ = 0.08M⊙. Using
these lower mass limits, I got for old metal-poor populations M/LB ≤ 3, for old
intermediate populations M/LB ≤ 10, and for old extremely metal-rich populations
M/LB ≤ 100, see Figs. 22.5 and A.6. The spatial distribution of mass in popula-
tions is well determined, and M/LB-ratios can be checked by independent velocity
dispersion data in small systems of different age and chemical content (open and
globular clusters, nuclei of galaxies). As our model calculations showed, it is impos-
sible to reproduce with known populations the observed flat rotation curves of spiral
galaxies. In contrast, models based on rotation velocities (Schmidt (1957b), Brandt
& Scheer (1965), Roberts (1966), Rubin & Ford (1970)) have a very rapid increase
of M/LB-ratios on the periphery of M31, see Fig. 17.6. But these models contain no
hint to understand how to explain this increase.

During one of 1976 IAU General Assembly meetings, Sandra Faber discussed her
recent measurements of spectra of elliptical galaxies (Faber & Jackson 1976). New
data suggested that velocity dispersions of the nuclei of elliptical galaxies are much
lower than accepted so far, which leads to a considerable decrease of mass-to-light
ratios of elliptical galaxies. This suggests that corrections are needed to my previous
galaxy evolution models. This can be done by changing the lower mass limit of form-
ing stars, and using for all populations identical lower mass limits, M0 ≈ 0.1 M⊙,
which yields lowerM/L values for all populations. A very detailed review of masses
and mass-to-light ratios of galaxies is given by Faber & Gallagher (1979). Their Ta-
ble 1 gives M/LB values within Holmberg radius of galaxies with extended rotation
curves. These measured mass-to-light values lie in the interval 0.6 ≤ M/LB ≤ 12,
with a mean value about 4, which corresponds to the disc of galaxies.

In galactic models, the main task is the determination of parameters of popula-
tions. First, a crude preliminary model is calculated, model functions are compared
with observed functions, and differences are found. In earlier models a simple trial-
and-error procedure was applied to find proper values of population parameters. In
late 1970s, Urmas Haud suggested applying an automatic procedure for model pa-
rameters search. As in previous model calculations, first preliminary values of model
parameters are selected, model functions are calculated and compared with observed
functions. To estimate the degree of consistence of the model with observational data,
the sum of squares of relative deviations is calculated. Next, each model parameter
was changed by a small correction, the degree of consistency was found, and a new
model was calculated. This procedure was made for all model parameters, one at a
time. In this way, optimal values of all model parameters were found. The iterations
were completed when the change of an arbitrary parameter by 1 percent did not re-
duce the sum of the squares of relative deviations. The development of the iteration
program demanded much effort and time, thus the method was published only in late
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1980s by Einasto & Haud (1989). With this method, first a new model of the Galaxy
was found by Haud & Einasto (1989), models of other galaxies were published by
Tenjes et al. (1991, 1994, 1998).

We show in Table A.3 parameters of components of the model of M31 by Tenjes
et al. (1994), and in Fig A.8 rotation and mass-to-light curves according to the model.
Parameters for the disc and flat subsystems are for positive mass components. In new
models the most essential change in comparison with earlier models is the decrease
of masses and mass-to-light ratios of the nucleus, core and bulge, and the addition of
a massive corona.

Table A.3.: Parameters of components of M31

Quantity Unit Nucleus Core Bulge Halo Disc Flat Corona
ǫ 0.69 0.82 0.67 0.47 0.10 0.02 1
N 1.2 1.5 2.4 4.9 1.3 0.3
a0 kpc 0.0039 0.10 0.75 4.8 4.1 11.1 60
M 1010M⊙ 0.031 0.20 1.0 0.8 8.4 0.75 320
fB M⊙/L⊙ 32 13 2.6 2.0 15 1.1
U −B 0.88 0.80 0.54 0.21 0.90 −0.38
B − V 1.03 0.97 0.79 1.01 0.45

Figure A.8.: Left:. The rotation curve of M31 according to the model by Tenjes et al.
(1994). Open circles – observations, thick line – model, dashed lines
– model curves of components. Right: Local mass-to-light ratios for
visible populations and for the model with dark corona.

In the case of the M31 model the decrease of masses and mass-to-light ratios re-
duces the height of the peak of the model circular velocity at small distances from the
center, and the addition of the corona improves the model circular velocity on large
distance from the center. These changes are well seen when we compare Fig. 17.3
variant B, Fig. 17.5 and Fig. 20.7, and Tables 17.1 and 20.2 of previous models with
respective data in the new model, presented in Fig. A.8 and Table A.3.
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In galactic models, we used the modified exponential model, Eq. (7.10), with a pa-
rameter x0 to improve the shape of the density profile near the centre. This automatic
model parameter search showed that for all stellar populations the optimal value of
the parameter is x0 = 0. In other words, there is no need for this modification of
the exponential profile. Presently this profile is called “Einasto profile”, and is used
mainly to describe the spatial density distribution of dark matter halos (Merritt et al.
2005).

The study of the morphology of satellite galaxies was our first step in the inves-
tigation of the environment of galaxies. Following a suggestion by Iosif Shklovsky
we studied the dynamics of the Magellanic Stream, discovered by Mathewson et al.
(1974). The Magellanic Stream is a huge strip of gas through Magellanic Clouds.
We noticed that most companions of the Galaxy, including Magellanic Clouds, the
Magellanic Stream, and an another stream of high-velocity hydrogen clouds lie close
to a plane that is almost perpendicular to the Galactic plane (Einasto et al. 1976a). In
this paper we used velocities of satellite galaxies and Magellanic Stream gas clouds
to determine the mass of the Galaxy together with its satellites – our Local Hyper-
galaxy: Mtot = 1.2± 0.5× 1012M⊙. Inspired by this pioneering work Urmas Haud
continued the study of the dynamics of high-velocity hydrogen clouds surrounding
the Galaxy.

Figure A.9.: The spiral pattern of four galaxies according to Jaaniste & Saar (1976).
Bold lines indicate the loci of new-born stars. The thickness of spiral
arms (shaded areas) is determined by the lifetime of massive stars. Dot-
ted curves are hydrogen spiral arms.

Another inspiration suggested by the Magellanic Stream phenomenon concerns
the formation of spiral structure of galaxies. Jaaniste & Saar (1976) and Einasto et al.
(1976b) noticed that in many giant galaxies dwarf satellite companions are located
close to planes perpendicular to the main plane of the central giant galaxy. It is
natural to assume that similar to the Magellanic Stream also other giant galaxies have
gaseous streams surrounding the main galaxy near the plane of satellites. Gas in these
streams falls to the central galaxy along the intersection of planes of the main galaxy
and its satellites. These streams initiate perturbations in the gas of the central galaxy
and give rise to star formation. Due to the rotation of central galaxies star forming
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regions form a spiral pattern. Jaaniste & Saar (1976) suggested that the accretion
of gas can be the main physical mechanism in the formation of spiral structure of
galaxies. Using observed rotation curves of several galaxies authors calculated the
expected form of spiral pattern. Results are close to actually observed spiral pattern
of galaxies, see Fig. A.9.

The study of the environment of galaxies was actually only an introduction to a
much wider research area — the distribution of galaxies on large scales. Our in-
volvement in these studies was emphasised by Yakov Zeldovich. After my report
on dark matter in galaxies in the Terskol winter school he turned to me and asked
to collaborate with him in the study of the Universe. He was developing a theory
for the formation of galaxies (Zeldovich 1970), alternative theories were suggested
by Peebles & Yu (1970) and Ozernoi (1974), and he was interested to find some
observational evidence that can be used to discriminate between these theories.

Initially, we did not know how we can contribute to the problem of galaxy for-
mation. The expected consequences of the Zeldovich model were discussed by
Doroshkevich et al. (1974) in the IAU Cosmology Symposium in Krakow 1973. Ac-
cording to this scenario, the first forming objects are superclusters of galaxies which
fragment into galaxies. The Peebles & Yu (1970) scenario suggests that the first form-
ing objects are small systems (galaxies or even star clusters), which by gravitational
clustering form superclusters of galaxies. Ozernoi (1974) model did not predict any
spatial distribution of galaxies. When discussing the problem with my Tartu collab-
orators, I remembered my previous experience in the study of galactic populations:
kinematical and structural properties of galactic populations evolve only slowly, and
thus remember their previous state. Large aggregates of galaxies remember their his-
tory better, since the crossing time in these systems is larger. Thus we had a leading
idea for the search — we have to search for regularities in the large-scale distribution
of galaxies.

In this way, we started to collect data on spatial distribution of galaxies in the
nearby Universe. This resulted in the discovery of the cosmic web by Jõeveer et al.
(1977), Jõeveer & Einasto (1978) and Jõeveer et al. (1978). The observed pattern
of the distribution of galaxies has some similarity with the expected distribution, as
found with numerical experiments by Doroshkevich & Shandarin (1977). Follow-
ing this similarity, we called the observed distribution as “cellular”. Subsequently
we used the term “supercluster-void network” (Einasto et al. 1980a). Presently the
structure is called “cosmic web”, following a suggestion by Bond et al. (1996).

The development of our understanding of the structure and evolution of the Uni-
verse is described in detail by Einasto (2014, 2018). This forms a natural extension
to my earlier studies on the structure and evolution of galaxies.

November 2021
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Conclusions

In this Thesis, I have combined three previously independent areas of research in
astronomy into one frame: kinematics and spatial properties of Galaxy populations,
development of dynamical models of galaxies, and the study of the physical evolu-
tion of galaxies. The main results of the study can be divided into methodical and
astronomical.

A. Methods of practical stellar dynamics

1. A method has been developed to use tangential velocities to determine kine-
matical parameters of star samples (Chapter 1 (Einasto 1954)).

2. A method has been developed to determine the mean velocity dispersion of
samples of star using radial, tangential or spatial velocities, taking into account
observational errors (Chapter 2 (Einasto 1955a)).

3. The concept of the system of galactic parameters has been elaborated, and a
method to find the system developed (Chapters 3, 5, 6 (Einasto 1961; Einasto
& Kutuzov 1964a; Einasto 1964; Einasto & Kutuzov 1964b)).

4. A method has been developed to extrapolate the mass distribution function
beyond the Sun’s distance, and to determine the circular velocity at the Sun’s
distance from the Galactic centre (Chapter 7 (Einasto 1965)).

5. The method to construct mass distribution models of galaxies is refined (Chap-
ter 7 (Einasto 1965)).

6. A classification of models of stellar systems, and conditions of physical cor-
rectness of models are developed (Chapters 8 and 13 (Einasto 1969a; Kutuzov
& Einasto 1968)).

7. A method has been developed to construct spatial and hydrodynamical models
of stellar systems (Chapters 10, 11 (Einasto 1968d, 1970c)).

8. The virial theorem has been modified to apply it to components of galaxies
(Chapter 12).

9. It is shown that most models of stellar systems are particular cases of two
model families: polynomial and binomial models (Chapters 13—15 (Einasto
1968b,c,d)).
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10. The generalised exponential model is suggested, and its descriptive functions
are determined (Chapters 7, 16 (Einasto 1965; Einasto & Einasto 1972b)).

11. Methods to analyse radio observations are refined to determine density and
velocity fields of galaxies (Chapter 19 (Einasto & Rümmel 1970a,c)).

12. The method to reconstruct the dynamical evolution of galaxies on the basis
of the structure and kinematics of star populations of different ages is refined
(Chapter 21).

13. The method to investigate the physical evolution of galaxies is refined (Chapter
22).

14. A method has been developed to determine parameters of star formation func-
tion (Chapter 23 (Einasto 1972d)).

B. The study of the structure and evolution of regular galaxies

1. It is demonstrated that samples of stars of the main sequence later than F spec-
tral class are kinematically heterogeneous (Chapter 1 (Einasto 1954)).

2. The relationship between kinematical characteristics and ages of stellar popu-
lations is found (Chapters 3, 4 (Einasto 1954, 1955b)).

3. A new system of galactic parameters is found (Chapters 5, 7 (Einasto & Kutu-
zov 1964a; Einasto 1964; Einasto & Kutuzov 1964b; Einasto 1965)).

4. Models of the Galaxy are critically analysed and new models are suggested in
two approximations (Chapters 5, 7 (Einasto 1965, 1969a, 1970a)).

5. The kinematical and spatial structure of the Andromeda galaxy M31 is studied
and its spatial and hydrodynamical models developed in two approximations
(Chapters 17 – 20 (Einasto 1969b; Einasto & Rümmel 1970b; Einasto 1972b;
Einasto & Rümmel 1972)).

6. The dynamical evolution of the Galaxy is reconstructed using kinematical char-
acteristics of stellar populations of different ages (Chapter 21).

7. On the basis of stellar evolutionary tracks and star formation function, a theory
of the evolution of galaxies is elaborated (Chapter 22).

8. Parameters of star formation function are refined (Chapter 23 (Einasto 1972d)).
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Results obtained in this series of studies and incorporated in the Thesis were dis-
cussed in astronomical seminars in Tartu Observatory, Leningrad State University,
Sternberg Astronomical Institute, and in conferences and symposia in Alma-Ata, in
IAU General Assembly in Hamburg 1964 (Einasto & Kutuzov 1964a; Einasto 1964;
Einasto & Kutuzov 1964b) and in Brighton 1970 (Einasto 1970a,b), in IAU Sympo-
sium on Spiral Structure of Our Galaxy in Basel 1969 (Einasto & Rümmel 1970a,c),
and in IAU Symposium on External Galaxies and Quasi Stellar Objects in Uppsala
1972 (Einasto 1972b).
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Paczyński, B. 1970a, Evolution of Single Stars. I. Stellar Evolution from Main Se-
quence to White Dwarf or Carbon Ignition, Acta Astron., 20, 47

Paczyński, B. 1970b, Evolution of Single Stars. II. Core Helium Burning in Popula-
tion I Stars, Acta Astron., 20, 195

234



Bibliography
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