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Introduction

In the time series analysis one of the most used predicting models are of so called

auto regressive moving average (ARMA) type. These models are well studied in

numerous monographies and research papers. One of the basic assumptions used in

the derivation process of the prediction equations is the invertibility of the underlying

process. Usually invertibility is assumed as a prerequisite and very little attention

is paid to the forecasting of non-invertible processes.

Recent papers [1, pp. 227-229.] shows that nowadays more and more researchers

consider and examine the case when the underlying process does not satisfy invert-

ibility condition. Non-invertible processes have been studied also quite a long time

ago, but they have become the object of interest due to new applications in sciences

(signal detection, �nancial analysis) also the rapid development of computer sciences

and computation possibilities take part in the growing interest of such processes.

In basic time series course non-invertible processes usually are discussed very

brie�y, but globally the interest in such processes is increasing, therefore the aims

of this thesis are:

• to investigate theoretically the questions related to predicting further values

of non-invertible ARMA processes;

• to do the computer simulations and compare di�erent methods.

To cover these aims both theoretical and simulation studies are provided. Therefore

in the beginning we give a very short introduction and necessary background of

stationary ARMA processes needed to give the de�nition of the non-invertibility of

ARMA process. We proceed with another natural assumption used in the derivation

process of the prediction equations. The assumption of Gaussian distributed random

variables (innovations) gives some prerogatives and simpli�es the derivation of the

prediction equations also in case of non-invertible process. We brie�y discuss the

gains which are represented as a useful collection of consecutive theorems that leads

to the minimum mean square error predictor in case of non-invertible process with

Gaussian distributed data. To extend our studies of non-invertible processes we

continue with studies of non-Gaussian, non-invertible process. This situation requires

more speci�c analysis which is provided by a case study of a non-invertible moving

average MA(1) process with uniformly distributed innovations (error process).

The thesis consists of 3 main sections with suitable subsections. In the �rst sec-

tion the basic concept of a non-invertibility is given. The second section is dedicated



to the forecasting of an ARMA process. In this section the derivation of prediction

equations in case of invertible process is given, then the derivation of the forecast of

a non-invertible process with Gaussian distributed data is described and the sections

concludes with the derivation of the minimum mean square error predictor in case of

the non-invertible process with uniformly distributed innovation series. Results are

illustrated with computer simulations and corresponding graphs. In the last section

a real world application is considered and corresponding results are given. Since all

sections require some computational work and appropriate programming, the col-

lection of suitable codes written in the R language [2] and scripts of the open-source

mathematical software system Sage [3], which provides the symbolic calculations

needed for this thesis, can be found in the appendix.
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1. ARMA model and the concept of

non-invertibility
In this section we give the basic de�nitions of an autoregressive moving average

ARMA process. Here we state also the basic results and theorems that will be used

as basis of further investigation of the non-invertible ARMA process, which is the

main object of this thesis. Note that in this case we just consider discrete processes,

where time t ∈ Z and also the time horizon h ∈ Z.

1.1. Non-invertibility

We start with some de�nitions in order to recall the basic terms and also to agree

on notation. We begin with de�nitions of autocovariance and stationarity. Mostly,

in this section we follow the de�nitions given in monograph by Sto�er and Shumway

[4].

De�nition 1. The mean function of a stochastic process xt is

µt = E(xt) =

∞∫
−∞

xft(x)dx,

provided it exists, where E denotes the usual expected value operator and ft(x) de-
notes process distribution density function.

De�nition 2. The autocovariance function of a �nite variance process xt with mean
value function µt is de�ned as

γx(s, t) = E[(xs − µs)(xt − µt)],

for all s and t.

When no possible confusion exists about which time series we are referring to,

we will drop the subscript and write γx(s, t) as γ(s, t).

De�nition 3. A weakly stationary time series, {xt}, is a �nite variance process
such that

• the mean value function, µt is constant and does not depend on time t, and

• the covariance function, γ(s, t), depends on s and t only through their di�er-
ence |s− t|.
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Henceforth, we will use the term stationarity to mean weak stationarity.

De�nition 4. The autocovariance function of a stationary time series will be written
as

γ(h) = E[(xt+h − µ)(xt − µ)].

Note that

γ(h) = γ(t+ h− t)

= E[(xt+h − µ)(xt − µ)]

= E[(xt − µ)(xt+h − µ)]

= γ(t− (t+ h))

= γ(−h).

When we have de�ned the autocovariance function, we can give the de�nitions

of the white noise process and Gaussian white noise, which plays an important role

in the analysis of ARMA processes and also in the derivation of the prediction

equations.

De�nition 5. The process wt ( with mean 0 and variance σ2) is said to be the white
noise process, if and only if wt has zero mean and covariance function

γ(h) =

{
0, h 6= 0
σ2, h = 0.

De�nition 6. We say that stationary process xt is autoregressive process of order
p, abbreviated AR(p), if

xt = φ1xt−1 + . . .+ φpxt−p + wt,

where φ1, φ2, . . . , φp are constants (φp 6= 0) and wt is the white noise process.

Unless stated otherwise, we assume that wt is a Gaussian white noise series with

variance σ2
w.

De�nition 7. The process xt is said to be an AR(p) process with mean µ if xt − µ
is an AR(p) process.

Note, that if the process is said to be with mean µ, then instead of writing

xt − µ = φ1(xt−1 − µ) + φ2(xt−2 − µ) + . . .+ φp(xt−p − µ) + wt,

we can also write

xt = α + φ1xt−1 + . . .+ φpxt−p + wt,
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where α = µ(1− φ1 − . . .− φp).
A compact way of de�ning ARMA processes is by de�ning the back-shift opera-

tor and introducing the autoregressive and moving average equations and operators.

De�nition 8. We de�ne the back-shift operator by

Bxt = xt−1, t ∈ Z

and extend it to powers B2xt = B(Bxt) = Bxt−1 = xt−2, and so on. Thus,

Bkxt = xt−k, t ∈ Z.

De�nition 9. The autoregressive operator is de�ned to be

φ(B) = 1− φ1B − φ2B
2 − . . .− φpBp.

De�nition 10. We say that stationary process xt is moving average process of order
q, or MA(q) process, if

xt = wt + θ1wt−1 + θ2wt−2 + . . .+ θqwt−q

where θ1, θ2, ..., θq (θq 6= 0) are constants (parameters) and wt is the white noise
process.

De�nition 11. The process xt is said to be an MA(q) process with mean µ if xt−µ
is an MA(q) process.

Unless stated otherwise, we assume wt to be the Gaussian white noise process.

De�nition 12. The moving average operator is

θ(B) = 1 + θ1B + θ2B
2 + . . .+ θqB

q.

We may also write the MA(q) process in the equivalent form

xt = θ(B)wt.

Finally, we give the formal de�nition of the ARMA(p, q) process.

De�nition 13. A stationary process {xt; t ∈ Z} is said to be ARMA(p, q) process
if

xt = φ1xt−1 + . . .+ φpxt−p + wt + θ1wt−1 + . . .+ θqwt−q,

where φp 6= 0, θq 6= 0, and wt is the white noise process.

The parameters p and q are called the autoregressive and the moving average

orders, respectively. Unless stated otherwise, wt is the Gaussian white noise sequence.

De�nition 14. The process xt is said to be an ARMA(p, q) process with mean µ if
xt − µ is an ARMA(p, q) process.
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So, the compact form given by the autoregressive and the moving average opera-

tors is φ(B)xt = θ(B)wt. Similarly as in case of AR, also we consider the process with

non zero mean [4, p. 93.]. If xt has a non-zero mean µ, we set α = µ(1−φ1− . . .−φp)
and write the model as

xt = α + φ1xt−1 + . . .+ φpxt−p + wt + θ1wt−1 + . . .+ θqwt−q.

A convenient way of de�ning invertibility (non-invertibility) of the ARMA pro-

cesses is given by AR and MA polynomials we are going to de�ne next.

De�nition 15. The AR and MA polynomials are de�ned as

φ(z) = 1− φ1z − . . .− φpzp, φp 6= 0,

and
θ(z) = 1 + θ1z + . . .+ θqz

q, θq 6= 0,

respectively, where z is a complex number.

Let us de�ne causality and invertibility of an ARMA process.

De�nition 16. An ARMA(p, q) model, φ(B)xt = θ(B)wt, is said to be causal, if
the time series {xt; t ∈ Z} can be written as a one-sided linear process:

xt =
∞∑
j=0

ψjwt−j = ψ(B)wt,

where ψ(B) =
∑∞

j=0 ψjB
j, and

∑∞
j=0 |ψj| <∞; we set ψ0 = 1.

Now we are able to continue with one of the most important terms in this thesis-

the invertibility of an ARMA process.

De�nition 17. An ARMA(p, q) model, φ(B)xt = θ(B)wt, is said to be invertible,
if the time series {xt; t ∈ Z} can be written as

π(B)xt =
∞∑
j=0

πjxt−j = wt,

where π(B) =
∑∞

j=0 πjB
j, and

∑∞
j=0 |πj| <∞; we set π0 = 1.

When we have de�ned the invertibility of the ARMA process, it is natural to give

the criteria of invertibility, so that we can use the criteria to classify the processes

into invertible and non-invertible classes.

Lemma 1. Invertibility of an ARMA(p, q) process . An ARMA(p, q) model is in-
vertible if and only if θ(z) 6= 0 for |z| ≤ 1. The coe�cients πj of π(B) can be
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determined by solving

π(z) =
∞∑
j=0

πjz
j =

φ(z)

θ(z)
, |z| ≤ 1.

Note that the discussion about the invertibility of ARMA process reduces to the

investigation of the invertibility ofMA part of the process because of the invertibility

of every AR process.

1.2. The Autocovariance Generating Function

In well known time series literature by Brockwell & Davis [5] we can �nd an

useful tool called autocovariance generating function, that will help us to deal with

the situation of a non-invertible Gaussian process later, when we will try to derive the

minimum mean square error predictor and compare it with the best linear predictor.

But now we start with the de�nition of the autocovariance generating function.

De�nition 18. If xt is a stationary process with autocovariance function γ(·), then
it's autocovariance generating function is de�ned by

G(z) =
∞∑

k=−∞

γ(k)zk, z ∈ C,

provided the series converges for all z in some annulus r−1 < |z| < r with r > 1.

It's said there [5, p. 103.] that, frequently the generating function is easy to

calculate, in which case the autocovariance at lag k may be determined by identifying

the coe�cient of either zk orz−k. Clearly {xt} is white noise if and only if the

autocovariance generating function G(z) is constant for all z. If

xt =
∞∑

j=−∞

ψjwt−j, w ∼ N(0, σ2) (1.2.1)

and there exists r > 1 such that

∞∑
j=−∞

|ψj||z|j <∞, , r−1 < |z| < r

the generating function G( · ) takes a very simple form. It is easy to see that

γ(k) = Cov(xt+k, xt) = σ2

∞∑
j=−∞

ψjψj+k,
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and hence that

G(z) = σ2

∞∑
k=−∞

∞∑
j=−∞

ψjψj+kz
k

= σ2

[
∞∑

j=−∞

∞∑
k=−∞

ψjψj+kz
k

]
Let us de�ne l := j + k

= σ2

∞∑
j=−∞

∞∑
l=−∞

ψjψlz
l−j

= σ2

∞∑
l=−∞

ψlz
l

∞∑
j=−∞

ψjz
−j.

De�ning

ψ(z) =
∞∑

j=−∞

ψjz
j, r−1 < |z| < r, (1.2.2)

we can write this result more neatly in the form

G(z) = σ2ψ(z)ψ(z−1), r−1 < |z| < r.

Lemma 2. [5, pp. 103-104.] The Autocovariance Generating Function of an ARMA(p, q)
process φ(B)xt = θ(B)wt for which φ(z) 6= 0 when |z| = 1 , we can express the pro-
cess ARMA(p, q) as in Equation 1.2.1 with coe�cients de�ned in Equation 1.2.2
of the form

ψ(z) = φ−1(z)θ(z), r−1 < |z| < r,

for some r > 1. Hence

G(z) = σ2 θ(z)θ(z−1)

φ(z)φ(z−1)
, r−1 < |z| < r. (1.2.3)

In the same literature there is proposed such theorem.

Theorem 1. [5, p. 105.] Let {xt} be the ARMA(p, q) process satisfying the equations

φ(B)xt = θ(B)wt,

where φ(z) 6= 0 and θ(z) 6= 0 for all z ∈ C such that |z| = 1. Then there exist
polynomials, φ̃(z) and θ̃(z), non-zero for |z| ≤ 1, of degree p and q respectively, and
a white noise sequence {w̃t} such that {xt} satis�es the causal invertible equations.

Proof [5, p. 105.] De�ne

φ̃(z) = φ(z)
∏
r<j≤p

(1− ajz)

(1− a−1j z)
,
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θ̃(z) = θ(z)
∏
s<k≤q

(1− bkz)

(1− b−1k z)
,

where ar+1, . . . , ap and bs+t, . . . , bq are the zeroes of φ(z) and θ(z) which lie inside

the unit circle. Since φ̃(z) 6= 0 and θ̃(z) 6= 0 for all |z| ≤ 1 , it su�ces to show that

the process de�ned by

w̃t = φ̃(B)θ̃(B)−1xt

=

( ∏
r<j≤p

(1− ajB)

(1− a−1j B)

)( ∏
s<k≤q

(1− b−1k B)

(1− bkB)

)
wt

is white noise. We can show (we use Equation 1.2.3) that the autocovariance gener-

ating function for {w̃t} is given by

G(z) = σ2

( ∏
r<j≤p

(1− ajz)

(1− a−1j z)

(1− ajz−1)
(1− a−1j z−1)

)( ∏
s<k≤q

(1− b−1k z)

(1− bkz)

(1− b−1k z−1)

(1− bkz−1)

)

= σ2

( ∏
r<j≤p

(1− aj(z + z−1) + a2j)

(1− a−1j (z + z−1) + a−2j )

)( ∏
s<k≤q

(1− b−1k (z + z−1) + b−2k )

(1− bk(z + z−1) + b2k)

)
= σ2

∏
r<j≤p

|aj|2
∏
s<k≤q

|bk|−2.

Since G(z) is constant, we conclude that {w̃t} is white noise as asserted.
Note that the de�nition of ARMA processes is quite formal and includes pro-

cesses xt which are based on the future innovations {wτ , τ > t} (future values). One
can show that this approach is not applicable in case of real world situation, when

we can express the process value using only the past values of the process. In order

to show that we construct an example.

Example 1. We choose a simple AR(1) process

xt = 2xt−1 + wt,

where wt are independent of xi, i < t.
According to proposed procedure the process de�ned by

w∗t = (1− 0.5B)xt
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should be a white noise process, but one can show that it's not true

w∗t = (1− 0.5B)xt

= (1− 0.5B)(2xt−1 + wt)

= 2xt−1 − xt−2 + wt − 0.5wt−1

= 2(2xt−2 + wt−1)− xt−2 + wt − 0.5wt−1

= 3xt−2 + 1.5wt−1 + wt

We can also show that

xt = 2tx0 + 2t−1w1 + 2t−2w2 + . . .+ wt

and compute
Ext = 2tEx0 = 0,

EX2
t = E(2tx0 + 2t−1w1 + 2t−2w2 + . . .+ wt)

2

= 22tEx20 + σ2
w(22(t−1) + 22(t−2) + . . .+ 1)

= 22tσ2
w + σ2

w(22(t−1) + 22(t−2) + . . .+ 1)

= σ2
w(22t + 22(t−1) + 22(t−2) + . . .+ 1)

If the process w∗t is a white noise process then V ar(w∗t ) = const., but

Ew∗t = E(3xt−2 + 1.5wt−1 + wt) = 3 · 2t−2Ex0 = 0.

E(w∗t )
2 = E(3xt−2 + 1.5wt−1 + wt)

2

= 9Ex2t−2 + 2.25σ2
w + σ2

w.

= 9(σ2
w(22(t−2) + 22(t−3) + 22(t−4) + . . .+ 1)) + 3.25σ2

w

V ar(w∗t ) = E(w∗t )
2−(Ew∗t )

2 = 9(σ2
w(22(t−2)+22(t−3)+22(t−4)+. . .+1))+3.25σ2

w →∞, t→∞.

So, one should be careful, when applying the procedure proposed in the proof.

We conclude that the part of theorem that accords to MA process is applicable and

we use this scheme later in the following way: since this proof is constructive, we

can apply polynomial θ̃(z) in order to obtain corresponding invertible process for

each non-invertible process with MA polynomial θ(z) and vice versa. So, we can

construct an invertible MA process for each non-invertible MA process with the

same covariance structure as that of the non-invertible process.

We can do some simulations in R, to verify this computationally. After writing

down appropriate program and executing this code we get some nice graphs of

processes (see Figure 1), autocovariance functions, partial autocovariance functions.

The �rst two rows show a non- invertible process and the corresponding invertible
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MA process. The last rows of graphs veri�es that w∗ obtained is a white noise

process.

Figure 1.1 : Non-invertible MA, corresponding invertible MA and computational
veri�cation of theorem.

In the last graph we can see that it looks like a white noise.
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2. Forecasting
This chapter describes appropriate approaches of forecasting ARMA processes

for both the invertible case and the non-invertible one, besides we di�erentiate the

non-invertible case into two subcases: a case with Gaussian innovations and the

non-Gaussian case of MA(1) process with uniformly distributed random innovation

series. We start this chapter with a small subsection about multivariate Gaussian

distribution, where we recall the de�nition to agree on the notation and some basic

properties needed for out further purposes.

2.1. Multivariate Gaussian

The assumption about Gaussian distributed process values is one of the basic

assumptions when predicting time series. In this section we give basic de�nitions

and characteristics of multivariate Gaussian distributed random variables that are

used in further sections. We start with the de�nition of standard Gaussian vector,

which helps to de�ne multivariate Gaussian vector.

De�nition 19. [6, p. 2.] A random vector X = (Xj)
n
j=1 ∈ Rn is called standard

Gaussian, if its components are independent and have a standard normal distribu-
tion. The distribution of X has a density

p(x) =
1

(2π)n/2
e

−(x,x)
2 , x ∈ Rn,

where (x, x) denotes the scalar product.

There exist two equivalent de�nitions of a general Gaussian vector in Rn.

De�nition 20. [6, p. 2.] A random vector Y ∈ Rn is called Gaussian, if it can be
represented as Y = a + LX, where X is a standard Gaussian vector, a ∈ Rn, and
L : Rn → Rn is a linear mapping.

De�nition 21. [6, p. 2.] A random vector Y ∈ Rn is called Gaussian, if the scalar
product (ν, Y ) is a normal random variable for each ν ∈ Rn.

In this source [6, pp. 3-4.] we can �nd an useful explanation and basic properties

of multivariate Gaussian. Similarly to the univariate notation N(a, σ2), the family

of n-dimensional Gaussian distributions also admits a reasonable parametrization.

Recall that for any random vector Z = (Zj) ∈ Rn one understands the expectation

component-wise, i.e. EZ = (EZj), while its covariance operator KZ : Rn → Rn is

de�ned by

cov((ν1, Z), (ν2, Z)) = (ν1, KZν2).
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If all components of a vector Z have �nite second moments, then the expectation

EZ and covariance operator KZ exists. There are no restrictions on the expectation

value, while the covariance operator is necessarily non-negative de�nite and sym-

metric. In other words, there exists an orthonormal base (ej) such that K has a

diagonal form KZej = λjej with λj ≥ 0. We write Y ∼ N(a,K) if Y is a Gaussian

vector with expectation a and covariance operator K. In particular, for a standard

Gaussian vector we have X ∼ N(0, En), where En : Rn → Rn is the identity opera-

tor.

We continue with some properties given in [6, pp. 4.-5.] and start with the unique-

ness of N(a,K) that follows from the fact that a pair (a,K) determines the distri-

bution of (ν, Y ) as N((ν, a), (ν,Kν)), hence by classical Cramer-Wold theorem (cf.

Pranab et al [7] ) the entire distribution is determined uniquely. So, if X1, X2, . . . Xp

are multivariate Gaussian, then conditioning on X1, . . . Xq gives the remaining vari-

ables Xq+1, . . . Xp a Gaussian distribution as well. This is a very useful property we

are going to use in further sections.

Further we try to show, how this property of multivariate Gaussian and some

results presented in the next section together with the transformation from non-

invertible to invertible MA process can be used in order to obtain the one (or k)

step ahead forecast of a non-invertible MA (and ARMA). The scheme is quite

simple: we are going to �nd the invertible representation of the non-invertible pro-

cess with the same covariance structure and then apply the property of the Gaussian

distribution, by which the mean and covariance structure fully determines the distri-

bution. Therefore we can apply usual forecast procedure for the obtained invertible

representation of non-invertible process. This means, that in practice, if we have

the prior information about Gaussian distributed random variables, we �t invertible

model to the data and obtain the desired one (k) step ahead prediction. But let us

do it step by step in the next sections.

2.2. Forecasting invertible Gaussian model

In this section we describe the usual approach of forecasting of an ARMA process

as well as describe the di�erences in forecasting a non-invertible MA process.

We follow the scheme given in [4, pp. 110-121.]. In the beginning we recall the

goal, which is to predict future values of a time series, xn+m,m = 1, 2, ..., where m

denotes the process value m steps ahead, based on the data collected to the present,

x = {xn, xn−1, ..., x1}. Throughout this section, we will assume xt is stationary and

the model parameters are known. First, we de�ne the measure, which gives us a
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possibility to compare two di�erent predictions and gives us possibility to de�ne the

best one in this sense. In the following de�nition we declare that in this case we are

interested in the minimum mean square error predictor (MMSEP).

Lemma 3. The minimum mean square error predictor (MMSEP) of xn+m is

xnn+m = E(xn+m|xn, xn−1, ..., x1)

because the conditional expectation minimizes the mean square error

E[xn+m − g(x)]2,

where g(x) is a function of the observations x.

The proof of this lemma is quite straightforward and can be found in [8, pp.121-

122.].

First, we will restrict attention to predictors that are linear functions of the data,

that is, predictors of the form

xnn+m = a0 +
n∑
k=1

akxk,

where a0, a1, ..., an are real numbers. Linear predictors of the form that minimize the

mean square prediction error are called best linear predictors (BLPs). As we shall

see, linear prediction depends only on the second-order moments of the process,

which are easy to estimate from the data.

Before that, let us step back and recall some results from algebra, we are going

to use to prove the equivalence of the MMSEPs and BLPs. We start with the basic

projection theorem in the Hilbert space.

Theorem 2. (Projection theorem) [4, pp. 523.] Let M be a closed subspace of the
Hilbert space H and let y be an element in H. Then, y can be uniquely represented
as

y = ŷ + z,

where ŷ belongs to M and z is orthogonal to M ; that is, (z, w) = 0∀w ∈ M .
Furthermore, the point ŷ is closest to y in the sense that, for any w in M , ||y−w|| ≥
||y − ŷ||, where equality holds if and only if w = ŷ.

Using the notation of the theorem, we call the mapping PMy = ŷ, for y ∈ H,

the projection mapping of H onto M . In addition, the closed span of a �nite set

{x1, ..., xn} of elements in a Hilbert space, H, is de�ned to be the set of all linear

combinations w = a1x1 + . . . + anxn, where a1, ..., an are scalars. This subspace of

H is denoted by M = sp{x1, ..., xn}.
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Now we are ready to prove the equivalence of the MMSEPs and BLPs in case

of Gaussian distributed process values. the result is formulated in the following

theorem.

Theorem 3. [4, pp. 526.] Under the established notation and conditions, if (y, x1, ..., xn)
is multivariate normal, then

E(y|x1, ..., xn) = Psp{1, x1, ..., xn}y.

Before the proof of this theorem, let us recall two useful properties of conditional

expectation E(Y |Z).

Property 1. Let Y be a random variable with E(|Y |) < ∞ and G be a sigma
algebra, then

• (Taking out what is known.) If Y is G measurable and bounded, then E(Y Z|G) =
Y E(Z|G), P − a.s.

• (Independence rule) If Y is independent of G, then E(Y |G) = E(Y ), P − a.s.

Proofs of the properties of the conditional expectation can be found in [9, pp.

48-50.]

Proof [4, pp. 526.] First, by the projection theorem, the conditional expectation

of y given x = {x1, . . . , xn} is the unique element E(y|x1, . . . , xn) that satis�es the

orthogonality principle. We will show that ŷ = Psp{1, x1, ..., xn}y is that element.

Consider

E(y|x1, . . . , xn) = E(y − ŷ + ŷ||x1, . . . , xn).

In fact, by the projection theorem, ŷ satis�es

(y − ŷ, xi) = 0, i = 0, 1, . . . , n,

where we have set x0 = 1. But (y − ŷ, xi) = cov(y − ŷ, xi) = 0, implying that y − ŷ
and (x1, ..., xn) are independent because the vector (y− ŷ, x1, ..., xn)T is multivariate

normal. Thus, if y − ŷ are independent we continue with

E(y|x1, . . . , xn) = E(y − ŷ + ŷ|x1, . . . , xn) = E(y − ŷ) + E(ŷ|x1, . . . , xn),

and now we have applied the property of independence. We can do more and apply

the property, that says that we can take out what is known. Here ŷ is a linear

combination of x1, . . . , xn, therefore it is x1, . . . , xn measurable. Recall, that 0 =

(y − ŷ, 1) = E(y − ŷ), hence,

E(y|x1, . . . , xn) = E(y − ŷ) + E(ŷ|x1, . . . , xn) = 0 + ŷ = ŷ,
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which completes the proof.

This theorem states that if the process is Gaussian, minimum mean square error

predictors and best linear predictors are the same.

Hence we can continue with the following property, which is based on the projec-

tion theorem and gives us the system of equations, where the solution of this system

is a long awaited predictions.

Property 2. [4, pp. 111.] Given data x1, ..., xn, the best linear predictor,

xnn+m = a0 +
n∑
k=1

akxk,

of xn+m, for m ≥ 1, is found by solving

E[(xn+m − xnn+m)xk] = 0, k = 0, 1, ..., n,

where x0 = 1.

These equations are called the prediction equations, and they are used to solve

for the coe�cients {a0, a1, ..., an}. If E(xt) = µ, the �rst equation (k = 0) implies

E(xnn+m) = E(xn+m) = µ.

Thus, taking expectation, we have

µ = a0 +
n∑
k=1

akµ or a0 = µ

(
1−

n∑
k=1

ak

)
.

Hence, the form of the BLP is

xnn+m = µ+
n∑
k=1

ak(xk − µ).

Thus, until we discuss estimation, there is no loss of generality in considering the

case that µ = 0, in which case, a0 = 0.

2.2.1. One step ahead prediction

Again we follow the scheme given in [4, pp. 112-115.]. Consider, �rst, one-step-

ahead prediction. That is, given {x1, ..., xn}, we wish to forecast the value of the

time series at the next time point, xn+1. The BLP of xn+1 is

xnn+1 = φn1xn + φn2xn−1 + . . .+ φnnx1,
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where, for purposes that will become clear shortly, we have written ak as φn,n+1−k ,

for k = 1, ..., n. Using property described above, the coe�cients {φn1, φn2, . . . , φnn}
satisfy

E

[(
xn+1 −

n∑
j=1

φnjxn+1−j

)
xn+1−k

]
= 0, k = 1, ..., n,

or
n∑
j=1

φnjγ(k − j) = γ(k), k = 1, ..., n.

The prediction equations can be written in matrix notation as

Γnφn = γn, (2.2.1)

where Γn = {γ(k−j)}nj,k=1 is an n×n matrix, φn = (φn1, ..., φnn)T is an n×1 vector,

and γn = (γ(1), ..., γ(n))T is an n×1 vector. The matrix Γn is non-negative de�nite.

If Γn is singular, there are many solutions for these equations, but, by the projection

theorem, xnn+1 is unique. If Γn is non-singular, the elements of φn are unique, and

are given by

φn = Γ−1n γn.

For ARMA models, the fact that σ2
w > 0 and γ(h) → 0 as h → ∞ is enough to

ensure that Γn is positive de�nite (an additional information about non-singularity

can be found in [10, pp. 74-75.]). It is sometimes convenient to write the one-step-

ahead forecast in vector notation

xnn+1 = φTnx,

where x = (xn, xn−1, ..., x1)
T .

2.3. Non-invertible Gaussian processes

So far we have described all necessary parts to describe the prediction scheme

of a non-invertible Gaussian ARMA process. Here we describe brie�y the scheme

of reaching one step ahead prediction, but without loss of generality the scheme

remains the same also for m steps ahead.

First, we recall that according to Theorem 1 and conclusions for each non-

invertible process there exists an invertible process with the same covariance struc-

ture. So, if we �t the invertible model to given data, we get this invertible represen-

tation even when the underlying process is non-invertible.

Secondly, we recall that in Section 2.1. we agreed that Gaussian distribution

is unique and it is fully determined by the covariance matrix and vector of mean
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values. Therefore the distribution is the same for bot the �tted invertible model and

the non-invertible one.

As the third step in this argumentation we point out that for Gaussian processes

the minimum mean square error predictor and the best linear predictor is the same.

This result is given in Theorem 3. When we have presented this scheme, we can �nd

the minimum mean square error predictions by Equation 2.2.1.

But there is one special case, which is usually called �strictly� non-invertible case,

which takes some more attention and particular consideration.

2.3.1. Strictly non-invertible MA(1)

Here we consider the case of a strictly non-invertible MA(1) process. The term

�strictly non-invertible process� refers to the situation when MA polynomial has

one or more unit roots. Some more information and di�erent approach of analysing

strictly non-invertible processes can be found in Plosser and Schwert publication

[11].

But in this subsection we are going to look at one speci�c example to illustrate

the situation.

Predictions by strictly non-invertible MA(1)

This corresponds to the forecasting of the process with unit root in MA polyno-

mial. Predicting MA processes with unit root in the MA polynomial do not cause

a lot of problems in the simplest cases but there are some conclusions that clarify

the situation. Let us consider the MA(1) process

xt = wt − wt−1.

Recall (compute), that for this process

γ(h) =


2σ2

w, h = 0,

−σ2
w, h = ±1,

0, |h| ≥ 2.

Therefore,

Γn = σ2
w


2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

. . . . . . . . .

0 0 . . . 0 −1 2

 .
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Let's consider case n = 1 when we have observations (process values) x1 and x2,

then

x12 = φ11x1 = γ(1)γ−1(0)x1 = −1

2
x1.

And let us consider also case n = 2 when we have observations x1 and x2, then

x23 = φ21x2 + φ22x1 = (γ(1), γ(2))Γ−1(x2, x1)
T .

This time (n = 2)

Γ−1 = σ−2w
1

3

(
2 1

1 2

)
.

Thus,

x23 = (γ(1), γ(2))Γ−1(x2, x1)
T = (−σ2

w, 0)σ−2w
1

3

(
2 1

1 2

)
(x2, x1)

T

=
−2

3
x2 −

1

3
x1

Hence, for �nite dimensional case we can continue this procedure.

At �rst let us state a lemma that will help us to get required inversion of k × k
symmetric tridiagonal matrices. We are looking to apply this result in the case of

our covariance matrix.

Lemma 4. [12, pp. 1511-1513] Let Mk be a tridiagonal matrix of the form

Mk =



D 1 0 0 0 . . . 0
1 D 1 0 0 . . . 0
0 1 D 1 0 . . . 0
. . . . . . . . .

. . . . . . . . .
0 0 0 . . . 0 1 D 1 0
0 0 0 . . . 0 0 1 D 1
0 0 0 . . . 0 0 0 1 D


,

let alsoMk = det(Mk), then

• (i)Mi+1 = DMi −Mi−1 with boundary conditionsM0 = 1,M1 = D

• (ii)and the inversion of Mk in case of D = −2 is given by M−1 = R = (rij),
where

rij = −(i+ j − |j − i|)(2k + 2− |j − i| − i− j)
4(k + 1)

.

Let us now show that in case of D = −2 we getMk = (−1)k(k + 1). We apply

here the principle of mathematical induction: Proof
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• Base:M0 = 1,M1 = −2 follows directly from the lemma.

• Inductive step:

(i) Assume thatMn = (−1)n(n+ 1).

(ii) Show thatMn+1 = (−1)n+1(n+ 2). We apply lemma and get

Mn+1 = −2Mn −Mn−1

= −2(−1)n(n+ 1)− (−1)n−1n

= (−1)n+1(n+ 2).

Now we continue our example of predicting MA in case of (n = N), N ∈ R.
Note that ΓN = −σ2

wMN with D=-2. Hence det(ΓN) = (−1)N−1(N + 1)σ2
w and the

inversion of ΓN can be expressed Γ−1N = R = (rij), where

rij =
(i+ j − |j − i|)(2N + 2− |j − i| − i− j)

4(N + 1)σ2
w

.

Furthermore we can rewrite the formula of rij because det(ΓN) = (−1)N−1(N + 1).

Therefore,

rij =
(i+ j − |j − i|)(2N + 2− |j − i| − i− j)

4|det(ΓN)|
.

Hence

xN+1
N = (γ(1), γ(2), . . . , γ(N))Γ−1N (xN , xN−1, . . . , x1)

T ,

and we have (γ(1), γ(2), . . . , γ(N)) = σ2
w(−1, 0, . . . , 0), we only need the �rst line

of Γ−1N in order to get prediction equation. Let us denote Γ−1N = (g1, g2, . . . , gN)T ,

where gi = (rij), j = 1, 2 . . . , N denotes rows of matrix Γ−1N . This means that we

need only g1 and now it is easy to show that one can use formulas of rij and obtain

g1 =
1

|detΓN |
(N,N − 1, . . . , 1).

Finally, we get the prediction of form

xN−1N = (γ(1), γ(2), . . . , γ(N))Γ−1N (xN , xN−1, . . . , x1)
T

=
−1

(N + 1)

(
(N,N − 1, . . . , 1)(xN , xN−1, . . . , x1)

T
)

=
−1

(N + 1)
(NxN + (N − 1)xN−1 + . . .+ x1) .
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In conclusion we can say that

• the plus is that the form of prediction is clear and can be expressed as exact

formula,

• the main drawback is that the prediction is linearly dependent of all history,

which is not a good property because we have to have all the history to get a

reasonable prediction (Recall, that in case of invertible process the weights are

exponential and therefore we get better estimates, because the convergence is

fast enough, but in this case, as it is in case of the harmonic series
∑∞

n=1 1/n,

the sum of weights is divergent. Therefore we cannot �x a time point, when

the rest part of the process do not in�uence the �nal result, even if we set the

the length of used process values very large.).

On the other hand in real world examples at such situation, when we have process

with a unit root in MA polynomial are quite unlikely, so in conclusion we can say,

that in case of Gaussian processes the derivation of the prediction equations is well

de�ned and in the most of the cases gives us reasonable results.

2.4. Non-invertible non-Gaussian MA(1) process

To extend studies of predictions by non-invertible ARMA processes we continue

with the analysis of non-Gaussian non-invertible ARMA processes. As expected

such analysis is not common in the literature, but there are some research papers

dedicated to this kind of problems, e.g., Breidt and Hsu [13].

We concentrate on the most simple case, that is described in the following exam-

ple. This example will illustrate some di�culties faced during the derivation process

and the gains of derived formula can be found in subsection, where the computer

simulation results are presented. Actually, this example can be considered as a case

study of such processes.

2.4.1. Predictions by non-invertible non-Gaussian MA(1)

What happens when we violate the restriction about Gaussian distributed inno-

vations in MA process? Let's look at an example

xt = wt − θwt−1.
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In this example we consider case wt ∼i.i.d. U [0, 1], θ > 1. Note, that this corresponds

to the MA(1) process

xt = 0.5(1− θ) + (wt − 0.5)− θ(wt−1 − 0.5)

with zero mean as de�ned in Section 1. At the beginning we try to �nd joint distri-

bution density function and then conditional distribution density function

fX2|X1(x2|x1) =
fX2,X1(x2, x1)

fX1(x1)
.

In this case joint distribution density function fx1 is quite easy to �nd (recall that

x1 = w1 − θw0). Let us rewrite this process x1 as following x1 = Z = X + Y , where

X ∼ U [0, 1] and Y ∼ U [−θ, 0], then

FZ(z) =

∫ ∞
−∞

FX(z − y)fY (y)dy

Since fY (y) =
1

θ
, −θ ≤ y ≤ 0, and 0 otherwise

=
1

θ

∫ 0

−θ
FX(z − y)dy

Apply change of variables t := z − y

= −1

θ

∫ z

z+θ

FX(t)dt

=
1

θ

∫ z+θ

z

FX(t)dt.

Now the integrand is 0, unless −θ ≤ z ≤ 1, therefore we split integral by domains:

• if z ≤ −θ:

FZ(z) =
1

θ

∫ z+θ

z

FX(t)dt

=
1

θ

∫ z+θ

z

0dt = 0
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• if −θ ≤ z ≤ −θ + 1:

FZ(z) =
1

θ

∫ z+θ

z

FX(t)dt

=
1

θ

∫ 0

z

0dt+
1

θ

∫ z+θ

0

tdt

=
(z + θ)2

2θ

• if −θ + 1 ≤ z ≤ 0:

FZ(z) =
1

θ

∫ z+θ

z

FX(t)dt

=
1

θ

∫ 0

z

0dt+
1

θ

∫ 1

0

tdt+
1

θ

∫ z+θ

1

1dt

=
1

θ
(z + θ − 0.5)

• if 0 ≤ z ≤ 1:

FZ(z) =
1

θ

∫ z+θ

z

FX(t)dt

=
1

θ

∫ 1

z

tdt+
1

θ

∫ z+θ

1

1dt

=
2θ − (1− z)2

2θ

• and also if z ≥ 1:

FZ(z) =
1

θ

∫ z+θ

z

FX(t)dt

=
1

θ

∫ z+θ

z

1dt = 1.

Thus,

FX1(z) = FX+Y (z) =



0, z ≤ −θ
(z+θ)2

2θ
, −θ ≤ z ≤ −θ + 1

1
θ
(z + θ − 0.5), −θ + 1 ≤ z ≤ 0

2θ−(1−z)2
2θ

, 0 ≤ z ≤ 1

1, z ≥ 1

Now we have obtained FX1(x1), and have to continue with joint distribution

FX1,X2(x1, x2). We recall that x1 and x2 depend on w0, w1, w2, where wi ∼ U [0, 1]
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and try to �nd

FX1,X2(x1, x2) = P (w1 − θw0 ≤ x1, w2 − θw1 ≤ x2) =

∫∫∫
D

dw0dw1dw2,

whereD is de�ned by the intersection of the unit cube [0, 1]3 and hyperplanes de�ned

by x1 and x2.

To illustrate this situation, we can look at the geometrical interpretation of the

joint distribution function. Turns out, that joint distribution function describes the

volume that is de�ned by two hyperplanes and the unit cube. These two hyperplanes

are de�ned by the equations of x1 and x2, where x1 depends on uniformly distributed

U [0, 1] random variables w0 and w1, and x2, respectively, depends on w1 and w2.

If we construct unit cube with the origin (w0 = 0, w1 = 0, w2 = 0) and plot the

hyperplanes de�ned by the equations of x1 and x2, we can determine the volume of

interest for the pairs of x1 and x2 and set up the triple integrals to �nd the value of

them. Unfortunately we have to deal with di�erent cases de�ned by di�erent regions

of x1.

The three main di�erent cases are show in the Figure 2.1. The �rst cube

corresponds to the following derivation process, where we put a restriction on x1

such that {−θ ≤ x1 ≤ −θ + 1
θ
}. The other two cubes describes the situation, when

x1 ∈ [1− θ, 0) (the cube with blue and red hyperplanes and quadrilateral basis) and

x1 ∈ [0, 1) (the cube with violet and red hyperplanes and quadrilateral basis (and

small triangular part left outside)).
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Figure 2.1 Triangular base; Quadrilateral base; Quadrilateral base

We are going to fully present one case, but all the necessary derivations and brief

clari�cations and commentaries can be found in the appendix, where this derivation

part is given as several pieces of code of Sage package [3] (for each of the regions).

One can show that −θ ≤ X1 ≤ 1. Here we consider only the band {−θ ≤
x1 ≤ −θ + 1

θ
}. From the model we know that also −θ ≤ X2 ≤ 1, but we split this

interval into smaller pieces in order to get the distribution function over [−θ ≤ x1 ≤
−θ+ 1

θ
]×[−θ ≤ x2 ≤ 1]. Thus we continue with case analysis (this describes di�erent

placement of the red hyperplane in Figure 2.1, when the green one is de�ned):

1. {−θ ≤ x1 ≤ −θ + 1
θ
} and {−θ ≤ x2 < −θ(X1 + θ)}, for this intersection

FX2,X1(x2, x1) = 0
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2. {−θ ≤ x1 ≤ −θ + 1
θ
} and {−θ(x1 + θ) ≤ x2 < 0}, for this intersection we set

integral

FX2,X1(x2, x1) =

∫ x1+θ

−x2
θ

∫ 1

w1−x1
θ

∫ x2+θw1

0

dw2dw0dw1

=
(θ3x31 + 3θ4x21 + 3θ5x1 + θ6 + x32 + 3x2θ

2x21 + 6x2θ
3x1 + 3x2θ

4 + 3x1θx
2
2 + 3θ2x22)

6θ3

3. {−θ ≤ x1 ≤ −θ + 1
θ
} and {0 ≤ x2 < 1 − θ(x1 + θ)}, for this intersection we

set integral

FX2,X1(x2, x1) =

∫ x1+θ

0

∫ 1

w1−x1
θ

∫ x2+θw1

0

dw2dw0dw1

=
(x1 + θ)2(x1θ + θ2 + 3x2)

6θ

4. {−θ ≤ x1 ≤ −θ + 1
θ
} and {1 − θ(x1 + θ) ≤ x2 < 1}, for this intersection we

set integral

FX2,X1(x2, x1) =

∫ 1−x2
θ

0

∫ 1

w1−x1
θ

∫ x2+θw1

0

dw2dw0dw1 +

∫ x1+θ

1−x2
θ

∫ 1

w1−x1
θ

∫ 1

0

dw2dw0dw1

=
(−3x1θx

2
2 + 6θ2x2 + 3θ4 − x32 − 3x2)

6θ3

+
(−3x1θ − 3θ2 + 6x1θx2 + 3θ2x21 + 6θ3x1 + 1− 3θ2x22 + 3x22)

6θ3

5. {−θ ≤ x1 ≤ −θ + 1
θ
} and {x2 ≥ 1}, for this intersection we set integral

FX2,X1(x2, x1) =

∫ 1

−x1
θ

∫ x1+θw0

0

∫ 1

0

dw2dw1dw0

=
(x21 + 2θx1 + θ2)

2θ
.

Thus, for −θ ≤ x1 ≤ −θ + 1
θ
we have obtained:
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FX2,X1(x2, x1) =

0, −θ ≤ x2 < −θ(x1 + θ)
(θ3x31+3θ4x21+3θ5x1+θ6+x32+3x2θ2x21+6x2θ3x1+3x2θ4+3x1θx22+3θ2x22)

6θ3
, −θ(x1 + θ) ≤ x2 < 0

(x1+θ)2(x1θ+θ2+3x2)
6θ

, 0 ≤ x2 < 1− θ(x1 + θ)
(−3x1θx22+6θ2x2+3θ4−x32−3x2)

6θ3

+
(−3x1θ−3θ2+6x1θx2+3θ2x21+6θ3x1+1−3θ2x22+3x22)

6θ3
, 1− θ(x1 + θ) ≤ x2 < 1

(x21+2θx1+θ2)

2θ
, x2 ≥ 1

Now we have obtained joint distribution FX1,X2(x1, x2).

We can obtain conditional density function:

fX2(x2|X1 = c) =
fX2,X1(x2, c)

fX1(c)
.

From previous calculations we know that

FX1(x1) =



0, x1 ≤ −θ
(x1+θ)2

2θ
, −θ ≤ x1 ≤ −θ + 1

1
θ
(x1 + θ − 0.5), −θ + 1 ≤ x1 ≤ 0

2θ−(1−x1)2
2θ

, 0 ≤ x1 ≤ 1

1, x1 ≥ 1

In our case we are interested only in region −θ ≤ x1 ≤ −θ+ 1
θ
, so, in the function

FX1(x1) =
(x1 + θ)2

2θ
.

and therefore in this case we have

fX1(x1) =
(x1 + θ)

θ
.

and

fX2,X1(x2, x1) =



0, −θ ≤ x2 < −θ(x1 + θ)
x2+θx1+θ2

θ2
, −θ(x1 + θ) ≤ x2 < 0

x1+θ
θ
, 0 ≤ x2 < 1− θ(x1 + θ)

−x2−1
θ2

, 1− θ(x1 + θ) ≤ x2 < 1

0, x2 ≥ 1
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We can choose x1 = c ∈ [−θ, 1
θ
−θ] and then obtain a conditional density function

of x2 given x1 = c:

fX2(x2|X1 = c) =
fX2,X1(x2, c)

fX1(c)
=



0, −θ ≤ x2 < −θ(c+ θ)
(cθ+x2+θ2)
(θ(c+θ))

, −θ(c+ θ) ≤ x2 < 0

1, 0 ≤ x2 < 1− θ(c+ θ)
(1−x2)
θ(c+θ)

, 1− θ(c+ θ) ≤ x2 < 1

0, x2 ≥ 1

.

And, �nally,

E(X2|X1 = c) =
1

2
(1− cθ − θ2), c ∈ [−θ, 1

θ
− θ].

Similarly we continue for each domain of x1 (full derivation can be found in

appendix). But here we present the �nal result. We have obtained the least mean

square error one step ahead estimate. Therefore

E(X2|X1 = c) =



0, c ∈ (−∞− θ)
0.5(1− cθ − θ2), c ∈ [−θ, 1− θ)
0.5(1− θ), c ∈ [1− θ, 0)

0.5(−cθ − θ + 1, ), c ∈ [0, 1)

0, c ∈ (1,∞).

. (2.4.1)

Actually, we can see that the minimum mean square error one step ahead predic-

tion is not the same as the best linear prediction in all cases. In further computational

case studies we are going to show that this di�erence can be rather large in case of

the non-invertible MA(1) model. We are also going to show that the one step ahead

prediction does not improve if we base our prediction on all previous values of the

process {xt}.

2.4.2. Simulation studies

In this section we are going to compare the best linear prediction and the mini-

mum mean square error predictor by simulation studies of predicting theMA process

(described in last Subection 2.4.1. ) values one step ahead.

Let us start just with the graph of the conditional expected value represented

in Equation 2.4.1 and the graph of the best linear predictor (BLP), which is based

on the previous process value and obtained by the linear regression of xt on xt−1.

Recall, that the coe�cient estimates of the linear regression of the simple linear
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model xt = βxt−1 + α are

β̂ =
Cov(xt−1, xt)

Var(xt−1)
, α̂ = Ext − β̂Ext−1.

The derivation of coe�cients and interpretation in terms of the covariance and

mean value can be found in [8, pp. 4-7] and the derivation of coe�cients and its

generalization in [14, pp. 17-19., 130-135.] In this case, when we have xt = wt−θwt−1,
where wi ∼ i.i.d.U [0, 1], i = 0, 1, . . . , t, we can get coe�cient estimates β̂ and α̂. To

simplify the calculations, we denote w̃i = wi − 0.5, i = 0, 1, 2, . . . , t. Note, that in

this case Ew̃i = 0, i = 0, 1, 2, . . . , t and V ar(w̃i) = Ew̃2
i = 1/12, i = 0, 1, 2, . . . , t.

Therefore

β̂ =
Cov(xt−1, xt)

Var(xt−1)
=
E[(w̃t−1 − θw̃t−2)(w̃t − θw̃t−1)]

E(w̃t−1 − θw̃t−2)2
=

− 1
12
θ

1
12

(1 + θ2)
=

−θ
(1 + θ2)

and

α̂ = Ext − β̂Ext−1 = 0.5(1− θ)− β̂0.5(1− θ) = 0.5(1− θ)(1 +
θ

1 + θ2
).

Finally, we get the best linear estimate of xt, when the value of xt−1 is given

x̂t =
−θ

1 + θ2
xt−1 +

1− θ
2

(
1 +

θ

1 + θ2

)
. (2.4.2)

This will help to clarify the obtained results because this function has such

a speci�c form. In the Figure 2.2 the yellow line represents MMSEP given in

Equation 2.4.1, but the red line corresponds to the best linear predictor (BLP),

where we predict the value of x2 by Equation 2.4.2, when the value of x1 is given. In

the limiting case, when θ = 1, then we can see that the overall best linear prediction

is the same as the minimum mean square error predictor, but for larger values of

θ the piecewise linearity of the MMSEP is noticeable. Also the region, where the

MMSEP takes constant value (actually, it is the mean value of the process) widens

by increasing the value of coe�cient θ, but the region, where the MMSEP is non-

constant becomes relatively small, but the slope becomes even sharper.

At �rst let us do the simulations and compare the usual approach, when we �t

invertible model and use the prediction equations de�ned by Equation 2.2.1 and the

obtained MMSEP in this special case as in Equation 2.4.1. Let the innovation series

be as required in last example, where wt ∼ U [0, 1]. We generate the process

xt = wt − θwt−1

M times and each time for the obtained realization calculate the one step ahead
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Figure 2.2 : The plots of MSSEP (conditional expected value function E(X2|X1 =
c) given in Equation 2.4.1 ) and BLP given in Equation 2.4.2 for di�erent value of
θ.

predictions for the last 20% of data. Then we calculate the di�erence between the

predicted value and the real value. Then we calculate the mean square error of

predictions for each series. After all M realizations we count the number of times,

when the mean square error was smaller for the estimates obtained by MMSEP

formula compared with the mean square error in case of typical approach. This

percentage can be found in Table 2.4.2. . Here we recall, that in case of typical

approach we use all previous process values, when calculating the next process value,

but when using obtained piecewise linear MMSEP de�ned by Equation 2.4.1 we use

just the previous process value. We can do all this also for Gaussian distributed

data and make sure that derived Equation 2.4.1 is valid only for the purpose it was

derived. All these results are collected and presented in Table 2.4.2. . The mean

value of mean square errors for each situation is also given.

From the results we can see that in the case of uniformly distributed innovations
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Gaussian Uniform U [0, 1]

θ % M̂SEstand M̂SEmethod % M̂SEstand M̂SEmethod

2.0 0.1 4.1898 6.0653 87.1 0.34897 0.33379
5.0 0 24.972 127.2321 85.4 2.1187 1.9676
15 0 223.50 8051.035 79.5 19.078 18.286
25 0 618.97 60133 78.3 52.997 51.281

Table 2.4.1 Simulation results M = 1000, N = 200

wt we get more precise results with the derived formula despite the fact that we used

only one previous value to predict the next one, but in the usual approach we need

all previous values. The second noticeable thing is that there is noticeable reduction

of the e�ciency, when value of coe�cient θ increases. This can be explained by the

form of the exact MMSEP, which is equal to the mean value for a wide range of

previous value of the process and is slightly di�erent only, when the previous value

is very close to the boundary.

One could claim that MMSEP converges to one overall linear prediction ex-

pression, when we increase the number of previous values used in the derivation of

MMSEP as it can be shown in case of invertible model. Let us prove the fact, that in

case if the model is invertible (in this case |θ| < 1), then also in case of non-Gaussian

distributed innovations the MMSEP converges to one overall linear model. Recall,

that we are interested in the model

xt = wt − θwt−1, (2.4.3)

where wt ∼ U [0, 1]. If we denote w̃i = wi − 0.5, i = 0, 1, . . . , t and x̃i = xi − 0.5(1−
θ), i = 0, 1, . . . , t substitute these variables in Equation 2.4.3, then we obtainMA(1)

process with mean zero

x̃t = w̃t − θw̃t−1, (2.4.4)

Assume, that we want to get MMSEP of xt, when we have all previous process

values.

Recall the form of the minimum mean square error predictor (MMSEP) stated
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in Lemma 3. Therefore we are interested in

E(x̃t|x̃t−1, . . . , x̃1) = E(w̃t + θw̃t−1|x̃t−1, x̃t−2, . . . , x̃0)

= E(w̃t + θ(x̃t−1 + θw̃t−2)|x̃t−1, x̃t−2, . . . , x̃0)

. . .

= E(w̃t − θx̃t−1 − θ2x̃t−2 − . . .− θt−1x̃1 − θtw̃0)|x̃t−1 . . . , x̃0)

= E(w̃t) + E(−θx̃t−1 − θ2x̃t−2 − . . .− θt−1x̃1 − θtw̃0)|x̃t−1 . . . , x̃0)

= E(w̃t) + E(−θx̃t−1 − θ2x̃t−2 − . . .− θt−1x̃1 − θtw̃0)|x̃t−1 . . . , x̃0)

= −θx̃t−1 − θ2x̃t−2 − . . .− θt−1x̃1 − θtw̃0

And if we consider the limiting case in this invertible model (|θ| < 1), when t→∞
then we get, that the last term θtw̃0 → 0, t→∞. Thus, if we increase the number

of predictors (use a larger history of the observed process values), then the MMSEP

converges to the linear expression we just obtained. This is true for invertible model,

but in the next paragraph we are going to look at the non-invertible case.

Let us investigate this non-invertible non-Gaussian case by computer simulations.

Let us simulateM time series of length N with the innovation series be wt ∼ U [0, 1]

and the data generating process

xt = wt − θwt−1.

Then we �t linear model to the data: we take the set {x1, . . . xN−1} as predictors
and try to �t the model for dependent variable xN . This way we obtain one overall

model. We can de�ne also di�erent sets of the same data based on the value of xN−1

and then �t the model for each subset.

If there exists one best overall linear model, then for each set we should get

approximately the same model and it should be close to the overall model. The

result of such simulations is given in Figure 2.3. The �rst three rows correspond

to the model coe�cients for each previous process value, but the last row represents

the bar chart of the coe�cient at xN−1 for each submodel (subset).
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Figure 2.3 : The coe�cients of �tted model for 3 subsets and the overall model,
M = 10000, N = 6 and θ = 5 .

When we look at the coe�cient at xN−1 for each submodel (subset) at the last

row of in Figure 2.3, we can clearly see that the models are di�erent for each of the

subsets, therefore with this computational example we demonstrate, that it is quite

unlikely, that there exists one overall best minimum mean square error predictor,

which can be expressed as a linear function of previous process values.

As we noticed the e�ciency of the method, when the coe�cient θ increases can be

analysed. This is done in the next step. As shown in the Figure 2.4, the decrease of

e�ciency of the MMSEPs, that are based on assumption about uniformly distributed

data against the predictions based on Gaussian distributed random innovations is

noticeable, but at the same time the decrease , although it is steady, remains quite
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Figure 2.4 E�ciency of MMSEP (as a function of θ), M = 1000, N = 200

slow. Especially if we take into account that very large values of theta are quite

unlikely, because then the coe�cient θ in MA(1) in the corresponding invertible

model converges to zero. So, we can conclude, that for every reasonable choice of θ,

the MMSEPs based on appropriate information about the distribution of random

innovations gives reasonably better prediction estimates. Therefore it is suggested

to use maximal information we can get out of the data.
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3. Application
In real world situations data, which could be modelled by non-invertible ARMA

models are not very common. Although, we can �nd some interesting datasets. In

publication [13] Breidt and Hsu analyse US unemployment rates from January 1948

to October 1997. They �t SARIMA(0; 1; 5)× (0; 0; 2)12 model to data and analyse

non-invertibility in the seasonal part. They propose a di�erent approach, how to

deal with non-invertibility in this dataset. Results are promising, but as we have

derived formula for non-Gaussian non-invertible ARMA model (MA(1)), we will

consider another example and look at the results.

Another dataset, where non-invertible model can be applied is described in the

monograph by Brockwell and Davis [15, pp. 97-98.]. There they only �t the model

and argue, that model could be non-invertible, but we are going to investigate this

dataset more in details and try to do some forecasts.

3.1. The Overshorts data

We start by a small data description given in the monograph [15, p. 97].The

dataset consists of 57 consecutive daily overshorts from an underground gasoline

tank at a �lling station in Colorado. If yt is the measured amount of fuel in the tank

at the end of the tth day and at is the measured amount sold minus the amount

delivered during the course of the tth day, then the overshort at the end of day t is

de�ned as xt = yt − yt−1 + at . Due to the error in measuring the current amount

of fuel in the tank, the amount sold, and the amount delivered to the station, we

view yt, at, and xt as observed values from some set of random variables Yt, At , and

Xt for t = 1, . . . , 57. (In the absence of any measurement error and any leak in the

tank, each xt would be zero.)

So, we are interested in the overshorts dataset xt, t = 1, . . . , 57. In the beginning

we can look at data (Figure 3.1). To give some more information, why we �tMA(1)

model to these data, we also should look at the graphs of autocorrelation function

(ACF ) (Figure 3.2) and also partial autocorrelation function (PACF ) (Figure

3.2). As we can see, the graph of ACF shows, that only the �rst (obviously also

zero correlation) correlation drops outside the con�dence interval, but if we look

at graph of PACF (Figure 3.3), we can see, that it decreases almost linearly.

Therefore choice of the moving average 1 (MA(1)) model is reasonable.
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Figure 3.1 The overshorts data xt

Figure 3.2 The ACF graph of overshorts data xt
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Figure 3.3 The PACF graph of overshorts data xt

3.2. Predictions by non-invertible MA(1)

When we have argued about the choice of the particular model, we can continue

with the most interesting part, where we are going to do forecasts by prediction

equations: both the classical approach, which assumes the Gaussian distribution,

and the approach, where we assume uniformly distributed innovations, however, in

this case we cannot argue, that the uniform distribution is more appropriate. For

both, we �t the MA(1) model xt = µt + wt − θwt−1, where the wt terms denote

innovations and µt denote the intercept, each time, when we want to do the forecast

(we �t the model based on n previous values.) After �tting the model we also obtain

the coe�cient θ for our derived formula 2.4.1

E(X2|X1 = c) =



0, c ∈ (−∞− θ)
0.5(1− cθ − θ2), c ∈ [−θ, 1− θ)
0.5(1− θ), c ∈ [1− θ, 0)

0.5(−cθ − θ + 1, ), c ∈ [0, 1)

0, c ∈ (1,∞).

.

Here we want to point out, that the usual approach (de�ned by Equation 2.2.1)

uses all available previous values, while our derived formula uses only the last process

value. So, we are going to �t the model on a part of the data and look forward to

predict the next process value, after that we compute the error and take the error
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squared. Then we perform the next step similarly, we �t the model on given data and

try to obtain the next value. To compare these methods we are going to start this

process at di�erent time moments and look at the results. The results are collected

in Table 3.2.1.

Starting point of the prediction, t M̂SEstand M̂SEuniform

45 2803.986 2501.685
46 3016.124 2709.409
47 2786.663 2445.599
48 2719.33 1906.934
49 2757.434 1994.122
50 2643.249 1815.562
51 2861.123 1999.356
52 3275.432 2172.416
53 3500.631 2564.849
54 3839.837 3183.499
55 2034.201 3508.332
56 670.1151 226.4287

Table 3.2.1 Simulation results

This time we can say that almost every time, except the case t = 55, new

approach was more e�ective, than the usual �t. This is remarkable result, because,

in the last case, we use just the previous value and even then the estimated mean

square error is smaller than in usual approach, where we use all the information.

There is a nice explanation for the case t = 55. First we recall that the total number

of points is 57, so there are just three predictions, which determine MSE for both

approaches. And, if we look at the time series Figure 3.1, we can notice, that

time point 55 is slightly di�erent, actually, at t = 55 process reaches its absolute

minimum, which was not predicted in this case. So, in general, new approach is

reasonable and could be suggested for predicting such time series.
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Summary

In the beginning we declared, that in this thesis we are going to investigate

predictions by non-invertible ARMA models. We started with the de�nition of in-

vertibility and declared non-invertibility to be the opposite of invertibility, brie�y

discussed transformation to invertibility. Then we moved further to the forecasting

of ARMA processes and especially to the predicting of non-invertible processes,

which was provided also with detailed investigation of MA(1) in each of the cases:

the Gaussian case (invertible and non-invertible) and non-Gaussian (invertible and

extended derivation of non-invertible one in case of uniformly distributed innova-

tions).

The �rst part is more general than the second one, where the predictions by

non-invertible ARMA processes are described because it involves more speci�c anal-

ysis in each particular situation. However, the case of predictions by non-invertible

ARMA draws the greatest interest. Therefore we have chosen MA(1) model as the

most simplest way, how to deliver the results and give the reader a general intuition

of the particular case. We deal with �strictly� non-invertible case, which gives some

interesting result.Then we argue, why in case of Gaussian distributed data we can �t

invertible model to the data generated by non-invertible Gaussian process and use

the forecasts of the invertible model, which is remarkable result to point out due to

the frequent occurrence of Gaussian distributed innovations. But one of the largest

e�orts was put to the non-invertible non-Gaussian case, where the Uniform distribu-

tion was chosen for modelling innovations. The derivation takes some e�ort and some

technical parts can also be found in the appendix. When the resulting prediction

equation is obtained, then some comparison is needed. Therefore we have included

simulation studies, which show that, �rst, the prediction equation is piecewise linear

and there is no one overall limiting linear model (fully continuous, non-piecewise

linear function). Second, the exact formula (minimum mean square error predictor)

gives better results even when using one previous process value compared with linear

predictions using all previous process values but the third important thing is that it

can be applied only in case, when we have strong arguments of applying such model.

As a small drawback from the last section in Chapter 2, we can also mention, that the

e�ciency of this method slowly declines, when the value of the moving average coef-

�cient θ increases. Finally, there is also a real-world application provided. We �t the

MA(1) model to the data and compare the predictions by non-invertible Gaussian

innovations with the ones by non-invertible case with uniformly distributed innova-
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tions. It's quite surprising and interesting, that in this case the results obtained by

specially derived formula of the case, when innovations are uniformly distributed,

are far more better. It's especially amazing, because data describes daily overshorts

from an underground gasoline tank at a �lling station in Colorado, therefore the

choice of uniformly distributed innovations can be considered as non-typical at the

�rst look.

In conclusion I have to say that the thesis covers an interesting but a limited

insight of predicting non-invertible ARMA processes. These ideas (especially in case

of non-invertible non-Gaussian processes) can be extended and more described in

some further discussion. As well as the idea of applying non-Gaussian predictions

in practice can be considered more frequently, when the possibility of non-invertible

model is not rejected, because then there is reasonable possibility of better forecasts.
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Mittepööratavate ARMA mudelite abil

prognoosimine

Agris Vasel	ans

Kokkuvõte

Aegridade modelleerimisel ja prognoosimisel kasutatakse laialdaselt ARMA tüüpi

mudeleid, mida on põhjalikult uuritud paljudes teadusartiklites ning käsitletud ena-

mikus aegridadele pühendatud õpikutes. Selliste mudelite korral eeldatakse, et vaadel-

dava aegrea hetkeväärtus avaldub lineaarselt minevikuväärtuste ning mingi juhus-

liku häirituse hetke- ja minevikuväärtuste kaudu. Enamasti tehakse nii teoreetilistes

käsitluste kui ka praktilistes rakendustes eeldus, et vaadeldava rea hetke- ja mineviku-

väärtuste põhjal on võimalik leida juhusliku häirituse hetkeväärtus; sellise omaduse

olemasolul nimetatakse vastavat mudelit pööratavaks. Selline lähenemine ei pruugi

aga anda kuigi häid tulemusi, kui vaadeldava rea andmed on tegelikult tekitatud

mittepööratavale mudelile vastava juhusliku protsessi poolt.

Käesoleva bakalaureusetöö eesmärgiks on uurida nii teoreetiliselt kui ka arvutisim-

ulatsioonide teel mittepööratavate ARMA tüüpi protsesside tulevikuväärtuste prog-

noosimisega seotud küsimusi.

Töö on jaotatud kolmeks peatükiks. Esimese peatükis tuuakse aegridade käsitle-

miseks vajalikud põhimõisted ja tulemused. Teises peatükis uuritakse põhjalikumalt

mittepööratavate ARMA protsesside prognoosimisega seotud küsimusi. Kõigepealt

vaadeldakse protsesse juhul, kui häiritused on normaaljaotusega. Tõestatakse (kir-

jandusele tuginedes), et peaaegu alati (välja arvatud nn range mittepööratavuse

erijuht) saadakse sellistel eeldustel optimaalsed prognoosid aegreale vastava pöörata-

va mudeli sobitamise ning selle põhjal ennustamise teel. Samuti vaadeldakse ühte

rangelt mittepööratava protsessi juhtu, mille jaoks tuletakse optimaalse prognoosi

valemid. Kõige olulisemad autori originaaltulemused on saadud mittepöörava MA(1)

protsessi uurimisel. Sellisel juhul on tuletatud ühte minevikuvaatlust kasutava opti-

maalse prognoosi funktsioon ning näidatud simulatsioonide teel, et seda kasutades

on võimalik vastava protsessi tulevikuväärtuseid ennustada paremini, kui andme-

tele sobitatud pööratava mudeli abil. Kolmandas peatükis on toodud näide ühest

praktilisest andmestikust, kus eelmises peatükis tuletatud ennustusfunktsioon annab

samuti paremaid tulemusi, kui standardse ARMA tüüpi mudeliga on võimalik saada.

Töö ei ole kindlasti ammendav ülevaade mittepööratavate protsesside prognoosi-

misest, kuid annab aimu selle valdkonna probleemidest ja võimalikest lähenemistest.

Saadud tulemuste põhjal võib järeldada, et juhul, kui aegrea puhul ei ole õigustatud
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normaaljaotustega häirituste eeldus, ei pruugi standardsete vahenditega sobitatud

aegrea mudelid sugugi parimaid prognoose anda ning et siis tasuks tõsiselt kaaluda ka

häirituste jaotusele vastavate mittepööratavate mudelite sobitamist ja nende põhjal

ennustamist.
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Appendix

1. Graphs - Section1
# An ARIMA simulation

par(mfrow=c(4,3))

xx<-rnorm(200,0,1)

ts.sim <- arima.sim(list(order = c(0,0,1), ma = c(2)), n=200, innov=xx)

ts.plot(ts.sim)

acf(ts.sim)

pacf(ts.sim)

sd(ts.sim)

xx2<-rnorm(200,0,4)

corresponding.invertible<-arima.sim(list(order = c(0,0,1), ma = c(0.5)), n = 200,innov=xx2)

ts.plot(corresponding.invertible)

acf(corresponding.invertible)

pacf(corresponding.invertible)

sd(corresponding.invertible)

#check

check.white.noise<-ts.sim[-200]+xx2[-1]

ts.plot(check.white.noise)

acf(check.white.noise)

pacf(check.white.noise)

plot(check.white.noise) #looks like a white noise - at least for this case the

#theorem seems to be working

2. Graphs - section 2.4.1
####

#Conditional expected value (f-n)

Ex2.x1<-function(x,theta){

return((x<(-theta))*0+(x>=(-theta))*(x<(1-theta))*

(0.5*(1-x*theta-theta^2))+

(x>=(1-theta))*(x<(0))*(0.5*(1-theta))+(x>=0)*(x<=(1))*

(0.5*(1-x*theta-theta))+

(x>1)*0)

}

#Best linear predictor - BLP

BLP<-function(x,theta){

return((-theta/(1+theta^2))*x+((1-theta)/2)*(1+(theta/(1+theta^2))))

}

par(mfrow=c(2,3))

for (i in 1:6){

theta<-1+(i-1)*3

x<-seq(-theta,1,by=0.001)

z<-Ex2.x1(x,theta)

plot(x,z,col="yellow",type="l",lwd="2.5",

main=expression(paste("MMSEP ",E(x[2],"|",x[1])," and BLP")),

ylab=expression(paste(E(x[2],"|",x[1]))),

xlab=bquote(x[1]~~( ~ theta ~ "=" ~ .(theta) )))

legend(-theta,-theta+i, # places a legend at the appropriate place

c(expression(paste("MMSEP")),expression(paste("BLP"))), # puts text in the legend

lty=c(1,1), # gives the legend appropriate symbols (lines)

lwd=c(2.5,2.5),col=c("yellow","red"))
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lines(x,BLP(x,theta), lty=1, col="red",lwd="0.5")

}

3. Coe�cient test of the Section 2.4.1
#Parameters:

N<-6 #number of x values

M<-10000 # number of simulations

theta<-5 #coef. of theta in MA model (x_t+w_t-theta*w_{t-1})

w<-matrix(0,ncol=N+1,nrow=M)

for (i in 1:M){w[i,]<-runif(N+1)} #inovations

#w

x<-w[,2:(N+1)]-theta*w[,1:N]

lm(x[,N]~x[,(1:(N-1))],subset=(x[,N-1]<=1-theta))

lm(x[,N]~x[,(1:(N-1))],subset=((x[,N-1]>1-theta)&&(x[,N-1]<=0)))

lm(x[,N]~x[,(1:(N-1))],subset=(x[,N-1]>=0))

par(mfrow=c(5,1))

barplot(coefficients(lm(x[,N]~x[,(1:(N-1))],subset=(x[,N-1]<=1-theta))),

main=expression(paste("Subset ",-theta,"<",x[5],"<",1-theta)))

barplot(coefficients(lm(x[,N]~x[,(1:(N-1))],subset=((x[,N-1]>1-theta)&&(x[,N-1]<=0)))),

main=expression(paste("Subset ",1-theta,"<",x[5],"<",0)))

barplot(coefficients(lm(x[,N]~x[,(1:(N-1))],subset=(x[,N-1]>=0))),

main=expression(paste("Subset ",0,"<",x[5],"<",1)))

#overall

barplot(coefficients(lm(x[,N]~x[,(1:(N-1))])),main="All data for overall model")

barplot(c(coefficients(lm(x[,N]~x[,(1:(N-1))],subset=(x[,N-1]<=1-theta)))[N],

coefficients(lm(x[,N]~x[,(1:(N-1))],subset=((x[,N-1]>1-theta)&&(x[,N-1]<=0))))[N],

coefficients(lm(x[,N]~x[,(1:(N-1))],subset=(x[,N-1]>=0)))[N],

coefficients(lm(x[,N]~x[,(1:(N-1))]))[N]),

main=expression(paste("Coefficients at ", x[N-1],", ",w[t],"~", N,"[0,1] ,",theta,"=5")),

names.arg=c(expression(1-theta<x[N-1]),expression(x[N-1]<0) , expression(x[N-1]<1), "overall"))

#

4. E�ciency code of the Section 2.4.1
###########################efficiency ######################

standard.andcond.together.efficiency3<-function(x,n.start,theta){

N<-length(x)

predictions<-rep(NA,N);predictions2<-rep(NA,N)

j<-n.start

repeat{

predictions[j]<-predict(arima(x[(1:(j-1))],order=c(0,0,1)), n.ahead = 1)$pred

predictions2[j]<-(0.5*(1-theta*x[j-1]-theta^2)*(x[j-1]<=1-theta)+

0.5*(1-theta)*(x[j-1]>1-theta)*(x[j-1]<=0)+

0.5*(1-theta*x[j-1]-theta)*(x[j-1]>0))

j<-j+1

if(j>N) break()

}

error.squared<-(predictions-x)^2

error.squared2<-(predictions2-x)^2

return(cbind(predictions,error.squared,predictions2,error.squared2))

}
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standard.MSE<-function(x){

return(mean(standart.aproach.MA1.for.efficiency3(x,((8*N)/10+1))[((8*N)/10+1):N,2]))

}

cond.exp.MSE<-function(x){

return(mean(cond.expectation.aproach.MA1.for.efficiency2(x,(8*N)/10+1,theta)[((8*N)/10+1):N,2]))

}

#Parameters:

N<-200 #number of x values

j<-1 #initial theta

MM<-40 #max theta

rratio<-rep(NA,MM)

avg.MSE.stand<-rep(NA,MM)

avg.MSE.cexp<-rep(NA,MM)

M<-1000 #number of replications

w<-matrix(runif((N+1)*M),ncol=(N+1))

both.MSE<-function(x){

res<-standard.andcond.together.efficiency3(x,(8*N)/10+1,theta)

return(cbind(mean(res[((8*N)/10+1):N,2]),mean(res[((8*N)/10+1):N,4])))

}

#Get result for each 5th value of theta

repeat{

theta<-j*5 #coef. theta in MA model (x_t=w_t-theta*w_{t-1})

results<-rep(NA,M);MSE.stand<-rep(NA,M);MSE.cexp<-rep(NA,M)

x<-matrix(w[,2:(N+1)]-theta*w[,1:N],ncol=N)

MSE<-apply(x,1,both.MSE) #compute MSE stand. for each serie

###print(MSE[1,]);print(MSE[2,])

results<- MSE[1,]>MSE[2,]

avg.MSE.stand[j]<-mean(MSE[1,])

avg.MSE.cexp[j]<-mean(MSE[2,])

ratio<-(sum(results)/length(results))

print(j)

print(ratio)

rratio[j]<-ratio*100

##rratio<-vector of ratios in non-invertibe/uniform

j<-j+1

if(j>MM) break()

}

par(mfrow=c(1,1))

plot(5*(1:MM),rratio,type="l",xlab=expression(paste(theta)),ylab="%")

5. Graphs and code of the Chapter 3
#OSHORTS data

#data<- read.table("C:/Users/user/skola_TARTU/non_invertible/oshorts.dat")

data<-read.table("C:/Users/user/skola_TARTU/non_invertible/oshorts.txt",header=TRUE)

t<-1:length(data[,1])

plot(t,data[,1], type="l", main="Overshorts",ylab=expression(x[t]))

acf(data)

pacf(data)

standard.andcond.together.efficiency3.thetaFromData<-function(x,n.start){

N<-length(x)

predictions<-rep(NA,N);predictions2<-rep(NA,N)

j<-n.start

repeat{

fit<-arima(x[(1:(j-1))],order=c(0,0,1))

#we assume non-inv. model for cond.exp. estimate

theta<- -(1/coefficients(arima(x[(1:(j-1))],order=c(0,0,1)))[1])

predictions[j]<-predict(fit, n.ahead = 1)$pred
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predictions2[j]<-(0.5*(1-theta*x[j-1]-theta^2)*(x[j-1]<=1-theta)+

0.5*(1-theta)*(x[j-1]>1-theta)*(x[j-1]<=0)+

0.5*(1-theta*x[j-1]-theta)*(x[j-1]>0))

j<-j+1

if(j>N) break()

}

error.squared<-(predictions-x)^2

error.squared2<-(predictions2-x)^2

return(cbind(predictions,error.squared,predictions2,error.squared2))

}

for (j in 45:56){

res<-standard.andcond.together.efficiency3.thetaFromData(data[,1],j)

a<-mean(res[(j:57),2])

b<-mean(res[(j:57),4])

print(j);print(a);print(b)}

6. Sage computations 1
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large triangular (basic)

Define variables:

w1,w2,w0,x1,x2,theta=var('w1','w2','w0','x1','x2','theta') 

       

Define the integration f-n:

def myint(a,b,c,d,hold=false):
    if hold==true:
        return sage.calculus.calculus.dummy_integrate(a,b,c,d)
    else:
        return(integral(a,b,c,d)) 

       

Define diff f-n:

def mydiff(a,b,hold):
    if hold==true:
        return(sage.calculus.calculus.dummy_diff(a,b))
    else:
        return(diff(a,b)) 

       

hold=true;print 'F2=';
show(myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-
x1)/theta,1,hold),w1,(-x2)/theta,x1+theta,hold))
hold=false
F2(x1,x2,theta)=myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-
x1)/theta,1,hold),w1,(-x2)/theta,x1+theta,hold)
show(F2(x1,x2,theta)) 

       

F2=

hold=true
print 'Diff: d̂2F2 /dx1 dx2';show(mydiff(mydiff(F2,x1,true),x2,true))
hold=false
print('f2=');f2=mydiff(mydiff(F2,x1,true),x2,true);show(f2(x1,x2,theta)) 

       

Diff: d̂2F2 /dx1 dx2

f2=

1d d d∫
θ+x1

−
x 2

θ

∫
1

−w 1 x1

θ

∫
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0
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1 x 3
1 θ2 x1 x 2

1 x2

6θ

3( + θ ) +θ2 x1 x2
2 x 3

2

6θ3

( , ,θ) ↦ +x1 x 2
θ + x1

θ

x2

θ2

+
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hold=true;print 'F3=';
show(myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-
x1)/theta,1,hold),w1,(-x2)/theta,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-
x1)/theta,1,hold),w1,(1-x2)/theta,x1+theta,hold))
hold=false
F3(x1,x2,theta)=myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-
x1)/theta,1,hold),w1,(-x2)/theta,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-
x1)/theta,1,hold),w1,(1-x2)/theta,x1+theta,hold)
show(F3(x1,x2,theta)) 

       

F3=

hold=true
print 'Diff: d̂2F3 /dx1 dx2';show(mydiff(mydiff(F3,x1,true),x2,true))
hold=false
print('f3=')
f3=mydiff(mydiff(F3,x1,true),x2,true);
show(f3(x1,x2,theta)) 

       

Diff: d̂2F3 /dx1 dx2

f3=

hold=true;print 'F4=';
show(myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-
x1)/theta,1,hold),w1,0,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-
x1)/theta,1,hold),w1,(1-x2)/theta,x1+theta,hold))
hold=false
F4(x1,x2,theta)=myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-
x1)/theta,1,hold),w1,0,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-
x1)/theta,1,hold),w1,(1-x2)/theta,x1+theta,hold)
show(F4(x1,x2,theta)) 

F4=

+
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hold=true
print 'Diff: d̂2F4 /dx1 dx2';show(mydiff(mydiff(F4,x1,true),x2,true))
hold=false
print('f4=')
f4=mydiff(mydiff(F4,x1,true),x2,true);
show(f4(x1,x2,theta)) 

       

Diff: d̂2F4 /dx1 dx2

f4=

hold=true;print 'F5=';
show(myint(myint(myint(1,w2,0,1,hold),w0,(w1-
x1)/theta,1,hold),w1,0,x1+theta,hold))
hold=false
F5(x1,x2,theta)=myint(myint(myint(1,w2,0,1,hold),w0,(w1-
x1)/theta,1,hold),w1,0,x1+theta,hold)
show(F5(x1,x2,theta)) 

       

F5=

hold=true
print 'Diff: d̂2F5 /dx1 dx2';show(mydiff(mydiff(F5,x1,true),x2,true))
hold=false
print('f5=')
f5=mydiff(mydiff(F5,x1,true),x2,true);
show(f5(x1,x2,theta)) 

       

Diff: d̂2F5 /dx1 dx2

f5=
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For cond. density we need fx1

print 'fx1:';fx1(x1,x2,theta)=(x1+theta)/theta;show(fx1) 

       

fx1:

Conditional density function (piecewise)

f2_cond(x1,x2,theta)=f2/fx1;f2_cond.factor() 

       

f3_cond(x1,x2,theta)=f3/fx1;f3_cond.factor() 

       

f4_cond(x1,x2,theta)=f4/fx1;f4_cond.factor() 

       

Finally, conditional exp. of x2, x1 given:

hold=false
Exp(x1,theta)=myint(f2_cond(x1,x2,theta)*x2,x2,-theta*(x1+theta),1-
theta*(x1+theta))+myint(f3_cond(x1,x2,theta)*x2,x2,1-theta*
(x1+theta),0)+myint(f4_cond(x1,x2,theta)*x2,x2,0,1)
Exp(x1,theta).factor() 

       

Test: overall integral of conditional density f-n should be "=1":

Exp1(x1,x2,theta)=myint(f2_cond(x1,x2,theta),x2,-theta*(x1+theta),1-
theta*(x1+theta))
Exp2(x1,x2,theta)=myint(f3_cond(x1,x2,theta),x2,1-theta*(x1+theta),0)
Exp3(x1,x2,theta)=myint(f4_cond(x1,x2,theta),x2,0,1)
(Exp1(x1,x2,theta)+Exp2(x1,x2,theta)+Exp3(x1,x2,theta)).factor() 
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7. Sage computations 2
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middle part - rectangular

Middle part - rectangular prism

Define variables:

w1,w2,w0,x1,x2,theta=var('w1','w2','w0','x1','x2','theta') 

       

Define the integration f-n:

def myint(a,b,c,d,hold=false):
    if hold==true:
        return sage.calculus.calculus.dummy_integrate(a,b,c,d)
    else:
        return(integral(a,b,c,d)) 

       

Define diff f-n:

def mydiff(a,b,hold):
    if hold==true:
        return(sage.calculus.calculus.dummy_diff(a,b))
    else:
        return(diff(a,b)) 

       

hold=true;print 'F2=';
show(myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-
x1)/theta,1,hold),w1,(-x2)/theta,1,hold))
hold=false
F2(x1,x2,theta)=myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-
x1)/theta,1,hold),w1,(-x2)/theta,1,hold)
show(F2(x1,x2,theta)) 

       

F2=

hold=true
print 'Diff: d̂2F2 /dx1 dx2';show(mydiff(mydiff(F2,x1,true),x2,true))
hold=false
print('f2=');f2=mydiff(mydiff(F2,x1,true),x2,true);show(f2(x1,x2,theta)) 

       

Diff: d̂2F2 /dx1 dx2

1d d d∫
1

−
x 2

θ

∫
1

−w1 x1

θ

∫
θ +w1 x2

0
w2 w0 w1

+
3(2θ + 2 − 1) + 3 + 3θ − 2θx1 x2 θ2 x 1

6θ

3( + θ ) +θ2 x1 x2
2 x 3

2

6θ3

( , ,θ) ↦ +x1 x 2
1
θ

x2

θ2



f2=

hold=true;print 'F3=';
show(myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-
x1)/theta,1,hold),w1,(-x2)/theta,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-
x1)/theta,1,hold),w1,(1-x2)/theta,1,hold))
hold=false
F3(x1,x2,theta)=myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-
x1)/theta,1,hold),w1,(-x2)/theta,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-
x1)/theta,1,hold),w1,(1-x2)/theta,1,hold)
show(F3(x1,x2,theta)) 

       

F3=

hold=true
print 'Diff: d̂2F3 /dx1 dx2';show(mydiff(mydiff(F3,x1,true),x2,true))
hold=false
print('f3=')
f3=mydiff(mydiff(F3,x1,true),x2,true);
show(f3(x1,x2,theta)) 

       

Diff: d̂2F3 /dx1 dx2

f3=

hold=true;print 'F4=';
show(myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-
x1)/theta,1,hold),w1,0,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-
x1)/theta,1,hold),w1,(1-x2)/theta,1,hold))
hold=false
F4(x1,x2,theta)=myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-
x1)/theta,1,hold),w1,0,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-
x1)/theta,1,hold),w1,(1-x2)/theta,1,hold)
show(F4(x1,x2,theta)) 

+
1
θ

x2

θ 2

1d d d + 1d d d∫
−

−1x 2

θ

−
x 2

θ

∫
1

−w 1 x1

θ

∫
θ +w1 x2

0
w2 w0 w1 ∫

1

−
−1x 2

θ

∫
1

−w 1 x 1

θ

∫
1

0
w2 w0 w1

+ + −
2θ + 2 − 1x 1

2θ

3( + θ ) +θ 2 x1 x2
2 x3

2

6θ 3

2( + θ − 1) − 2 − 2θ + + 1θ 2 x1 x2 θ 2 x1 x2
2

2θ3

3( + θ )θ2 x1 x

( , ,θ) ↦ x1 x 2
1

θ2

1

θ2



       

F4=

hold=true
print 'Diff: d̂2F4 /dx1 dx2';show(mydiff(mydiff(F4,x1,true),x2,true))
hold=false
print('f4=')
f4=mydiff(mydiff(F4,x1,true),x2,true);
show(f4(x1,x2,theta)) 

       

Diff: d̂2F4 /dx1 dx2

f4=

hold=true;print 'F5=';
show(myint(myint(myint(1,w2,0,1,hold),w0,(w1-
x1)/theta,1,hold),w1,0,1,hold))
hold=false
F5(x1,x2,theta)=myint(myint(myint(1,w2,0,1,hold),w0,(w1-
x1)/theta,1,hold),w1,0,1,hold)
show(F5(x1,x2,theta)) 

       

F5=

hold=true
print 'Diff: d̂2F5 /dx1 dx2';show(mydiff(mydiff(F5,x1,true),x2,true))
hold=false
print('f5=')
f5=mydiff(mydiff(F5,x1,true),x2,true);
show(f5(x1,x2,theta)) 

       

Diff: d̂2F5 /dx1 dx2

1d d d + 1d d d∫
−

−1x 2

θ

0
∫

1

−w 1 x1

θ

∫
θ +w1 x2

0
w2 w0 w1 ∫

1

−
−1x 2

θ

∫
1

−w 1 x 1

θ

∫
1

0
w2 w0 w1

+ −
2θ + 2 − 1x 1

2θ

2( + θ − 1) − 2 − 2θ + + 1θ 2 x1 x2 θ2 x1 x2
2

2θ 3

3( + θ ) − 3 + − 3θ − 3θ2 x1 x2
2 θ 2 x3

2 x1

6θ3

( , ,θ) ↦ − +x1 x2
x 2

θ2

1

θ2

− +
x2

θ 2

1

θ2

1d d d∫
1

0
∫

1

−w1 x 1

θ

∫
1

0
w2 w0 w1

2θ + 2 − 1x1

2θ

( , ,θ) ↦ 0x1 x 2



f5=

For cond. density we need fx1 (in region -theta+1..0)

print 'fx1:';fx1(x1,x2,theta)=1/theta;show(fx1) 

       

fx1:

Conditional density function (piecewise)

f2_cond(x1,x2,theta)=f2/fx1;f2_cond.factor() 

       

f3_cond(x1,x2,theta)=f3/fx1;f3_cond.factor() 

       

f4_cond(x1,x2,theta)=f4/fx1;f4_cond.factor() 

       

Finally, conditional exp. of x2, x1 given:

hold=false
Exp(x1,theta)=myint(f2_cond(x1,x2,theta)*x2,x2,-theta,1-
theta)+myint(f3_cond(x1,x2,theta)*x2,x2,1-
theta,0)+myint(f4_cond(x1,x2,theta)*x2,x2,0,1)
Exp(x1,theta).factor() 

       

Test: overall integral of conditional density f-n should be "=1":

Exp1(x1,x2,theta)=myint(f2_cond(x1,x2,theta),x2,-theta,1-theta)
Exp2(x1,x2,theta)=myint(f3_cond(x1,x2,theta),x2,1-theta,0)
Exp3(x1,x2,theta)=myint(f4_cond(x1,x2,theta),x2,0,1)
(Exp1(x1,x2,theta)+Exp2(x1,x2,theta)+Exp3(x1,x2,theta)).factor() 

       

OK

 

       

0

( , ,θ) ↦ x1 x2
1
θ

( , ,θ) ↦ x1 x2
θ+x2

θ

( , ,θ) ↦ x1 x2
1
θ

( , ,θ) ↦ −x1 x2
−1x2

θ

− θ +1
2

1
2

1
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small_upper_triangular_part_out

Upper part - rectangular prism (smalltriangular part left out)

w1,w2,w0,x1,x2,theta=var('w1','w2','w0','x1','x2','theta') 

       

Define the integration f-n:

def myint(a,b,c,d,hold=false):
    if hold==true:
        return sage.calculus.calculus.dummy_integrate(a,b,c,d)
    else:
        return(integral(a,b,c,d)) 

       

Define diff f-n:

def mydiff(a,b,hold):
    if hold==true:
        return(sage.calculus.calculus.dummy_diff(a,b))
    else:
        return(diff(a,b)) 

       

     ,      

hold=true;print 'F2=';
show(myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-x1)/theta,1,hold),w1,(-x2)/theta,1,hold))
hold=false
F2(x1,x2,theta)=myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-x1)/theta,1,hold),w1,(-
x2)/theta,1,hold)
show(F2(x1,x2,theta)) 

       

F2=

hold=true
print 'Diff: d̂2F2 /dx1 dx2';show(mydiff(mydiff(F2,x1,true),x2,true))
hold=false
print('f2=');f2=mydiff(mydiff(F2,x1,true),x2,true);show(f2(x1,x2,theta)) 

       

Diff: d̂2F2 /dx1 dx2

f2=

     ,      

hold=true;print 'F3=';
show(myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,0,1,hold),w1,(-
x2)/theta,x1,hold)+myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-x1)/theta,1,hold),w1,x1,1,hold))
hold=false
F3(x1,x2,theta)=myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,0,1,hold),w1,(-
x2)/theta,x1,hold)+myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-x1)/theta,1,hold),w1,x1,1,hold)
show(F3(x1,x2,theta)) 

       

F3=

1 − 1/θ <= <= 1 − 1/θx1

( , ) :F2 x1 x 2 0 ≤ ≤ 1 − 1/θx 1 −θ ≤ ≤ −θx 2 x1

1d d d∫
1

−
x 2

θ

∫
1

−w1 x1

θ

∫
θ +w1 x2

0
w2 w0 w1

+
3(2θ + 2 − 1) + 3 + 3θ − 2θx1 x2 θ2 x 1

6θ

3( + θ ) +θ2 x1 x2
2 x 3

2

6θ3

( , ,θ) ↦ +x1 x 2
1
θ
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θ2

+
1
θ
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θ 2

( , ) :F3 x1 x 2 0 ≤ ≤ 1 − 1/θx 1 −θ ≤ ≤ 1 − θx 1 x2

1d d d + 1d d d∫
1

x1

∫
1

−w 1 x 1

θ

∫
θ +w1 x2

0
w2 w0 w1 ∫

x1

−
x 2

θ

∫
1

0
∫

θ +w1 x2

0
w2 w0 w1

θ + + − +1 2

2 3 + θ + 3(2θ + )θ2 2 3
1

2
2 3(2θ + 2 − 1) + 3 + 3θ − 2θ1 2

2
1



hold=true
print 'Diff: d̂2F3 /dx1 dx2';show(mydiff(mydiff(F3,x1,true),x2,true))
hold=false
print('f3=')
f3=mydiff(mydiff(F3,x1,true),x2,true);
show(f3(x1,x2,theta)) 

       

Diff: d̂2F3 /dx1 dx2

f3=

     ,      

hold=true;print 'F4=';
show(myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,0,1,hold),w1,-
x2/theta,x1,hold)+myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-x1)/theta,1,hold),w1,x1,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-x1)/theta,1,hold),w1,(1-x2)/theta,1,hold))
hold=false
F4(x1,x2,theta)=myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,0,1,hold),w1,-
x2/theta,x1,hold)+myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-x1)/theta,1,hold),w1,x1,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-x1)/theta,1,hold),w1,(1-x2)/theta,1,hold)
show(F4(x1,x2,theta)) 

       

F4=

hold=true
print 'Diff: d̂2F4 /dx1 dx2';show(mydiff(mydiff(F4,x1,true),x2,true))
hold=false
print('f4=')
f4=mydiff(mydiff(F4,x1,true),x2,true);
show(f4(x1,x2,theta)) 

       

Diff: d̂2F4 /dx1 dx2

f4=

     ,      

hold=true;print 'F5=';
show(myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,0,1,hold),w1,-x2/theta,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,0,1,hold),w1,(1-
x2)/theta,x1,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-x1)/theta,1,hold),w1,x1,1,hold))
hold=false
F5(x1,x2,theta)=myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,0,1,hold),w1,-x2/theta,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,0,1,hold),w1,(1-
x2)/theta,x1,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-x1)/theta,1,hold),w1,x1,1,hold)
show(F5(x1,x2,theta)) 

       

F5=

θ + + − +
1
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x 2
1 x1x 2
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3 + θ + 3(2θ + )θ2x2
1 x 3

1 x1 x2
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hold=true
print 'Diff: d̂2F5 /dx1 dx2';show(mydiff(mydiff(F5,x1,true),x2,true))
hold=false
print('f5=')
f5=mydiff(mydiff(F5,x1,true),x2,true);
show(f5(x1,x2,theta)) 

       

Diff: d̂2F5 /dx1 dx2

f5=

     ,      

hold=true;print 'F6=';
show(myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,0,1,hold),w1,0,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,0,1,hold),w1,(1-
x2)/theta,x1,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-x1)/theta,1,hold),w1,x1,1,hold))
hold=false
F6(x1,x2,theta)=myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,0,1,hold),w1,0,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,0,1,hold),w1,(1-
x2)/theta,x1,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-x1)/theta,1,hold),w1,x1,1,hold)
show(F6(x1,x2,theta)) 

       

F6=

hold=true
print 'Diff: d̂2F6 /dx1 dx2';show(mydiff(mydiff(F6,x1,true),x2,true))
hold=false
print('f6=')
f6=mydiff(mydiff(F6,x1,true),x2,true);
show(f6(x1,x2,theta)) 

       

Diff: d̂2F6 /dx1 dx2

f6=

     ,      

hold=true;print 'F7=';
show(myint(myint(myint(1,w2,0,1,hold),w0,0,1,hold),w1,0,x1,hold)+myint(myint(myint(1,w2,0,1,hold),w0,
(w1-x1)/theta,1,hold),w1,x1,1,hold))
hold=false
F7(x1,x2,theta)=myint(myint(myint(1,w2,0,1,hold),w0,0,1,hold),w1,0,x1,hold)+myint(myint(myint(1,w2,0,1,hold),w0,
(w1-x1)/theta,1,hold),w1,x1,1,hold)
show(F7(x1,x2,theta)) 

       

F7=

hold=true
print 'Diff: d̂2F7 /dx1 dx2';show(mydiff(mydiff(F7,x1,true),x2,true))
hold=false
print('f7=')
f7=mydiff(mydiff(F7,x1,true),x2,true);
show(f7(x1,x2,theta)) 

Diff: d̂2F7 /dx1 dx2

( , ,θ) ↦ 0x1 x 2

0

( , ) :F6 x1 x 2 0 ≤ ≤ 1 − 1/θx 1 0 ≤ ≤ 1x 2
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1
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f7=

For cond. density we need  (in region )

print 'fx1:';fx1(x1,x2,theta)=(1-x1)/theta;show(fx1) 

       

fx1:

Conditional density function (piecewise)

f2_cond(x1,x2,theta)=f2/fx1;f2_cond.factor() 

       

f3_cond(x1,x2,theta)=f3/fx1;f3_cond.factor() 

       

f4_cond(x1,x2,theta)=f4/fx1;f4_cond.factor() 

       

 

       

Finally,  :

hold=false
Exp(x1,theta)=myint(f2_cond(x1,x2,theta)*x2,x2,-theta,-theta*x1)+myint(f3_cond(x1,x2,theta)*x2,x2,-
theta*x1,1-theta)+myint(f4_cond(x1,x2,theta)*x2,x2,1-theta,1-theta*x1)
Exp(x1,theta).factor() 

       

Test: overall integral of conditional density f-n should be "=1":

Exp1(x1,x2,theta)=myint(f2_cond(x1,x2,theta),x2,-theta,-theta*x1)
Exp2(x1,x2,theta)=myint(f3_cond(x1,x2,theta),x2,-theta*x1,1-theta)
Exp3(x1,x2,theta)=myint(f4_cond(x1,x2,theta),x2,1-theta,1-theta*x1)
(Exp1(x1,x2,theta)+Exp2(x1,x2,theta)+Exp3(x1,x2,theta)).factor() 

       

OK

 

       

0
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θ
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large_upper_triangular_part_out

Upper part - rectangular prism (large triangular part left out)

w1,w2,w0,x1,x2,theta=var('w1','w2','w0','x1','x2','theta') 

       

Define the integration f-n:

def myint(a,b,c,d,hold=false):
    if hold==true:
        return sage.calculus.calculus.dummy_integrate(a,b,c,d)
    else:
        return(integral(a,b,c,d)) 

       

Define diff f-n:

def mydiff(a,b,hold):
    if hold==true:
        return(sage.calculus.calculus.dummy_diff(a,b))
    else:
        return(diff(a,b)) 

       

     ,      

hold=true;print 'F2=';
show(myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-x1)/theta,1,hold),w1,(-x2)/theta,1,hold))
hold=false
F2(x1,x2,theta)=myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-x1)/theta,1,hold),w1,(-
x2)/theta,1,hold)
show(F2(x1,x2,theta)) 

       

F2=

hold=true
print 'Diff: d̂2F2 /dx1 dx2';show(mydiff(mydiff(F2,x1,true),x2,true))
hold=false
print('f2=');f2=mydiff(mydiff(F2,x1,true),x2,true);show(f2(x1,x2,theta)) 

       

Diff: d̂2F2 /dx1 dx2

f2=

     ,      

hold=true;print 'F3=';
show(myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-x1)/theta,1,hold),w1,(-x2)/theta,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-x1)/theta,1,hold),w1,(1-x2)/theta,1,hold))
hold=false
F3(x1,x2,theta)=myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-x1)/theta,1,hold),w1,(-x2)/theta,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-x1)/theta,1,hold),w1,(1-x2)/theta,1,hold)
show(F3(x1,x2,theta)) 

       

F3=

0 <= <= 1 − 1/θx1
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1d d d∫
1

−
x 2

θ

∫
1

−w1 x1

θ

∫
θ +w1 x2

0
w2 w0 w1

+
3(2θ + 2 − 1) + 3 + 3θ − 2θx1 x2 θ2 x 1

6θ

3( + θ ) +θ2 x1 x2
2 x 3

2

6θ3

( , ,θ) ↦ +x1 x 2
1
θ

x2

θ2

+
1
θ

x2

θ 2

( , ) :F3 x1 x 2 0 ≤ ≤ 1 − 1/θx 1 1 − θ ≤ ≤ −θx 2 x1

1d d d + 1d d d∫
−

−1x 2

θ

−
x 2

θ

∫
1

−w 1 x1

θ

∫
θ +w1 x2

0
w2 w0 w1 ∫

1

−
−1x 2

θ

∫
1

−w 1 x 1

θ

∫
1

0
w2 w0 w1

3( + θ ) +2
1 2( + θ − 1) − 2 − 2θ + + 12

1 2
2

1 3( + θ ) − 3 + − 3θ − 3 + 22
1

2
1 2



hold=true
print 'Diff: d̂2F3 /dx1 dx2';show(mydiff(mydiff(F3,x1,true),x2,true))
hold=false
print('f3=')
f3=mydiff(mydiff(F3,x1,true),x2,true);
show(f3(x1,x2,theta)) 

       

Diff: d̂2F3 /dx1 dx2

f3=

     ,      

hold=true;print 'F4=';
show(myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,0,1,hold),w1,-
x2/theta,x1,hold)+myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-x1)/theta,1,hold),w1,x1,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-x1)/theta,1,hold),w1,(1-x2)/theta,1,hold))
hold=false
F4(x1,x2,theta)=myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,0,1,hold),w1,-
x2/theta,x1,hold)+myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,(w1-x1)/theta,1,hold),w1,x1,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-x1)/theta,1,hold),w1,(1-x2)/theta,1,hold)
show(F4(x1,x2,theta)) 

       

F4=

hold=true
print 'Diff: d̂2F4 /dx1 dx2';show(mydiff(mydiff(F4,x1,true),x2,true))
hold=false
print('f4=')
f4=mydiff(mydiff(F4,x1,true),x2,true);
show(f4(x1,x2,theta)) 

       

Diff: d̂2F4 /dx1 dx2

f4=

     ,      

hold=true;print 'F5=';
show(myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,0,1,hold),w1,-x2/theta,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,0,1,hold),w1,(1-
x2)/theta,x1,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-x1)/theta,1,hold),w1,x1,1,hold))
hold=false
F5(x1,x2,theta)=myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,0,1,hold),w1,-x2/theta,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,0,1,hold),w1,(1-
x2)/theta,x1,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-x1)/theta,1,hold),w1,x1,1,hold)
show(F5(x1,x2,theta)) 

       

F5=

+ + −
2θ + 2 − 1x 1

2θ

3( + θ ) +θ 2 x1 x2
2 x3

2

6θ 3

2( + θ − 1) − 2 − 2θ + + 1θ 2 x1 x2 θ 2 x1 x2
2

2θ3

3( + θ ) − 3 + − 3θ − 3 + 2θ2 x1 x2
2 θ2 x3

2 x1 x2

6θ3

( , ,θ) ↦ x1 x 2
1

θ2

1

θ2

( , ) :F4 x1 x 2 0 ≤ ≤ 1 − 1/θx 1 −θ  ≤ ≤ 1 − θx 1 x2 x1

1d d d + 1d d d + 1d d d∫
−

−1x 2

θ

x1

∫
1

−w 1 x1

θ

∫
θ +w1 x2

0
w2 w0 w1 ∫

x1

−
x 2

θ

∫
1

0
∫

θ +w1 x2

0
w2 w0 w1 ∫

1

−
−1x2

θ

∫
1

−w 1 x 1

θ

∫
1

0
w2 w0 w1

θ + + + − + −
1
2

x2
1 x1x 2

x2
2

2θ

2θ + 2 − 1x 1

2θ

3 + θ + 3(2θ + )θ2x2
1 x 3

1 x1 x2
1 x 2

6θ

2( + θ − 1) − 2 − 2θ + + 1θ 2 x1 x2 θ 2 x1 x2
2

2θ3

3( + θ ) − 3 +θ2 x1 x2
2 θ2 x3

2

6 θ3
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θ
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θ2

1

θ2

− − + + 1
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θ

x2

θ 2

1

θ2

( , ) :F5 x1 x 2 0 ≤ ≤ 1 − 1/θx 1 1 − θ  ≤ ≤ 0x 1 x2

1d d d + 1d d d + 1d d d∫
−

−1x2

θ

−
x2

θ

∫
1

0
∫

θ +w1 x2

0
w2 w0 w1 ∫

1

x1

∫
1

−w 1 x 1

θ

∫
1

0
w2 w0 w1 ∫

x1

−
−1x2

θ

∫
1

0
∫

1

0
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+ + − + −
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2θ

2θ +x1 x2
1
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hold=true
print 'Diff: d̂2F5 /dx1 dx2';show(mydiff(mydiff(F5,x1,true),x2,true))
hold=false
print('f5=')
f5=mydiff(mydiff(F5,x1,true),x2,true);
show(f5(x1,x2,theta)) 

       

Diff: d̂2F5 /dx1 dx2

f5=

     ,      

hold=true;print 'F6=';
show(myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,0,1,hold),w1,0,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,0,1,hold),w1,(1-
x2)/theta,x1,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-x1)/theta,1,hold),w1,x1,1,hold))
hold=false
F6(x1,x2,theta)=myint(myint(myint(1,w2,0,theta*w1+x2,hold),w0,0,1,hold),w1,0,(1-
x2)/theta,hold)+myint(myint(myint(1,w2,0,1,hold),w0,0,1,hold),w1,(1-
x2)/theta,x1,hold)+myint(myint(myint(1,w2,0,1,hold),w0,(w1-x1)/theta,1,hold),w1,x1,1,hold)
show(F6(x1,x2,theta)) 

       

F6=

hold=true
print 'Diff: d̂2F6 /dx1 dx2';show(mydiff(mydiff(F6,x1,true),x2,true))
hold=false
print('f6=')
f6=mydiff(mydiff(F6,x1,true),x2,true);
show(f6(x1,x2,theta)) 

       

Diff: d̂2F6 /dx1 dx2

f6=

     ,      

hold=true;print 'F7=';
show(myint(myint(myint(1,w2,0,1,hold),w0,0,1,hold),w1,0,x1,hold)+myint(myint(myint(1,w2,0,1,hold),w0,
(w1-x1)/theta,1,hold),w1,x1,1,hold))
hold=false
F7(x1,x2,theta)=myint(myint(myint(1,w2,0,1,hold),w0,0,1,hold),w1,0,x1,hold)+myint(myint(myint(1,w2,0,1,hold),w0,
(w1-x1)/theta,1,hold),w1,x1,1,hold)
show(F7(x1,x2,theta)) 

       

F7=

hold=true
print 'Diff: d̂2F7 /dx1 dx2';show(mydiff(mydiff(F7,x1,true),x2,true))
hold=false
print('f7=')
f7=mydiff(mydiff(F7,x1,true),x2,true);
show(f7(x1,x2,theta)) 

Diff: d̂2F7 /dx1 dx2

( , ,θ) ↦ 0x1 x 2

0

( , ) :F6 x1 x 2 0 ≤ ≤ 1 − 1/θx 1 0 ≤ ≤ 1x 2

1d d d + 1d d d + 1d d d∫
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0
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−w 1 x 1
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1

0
w2 w0 w1 ∫
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−
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θ
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1
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w2 w0 w1
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θ
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2
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1
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0
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1
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1
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1
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1

0
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+ −x1
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2θ +x1 x2
1

2θ

( , ,θ) ↦ 0x1 x 2



       f7=

For cond. density we need  (in region )

print 'fx1:';fx1(x1,x2,theta)=(1-x1)/theta;show(fx1) 

       

fx1:

Conditional density function (piecewise)

f2_cond(x1,x2,theta)=f2/fx1;f2_cond.factor() 

       

f3_cond(x1,x2,theta)=f3/fx1;f3_cond.factor() 

       

f4_cond(x1,x2,theta)=f4/fx1;f4_cond.factor() 

       

 

       

Finally,  :

hold=false
Exp(x1,theta)=myint(f2_cond(x1,x2,theta)*x2,x2,-theta,1-theta)+myint(f3_cond(x1,x2,theta)*x2,x2,1-
theta,-theta*x1)+myint(f4_cond(x1,x2,theta)*x2,x2,-theta*x1,1-theta*x1)
Exp(x1,theta).factor() 

       

Test: overall integral of conditional density f-n should be "=1":

Exp1(x1,x2,theta)=myint(f2_cond(x1,x2,theta),x2,-theta,1-theta)
Exp2(x1,x2,theta)=myint(f3_cond(x1,x2,theta),x2,1-theta,-theta*x1)
Exp3(x1,x2,theta)=myint(f4_cond(x1,x2,theta),x2,-theta*x1,1-theta*x1)
(Exp1(x1,x2,theta)+Exp2(x1,x2,theta)+Exp3(x1,x2,theta)).factor() 

       

OK

 

       

1 2

0

fx1
0 ≤ < 1x 1

( , ,θ) ↦ −x1 x2
− 1x 1

θ

( , ,θ) ↦ −x1 x2
θ+x2

( −1)θx1

( , ,θ) ↦ −x1 x2
1

( −1)θx1

( , ,θ) ↦ x1 x2
θ + −1x1 x2

( −1)θx1

E( | )x2 x1

− θ − θ +1
2 x 1

1
2

1
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1



 

 

 

 

 

Non-exclusive licence to reproduce thesis and make thesis public 

 

 

 

 

 

I, Agris Vaselāns (date of birth: 05.08.1988), 

 

 

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to: 

 

1.1. reproduce, for the purpose of preservation and making available to the public, including 

for addition to the DSpace digital archives until expiry of the term of validity of the 

copyright, and 

 

1.2. make available to the public via the web environment of the University of Tartu, 

including via the DSpace digital archives until expiry of the term of validity of the 

copyright, 

 

Predictions by Non-Invertible ARMA Models, 

  

 

supervised by Raul Kangro 

 

 

 

2. I am aware of the fact that the author retains these rights. 

 

3. I certify that granting the non-exclusive licence does not infringe the intellectual property 

rights or rights arising from the Personal Data Protection Act.  

 

 

 

 

Tartu, 20.05.2013 

 

 
 


	Introduction
	ARMA model and the concept of non-invertibility
	Non-invertibility 
	The Autocovariance Generating Function

	Forecasting
	Multivariate Gaussian
	Forecasting invertible Gaussian model
	One step ahead prediction

	Non-invertible Gaussian processes
	Strictly non-invertible MA(1)

	Non-invertible non-Gaussian MA(1) process
	Predictions by non-invertible non-Gaussian MA(1)
	Simulation studies


	Application
	The Overshorts data
	Predictions by non-invertible MA(1) 

	Summary
	Kokkuvõte
	Bibliography
	Appendix
	Graphs - Section1
	Graphs - section 2.4.1
	Coefficient test of the Section 2.4.1
	Efficiency code of the Section 2.4.1
	Graphs and code of the Chapter 3
	Sage computations 1
	Sage computations 2
	Sage computations 3
	Sage computations 4


