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Introduction

Data science has established itself as the fourth pillar of scientific discovery in addi-
tion to experimental, theoretical and computational science. This thesis addresses the
use and further development of state-of-the-art data science methods for questions
encountered in cosmology and astrophysics. The corresponding datasets are galaxy
catalogues and turbulent magnetically dominated plasma simulation data. The data
analysis problems for these seemingly different two datasets are after all similar: we
wish to detect clustering of data points.

Galaxies are one of the largest objects in the Universe that are visible with am-
ateur observational equipment. For over 50 years, systematic surveys viewing the
cosmos in different wavelengths have pioneered in the discovery of new astrophys-
ical objects and mapping the large scale of the Universe. Moreover, developments
in observational technology and computer capabilities have created an abundance of
astronomical data and thereby possibilities for applying complex analysis tools. In
addition to advancements in observational and analysis methods, high-performance
computing systems aka supercomputers have made it possible for astrophysicists to
simulate physical phenomena, events otherwise not possible to be observed in such
detail or abundance; or anymore in the cosmos. This thesis applies and develops
clustering tools for observational archives and simulated data. The interest lies in
detecting clustering in 1-dimensional to n-dimensional spaces.

Surveys have been the driving force of modern astronomy. The surge of astro-
nomical data started in the late nineties with the first big ambitious astronomical
surveys, such as the Two Micron All Sky Survey (2MASS) (Skrutskie et al. 2006),
2dF Galaxy Resdhift Survey (2dfGRS) (Colless et al. 2001) and Sloan Digital Sky
Survey (SDSS) (York et al. 2000). In mapping the visible Universe, one of the pi-
oneering surveys is the SDSS. Since the start of data collection in 2000, SDSS has
gathered information about hundreds of millions of astronomical objects, some of
them reaching as deep as redshift 6, when the Universe was less than 109 years old.
This archive of objects has offered more cosmological discoveries than any of its pre-
decessor and continuing to be in the front line of science. The SDSS offers the most
comprehensive database of observed galaxies. Maps created out of these galaxy cat-
alogues manifest the web-like pattern of matter in the present-day Universe; reveal-
ing the large scale structure of the Universe, which consists of high-density galaxy
clusters, bridging elongated galaxy filaments, 2-dimensional sheets of galaxies and
almost empty voids. The previously described complex network of galaxies is clearly
visible on Figure 1. It is a map of galaxies residing in the Universe, obtained from
the Sloan Digital Sky Survey data release 8.
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Figure 1: Large scale structure of the Universe, plotted is the luminosity density of galaxies.
Image: L. J. Liivamägi.

The energy content of the Universe is 4.6% of baryonic matter, which is the mat-
ter that radiates in the electromagnetic spectrum of wavelengths, 24% of dark matter,
which is only traceable by its gravitational effects, and 71.4% of dark energy. The
structure of the Universe has been studied for decades (Sunyaev & Zeldovich 1970;
Jõeveer et al. 1978; Peebles 1980; Bond et al. 1996). The cosmic web is the lead-
ing evidence for the existence of the dark matter, providing us with a view of its
distribution in the Universe. Galaxy clusters consisting of hundreds of galaxies are
held together by the gravitational pull of the dark matter. Galaxies in the filamen-
tary structures are driven towards merger with the clusters by the same gravitational
pull of dark matter collapsing towards the cluster. Galaxies inside the lower density
sheets and voids are dragged into filamentary highways. Put shortly, matter in the
Universe moves towards higher density regions, whilst dark energy is enlarging the
distances between objects and tears gravitationally unbound objects forever further.
Thus, analysing the galaxy distribution stands as one of the leading tools in under-
standing the dark matter. In this thesis we study the dark matter driven elongated
galaxy filaments with techniques from spatial point pattern theory.

Computer-driven explorations in physics have emerged as an invaluable source
for new scientific discoveries. Supercomputing has paved a way towards a surge of
data in high-energy astrophysics, including astrophysical plasma simulations. In this
thesis, we apply clustering methods to a plasma pool of magnetically dominated tur-
bulent charged particles. Most interest lies in mapping particles belonging to thin
elongated current sheets. These thin elongated structure elements are clearly visible
as the darker blue or deeper red lines in the 3−dimensional Figure 2. After their de-
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Figure 2: Computer simulation image of turbulent astrophysical plasma, the drawn physical
quantity is the current J in z-direction. Image: J. Nättilä.

tection from a pool of many millions of plasma particles, it is possible to study these
intermittent structures in more detail. Understanding their dynamics is of great im-
portance to the plasma astrophysics. Physically the current sheets are the main agent
in turbulent plasma that accelerate non-thermal particles. In addition to astrophysical
plasma, understanding the plasma sheets is key for plasma confinement needed in
fusion reactors as well as for understanding space weather.

Different clustering analysis techniques are applied in this thesis in order to study
observational galaxy datasets and astrophysical plasma simulation data, both con-
sisting of millions of objects. We explore the galaxies residing in filaments to find
patterns in their distances using spatial point patterns theory. Furthermore, we anal-
yse possible clustering between two different types of catalogues of galaxies and a
stochastically retrieved network of filamentary spines using advanced spatial point
pattern techniques. This thesis applies spatial correlation and clustering algorithms
to find correlations in a 1-dimensional pattern of galaxies, and detects a clustering
signal on a region of a sphere between a spatial pattern of galaxies and a stochasti-
cally retrieved catalogue of objects.

For the astrophysical plasma simulations we will apply an unsupervised machine
learning algorithm called the Self-Organizing Map to retrieve clusters from simu-
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lation data and develop a stacking framework to improve the desired output. The
proposed novel stacking algorithm for physical structure detection from astrophysi-
cal plasma simulation images increases the robustness of the detected clusters.

The thesis is structured as follows: The Chapter 1 gives an overview of spatial
clustering algorithms, starting with a brief overview of the rigorous mathematical
theory of spatial point processes, followed by the basic definitions of the field. Then,
the spatial point pattern analysis tools are mathematically defined and their estima-
tion functions retrieved. The Chapter 2 introduces the unsupervised clustering al-
gorithms providing also an overview of the state-of-the-art in the rapidly developing
field of computer vision algorithms used for image dissection. After that, the unsuper-
vised learning algorithm Self-Organizing Map is mathematically defined. Last, the
developments for obtaining more robust object boundaries for unsupervised image
segmentation results are described. The Chapter 3 introduces the physical datasets
analysed with the aforementioned algorithms, together with physical results from the
analysis. First, the galaxy dataset are described and the obtained results from the
analysis shown. Second, the astrophysical plasma simulation data is explained and
the results from unsupervised clustering algorithms are highlighted. The thesis ends
with a concluding Chapter 4 that provides a synthesis of the papers of this thesis.

12



1 Spatial clustering algorithms

This chapter introduces spatial point patterns as well as statistical tools that are used
to study the clustering of spatial objects of interest in this thesis. First, a brief
overview of spatial point pattern analysis is provided. Second, the mathematical
definition of a point process with most important examples discussed. Then, the pair
correlation function, which analyses spatial correlation of distances between pairs
of points of a point pattern, is defined. The chapter discusses also the bivariate
J−function, which studies nearest-neighbour distances from one spatial point pattern
to another random set of spatial objects.

1.1 Overview of spatial point pattern analysis

The following brief overview of the spatial point pattern analysis is based on the
presentation in the books Baddeley et al. (2015) and Illian et al. (2008). A spatial
point pattern is an outcome of an experiment. The random mechanism that generates
a spatial point pattern is referred to as a point process. If we generate the same random
point processes multiple times under identical conditions, the outcomes differ each
time.

Many observations can be represented as a spatial pattern of points. Already in
the 19th century the epidemiologist John Snow mapped cholera victims residences
and showed their proximity to a contaminated water pump (Snow 1855). More con-
temporary examples from other domains of sciences include the studies of urban
areas (Brelsford et al. 2018; Huynh 2019); roads in a tropical forest (Kleinschroth
et al. 2016); locations of trees in native woodland vegetation (Chang et al. 2013);
multiple biological species in an observation area (de Jongh & van Lieshout 2020) or
even instances of burglaries in the city of London (Povala et al. 2019). In astronomy,
the spatial locations of galaxies in the Universe or stars in a globular cluster have
been described by a configuration of points in an observation window for decades
(Jõeveer et al. 1978; Martinez & Saar 2001; Kuhn et al. 2012).

These events and objects can be represented by their spatial locations in the ob-
served space. Furthermore, each point in a spatial pattern of points can be assigned
with additional characteristics, for example the luminosity and/or the type of the
galaxy. These characteristics are called marks, and such a point pattern is referred
to as the marked point pattern.

Exploratory analysis of spatial point patterns can reveal spatial correlations,
trends in their spatial density, or even positive dependence to other spatial patterns.
The latter can be observed if the spatial data is classified into different types, or we
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are observing two patterns of points drawn from two processes. Analysing the spatial
data with summary statistics gives estimates for the aforementioned features in the
point pattern. In such cases, the different possible types of distances for the point pat-
tern are calculated, e.g., the pair-wise distances among the points in the pattern, the
smallest distance from a point of the pattern to another point of the pattern (nearest-
neighbour distance), or the distance from a fixed point in the observation window to
the first point of the point pattern (empty-space distance).

There exists also further possibilities for analysing a spatial point pattern by fit-
ting a statistical model to the observed pattern. Constructing and fitting a point pro-
cess model on point pattern data means synthesizing knowledge gained from a rig-
orous exploratory analysis. A statistical model is a more exhaustive portrayal of the
point pattern. A good model is easy to interpret and simple; it contains information
about the nature and spatial extent of the interactions and correlations present in the
point pattern. In the case of a marked point pattern, the influence of the marks is
explicit. Such models can be used to simulate the observed pattern, and with the pos-
sibility of changing parameters, new insight into the data can be obtained. Examples
of statistical models include the Gibbs model, which was first designed to describe
the physics of gas molecules, and marked space-time point process models, which
can be used to analyse earthquakes (Ogata 1998). In the latter case, the process has
in addition to its position x, marks of time t and magnitude m.

Observational physics has developed and used broadly the tools of spatial statis-
tics. Physical phenomena follow the laws of physics, which can be modelled with
restrictions by statistical models. The structure features of the Universe referred to
as galaxy filaments can be modelled from a spatial pattern of galaxies by an object
point process with interactions (Stoica et al. 2010; Stoica 2010). Such a model is
developed for 3−dimensional galaxy catalogues and referred to as the Bisous model
in Tempel et al. (2014).

In this thesis, we will probe the structure of the Universe with tools from spatial
statistics, with the main goal to find signals of spatial correlation and clustering,
which indicates that the observed points tend to be closer together than would be
expected for a completely random pattern. We will search for patterns in the galaxy
locations in the modelled galaxy filaments, in Paper I and Paper II. Spatial clustering
between the Bisous filaments and a new dataset of galaxies in the observed space of
the Universe is discussed in Paper III.

1.2 Point processes

A point process is a random mechanism in an observed sampling window W that pro-
duces a point pattern. In spatial statistics, we are interested in identifying trends in the
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Figure 1.1: Two distinct simulations of the Poisson point process. The left panel shows
the homogeneous Poisson process with intensity λ = 500 in a unit square. The right panel
shows the inhomogeneous Poisson process with an intensity function dependent on the x axis
location.

spatial arrangement of these observed points. In this section, we define a point pro-
cess and highlight most known point processes, following the presentations of Stoica
(2010) and Baddeley et al. (2007). More comprehensive mathematical presentations
of point processes can be found in the monographs of Stoyan & Stoyan (1994), van
Lieshout (2000), Møller & Waagepetersen (2004), Illian et al. (2008), Chiu et al.
(2013), and Baddeley et al. (2015).

Let W ⊂ R2 be a compact set and ν be the Lebesgue measure in R2 and (W,BW , ν)
the natural restriction to W of (R2,B, ν), with B being the associate Borel σ−algebra.
Wn is the set of all unordered configurations w = {w1,w2, ...,wn}, which consist of
n not necessarily distinct points wi ∈ W, for n ∈ N. We consider the configuration
space given by ΩW =

⋃∞
0 Wn equipped with the σ− algebra FW generated by the

mappings {w1, ...,wn} →
∑n

i=1 1{wi ∈ B} that count the number of Borel sets B ∈ BW .
This leads us to define a point process: a point process on W is a measurable map from
a probability space (ΩW ,FW). In other words, a point process is a random configu-
ration of the points lying in W. Simplest point processes are the uniformly random
points and the binomial point process. A point process X in the observation window
W with n ∈ N identically distributed points from a density function f is referred
to as the binomial point process, denoted as X ∼ binomial(W, n, f ). For simulating
the binomial point process, each point is generated independently by sampling its
coordinates (x, y) from a density function f in the sampling window W.

The Poisson point process represents complete spatial randomness and is often
used as a reference process in many spatial statistics tools. Let β : W →]0,+∞[ be
the intensity function of a Poisson point process in W. Then, a Poisson process is
defined by the following two properties:

15



1. for any bounded set B, N(B), the number of points in B is a Poisson random
variable with mean Λ(B) =

∫
B β(x)dν(x),

2. for any B1, ..., Bm disjoint bounded sets, the point counts N(B1), ...,N(Bm) are
independent random variables.

If the Poisson point process has a constant intensity β = const, then the process is
said to be homogeneous. If the average density of points β is a function of spatial
location β(x, y), then the Poisson point process is inhomogeneous.

Figure 1.1 highlights the difference of the homogeneous and inhomogeneous
Poisson processes. At any location on the left panel the density of points is visi-
bly not dependent on the location inside the unit square. On the right panel on the
other hand, the point density is clearly dependent on the (x, y) location in the unit
square. These theoretical processes carry as vital reference cases for many spatial
statistics tools, such as the ones we will describe in the following sections.

1.3 Correlation and clustering analysis of point processes

1.3.1 The pair correlation function

A wide variety of techniques exist for studying dependencies in a point pattern. This
section starts by describing the pair correlation function following the representations
of Møller & Waagepetersen (2017), Baddeley et al. (2015), Martinez & Saar (2001)
and Pons-Bordería et al. (1999). A more rigorous mathematical formalism for the
pair-correlation function with examples to astronomical study cases is done in the
paper of White (1979). The pair correlation function is easily interpretable and al-
lows to study the correlation between points in a point pattern, here correlation is a
summary statistic describing the association between points in a point pattern. The
pair correlation function is widely known in the field of astronomy and was used for
investigating galaxy-pair distances inside galaxy filaments in Paper I and Paper II.

The pair correlation function estimates the excess probability for two points lying
at a distance r from each other in comparison to complete spatial randomness (CSR).
Its is a second order statistics for a point process. The intensity λ of a point pattern is
a first-order characteristic of the process. Let λn be the nth order joint intensity func-
tion. Then for pair-wise distinct points u1, . . . , un in the observation window W with
infinitesimally small volumes du1, . . . , dun, we can define λ(n)(u1, . . . , un)du1, . . . , dun

as the probability of observing a point in each of the n infinitesimal volumes. For a
pair of points u, v ∈ W the pair correlation function (pcf) is

g(u, v) =
λ(2)(u, v)
λ(u)λ(v),

(1.1)
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where u , v. The case g(u, v) > 1 means that there is attraction between the points u
and v. The values g(u, v) < 1 indicate inhibition between u and v; g(u, v) = 1 corre-
sponds to u and v locating independently of each other. Let us denote with r = d(u, v)
the distance between the points according to the corresponding distance metric d.
The pair correlation function can be expressed to depend only on the distance be-
tween the points if the studied point process is homogeneous (invariant under trans-
lations) and isotropic (invariant under rotations) (Møller & Toftaker 2014; Møller &
Waagepetersen 2007). In such case, we can write the following representation for the
pair correlation function

g(u, v) =
λ(2)(d(u, v))

λ2 = g(r). (1.2)

The pair correlation function g(r) and correlation function ξ(r) have the following
relationship

g(r) = ξ(r) + 1. (1.3)

Equivalently to the discussion above, in case of complete spatial randomness, the
pair correlation function in Equation (1.3) takes the value g(r) = 1. If the distance r
between the pairs of points of a process are less frequent than would be expected for
uniformly distributed points, the pair correlation function will take the value g(r) < 1.
In case of g(r) > 1, the interpoint distance r is more frequent than expected under the
hypothesis of a stationary Poisson point process.

The pair correlation function highlights the preferred and disfavoured distances
between points in a point process in comparison to a completely random pattern of
points. It is an easily interpretable statistical quantity used vastly in the field of as-
tronomy (Davis et al. 1988; van de Weygaert 1991; Buryak & Doroshkevich 1996;
Somerville et al. 1997). Baddeley et al. (2015) emphasises the difference between
pair correlation function and correlation in statistical sense: the pair correlation func-
tion describes correlation with possible values from 0 to infinity, when the statistical
correlation between two random variables can obtain values from [−1, 1].

1.3.2 Estimation of the pair correlation function

There is abundant literature about the ways to estimate the correlation function ξ(r)
in Equation (1.3) for point processes (Chiu et al. 2013; Doguwa 1990; Fiksel 1988;
Baxter & Rozo 2013). The following brief mathematical representation follows that
of Pons-Bordería et al. (1999) and Davis & Peebles (1983).

We are observing a manifestation of a point process in an observation window
W, with N points. The goal of the analysis is to study possible spatial patterns in the
locations of the points in W. This means that we are interested in studying whether



there exists preferred distances between the pairs of points. As the reference case
randomly distributed points are generated, which describes complete spatial random-
ness in the positioning of points in the observation window W. The random catalogue
consist of Nrd random points. Most often, uniformly distributed points or a Poisson
point process are generated.

To define the necessary metrics, we draw two circles of radius r and r+∆r centred
on a point in the point pattern in the observation window W, ∆r being a very small
increment of distance. Then we can define DD(r) as the count of pairs of points of
the studied point pattern in the observation window W that lie at a distance [r, r + ∆r]
from each other. DR(r) is defined as the count of pairs of points of the studied point
pattern, and the generated random point pattern in the observation window W that lie
at a distance [r, r + ∆r] from each other.

A wide variety of estimators for the correlation function ξ(r) exist in literature
(Davis & Peebles 1983; Landy & Szalay 1993; Hamilton 1993). The main differ-
ences between them is in the correction for edge effects (Pons-Bordería et al. 1999;
Kerscher et al. 2000). In the following we provide a description for the most common
correlation function estimator applied in Paper I and Paper II. The Davis & Peebles
(Davis & Peebles 1983) correlation function estimator is

ξ̂(r)DP =
Nrd

N
·

DD(r)
DR(r)

− 1 (1.4)

The estimation for the pair correlation function ĝ(r) is obtained by inserting Equa-
tion (1.4) in Equation (1.3). The previously mentioned estimator requires the studied
point pattern to be isotropic, alternative estimators are proposed in Stoyan & Stoyan
(1994). The estimation function ξ̂(r)DP needs a big enough set of random points,
in order to increase its accuracy; the size of which can be determined by the use
of numerical tests. The choice of ∆r is arbitrary and most often determined by the
scales of interest in the analysis, such that the smallest pair-wise distances are ex-
istent in the dataset. Pons-Bordería et al. (1999) and Kerscher et al. (2000) present
a comprehensive study on the biases, dependences on random samples and the er-
rors of different correlation function estimators. Pons-Bordería et al. (1999) finds no
universal preferred estimator for all cases of study, the choice should be done depen-
dent on the data set and analytical task at hand. On the other hand, Kerscher et al.
(2000) attributes the Landy & Szalay (Landy & Szalay 1993) estimator to have the
best performance.

In addition to the Davis & Peebles spatial correlation function estimator ξ̂(r)DP
the border-corrected Landy–Szalay (Landy & Szalay 1993) and the Hamilton (Hamil-
ton 1993) estimator are applied to the study of pair-wise distances between galaxies
in a spatial pattern of galaxies in Paper I and Paper II. All these spatial correlation
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techniques were able to reveal the preferred distances between galaxies inside galaxy
filaments, unknown until then.

1.3.3 The bivariate J−function

The previously mentioned spatial correlation techniques study all pair-wise distances
between distinct pairs of points of a point pattern, but additional information can
be retrieved from patterns of points if only the nearest-neighbour distances are anal-
ysed. Such an analysis can be done with the J−function. It is a summary statistics
technique, which analyses the positive association (clustering) of points in a point
pattern. The method can be generalized to determine clustering between a point pat-
tern and any set of random objects, yielding the bivariate J−function (Møller &
Waagepetersen 2004; van Lieshout 2000). The bivariate J−function was until now a
mostly unknown clustering analysis technique for astronomers. The tool was intro-
duced to the community with the Paper III, where spacing between a galaxy dataset
and filamentary pattern were analysed.

The bivariate J−function carries information about the dependence between
these spatial patterns. Mathematically rigorous descriptions for the summary statis-
tics described in the following can be found in van Lieshout (2000), Møller &
Waagepetersen (2004), Illian et al. (2008), Chiu et al. (2013), and Baddeley et al.
(2015). This sections follows the representations given in Baddeley et al. (2015) and
Paper III.

We are observing two processes, a point process X and a random set Y . To explore
the spacings between a point pattern and any random set of objects with the use of the
bivariate J−function, the empty-space function and the bivariate nearest-neighbour
function need to be defined. Also we need to assume that (X,Y) is jointly stationary
(Foxall & Baddeley 2002) i.e. the distributions of the bivariate process (X,Y) and of
the bivariate process (X + e,Y + e) are identical for any transition vector e ∈ R3.

The empty-space function FY (r) is a cumulative distribution function of the dis-
tances from an arbitrary location u in the observation window W to the nearest ran-
dom object of Y:

FY (r) = P
{
d(u,Y) ≤ r

}
. (1.5)

The bivariate nearest-neighbour function GX,Y (r) is the cumulative distribution func-
tion of the distance from a typical point of the point process X to the nearest objects
of the random set Y

GX,Y (r) = P
{
d(u,Y \ u) ≤ r | X has a point at u

}
. (1.6)

Now we can define the bivariate J−function as

JX,Y (r) =
1 −GX,Y (r)
1 − FY (r)

(1.7)
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for all r ≥ 0 such that FY (r) < 1. The JX,Y function measures association between
two spatial patterns X and Y drawn from different processes (Foxall & Baddeley
2002). In case of a point pattern generated by the stationary Poisson point process
with intensity β describing complete spatial randomness (see Figure 1.1), the afore-
mentioned summary statistics have exact formulas

F(r) = 1 − exp[−βπr2],

G(r) = F(r),

J(r) = 1. (1.8)

If X and Y are independent, then GX,Y = FY and JX,Y = 1. Values for JX,Y

higher than 1 suggest negative association or “repulsion”, and values lower than 1
suggest positive association or “clustering”. The J−function can be interpreted as
the ratio of two survival functions 1 − GX,Y (r) and 1 − FY (r), which describe the
distribution of distances of two different regimes (van Lieshout & Baddeley 1996;
Foxall & Baddeley 2002). The numerator is the survival function of distances from
a point of the process X to the nearest object in the random set Y . The denominator
is the survival function of distances from a fixed arbitrary point to the nearest object
in the random set Y . The values of J(r) < 1 indicate that the survival function of the
distances from a point of the process X to the nearest object in the random set Y is
smaller than the survival function for the distance from a fixed arbitrary point to the
nearest object in the random set Y . This indicates clustering between the patterns X
and Y . For the values of J(r) > 1 the survival function for the distance from a fixed
arbitrary point to the nearest object in the random set Y is smaller. This indicates
repulsion between the patterns X and Y .

1.3.4 Estimation of the bivariate J− function

We are observing processes in a bounded window, which introduces edge effects.
Thus we adopted the border-corrected estimation for the analysis as in van Lieshout
& Baddeley (1996) and Foxall & Baddeley (2002). The shortest distances from a
point w ∈ W to a subset A ⊂ W,

d(w, A) = infa∈A‖w − a‖. (1.9)

The border-corrected estimator for the empty space function is

F̂Y (r) =

∑
i 1{d(wi,Wc) ≥ r}1{d(wi,Y) ≤ r}∑

i 1{d(wi,Wc) ≥ r}
, (1.10)
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with Wc the border of W and {wi, i = 1, 2, . . .} a finite family of arbitrary points in W.
The border-corrected estimator of the bivariate nearest-neighbour function is

ĜX,Y (r) =

∑
i 1{d(xi,Wc) ≥ r}1{d(xi,Y) ≤ r}∑

i 1{d(xi,Wc) ≥ r}
, (1.11)

where {xi, i = 1, . . .} is the observed finite-point configuration of X and hence the
border-corrected estimator for bivariate J function is

ĴX,Y (r) =
1 − ĜX,Y (r)

1 − F̂Y (r)
. (1.12)

An approximation of the variance and other properties of the bivariate J−function
estimator in Equation (1.12) is given in van Lieshout & Baddeley (1996, 1999); Fox-
all & Baddeley (2002).
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2 Unsupervised clustering algorithms

This chapter introduces machine learning algorithms that are used for object dissec-
tion from images and 3D videos. Because of the scope of this thesis, we will focus on
image segmentation using unsupervised clustering algorithm tools. First, we present
a general overview of available tools and the state-of-the-art in image segmentation.
Then the chapter describes more thoroughly an artificial neural network algorithm
Self-Organizing Map (SOM). Last, a novel stacking algorithm developed in Paper IV
for obtaining more robust boundaries for objects on an image is presented.

2.1 Overview of machine learning algorithms for image segmentation

Machine learning algorithms are utilized in a wide variety of concepts. In statistical
modelling, data is described with models, which take into account assumptions about
the data. Often the goal is to test a hypothesis about the data. The goal of machine
learning is to make predictions about novel data with an algorithm that is derived from
previous observations. In addition, these algorithms do not need explicit assumptions
for the data.

Computer vision is maybe one of the most popular machine learning domains.
The best algorithms dissecting objects from images or 3D videos include the non-
local neural network algorithms proposed in Wang et al. (2017) and Zhu et al. (2019).
Valada et al. (2019) forms a Self-Supervised Model Adaptation for recalibrating
and fusing modality-specific feature maps, as feature vectors are often not invari-
ant. Convolutional neural networks can be applied to goals other than image pro-
cessing. Landrieu & Simonovsky (2018) improves semantic segmentation for large
3D point clouds. The point cloud is represented as interconnected shapes, which are
then feed into a deep learning algorithm based on graph convolutions. These best-
performing image and 3D point cloud processing tools are fully supervised learning
algorithms that come with high computational cost. In addition, the algorithms need
to be trained with vast amounts of pixel-level labelled data, which is not always avail-
able and wears down the analysis.

Convolutional neural networks, whose different architectures are the backbones
of deep learning algorithms, are also shown to produce significant results with labels
only on the image level or with bounding box information (Zhou et al. 2016). Such
deep learning tools are referred to as semi-supervised learning algorithms.

If there is no classification information about the images available, the analysis
can be done with unsupervised learning tools. For these algorithms only information
of the input variables is known, but the aspired output is unknown. The algorithm will
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learn a representation of the input data with a few explicit assumptions. One of the
most known unsupervised clustering algorithms is the k-means (Lloyd 1982; Stein-
haus 1956). More complex clustering analysis paradigms like Neural Gas (Martinetz
& Schulten 1994) and Self-Organizing Map (Kohonen & Mäkisara 1989; Kohonen
2001) create an elastic cloud or a layer of neurons, which learn a 2−dimensional
representation of the input data. Often their accuracy is not as good as fully super-
vised counterparts. Choosing a machine learning algorithm is highly dependent on
the dataset being studied, possibility of labelling data and available computational
resources.

To obtain insight about clusters representing physical phenomena in astrophysi-
cal simulation images, we wanted to train a machine learning model with the physical
data. Options for that were linear regression analysis; prototype and distance based
methods like k-means or learning vector quantization methods; linear threshold clas-
sifiers such as support vector machines; or non-linear regression such as deep neural
networks. The choice of method is delicate and there exists an abundance of literature
about basic models and their varied developments e.g., Ding & Hua (2014); Gatys
et al. (2015); Schneider et al. (2009); Mwebaze et al. (2015); Basheer & Hajmeer
(2000). The basic approach is to start simple and try to obtain insight of the data
and its variation. Interpretation is key for each analysis tool, simple models being
easier to understand and interpret. Results obtained should be reliable and applicable
to new data. Another important step in the model design is the selection of features,
which should represent the variability in the data. Feature architecture can be done by
designed models. For example, the principal component analysis is a model designed
for creating linear components of original data features (Cross 2015). These linear
components describe the most of variability in the dataset and can be used as the fea-
tures in the model training. Multiple learning algorithms are also designed for data
visualization, such as the principal component analysis and artificial neural networks
models like Self-Organizing Map. Preliminary analysis with data visualization tools
bring insight into the data and simplify the further analysis process.

Image segmentation is labelling every pixel on the image with a corresponding
class. In Paper IV we tackled the issue of image segmentation without knowledge
about the ground truth of the pixels. This is the case in many astrophysical sim-
ulations and observational datasets. We trained a model, which is able to classify
N-dimensional data pixels into clusters, where each cluster corresponds to a physical
structure in an astrophysical plasma simulation. We obtained segmented pixels of
the astrophysical simulation images, where each segmented structure corresponded
to a physical phenomenon in the turbulent plasma. The structures are fine and their
geometrical dimensions are of great interest to the astrophysics community.
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The segmentation from image data is done in three steps:

1. An artificial neural network model is applied to obtain a set of cluster IDs.

2. The algorithm is applied multiple times independently on the same physical
data, acquiring multiple sets of independent realisations for the cluster IDs.

3. The independent sets of cluster IDs are then stacked in a statistical framework
as discussed in Section 2.3.

The aforementioned process is computationally very powerful due to trivial paral-
lelization over independent inference steps.

2.2 Self-Organizing Map

A Self-Organizing Map (SOM), also known as Kohonen’s map is a machine learning
algorithm that has gained popularity as a clustering analysis method and as a tool
for visualization in exploratory data analysis. The SOM belongs to a class of un-
supervised algorithms that do not need a-priori knowledge of the different clusters;
the method performs the separation of data into multiple clusters on its own. A rigor-
ous mathematical presentation of the Self-Organizing Map is given in the monograph
Kohonen (2001). In the following we will give a description of the SOM algorithm
using Kohonen (2013), Kohonen & Mäkisara (1989) and Kohonen (2001).

A neuron is a data point assigned with an initial vector, which "lives" in the same
dimension as the studied input sample vector. The neuron vector can be initially given
random values sampled from the input sample space or more sophisticated starting
initialisation can be done, if needed. Data analysis based initialization methods are
discussed in Kohonen (2013) and Valova et al. (2013). A neural network is a layer of
such neurons. In our study, the neurons in a Self-Organizing Map are positioned on
a 2−dimensional elastic grid, in such manner that the distances between the neurons
indicate their vector distances. Figure 2.1 shows an example of a square shaped Self-
Organizing Map (Kohonen’s map) of neurons and the input sample vector.

Mapping observations of a dataset into an artificial grid, or into a number of
generated centroids in the sample space, is one of the main assignments of unsuper-
vised machine learning techniques. The SOM algorithm moulds an elastic network
of neurons with the use of learning rules, neighbourhood information and competi-
tive learning to represent the input data. The neurons on the 2-dimensional network
can be combined to form clusters with the use of a distance metric. Each cluster
is represented by a centroid, which describes the most of the variability in the ob-
served cluster, and each input data vector is assigned to a cluster by mapping it to
the most similar neuron on the neural map. The result of the chosen SOM is a
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Figure 2.1: Kohonen’s 2-dimensional rectangular map of neurons. Darker blue neu-
ron on the map indicates the winning neuron, or the Best Matching Unit wBMU (see
Equation (2.1)) for the input variable vector Xs. Light blue neurons indicate all the
neurons in the neighborhood of the winning neuron (NBMU). The arrows describe the
competitive learning step (see Equation (2.2)).

2−dimensional map, where the dimensions describe most of the variability in the
input data. A trained neural map encapsulates a 2−dimensional representation of the
l−dimensional input space. At this step the neuron map does not represent clusters
yet. The clusters are combined dependent on a smoothing length and the similarity
measure between neurons.

Let us introduce the SOM method with some more mathematical rigour. Denote
with X = {X1, . . . , Xk} the input data vector, where each element Xi describes a set of
input variables ξ j, such that Xi = [ξ1, . . . , ξl] ∈ Rl, ∀i ∈ {1, . . . , k}. We adopt a regu-
lar 2-dimensional rectangular-shaped Kohonen neural map of dimensions (m, n). In
passing, we note that a wide variety of different geometric shapes are possible, such
as square, rectangle and hexagon. In addition to regular arrays, cyclic or growing
networks can also be chosen. An accurate choice for the dimensions and architec-
ture of the map will result in a faster convergence. Kohonen (2013) recommends
selecting the map dimensions such that they describe the lengths of the first principal
components and advises for a bigger map size to detect fine structures.

The distance metric used to compute the distance (or similarity) between an input
variable vector and the neuron parametric vector is noted with d(Xs,wi). The Best
Matching Unit, wBMU (BMU) from the neuron map, is determined by

wBMU = argmini{d(Xs,wi)} (2.1)
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wBMU represents a neuron on the 2-dimensional grid, which is the most similar to the
sampled data vector Xs according to the chosen distance metric (see Figure 2.1).

The competitive learning step to modify the neuron weight vectors in an SOM
algorithm is given as

wi(t + 1) =

{
wi(t) + α(t)hci(t)[Xs(t) − wi(t)], wi ∈ NBMU,

wi(t), wi < NBMU,
(2.2)

where t = 0, 1, 2, . . . is a discrete time value. Here, NBMU is the neighborhood of the
node wBMU on the neuron map, which consists of all the nodes up to a certain geomet-
ric distance r from wBMU. NBMU influences the map’s ability to order itself and learn
the underlying data distribution (Kohonen 2001; Lee & Verleysen 2002). In the SOM
algorithm learning step, both the BMU and its spatial neighbors NBMU learn from the
input vector (see Figure 2.1). These local interactions between neurons create a kind
of elasticity for the map. The set of these neurons usually shrinks with time and is
determined by the neighborhood function hci(t). The hci(t) acts like a smoothing ker-
nel, featuring convergence hci(t) → 0 as t → ∞, determining the rate of change for
neurons on the map. Details and different shapes for the neighborhood function are
proposed in Kohonen (2001), Kohonen (2013) and Stefanovič & Kurasova (2011).
0 < α(t) < 1 is the learning rate, which determines the statistical accuracy of the
neuron map and the ordering of the neurons on the map. It is suggested to normalize
the sample vectors and the neuron vectors before the matching law (Equation (2.1))
and the learning step (Equation (2.2)) are applied. This will ensure that the neuron
vectors and data sample have the same dynamical range.

Learning is a stochastic process, meaning that the accuracy of the mapping de-
pends on the number of iteration steps. Kohonen (2001) recommends 500 times
the number of network units on the neural layer. It is worth noting that the size
of the input sample has no considerable effect on the number of needed iteration
steps. The SOM algorithm is computationally inexpensive and thus high numbers
of iteration steps can easily be tested. In the aforementioned representation we used
the Euclidean distance metric, but other metrics may also be applied, as long as the
matching rule in Equation (2.1) and the updating law in Equation (2.2) are mutually
compatible. Kohonen (2001) highlights that the choices for all the aforementioned
functions and their parameters are mainly chosen by trial and error.

The traditional SOM algorithm is highly flexible and can be modified in various
ways. For example, Lee & Verleysen (2002) proposed an extension of a recursive
neighborhood function to the classical algorithm that produces statistics to compare
the performances of the algorithm. In Kohonen & Somervuo (2002) the algorithm
was reinforced for clustering and visualization analysis of symbol sequences. In
Somervuo & Kohonen (1999) the algorithm was associated with an entire feature
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vector sequence and applied for speech recognition. Kohonen (1999) developed a
fast evolutionary learning step that is based on the batch-type SOM. Hammer et al.
(2004) presents an overview of several Self-organizing models, such as the temporal
Kohonen map and a recursive SOM algorithm. The SOM algorithm has been used
and further developed in thousands of scientific research papers and used in many
fields of science including medical sciences, financial sciences, and speech analysis.
An exhaustive list of the main research areas is given in Kohonen (2013).

2.3 The Statistically-Combined Ensemble framework

2.3.1 About the Statistically Combined Ensemble framework

The Statistically-Combined Ensemble (SCE) framework was derived in Paper IV. For
the SCE a collection of evaluations from a clustering algorithm are added together
to form an ensemble of cluster maps. The framework focuses on the unsupervised
semantic segmentation of images and proposes metrics to stack independent realiza-
tions of the classified pixels. These are computationally fast combination operations
for adding different image cluster matrices together. The SCE computes robust and
accurate region of interest boundaries for the different pixel clusters by statistically
averaging the segments over multiple clustering realizations.

2.3.2 Mask of a cluster

An unsupervised clustering algorithm applied to an image of size r× t will divide the
original data into n clusters. Each pixel pi j, where i ∈ {1, . . . , r} and j ∈ {1, . . . , t},
on this image is assigned to a cluster from the set of detected n clusters {C1, . . . ,Cn},
where n,C1,Cn ∈ N.

A mask Mk is defined for every cluster Ck in the set of clusters {C1, . . . ,Cn}. A
mask is a boolean matrix Mk = (mi, j) : r × t, such that

mi j =

{
0, pi j < Ck

1, pi j ∈ Ck
(2.3)

Possible values in a mask matrix Mk are {0, 1}. The element mi j in the mask matrix Mk

obtains value 1 if the pixel pi j is assigned to the cluster Ck by the observed clustering
algorithm and 0 otherwise. We define n mask matrices M1, . . . ,Mn : r × t, one
corresponding to each cluster in the set {C1, . . . ,Cn}. The mask matrix is a simplified
view of a cluster, describing the locations and area of the structure on the image. It
provides a mapping from the cluster groupings into the initial data view.

The unsupervised clustering algorithm is applied N independent times on the
same image data. As a results each pixel pi j on the original image will have
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N independent cluster evaluations. This means that N cluster sets are obtained:
{C1, . . . ,Cn1}, . . . , {C1, . . . ,CnN }, with correspondingly n1, . . . nN elements residing in
them. Using each of these cluster sets, we create N independent sets of mask matri-
ces M =

{
{M1

1 , . . . ,M
1
n1
}, . . . , {MN

1 , . . . ,M
N
nN
}
}

according to Equation (2.3). We use
a notation where the upper index of a mask matrix refers to the SOM instance index
and the lower index to the detected cluster in that instance.

2.3.3 Mask to mask stacking

A set of masks Mb = {Mb
1 , . . . ,M

b
nb
}, 1 ≤ b ≤ N, is randomly chosen from the set

of all independent mask setsM. This mask setMb is named the base mask set. The
framework will compare each mask inMb to every other mask in the setM \Mb.
For every mask inMb we acquire n1 +n2 +. . .+nN−nb comparisons. The comparison
is done between every mask in a randomly chosen base mask set against every other
mask set. This will be done as long as each set of masks has been chosen as the base
mask set.

These comparison operations between masks will rely on a set theoretical base.
We first calculate the intersection, union and sum matrices of the two masks that are
being compared. We then combine these simple quantities to derive more compli-
cated estimates to evaluate the goodness of fit between compared masks. In super-
vised segmentation the obtained result is compared with similarity measures to the
known truth about the data. Whereas in the unsupervised learning case the ground
truth does not exist. Therefore in this work we derived metrics to compare indepen-
dent cluster evaluations for the same image data. These metrics are also combined
and used for stacking of independent realizations on a chosen base mask. This created
robust regions of interest for the detected physical structures on the images.

Similarity measures
For a mask Mb

e in the base mask setMb, with nb masks and 1 ≤ e ≤ nb, and a mask
Mc

f from a mask setMc, with nc masks, 1 ≤ f ≤ nc and b , c, we can calculate three
different similarity measure matrices. These are: The union matrix U : r × t, with
possible values of {0, 1}, is defined as

U(i, j) =

{
0, Mb

e (i, j) = 0 ∧ Mc
f (i, j) = 0

1, otherwise
(2.4)

where i ∈ {1, . . . , r} and j ∈ {1, . . . , t}. The intersection matrix I : r × t, with possible
values of {0, 1}, is defined as

I(i, j) =

{
1, Mb

e (i, j) = 1 ∧ Mc
f (i, j) = 1

0, otherwise
(2.5)
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where i ∈ {1, . . . , r} and j ∈ {1, . . . , t}. The sum matrix R : r × t, with possible values
of {0, 1, 2}, is defined as

R(i, j) =


0, Mb

e (i, j) = 0 ∧ Mc
f (i, j) = 0

1, Mb
e (i, j) = 1 ∧ Mc

f (i, j) = 0 ∨

Mb
e (i, j) = 0 ∧ Mc

f (i, j) = 1
2, Mb

e (i, j) = 1 ∧ Mc
f (i, j) = 1,

(2.6)

where i ∈ {1, . . . , r} and j ∈ {1, . . . , t}.
These similarity measures are calculated between mask Mb

e in the base mask setMb

and every mask in the setM\Mb. This step is repeated until all masks in the setM
have been chosen as a base mask set.

Signal strength
Using the matrices defined in Equations (2.4) and (2.5) a signal strength sI is defined.
For any base mask matrix Mb

e and a random mask Mc
f , where b , c, the signal

strength scalar sI is

sI =

∑r×t
i, j=1 I(i, j)∑r×t

i, j=1 U(i, j)
. (2.7)

The sI is a comparison measure, which estimates how well the chosen base mask
cluster resembles other independent evaluations of clusters on the image. We denote
two independent cluster evaluations identical if their mask matrices are identical.
The signal strength gives an estimate for how similar is the intersection of two mask
matrices to the union of the two masks. We note that sI is defined for the comparison
of every mask in a base mask set to every other mask in an independent set.

If
∑r×t

i, j=1 I(i, j)→
∑r×t

i, j=1 U(i, j), then sI → 1. This means that this specific cluster
has been detected by these two independent clustering runs to be at the same location
and with similar projected shape on the image. Thus the two masks have the value 1
in the same locations and in same quantity in their r× t mask matrices. This indicates
that the pixels are accurately classified by the observed masks.

The signal strength metric sI is identical to the Mean Intersection-over-Union
(MIoU) metric, commonly used in supervised segmentation, with the difference that
the MIoU metric is defined to compare the detected segmented objects to the ground
truth — information that is lacking in the unsupervised learning case. In our case
the sI metric is defined between independent instances of unsupervised clustering
algorithms. It compares a cluster realization mask matrix to another independent
evaluation of a cluster.
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Quality of cluster unions
An accompanying measure to sI is the so-called quality measure qU , which is con-
structed using the matrices defined in Equations (2.4), (2.5) and (2.6). The quality
measure qU gives an estimate to the size of the symmetric difference of the two mask
matrices. For any base mask matrix Mb

e and a random mask Mc
f , where b , c, the

scalar qU is defined as

qU =

∑r×t
i, j=1 U(i, j)∑r×t
i, j=1 R(i, j)

−

∑r×t
i, j=1 I(i, j)∑r×t
i, j=1 R(i, j)

. (2.8)

If
∑r×t

i, j=1 U(i, j) →
∑r×t

i, j=1 I(i, j) then qU → 0, meaning that the two independent
stacked masks Mb

e and Mc
f have detected exactly the same structure in the same lo-

cations on the image. This highlights the best matching cluster masks, as they have
a small residual area between their masks matrices (area of the symmetric difference
in set theoretical notion). On the other hand as

∑r×t
i, j=1 U(i, j) →

∑r×t
i, j=1 R(i, j) then

qU → 1, indicating that the intersection of the two masks is negligible and the cluster
masks highlight different structures on the image. It describes the number of differ-
ently classified pixels compared to the sum of the pixels in the two cluster masks.

The Dice coefficient is a metric often used in supervised image segmentation.
Using the intersection matrix (Equation (2.5)) and the sum matrix (Equation (2.6))
the Dice coefficient is

D =
2 ·

∑r×t
i, j=1 I(i, j)∑r×t

i, j=1 R(i, j)
(2.9)

It is a metric positively correlated to the MIoU. The qU and sI are negatively cor-
related measures. The value qU → 1 as the intersection of the compared masks
decreases. The value sI → 1 as the intersection of the masks increases. The quality
of cluster unions qU metric is similar, but not equivalent, to the Dice coefficient.

2.3.4 Stacking multiple masks

Until now the metrics were created to compare two mask matrices from independent
clustering evaluations. This concept will be now generalized to quantities able to
average over the whole set of independent mask matrices in the set M. A matrix
G is derived, which combines the signal strength sI and the quality of union qU . It
estimates the goodness of the fit between independent cluster masks. All comparisons
for a base mask can be stacked to form a sum matrix Gsum. This measure quantifies
the goodness of fit between all the independently detected cluster masks.

If multiple independent clustering algorithms have detected the same cluster in-
dicating the same structure on the image, then these mask matrices will fit together
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well. They will contribute to the sum matrix Gsum for a base mask detecting the same
structure. On the contrary, if a cluster mask represents a different physical struc-
ture on the image, it does not contribute significantly to the total integrated goodness
measure.

A mask Mb
e in the base mask set Mb is combined with every mask in the set

M\Mb. The goodness of fit of a cluster mask Mb
e to any other cluster mask Mc

f from
M\Mb is defined as

G =
sI

qU
· (Mb

e ∪ Mc
f ), (2.10)

where sI and qU are the signal strength scalar and quality of union scalar of the
masks Mb

e and Mc
f . For the observed mask Mb

e in the base mask set Mb we obtain
n1 + n2 + . . . + nN − nb matrices according to the Equation (2.10), which have the
corresponding quotient value in the union of the two compared masks. As the mask
Mb

e will have n1 + n2 + . . . + nN − nb signal strengths sI and qualities of union qU .
Then for every base mask Mb

e inMb all n1 + n2 + . . .+ nN − nb of its G−matrices can
be summed together to yield

Gsum =

N∑
k=1

nk∑
l=1

( sI

qU
· (Mb

e ∪ Mk
l )
)
, (2.11)

where k , b. All mask sets in M will be chosen as a base mask set, acquiring
n1 + n2 + . . . + nN sum matrices Gsum, each of which characterizes the fit of a cluster
mask to all other cluster masks detected in other independent cluster realizations.

The Gsum for a base mask is constructed such that the value added to the union
of the two masks will be high for pairs that have detected similar structures in the
image. This means they have a similar number of pixels in same locations assigned
to the detected cluster and thus their mask matrices have value 1 in same locations.
Mask pairs that detect distinct structures on the image contribute a negligible amount
to the Gsum, since the sI/qU will be close to zero in value for those cases.

In Paper IV we developed and applied the stacking framework on clusters de-
tected by the Self-Organizing Map algorithm from astrophysical plasma simulation
images. We applied the unsupervised clustering algorithm to the image data N times,
which resulted in n1 + n2 + . . . nN cluster masks. Then N Gsum matrices were derived.
Each pixel in the original image view of a detected cluster obtains a value between 0
and 1 illustrating its stability of belonging to the cluster with that shape and location.

Similarly to the matrix representation of the quotients for each mask comparison
a scalar value for the goodness of fit for a base maskMb

e can be defined:

gsum =
∑
M\Mb

(
sI

qU
), (2.12)
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where the sum is over all the comparisons between Mb
e and every mask other than

Mb inM. In Equation (2.12) all the quotients of the signal strength sI and quality of
union qU are added together, yielding a scalar value for the base mask. By ordering
the scalar gsum values of all base masks, we can detect the base mask that fits the best
with all the other independent realizations of that cluster. That base mask has learned
most of the information that describes the cluster. The independent base masks clas-
sifying the same cluster will likely follow the winning base mask in the sequence
of the ordered gsum values. In the study of unsupervised ensemble frameworks the
correlation between independent classifiers indicates an accurate classification (Jaffe
et al. 2016; Platanios et al. 2017). We assume that a base mask classifying a specific
cluster is independent of all other base masks identifying the same cluster in the data,
as they are drawn from independently generated unsupervised clustering realizations.
Thus independent cluster base masks with gsum values that are very similar indicate
that the cluster realization is accurate. Therefore, the same cluster classifiers will
have similar goodness of fit measures; a large change in its value indicates a non-
accurate cluster base mask or a physically different cluster group. Clusters with a
high number of pixels will have common pixels with the majority of other clusters.
This renders very small, but still non-zero, values for the value of sI/qU for each
comparison between the large cluster and other clusters. This will accumulate value
to the masks gsum. Hence there is a bias for large clusters to have a higher ranking
values in the ordering of gsum .

In this section we described the metrics used in the Statistically Combined En-
semble (SCE), which is an unsupervised ensemble framework. Ensemble frame-
works have been developed for improving the performance of Artificial Neural Net-
works (ANNs) and other learning algorithms for decades (Hansen & Salamon 1990;
Freund & Schapire 1996; Rokach 2009). Instead of applying a single ANN, an en-
semble framework applies multiple ANNs independently on the same input data. It
obtains a set of independent classifications for the input data and then combines these
classification votes in order to get a joint decision. Each model in the ensemble eval-
uates the same data and carries out the same task. An artificial neural network desires
to reach global optimum, but the end result is highly dependent on the initialisation
of weight vectors of the neurons, initial conditions, sampling of the input sample and
process parameters of the algorithm. Each network in an ensemble will make errors
on different subsets of the input space and thus the ensemble’s collective decision is
more likely accurate. Thus, an ensemble combines a set of models in order to im-
prove the performance of a single model output. This indicates that the accuracy of an
ensemble ANN outperforms the performance of a single ANN (Hansen & Salamon
1990).
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3 Application to physical datasets

This chapter presents the data-driven problems addressed with clustering algorithms
that were discussed in Chapters 1 and 2, and presents the most significant results.
Clustering analysis techniques were applied to analyse spatial clustering of obser-
vational galaxy data as well as for semantic segmentation of structures from astro-
physical plasma simulation images. For both of the case studies, the datasets and
their scientific motivation are described first. Then, the selected analysis methods are
applied, their performance discussed and the obtained results presented.

3.1 Observational galaxy datasets

3.1.1 Large-scale structure of galaxy distributions

Cosmic fluctuations and gravitational collapse drive the evolution of objects and the
structure formation in the Universe (Sunyaev & Zeldovich 1970). Matter collapses
into low-density sheet-like elements; after which matter collapses into long string-
like filaments. Then, matter collapses along all directions and creates roughly spher-
ical high-density objects, galaxy clusters. This representation of the previous matter
collapse in the Universe is called the Zeldovich pancake picture. The growing gravi-
tational instability in the large scale structure of the Universe is creating the featured
contrast in the matter distribution (Peebles 1980).

The cosmic web is a network of all matter in the Universe. It consist of the in-
visible dark matter and the visible baryonic matter. Galaxies demonstrate the matter
distribution of the Universe, driven by the gravitational instability. To understand
the evolution of galaxies and the true nature of all matter in the Universe, the model
of the large-scale structure of the Universe is constructed. For studying the large
scale structure of the Universe, galaxies can be treated as points in 3-dimensional
Euclidean space, with Cartesian coordinates of the galaxies being the point locations
in space. Other properties of the galaxies are viewed as marks. This has been done
for decades by mapping galaxies from large-scale redshift surveys such as the SDSS,
2MASS, 2dFGRS (Martinez & Saar 2002; Davis & Peebles 1983). In the first part
of this thesis we will continue to study the structure of the Universe. We discuss
the statistical tools used to research the galaxy filament catalogue and two galaxy
datasets. We apply these techniques to detect spatial correlation and clustering in-
side and between these cosmic objects. Namely, we investigate a catalogue of galaxy
filaments of the cosmic web, which are detected from the spatial distribution of spec-
troscopic galaxies in Tempel et al. (2014). Firstly, we analyse the spatial distribution
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of galaxies residing in these structures. We underpin correlation between galaxy pairs
residing inside galaxy filaments. The detected pattern highlights environmental ef-
fects on the formation and evolution of galaxies inside these structures. Secondly,
we research an erroneous photometric redshift galaxy catalogue from the SDSS and
show their spatial dependence to the detected galaxy filaments. We detect a spatial
clustering between galaxy filaments and the independent set of photometric redshift
galaxies. The result confirms the modelled structure of the Universe and emphasizes
the photometric galaxies possible contribution for the detection of the network.

3.1.2 Data and motivation

The datasets analysed for spatial correlation addressed in Paper I and Paper II are
the following: i) the Sloan Digital Sky Survey (York et al. 2000) data release 10 of
spectroscopic galaxies; ii) the filamentary pattern catalogue detected from the spa-
tial distribution of the previously mentioned spectroscopic galaxies using the method
described in Tempel et al. (2014). Spatial locations of objects in both of these cata-
logues are defined in the 3−dimensional Euclidean space.

Figure 3.1 is a visualization of these two catalogues. We will present results for
filaments that have at least one point in the distance range of 100− 250 h−1Mpc. The
filamentary spines in the Bisous dataset (Tempel et al. 2014) have a wide range of
possible lengths. This is shown in the paper Tempel et al. (2014) and in Paper I. For
the rest of the analysis we are using filamentary spines that are at least 30 h−1Mpc
long. This leaves us with 165 filaments, independent of their orientation to the line
of sight.

We were looking at galaxies that reside inside these 165 galaxy filaments. A
galaxy was defined to belong inside the filament, if it resided at a given distance
(0.5 Mpc) from the mathematically detected spine. This gives us 5274 spectroscopic
galaxies. All of these galaxies were projected on the filamentary spine that it be-
longed to.

We determined the preferred positioning of these galaxies along the filamentary
spines. This means that we analysed the distances between the red points belonging to
an observed purple segment in Figure 3.1. The goal was to detect the preferred pattern
of distances between galaxies residing inside filaments. Such a relation sheds light on
the environmental processes governing the evolution of galaxies. From the analytics
point of view, we were investigating the spatial correlation of pair-wise distances
between points in a point pattern. The spatial point pattern is here the galaxies that
reside inside the filamentary network. Paper I gives a rigorous description of the
catalogues and different filtering methods that were applied on the datasets. Here,
we will highlight the main results about the performance of the spatial analytical tool
used.
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Figure 3.1: Visualisation of the datasets in spherical sky-coordinates: filamentary
spines (purple spines) and spectroscopic galaxies (red dots). All the drawn objects
are located in the distance range of 79 − 277 Mpc.

In Paper III we analysed for spatial clustering the following datasets: i) the fil-
amentary pattern catalogue detected from the spatial distribution of the SDSS (York
et al. 2000) data release 12 spectroscopic galaxies with the method described in Tem-
pel et al. (2014); ii) a catalogue of photometric redshift galaxies (Beck et al. 2016).
The locations of photometric galaxies are defined in spherical coordinates and the fil-
amentary spines have spatial locations defined in the 3−dimensional Euclidean space.

The distance distribution of photometric galaxies, spectroscopic galaxies and fil-
amentary spines is depicted on Figure 3.2. As expected the distribution of filaments
follows strictly that of the spectroscopic galaxies. It is clearly seen that the major-
ity of the photometric galaxies in the catalogue resides in high distances, whilst the
spectroscopic galaxies catalogue describes near-by galaxies.

We want to determine whether the photometric galaxies (black background den-
sity on Figure 3.3) cluster with the galaxy filaments (purple segments on Figure 3.3).
The interest is to determine whether the photometric galaxies would possess informa-
tion about the filamentary network, which are detected from the spatial distribution
of spectroscopic galaxies. Paper III gives a rigorous description for the catalogues,
filtering methods applied and feature extraction done for the catalogues.

The redshifts describing galaxy location of photometric galaxies are rather un-
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Figure 3.2: Visualization of the distribution of distances for spectroscopic redshift
galaxies (red line), the detected filamentary spines (purple line) and the photometric
redshift catalogue (black line). Vertical blue dashed lines indicate the distance range
of the analysis.

certain, error δzphoto reaching up to 0.05. This results in the absence of an accurate
3−dimensional coordinate system for the galaxy positions. Corollary, they were not
used in the initial modelling of the filamentary network in Tempel et al. (2014). Thus
it is of great interest to determine whether this galaxy catalogue presents new infor-
mation about the structures. The analysis determines whether the galaxy filaments
detected from the spatial location of spectroscopic galaxies is confirmed to be lo-
cated in the same areas of space by the photometric redshift galaxies. In addition,
these photometric galaxies estimate the properties of galaxy filaments, such as their
most preferred physical radii and types of galaxies most likely residing in filamentary
networks.

A thorough clustering analysis is done in Paper III addressing all the aforemen-
tioned questions. The galaxy filaments were filtered dependent on their orientation
in the line of sight and the photometric galaxies were sampled into multiple distance
segments. In addition, the galaxy filaments were represented by the spectroscopic
galaxies residing in them, and not only by a configuration of segments building up the
filament spine. For the 3−dimensional representation of physical distances between
the objects, a 3−dimensional smallest-distance distribution function was derived. In
the 3−dimensional case, photometric galaxies were represented by lines of sight go-
ing through their spherical coordinates, such that the galaxy might be located at any
point along the line following through its position on the sphere. The 3−dimensional
smallest-distance distribution estimated physical properties of the filaments, such as
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Figure 3.3: Visualization of spectroscopic redshift galaxy (red points), the detected
filamentary spines (purple segments) and the photometric redshift catalogue (black
background density). Darker color denotes higher density of photometric galaxies.

its thickness and bias towards more massive galaxies residing in them.
In this thesis, only the main results of the spatial clustering analysis for the pho-

tometric galaxies dataset and filamentary network catalogue is presented. The sub-
samples of the original datasets are described in the following:

• The photometric galaxies lack precise redshift estimations, which renders the
presented spatial clustering analysis to spherical coordinates on a region of a
sphere S2. The galaxies in the dataset of photometric galaxies are represented
by their radian latitude η and longitude λ. We will use the photometric galax-
ies residing in the distance gap 200 − 800 Mpc, which concludes in 2 198 702
photometric galaxies Xphotoall . These photometric galaxies are viewed as a con-
figuration of points Xphotoall in a region of a sphere S2.

• The distance gap of 200 − 800 Mpc leaves us with a set of 38 702 filamentary
spines Yfilall . Each filament in R3 was mapped to the spherical coordinates
latitude η and longitude λ on S2. They form a random set of objects Yfilall

in a region of a sphere a S2. The filaments were sampled according to their
orientation towards the line of sight ᾱ(Y), a metric defined in Paper III. Value
ᾱ(Y) represents the average angle that the spine Y has with respect to the line
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of sight. This was to determine whether the orientation of the filaments has
influence to the clustering.

This means that we will study spatial clustering between a point pattern (photometric
galaxies) and a random set of objects (spines of filaments) on a region of a sphere
S2. The bivariate J−function from the theory of spatial point patterns will be used to
address this question.

3.1.3 Analysis and results

The pair correlation function
Figure 3.4 illustrates the pair correlation function for the pair-wise distances of galax-
ies residing in filamentary spines. The depicted result is also seen in Paper I and Paper
II. The high peak for the smallest-distance range highlights the abundance of galaxy

●

●

● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ●

● ●
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● ● ● ●
● ● ●

●
● ●

●

Distance between galaxies (r, r+dr] h−1 Mpc
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+
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)

0
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5
1
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5

2
2.

5

(0,0.5] (2.5,3] (5,5.5] (7.5,8] (10.5,11] (13.5,14]

g(r, r+dr)
Theoretical case of independence

Figure 3.4: The pair correlation function for galaxies inside filamentary spines (dark
green line), the Jackknife confidence interval (light green) and the theoretical case of
independence (dashed black line).

groups in the dataset, as galaxies in galaxy groups have small pair-wise distances.
The dip in the value of the estimator around 1.5 − 2.0 h−1Mpc indicates a lack of
galaxies around the galaxy groups. The most interesting and a statistically significant
peak in the values of the pair correlation function is around 7.5 − 8.0 h−1Mpc. This
peak indicates that this distance range exists with higher probability in the catalogue
of galaxy pair-wise distances in comparison to the catalogue of randomly distributed
points pair-wise distances. The physical explanation for this is not obvious, but one
can speculate that it is connected to galaxy evolution and mergers inside filaments.
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Peaks follow periodically, which is due to a periodical location pattern of galaxies
along long filaments.

The pair correlation function that studies distances between galaxies along fila-
mentary spines revealed clear statistically significant patterns. The estimator is easy
to interpret and compares the catalogue directly to complete spatial randomness. Our
analysis showed that galaxies tend to locate along the filamentary spines like pearls
on a necklace.

The bivariate J−function
As mentioned in Section 3.1.2 an elaborate analysis of clustering on a region of a
sphere S2 and in 3−dimensional space between the different subsets of the catalogues
is done in Paper III. In the following we will present the main result obtained with
the bivariate J−function. This study clearly highlighted the potential of the bivariate
J−function for future astronomical spatial clustering analysis.

Distance r (radians)

J(
r)

0 0.002 0.004 0.006 0.008 0.01

0.
4

0.
6

0.
8

1

J(Xphotoall, Yfilall)
J(Xphotoall, Yfilperp)
J(Xphotoall, Yfilnotperp)
Theoretical case of independence

Figure 3.5: Results of the bivariate J−functions J(r)Xphotoall ,Yfilall
(green),

J(r)Xphotoall ,Xfilperp
(blue), and J(r)Xphotoall ,Xfilnotperp

(orange) in comparison with the the-
oretical reference case representing independence between the studied sets (black
dashed line). The radian distance of 0.002 corresponds to 0.4 Mpc at the distance of
200 Mpc and 1.6 Mpc at the distance of 800 Mpc.

The bivariate J−function was calculated between the catalogue of photometric
galaxies Xphotoall residing 200− 800 Mpc from the observer and all the following sets
of filamentary spines in the distance range of 200 − 800 Mpc:

• all filaments Yfilall ,
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• non-perpendicular filaments in relation to the lines of sight with 0◦ ≤ α <

78.22◦, which concluded in 30 639 filaments Yfilnotperp ,

• perpendicular filaments in relation to the lines of sight with 78.22◦ ≤ α ≤ 90◦,
which concluded in 8 063 filaments Yfilperp .

Figure 3.5 shows the bivariate J−functions for photometric galaxies and all fila-
mentary spines in the viewed region, and the bivariate J−function for the same pho-
tometric galaxies and two subsets of the spines, defined as perpendicular to the line
of sight and defined as non-perpendicular to the line of sight. Applying the bivariate
J−function to study the spatial clustering between a set of filamentary spines and
photometric galaxies catalogues provided us with clear clustering signals. In Fig. 3.5
the decreasing J(r)Xphotoall ,Yfilall

values below the theoretical reference case represent a
positive association between the photometric galaxies and all filamentary spines. Pos-
itive association is clearly shown by the lines of J(r)Xphoto,Xfilperp

and J(r)Xphoto,Xfilnotperp
as

well. This indicates that the photomeric galaxies are positively associated (clustered)
with filaments independent of the orientations cos(ᾱ(Y)) (defined in Paper III). The
faster decline in the J−function as a function of r for photometric galaxies Xphotoall

and all filamentary spines Yfilall indicates a stronger positive association between these
spatial patterns.

The bivariate J−function clustering analysis verified that the information hidden
in photometric redshift galaxies can contribute to the filamentary network detection.
Even with uncertain redshift estimations and projection effects, the study of spatial
spacings gave insight to the importance of the galaxy data in structure modelling of
the Universe. We showed that large-scale photometric redshift estimates can con-
tribute greatly to the modelling of the filamentary network. However, until now the
redshift estimates are too uncertain. In upcoming surveys, such as the Javalambre
Physics of the Accelerating Universe Astrophysical Survey (J-PAS) (Benitez et al.
2014; Bonoli et al. 2020), these galaxies will become even more important in the
modelling of the cosmic web structure. Additionally, the clear clustering signal of
the detected filamentary network and a big new dataset of galaxies, highlights the
importance of detecting the filamentary structures. Majority of galaxies in the Uni-
verse reside in these structures. Seemingly, in order to understand their evolutionary
process it is of utmost importance to determine and understand these environments.

3.2 Plasma simulation dataset

3.2.1 Kinetic turbulent collisionless plasma

Kinetic, turbulent, collisionless plasma can be used to model physical phenomena
observed in e.g., stars, black-hole magnetospheres, supernova remnants and galaxy
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clusters. They are applicable also in Earth-bound settings, such as in modelling
plasma in fusion reactors. For a thorough description of the underlying physics of
turbulent flow structures in plasmas we refer to the works of Zhdankin et al. (2017),
Comisso & Sironi (2018), Nättilä (2019) and Uritsky et al. (2010). This section
starts by giving a brief overview of the physics of turbulent collisionless astrophysi-
cal plasma simulations using Nättilä (2019) and Paper IV.

Nättilä (2019) simulates such a kinetic turbulence in a suddenly stirred
magnetically-dominated plasma. The geometrical properties of the merging round is-
lands and thin elongated physical structures that start to evolve in the spatio-temporal
plasma are of great interest. The thin elongated structures are thought to be the driv-
ing force for particle decoupling from the plasma pool and are physically not fully
understood. Their detection is still an open question and a lot of new physics is yet
to be learned from their statistical analysis.

To model a turbulent magnetically dominated plasma, consider a uniform plasma
of charged particles with density ρ governed by an initial guide field ~B0. The guide
field ~B0 is typically aligned to some externally defined direction or a large-scale field,
that fixes the plasma motions to be transverse to this direction. This renders the prob-
lem basically 2−dimensional as only the planar directions evolve. By stirring the
plasma at some large scale, round eddies start to form and the plasma coagulates
into solitary magnetic “islands”. These are round magnetic tubes, which are oriented
mainly along the initial guide field ~B0. If these islands merge, a strong current ~j || ~B0
is formed to balance the suddenly flipping transverse magnetic field. These current
sheets will be torn apart by a tearing instability, which leads to a reconnection of the
magnetic field. Energy released in this process is absorbed into excitations of high-
energy particles. The magnetic energy is then transferred into kinetic energy of the
particles, which then decouples the aforementioned high-energy particles from the
thermal plasma pool. This decoupling then provides an energy dissipation mecha-
nism that is powered by the current sheets. This underlines the importance of being
able to identify these thin sheet-like structures: Detecting them would enable us to
study the dissipation processes in situ.

In this thesis, we will apply a well-known unsupervised clustering algorithm and
develop an ensemble framework to address the stochastic nature of the artificial neu-
ral networks. With these tools we are able to automatically segment the thin elongated
structures from the plasma pool with pixel-level accuracy. These dissected physical
structures are further studied for their geometrical and physical properties in papers
currently being carried out.
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3.2.2 Data and motivation

The dataset analysed was a spatio-temporal dataset of magnetically-dominated col-
lisionless plasma images obtained from Nättilä (2019) kinetic particle-in-cell sim-
ulation. The simulation data can be presented in the form of consecutive images,
describing the particle-level evolutionary progress of the original plasma. Each pixel
contains physical observable values that change in each snapshot during the course
of the simulation.

Figure 3.6 presents a snapshot of the simulation data. The figure shows five
physical features grasped by the computer simulation. The Figure 3.6a shows the
whole simulation box, it consists of a little over 1 million pixels. The depicted feature
is the plasma density ρ at simulation snapshot 5000. Rest of the images are zoom-in
views to the simulation box. Figure 3.6b shows the plasma density ρ in the zoom-in
view. Circular islands and thin lines are distinctly visible in this view, with a higher
number of particles residing in them. Figure 3.6c shows the direction and strength of
the current J‖ (parallel to the initial guide field ~B0) in the zoom-in region of the plasma
snapshot. We see that the same islands and the thin lines have high values of current
shooting out or in to the plane of the image. Figure 3.6d shows the strength of the
perpendicular (to initial guide field ~B0) magnetic field strength B⊥. The large islands
are distinguishable from the pool of plasma by the high value of the perpendicular
magnetic field strength. Figure 3.6e is of the work done by the electric field (J‖ · E)
in the zoom-in view and Figure 3.6f is the Γ, which describes the Lorentz factor of
each particle. The circular islands are clearly visible in the (J‖ · E) view and the thin
lines have larger Lorentz factors. All the features have multiple self-similar structures
that are clearly visible on each of the images on Figure 3.6. These are the observed
circular structures referred to as eddies that coincide with a high signal in ρ, B⊥ and
in J‖. Another prominent feature are the thin stripes referred to as current sheets that
correspond to a maximum in J‖, Γ and a minimum in B⊥. In the simulation images
the most prominent current sheets are visible in between eddies, which are in the
process of a merger. The turbulence cascade creates structures of a wide range of
sizes, the biggest are clearly easily visible on all of the images in Figure 3.6.

The aforementioned physical structures are clearly visible in the astrophysical
plasma simulation data, but they are difficult to detect automatically. One reason
being that the structures in the plasma have a chain of varying sizes, another being
that the physics creating the shapes is not thoroughly understood. In the long run, we
are interested in obtaining precise estimations for the sizes of these magnetic islands
and the elongated current sheets. Their geometrical properties are of great interest
in the astrophysics domain. The reliability of pixel-by-pixel dissection of structures
from a plasma pool is of even greater importance, as the results we obtain will be
used to understand the underlying physics in the shapes.
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Figure 3.6: Visualization of the turbulent plasma simulation at snapshot 5000. Each
pixel has five different features that we visualize here. The top left panel shows the
full image domain whereas the rest of panels show a close-up region of the image
(marked with red-dashed line in the top left panel). Multiple types of structures
manifest in the different features views of the plasma, most prominent structures
being the circular islands and thin stripes.
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Our main goal in Paper IV was to obtain robust region-of-interests (ROI) for
the aforementioned structures. As a data analysis concept this meant finding similar
pixels in the physical feature space. Similar objects can be detected from the feature
space with clustering algorithms, which group together objects that are more similar
to each other than the ones laying outside of the group. In addition, we needed to take
into account the neighborhood of the pixels, as we are interested in geometric objects
on an image. Thus, the clustering algorithm should be sensitive to the topological
space of the input image.

One simulation snapshot image consists of a little over 1 million pixels. We
perform the clustering by simultaneously using 8 consecutive snapshots from the
simulations, with equal time steps between the samplings. This brings the total num-
ber of data points to over 8 million pixels, each with a 3−dimensional data vector
Xk = (J‖, B⊥, (J‖ · E)). These characteristics were chosen from a physical knowledge
of the current sheets as they describe most of the variability in the catalogue. The
analysis was carried out also on a higher and lower count of consecutive images. The
number of 8 images, separated by a fixed time step, was chosen by trial and error.
The images at the chosen time steps exhibited the physical structures that were most
important from the astrophysical viewpoint. In the beginning of the simulation (ear-
lier time steps) the artificially inserted set in turbulence is prominent. The cascade of
the plasma structures has not yet created the cascade of self-similar structures. When
the simulation evolves further, it evolves into a more stable state and the structures
are not as prominent.

3.2.3 Analysis and results

Self-Organizing Map
We applied an artificial neural network, the Self-Organizing Map (Section 2.2), on
the image data from the plasma simulations. We trained a 2−dimensional grid of neu-
rons to represent the high-dimensional input data space. The count of neurons on the
neuron layer was significantly lower than the count of input vectors in the input image
data. Each neuron was assigned with a weight vector, which are initialized randomly
from the input sample space. During the learning process neurons will learn from
the input sample space and adjust their weight vector according to the learning rule.
The algorithm is stochastic and the neural map changes with each iteration step, as
it learns to represent the distribution of the input sample space with a 2−dimensional
representation. The algorithm converges to a result dependent on its initial process
parameters, internal functions, random initialization and the random choice of input
vectors. The neighbourhood function hci(t) → 0 as t → ∞ in Equation (2.2), which
grants that the map will converge and no significant changes are created with fur-
ther iterations. Kohonen (2001) emphasizes the importance of iteration steps for the
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convergence of the model. Mathematically two and higher dimensional SOM neural
maps are not guaranteed to converge to a global optimum (Erwin et al. 1992). It is
possible to test, whether further iterations change the map significantly, but on the
other hand, the map might have converged only into a local optimum and not into the
desired global optimum. This is a problem known for artificial neural networks at
large and are discussed in the concept of SOMs in many previous works, for exam-
ple in De Bodt et al. (2007) and Lee & Verleysen (2002). Additionally, training the
algorithm for too many iterations might lead to over-training. In this case, the neural
network becomes too specific to the input data sample and performs poorly on new
data.

We encountered the aforementioned obstacles in the clustering analysis of plasma
simulation images: we found it difficult to converge to a global optimum and saw the
algorithms volatility to the choice of process parameter values.

We applied the SOM algorithm to 8 consecutive simulation image snapshots and
we sampled the parameter value space for the Self-Organizing Map algorithm. The
parameter combinations sampled for our particular analysis are:

• Rectangular shaped neuron map (m, n), with dimensions (15, 10).

• The learning rate 0 < α(t) < 1 values are chosen to be {0.6, 0.7, 0.8}.

• Number of total iterations (i.e., the training steps) is chosen to be 10 000,
20 000, 30 000, 40 000, or 50 000.

All the possible aforementioned parameter combinations of the SOM algorithm are
applied on the studied astrophysical plasma simulation images. This gives 15 in-
dependent SOM cluster ID results for the same images. Figure 3.7 visualizes the
results from four representative SOM clustering algorithm outcomes. The retrieved
cluster ID for each pixel is projected to the original image view. Each of these maps
were evaluated on the same 8 million pixels of data with differing process parameter
values. The images of cluster maps on Figure 3.7 can be directly compared to Fig-
ure 3.6, where the same snapshot of the original training image is illustrated. The
clusters detected by the SOM algorithm on Figure 3.7 correspond to distinct regions
in the original images: circular island regions, thin stripes, and large background
areas that are also visible in Figure 3.6.

Importantly, the resulting clusters differ for each SOM outcome, as the output
of the algorithm is dependent on the randomized nature of the initial neural map,
sampled input data, and the process parameters. Especially the geometric sizes of
resulting segmented cluster regions differ significantly between these different real-
izations. We applied the SOM with multiple combinations of process parameters on
the input image, but found it hard to converge and retrieve a cluster map that did
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Figure 3.7: Visualization of four different SOM evaluations projected back to the
original image view. These four SOM clustering results are shown for the simulation
snapshot 5000 depicted in Figure 3.6. Each of the SOM runs group the initial data
pixels into n clusters, Ci. We color the pixel based on the cluster it is associated with
in order to visualize the physical structures that the data clusters correspond to.
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not change significantly between different evaluations. This indicates that analysing
the dissected structures from one cluster map realization only might be misleading.
This is unfortunate especially as the geometrical properties of these structures are
the prominent information we want to obtain from the segmentation analysis. The
preliminary results are evaluated by the physical interpretation and visual inspection
of the detected structures. As there exists no ground truth detection of the physical
structures from the corresponding simulation images, the quality of the results is not
so easily quantifiable. In the supervised domain, the Mean Intersection over Union
(MIoU) is often used to estimate the performance of the algorithm. In the following
section we will compare and order the results of independent SOM algorithm real-
izations with the metrics proposed in Chapter 2.3. These metrics, in their essence,
highlight the SOM output which has learned the most from the initial input sample.

In addition to the SOM algorithm the k-means and k-nearest neighbours algo-
rithm (Cover & Hart 1967) were applied. The SOM algorithm performed better as
it was able to maintain the topological information present in the input sample space
and it was able to detect fine structures from the input images. The SOM compresses
the information stored in the input data, but doing so it tries to preserve the topol-
ogy of the input space. The goal of image segmentation of the astrophysical plasma
images was to dissect continuous physical structures. The topology of the input data
is thus important to be preserved. In future work with the data deep neural network
algorithms will be applied. The SOM provided a simple enough gateway to the usage
of artificial neural networks.

Statistically-Combined Ensemble of cluster masks
The results obtained with the SOM algorithm together with the observed shortcom-
ings motivated the Statistically-Combined Ensemble (SCE) framework, where we
stack independent cluster maps of the structures. The SCE framework is mathemati-
cally described in Section 2.3

The SCE method is a multi-map comparison framework that aims to alleviate the
map-to-map variations in structure borders on the image by statistically combining
many independent SOM cluster evaluations. In our case we stack a set of 62 SOM
cluster masks, which were obtained from 15 independent SOM runs with different
process parameter combinations. The similarity measures and goodness-of-fit met-
rics described in Section 2.3 were used to find stable regions of interest (ROI) for the
physical structures in the image.

As an example, Figure 3.8a and Figure 3.8b visualize two cluster maps of two
independent SOM clustering results labeled as map A and map B. Map A has
detected 5 clusters and map B 3 clusters. Thus, the corresponding mask sets are
MA = {MA

0 ,M
A
1 ,M

A
2 ,M

A
3 ,M

A
4 } andMB = {MB

0 ,M
B
1 ,M

B
2 }. We will calculate and vi-
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Figure 3.8: Visualization of the map-to-map operations performed between two SOM
cluster map realizations. Top panels show a comparison of two SOM runs (focusing
on a small region of the complete image) for which the pixel group information is
projected back to the original image view. The SOM map A detected 5 clusters and
the SOM map B detected 3 clusters. Lower panels show the intersection and union
matrix for C1 cluster mask of the SOM map A and C0 cluster mask of the SOM map
B. The clusters in both maps have captured the thin stripe structures but the exact
cluster boundary locations vary slightly.
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Figure 3.9: Resulting signal strength sI (left panel) and quality qU (right panel) values
computed between the two clusters of map A and map B (visualized in Figure 3.8).
Signal strength sI is a measure of the area in both masks contributing to describing
the same structure. Quality value qU , on the other hand, is a measure of the residual
area between the union and intersection of the two masks. A small residual between
the masks (qU ≈ 0) and similar area (sI ≈ 1) together correspond to a well-matching
mask combination.

sualize the intersection matrix I (Equation (2.5)) and union matrix U (Equation (2.4))
for the cluster mask MA

1 from map A and cluster mask MB
0 from map B. These matri-

ces are depicted as images on Figure 3.8c and Figure 3.8d. The pixels colored black
correspond to the value 1 and pixels colored white correspond to 0. The I matrix
highlights the pixels assigned to MA

1 (cluster C1 mask of map A) and MB
0 (cluster

C0 mask of map B). The U matrix activates all pixels belonging to both masks, MA
1

and MB
0 . For the maps A and map B the I and U matrices are similarly shaped and

positioned structures, suggesting that the maps have detected the same structure from
the input image.

The signal strength sI (Equation 2.7) for base mask MA
1 and a mask MB

0 is visual-
ized on the left panel of Figure 3.9. The metric compares the intersection and union
of map A cluster C1 mask and map B cluster C0 mask, shown on Figure 3.8c and
Figure 3.8d. It describes the fraction of overlap between the two cluster masks; value
of the quantity is, naturally, the highest on the location where the two masks overlap.

The right panel of Figure 3.9 visualizes the quality of the union metric qU , which
is defined by Equation (2.8). The measure quantifies how well the two cluster masks
MA

1 and MB
0 align on top of each other. In case of a perfect alignment, the value of

the quantity approaches 0; this would correspond to identical masks. In Figure 3.9
pixels with values close to 0 indicate a good fit between the two masks.
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For perfectly overlapping two cluster masks, meaning two independent SOM
evaluations having detected equal amounts of pixels in the same positions on the
image, we would see sI → 1 and qU → 0 for their mask comparisons. These cluster
comparison metrics are negatively correlated, first giving an estimate to the strength
of the intersection of the masks and the other for the size of the symmetric difference
of the masks. These metrics can be used separately to gain perfectly overlapping
cluster masks and cluster masks detecting completely different structures (qU → 1).

In our study we wanted to establish robust borders for structures detected on the
image, such that a detailed analysis of their geometry could be performed. Thus we
stacked multiple independent cluster masks on top of a randomly chosen base cluster
mask. This was done until all cluster masks from each SOM evaluation was chosen
as the base mask. The stacking of multiple cluster masks was done with the use of the
goodness-of-fit matrix Gsum (Equation (2.11)), which added all the quotients of the sI

and qU applied to the union of the two compared masks. This summing accumulates
value to pixels on the image with each comparison, such that the cluster mask that
has detected a similarly sized structure in the same locations as the base mask will
contribute significantly to the total sum. On the contrary, a cluster mask detecting
a different structure contributes a negligible amount to the total. This will highlight
most stable pixels belonging to that structure.

All 62 cluster masks detected by 15 independent SOM algorithms will result
the Gsum matrix, which will give a value to each pixel on the image such that more
robust borders for the structure can be obtained. These 62 cluster masks can be
ordered according to their scalar sum of the gsum (Equation (2.12)). The base masks
detecting a cluster, which has been detected by many other independent algorithm
runs will have a higher gsum scalar value. This is due to the fact that it will have
higher quotients of sI and qU for mask comparisons, which accumulate to the total
sum. This means that the scalar gsum can be used to detect the base mask detecting
the most stable cluster of structures on the image.

Figure 3.10 shows the total integrated scalars of goodness of fit, gsum (Equa-
tion (2.12)) for all the masks detected by the 15 independent SOM evaluations. The
clusters have been visually inspected and 3 major physical structures are recovered:
background pixels, islands (circular magnetic tubes), and current sheets (thin stripes).
The aforementioned structure elements in the plasma were visible in the original
plasma simulation images on Figure 3.6.

The background cluster (red points in Figure 3.10) is detected the best among
all the independent SOM algorithm evaluations, since the sum of the stacked sI/qU

values are the highest and the sum is most similar with other independent classifiers
for the same cluster. The second best cluster detected is that of the islands, (dark-blue
diamonds in Figure 3.10). The cluster masks of current sheets are the third best de-
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Figure 3.10: Total scalar values of the goodness-of-fit, log10
∑
M\Mb( sI

qU
), (see Equa-

tion 2.12) for all the 15 independent SOM runs in the analysis. In total, the collection
of maps has 62 clusters. The clusters are shown in descending order. Each result was
visually inspected and labeled into three different empirical categories: background
pixels (red), circular islands (blue), thin stripes (violet), and other unclassified shapes
(black). The cluster mask from each physical cluster set with the highest value and
best accuracy is denoted with a star symbol. This manual classification is seen to
correlate fairly well with the goodness-of-fit of the specific cluster.

tected structures (violet triangles in Figure 3.10). This visual classification is seen to
correlate with the corresponding goodness-of-fit value. Cluster realizations between
different SOM evaluations can be grouped together, since base masks detecting a
similar structure are expected to have a similar gsum. Additionally, large changes in
the value of gsum match well with the change of the physical meaning of the clusters
or indicate that the base mask classifying the observed cluster is non-accurate.

Figure 3.11 represents the stacked cluster maps of the four distinct structures de-
tected on the plasma simulation. These are the four base masks, which corresponded
to the highest gsum value in their structure set and are most similar to independent
cluster masks detecting the same physical structure (clusters denoted with stars on
Figure 3.10). Highly correlated base masks detecting same physical structures indi-
cate a high accuracy for detecting the structure. Each pixel in each of these image
views has obtained a goodness-of-fit value. This corresponds to this pixels stability
belonging to this cluster. If the pixel was assigned to a cluster mask similar to the
base cluster mask in multiple comparisons, then the value acquired on this image is
high. The value will be low, if the pixel was mostly assigned to a cluster mask very
different from the base cluster masks.
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Figure 3.11: Goodness-of-fit matrices (Gsum) of the four best detected stacked cluster
maps (with log10-scale colors). Each panel shows the highest ranking cluster from
Figure 3.10, ordered based on their integrated goodness-of-fit quantity. The three
empirically derived categories are clearly visible in the results: background pixels
(Figure 3.11a), islands (Figure 3.11b), current sheets (Figure 3.11c). Figure 3.11d is
seen to be a mixture of many clusters (mainly circular islands and thin stripes).
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Figure 3.11d is correctly ranked as only the fourth best category and could there-
fore be safely discarded from any further analysis. For the first three images in Fig-
ure 3.11 it is straightforward to define a quantitative cutoff level that enables to define
structure contours. Since the resulting contour boundaries are averaged over many
SOM realizations their boundaries are more robust and hence any geometrical analy-
sis of the resulting shapes is more reliable. A threshold can be applied to the obtained
value of Gsum to estimate geometrical metrics for the current sheets on the image. The
current sheets are detected from the plasma simulation image – the result is clearly
visible on Figure 3.11c. The dissected structures are robust and continuous, which
can be further analysed for their geometrical properties. This work is being done in
an upcoming paper.

By statistically combining cluster evaluations of unsupervised clustering algo-
rithms robust boundaries for structure clusters were obtained. The framework pro-
duced cluster information for pixels on an image, accurately detecting the most inter-
esting structures in the plasma, the current sheets. As has been emphasized before,
the physical nature of the current sheets is not fully understood. In addition the detec-
tion of current sheets from a spatio-temporal dataset of turbulent plasma is an open
question. Thus there exists no ground truth information to perform validation for the
cluster outputs. The obtained ROI for the structures are visually inspected to follow
the expected areas and shapes of the current sheets. Further study of the physical
properties of the segmented structures will highlight physical reliability of the re-
sults. Overall, this work has been an exploratory step at automating the detection of
current sheets from simulation images. The following projects include the physical
and statistical analysis of the detected ROI’s and further development of the detection
process.
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4 Conclusions

The aim of this thesis was to apply and develop clustering algorithms for astrophys-
ical datasets, in order to understand and also reveal new hidden physics in the data.
The largest studied structure in astrophysics is the cosmic web, consisting of hun-
dreds of billions of galaxies. The properties, evolution and mergers of galaxies in-
side the dark-matter-dominated cosmic web are rigorously studied in cosmology and
galaxy physics (de Lapparent et al. 1986; Tempel et al. 2011; Kuutma et al. 2017;
Crone Odekon et al. 2018). Galaxy datasets from the Sloan Digital Sky Survey (York
et al. 2000), until today the most comprehensive galaxy survey, have been analysed
in this thesis. The other physical data analysed in this thesis, the astrophysical tur-
bulent plasma simulation data (Nättilä 2019), describes a phenomena present inside
structures of almost all scales in the Universe: galaxy clusters; black hole accretion
discs; solar corona and even in the magnetosphere of the Earth. The physical phe-
nomena present in a pool of high-energy particles are not yet fully understood and are
studied in various concepts (Cassak & Shay 2007; Retinò et al. 2007; Dupuis et al.
2020). The most comprehensive observational galaxy surveys and state-of-the-art as-
trophysical plasma simulations give the opportunity to apprehend the unknowns in
the field.

Techniques of clustering analysis aim to find sets of objects more similar to each
other than they are to objects outside of that set in accordance to a chosen distance
metric. The output of the algorithm gives information about the correlations and
clusters present in the dataset. Clustering algorithms are developed for a wide set of
data regimes and thus provide a comprehensive set of analytical tools. An automated
analysis, such as an unsupervised clustering algorithm, detects clusters among input
data vectors and learns new unknown physical correlations from the feature space of
the data vectors with few or no explicit assumptions. Spatial clustering algorithms
are able to detect spatial patterns and associations among sets of events described by
their spatial locations.

The thesis applied and also developed a framework for clustering algorithms
for the astrophysical datasets. The caveats in the datasets or in applied method-
ologies were overcome and the clustering algorithms were successfully applied on
the catalogues. We analysed two different types of astrophysical data. First of them
were datasets about points in an observed region of space, these were the obser-
vational galaxy datasets, and catalogues of complex filamentary structure elements
detected from the spatial distribution of galaxies (Tempel et al. 2014). The second
type of datasets was of astrophysical simulation images, obtained from a particle-in-
cell turbulent magnetically dominated collisionless plasma simulation (Nättilä 2019).
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These were images consisting of millions of pixels, each of which represented in an
n−dimensional physical feature space. For spatial objects, we were interested in
finding spatial clustering or correlation signals, and for the plasma images, we were
interested in finding clusters of similar pixels.

In the first part of this thesis we applied techniques from spatial point pattern
theory in order to search for spatial correlation and clustering from the catalogues
of cosmic web elements. The techniques of spatial point pattern analysis are well
applicable for observational cosmological datasets. The galaxies are just viewed as
a realization of a point process (Pons-Bordería et al. 1999; Martinez & Saar 2001;
Ripley 1981). The 1−dimensional spatial correlation analysis technique profusely
used in cosmology was able to give information about the galaxy locations inside the
cosmic web. The method found regularity in the location of galaxies inside galaxy
filaments. The results described the spatial environment of galaxies inside the galaxy
filaments, emphasizing the effect of galaxy groups on the surrounding space as matter
is drawn towards the group and a gap in galaxy distributions is created. Galaxies and
also galaxy groups have a preferred distance in between them, indicating to physical
processes driving the merger of galaxies. It also raised questions about the physi-
cal mechanisms creating such a pattern. Catalogues of photometric galaxies do not
have accurate 3−dimensional coordinates and the mathematically retrieved network
of galaxy filaments possesses most of the structures in a limited distance gap. In the
presence of these caveats the bivariate J−function was still able to detect spatial clus-
tering between these object catalogues. The method showed clearly whether the new
error-prone catalogue of photometric redshift galaxies traces the network of filamen-
tary spines. The result gives basis for the use of these galaxies in the future modelling
of the cosmic web. By sampling the filaments dependent on their orientation corre-
sponding to the line line of sight, we estimated the impact of the projection effect and
the orientation of filaments on the detected clustering signal.

We showed how the pair correlation function can unravel spatial patterns from
catalogues of galaxies and how the bivariate J−function is able to detect a posi-
tive association or a clustering signal between two projected cosmological object
catalogues. These datasets were the photometric redshift galaxies and the galaxy
filaments detected with an object point process from the spatial distribution of spec-
troscopic galaxies. With the growth of datasets and higher accuracy for the objects
3−dimensional coordinates, more statistically significant results will emerge from the
spatial point pattern analysis.

In addition to the spatial point pattern analysis, our aim was to find structures
from astrophysical plasma simulation images, whose geometrical properties are of
great interest. The Self-Organizing Map was used as the base unsupervised learn-
ing algorithm, because the method tries to preserve the topology of the input sam-

55



ple space and is able to grasp fine structures from an image. The disadvantage of
the Self-Organizing Map algorithm is the sensibility to noise and initial conditions.
The non-deterministic nature of artificial neural networks was successfully alleviated
by combining multiple independent cluster realizations. Combining multiple inde-
pendent SOM cluster evaluations in an ensemble produced robust estimations for
the locations of structures in a magnetically dominated turbulent plasma simulation.
Metrics to combine cluster evaluations were created, which enabled to stack inde-
pendent realizations. These metrics are similar to those widely used in supervised
learning, where the obtained result from an algorithm is compared to a previously
known ground truth. In our case no such knowledge exists, as the structures are also
physically not well understood. The framework produced cluster information for pix-
els on an image, accurately detecting the most interesting structures in the plasma,
the current sheets. The ensemble framework, which stacks multiple unsupervised
clustering algorithm evaluations for clusters on an image, produces robust estimates
for the boundaries of objects on the image. These boundaries can be successfully
used to analyse the geometrical properties of the structures.

Data science has the potential to greatly improve the knowledge pool of other
science domains. Among them are clustering techniques, which are applicable for
multiple different data regimes. Observational and simulation-generated datasets
of astrophysical phenomena have rapidly grown during the past decades and thus
they demand powerful and sophisticated analysis techniques. Methods from spatial
point patterns and unsupervised machine learning can be fruitfully applied for these
datasets, as proven in this thesis.
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64

Summary in Estonian

Astrofüüsikaliste struktuuride uurimine klasteranalüüsi meetoditega

Viimaste aastakümnete jooksul on suuremahulised vaatlused ja arvutisimulat-
sioonid astrofüüsika arengule plahvatuslikult kaasa aidanud. Hetkel arendamisel
olevad suureskaalalised kosmoloogilised vaatlused nagu Maunakea Spectroscopic
Explorer (MSE) (Team et al. 2019), Javalambre Physics of the Accelerating Univer-
se Astrophysical Survey (J-PAS) (Benitez et al. 2014) ja VISTA 4-m Multi-Object
Spectroscopic Telescope (4MOST) (de Jong et al. 2019) loovad tuleviku teadusavas-
tuste tarbeks veel enam võimalusi. Lisaks vaatlustehnikate arengule on arvutuskes-
kuste hüppeline areng loonud soodsa pinnase keerukate füüsikaliste protsesside mo-
delleerimiseks numbriliste simulatsioonidega. Antud astronoomilised suureskaalali-
sed vaatlused ja astrofüüsikalised simulatsioonid on toonud endaga kaasa suure kasvu
andmete mahus, mis on tõstnud veel olulisemale kohale modernsete optimiseeritud
analüüsimeetodite kasutamise ja edasiarendamise.

Antud töö eesmärk oli leida uusi seoseid ja füüsikalisi struktuure astrofüüsikalis-
test andmestikest. Selleks kasutasime klasteranalüüsi meetodeid ruumilise statisti-
ka ja juhendamata masinõppe valdkondadest. Analüüsi tulemuste täpsuse tõstmiseks
arendasime välja ka arvutuslikult optimaalse ansambelõppe raamistiku. Eelmainitud
meetoditega leidsime korrelatsiooni galaktikate paiknemises Universumi struktuuri-
elementides ja detekteerisime klasterdumise nende struktuurielementide ja uue galak-
tikate andmestiku vahel. Samuti leidsime juhendamata ansambelõppe abil füüsikali-
sed klastrid astrofüüsikalise plasma andmestikust. Juhendamata klasteranalüüsi abil
kaardistasime plasmas leiduvad objektid, mis kirjeldavad plasmas leiduvaid füüsi-
kalisi struktuurielemente. Antud analüüside abil detekteerisime ja aitasime paremini
mõista nendes füüsikalistes struktuurides peituvaid fenomene.

Kosmoloogia on teadus, mis uurib meie Universumi tervikuna ning püüab mõista
selles sisalduva omavahelisi seoseid ning mõjureid. Tervikliku pildi abil on võimalik
kirjeldada Universumi arengut sünnist tema lõpliku saatuseni. Üheks suurimaks ast-
rofüüsikaliseks küsimuseks tänapäeval on lõplikult tõendada ja mõista Universumis
paiknevat tumeainet ja tumeenergiat. Universumis leiduv energia on jaotunud järg-
nevalt – kõigest 4.6% on barüonaine, mis on nähtav elektromagneetilisel spektrumil,
24% on tumeaine, mis on jälgitav ainult tema poolt tekitatud gravitatisooniliste fe-
nomenide abil, ning 71.4% tumeenergia. Tumeaine ja tumeenergia mõistmiseks on
tarvilik kaardistada ja uurida nähtavat barüonainet Universumis.

Suurimad nähtavad objektid Universumis on galaktikad, mis moodustavad inim-
ese jaoks hoomamatute mõõtmetega struktuure. See galaktikatest joonistuv struktuur



järgib tumeaine jaotust Universumis. Nähtava aine ja tumeaine jaotust Universumis
nimetatakse Universumi suureskaalaliseks struktuuriks. Suureskaalalised galaktikate
vaatlused nagu Sloan Digital Sky Survey (SDSS) (York et al. 2000), Two Micron
All Sky Survey (2MASS) (Skrutskie et al. 2006) ja 2dF Galaxy Redshift Survey
(2dfGRS) (Colless et al. 2001) on loonud tänapäevani kõige suuremad vaatluslikud
galaktikate andmestikud. Universumi vaatluslikku struktuuri on intensiivselt uuritud
juba aastakümneid (Sunyaev & Zeldovich 1970; Jõeveer et al. 1978; Peebles 1980;
Bond et al. 1996). Antud töödest ilmnes Universumi struktuuri keerukus, selle po-
tentsiaalsed füüsikalised põhjused ning mõju selles leiduvatele objektidele. Lisaks
eelmainitule on saanud ilmsiks keskkonna mõju galaktikate evolutsioonile (de Lap-
parent et al. 1986; Tempel et al. 2011; Kuutma et al. 2017; Crone Odekon et al. 2018).
Seetõttu omab galaktikate kaardistamine ja antud võrgustiku uurimine kosmoloogias
ja galaktikate füüsikas keskset kohta.

Universumis leiduv barüonaine ja tumeaine jaotuvad peamiselt pikkadesse si-
lindrilistesse filamentidesse, mille pikkused ulatuvad mõnest megaparsekist sadade
megaparsekiteni, ja sfäärilistesse tihedatesse parvedesse, milles leidub kümneid kuni
tuhandeid galaktikaid. Eelnimetatud tihedad keskkonnad piiritlevad peaaegu tühja-
sid hoomamatu suurusega sfäärilisi tühikuid. Galaktikate vaatlused on tänapäevani
teadlasi varustanud kataloogidega, mis sisaldavad enama kui miljoni galaktika spekt-
roskoopilise punanihkeid. Antud andmete abil on võimalik Universumi struktuuriele-
mente kaardistada. Galaktikaliste filamentide andmestik, mida antud töös uuritakse,
on detekteeritud just SDSS spektroskoopilise punanihkega galaktikate jaotusest ma-
temaatilise märgistatud punktprotsessi abil (Tempel et al. 2014). Antud töö esimeses
pooles uurisime neid pikkasid looklevaid sildasid, mida nimetatakse galaktikalisteks
filamentideks. Kosmoloogias on galaktikaid vaadeldud kui punktprotsessi realisat-
siooni juba aastakümneid (Pons-Bordería et al. 1999; Martinez & Saar 2001; Ripley
1981). Ka selles doktoritöös kirjeldasime galaktikate paiknemist Universumis kui
realisatsiooni punktprotsessist.

Esiteks pakkus meile huvi filamentides leiduvate galaktikate ruumiline jao-
tus. Selle uurimiseks rakendasime galaktikate paiknemise andmetele paaris-
korrelatsioonifunktsiooni. Antud füüsikaline korrelatsioonimõõt annab meile kirjel-
duse galaktikatest moodustunud punktmustris leiduvale ruumilisele korrelatsiooni-
le. Me selgitasime välja, et galaktikalistes filamentides leidub kindel muster ga-
laktikate paiknemises. Nimelt paiknevad galaktikad eelistatult teineteisest umbes
7.5 − 8.0 h−1Mpc kaugusel ning galaktikaparvede ümbrused on umbes 2 h−1Mpc
raadiuses tühjad. Antud tulemus viitab füüsikalistele protsessidele, mis kontrollivad
galakatikate evolutsiooni antud struktuurielemendis.

Teiseks pakkus meile huvi fotomeetrilise vaatluse käigus omandatud galaktika-
te andmestik. Antud fotomeetrilised punanihked on väga halva määramistäpsusega,
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mille tõttu pole nende galaktikate 3–mõõtmelised koordinaadid usaldusväärsed ning
seal leiduvat infot pole antud filamentstruktuuri modelleerimisel kasutatud. Nendes
kataloogides leidub aga infot miljonite galaktikate ruumilise asukoha kohta ning nad
võivad oluliselt panustada filamentstruktuuri modelleerimisse. Fotomeetrilise puna-
nihkega andmestike potensiaalse panuse välja selgitamiseks kasutasime ruumilise
statistika klasteranalüüsi meetodit – kahemuutuja J−funktsiooni. Antud ruumilise
klasterdumise hindamise statistik näitas selget klasterdumise signaali spektroskoo-
pilistest galaktikatest modelleeritud filamentide ja fotomeetriliste galaktikate vahel.
See tõendas meile, et fotomeetriliste galaktikate andmestikus leidub palju olulist infot
filamentstruktuuri kohta. Samuti tõendasid need galaktikad modelleeritud filamenti-
de õigsust ning andmete filtreerimise abil hindasime erinevate projektsiooniefektide
mõju.

Lisaks kosmoloogilistele andmestikele analüüsisime antud töös astrofüüsikalise
plasma simulatsiooni andmeid. Nimelt uurisime turbulentse põrkevaba magneetili-
selt domineeritud plasma simulatsioon (Nättilä 2019). Antud simulatsioon kirjeldab
füüsikalist fenomeni, mis eksisteerib väga erineva suurusega Universumi elementi-
des. Hõre magneetiliselt domineeritud laetud osakeste plasma eksisteerib galaktikate
parvedes, mustade aukude akretsiooniketastes, kahe neutrontähe kokkupõrke kesk-
konnas, Päikese koroonas, Maa magnetosfääris ning isegi maapealsetes tuumasün-
teesi reaktorites. Antud plasma uurimine omab seega olulist rolli nii kosmoloogiliste
objektide mõistmisel kui ka inimeste elukeskkonna mõistmises ja arendamises. Tä-
napäevani ei ole astrofüüsikalises plasmas leiduvad füüsikalised fenomenid täielikult
välja selgitatud ning selles leiduvate struktuuride automaatne detekeerimine on plas-
mafüüsikas veel täielikku lahendamist vajav probleem (Zhdankin et al. 2017; Comis-
so & Sironi 2018; Nättilä 2019; Cassak & Shay 2007; Retinò et al. 2007; Dupuis
et al. 2020).

Antud töös rakendasime turbulentse põrkevaba magneetiliselt domineeritud plas-
ma simulatsiooni (Nättilä 2019) andmetest saadud piltidele juhendamata klasterana-
lüüsi meetodit nimega Self-Organizing Map. Eelmainitud meetod kaardistab plasmas
leiduvad füüsikalised struktuurid. Antud tulemus ei ole aga geomeetrilise ja füüsi-
kalise analüüsi tarbeks piisavalt usaldusväärne, sest juhendamata närvivõrk on stoh-
hastiline ning ei saavutanud globaalset optimumi. Seega arendasime ja rakendasime
plasma andmetele juhendamata ansambelõpet, mis leidis täpsemad struktuuride klas-
sifikatsioonid. Kasutades juhendamata ansambelõpet klassifitseerisime piksel-haaval
plasma simulatsiooni pildid ning seeläbi detekteerisime plasmas leiduvad füüsikali-
sed struktuurid. Saadud struktuuride edasine füüsikaline ja geomeetriline analüüs on
suure tähtsusega ning annab selgust antud struktuurides leiduvatele fenomenidele.

Antud doktoritöös rakendasime me erinevaid klasteranalüüsi meetodeid astrofüü-
sikaliste struktuuride uurimiseks ja detekteerimiseks. Meetodid olid ruumilise sta-
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tistika ja juhendamata masinõppe valdkondadest. Leitud muster galaktikate paikne-
mises piki filamente kirjeldab filamentide keskkonda ning nende mõju galaktika evo-
lutsioonile. Fotomeetriliste galaktikate selge klasterdumine leitud filamentide telge-
dega motiveerib tulevikus antud galaktikaid modelleerimisel kasutama. Fotomeetri-
liste galaktikate kasutamine filamentstruktuuride modelleerimisel võimaldab kaardis-
tada detailsema ja kaugemale ulatuvama universumi struktuuri. Hetkel arendamisel
olev vaatlustprojekt Javalambre Physics of the Accelerating Universe Astrophysical
Survey (J-PAS) (Benitez et al. 2014) kaardistab miljonite galaktikate fotomeetrilise
punanihke oluliselt suurema täpsusega. J-PAS galaktikate fotomeetrilisi punanihkeid
on plaanis tulevases teadustöös Universumi struktuuri modellerimises kasutada.

Füüsikaliste struktuuride kaardistamine astrofüüsikalise plasma simulatsioonis
andis automatiseeritud meetodi siiani põhjalikult mõistmata elementide leidmiseks.
Saadud andmestik avab tee turbulentses plasmas toimuvate protsesside mõistmiseks.
Kõige enam huvipakkuvad elemendid neist on current sheets, mille läbi kõrgelt lae-
tud osakesed plasma keskkonnast välja pääsevad. Eelmainitud struktuuride geomeet-
riline analüüs plasma simulatsiooni piltidest on hetkel käsilolev töö. Turbulentne põr-
kevaba magneetiliselt domineeritud plasma on simuleeritud kasutades superarvuteid.
Järgmise aasta keskel hakkab 10 Euroopa riigi konsortsiumi juhtimisel tööle võimsu-
selt maailma tippude hulka kuuluv superarvuti LUMI1. Seega täpsustuvad ja suurene-
vad ka mitmed astrofüüsikaliste fenomenide simulatsioonid, sealhulgas eelmainitud
plasma simulatsioon. See toob endaga kaasa andmete hulga kasvu ning muudab opti-
meeritud ja paralleliseeritud analüüsimeetodite kasutamise veelgi olulisemaks. Antud
töös kasutatud ja arendatud juhendamata ansambelõppe raamistik on lihtsasti paralle-
liseeritav ja kasutab analüüsimisel arvutuslikult kiireid operatsioone. See tõstab antud
metoodikate kasutamise olulisust ka tuleviku simulatsooniandmete uurimisel.

Järgmiste aastate jooksul muutuvad paljud antud töös käsitletud andmestikud
suuremahulisemaks ja täpsemaks. Antud töös arendatud metoodikad on suureks
abiks, et nendest andmetest leida uusi seoseid ja vastata juba olemasolevatele tea-
duslikele küsimustele.

1www.lumi-supercomputer.eu
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