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1. INTRODUCTION 
 
Smectite is a typical product of surficial weathering of primary silicate ma-
terials. However, it is an unstable phase and tends to recrystallize into illite- or 
chlorite-type minerals under diagenetic and/or metamorphic/ metasomatic con-
ditions (Meunier and Velde 2004). Consequently, illitization of smectite is one 
of the most common clay mineral diagenetic processes that has been extensively 
studied over the last fifty years (e.g. Burst 1959, 1969; Weaver 1959; Shutov et 
al. 1969; Perry and Hower 1970; Hower et al. 1976; Środoń 1979; Nadeau and 
Bain 1986; Velde et al. 1986; Sucha et al. 1993; Lindgreen et al. 2002; Lanson 
et al. 2009).  

Illitization occurs in a wide variety of geological environments including 
burial diagenesis (Hower et al., 1976; Środoń 1984; Boles and Francks 1979), 
hydrothermal, metasomatic and (contact-)metamorphic alteration (Inoue et al. 
1988; Velde and Brusewitz 1986; Drits et al. 2007).  

Illitization of smectite is considered to proceed through mixed-layer illite-
smectite (I/S) intermediates, which show a progressive mineralogical trend with 
an increase of non-expandable illite at the expense of expandable smectite (e.g. 
Altaner and Ylagan 1997). Reaction mechanisms for smectite illitization can be 
classified into two main categories: SST and DC. The SST mechanism (Shutov 
et al. 1969; Dunoyer de Segonzac 1970; Hower et al. 1976) involves illitization 
in the solid state, with gradual replacement of smectite by illite on a layer-by-
layer basis. The charge of the smectite interlayer increases due to Al substi-
tution in the neighbouring tetrahedra, potassium is fixed, and smectite converts 
to illite. In this process, which typically also involves fluids that can act as cata-
lysts and transport media, the replacement of smectite by illite takes place in 
close topotactic contact (Lázaro 2007). The DC mechanism involves complete 
dissolution of smectite, followed by precipitation of I/S or illite. This process 
allows of major changes in the structure and texture to occur as illitization 
proceeds so that the structural memory of the precursor mineral is lost (Altaner 
and Ylagan 1997). The DC mechanism includes two main versions: (1) progres-
sive dissolution of smectite in a reaction front on a very small scale with in situ 
precipitation of the new phase (Ahn and Peacor 1986) and (2) initial dissolution 
of smectite followed by progressive coarsening of illite governed by an Ostwald 
ripening process (Eberl and Środoń 1988; Eberl et al. 1990). 

The range of physical conditions of illite formation at the expense of smec-
tite varies from 20 °C in surface soils, up to 300 °C in hydrothermal or 
diagenetic/metamorphic environments (Meunier and Velde 2004). The illiti-
zation advance is regarded as a palaeogeothermometer (e.g. Pollastro 1993). 
However, illitization is limited not only by temperature, but also by chemical 
parameters, mainly the availability of  potassium (e.g. Bauer and Velde 1999), 
fluid/rock ratio (Altaner and Ylagan 1997), composition of precursor phases 
(Drits et al. 2002), and the time factor (e.g. Velde and Vasseur 1992). There-
fore, illitization can be influenced differently in each specific geological en-
vironment, and could provide valuable information on the diagenetic develop-
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ment of sedimentary basins and contribute to evaluation of their formational 
models (e.g. Środoń 1999). 

Sedimentary basins, however, may have largely variable tectonothermal 
evolutionary paths in addition to a simple burial digenesis. Illitization can also 
be driven by the intrusion of high-temperature and/or K-rich hydrothermal 
fluids or diagenetic brines in relation to the orogenic processes at the basin 
margins (e.g. Elliot and Aronson 1987; Hay et al. 1988), and intrusion of mag-
matic rocks (e.g. Drits et al. 2007). Moreover, illitization can proceed at surface 
conditions and low temperatures in saline-alkaline lakes (e.g. Deconinck et al. 
1988) or due to early diagenesis of carbonate facies deposits in marine eva-
poritic settings (Sandler and Saar 2007). Moreover, I/S formation at low 
temperatures can be significantly advanced by wetting-drying cycles (Eberl et 
al. 1986) and by increased pH (Bauer and Velde 1999; Bauer et al. 2006). This 
reciprocal interplay of different diagenetic to hydrothermal/metamorphic condi-
tions, possibly driving the illitization process, makes difficult to recognize the 
mechanism of illitization and the diagenetic development of sedimentary se-
quences (e.g. Clauer 2006). 

The Baltic Basin (BB) is an old cratonic area that has been stabilized under 
an exceptionally stable tectonic regime for the last 500 Ma (Hendriks et al. 
2007). However, the vertical and lateral trends of illitization within the BB are 
complex and in some cases opposite to a normal burial trend (Somelar et al. 
2009b – PAPER II), suggesting that the overall stable tectonic development of 
the basin has been masked either by variable subsidence and uplift histories in 
its different parts or possible heat and/or fluid flow episodes. Diagenetic history, 
particularly the illitization of the BB Lower Palaeozoic clayey sediments has 
deserved close attention in the last decades (Gorokhov et al. 1994; Chaudhuri et 
al. 1999; Kirsimäe et al. 1999, Kirsimäe and Jørgensen, 2000; Lindgreen et al. 
2000; Środoń and Clauer 2001; Somelar et al. 2009a – PAPER I; Somelar et al. 
2009b – PAPER II; Środoń et al. 2009). In particular, diagenesis of the Lower 
Cambrian claystones (Blue Clay) and Cambrian–Ordovician Black Shales in the 
northern part of the basin, and Ordovician–Silurian K-bentonites within the 
basin and across the Teysseyre–Tornquist tectonic zone at the south-western-
most tip of the basin in Pomerania have been investigated. However, there is no 
consensus between diagenetic/palaeothermal reconstructions in these studies. 
The organic material thermal alteration indexes (CAI, TAI) of ≤1 (Nehring-
Lefeld et al. 1997; Talyzina 1998) of sediments in the shallowly buried northern 
part of the basin (<500 m) suggest that this sedimentary sequence is thermally 
very immature, which does not agree with the illite-rich composition of I/S 
mixed-layer minerals (>65% of illite layers). In the central and southern parts of 
the basin where the burial depth increases over 1000 m, the organic material 
alteration suggest much higher maturity of the sediments. The mixed-layer 
mineral composition in the central part of the basin, however, shows less illite 
layers (60–70%), and only in the most deeply buried south–eastern part of the 
basin (~2000 m) the illitization advance is at the same level as in its northern 
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part (Somelar et al. 2009b – PAPER II; Środoń et al. 2009). As a result, the 
driving mechanisms of illitization in the BB are not fully understood. 

Typically, the clay mineral composition of shales is a physical mixture of 
detrital and diagenetic minerals. Significant diagenetic information (compo-
sition and the isotope age of mixed-layer I/S) can be obtained from such sedi-
ments only by controlled size separation because authigenic illite and I/S tend to 
be smaller in size than detrital mica/illite (e.g. Clauer et al. 1997; Chaudhuri et 
al. 1999). However, earlier studies in the BB have shown that even the fine 
grain-size fractions (<0.06 µm) of clay-rich sediments are not purely mono-
mineralic (Kirsimäe and Jørgensen 2000).  

Altered volcanic ash beds – K-bentonites – are, in this sense, of great value 
to diagenesis studies because they do not contain detrital dioctahedral micas but 
only pristine diagenetic illite and I/S. K-bentonite beds are frequent in the 
Ordovician and Silurian sequences of the BB (Bergström et al. 1992, 1995, 
1998). The bentonites found in the BB include the thickest and most widespread 
Palaeozoic K-bentonite of north-western Europe, the Kinnekulle bed, equivalent 
to the North American Millbrig K-bentonite (Bergström et al. 2004).  
The aim of this thesis is: 
– first, to study the mineralogical characteristics and isotope age of the dia-

genetic I/S of the Ordovician and Silurian K-bentonites in order to under-
stand the illitization and diagenetic development of these sediments in the 
BB; 

– secondly, to link illitization with the tectonothermal evolution of the and its 
marginal areas. 

 

3
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2. GEOLOGICAL SETTING 
 
The BB is a stable intercratonic sedimentary basin of the East-European Plat-
form in the East Baltic between the Scandinavian and German–Polish branches 
of the Caledonian orogenic system. The complete stratigraphic record in total 
thickness of >2000 m extends from the latest Precambrian (Ediacaran) to the 
Cenozoic Neogene period in the south-western part of the basin, whereas in the 
northern and central parts of the basin (Estonia, north Latvia, north-western 
Russia) sediments of only Neoproterozoic and Lower Palaeozoic age are known 
(e.g. Nikishin et al. 1996). The Lower Palaeozoic sedimentary section of the 
northern BB in Estonia and northern Latvia is monoclinal, slightly dipping 
southwards (2–4 m per km) (Figure 1).  

The Baltic Basin (BB) represents one of the most stable old cratonic areas of 
the world. The apatite fission tracks (AFT) in Finland, in the area of the East 
European Craton (EEC), show the oldest ages on Earth of 500–800 Ma (Hend-
riks et al. 2007) referring to a long stable geological history.  

During the Late Palaeoproterozoic and early Mesoproterozoic a thick Sveco-
fennian juvenile crust (1900–1800 Ma) was opened for extensive denudation, 
ending with the formation of sub-Cambrian peneplain. The internal block-and-
fault structure of the Precambrian basement developed with the formation of 
Palaeo- to Mesoproterozoic rapakivi plutons, Jotnian and Post-Jotnian rift 
basins in the crust (1600–1000 Ma; Puura and Floden 2000) and subsequent 
large crustal depressions after the break-up of the Precambrian supercontinent 
Rodinia (Kumpulainen and Nystuen 1985). From the latest Neoproterozoic on-
wards the development of the passive margin of the Iapetus Ocean and Torn-
quist Sea the deformation and accumulation of the sedimentary cover, took 
place.  

The Caledonian orogeny (the collision of the Baltica continent with Lau-
rentia) occurred in the Late Silurian to Devonian about 350–420 Ma (Roberts 
and Gee 1985; Ziegler 1987; Torsvik and Rehnström 2001) This event was 
accompanied by the development of the North German–Polish Caledonides 
following the closure of the Tornquist Sea (Ziegler 1987). 

Neoproterozoic to late Palaeozoic sedimentary deposits within the BB re-
present the fill-up of a slowly subsiding epicontinental sea and subsequent infill 
of the developing Caledonian foreland basin. In the northern and central parts of 
the basin the Late- and/or post-Palaeozoic deposits are missing and any sedi-
mentary evidence for the last 300–400 Ma history is lacking. 
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Figure 1. Simplified geological map of Fennoscandia and the Baltic Basin with the 
location of the drill cores studied. Legend: 1. Keila-138, 2. Pääsküla, 3. Vasalemma, 4. 
F-306, 5. Pa. 37, 6.F-198, 7. F-639, 8. Oostriku, 9.Laeva-1, 10. Laeva-4, 11. Laeva-18, 
12. Velise-99, 13. Velise-98, 14.F-350, 15. Haapsalu, 16. Kirikuküla, 17. Kärdla-1,18. 
Kärdla 18, 19. F369, 20. Kõrgesaare, 21. F-356, 22.F-368, 23. F-363, 24. Vaemla, 25. 
Eikla, 26. Viki, 27. Pa. 871, 28. Kuusnõmme, 29. Kuressaare, 30. Kaugatoma, 31. 
Ohessaare, 32. Viirelaid, 33. Virtsu, 34. D-8, 35. Varbla, 36. Paatsalu, 37. Pärnu-6, 38. 
Are, 39. Kolka, 40.Ruhnu, 41. Puikule-42, 42. Valga, 43. Nitaure, 44. Taurupe, 45. 
Engure, 46. Piltene-1, 47. Venspils, 48. Aispute, 49. Vergale-49, 50. Bliudžiai, 51. 
Ligum, 52. Nagli-106, 53. Butkünai-241, 54. Svedasai-252, 55. Ledai-179, 56. 
Graudžai-105, 57. Sutkai-87, 58. M.Lapes-106, 59. Kunkojai, 60. Kybartai, 61. Gusev-
3, 62. Gusev-9, 63. Gusev-6, 64. Virbalise, 65. Pajevonis, 66. Vištytis-17, 67. 
S.Krasnoborsk-3, 68. Y.Yagodnoe-2, 69. Putilovskaya, 70. Hel IG-1, 71. Koscierzyna.  
Drillcores 5, 7, 12, 14, 19, 21, 23, 26, 70, 71 are from Środoń et al. (2009); 8, 15, 16, 
20, 51, 60, 65 from Ratejev and Gradusov (1971) and 41, 44, 46, 49, 52, 53, 54, 55, 56, 
57, 58, 61, 62, 63, 66, 67 ,68, 69 from Kepežinskas et al. (1994). 
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The Ordovician and Silurian sedimentary successions of the BB contain nume-
rous altered volcanic ash beds – bentonites that are usually K-rich and can be 
referred to as K-bentonites. Normally those beds are thin (from a few mm up to 
2 m) and laterally continuous within siliciclastic or carbonate successions (see 
for a review Bergström et al. 1992; 1995). They commonly form distinct series 
and are composed of a number of closely spaced layers, which can be found in 
certain stratigraphic intervals (e.g. Jürgenson 1958; Lapinskas 1965; Rateev and 
Gradusov 1971; Snäll 1976; Utsal and Jürgenson 1971; Bergström et al. 1992; 
1995; Kepezhinskas et al. 1994; Kiipli et al. 1997, 2001).  

In the Ordovician section the bentonite series are mostly found in the Upper 
Ordovician Sandbian and Katian stages, in the Silurian section in the Llando-
verian Telychian Stage and Wenlockian Sheinwoodian Stage (Bergström et al. 
1992; 1995; 1998; Figure 2). These include the two thickest and most wide-
spread Palaeozoic K-bentonites of north-western Europe, the Ordovician Kinne-
kulle and Silurian Osmundsberg K-bentonites that have been traced across large 
areas in Baltoscandia and Britain (Bergström et al. 1995, 1998).  

 

 
Figure 2. Stratigraphic scheme of Ordovician and Silurian bentonite intervals in Baltic 
Basin modified after Kiipli (2008).  

  
The source ash in the BB was deposited into a shallow epicontinental basin 
where normal marine carbonate sedimentation occurred during the Ordovician 
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and Silurian. The basin bathymetry of that time shows a broad shallow shelf in 
the north and a depression in the south, causing variation in the host rock com-
position connected with the respective change of facies zones from the northern 
part of the basin to its south-western part next to the Tornquist–Teisseyre Zone 
(Harris et al. 2004). In the northern part of the basin the sediments are repre-
sented by shallow marine limestones and argillaceous limestones, which are 
replaced by (kerogenous) shales, marlstones and limestones in the deep shelf 
facies in the south-western part of the BB. 

The immobile geochemical signatures of bentonite composition as well as 
phenocrysts and melt inclusions in quartz (Huff et al. 1996; Kiipli and Kallaste 
1996; Kiipli et al. 2008) suggest that the source magma of Ordovician and part 
of Silurian bentonites was of calc-alkaline type, predominantly rhyolitic or 
dacitic. The geochemical composition of several Silurian bentonites, however, 
is more alkaline (Bergström et al. 1992; Batchelor and Jeppson 1999), likely 
suggesting a different provenance. The potential tectonomagmatic setting might 
have been the Tornquist–Teisseyre Zone (Batchelor and Jeppsson 1999; Torsvik 
and Rehnström 2003), where the Tornquist Sea between Avalonia and Baltica 
was finally closed in the Silurian.  

The composition of bentonite clay matrix in the BB is typically mixed-layer 
I/S what can occur with some amount of kaolinite (Kiipli et al. 2007 – PAPER 
III; Hints et al. 2008). However, strongly feldspathized bentonites occur in the 
section (Kiipli et al. 2007 – PAPER II) and the bentonites of Upper Ordovician 
Katian age (Pirgu Regional Stage) are characterized by chlorite-smectite type 
mixed–layer minerals (Hints et al. 2006 – PAPER IV). The whole-rock com-
position of bentonites can vary laterally as well as in vertical profile. In the 
Kinnekulle K-bentonite K-feldspar-rich variety occurs in the northern part of 
the basin and it is replaced by I/S and then I/S and kaolinite association towards 
the south-central part of the basin. Kiipli et al. (2007 – PAPER III) described 
this laterally changing whole- rock association with respect to facies zonation, 
which was interpreted due to environmental (pH, silica activity) conditions 
during initial devitrification of pyroclastics. 

The Kinnekulle K-bentonite in north-Europe is the largest and most wide-
spread bentonite bed. It covers an estimated area of 6.9x105 km2 in north-
western Europe and is today locally up to 1–2 m thick. The thickness of this 
bentonite bed in is up to 70 cm in the northwestern part and a few cm in the 
eastern and southern parts of the BB. The thickness and grain size of detrital 
pyroclastic minerals distribution increase from Estonia to southern Sweden and 
southern Norway, which indicates that the source material came from south–
western Scandinavia (Huff et al. 1996). The formation of Kinnekulle bentonite 
bed is connected with the closure of the Iapetus Ocean that separated Baltica 
and Laurentia (Scotese and McKerrow 1991; Huff et al. 1996). The subduction/ 
collision against the south-eastern margin of Laurentia caused eruptive plinian 
and co-ignimbrite eruptions from the island arcs or microplates. 

A possible common source of and transatlantic correlation between the 
Kinnekulle and Millbrig K-bentonite beds has been proposed by Huff et al. 

4
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(1992, 1996). However, Sampson et al. (1989) described different Sc and Yb 
compositions in zircons from the Millbrig and Kinnekulle beds. Haynes et al. 
(1995) detected differences in the composition of biotite phenocrystals and Min 
et al. (2001) found large age difference (~7 Myr) between volcanic phenocrysts 
in of these beds. They all concluded that the Millbrig and Kinnekulle beds 
represent separate eruptions. Nevertheless, Huff et al. (2004) argue that radio-
metric datings are in conflict with the well–defined biostratigraphical position 
of these beds and that one should also consider variations inside the bed. Huff et 
al. (2004) still suggested, that according to biostratigraphy and chemostrati-
graphy, both ash beds are closely similar, if not identical, in age, and at least 
parts of these huge ash deposits are also indistinguishable chemically and their 
geographic distribution patterns are in agreement with the idea that they ori-
ginated from the same region and even shared the same source volcano(es). 
Some chemical heterogeneity of the Kinnekulle bed suggests that it is probably 
composed of complex or multiple eruptions, each contributing to a bentonite 
(Huff 2008). However, variation between these possible units is insignificant 
and they can be considered as a single unit. 
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3. MATERIAL AND METHODS 
 
Altogether 77 K-bentonite samples, (48 samples from the Ordovician and 29 
samples from the Silurian, from 37 drill cores across the Baltic Basin) were 
chosen for this study. The bentonite clay fractions were analysed by means of 
X-ray diffractometry (XRD), atomic-force scanning microscopy (AFM) and K-
Ar dating methods. Bentonite samples represent in most cases the middle or 
lower homogenoeus parts of the beds. Thickness of these beds varied from 5 to 
44 cm. Both plastic and non-plastic (feldspathized) varieties of bentonite were 
sampled. 

The mineral composition of <0.2 µm, 0.2–2 µm and <2 µm clay fractions, 
saturated with Mg or Sr, was analysed with the DRON-3M diffractometer with 
Ni filtered Cu Kα radiation, 0.5 mm divergence slit, 0.25 mm receiving slit and 
two 1.5° Söller slits. The scanning steps of 0.02 °2θ from 2 to 50 °2θ or 2 to  
40 °2θ and a counting time of 3 s per step were used. The XRD data for oriented 
<0.2, 0.2–2 µm and <2 µm clay aggregates were obtained in air-dry and ethy-
lene glycol (EG) solvated state.  

The Newmod (Reynolds 1985), MLM2C and MLM3C codes (Plançon and 
Drits 2000) and multispecimen fit approach (Sakharov et al. 1999) were used to 
estimate the illite, kaolinite and smectite in mixed-layer illite/smectite (I/S), 
illite/smectite/vermiculite (I/S/V) and chlorite-smectite (corrensite)–type mine-
rals qualitatively and quantitatively. The experimental XRD profiles were com-
pared to calculated structural models by a trial-and-error procedure until an 
optimum fit was achieved. The profiles were fitted in the 2–50 °2θ range con-
sidering the given instrumental and experimental factors and orientation factor, 
mass adsorption coefficient and composition of structural layers suggested by 
Moore and Reynolds (1997). The coherent stacking domain sizes (CSDS) were 
distributed log-normally. 

Polyvinylpyrrolidone (PVP-10) treatment was used to estimate the thickness 
of fundamental particles in mixed–layer mineral. Suspensions of <0.2 µm Na-
saturated fractions of selected samples were mixed with PVP-10 in a proportion 
of 2 parts of PVP-10 to 1 part of clay and treated with ultrasound for 1–2 min 
according to Uhlik et al. (2000). The clay films were prepared on low back-
ground substrates and measured from 2 to 45 °2θ, with scanning steps of  
0.02 °2θ and counting time of 5 s per step The area-weighted thickness of 
particles and respective distribution was calculated by the Bertaut–Warren–
Averbach technique using the MudMaster code (Eberl et al. 1996). 

Morphological analysis of I/S particles in the <0.2 µm fraction was per-
formed by atomic force microscopy (AFM) in non-contact mode. The speci-
mens were scanned under ambient humidity conditions. The AFM imaging 
window varied from 1x1 µm to 5x5 µm. Altogether six representative bentonite 
samples from different depths and locations were analysed. Na-saturated 
samples were dispersed by ultrasonic treatment in distilled water and one drop 
of the very diluted suspension was placed on a freshly cleaved mica surface that 
was warmed on a hot plate at about 60 °C (Blum 1994). The dimensions 
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measured were length (the longest particle axis), width (the axis perpendicular 
to the length) and thickness. The dimensions of only completely separated par-
ticles were measured. Generally about 50 particles per sample were measured. 
For comparison with the XRD-PVP method the area-weighted thickness was 
calculated for each sample.  

The K-Ar determinations were made for Sr-saturated <0.2 µm and 0.2–2 µm 
size fractions at the ING PAN laboratory in Kraków, Poland, following the 
technique described in detail by Środoń et al. (2006). The Ar measurements 
were controlled using the GLO standard and the K2O measurements using two 
NIST standards: 70a and 76a. The K-Ar dates were calculated with the standard 
decay constants (Steiger and Jäger 1977). 
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4. RESULTS  
 

4.1. X-ray diffractometry (XRD) 
 

4.1.1. Mineral composition of the clay fraction 
 

The XRD analysis of Ordovician and Silurian bentonites in EG-saturated and 
air-dried states characterize clay mineral composition mainly as mixed-layer 
I/S-type minerals and kaolinite (Somelar et al. 2009b – PAPER II), except for 
the Katian bentonites of Pirgu age where the mixed-layer mineral is composed 
of regularly interstratified chlorite and low-charge smectite components 
chlorite-smectite (corrensite) (Hints et al. 2006 – PAPER IV). Both Ordovician 
and Silurian bentonites show a variation in clay mineral composition with 
respect to facies zones – nearly monomineral I/S bentonites are are found in the 
shallow water facies, and the I/S and kaolinite assemblage occurs in the deep 
water facies (Somelar et al. 2009b – PAPER II; Kiipli et al. 2007 – PAPER III; 
Hints et al. 2008). Kaolinite was detected in 39 samples out of 128. Its content 
in kaolinite-bearing beds varies from 4 to 60%, being in kaolinte on average 
22%. Kaolinite is more frequent and in Silurian bentonite beds and in Ordo-
vician bentonites contain kaolinite more rarely, mostly in the southern part of 
the basin.  

Ordovician Katian bentonites of Pirgu age are exceptional among the Ordo-
vician and Silurian bentonite beds. The Pirgu bentonites contain a mixed-layer 
regular chlorite-smectite (corrensite) mineral with R1-ordering (Hints et al. 
2006 – PAPER IV). Chlorite-smectite is typically accompanied with mixed-
layer I/S and kaolinite. Corrensite is predominanting in most of the Pirgu 
samples but there are some exceptions where the I/S is the main clay mineral 
phase. 
 

4.1.2. Mixed-layer minerals 
 
The structural state of mixed-layer minerals was studied by comparison of 
experimentally measured XRD patterns with those calculated for two-dimen-
sional lamellar clay structures using Newmod (Reynolds 1985), MLM2C and 
MLM3C codes (Plançon and Drits 2000).  

The modelling suggests that the mixed-layer mineral in BB bentonites is 
typically an illitic R1-ordered I/S with 56–86% illite layers. However, simple 
two-component NEWMOD models gave only qualitative match in peak posi-
tions and large discrepancies were recorded in peak shapes and intensities 
between experimental and calculated patterns (Kiipli et al. 2007 – PAPER III). 
For better fit the models calculated with MLM2C and MLM3C codes were 
used. In most cases the MLM3C code assuming a three-component mixed-layer 
mineral proved to be the best for describing the measured patterns. Neverthe-
less, for some Silurian bentonite samples the MLM2C two-component model 
with R1-ordering provided equivalent fit to the three-component model (Some-

5
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lar et al. 2009b – PAPER II; Hints et al. 2008). In such cases a two-component 
model was preferred.  

The best fit with three-component models was achieved by assuming 5–11% 
high-charge smectite (vermiculite-like) layers in addition to fully expandable 
low-charge smectitic layers in R1-ordered lamellar structure with the probabi-
lity of a vermiculite-vermiculite sequence varying from 0 to 0.4. 

During modelling using MLM2C and MLM3C codes also two alternative 
models assuming (1) a simple two-component composition of mixed-layer 
minerals with R1–R2-ordering and (2) a physical mixture of two mixed-layer 
phases (I/S – I/V and I/S – I/S) were tested (e.g. Sakharov et al. 1999). How-
ever, neither the simple two-component model or physical mixtures of two-
component I/S and I/V, and I/S and I/S models could provide satisfactory fit for 
both EG and air-dry patterns (Somelar et al. 2009a – PAPER I, Figure 3). 

 

The closest fit for two-component models was obtained assuming a nearly 
maximum possible degree of ordering for R2 I/S mineral with pSII varying 
between 0.6 and 0.9. However, the intensities and peak shapes of the measured 
and modelled patters deviated significantly in the area between peaks at 
~12.3 Å and ~9.5 Å (001/1 and 001/2, respectively) and at peaks at ~4.8 Å and 
~5.18 Å. The peak positions were overlapping for glycolated samples, but it 

Figure 3. Comparison of the experimental and calculated XRD profiles. (A) three-
component illite-smectite-vermiculite, (B) physical mixture of two mixed-layer phases 
illite-smectite and illite-vermiculite, (C) physical mixture of two mixed-layer illite-
smectite phases (I/S1 and I/S2), (D) simple two-component mixed-layer mineral with 
R2 ordering. Black line – experimental profile, grey – calculated profile. Q – quartz, 
An – anatase, Kfs – K-feldspar 
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was impossible to get satisfactory fit neither for peak positions nor shapes for 
air-dry patterns. 

The best fit for a mixture of I/S and I/V phases was found assuming I/S with 
15–20% illite and I/V with 55–65% vermiculite layers, and for mixtures of two 
different I/S phases (R1 mineral 50–60 I% and R2 mineral 90–95 I%). For 
glycolated samples one of the phases in the mixture produced strong peaks at 
9.6–9.8 Å and 5.1–5.2 Å, and the second phase showed peaks at 12.2–12.6 Å 
and 4.8–4.9 Å. The modelled peak intensities and the position of the peak at 
~9.5 Å, however, were not matched and therefore three-component models 
were preferred (Figure 3).  

The expandability of mixed-layer minerals shows a regular variation with 
respect to the position within the basin (Somelar et al. 2009a,b – PAPERS I, II). 
The expandability of I/S in Ordovician bentonites in the northernmost part of 
the basin ranges from 15 to 30%. Towards the southern part of the basin the 
expandability and depth increase until the ~300–400 m depth is reached, where 
the expandability varies from 20 to 40%. After 400 m (in the deeper part of the 
basin) the expandability starts to decrease gradually with the increasing depth as 
it would be expected from the normal burial trend, and decreases to about 15–
20% at a depth of >2000 m.  

Interestingly, also the Newmod models of mixed-layer minerals in the 
Kinnekulle K-bentonite (Kiipli et al. 2007 – PAPER III), which were discarded 
from further study, suggested different long-range probability ordering type 
stacking-sequences (PSII.I) of I/S mineral for different facies zones. The deep-
shelf zone samples showed PSII.I of 0.10–0.25, the transition zone PSII.I 0.50–
0.57 and the shallow facies samples had the highest PSII.I probability values of 
0.60–0.77, which agrees with the higher illitic composition of mixed-layer 
mineral in the northern, shallow part of the basin. 

Silurian bentonites in the BB follow similar trends to Ordovician bentonites. 
However, in the same depth range the expandability of Silurian bentonites is 
somewhat less compared to the Ordovician beds. The smectite (S)% of mixed-
layer I/S and I/S/V minerals in shallowly buried Silurian K-bentonites varies 
from 15 to 41% (Somelar et al. 2009b – PAPER II). The expandability increases 
with increasing burial depth to about 40% at 280–300 m depth in the central 
part of the basin, but decreases from this depth forwards to ~25% at 500 m. 
Importantly, the Silurian mixed-layer minerals with the highest expandability 
are characterized by two-component R1-ordered I/S without high-charge 
smectite interlayers. In Ordovician bentonites the mixed-layer mineral was best 
described almost exclusively by assuming a three-component mixed-layering 
(Somelar et al. 2009b – PAPER II) 

The mixed-layer layer I/S mineral in chlorite-smectite dominated Katian 
bentonites of Pirgu age is similar to the other Ordovician beds and is characte-
rized by three-component I/S/V composition with 27–29% of expandability 
(Hints et al. 2006 – PAPER IV). 
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4.1.3. XRD – the thickness of illite fundamental particles  
 
The PVP-XRD analysis of selected samples with 69–78%I shows thin fun-
damental particles (coherent stacking domains) with the area-weighted mean 
thickness varying from 1.9 to 3.6 nm (‘best-mean’ according to Eberl et al. 
1996; Somelar et al. 2009a – PAPER I). The PVP-XRD indicate lognormal 
distributions for all studied samples with α and β2 varying within 0.7–1.24 and 
0.08–0.14, respectively. These samples scatter at the α  vs. β2 plot on the con-
junction of two crystal growth mechanisms (Eberl et al. 1998), suggesting the 
initial stage of the surface–controlled growth of illite crystals. 
 
 

4.2. Atomic force microscopy  
 
Atomic force microscopy (AFM) analysis of <0.2 µm fractions shows that the 
samples contain regular lath-shaped and euhedral to nearly isometrical particles 
with particle edges at 60º or 120º (Somelar et al. 2009a – PAPER I). The width 
of lath-shape particles is 30–70 nm and length 80–200 nm. Euhedral particles 
are 45–165 nm wide and 70–225 nm long. Euhedral particles with the width/ 
length aspect ratio of 1.2–2 are predominanting in all studied samples. The lath-
shaped particles, however, with aspect ratio higher than 4 are more frequent in 
less illitic samples. In both cases the measured thickness of particles is about 
3±1.5 nm increases slightly with the increasing illite content in the mixed-layer 
mineral. Comparison of the AFM data with PVP-XRD analysis of selected 
samples showed similar thin fundamental particles (coherent stacking domain 
sizes). As expected, the particles measured by the AFM method were thicker 
than those measured by the PVP-XRD method whereas only illite fundamental 
particles were detected in the latter analysis. 
 
 

4.3. K-Ar dating  
 
The K-Ar dating of Kinnekulle K-bentonite samples (Somelar et al. 2009a – 
PAPER I) shows that the apparent isotope age of 0.2–2 µm and <0.2 µm 
fractions is significantly lower than the stratigraphic age of the Kinnekulle 
bentonite, which is 454.8±2.0 Ma (Min et al. 2001). The ages of 0.2–2 µm and 
<0.2 µm fractions vary within 319.1–418.6 Ma and 371.1–418.6 Ma, respec-
tively. The shallowly buried mixed-layer minerals in the northern part of the ba-
sin are generally isotopically younger, which correlates with their overall higher 
illite content in I/S. However, the deepest measured bentonite in the Aizpute 
core is much younger, but less illitic. The K-Ar dates for most samples increase 
with decreasing particle size, with the exception two samples taken from the 
same 44-cm thick bed (Somelar et al. 2009a – PAPER I).  
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5. DISCUSSION 
 
Transformation from smectite to illite is mainly controlled by temperature. 
Advanced illitization in a sedimentary basin should reflect either deep burial 
diagenetic conditions during basin development or alteration due to intrusion of 
hydrothermal fluids. As indicated by earlier investigations (e.g. Chaudhuri et al. 
1999; Kirsimäe et al. 1999) and confirmed by the recent compilation of apatite 
fission track (AFT) data (Hendriks et al. 2007), there is no evidence of deep 
burial throughout the Fennoscandian Craton encompassing the northern part of 
the BB, the burial depth of which has not exceeded 1–1.5 km (Kirsimäe and 
Jørgensen 2000). The central and southern areas of the basin, however, are 
today and were in the geological past most probably more deeply buried. This is 
indicated by the thermal maturation of organic material. The shallow burial and 
low temperatures in the northern part of the basin (present-day depths <1000 m) 
are strongly supported by the thermally immature state of the organic material 
(TAI, CAI <1, R0 ~0.5). On the contrary, the organic material alteration state in 
sediments is more mature (R0 0.7–1) in the central (present-day depths 1000–
1500 m) and south-western parts (present day depths >1500 m) of the basin 
with maximum estimated palaeotemperatures of <50–80 °C up to ~150°C, 
respectively (Zdanavièiûte 1997; Nehring-Lefeld et al. 1997; Grotek 1999; 
Talyzina et al. 2000). 

However, mixed-layer minerals in K-bentonites of the BB contain small 
number of smectite interlayers (<35%S), which would suggest considerably 
higher burial temperatures than expected form alteration of organic material. 
Illitization of smectite in bentonites is considered to begin at ~70 °C and the 
mixed-layer I/S structural ordering transition from R0 to R1 at 35%S occurs at 
temperatures ~150 °C (Šucha et al. 1993). If this was the case in the BB, the 
observed illitization of Ordovician and Silurian bentonites with illite content of 
70–75%, 65–70% and 75–85% in the northern, central and south-western parts 
of the basin, respectively, would require burial depth in all parts of the basin in 
excess of 5 km assuming a normal cratonic geothermal gradient of 20–
25°C · km–1. The AFT data show that the temperatures in southern Finland next 
to the northern margin of the BB have not been higher than 125 ºC during the 
last 600–700 Myr (Hendricks et al. 2007). This excludes deep burial at least in 
the northern part of the basin.  

Nevertheless, the organic material alteration indexes that are gradually in-
creasing towards the central and south-western parts of the basin suggest that a 
thick sedimentary pile developed after the Baltica collision with Avalonia in a 
rapidly subsiding foredeep along the SW margin of Baltica (Torsvik and 
Rehnström 2003) causing increase in sediment temperatures. It seems that in 
southern and south-western sector of the BB bordering the Teissyere-Tornquist 
Zone the bentonite transformation is characterized by burial illitization.  

A simple burial diagenesis model in the southern and south-western parts of 
the BB is supported by K-Ar ages (294–382 Ma) of the bentonite I/S fractions 
(Środoń and Clauer 2001; Środoń et al. 2009), which agree with the period of 

6
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the most rapid sedimentary accumulation in the Devonian and Carboniferous. 
Moreover, the %S of I/S in the S–SW sector of the BB decreases towards the 
central part of the basin in the east and north (Somelar et al. 2009b – PAPER 
II). The gradual S% decrease from the central part of the basin towards the 
deeply buried southern part would then correspond to the increasing burial of 
beds in accordance with the development of tectonic subsidence of a typical 
(flexural) foreland basin during the Silurian which resulted from oblique 
collision of Baltica and Eastern Avalonia (Poprawa et al. 1999). The K-Ar data 
of I/S by Środoń et al. (2009) suggest that the illitization started in Early-
Devonian after the Lochkovian tectonic event when deep burial conditions were 
created in central and southern part of the basin. The peak illitization in S and 
SW part of the BB developed under the maximum cover of Devonian and 
Carboniferous sediments that occurred about 305–325 Myr ago (Ulmishek 
1990). Illitization was terminated by major erosion in the end of Carboniferous 
(Środoń et al.2009). 

The digenetic history of sediments in the northern part of the basin is more 
complicated. Principally, the mixed-layer I/S formation in surface conditions 
(e.g. in saline-alkaline lakes) has been described by several earlier authors, e.g. 
Singer and Stoffers (1980), Deconinck et al. (1988), Turner and Fishman 
(1991). Illite-smectite formation can be also advanced at low temperatures by 
wetting-drying cycles and increased pH  (Eberl et al. 1986; Bauer and Velde 
1999). Similarly, Sandler et al. (2004), Sandler and Harlavan (2006) and 
Sandler and Saar (2007) explained the early formation of ordered illitic mixed-
layer I/S, as well as of authigenic K-feldspar, in shallow marine carbonate sedi-
ments and at near surface temperatures by the interaction of sediment with K-
enriched brines formed by the evaporation of seawater and precipitation of 
calcite or dolomite. The residual solution left after such precipitation had in-
creased pH and K concentrations that promoted the illitization of original 
smectite and initiated authigenic K-feldspar formation. Indeed, Hints et al. 
(2006 – PAPER IV) explained the formation of mixed-layer chloritic phases in 
Katian bentonites by early diagenetic transformation of volcanic ash to 
saponite-type smectite in response to the reflux of hypersaline solutions in 
sabkha-type environment, consequently transforming into a regularly inter-
stratified chloritic mixed-layer mineral. However, the expandability of mixed-
layer I/S accompanying the chlorite-smectite in these bentonites does not differ 
from that recorded in the other Ordovician or Silurian beds in the basin 
(Somelar et al. 2009b – PAPER II). Moreover, the illitization driven by early 
diagenetic fluids would result in K-Ar dates of K-feldspar and I/S coincident 
(within 10 Myr) with the sedimentation age (e.g. Sandler and Harlavan 2006). 
The K-Ar dates of I/S and authigenic feldspar in the BB bentonites, however, 
are much younger than the stratigraphic age and do not support such an 
interpretation (Środoń et al. 2009; Somelar et al. 2009a – PAPER I). They do 
not exclude a possible effect of surface-temperature illitization, but imply at 
least an overprint of a younger illitization episode, which points to a Palaeozoic 
thermal and/or fluid intrusion episode at shallow depths. 
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Diagenetic-hydrothermal fluid activity in the Fennoscandian Craton in 
relation to the Caledonian orogeny (390–430 Ma), which generally agrees with 
the reported K-Ar ages of the I/S and K-feldspar, has been reported by many 
authors. Högdal et al. (2001) concluded from low pressure-temperature resetting 
of U-rich zircons in central Sweden that the basement regions east of the 
Caledonian front have been affected by saline fluids with the temperature of 
~150 °C. Considering data on noble gases and halogens, Kendrick et al. (2005) 
suggested a Caledonian mineralization event, caused by mixing of two or more, 
long-lived, hydrothermal basinal brines and pore fluids to explain the Cambrian 
sandstone hosted Pb-Zn ores in Scandinavia. The high-resolution UV laser 
microprobe Ar/Ar dating of the zoned K-feldspar overgrowths from the same 
sandstone-hosted Pb-Zn bodies also suggests two discrete events – early burial 
diagenesis (528–567 Ma) and a later tectonically induced fluid flow event 
related to the collapse of the Caledonian orogeny (400–425 Ma) (Sherlock et al. 
2005). The Pb/Pb data on calcite, fluorite and galena veins and U/Pb data from 
Sweden and southern Finland, as well as Nd model ages of the fluorite-bearing 
veins, suggest, although with a large error, the Caledonian age of mineralization 
(~400 Ma; Alm et al. 2005; K. Sundblad personal communication 2007). Clauer 
et al. (2003) proposed that the illitization of Lower Cambrian clays in the BB 
was triggered by a short-lived thermal pulse reaching 130–140°C with the 
duration of 2–5 Ma at about 485 Ma, or even later.  

The age of possible hydrothermal event(-s) proposed in these reports ge-
nerally agrees with the K-Ar ages of mixed-layer mineral in bentonites, sug-
gesting the main illitization event at 370–420 Ma. Nevertheless, compared to 
the mineralization at the Caledonian front (e.g. Lindblom 1986), the hydro-
thermal activity in the BB seems to be 5–20 Ma younger. This age difference, 
noticed also for Sm-Nd ages of fluorite and galena- bearing veins suggests that 
the fluids were not directly derived from the Caledonian front, but were 
probably related to the migration of the forebulge at the front of the Caledonian 
continent-continent collision zone, causing a fracturing and fluid flow due to an 
extensional tectonic regime in the BB (Alm et al. 2005). 

The fluids reaching the BB were considerably cooler (<100 ºC) than the 
hydrothermal fluids recorded in the Caledonian zone. Low temperatures have 
been concluded for fluorite, galena and calcite veins in southern Finland (Alm 
et al. 2005). Also stable isotope geothermometry of vein/fracture fillings and 
cements in siliciclastic sediments with late carbonate minerals (dolomite/calcite) 
in Estonia suggest maximum temperatures of 50–70 ºC (Kalle Kirsimäe and 
Valle Raidla unpublished data 2009). The geochemical signatures of remagneti-
zation of Silurian dolomites in the northern BB, showing weak remagnetization 
in Late Devonian-Mississippian (Plado et al. 2008), suggest mainly oxidized 
fluid species, which does not agree with the deep and high-temperature origin. 
There is no doubt that hydrothermal fluids with sulphide mineralization existed 
at the Caledonian front, but it seems that the fluids that reached the BB had 
already considerably cooled down.  
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The isotope composition of galena-dominated Pb(±Zn) mineralization in 
Ediacaran and Lower Palaeozoic successions in the northern BB suggests  local 
basement-derived origin of low-temperature fluids (<100 °C, Sundblad et al. 
1999). Most probably the fluid flow was induced somewhere in the uplifted 
forebulge area of the Caledonian foredeep. The fluid was transported through 
the extensional fractures penetrating the Ediacaran – Lower Palaeozoic sedi-
mentary succession and the Palaeoproterozoic crystalline basement. At the 
beginning of the main illitization event in the Late-Silurian (~420 Ma) the 
northern part of the BB was uplifted and the forebulge of the Scandinavian 
Caledonian foredeep basin, which axis was running along the present-day Gulf 
of Bothnia, was opened to erosion (e.g. Tullborg et al. 1995; Plink-Björklund 
and Björklund 1999). In the early Middle Devonian to Late-Devonian the 
extensional collapse and uplift in the Scandinavian Caledonides (e.g. Milnes 
1997; Rey et al. 1997) led to erosion of foredeep sediments. By that time 
forebulge was eroded and simultaneously with the decay of the forebulge the 
illitization of K-bentonites in the northern part of the BB ended.  

The low-temperature fluids penetrating the section must have been enriched 
with K+, which, combined with increased pH, significantly promotes K-mineral 
diagenesis (e.g. Sandler et al. 2004; Bauer et al. 2006; Sandler and Saar 2007). 
We suggest that the elevated K concentration of infiltrating fluids was achieved 
by migration through K-feldspar-rich crystalline basement rocks exposed under 
the Ediacaran–Palaeozoic sediments. The Palaeoproterozoic crystalline base-
ment in northern Estonia and southern Finland, as well as in the Gulf of Finland 
and southern Gulf of Bothnia, consists of the Palaeoproterozoic Svecofennian 
orogenic crust intruded by numerous plutons of anorogenic rapakivi granites 
outcropping now in the regions of the Gulfs of Bothnia and Finland and central 
Baltic Sea (Koistinen 1996; Lehtinen et. al. 2005). The rapakivi granites, also 
the late Svecofennian migmatite granites are characterised by a high content of 
potassium feldspar (35–45 vol%). 

High K+ activity of diagenetic fluids is strongly supported by common felds-
pathisation of bentonites, especially in the northern part of the basin (Kiipli et 
al. 2009 – PAPER III). The K-feldspar distribution and the N(NW) to S(SE) 
variation pattern of illitization in K-bentonites in the northern and central parts 
of the BB (Kiipli et al. 2007 – PAPER III; Somelar et al. 2009b – PAPER II) 
would then reflect the fluid flow direction along the topographic and/or geo-
chemical gradient. However, we must note that the illitization and K-feldspar 
abundance trends are concordant with the lithological pattern of the host rocks. 
Most illitic and K-feldspar-rich bentonites are seated in carbonate-dominated 
shallow shelf facies rocks, whereas the I/S-dominated bentonite composition 
gradually replaces the K-feldspar–I/S association in deeper shelf argillaceous 
carbonates and the I/S–kaolinite association occurs in the carbonate-rich shales 
of the deepest part of the shelf. Kiipli et al. (2007 – PAPER III) interpreted this 
transition as an evidence of syn-depositional to early diagenetic formation of K-
feldspar, I/S and kaolinite, which was controlled by regular variation in the 
seawater pH, host rock composition and the sedimentation rate along the facies 
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profile in the BB. The diagenetic ages of K-feldspar and I/S are >10 Myr 
younger than the depositional age (Somelar et al. 2009; Środoń et al. 2009) and 
the thermodynamic disequilibrium of I/S – K-feldspar – kaolinite assemblages 
(Hints et al. 2008), however, does not support our earlier interpretation.  

Nevertheless, the host rock composition and early diagenetic environment 
has inevitably influenced the formation of kaolinitic and chlorite-smectite 
bentonites (Hints et al. 2006 – PAPER IV; Hints et al. 2008) and we cannot rule 
out that the increasing shaleness of the host rock along the deepening facies 
profile has influenced the composition of K-rich fluid along the migration path 
by creating ion enrichment on the upflow side of the semipermeable to im-
permeable shaly units due to ion hindrance (Kastner and Siever 1979; Mark et 
al. 2007).  
 
 

5.1. Illitization mechanism 
  
Generally, smectite illitization has been considered to proceed according to two 
general mechanisms: solid-state transformation (SST) and dissolution and crys-
tallization (DC). Usually the SST mechanism has been proposed for materials 
with low permeability such as bentonite (Altaner et al. 1984; Środoń et al. 1986; 
Inoue et al. 1990; Elliott et al. 1991), shale and bentonite (Bell 1986), and 
mudstone (Lindgreen and Hansen 1991; Lindgreen et al. 1991). The DP mecha-
nism has been proposed for environments of higher permeability, such as 
hydrothermal systems (Inoue 1986; Yau et al. 1987; Inoue et al. 1988; Kitagawa 
et al. 1994; Inoue and Kitagawa 1994). 

The structural composition, isotope data and morphological parameters of 
I/S in Ordovician and Silurian bentonites of the BB seem to indicate a mixed 
dissolution-crystallization (DC) and solid-state-transformation (SST) mecha-
nism. The SST mechanism would be suggested form clay particles of very low 
and rather constant thicknesses at about 3±1.5 nm, whereas the particle thickness 
increases only slightly with the increasing illite content in a mixed-layer mineral. 
Also, the formation of the high-charge crystal interfaces (vermiculite-type layers) 
from the original low-charge montmorillonite points towards the SST mecha-
nism.  

On the other hand, regular euhedral-lath-shaped particles and morphological 
evolution along with the structural rearrangement would indicate the DC 
mechanism. At the same, the K-Ar ages of bentonite fractions show that a 
coarser fraction (0.2–2 µm) exhibits lower K-Ar age than a fine-sized clay 
fraction (<0.2 µm). This results typically from a ripening process in which the 
finest particles are older and are continuously dissolved while coarser particles 
grow continuously (Meunier and Velde 2004). This variation in the K-Ar ages 
between different size fractions suggests that if the illitization of smectite in 
bentonites at the northern margin of the basin was triggered by K-rich fluid 
activity, it must have occurred over a prolonged period instead of a short single 
hydrothermal event that would have resulted in equal K-Ar ages for all sizes of 
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I/S particles (Środoń et al. 2002). Moreover, the ripening type of crystal growth 
in K-bentonites is also supported by AFM data that show gradual increase in 
average thickness and lateral dimensions (area) with increasing content of illite 
layers in mixed- layer minerals. On the base of these arguments we would 
suggest that illitization mechanism in these bentonites is mainly controlled by 
the SST mechanism but this evolution has been overprinted by the DC–type 
process. 
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6. CONCLUSIONS 
 
The clay fraction of the studied Silurian and Ordovician K-bentonites  from the 
BB is dominated by three-component mixed-layer I/S/V mineral with the illitic 
layer content varying from 54 to 85%. The variation of clay mineral com-
position is related to the change of facies zones. Nearly monomineral I/S/V and 
rarely I/S bentonites are found in shallow-water facies and the I/S/V(I/S)–
kaolinite association occurs in deep water facies host rocks. The Katian 
bentonites of Pirgu age are exceptional among other Silurian and Ordovician K-
bentonite beds due to their mixed-layer regular chlorite-smectite (corrensite) 
and I/S/V composition. The bentonites in the northern part of the basin are fre-
quently feldspathized.   

The northern margin of the BB (present day burial depths <300 m) is charac-
terized by mixed-layer I/S/V with the expandability of 15–30%. At the depth of 
~300–400 m the expandability varies at 20–40% and does not change before the 
1400 m depth is reached in the south-central part of the BB. Further to the south 
the expandability starts to decrease and reaches the minimum at depths 
exceeding 2000 m where the expandability of Ordovician K-bentonites is 15–
20%. In the same depth range the expandability of the Silurian K-bentonites is 
somewhat less than that of Ordovician beds.  

The K-Ar data from the southern and south-western parts of the BB shows 
ages of 294 to 382 Ma (Środoń et al. 2009), which suggest illitization co-
inciding with the maximum burial that developed in Devonian-Carboniferous. 
The illitization was terminated in the Carboniferous when major erosion in 
southern part of the BB started. The K-Ar ages of the mixed-layer mineral from 
the northern and central parts of the BB suggest a somewhat earlier illitization 
age of 370 to 420 Ma that agrees with the extensional collapse of the 
Scandinavian Caledonides. 

The illitization in the Ordovician and Silurian K-bentonite beds in the BB is 
evidently controlled by a combination of burial and fluid–driven processes. The 
burial process predominated in the deeply buried southern and south-western 
part of the BB where the illitization period corresponds to the maximum burial 
in the Silurian–Carboniferous. The influence of the burial diagenesis decreases 
with the decreasing burial depth from the southern part of the BB towards the 
central part of the basin. We suggest that illitization in the northern and north-
western part of the BB was triggered by the prolonged flushing of K-rich fluids 
in relation to the latest phase of the development of the Scandinavian Caledo-
nides about 420–400 Ma. The K-rich fluids were probably derived by the 
leaching of the K-feldspar containing rapakivi granites and migmatite granites 
of the Svecofennian crystalline basement, which were uplifted in the forebulge 
area of the Caledonian foredeep just at the northern and northwestern margin of 
the BB. 
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SUMMARY IN ESTONIAN 
 

Ordoviitsiumi ja Siluri bentoniitide  
varadiageneetiline areng Balti Basseinis  

 
Illiit-smektiit on looduses levinuim segakihiline savimineraal, mis esineb nii 
murenemiskoorikutes(muldades), merelistes kui ka kontinentaalsetes setetes ja 
hüdrotermaalsetes muutumistsoonides. Illit-smektiit on kvaasistabiilne faas, mis 
kujutab endast muutuva koostisega üleminekulist vaheastet kahe teise laialt 
levinud savimineraali – smektiidi ja illiidi vahel. Smektiidi diageneetilist trans-
formeerumist illiidiks nimetatakse illitiseerumiseks ning see on savimineraalide 
diageneetilistest protsessidest olulisim ja levinuim. Smektiidi illitiseerumine on 
mitmeastmeline protsess mida kontrollivad keskkonna temperatuur, settes liiku-
vate fluidide ja algse smektiidi koostis, orgaaniliste ühendite juuresolek ning 
(reaktsiooni) kestus. Seega peaks illitiseerumise diageneetiline areng setetes  pee-
geldama settebasseini tektoonilis-termaalset arengut, sealhulgas basseini eksistee-
rimise vältel esinenud soojusvoo lokaalseid muutusi. Tüüpilistel illitiseerumis-
temperatuuridel (70–150°C) toimub ka setetesse maetud orgaanilise ainese termo-
katalüütiline lagunemine ning nafta ja maagaasi formeerumine. Seepärast on 
illitiseerumisuuringud kõrvuti mineraalide transformeerumisprotsesside üldise 
tundmaõppimisega esmatähtsad reservuaarikivimite nafta- ja gaasipotentsiaali 
hindamiseks. Siiski, kuigi illitiseerumist on intensiivselt uuritud viimase viie 
kümnendi jooksul nii looduslikes settebasseinides kui ka laboratoorselt, ei ole 
selle nähtuse toimemehhanismid ja arenguteed veel lõpuni selged. 

Balti Bassein, eriti selle põhjapoolse osa (tänapäevane Eesti ja Läti ala), pa-
leosoilist kuni kaasaegset geoloogilist evolutsiooni iseloomustab äärmiselt sta-
biilne tektoonilis-termaalne režiim. Siinsed Vara-Paleosoikumi terrigeensed set-
ted ei ole kunagi sügavalt maetud ja on seetõttu praktiliselt litifitseerumata. 
Madalale diageneesiastmele viitab ka orgaanilise ainese muutumisaste, mis näi-
tab, et paleotemperatuurid nendes setetes on ulatunud maksimaalselt kuni 50–
80°C-ni. Vaatamata sellele on Balti Basseini settekivimite I/S kõrge illiitsusega 
(illiidi kihtide sisaldus >65%), mis peaks iseloomustama kaugele arenenud illiti-
seerumist. Seda ebakõla illitiseerumise ja setete termaalse arenguküpsuse vahel 
on varem selgitatud madalatemperatuurilise ajafaktori poolt kontrollitud illiti-
seerumisega või lühiajaliste termaalsete impulsside mõjuga.   

Balti Basseini Alam-Palesoikumi Siluri ja Ordoviitsiumi karbonaatsetes ki-
vimites esineb arvukalt bentoniidi (ümberkristalliseerunud püroklastilise ma-
terjali) kihte, millede savimineraalses koostises on ainult autigeensed faasid. 
Neid kunagisi vulkaanilise tuha kihte klassifitseeritakse tavaliselt kui K-bento-
niite, mis märgib nende kõrgenenud kaaliumi sisaldust. Balti Basseini K-bento-
niitide savifraktsioon (<2 µm) koosneb enamjaolt segakihilisest kolme-
komponendilisest illiit-smektiit-vermikuliidi tüüpi mineraalist ja kaoliniidist. 
Erandiks on Ülem-Ordoviitsiumi Katiani  (Pirgu lade) bentoniidid mille savi-
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fraktsiooni domineerivaks mineraaliks on kloriit-smektiidi (korrensiidi) tüüpi 
savimineraal, mis esineb koos illiit-smektiidi ja harvem kaoliniidiga.  

Käesoleva töö eesmärgiks oli, esiteks, selgitada Ordoviitsiumi ja Siluri K-
bentoniitide savimineraalide koostis, struktuurne seisund ja isotoopvanused ning 
nende parameetrite varieerumine Balti Basseinis. Teiseks töö eesmärgiks oli Balti 
Basseini setetendite tektono-termaalse  arenguloo rekonstrueerimine tuginedes 
illitiseerumise seaduspärasustele. Balti Basseini  väikestest mattumissügavustest 
ja stabiilsest tektoonilisest arengust tulenev diageneesikeskkond ja seda määranud 
parameetrid erinevad teistest sügavatest paleosoilistest, mesosoilistest ja kaino-
soilistest settebasseinidest, kus smektiidi illitiseerumist on siiani uuritud.  

Uuritud K-bentoniitide savifraktsioonis domineerib illiit-smektiit-vermikuliidi 
(I/S/V) tüüpi segakihiline faas milles on illiitsete kihtide sisaldus vahemikus 54–
85%. Kõrvuti segakihilise faasiga esineb bentoniitides autigeenne kaoliniit, mille 
sisaldus varieerub 4 kuni 60% (keskmiselt 22%). Basseini madalaveelise faatsiese 
valdavalt karbonaatsele põhjaosale (tänapäevane mattumissügavus <300m) on 
iseloomulik monomineraalne segakihiline I/S/V, kus illiitsete kihtide sisaldus on 
70–85%. Illiitsete kihtide sisaldus väheneb umbes 60–80%-ni 300–400 m süga-
vusel ja ei muutu kuni sügavuseni 1400 m basseini kesk ja lõunaosas. Liikudes 
basseini keskosast järjest enam lõunasse kasvab illiidikihtide sisaldus K-bento-
niitide segakihilises mineraalis kuni saavutab maksimaalselt 80–85% >2000 m 
sügavustel. Seejuures on Siluri K-bentoniitide illiidi sisaldus võrreldes Ordo-
viitsiumi kihtidega samal sügavusel pisut madalam. Kaoliniidi sisaldus suureneb 
basseini kesk- ja lõunaosa suunas ja selle mineraali esinemine iseloomustab 
peamiselt sügavaveelise faatsiese savikaid ümbriskivimeid.  

Savifraktsiooni K-Ar dateeringute vanused (294-382 Ma) basseini lõuna- ja 
edelaosast viitavad sellele, et intensiivseim illitiseerumine rööbistub ajas setete 
maksimaalse mattuvusperioodiga, mis algas Devonis, ning mis basseini lõuna- 
ja edelaosas lõppes suureulatusliku erosiooniga Karbonis. Erinevalt basseini 
lõunaosast on segakihilise mineraali monomineraalsete fraktsioonide K-Ar 
dateeringud BB põhja- ja keskosast oluliselt nooremad (370–420 Ma) ja 
langevad kokku Skandinaavia Kaledoniidide mäestikutekke lõppfaasiga.  

Segakihiliste mineraalide koostise, morfoloogia ja isotoopvanuste ruumiline 
varieerumine näitab, et Balti Basseini Ordoviitsiumi ja Siluri K-bentoniitide 
savimineraalide diageneesi on kontrollinud mattumisdiageneesi ja fluidi-prot-
sesside kombinatsioon. Mattumisdiageneesi (st temperatuuri) kontrollitud illiti-
seerumine on domineeriv sügavalt maetud basseini lõuna- ja edelaosas, kus 
illitiseerumise vanus langeb kokku maksimaalse mattumisperioodiga Siluris-
Karbonis. Mattumisdiageneesi protsesside osatähtus väheneb liikudes basseini 
lõunaosast basseini keskosa suunas koos bentoniidikihtide sügavuse vähenemi-
sega. Peamiseks illitiseerumist mõjutavaks protsessiks Balti Basseini põhja- ja 
loodeosas on pikaajaline K-rikaste fluidide sissevool, mis on seotud Skandi-
naavia Kaledoniidide arenguga (~420–400 Ma tagasi). Fluid rikastus K-ga tõe-
näoliselt meteoorsete vete liikumisel läbi Svekofennia kristalliinse aluskorra K-
päevakivi rikaste, rabakivi ja migmatiit graniitide, mis paiknesid Kaledoniidide 
eelsügaviku eelkerke (forebulge) alal.  
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