Bacterial community structure and its genetic potential for nitrogen removal in the soils and sediments of a created riverine wetland complex
Date
2015-10-09
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Inimtegevuse tulemusena on kordades suurenenud bioloogiliselt kättesaadava lämmastiku hulk eri ökosüsteemides, mis omakorda on põhjustanud ulatuslikke keskkonnaprobleeme. Üks võimalus veeökosüsteemide kaitsmiseks liigsete toitainete eest on tehismärgalade (TM) rajamine.
Mikroobikooslustel on TMide lämmastikuringes võtmeroll ning seetõttu on oluline mõista seoseid mikroobikoosluste ja keskkonnaparameetrite vahel nimetatud ökosüsteemides. TMi tuleks luua sobilikud tingimused eelkõige sellistele bioloogilistele protsessidele, mis tagaks maksimaalse lämmastikuärastuse minimaalse kasvuhoonegaasi N2O emissiooniga.
Käesolevas töös uuriti reostunud jõevett puhastava TMide kompleksi muldade ja setete bakterikoosluse struktuuri, hinnati selle lämmastikuärastuse geneetilist potentsiaali ning analüüsiti nende näitajate seoseid keskkonnaparameetritega (keemilised parameetrid, veerežiim ja pinnasetüüp).
Töö tulemused näitasid, et veerežiim on oluline faktor mulla bakterikoosluste struktuuri kujunemisel. Ajutiselt üleujutatud alade bakterikooslused olid võrreldes püsivalt üleujutatud alade kooslustega mitmekesisemad ja ühtlasema bakteriliikide jaotusega.
Uuritud muldade bakterikoosluste denitrifikatsiooni potentsiaal sõltus hüdroloogilistest tingimustest vastavas TMi osas. Suurim nitriti redutseerimise potentsiaal esines püsivalt üleujutatud alade bakterikooslustes, kuid suurim N2O redutseerimise potentsiaal ilmnes ajutiselt üleujutatud alade kooslustes. Mulla keemiline koostis mõjutas denitrifikatsiooniga seotud geenide osakaalusid TMide muldade bakterikooslustes. TMide muldades tuvastatud ANAMMOXi ja n-damo protsesse läbiviivate bakterite osakaalud olid suuremad püsivalt üleujutatud alade bakterikooslustes.
Antud töö tulemustest võib järeldada, et ehkki lämmastiku eemaldamine TMide muldadest toimub väga erinevate protsesside vahendusel, on denitrifikatsioon peamine seda funktsiooni läbiviiv protsess ning ajutiselt üleujutatud alade loomine võimaldaks vähendada osalisest denitrifikatsioonist pärinevat N2O emissiooni TMide muldadest.
Human activities have increased the amount of reactive nitrogen in ecosystems, causing severe environmental problems. In order to protect aquatic ecosystems from excessive nitrogen, the implementation of treatment wetlands (TWs) is proposed. Microbial communities play a key role in the nitrogen cycle and hereby it is crucial to understand the relationships between microbial communities and environmental parameters in TWs. Favourable conditions for processes with maximum nitrogen removal and minimum N2O emission should be created in TWs. In this dissertation, the bacterial community structure and its nitrogen removal potential were characterised in the soils and sediments of a polluted river water treating wetland complex in relation to site-specific characteristics (soil chemical parameters, water regime, and soil type). Water regime was an important factor in determining the structure of the bacterial communities in the studied TW soils - the communities in the occasionally flooded areas were more diverse and complex than those of the permanently flooded areas. Genetic potential for denitrification was detected in all the studied soils and this was dependent on the site’s hydrological conditions. Nitrite reduction potential was higher in the permanently flooded zones, while greater potential for N2O reduction was in the bacterial communities of occasionally flooded areas. The proportions of denitrification-related genes were affected by soil chemical parameters. Genetic potential for ANAMMOX and n-damo processes was detected in the soils of the TWs and the most suitable conditions for those bacteria were in the permanently flooded areas. The results of this study indicate that the bacterial communities of TW soils have the genetic potential for several nitrogen removal processes; nevertheless, denitrification is the main process performing this function and a creation of the occasionally flooded areas would decrease the N2O emission from partial denitrification from the TWs soils.
Human activities have increased the amount of reactive nitrogen in ecosystems, causing severe environmental problems. In order to protect aquatic ecosystems from excessive nitrogen, the implementation of treatment wetlands (TWs) is proposed. Microbial communities play a key role in the nitrogen cycle and hereby it is crucial to understand the relationships between microbial communities and environmental parameters in TWs. Favourable conditions for processes with maximum nitrogen removal and minimum N2O emission should be created in TWs. In this dissertation, the bacterial community structure and its nitrogen removal potential were characterised in the soils and sediments of a polluted river water treating wetland complex in relation to site-specific characteristics (soil chemical parameters, water regime, and soil type). Water regime was an important factor in determining the structure of the bacterial communities in the studied TW soils - the communities in the occasionally flooded areas were more diverse and complex than those of the permanently flooded areas. Genetic potential for denitrification was detected in all the studied soils and this was dependent on the site’s hydrological conditions. Nitrite reduction potential was higher in the permanently flooded zones, while greater potential for N2O reduction was in the bacterial communities of occasionally flooded areas. The proportions of denitrification-related genes were affected by soil chemical parameters. Genetic potential for ANAMMOX and n-damo processes was detected in the soils of the TWs and the most suitable conditions for those bacteria were in the permanently flooded areas. The results of this study indicate that the bacterial communities of TW soils have the genetic potential for several nitrogen removal processes; nevertheless, denitrification is the main process performing this function and a creation of the occasionally flooded areas would decrease the N2O emission from partial denitrification from the TWs soils.
Description
Väitekirja elektrooniline versioon ei sisalda publikatsioone.
Keywords
reoveepuhastus, biopuhastus, lämmastikuärastus, denitrifikatsioon, mikroobikooslused, koosluste struktuur, märgalapuhastid, veeökosüsteemid, keskkonnakaitse, wastewater treatment, biological wastewater treatment, nitrogen removal, denitrification, microbial communities, community structure, wetland sewage treatment systems, aquatic ecosystem, environment protection