RNA polymerase II-dependent transcription elongation in Saccharomyces cerevisiae
Failid
Kuupäev
2016-07-01
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Abstrakt
Kõikides eukarüootsetes rakkudes viib valke kodeerivate geenide transkriptsiooni läbi RNA polümeraas II (RNAPII). Protsessi, mille käigus sünteesitakse mRNA, nimetatakse transkriptsioonitsükliks ning see tsükkel jaotatakse kolme etappi – transkriptsiooni initsiatsioon, elongatsioon ning terminatsioon. Käesolevas töös uurisin RNAPII elongatsiooni mehhanisme, kasutades mudelorganismina pagaripärmi Saccharomyces cerevisiae.
Antud töö esmaseks eesmärgiks oli tekitada kõrgel tasemel transkribeeritava mudelgeeni sisse nn. vaigistavate valgukomplekside poolt heterokromatiinne ala ning uurida selle struktuuri mõju transkriptsiooni läbi viivale RNAPII kompleksile. Selgus, et elongatsiooni etapis olev RNAPII suudab transkribeerida läbi heterokromatiini ning see viib vaigistavate valgukomplekside eemaldamisele. Lisaks selgus, et heterokromatiini läbimiseks RNAPII poolt on vajalik histoon H3 56. positsioonis oleva lüsiinijäägi atsetüleerimine.
Teiseks huvipakkuvaks küsimuseks oli, mis juhtub siis, kui kõrgel tasemel transkribeeritavasse mudelgeeni viia sisse replikatsiooni algusala (origin), millel moodustuvad pre-replikatiivsed kompleksid. Nägime, et elongatsiooni etapis olev RNAPII suudab eemaldada kodeerivas alas moodustunud pre-replikatiivsed kompleksid ilma, et selline kokkupuude häiriks toimuvat transkriptsiooniprotsessi. Lisaks taastatakse pärast transkriptsiooni lõppemist pre-replikatiivsed kompleksid inaktiveeritud replikatsiooni algusaladel ning sellised uuesti moodustunud kompleksid on järgnevas S-faasis funktsionaalsed.
Lõpetuseks, eelnevates, terveid rakupopulatsioone hõlmavates katsetes oli näidatud, et RNAPII kompleksid jaotusid geenil ebaühtlaselt. Sellest tulenevalt oli käesoleva töö kolmandaks eesmärgiks uurida RNAPII komplekside jaotumist kõrgelt transkribeeritaval mudelgeenil ühe raku tasemel. Vastupidiselt eelnevatele tulemustele leidsime, et RNAPII kompleksid jaotusid ühtlaselt kogu geeni ulatuses.
Transcription of all eukaryotic protein-coding genes is carried out by RNA polymerase II (RNAPII). The process of mRNA synthesis is called transcription cycle and this cycle is divided into three steps – initiation, elongation and termination. The current thesis focuses on mechanisms of RNAPII transcription elongation in budding yeast Saccharomyces cerevisiae. The first goal of this thesis was to introduce repressive heterochromatin into the highly transcribed model gene and to analyze how this structure influences elongating RNAPII. Our results show that elongating RNAPII can transcribe through heterochromatin, leading to displacement of silencing complexes. In addition, acetylation of H3K56 is essential for RNAPII elongation through heterochromatin. The second interesting question was what is the outcome of elongating RNAPII encountering pre-replicative complexes formed on replication origin that lies in the middle of the highly transcribed model gene. We determined that pre-replicative complexes formed on replication origins in coding region are removed by elongating RNAPII and this encountering does not interfere with RNAPII transcription elongation. Additionally, transcription-coupled inactivation of replication origins is reversible by re-assembling pre-replicative complexes when transcription stops and these newly formed complexes are fully functional in the following S-phase. Finally, in previous studies averaging RNAPII density from whole population of cells, uneven distribution of RNAPII has been reported. Therefore the third goal of this thesis was to determine the distribution of RNAPII on highly transcribed model gene on single cell level. Intriguingly, our results demonstrate that RNAPII complexes are distributed uniformly throughout the entire length of the gene.
Transcription of all eukaryotic protein-coding genes is carried out by RNA polymerase II (RNAPII). The process of mRNA synthesis is called transcription cycle and this cycle is divided into three steps – initiation, elongation and termination. The current thesis focuses on mechanisms of RNAPII transcription elongation in budding yeast Saccharomyces cerevisiae. The first goal of this thesis was to introduce repressive heterochromatin into the highly transcribed model gene and to analyze how this structure influences elongating RNAPII. Our results show that elongating RNAPII can transcribe through heterochromatin, leading to displacement of silencing complexes. In addition, acetylation of H3K56 is essential for RNAPII elongation through heterochromatin. The second interesting question was what is the outcome of elongating RNAPII encountering pre-replicative complexes formed on replication origin that lies in the middle of the highly transcribed model gene. We determined that pre-replicative complexes formed on replication origins in coding region are removed by elongating RNAPII and this encountering does not interfere with RNAPII transcription elongation. Additionally, transcription-coupled inactivation of replication origins is reversible by re-assembling pre-replicative complexes when transcription stops and these newly formed complexes are fully functional in the following S-phase. Finally, in previous studies averaging RNAPII density from whole population of cells, uneven distribution of RNAPII has been reported. Therefore the third goal of this thesis was to determine the distribution of RNAPII on highly transcribed model gene on single cell level. Intriguingly, our results demonstrate that RNAPII complexes are distributed uniformly throughout the entire length of the gene.
Kirjeldus
Väitekirja elektrooniline versioon ei sisalda publikatsioone.
Märksõnad
RNA polümeraas, transkriptsioon (biol.), elongatsioon (biol.), pärm, RNA polymerase, transcription (biol.), elongation (biol), yeast