DSpace
    • English
    • Deutsch
    • Eesti
  • English 
    • English
    • Deutsch
    • Eesti
  • Login
View Item 
  •   DSpace @University of Tartu
  • Loodus- ja täppisteaduste valdkond
  • Matemaatika ja statistika instituut
  • LTMS magistritööd -- Master's theses
  • View Item
  •   DSpace @University of Tartu
  • Loodus- ja täppisteaduste valdkond
  • Matemaatika ja statistika instituut
  • LTMS magistritööd -- Master's theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Credit scoring by segmented modelling

Thumbnail
View/Open
ozay_tevfik_can_msc_2016.pdf (1.566Mb)
Date
2016
Author
Özay, Tevfik Can
Metadata
Show full item record
Abstract
This study is devoted to small loan evaluation modelling which is known as credit scoring. Credit scoring models help the decision takers (such as credit offices, banks …) decide customers’ creditworthiness in short time without prejudice. Main goal of this master thesis was to understand feasibility and effectiveness of credit scoring model by using logistic regression technique and obtaining important variables for credits scoring models. Furthermore we targeted to reveal how segmentation (creating different score cards for different age groups) can help to predict more accurately. In this study, we worked with real data which was provided by local company in Estonia. In conclusion, our results showed that credit scoring by logistic regression helped to discriminate good customers effectively and the use of segmentation improves the model’s accuracy.
URI
http://hdl.handle.net/10062/52455
Collections
  • LTMS magistritööd -- Master's theses [150]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV