Plant diversity patterns across Europe: observed and dark diversity
Date
2016-08-15
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Elurikkuse hoidmine on looduskaitse olulisemaid eesmärke. Traditsiooniliselt on kasutatud elurikkuse mõõdikuna mingil maa alal esinevate liikide arvu ehk liigirikkust. Kahjuks vaadeldes vaid liikide arvu, ei arvestata liigifondide varieerumist. Liigifondiks nimetatakse liikide kogumit, mis kas juba kuuluvad kooslusesse (vaadeldud liigirikkus), või võiksid sinna potentsiaalselt levida ja sealsetes ökoloogilistes tingimustes elada (tume elurikkus). Tume elurikkus täiendab vaadeldud liigirikkust. Kasutades tumeda elurikkuse käsitlust on võimalik leida ala täielikkuse indeks. Ala täielikkus näitab, kui suur osa liigifondist on tegelikult uurimisalal realiseerunud. Seetõttu tuleks täieliku elurikkuse pildi saamiseks lisaks vaadeldud liigirikkusele arvestada ka puuduolevate, kuid ökoloogiliselt sobivate liikidega ehk tumeda elurikkusega. Antud töö eesmärk oli kasutada tumeda elurikkuse kontseptsiooni, et hinnata taimede elurikkuse jaotust Euroopas. Tumeda elurikkuse leidmiseks rakendasime erinevaid matemaatilisi meetodeid ja pakkusime välja tumeda elurikkuse rakendusi looduskaitses ja invasiooniökoloogias. Antud töös leidsime, et tumeda elurikkuse levikumuster oli üldjoontes sarnane vaadeldud liigirikkusele, siis suured ning väikesed täielikkuse väärtused oli hajali üle kogu Euroopa. Me leidsime, et inimesega seotud tegurid mõjutasid nii vaadeldud liigirikkust kui ka täielikust enam kui keskkonnafaktorid. Kui võtame elurikkuse uuringutes arvesse ka vaatlusalale sobivaid, kuid hetkel puuduolevaid liike, saame paremini põhjustest, miks osad liigid on uurimisalal kohal, aga teised jäävad tumedasse elurikkusesse. Looduskaitsele võib olla eriti informatiivne täielikkuse indeks, kuna see hõlmab üheaegselt nii ala vaadeldud liigirikkuse kui ka tumeda elurikkuse.
Preserving biodiversity is one of most important goals of nature conservation. Traditionally a number of species (observed species richness) has been used as measure of biodiversity. Unfortunately species richness as diversity metric could be insufficient due to co-variation of species pools. A species pool is defined as species which are already at the site (observed species richness) and species which could potentially disperse and tolerate local environmental conditions (dark diversity). Dark diversity complements commonly used observed species richness. Using the dark diversity concept, we can calculate the completeness of site diversity. Completeness of site diversity shows how much of the species pool is actually realized at the site. Therefore in order to get more complete picture we should also account also with dark diversity than using observed species richness alone. The purpose of this work was to use the dark diversity concept to quantify plant diversity at the European scale. We use different mathematical methods to estimate dark diversity and how dark diversity can be used in nature conservation and invasion ecology. In this work we found that dark diversity showed similar distribution patterns as observed species richness, although completeness of site diversity showed scattered pattern across Europe. We also found that anthropogenic factors associated more with both observed species richness and completeness of site diversity than natural factors. Accounting for absent but suitable species in biodiversity studies can improve our understanding of processes why we observe species as they are distributed nowadays and why some species remain in dark diversity. Especially completeness of site diversity can be a valuable metric in nature conservation as it accounts for both observed and dark diversity.
Preserving biodiversity is one of most important goals of nature conservation. Traditionally a number of species (observed species richness) has been used as measure of biodiversity. Unfortunately species richness as diversity metric could be insufficient due to co-variation of species pools. A species pool is defined as species which are already at the site (observed species richness) and species which could potentially disperse and tolerate local environmental conditions (dark diversity). Dark diversity complements commonly used observed species richness. Using the dark diversity concept, we can calculate the completeness of site diversity. Completeness of site diversity shows how much of the species pool is actually realized at the site. Therefore in order to get more complete picture we should also account also with dark diversity than using observed species richness alone. The purpose of this work was to use the dark diversity concept to quantify plant diversity at the European scale. We use different mathematical methods to estimate dark diversity and how dark diversity can be used in nature conservation and invasion ecology. In this work we found that dark diversity showed similar distribution patterns as observed species richness, although completeness of site diversity showed scattered pattern across Europe. We also found that anthropogenic factors associated more with both observed species richness and completeness of site diversity than natural factors. Accounting for absent but suitable species in biodiversity studies can improve our understanding of processes why we observe species as they are distributed nowadays and why some species remain in dark diversity. Especially completeness of site diversity can be a valuable metric in nature conservation as it accounts for both observed and dark diversity.
Description
Väitekirja elektrooniline versioon ei sisalda publikatsioone.
Keywords
taimed, bioloogiline mitmekesisus, liigirikkus, tume elurikkus, võõrliigid, täielikkuse indeks, plants (botany), biodiversity, species diversity, dark diversity, Europe