The GraTA toxin-antitoxin system of Pseudomonas putida: regulation and role in stress tolerance
Kuupäev
2016-09-19
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Abstrakt
Elu on stressirohke, eriti üheraksetel organismidel nagu bakterid. Sageli tundub, et parim viis stressiga toimetulekuks on rahulikult oodata tingimuste paranemist. Selline käitumismall on kasutust leidnud ka mikroobide maailmas. Bakteritel on palju erinevaid kasvu reguleerimise võimalusi, mille hulka on viimasel ajal arvatud ka toksiin-antitoksiin (TA) süsteemid.
TA-süsteemid koosnevad kahest komponendist: rakule eluliselt olulisi protsesse või rakukesta kahjustavast toksiinist ja teda neutraliseerivast antitoksiinist. Selliste geenide olemasolu bakterite genoomis on esmapilgul mõistatuslik, sest miks peaks bakter tootma iseendale toksilist valku?
Hiljutised uuringud mikroobide mudelorganismis Escherichia coli on näidanud, et toksiinid põhjustavad bakterite üleminekut uinuvasse olekusse, mida iseloomustab bakterite ainevahetuse aeglustumine ja peatunud kasv. Sellised mikroobid tekitavad suuri probleeme meditsiinis, kuna on väga paljude stressiolukordade, kaasa arvatud paljude antibiootikumide toime suhtes tundetumad ja võimelised üle elama tingimusi, mis kiirelt kasvavaid baktereid tapaks. Kui mudelorganismis E. coli on TA süsteemide osalus bakteri stressitaluvuses hästi kirjeldatud, siis teistes bakteriliikides ei ole neid potentsiaalselt toksilisi süsteeme nii süstemaatiliselt uuritud. Seetõttu ei ole ka selge, kas erinevates bakterites toimivad TA süsteemid erinevalt või mingi üldise mehhanismi alusel.
Käesolev töö kirjeldab keskkonnabakteri Pseudomonas putida kasvukiirust mõjutavat GraTA süsteemi. Tavaliselt takistab antitoksiin GraA väga efektiivselt toksiini GraT aktiivsust, kuid antitoksiinist vabanenult suudab toksiin mõjutada selle bakteri stressitaluvust. Toksiini mõju on kahetine, sest olenevalt stressi tüübist võib toksiin nii suurendada kui ka vähendada bakteri stressitaluvust. Seetõttu on bakterile väga oluline, et potentsiaalselt kahjulik TA süsteem aktiveeruks vaid kindlatel stressitingimustel.
Life is full of stress, especially for small unicellular organisms like bacteria. For bacteria, just like for us, the best option to survive harsh conditions is sometimes to just lie still and wait for things to get better. Bacteria have many mechanisms to regulate growth, among them also the intriguing toxin-antitoxin (TA) systems. These systems consist of two components: a toxic protein that can harm the vital functions or compartments of a cell, and an antitoxin that can inhibit the toxin’s action. The presence of the TA systems in bacterial chromosomes is puzzling at first sight: why should a bacterium waste energy and resources to produce a toxin against itself? Recent research in the model organism Escherichia coli has shown that the toxic proteins cause a dormant, hibernation-like state, which is characterized by reduced metabolism and ceased growth. These bacteria cause great medical concerns as they are highly persistent to different stresses, including antibiotics, and survive conditions that would kill rapidly growing bacteria. After the stress has passed, the antitoxins inactivate the toxins and bacteria can resume growth. So, TA systems contribute to stress survival of bacteria, at least of E. coli. The contribution of TA systems to stress tolerance has been studied less systematically in other bacteria and no universal mechanism for the TA-mediated stress management has emerged so far. The current work describes a growth-rate-affecting TA system GraTA in the environmental bacterium Pseudomonas putida and shows that the toxin is kept under strict regulation by the antitoxin. Yet, when toxin is freed from the antitoxin, it inhibits the protein production in a cold-sensitive manner. The GraT toxin plays a controversial role in stress tolerance as it can both increase and decrease the tolerance to certain chemicals. This vividly highlights both the benefits and costs that the TA systems can have for bacteria.
Life is full of stress, especially for small unicellular organisms like bacteria. For bacteria, just like for us, the best option to survive harsh conditions is sometimes to just lie still and wait for things to get better. Bacteria have many mechanisms to regulate growth, among them also the intriguing toxin-antitoxin (TA) systems. These systems consist of two components: a toxic protein that can harm the vital functions or compartments of a cell, and an antitoxin that can inhibit the toxin’s action. The presence of the TA systems in bacterial chromosomes is puzzling at first sight: why should a bacterium waste energy and resources to produce a toxin against itself? Recent research in the model organism Escherichia coli has shown that the toxic proteins cause a dormant, hibernation-like state, which is characterized by reduced metabolism and ceased growth. These bacteria cause great medical concerns as they are highly persistent to different stresses, including antibiotics, and survive conditions that would kill rapidly growing bacteria. After the stress has passed, the antitoxins inactivate the toxins and bacteria can resume growth. So, TA systems contribute to stress survival of bacteria, at least of E. coli. The contribution of TA systems to stress tolerance has been studied less systematically in other bacteria and no universal mechanism for the TA-mediated stress management has emerged so far. The current work describes a growth-rate-affecting TA system GraTA in the environmental bacterium Pseudomonas putida and shows that the toxin is kept under strict regulation by the antitoxin. Yet, when toxin is freed from the antitoxin, it inhibits the protein production in a cold-sensitive manner. The GraT toxin plays a controversial role in stress tolerance as it can both increase and decrease the tolerance to certain chemicals. This vividly highlights both the benefits and costs that the TA systems can have for bacteria.
Kirjeldus
Väitekirja elektrooniline versioon ei sisalda publikatsioone.
Märksõnad
Pseudomonas putida, bakteritoksiinid, antitoksiinid, regulatsioon (biol.), stressitaluvus, Pseudomonas putida, bacterial toxins, antitoxins, regulation (biol.), stress tolerance