Fermion mass and spin polarisation effects in top quark pair production and the decay of the Higgs boson
Kuupäev
2017-04-12
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Abstrakt
Kõik, mida me näeme või saame katsuda, on tehtud aatomitest. Siiski on tänapäevane arusaam erinev Demokritose antiiksest arvamusest ja aatomid ei ole need kõige väiksemad ehituskivid. Tänapäevased maailma ehituskivid on elementaarosakesed nagu elektronid, kvargid ja bosonid. Käegakatsutava ning silmanähtava asja kokkupanemiseks on vaja hoomamatult suurt hulka selliseid ehituskive.
Kui uurida kõige väiksemaid asju, siis ilmneb paratamatult, et nende käitumine ei vasta meie igapäevastele kogemustele põhinevatele ootustele. Kvantmehaanika maailmas on täiesti võimalik, et mõni asi on korraga kahes erinevas kohas ja et asjad on samaaegselt nii asjad kui ka lained. Lisaks teada-tuntud asju kirjeldavatele omadustele nagu mass või pikkus, on veel ka selliseid omadusi, mida üleüldse suurtele asjadele omistada ei saa, näiteks spinn.
Käesoleva doktoritöö sisuks on mõnede konkreetsete elementaarosakestega toimuvate teatavate konkreetsete protsesside täpsem kirjeldamine. Uuritakse koos tekkinud top-kvargi ja selle antiosakese spinnide omavahelist seotust ehk korrelatsiooni ning kirjeldatakse leptoni mõju Higgsi bosoni lagunemisprotsessile. Arvutatakse spinn-spinn-korrelatsioonide esimest järku parandeid ning käsitletakse spinn-spinn-korrelatsioonide mõõtmise võimalust kvargi lagunemisproduktide liikumissuundade nurkade abil. Higgsi bosoni lagunemisprotsessi arvutamisel võetakse arvesse võimalike tekkivate leptonite masse ning leitakse leptoni massi mõju Higgsi bosoni lagunemise tõenäosusele. Arvutuste unikaalsus seisneb spinnide ja masside kaasamises ning tulemuste analüütilises väljenduses, mis võimaldab täpsemalt uurida sõltuvust erinevatest parameetritest ja arvutada tulemuste käitumist erinevatel piirjuhtudel. Need leiud heidavad valgust massi- ja spinniefektidele osakeste lagunemisel ja sellest juhinduvalt saab tulevastes eksperimentides läbi viia täpsemaid võrdlusi elementaarosakeste füüsika Standardmudeliga.
Selle uurimuse eesmärgiks ei ole ühegi konkreetse tänapäevase käesoleva probleemi lahendamine. Motivatsiooniks ja liikumapanevaks jõuks hoopis inimkonna teadmiste horisondi nihutamine ja seeläbi tuleviku tehnoloogiatele vundamendi rajamine.
Everything we see and touch in the world, is built up from atoms. However, different from Democritus’ antique opinion, atoms are not the fundamental building blocks. Nowadays’ elementary building blocks are elementary particles like electrons, quarks and bosons. Therefore, to make a tangible and visible thing, an unfathomable number of such tiny building blocks is necessary. If one studies the tiniest things, then it will be inevitably revealed that their behaviour does not comply with our expectations which are based on everyday experience. In the realm of quantum mechanics it is entirely possible for a particle to be in two places at once or to be simultaneously a thing and a wave. In addition to well-known properties that describe items like mass or length, there are some properties (like spin) that cannot be applied to big things. The essence of the thesis is a more precise description of some specific processes that happen to some specific particles. The correlation of spins of jointly created top quark and it’s antiparticle is studied as well as the effect of a lepton to the decay of Higgs boson. The first order corrections to the spin-spin correlation is calculated and opportunity for measuring spin-spin correlations through an angular analysis of movement of the decay products of quarks is discussed. In the calculation of the decay of Higgs boson the created lepton’s mass is taken into account and lepton mass effect to Higgs boson decay probability is found. The originality of the study stems from the inclusion of masses and spins and the analytic presentation of the results, which allows to analyse dependencies on different parameters in detail and to calculate the behaviour in different kinematical limits. These results help to guide future experiments and enable a more detailed comparison with the Standard Model of elementary particles. The aim of this study is not to solve any specific existing modern problem. The motivation and cause for this study is in pushing the boundary of the horizon of the knowledge of the humanity and thus laying a foundation for future technologies.
Everything we see and touch in the world, is built up from atoms. However, different from Democritus’ antique opinion, atoms are not the fundamental building blocks. Nowadays’ elementary building blocks are elementary particles like electrons, quarks and bosons. Therefore, to make a tangible and visible thing, an unfathomable number of such tiny building blocks is necessary. If one studies the tiniest things, then it will be inevitably revealed that their behaviour does not comply with our expectations which are based on everyday experience. In the realm of quantum mechanics it is entirely possible for a particle to be in two places at once or to be simultaneously a thing and a wave. In addition to well-known properties that describe items like mass or length, there are some properties (like spin) that cannot be applied to big things. The essence of the thesis is a more precise description of some specific processes that happen to some specific particles. The correlation of spins of jointly created top quark and it’s antiparticle is studied as well as the effect of a lepton to the decay of Higgs boson. The first order corrections to the spin-spin correlation is calculated and opportunity for measuring spin-spin correlations through an angular analysis of movement of the decay products of quarks is discussed. In the calculation of the decay of Higgs boson the created lepton’s mass is taken into account and lepton mass effect to Higgs boson decay probability is found. The originality of the study stems from the inclusion of masses and spins and the analytic presentation of the results, which allows to analyse dependencies on different parameters in detail and to calculate the behaviour in different kinematical limits. These results help to guide future experiments and enable a more detailed comparison with the Standard Model of elementary particles. The aim of this study is not to solve any specific existing modern problem. The motivation and cause for this study is in pushing the boundary of the horizon of the knowledge of the humanity and thus laying a foundation for future technologies.
Kirjeldus
Väitekirja elektrooniline versioon ei sisalda publikatsioone
Märksõnad
elementaarosakeste füüsika, fermionid, spinn, kvargid, Higgsi bosonid, leptonid, elementary particle physics, fermions, spin, quarks, Higgs bosons, leptons