DSpace
    • English
    • Deutsch
    • Eesti
  • English 
    • English
    • Deutsch
    • Eesti
  • Login
View Item 
  •   DSpace @University of Tartu
  • Loodus- ja täppisteaduste valdkond
  • Matemaatika ja statistika instituut
  • LTMS magistritööd -- Master's theses
  • View Item
  •   DSpace @University of Tartu
  • Loodus- ja täppisteaduste valdkond
  • Matemaatika ja statistika instituut
  • LTMS magistritööd -- Master's theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fractional ARIMA processes and applications in modeling financial time series

Thumbnail
View/Open
guskova_kseniia_msc_2017.pdf (1.552Mb)
Date
2017
Author
Guskova, Kseniia
Metadata
Show full item record
Abstract
Time-series analysis is widely used in forecasting future trends on financial markets. There is a family of models which represent the property of long memory. In this thesis we aim at introducing fractionally differentiated ARIMA model in forecasting future returns of market index. In theoretical part the description of long-memory processes and statistical testing of given data are provided. In practical part we fit the models without differencing, with differencing and with fractional differencing to the market data and compare its forecast accuracy with observed values.
URI
http://hdl.handle.net/10062/57099
Collections
  • LTMS magistritööd -- Master's theses [150]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV