Show simple item record

dc.contributor.advisorKangro, Raul, juhendaja
dc.contributor.authorGuskova, Kseniia
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Matemaatika ja statistika instituutet
dc.date.accessioned2017-07-05T07:39:36Z
dc.date.available2017-07-05T07:39:36Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/10062/57099
dc.description.abstractTime-series analysis is widely used in forecasting future trends on financial markets. There is a family of models which represent the property of long memory. In this thesis we aim at introducing fractionally differentiated ARIMA model in forecasting future returns of market index. In theoretical part the description of long-memory processes and statistical testing of given data are provided. In practical part we fit the models without differencing, with differencing and with fractional differencing to the market data and compare its forecast accuracy with observed values.en
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.subjectfinancial mathematicsen
dc.subjecttime-series analysisen
dc.subjectlong memory processesen
dc.subjectARFIMA processesen
dc.subjectfinantsmatemaatikaet
dc.subjectaegridade analüüset
dc.subjectpika mäluga protsessidet
dc.subjectARFIMA protsessidet
dc.titleFractional ARIMA processes and applications in modeling financial time seriesen
dc.typeThesisen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record