Preparation and functional properties of stochastic microstructured sol-gel silica materials
Kuupäev
2018-01-11
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Abstrakt
Käesolev doktoritöö tutvustab kahte uudset erineva mikrostruktuursusega ränioksiidset pinnakatet – ümarate struktuuridega pindeid ja makropoorset vahtu. Töö eesmärk oli uurida nende materjalide sünteesiprotsesse ja valmistamist ning võimalikke rakendusi.
Töös tutvustatav sool-geel-faasieralduse meetod on perspektiivikas alt-üles-meetod, millega saab valmistada funktsionaalseid struktuurseid ränioksiidseid pindeid ning pihustamine võimaldab selle meetodi kasutamist suurte pindade katmiseks tööstuslikus skaalas. Doktoritöös näidasime, et ümaraid pinnastruktuure saab valmistada erineva erineva suuruse, kuju ja pindtihedusega, kui valida järgmised sobivad parameetrid: alkoksiidi kontsentratsioon, lahusti tüüp, vee ja alkoksiidi moolsuhe, katalüsaatori ja alkoksiidi moolsuhe, suhteline õhuniiskus. Erinevas suurusjärgus struktuursusega pinded, mille elementide diameeter on alla mikromeetri ja pindtihedus võrdlemisi suur, omasid märkimisväärseid peegeldumisvastaseid ja valguse pinnalt hajumist muutvaid omadusi nähtavas ja lähi-infrapuna piirkonnas. Mõnedel valmistatud struktuursetel pindadel oli veekontaktnurk üle 130° ja see tähendab, et täiendava pinna funktsionaliseerimisega on võimalik saavutada ka superhüdrofoobsus (kontaktnurk üle 150°). Lisaks näitasime doktoritöös, et need mikro- ja nanostruktuursed pinnad on biosobivad ja et rakkude kasv ja paljunemine sõltuvad substraadi struktuuride läbimõõdust ja pindtihedusest.
Kasutades sool-geel meetodit ja katalüütilist vesinikperoksiidi lagunemist, valmistati ränioksiidsed makropoorsed vahud, millel on hästi defineeritud suletud poorsus. Valmistatud vahu makropoorne struktuur on sarnane aerogeelidega ning väikseimaks soojusjuhtivuseks mõõdeti 0.018 W/(m∙K). Seega on seda võimalik kasutada kõrgetemperatuurilise soojusisolatsioonimaterjalina.
In the present thesis two novel differently microstructured silica coatings were introduced. Our aim was to explore two distinct preparation methods for obtaining silica domes and a silica foam with sphere-like morphology, and to characterize and evaluate the applicability of these structured materials. Sol-gel phase separation method together with spray-coating is a promising bottom-up technique for preparing structured functional silica surfaces and is potentially suitable for covering large surfaces. We demonstrated that by choosing suitable alkoxide concentration, solvent type, water- and catalyst-alkoxide molar ratios and also relative humidity, it is possible to vary the size, shape and surface density of the domes. Sufficiently dense packing of silica domes in sub-µm range and multilayered coating were leading to a notable antireflection and light scattering effects in the Vis-NIR spectral range. As some produced silica surfaces had water contact angles exceeding 130°, simultaneous superhydrophobicity (contact angle > 150°) can be achieved by further surface functionalization. These surfaces are also found to be biocompatible and it is shown that growth characteristics morphology of fibroblasts is influenced by the morphology of the substrate. Sol-gel process together with catalytic decomposition of hydrogen peroxide is a novel method for the preparation of thick silica foam film, where well-defined closed-cell porosity appears. Macroporous characteristics and the lowest measured thermal conductivity (0.018 W/(m∙K)) of the prepared foams were similar to silica aerogels. These silica foam materials are potentially applicable as efficient thermal insulation materials.
In the present thesis two novel differently microstructured silica coatings were introduced. Our aim was to explore two distinct preparation methods for obtaining silica domes and a silica foam with sphere-like morphology, and to characterize and evaluate the applicability of these structured materials. Sol-gel phase separation method together with spray-coating is a promising bottom-up technique for preparing structured functional silica surfaces and is potentially suitable for covering large surfaces. We demonstrated that by choosing suitable alkoxide concentration, solvent type, water- and catalyst-alkoxide molar ratios and also relative humidity, it is possible to vary the size, shape and surface density of the domes. Sufficiently dense packing of silica domes in sub-µm range and multilayered coating were leading to a notable antireflection and light scattering effects in the Vis-NIR spectral range. As some produced silica surfaces had water contact angles exceeding 130°, simultaneous superhydrophobicity (contact angle > 150°) can be achieved by further surface functionalization. These surfaces are also found to be biocompatible and it is shown that growth characteristics morphology of fibroblasts is influenced by the morphology of the substrate. Sol-gel process together with catalytic decomposition of hydrogen peroxide is a novel method for the preparation of thick silica foam film, where well-defined closed-cell porosity appears. Macroporous characteristics and the lowest measured thermal conductivity (0.018 W/(m∙K)) of the prepared foams were similar to silica aerogels. These silica foam materials are potentially applicable as efficient thermal insulation materials.
Kirjeldus
Väitekirja elektrooniline versioon ei sisalda publikatsioone
Märksõnad
räniühendid, nanostruktuursed materjalid, sool-geel protsessid, kattematerjalid, vahud, silicon compounds, nanostructured materials, sol-gel processes, coating materials, foams