Show simple item record

dc.contributor.advisorPfahl, Dietmar Alfred Paul Kurt, juhendaja
dc.contributor.advisorSirts, Kairit, juhendaja
dc.contributor.authorShah, Faiz Ali
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.date.accessioned2020-01-14T13:35:07Z
dc.date.available2020-01-14T13:35:07Z
dc.date.issued2020-01-14
dc.identifier.isbn978-9949-03-273-0
dc.identifier.isbn978-9949-03-274-7 (pdf)
dc.identifier.issn2613-5906
dc.identifier.urihttp://hdl.handle.net/10062/66904
dc.description.abstractKasutajate vajaduste ja ootuste hindamine on arendajate jaoks oluline oma tarkvararakenduste kvaliteedi parandamiseks. Mobiilirakenduste platvormidele sisestatud arvustused on kasulikuks infoallikaks kasutajate pidevalt muutuvate vajaduste hindamiseks. Igapäevaselt rakenduste platvormidele esitatud arvustuste suur maht nõuab aga automaatseid meetodeid neist kasuliku info leidmiseks. Arvustuste automaatseks liigitamiseks, nt veateatis või uue funktsionaalsuse küsimine, saab kasutada teksti klassifitseerimismudeleid. Rakenduse funktsioonide automaatne kaevandamine arvustustest aitab teha kokkuvõtteid kasutajate meelsusest rakenduse olemasolevate funktsioonide osas. Kõigepealt eksperimenteerime erinevate tekstiklassifitseerimise mudelitega ning võrdleme lihtsaid, leksikaalseid tunnuseid kasutavaid mudeleid keerukamatega, mis kasutavad rikkalikke lingvistilisi tunnuseid või mis põhinevad tehisnärvivõrkudel. Erinevate faktorite mõju uurimiseks funktsioonide kaevandamise meetoditele me teeme kõigepealt kindlaks erinevate meetodite baastaseme täpsuse rakendades neid samades eksperimentaalsetes tingimustes. Seejärel võrdleme neid meetodeid erinevates tingimustes, varieerides treenimiseks kasutatud annoteeritud andmestikke ning hindamismeetodeid. Kuna juhendatud masinõppel baseeruvad kaevandamismeetodid on võrreldes reeglipõhistega tundlikumad (1) andmete märgendamisel kasutatud annoteerimisjuhistele ning (2) märgendatatud andmestiku suurusele, siis uurisime nende faktorite mõju juhendatud masinõppe kontekstis ja pakkusime välja uued annoteerimisjuhised, mis võivad aidata funktsioonide kaevandamise täpsust parandada. Käesoleva doktoritöö projekti tulemusel valmis ka kontseptuaalne tööriist, mis võimaldab konkureerivaid rakendusi omavahel võrrelda. Tööriist kombineerib arvustuse tekstide klassifitseerimise ja rakenduse funktsioonide kaevandamise meetodid. Tööriista hinnanud kümme tarkvaraarendajat leidsid, et sellest võib olla kasu rakenduse kvaliteedi parandamiselet
dc.description.abstractFor app developers, it is important to continuously evaluate the needs and expectations of their users to improve app quality. User reviews submitted to app marketplaces are regarded as a useful information source to re-access evolving user needs. The large volume of user reviews received every day requires automatic methods to find such information in user reviews. Text classification models can be used to categorize review information into types such as feature requests and bug reports, while automatic app feature extraction from user reviews can help in summarizing users’ sentiments at the level of app features. For classifying review information, we perform experiments to compare the performance of simple models using only lexical features to models with rich linguistic features and models built on deep learning architectures, i.e., Convolutional Neural Network (CNN). To investigate factors influencing the performance of automatic app feature extraction methods, i.e. rule-based and supervised machine learning, we first establish a baseline in a single experimental setting and then compare the performances in different experimental settings (i.e., varying annotated datasets and evaluation methods). Since the performance of supervised feature extraction methods is more sensitive than rule- based methods to (1) guidelines used to annotate app features in user reviews and (2) the size of the annotated data, we investigate their impact on the performance of supervised feature extraction models and suggest new annotation guidelines that have the potential to improve feature extraction performance. To make the research results of the thesis project also applicable for non-experts, we developed a proof-of-concept tool for comparing competing apps. The tool combines review classification and app feature extraction methods and has been evaluated by ten developers from industry who perceived it useful for improving the app quality.  en
dc.description.urihttps://www.ester.ee/record=b5293796et
dc.language.isoenget
dc.relation.ispartofseriesDissertationes informaticae Universitatis Tartuensis;14
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjecttext miningen
dc.subjectsoftware developmenten
dc.subjectmobile applicationsen
dc.subject.otherdissertatsioonidet
dc.subject.otherETDet
dc.subject.otherdissertationset
dc.subject.otherväitekirjadet
dc.subject.othertekstikaeveet
dc.subject.othertarkvaraarenduset
dc.subject.othermobiilirakendusedet
dc.titleExtracting information from app reviews to facilitate software development activitieset
dc.title.alternativeRakenduste kasutajaarvustustest informatsiooni kaevandamine tarkvara arendustegevuste soodustamisekset
dc.typeThesiset


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

openAccess
Except where otherwise noted, this item's license is described as openAccess