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I.INTRODUCTION

Aromatic compounds are widely distributed class of organic compounds in natu-
re, but they are also major concern because of their environmental persistence and
toxicity. Although some of these compounds are recalcitrant or toxic for the vast
majority of the microorganisms, bacteria usually have evolved biochemical and
genetic information that allows them to use aromatic compounds as sole carbon
and energy sources (Widdel and Rabus, 2001; Lovely, 2003). Albeit a wide
phylogenetic diversity of microorganisms capable of aerobic degradation of
contaminants, Pseudomonas species and closely related bacteria have been most
intensively investigated owing to their ability to degrade so many different
contaminants (Lovely, 2003). So, mainly pseudomonads were isolated in mid-
nineties from water samples taken from channels surrounding semicoke mounds,
and from the Kohtla and Purtse Rivers polluted with phenolic compounds in
Northeast Estonia (Heinaru ef al., 2000). The pollution is caused by solid wastes
and leachate from semi-coke mounds, formed from flushing water and preci-
pitations. These wastes are rich in several organic and inorganic compounds and
have a high pH. In water contaminated with phenolic leachate the concentrations
of phenol and p-cresol are higher than that of dimethylphenols, other cresols,
resorcinols and polycyclic aromatic hydrocarbons (PAHs) (Ideon, 2007).

It has been shown that mixed cultures have a potential for broad metabolic
activity, and that interaction of two or more strains is often a prerequisite for
growth and biodegradation (van Hamme and Ward, 2001). Many xenobiotic
compounds require the action of a bacterial consortium and they are not degraded
by pure culture (Mgller et al., 1998). To characterise functional activity and
structural fluctuations of bacterial consortia many catabolic key genes have been
studied (Watanabe et al., 1998; Futamata et al., 2003; Mesarch et al., 2000; Junca
and Pieper, 2003; Merimaa et al., 2006). For practical purposes the biodegrada-
tive bacterial strains can be added to local microbial community to enhance
bioremediation in polluted areas (bioaugmentation) (Dejonghe et al., 2001).

Aromatic catabolic pathways have to function efficiently within the context
of the host and should be regulated in order to avoid detrimental energy fluxes
that would otherwise compromise production, host fitness and survival (Shing-
ler, 2003). The success of a particular catabolic pathway depends on two major
elements: the catabolic enzymes catalysing mineralisation of the compound; and
the regulatory elements (de Lorenzo and Pérez-Martin, 1996). Transcriptional
regulators lie at the top of the hierarchy of events that lead to expression of the
genes and operons that encode specialised suites of pathway enzymes for the
catabolism of aromatic compounds (Shingler, 2003).

The main aim of the thesis was to genetically characterise Pseudomonas
strains isolated from polluted area with phenolic compounds, to clarify genetic
background of p-cresol catabolism in Pseudomonas fluorescens strains PC18
and PC24 by characterising the pch operons, their transcriptional regulation and
enzyme induction.



2. REVIEW OF LITERATURE

2.1. Catabolic pathways of aromatic compounds

The constituents of fossil fuels and lignin, aromatic amino acids and different
synthetic aromatic compounds can be either fully or partly degraded by micro-
organisms. Their degradation depends on the number of aromatic rings and,
especially, on the type of substituents. The substituents (e.g. halogen atoms,
methyl and nitro groups) may remain intact or can be transformed or eliminated
before the ring cleavage, and outcome of the reaction depends on bacterial
species (Harwood and Parales, 1996). Regardless of specific strategy (anaerobic
or aerobic), the catabolic pathways include two key steps: the activation of
thermodynamically stable benzene ring, and its subsequent cleavage. In aerobic
microbial degradation, oxygenases play a key role in both steps. They comprise
monooxygenases and dioxygenases, which respectively insert one or both atoms
of oxygen of O, into organic substrate (Gibson and Parales, 2000; Ferraro ef al.,
2005). The major reactions catalysed by dioxygenases include cleavage of the
aromatic ring bond, which may be located: i) between two hydroxylated carbon
atoms — ortho (B-ketoadipate) pathway; ii) adjacent to a hydroxylated carbon
atom — meta pathway or iii) in an indole ring (Hayaishi and Nozaki, 1969;
Vaillancourt et al., 2006). Three intermediates are common to all aerobic meta-
bolic pathways of aromatic compounds: catechol, protocatechuate and gentisic
acid (Fig. 1). These central compounds are broken down in similar pathways to
simple acids and aldehydes which are readily used for cell synthesis and energy
(Harwood and Parales, 1996).
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Figure 1. Aerobic routes of aromatic ring cleavage (Harwood and Parales, 1996).



o-dihydroxylated aromatic compounds are cleaved in ortho pathway by intra-
diol dioxygenases, such as catechol 1,2-dioxygenase (C120, EC 1.13.11.1) and
protocatechuate 3,4-dioxygenase (PC340, EC 1.13.11.3), which contain Fe** in
catalytic centre. Meta-fission pathway enzymes differ from those of the ortho
pathway in their ability to catalyse also degradation of methylated catecholic
substrates. From these alternative aromatic ring cleavage pathways the f-
ketoadipate pathway is not suited for degradation of methylcatechol, whereas
chlorosubstituted and unsubstituted catechols are normally cleaved by ortho
pathway (Miiller ef al., 1996). During degradation of methylaromatics via ortho
pathway 4-methylmuconolactone as a dead-end product is accumulating, since
muconolactone isomerases require a proton at the C-4 carbon atom to catalyse
the isomerisation to enol-lactone (Knackmuss et al., 1976; Chari et al., 1987).
Metabolic route for 4-methylcatechol have been proposed only for Cupriavidus
necator JMP134, Rhodococcus rhodochrous N75 and Pseudomonas reinekei
MT1 (Pieper et al., 1985; Bruce and Cain, 1988; Marin et al., 2010). Modified
ortho-cleavage pathways include enzymes that are closely related to those of the
B-ketoadipate pathway but have evolved to handle also chlorinated substrates.
The modified ortho-cleavage pathways are encoded usually on catabolic
plasmids.

Meta-cleavage pathways specifying degradation of phenol, toluene and
naphthalene are mostly plasmid-encoded (Harwood and Parales, 1996). Meta-
cleavage of the aromatic ring is catalysed by extradiol dioxygenases, such as
catechol 2,3-dioxygenase (C230, EC 1.13.11.2) and protocatechuate 4,5-
dioxygenase (PC450, EC 1.13.1.18), which contain Fe*" in catalytic centre
(Dagley et al., 1960; Nogales et al., 2005). The majority of C230s are phylo-
genetically closely related, belonging to the subfamily 1.2.A of the 1.2 extradiol
dioxygenase family, and are of particular importance in degradation of mono-
cyclic aromatic compounds (Eltis and Bolin, 1996). The best characterised
extradiol dioxygenase is C230, encoded by xy/E gene which is located on TOL
plasmid, pWWO0. This enzyme consists of four identical subunits and contains
one catalytically essential Fe*" per subunit. The substrate range of this enzyme
is relatively broad: 3-methyl-, 3-ethyl-, 4-methyl-, and 4-chlorocatechol (Ha-
rayama and Rekik, 1989; 1990). Much less is known about the protocatechuate
4,5-cleavage pathway. Genes of this pathway were observed only in Coma-
monas testosteroni BR6020, Sphingomonas pausimobilis SYK-6, Arthrobacter
keyseri 12B and Pseudomonas ochraceae (Eaton, 2001; Providenti et al., 2001;
Maruyama et al., 2001; Hara et al., 2003).

Binuclear compounds such as naphthalene are attacked twice. In the first
step, one of the rings is cleaved and partially removed, leading to the formation
of salicylate, which is further catabolised via catechol or gentisate by dioxy-
genases (Cerniglia, 1992; Peng et al., 2008). Degradation of gentisate is
initiated by gentisate 1,2-dioxygenase (G120, EC 1.13.11.4), which cleaves the
aromatic ring between the carboxyl and proximal hydroxyl group to form
maleylpyruvate (Lack, 1959) employing Fe*" as cofactor (Harpel and Lipscomb,
1990). The maleylpyruvate can be converted to central metabolites either by
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cleavage to pyruvate and maleate (Bayly et al., 1980) or by isomerisation to
fumarylpyruvate and subsequent cleavage to fumarate and pyruvate (Lack,
1961). All isolated G120s have very low similarity to other known ring-
cleaving dioxygenases and the oxidative cleavage of p-dihydroxylated aromatic
ring is probably less common route for bacterial degradation of aromatic
compounds than either of the more extensively studied pathways through o-
dihydroxybenzenes (Zhou et al., 2001).

In anaerobic catabolism of aromatic substrates, the peripheral pathways
converge to benzoyl-CoA (occasionally to resorcinol and phloroglucinol),
which becomes dearomatised by a specific multicomponent reductase that
requires energy in the form of ATP (Gibson and Harwood, 2002).

2.2. Aerobic biodegradation of phenol

During first step of the aerobic pathway of phenol biodegradation, molecular
oxygen is used by the enzyme phenol hydroxylase (PH, phenol 2-mono-
oxygenase, EC 1.14.13.7) to add a second hydroxyl group in ortho-position to
the one already present. Aromatic monooxygenases are divided into two groups:
activated-ring monooxygenases (single-component) and nonactivated-ring
enzymes (multicomponent). In latter case, the active site must contain a strong
hydroxylgenerating unit, i.e. a dinuclear iron centre in which an oxygen atom is
complexed with two iron atoms Fe-O-Fe. In former case, the enzyme is a simple
flavoprotein (Neujahr and Gaal, 1973; Enroth et al., 1994) that uses NAD(P)H
and O, as co-substrates and is composed of either one (single-component
phenol hydroxylase, sPH) or several (multicomponent phenol hydroxylase,
mPH) components (Pessione et al., 1999). The resulting catechol (1,2-dihydro-
xybenzene) molecule can then be degraded via two alternative pathways,
depending on an organism. In ortho pathway, aromatic ring is cleaved between
the catechol hydroxyls by a catechol 1,2-dioxygenase (C120) (Harwood and
Parales, 1996). The resulting cis,cis-muconate is further metabolised, via [-
ketoadipate to Krebs cycle intermediates. In meta pathway the enzyme catechol
2,3-dioxygenase (C230) transforms catechol to 2-hydroxymuconic semialde-
hyde. This intermediate can be channelled into the Krebs cycle (Mason and
Cammack, 1992; Harwood and Parales, 1996) (Fig. 1).

Watanabe et al. (1996) have analysed the kinetics of phenol-oxygenating
activity in several phenol-degrading bacteria, and suggest that phenol-degrading
bacteria can be classified into three distinct groups based on Kj, (the apparent
half-saturation constant in Haldane's equation) and Kg; (the apparent inhibition
constant) values of these activities. Group 1, represented by Comamonas
testosteroni RS is characterised by low Kgand low K values. Group 2, which is
characterised by moderate Kg and moderate K values, includes Pseudomonas
pickettii (other names: Burkholderia pickettii, Ralstonia pickettii) PKO1 and
Acinetobacter calcoaceticus AH; and group 3, which is characterised by high K
and high K values, includes Pseudomans sp. CF600 and P. putida BH. In
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group 3, PHs from Pseudomonas sp. CF600 (Nordlund ef al., 1990) and P.
putida BH (Takeo et al., 1995) are of multicomponent type, while PH from P.
pickettii PKO1 in group 2 shows characteristics of a single-component type. It
was shown by our study group that Ky values for phenol in strains harbouring
mPH were by almost four orders of magnitude lower than in strains having sPH
(Viggor et al., 2008).

2.2.1. Single component phenol hydroxylases

Genes encoding flavoprotein hydroxylases (monooxygenases) induced by growth
on phenol have been identified and characterised in a number of microorganisms,
including P. pickettii PKO1 (tbuD) (Kukor and Olsen, 1992), Pseudomonas sp.
EST1001 (pheAd) (Nurk et al., 1991) and the yeast Trichosporon cutaneum (Kélin
et al., 1992). The thuD gene is co-transcribed with the C230 (tbuF) (Kukor and
Olsen, 1991) and the pheA gene of Pseudomonas sp. EST1001 shares the operon
with pheB gene encoding C120 (Kivisaar et al., 1991).

The pheBA cluster is flanked by two IS elements (IS/472 and IS1411) (Fig.
2), which could facilitate movement of these genes from one DNA molecule to
another (Kasak et al., 1993; Kallastu ef al., 1998).

Tn+4652 IS1472 C Is1411 Tn+4652
—
P, tnpA pheB pheA tnpA

catechol phenol
1, 2-dioxygenase monooxygenase

; 1 kb "

Figure 2. Organisation of pheBA operon in plasmid pAT1140 (Kasak ef al., 1993).

The promoter of the operon is located upstream of IS/472 and shows homology
to chromosomal catBC promoter region which is recognised by CatR (Kasak et
al., 1993; Parsek et al., 1995; Tover et al., 2000). After release of the laboratory
P. putida strain carrying the pheBA genes on a plasmid into phenol-conta-
minated mining area in Estonia, horizontal transfer of the pheBA operon and its
expression in different soil bacteria was observed (Peters et al., 1997).

The thuD gene, encoding PH in P. pickettii PKO1 (Kaphammer et al., 1990)
is located in an operon separate from thuEFGKIHJ, which encodes the enzymes
of the meta cleavage pathway. The thuD gene and its promoter shows homology
to 2-monooxygenases for which both phenol and alkyl-substituted benzenes are
the substrates. All thu operons in PKO1 are under control of the transcriptional
activator TbuT (Olsen et al. 1997; Kahng et al. 2000).
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2.2.2. Multicomponent phenol hydroxylases

Bacterial multicomponent monooxygenases comprise a family of nonheme, di-
iron enzymes capable of using molecular oxygen to hydroxylate a variety of
organic compounds (Notomista et al., 2003). Multicomponent aromatic mono-
oxygenases contain at least two components, one responsible for hydroxylation
(the oxygenase that binds substrate and oxygen, and catalyses the mono-
hydroxylation of substrates), the other component is responsible for electron
transfer from NAD(P)H to the oxygenase (the reductase that binds NAD(P)H).

It has been shown that initial conversion of phenol into catechol by a
thermophilic microorganism Bacillus thermoglucosidasius A7 is carried out by
two proteins, — a flavin reductase and a flavin-dependent monooxygenase,
encoded by phedAl and pheA2 genes, respectively. Bacillus thermoleovorans
strain A2 degrades phenol and cresols via meta cleavage pathway. The first two
enzymes involved in this process, the phenol hydroxylase and catechol 2,3-
dioxygenase, are encoded by the phed and pheB genes respectively (Duffner
and Miiller, 1998; Duffner et al., 2000; Kirchner et al., 2003).

Phenol hydroxylase that catalyses the conversion of phenol to catechol in
Rhodococcus erythropolis UPV-1 was also identified as a two-component
flavin-dependent monooxygenase. The two proteins are encoded by the genes
pheAl and pheA2, the deduced amino acid sequences of both genes showed a
high homology with several two-component aromatic hydroxylases. The phenol
hydroxylase activity required the presence of both, PheAl and PheA2 com-
ponents, as well as redox coenzymes NADH and FAD (Saa et al., 2010).

In Pseudomonas sp. CF600 and Acinetobacter calcoaceticus NCIB8250
PHs, a third component (the size about 10 kDa) is present and regulates the
functional interaction of the other two components (Powlowski and Shingler,
1990; Ehrt et al., 1995). Regulative component was found to be strictly neces-
sary for the phenol to catechol conversion (Griva et al., 2003). All known
bacterial multicomponent monooxygenases are transcribed from single operons
that code for four to six polypeptides.

Multicomponent phenol hydroxylase (mPH) is considered as major enzyme
in the natural environment (Peters et al., 1997; Watanabe et al., 1998; Futamata
et al., 2001; Merimaa et al., 2006). All sequenced genes coding for mPHs
encode similar enzyme structure; they comprise six subunits, among which the
catabolic site exists within the largest (approx. 60 kDa) subunit. Some of these
enzymes have different substrate specificity for substituted phenols (Teramoto
et al., 1999). The DNA fragment encoding the largest subunit (catabolic site) of
the mPH (LmPH) has been used as a molecular marker to assess functional and
genetic diversity of phenol-degrading bacteria in the environment (Watanabe et
al., 1998, 2002; Zhang et al., 2004; Merimaa et al., 2006).

The multicomponent phenol hydroxylases are classified into two types
according to genetic organisation of the operons (Hino et al., 1998), i.e. i) the
dmp type followed by the genes for a ferredoxin-like protein and a catechol 2,3-
dioxygenase (Shingler ef al., 1989), and ii) the mop type followed by a gene for
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catechol 1,2-dioxygenase without a gene for a ferredoxin-like protein (Ehrt et
al., 1995). This may reflect the preference of these mPHs to catabolise different
substituted phenols.

2.2.2.1. dmp-type multicomponent phenol hydroxylases coupled with
the C230 gene

The mPH was first identified in phenol and (di)methylphenol (dmp) degradation
pathways in Pseudomonas sp. CF600 by Shingler et al. (1992). Pseudomonas
sp. CF600 can catabolise phenol and some of its methylated derivatives, o-, m-,
and p-cresol and 3,4-dimethylphenol as sole carbon and energy source. The
phenol-dimethylphenol meta-cleavage pathway of this strain is encoded on a
large IncP-2 plasmid designated pVI150 (Shingler et al., 1989). The dmp mPH
is encoded by six genes in the order of dmpKLMNOP. The genetic and bio-
chemical studies showed that DmpP is FAD/[2Fe2S] reductase component,
whereas a dimer of DmpLNO is an oxygenase component that contains a
carboxylated-bridged di-iron centre at the DmpN active site (Powlowski and
Shingler, 1994). DmpM is an activator for the catalysis, and DmpK may
function in assembling iron at the active site (Powlowski et al. 1997).

The product of pox operon (poxRABCDEFG) of Ralstonia eutropha E2 is a
multicomponent enzyme that is structurally similar to well-characterised dmp
products (Shingler et al., 1992), although the deduced amino acid sequences of
the pox products were unexpectedly different from those of the dmp products.
The pox genes belong to the dmp type, although it is the only known example of
the gene which is not highly homologous to equivalent genes of the other
members of the dmp group (Hino et al., 1998). The chromosomally encoded PH
of Cupriavidus eutropha JMP134 (formerly Alcaligenes eutrophus, Ralstonia
eutropha) has been shown to be also a multicomponent system encoded by the
gene cluster phlKLMNOP (Ayoubi and Harker, 1998).

The strain Comamonas testosteroni TA441 has a catabolic gene cluster (aph
genes) similar to other multicomponent phenol hydroxylases. The aph genes are
probably located on chromosome, because attempts to isolate an aph-gene-
containing plasmid, failed. The structural genes encoding mPH and C230
(aphKLMNOPQB) and a regulatory gene of the NtrC family (aphR), were
located in a divergent transcriptional unit (Arai ef al., 1998).

2.2.2.2. mop-type multicomponent phenol hydroxylases coupled with
the C120 gene

In mop-type strains contrary to the dmp-type strains, phenol is degraded by
mPH to catechol, but catechol is degraded via the ortho pathway using C120.
Mop-type mPHs have been described mostly in genera Acinetobacter and
Pseudomonas: in Pseudomonas sp. strain ADP (Neumann et al., 2004), in many
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different pseudomonads (Merimaa et al., 2006) and Acinetobacter radioresis-
tens S13 (Griva et al., 2003).

The strain Pseudomonas sp. M1 was isolated from the Rhine River (Iurescia et
al., 1999). It is able to utilise several toxic and/or recalcitrant compounds as sole
carbon and energy sources, including phenol (Santos et al., 2002). Phenol
catabolism in strain M1 also involves an upper pathway, including the phc gene
cluster required for the formation of catechol and cis,cis-muconate. The
phenol/benzene upper pathway in Pseudomonas sp. M1 includes two different
o>*-dependent catabolic promoters, Pa and Pk, that independently control the
expression of C120 (PhcA) and of phenol/benzene hydroxylase (PhcKLMNOP),
respectively. As for the dmp model of Pseudomonas sp. CF600, the catabolic
enzyme responsible for the initial oxidation of phenol or benzene in Ml is a
mPH (phcKLMNOP) with a high degree of similarity (ranging from 56 to 85%,
depending on the subunit) to the dmpKLMNOP hydroxylase. Furthermore, the
phe gene cluster is o°*-dependent and controlled by PhcR, a transcription factor
65% homologous to the DmpR regulator of Pseudomonas sp. CF600 (Shingler
and Moore, 1994). The phcA and phcR genes are located upstream of the
phcKLMNOP operon and their transcription proceeding in the opposite
direction compared to phcKLMNOP (Santos and Sa-Correia, 2007).

The sole gene cluster described so far for phenol catabolism in Acinetobacter
calcoaceticus NCIB8250, includes a multicomponent phenol hydroxylase
(mopKLMNOP) and the catA gene encoding a C120 (Fig. 3). However, diffe-
rently from the cluster of Pseudomonas sp. M1, these genes are organised in
one operonic structure, being controlled from a single o>*-dependent promoter
(Pmop) regulated by MopR (Schirmer et al., 1997). A. calcoaceticus NCIB8250
is able to grow on phenol as sole carbon and energy source by virtue of a
chromosomally encoded mPH (Ehrt et al., 1995).

mopK  mopL mopM mopN mop0)  mopP catA

NciBe2so — | [ H T | S

dmpK  dmpL dmpM dmpN dmpO  dmpP dmpQ  dmpB

cro0 —{ J[ ¢ N L A

Figure 3. Comparison of the genetic organisation of mPH genes from A. calcoaceticus
NCIB8250 and Pseudomonas sp. CF600 (Ehrt et al., 1995).

In contrast to Pseudomonas sp. CF600, A. calcoaceticus NCIB8250 is unable to
grow on 3,4-dimethylphenol as sole carbon source (Shingler and Moore, 1994).
The sequence similarity of the mop and dmp operons is confined to the region
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encoding subunits of PH. Only dmpQ has no similarity with mop operon,
because this gene is present in sequences encoding the reactivation of C230
(Nget al., 1994).

Acinetobacter calcoaceticus PHEA-2 was isolated by enrichment for growth
on phenol and benzoate from wastewater of an oil refinery (Xu et al., 2000).
This strain can utilise phenol and benzoate as sole carbon and energy sources
via the same catechol branch of B-ketoadipate pathway. The upper pathways
involve the mph gene cluster (mphKLMNOP) encoding a multicomponent
phenol hydroxylase homologous to DmpKLMNOP of Pseudomonas sp. CF600
and MopKLMNOP of 4. calcoaceticus NCIB8250, sharing 38—72% and 58.5—
93.5% amino acid identity, respectively. The upper pathways involve also the
transcriptional regulator MphR, ben gene cluster (benMABCDEKP) encoding a
benzoate 1,2-dioxygenase and the transcriptional regulator BenM (Zhan et al.,
2008). An unknown gene directly follows the operon coding for PH and then
are genes encoding transcriptional activator of benABC and benzoate dioxyge-
nase downstream, which indicates that the arrangement of the functional genes
of phenol and benzoate degradation in A. calcoaceticus PHEA-2 is different
from that in A. calcoaceticus NCIB8250, in which a gene similar to C120 is
located directly downstream of the mopKLMNOP (Ehrt et al., 1995). In PHEA-
2, benzoate and phenol are converted to catechol by enzymes encoded by mph
and ben operon independently; then catechol is further catalysed by enzymes
encoded by the cat genes located downstream of the ben operon.

2.3. Aerobic biodegradation of p-cresol

Methylphenols (cresols) are produced in large quantities as constituents of
resins, solvents, disinfectants, and wood preserving chemicals in petrochemical
processes; but they are also products of anaerobic tyrosine fermentation via p-
hydroxyphenylacetate (Yu et al., 2006). Luckily, these compounds are degraded
in nature quite easily both by aerobic (Hopper, 1976) and anaerobic bacteria
(Bossert and Young, 1986).

Two main catabolic routes have been described for p-cresol (4-methylphe-
nol) (Fig. 4). In one of the pathways, a hydroxyl-group is added to p-cresol and
the resulting 4-methylcatechol is then cleaved by catechol meta pathway
enzymes (Bayly et al., 1966). In the second pathway the first enzyme that
degrades p-cresol via the ortho pathway is p-cresol methylhydroxylase (PCMH,
EC 1.17.99.1) (Hopper, 1976). PCMH converts p-cresol to p-hydroxybenzyl
alcohol and later to p-hydroxybenzaldehyde (Hopper, 1976; Cronin et al., 1999;
Cunane et al., 2000) which is subsequently oxidised to p-hydroxybenzoate
(POB) by p-hydroxybenzaldehyde dehydrogenase (Fig. 4). The formation of
protocatechuate from POB is catalysed by POB hydroxylase.
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Figure 4. Two distinct catabolic routes for degradation of p-cresol (Dagley and Patel,
1957; Bayly et al., 1966).

The PCMH consists of two subunits forming an a,p, complex: the a subunits
contain an active site flavin adenine dinucleotide (FAD) covalently linked to a
tyrosine residue, whereas the B subunit is a c-type cytochrome (Mclntire et al.,
1981; Mclntire et al., 1985). The natural electron acceptor for this periplasmic
enzyme (Hopper et al., 1985) is azurin (Causer et al., 1984).

Despite studies showing that several Pseudomonas species and other
microorganisms possess PCMH (Hopper, 1983; Hopper et al., 1991; Lovely and
Lonergan, 1990; O'Reilly and Crawford, 1989; Rudolphi et al., 1991; Wright
and Olsen, 1994; Heinaru et al., 2000; Peters et al., 2007), the genetics of the
corresponding metabolic pathways has been studied in sufficient detail only in
three Pseudomonas strains: P. putida NCIMB 9866, P. putida NCIMB 9869
(Kim et al., 1994), and P. mendocina KR1 (Wright and Olsen, 1994).

The genes encoding PCMH and p-hydroxybenzaldehyde dehydrogenase are
organised as an operon (pchACXF in P. putida NCIMB 9866 and pcuCAXB in
P. mendocina KR1) with pchA/pcuC encoding the second and pchCF/pcudAB
encoding the first enzyme of the p-cresol metabolic pathway (Burlage, et al.,
1989; Wright and Olsen, 1994). The gene designated as pchX/pcuX encodes a
protein of unknown function (Cronin et al., 1999; Wright and Olsen, 1994). The
pcuR gene, transcribed divergently from the pcuCAXB operon encodes the ¢>*-
dependent transcriptional regulator of this operon (Ramos-Gonzalez et al.,
2002).

The best-characterised PCMH is the plasmid-encoded PCMHgy, from P.
putida NCIMB 9869, which is expressed when the organism is grown on p-
cresol, 3,5-dimethylphenol, glutamate or succinate as the carbon source. Chro-
mosomally encoded PCMHgos genes of P. putida NCIMB 9869 are induced
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only when the organism is grown on p-cresol (Kim et al., 1994). In P. mendo-
cina KR1, these enzymes are involved in p-cresol metabolism; however, only
this substrate was experimentally used as an inducer in this case (Wright and
Olsen, 1994).

Also, a third route of p-cresol degradation is proposed. In some Bacillus
strains p-cresol is converted into POB, which is further metabolised through
gentisate pathway (Crawford, 1976; Tallur et al., 2006).

2.4. Sigma 54-dependent regulators, XylIR/NtrC-type

Regulatory proteins and regulated promoters are key elements that control the
transcription of catabolic operons to assure an adequate metabolic return when a
particular substrate serves as the nutrient source (Diaz and Prieto, 2000).
Regulation of aromatic-compound degradation is very often mediated by o>'-
dependent NtrC-type regulators, serving an efficient transcriptional control
system (de Lorenzo and Pérez-Martin, 1996).

The family name of the o°*-dependent regulators comes from recognition
that all members of this group act in concert with alternative sigma factor ¢**
(also called sigma N) encoded by rpoN (ntrA) and its homologues (Merrick,
1993). Sigma-54 confers on the core enzyme the ability to recognise and initiate
transcription from a distinct class of -24/-12 bacterial promoters that differ con-
siderably from the more usual -35/-10-type of promoters which are recognised
by Ec” utilising the ‘housekeeping’ sigma factor encoded by rpoD. The
consensus sequence of -24/-12 promoters, TGGCAC-N5-TTGC, contains an
invariant -24 GG motif, an almost universally conserved -12 GC motif, and two
or more T residues, the number of which appears to modulate the stability of
Ec>*/promoter complex (Buck and Cannon, 1992). All sigma 54-dependent
promoters analysed so far are positively regulated by transcriptional activators
that usually bind to specific DNA sequences located unusually far (between 100
and 200 bp) upstream of the promoter. Their binding sequences are often
inverted repeats that can be moved away by more than 1 kb without losing their
ability to activate the transcription (Kustu et al., 1991; Morett and Segovia,
1993).

Most °*-dependent activators are constitutively produced, but their activity
is controlled in response to environmental signals. Each regulator is activated
by the aromatic substrate of the catabolic pathways it controls (Shingler, 1996).
The best studied examples of these regulators are the XylR and the DmpR
proteins from Pseudomonas (Table 1).
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Table 1. Representative sigma 54-dependent regulatory proteins involved in biodegra-
dation of aromatics (Shingler, 2003)

Family Pathway Host (plasmid) Reference
DmpR (Methyl)phenols Pseudomonas sp. CF600 Shingler et al. (1993)
(pVI150)
HbpR  2-Hydroxybiphenyl P. azelaica HBP1 Jaspers et al. (2000)
MopR  Phenol Acinetobacter calcoaceticus ~ Schirmer et al. (1997)
NCIB8250
PhIR  Phenol P. putida H (pPGH1) Burchardt et al. (1997)
PhnR  Phenanthrene/ Burkholderia sp. RP007 Laurie and Lloyd-Jones
naphthalene (1999)
TbuT Toluene Ralstonia pickettii PKO1 Byrne and Olsen (1996)
TouR Toluene P. stutzeri OX1 Arenghi et al. (1999)
XylR  Toluene/xylene P. putida mt-2 (TOL pWWO0) Inoye ef al. (1988)
(upper)

Members of the o '-dependent family of regulators are composed of three
distinct functional domains involved in signal reception, transcriptional acti-
vation, and DNA binding (see Fig. 4, reviewed by North et al., 1993; Morett
and Segovia, 1993).

B = g 2 RBg

W v § o vy T © % b

A (Signal Reception) [B | C (Activation) D {
M A ‘ DNA

Linker Binding

Figure 4. Schematic representation of the functional regions of sigma 54-dependent
regulator (Shingler, 1996).

The A-domain acts as receiver module involved in recognition of cognate
environmental signals. This domain is poorly conserved and is most variable in
length. The A-domain accommodates at least three functions: the repression of
transcriptional activity via binding to the central domain; the specific binding to
the effector; and the release of the repression of the domain C upon this specific
interaction with the effector (Devos et al., 2002).

The A-domain of DmpR and XyIR (211 amino acids long) was shown to
interact directly with an inducing aromatic compound, and various effector
specificity mutations have been generated in this region of the protein (Pavel et
al., 1994; Delgado et al., 1995; Fernandez et al., 1995; Shingler and Pavel,
1995; Pérez-Martin and de Lorenzo, 1996a; Salto et al., 1998; Skérfstad et al.,
2000; Wise and Kuske, 2000; O'Neill et al., 2001; Sarand et al., 2001; Solera et
al., 2004; Galvao and de Lorenzo, 2006). Delgado and Ramos (1994) have
shown that due to single amino acid change at the N-terminal end of XyIR, the
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protein acquired the ability to bind a new effector not recognised by wild-type
protein. By DNA shuffling between the A-domains of DmpR and XyIR, a
subregion was identified as being primarily responsible for determining the
distinct effector profiles of the two regulators (Skirfstad et al., 2000).

The central C-domains (~240 residues) of regulators, involved in transcrip-
tional activation, are the most highly conserved and appear to have a common
ancestral origin. This domain is involved in binding and hydrolysis of ATP,
which forms the basis of the activation of 6°* promoters. Short carboxy-terminal
D-domains of all o *-dependent regulators contain a helix-turn-helix DNA-
binding motif analogous to those found in a number of transcriptional activators
and repressors. Typically the A- and C-domains of the XylR-family proteins are
connected with flexible Q-linker or ,hinge” region, which is a short hydro-
phobic region of the protein (Fernandez et al., 1995). The number of residues
separating domains C and D is highly variable within this family, and these
regions bear little sequence identity.

XyIR and DmpR are two mechanistically related sigma 54-dependent regu-
lators that respond to distinct sets of aromatic effectors. XyIR which activates
the Pu promoter of the upper operon of pWWO for the conversion of toluene
and m/p-xylene to benzoate and corresponding alkyl-benzoates, also responds to
some quite structurally dissimilar compounds such as chloro- and alkyl-sub-
stituted benzyl aldehydes and benzyl alcohols (Abril et al., 1989). For the acti-
vation of transcription from Pu promoter, XyIR protein binds to two sites called
UAS (upstream activating sequence) locating distant to the Pu promoter (Pérez-
Martin and de Lorenzo, 1996). The activation of the transcription from the Pu
promoter requires formation of the DNA loop between the UAS region and the
Pu promoter sequence. The looping of the DNA is assisted by the DNA-bending
proteins such as IHF (integration host factor) and HU (Histone like protein)
(Pérez-Martin and de Lorenzo, 1995). Interaction between XyIR bound to the
UAS elements and RNA polymerase results in initiation of the transcription
from the Pu promoter. This step needs ATP hydrolysis, stimulated by binding of
the effector molecule to the XyIR protein. ATP hydrolysis is required also for
XylR multimerisation that makes possible the interaction between the XylR and
the ¢ subunit of RNA polymerase (Pérez-Martin and de Lorenzo, 1996).
DmpR regulates the expression from the P, promoter, which drives transcription
from one single large operon (dmpKLMNOPQBCDEFGHI) for phenol degra-
dation that is present on the pVI150 plasmid in Pseudomonas sp. strain CF600.
A large number of regulators highly similar to DmpR controlling phenol degra-
dation operons have been found in bacteria (Table 1) (Shingler et al., 1993).
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2.5. Degradation of mixed aromatic substrates

One of major hindrances in use of microorganisms for bioremediation is their
preference for a simple carbon source over complex aromatic compounds. In
nature, both complex and simple carbon sources are available. When two
carbon sources are present, microbes first utilise the simple one, then followed
by the complex carbon source. Different degradation patterns are observed in
metabolism of multiple substrates: diauxic type, simultaneous utilisation,
competitive inhibition and synergistic interactions between the substrates. Du-
ring diauxic growth, depletion of the first substrate is followed by a lag period
in which the microorganisms adapt to the second substrate. After this lag phase,
exponential growth on second substrate starts. The length of the intermediate
lag period depends on pre-culturing conditions as well as nature and relative
concentrations of the substrates (Harder and Dijkhuizen, 1982). During the first
exponential growth phase, the preferred substrate is utilised and the genes
encoding catabolic enzymes required for the utilisation of the second carbon
source are repressed, despite the continued presence of the second carbon
source (Stiilke and Hillen, 2000; Phale et al., 2007). If two cleaving enzymes
are induced and if their substrate specificity allows the attack of both com-
pounds in the mixture, substrates may be channeled into a wrong pathway and
an accumulation of dead-end metabolites can result (Hollender et al., 1994).
Researchers have noted that microbial degradation of a compound in a mix-
ture can be strongly impacted by other substituents of the mixture (Egli, 1995;
Saéz and Rittman, 1993). To understand the mixture effects, one must consider
the metabolic role of each compound of the mixture for the microorganism.
More commonly, negative interactions are reported. Reasons for decreased
biodegradation rates include competitive inhibition (Bielefeldt and Stensel,
1999; Chang et al., 1993; Oh et al., 1994), toxicity (Haigler et al., 1992) and
formation of toxic intermediates by nonspecific enzymes (Bartels ef al., 1984).
From a mixture of aromatic compounds, microbes utilise simple aromatic
compounds or compounds that consume low energy to metabolise (i.e. com-
pounds with higher oxidation level) over complex ones. For example P. putida
and Acinetobacter strains utilise benzoate over 4-hydroxybenzoate (Nichols and
Harwood, 1995) while Rhodococcus prefers benzoate over phthalate when
supplied as a mixture (Choi et al., 2007; Patrauchan et al., 2005). Although
certain mixtures are degraded more rapidly than compounds present indivi-
dually (Jahnke et al., 1993), the biodegradation rate of aromatic mixtures may
be low under natural conditions, mostly due to catabolite repression, but also
due to insufficient concentration of other nutrients or a limited bioavailability of
substrates as a result of binding to soil particles or low water solubility (Holtel
et al., 1994; Duetz et al., 1996). Repression of the catabolism of aromatic
pollutants by alternative carbon sources often contributes to the recalcitrant
nature of such pollutants within conventional bioremediation processes.
Repression of the catabolism of aromatic growth substrates by acetate,
succinate and other organic acids is documented in Acinetobacter, Pseudomo-

21



nas and Ralstonia species (Ampe et al., 1997, 1998; Dal et al., 2002; McFall et
al., 1997). Ampe et al. (1996) observed that in Ralstonia eutropha 335, acetate
represses the catabolism of aromatic compounds degraded via the meta pathway
(i.e. phenol) and those of the catechol branch of the ortho pathway supporting
growth rates and yields lower than acetate itself. The same order of substrate
preference, benzoate > acetate > phenol, is shown for R. eutropha 335 and
Acinetobacter radioresistens S13 (Mazzoli et al., 2007). Besides similarties,
two main differences between these two strains exist: i) A. radioresistens S13
degrades phenol through the ortho pathway (while R. eutropha 335 utilises the
meta route for the same compound) with a growth rate and yield similar to that
on acetate; ii) both R. eutropha 335 and A. radioresistens S13 catabolise ben-
zoate through the ortho pathway, but in R. eutropha 335 benzoate supports
faster and more efficient growth than acetate while the opposite is true for 4.
radioresistens S13. Furthermore, catechol postulated to repress acetate meta-
bolism in R. eutropha 335, was also observed in growth medium during both
phenol catabolism and benzoate catabolism in 4. radioresistens S13 suggesting
that although substrate preference of these two bacteria is similar, the regulation
phenomena controlling this cascade must differ.

The ortho and meta pathways are alternatives, whereby simultaneous ope-
ration of these pathways in degradation of mixed substrates yields toxic inter-
mediates and causes accumulation of dead-end metabolites which may increase
the degradation time and cause a sequential degradation of substrates (Hollen-
der et al., 1994; Pieper et al., 1995; Erb et al., 1997). When the strain PC20 of
P. fluorescens was grown on the mixture of phenol and salicylate, the con-
sumption of both substrates occurred simultaneously despite the fact that two
alternative pathways (ortho and meta) were used. In this strain catechol ortho
and meta degradation pathways are encoded by different plasmids pPHE20 and
pNAH20, respectively (Heinaru et al., 2009)

During batch growth of Ralstonia eutropha on benzoate-phenol mixture,
benzoate (induces the catechol ortho pathway) completely inhibited phenol
degradation (induces the catechol meta pathway, respectively) causing diauxic
growth, and repression of phenol utilisation was attributed to the presence of
benzoate (Ampe et al., 1998). It was also shown that P. putida cells degrade
benzoate in preference to p-hydroxybenzoate (POB) by repressing POB
transport by transcriptional downregulation of pcak, the gene encoding POB
permease (Nichols and Harwood, 1995; Cowles et al., 2000).

Hamed et al. (2003) observed that P. putida strain F1 degrades benzene,
toluene and phenol mixture and investigated interactions between these
substrates during their aerobic biodegradation. This strain was able to consume
these three substrates completely. Toluene and benzene were better growth
substrates than phenol, resulting in faster growth. Toluene was biodegraded
slightly faster than benzene, and both benzene and toluene were biodegraded
faster than phenol. The effect of toluene on biodegradation of phenol was more
positive than the effect of benzene. Benzoate was also preferred to phenol in
A. radioresistens S13 (Mazzoli et al., 2007), in which both compounds are
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degraded through the same branch of the ortho pathway. Furthermore cis,cis-
muconate and catechol, postulated to be molecular effectors of benzoate repres-
sion of the catabolism of other aromatic compounds in Acinetobacter sp. ADP1
and Pseudomonas strains (Gaines ef al., 1996; Heinaru et al., 2001), accumulated
during the degradation of each compound in A. radioresistens S13. A. radio-
resistens S13 seems to be strongly adapted to selectively degrade benzoate in
environment containing alternative carbon sources. Furthermore, growth of
bacteria on benzoate leads to the expression of additional genes encoding other
enzymes necessary for the degradation of alternative aromatic compounds. It is
generally accepted that inherent properties of each aromatic compound do not
dictate the order of their consumption (Brzostowicz et al., 2003).

2.6. Degradation of aromatic compounds by
mixed cultures of bacteria

In various natural and engineered environments, many species of microorganisms
stably coexist by interacting and cooperating with each other. Microbial com-
munities are fundamental components of ecosystems, playing critical roles in
metabolism of organic matter. They are predominantly involved in detoxifi-
cation of contaminated sites and organisms degrading a wide range of pollutants
have been described. In most situations, microbial reactions drive natural
attenuation or bioremediation processes (Brennerova et al., 2009). Bacteria of
different genera existing in close proximity, are thought to aid each other in
growth and survival via gene transfer and metabolic cross-feeding. The latter
case has been relatively well studied with bacteria that provide amino acids or
vitamins to other strains with biosynthetic deficiencies (de Souza et al., 1998).

It is essential to clarify the behaviour of microbial populations responsible
for degradation of target pollutants. It is also important to fully understand the
ecology of whole microbial community, including microbial populations that
are not responsible for the degradation, because they may affect the behaviour
of the degrading bacteria through microbial interactions (Sei et al., 2004). In
nature bacteria do not exist as pure cultures, and significant proportions of
microorganisms are associated with surfaces forming complex multispecies
communities. During degradation of many xenobiotic compounds, such as
chlorinated herbicides, nitrate esters, naphthalene derivatives and alkylbenzene
sulfonates, the combined action of several species present in bacterial commu-
nities enhances or is required for complete mineralisation of the compounds.
Processes which cannot be performed efficiently or which cannot be performed
at all by a pure culture depending on joint action of two or more bacterial
species are termed community level processes (Mgller ef al., 1998). In these
microbial communities a wider spectrum of metabolic properties and processes
exists, including synthesis of growth factors, removal of toxic substances and
enabling cometabolism. Cometabolism, in particular, has been identified as a
beneficial process for metabolism of xenobiotics (Singleton, 1994).
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Pelz et al. (1999) disclosed an intricate network of carbon sharing in the
community, defined the ecological roles of its three dominant members — two
different Pseudomonas spp. (MT1 and MT4), an Alcaligenes sp. (MT3) and an
Empedobacter sp. (MT2), and revealed that the substrate (chlorosalicylate) is
catabolised by two completely different parallel routes, one of which is novel
and involves protoanemonin as a critical intermediate, a toxic substance not pre-
viously found as a pathway intermediate in microbial world (Blasco et al.,1995;
1997). The community seemed to be so stable because each member played a
crucial role, by either providing carbon skeletons for the others (MT1) or by
scavenging toxic metabolites that inhibit the primary degrader if they accu-
mulate.

Cordova-Rosa ef al. (2009) observed a mixed culture from a coal wastewater
treatment plant containing a high concentration of phenolic compounds and
showed the ability of community to degrade phenol in both continuous and
batch systems. The strains from the community were identified as Pseudomonas
alcaligenes, mesophilic Pseudomonas and A. calcoaceticus var. anitratus. The
mixed culture was able to survive in the presence of phenol concentration as
high as 1200 mg L' and promote its degradation. In an environmental appli-
cation of the activated sludge from an industrial coal wastewater treatment plant
it was observed that inoculated bacterial consortium survived in a new environ-
ment, and after 15 days of microbiological degradation, they showed a decrease
in phenol concentration from 19.48 to 3.19 mg kg ', and to 1.13 mg kg ™" after
20 days of microbiological treatment.

Elimination of aromatic compounds from industrial effluents and sewage by
microbial degradation is usually not very effective because of chemical hetero-
geneity that leads to biochemical incompatibility of native microorganisms. The
intermediary metabolite of the chlorobenzoate degradation pathway, chloroca-
techol, irreversibly inhibits the meta cleaving enzyme C230 and also decele-
rates the reaction of the ortho pathway enzyme, C120. Hence, simultaneous
degradation of chlorobenzoates and phenol is usually not very effective. How-
ever, mixed cultures containing strains that can degrade either one or the other
component of the mixture have been effective in eliminating both chemicals,
but only when these substrates are present in suitable proportions. The con-
centration of the chloroaromatic compound should be equal or less than that of
the nonchloroaromatic substrate (Jayachandran and Kunhi, 2009).

However, the use of mixed cultures in degradation may be less effective than
use of pure culture of a genetically manipulated organism as Haugland et al.
(1990) showed in case of degradation of chlorinated phenoxyacetate herbicides.
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3. AIMS OF THE STUDY

General objective of this thesis was to characterise key catabolic genes for
phenol and p-cresol degradation in pseudomonads isolated from area polluted
with phenolic compounds.

1.

The specific aims were:

To study diversity and phylogenetic grouping of catabolic genes coding
phenol hydroxylase and catechol 2,3-dioxygenase among phenol/p-cresol
degraders.

. To evaluate kinetic parameters of phenol and p-cresol-degrading pseudomo-

nads possessing different catabolic pathways for phenol and p-cresol
degradation.

. To study microbial activities under mixed-substrate growth conditions and

specify the mechanisms regulating degradation of phenol and p-cresol from
the mixtures.

. To characterise the pch operons of Pseudomonas fluorescens strains PC18

and PC24 and transcriptional regulation of these operons in p-cresol
degradation.

. To investigate biodegradation efficiency of mixed phenol/p-cresol degraders

in laboratory microcosms.
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4. PHENOL/p-CRESOL DEGRADING
BACTERIAL STRAINS

The 38 Pseudomonas strains used in this study (Table 2) were isolated in mid
nineties as phenol/p-cresol degrading bacteria from water samples of the
channels surrounding semicoke mounds in Kohtla-Jérve, and of the Kohtla and
Purtse Rivers (Heinaru et al., 2000). Importantly this watershed was conti-
nuously polluted with phenolic compounds. Based on specification of ring-
cleavage dioxygenases, three main catabolic types of phenol and p-cresol
degradation were revealed among these strains: i) meta-meta catabolic type
strains use meta cleavage of catechol by C230 for both phenol and p-cresol; ii)
ortho-ortho”™ catabolic type strains degrade phenol through ortho fission of
catechol by C120 and p-cresol through ortho cleavage of protocatechuic acid
by PC340; iii) meta-ortho”" catabolic type strains degrade phenol by using
C230, and p-cresol via the protocatechuate ortho pathway by PC340.

Microbial strains used in current study are deposited in the Collection of
Environmental and Laboratory Strains of Tartu University (CELMS,
http://www.miccol.ut.ee).

Table 2. Description of studied strains.

Species and Strain Catabolic LmPH C230 group®  pheBA
biotypes designation type of group” operon™”
identified by PC) phenol—
car4 p-cresol
degradation
P. fluorescens B 18,21-23,  meta-ortho™ I I -
32-34, 37, 38
P. mendocina 1,3,4,8,10, meta-meta Ila Ila -
11 meta-meta IIb b -
5-7,9,19  meta-meta similar to  similar to PhhB -
2 meta-ortho™ 12 similar to Ila -
12 similar to 2
P. putida B 14, 15 ortho-ortho™ la - -
16 ortho-ortho™ 1lla - +
30 ortho-ortho™ la - d
13,35,39  ortho-ortho™ — — +
36 meta-meta 1Tb similar to XyIE —
P. fluorescens F 17 ortho-ortho™ IIIb - d
P69 ortho® 11Ib - +
20 ortho-meta — similar to NahH +
P. fluorescens C  24-26, 28,31 ortho-ortho™ — — +

®-, pheBA operon, genes for LmPH or C230 are absent
®+, pheBA operon is present

ortho°, the strain does not degrade p-cresol

d, pheA gene from pheBA operon has been eliminated
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5. RESULTS AND DISCUSSION

5.1. Species- and biotype-specific phylogenetic
grouping of phenol hydroxylase and catechol
2,3-dioxygenase genes (Ref. I1l)

To understand functional diversity of isolated strains, the evolutionary relation-
ships of key catabolic genes was examined. PH and C230 are essential proteins
in degradation of a wide range of aromatic pollutants. Although PH occurs in
both single- and multicomponent variants in phenol-degrading consortia, mPHs
are predominant in bacteria isolated from phenol-polluted areas (Peters et al.,
1997). The sequence of LmPH has been used to evaluate the diversity of
functionally dominant populations in trichloroethylene-contaminated aquifer
soil (Watanabe et al., 1998; 2002). The C230 subfamily 1.2.A genes (Eltis and
Bolin, 1996) have been analysed in studies of diverse environments (Wikstrom
et al., 1996; Okuta et al., 1998; Mesarch et al., 2000; Junca and Pieper, 2003).

In order to assess the diversity between the catabolic genes of phenol/p-
cresol-degraders, we analysed partial sequences of LmPH and C230 genes of
38 bacterial strains (Table 2). Respective PCR amplifications resulted in 29
LmPH- and 24 C230O-positive strains. The deduced amino acid sequences of
these PCR products were aligned against the protein sequences of reference
strains. The resulting phylogenetic tree of the proteins deduced from the
sequences revealed four main groups (I, Ila, IIb, IIla + IIIb) of LmPH genes
(Fig. 5). Six strains (Ppu PC14-PC16, Ppu PC30, PfF PC17, PfF P69) har-
bouring group Illa + IIIb LmPHs did not contain C230 genes. The phylogenetic
tree for the C230 genes indicated the presence of three distinct groups (I, Ila,
IIb) with the exception of strains Pmen PC2, Ppu PC36 and P{fF PC20. Notably,
the LmPH gene was absent in the PfF PC20 strain.

Comparison of the clustering data (Fig. 5) of ten strains belonging to the
meta—ortho™" degradation type of phenol and p-cresol shows that all nine
P. fluorescens biotype B strains analysed (PC18, PC21-PC23, PC32-PC34,
PC37, PC38) form a unique set within the group I LmPH and the group 1 C230
genes. We suppose that it may reflect selective pressure of phenolic pollutants
in the environment on P. fluorescens biotype B bacteria. P. mendocina strains
degrade phenol and p-cresol through the meta pathway. Two main clusters of
strains were revealed: six strains (PC1, PC3, PC4, PC8, PC10, PC11) form
group Ila and five strains (PC5-PC7, PC9, PC19) form group IIb, according to
sequences of LmPH and C230. LmPHs from group IIb are closely related to
those of reference strains and belong to the Dmp family (DmpN, PhlD, PhhN
and PheA4) (Fig. 5). The C230 genes of group IIb are similar to DmpB from
Pseudomonas sp. CF600. Our analysis concerning catabolic genes revealed
genetic heterogeneity of P. mendocina strains that may reflect adaptation of
these bacteria to the presence of phenolic pollutants in the environment.
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Figure 5. Neighbour-joining trees based on deduced amino acid sequences of the
LmPHs (580-bp) and C230s (924-bp) of the phenol/p-cresol degraders and reference
strains. Pmen — P. mendocina, PfF — P. fluorescens biotype F, PfB — P. fluorescens
biotype B, Ppu — P. putida. The sequences obtained in this study were aligned with the
known LmPHs: MopN from Acinetobacter calcoaceticus NCIB8250 (236909), MphN
from A. calcoaceticus PHEA-2 (AJ564846), PoxD from Ralstonia sp. E2 (AF026065),
PhyC from Ralstonia sp. KN1 (AB031996), PhcN from Comamonas testosteroni RS
(AB024741), AphN from C. teststeroni TA441 (AB006479), PhID from P. putida H
(X80765), PhhN from P. putida P35X (X79063), DmpN from Pseudomonas sp. CF600
(M60276), PheA4 from P. putida BH (D28864), and C230s: DmpB from P. putida
CF600 (M33263), PhlH from P. putida H (X80765), NahH P. putida G7 (P08127),
NahH from P. putida NCIB9816-4 (AA064305), NahH from Pseudomonas sp. ND6
(NP-943120), BztE from P. aeruginosa J1104 (X60740), XylE from P. putida mt2
(VO1161), XylE from P. putida HS1 (M65205), PhhB from P. putida P35X (X77856).
Bootstrap values (per 1000 trials) higher than 50% are indicated at the nodes. The scale
bars represent 0.1 substitutions per amino acid site (LmPH, C230). The phylogenetic
groups of different species and biotypes revealed according to the card gene sequence
analysis are designated using boxes with different colours.

We also analysed the presence of the pheBA operon (sPH) in studied strains.
The pheBA operon determines the synthesis of sPH (encoded by the pheA) and
C120 (encoded by the pheB), it is plasmid-borne and there is strong evidence of
horizontal transfer of this operon in nature (Peters et al., 1997). The pheBA
operon is flanked by two IS elements, IS7/472 and IS1411. The promoter of the
pheBA operon is located upstream of [S7/472 (Kasak et al., 1993). IS1411 was
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discovered as a consequence of insertional activation of the promoterless pheBA
genes in P. putida due to the presence of outward-directed promoters at the left
end of IS/411 (Kallastu et al., 1998). We found this operon in 13 strains
belonging to the ortho—ortho™ type of degradation of phenol and p-cresol
(Table 2). However, these strains belong to different Pseudomonas species and
biotypes: P. fluorescens biotype C (PC strains 24-26, 28, 31), P. putida biotype
B (PC strains 13, 16, 35, 39, 30) and P. fluorescens biotype F (PC strains 20, 17
and P69) (Table 2). In four strains (Ppu PC16, Ppu PC30, PfF PC17, PfF P69)
pheBA operon and mPH were detected (Table 2). Our results indicate elimi-
nation of the gene coding for sPH from the pheBA operon in strains PfF PC17
and Ppu PC30. We assume that these strains have acquired the full-length
pheBA operon through horizontal gene transfer, and further genetic rearrange-
ments have led to the loss of the phed gene. In strains Ppu PC16 and P{F P69
possessing genes for both sPH and mPH, the plasmid-encoded phed gene is
functional and expresses sPH activity but LmPH gene is probably not expressed
as shown by northern analysis. According to our analysis, the pheBA operon
from strain PfF P69 is similar to that of pAT1140 (Kasak et al., 1993), whereas
in Ppu PC16 it lacks IS7411 (Fig. 3, Ref. III). It is known that some bacteria
employ more than one pathway to degrade hydrocarbons, which allows
formation of novel mixed metabolic pathways and may explain why bacterial
strains capable of growing on contaminants emerge so quickly (Notomista et
al., 2003). DNA fragments can move into new hosts creating new mosaic
genetic structures (van der Meer and Sentchilo, 2003).

In conclusion, LmPHs and C230s clustered similarly in P. fluorescens bio-
type B, whereas in P. mendocina strains strong genetic heterogeneity became
evident. P. fluorescens strains from biotypes C and F were shown to possess the
pheBA operon, which was also detected in the majority of P. putida biotype B
strains. Two strains possessed the genes for both single and multicomponent
PHs, and two had genetic rearrangements in the pheBA operon leading to the
deletion of the pheA gene.

5.2. Growth characteristics of representative strains on
phenol and p-cresol (Ref. | and 1V)

For further studies one representative strain from each catabolic type was
chosen: Pseudomonas mendocina PC1 (meta-meta), Pseudomonas fluorescens
biotype C PC24 (ortho-ortho™") and P. fluorescens biotype B PC18 (meta-
ortho™") (Heinaru et al., 2000). The strains PC1 and PC18 degraded phenol by
using mPH and C230 whereas the strain PC24 contains the pheBA operon
determining C120 and single component PH. PCMH as the first enzyme for the
degradation of p-cresol via protocatechuate branch of B-ketoadipate pathway
was active in strains PC18 and PC24. Surprisingly, induction of this enzyme by
phenol in strain PC18 was also revealed. In strain PC1 degradation of both
phenol and p-cresol is catalysed by catechol meta pathway enzymes.
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The PH-harbouring Pseudomonas strains were evaluated by kinetic para-
meters for phenol degradation by Viggor et al. (2008). It was shown that the
values of apparent half-saturation constant for phenol-oxygenating activity (Ks)
of strains possessing mPH were almost an order of magnitude lower than of
strains having sPH. The mPH-possessing strains exhibiting high affinity to-
wards phenol had also more than twise higher maximum specific growth rates
(4max) compared to sPH-possessing strains (Table 3). The sPH strain PC24 with
functional pheBA operon had lowest growth yield (Yys) among the studied
strains. This phenomenon could be explained by non-productive exogeneous
accumulation of the metabolic intermediate cis, cis-muconate, which can be used
for growth only by permeable mutants (Williams and Shaw, 1997).

Table 3. Comparison of kinetic parameters” for specific phenol-oxygenating activity
and growth parameters of studied strains (Viggor et al., 2008)

Strain Apparent constants Apparent kinetic constants Yield factor
in Michaelis-Menten  in Aiba-Edwards equation
equation for specific for growth
phenol-oxygenating
activity
K, (uM) fmax (0 K;(mM) Yy’ (g DW g ' PHE)
PC1 1.7£0.2 0.596+0.042 9.41+1.20 0.669
PC18 1.4%0.5 0.535+0.075 2.52+0.18 0.700
PC24 21.4+5.1 0.231+0.010 7.4440.30 0.469

* Values are means of three independent experiments + standard derivations of the mean
® The standard deviations for Yyswas about 10%

It was concluded that the types of PH and catechol cleavage (ortho or meta) of
different phenol-degrading strains do not affect the rate of phenol degradation
and tolerance to phenol but may be strain-specific (Viggor ef al., 2008). Indeed,
the strain PC18 has lower K; value than the strain PC1. The bacteria have
certain protective mechanisms to survive at phenol concentrations that are
otherwise bactericidal. One opportunity and possible mechanism for that is
isomerisation of cis-unsaturated fatty acids to frans-configuration in bacterial
membrane after the exposure to phenol (Heipieper ef al., 1992).

However, the growth rates of strain PC1 on phenol and p-cresol were almost
similar (0.60-0.63 h™"). The strains PC18 and PC24 have higher growth rates on
p-cresol than on phenol (Table 3; Fig. 2, Ref. IV). We found that the t,,, values
on p-cresol for strains PC18 and PC24 were 1.12 and 0.71 h™", respectively (Fig.
2, Ref. IV). The specific growth rate, ym.x, was determined using the Richards
model from absorbance values of cultures during batch cultivation experiments.
It was also shown that in addition to almost two-fold higher y ., values of PC18
for p-cresol growth, the length of the lag phase was also about three-fold shorter
compared to PC24. The K values for p-cresol-oxygenating activity were
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calculated from data obtained using a Clark-type oxygen electrode by mea-
suring the oxygen consumption rate dependence of strains PC18 and PC24 on
p-cresol concentration (Fig. 3A, Ref. 1V). The K value for the strain PC18
(3.8 uM) was almost five-fold lower compared to the strain PC24 (17.3 uM). A
low Ks value of PC18 reflects a high affinity of the strain for p-cresol which is
in agreement with values of p-cresol maximum inhibitory concentration at
which no oxygen consumption was observed, (S,,), determined from respiration
measurements. Namely, S,, of strain PC18 was lower than that of strain PC24
(Fig. 3B, Ref. IV). These results are in accordance with chemical composition
of the habitat of the strains — PC24 was isolated from the ditch surrounding the
oil shale semi-coke mounds where concentration of aromatic compounds is
much higher compared to downstream-located Kohtla river from where PC18
was isolated (Heinaru et al., 2000). Thus, according to kinetic analysis of p-
cresol degradation, strain PC24 which has a high substrate tolerance expresses a
high K and low specific growth rate, while PC18 which has a low substrate
tolerance and a low K grows rapidly on p-cresol.

We suppose that differences in whole-cell kinetic parameters between the
strains PC18 and PC24 revealed in this study are mainly caused by differences
in structure and regulation of expression of respective PCMH genes. This state-
ment is also supported by different growth yields of these strains on p-cresol
(Fig. 2, Ref. 1V), despite the fact that both strains gave the same growth yields
on POB (Ref. I). However, different growth yields of these strains may also be
caused by different catechol cleavage enzymes. Namely, strain PC18 harbours
only C230, but strain PC24 degrades aromatic compounds only via C120.
Although both strains catabolised p-cresol via the protocatechuate ortho
pathway, minor C120 activity (Ref. I) causes lactone accumulation and thus the
low growth yield of the strain PC24 can be explained. It is known that ortho
fission reactions are rarely used by bacteria growing on methyl-substituted
phenols due to the non-productive accumulation of a non-metabolisable methyl-
substituted lactone.

In summary, we can conclude that although the strains PC18 and PC24
catabolise p-cresol using PCMH, clear differences in whole-cell kinetic para-
meters for this compound were revealed. Namely, affinity for the substrate and
specific growth rate were higher in PC18 whereas maximum p-cresol tolerance
was higher in PC24.

5.3. Phenol and p-cresol degradation in mixed substrate
cultivations (Ref. I)

It is well known that microorganisms are able to degrade substrates from the
mixtures either simultaneously or sequentially. Simultaneous utilisation hap-
pens when the pathways involved in degradation of both substrates are almost
identical or at least similar, when the enzyme induction system is non-specific
or catabolic pathways converge (Hutchinson and Robinson, 1988). However, it
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is known that high concentrations of aromatic compounds can induce substrate-
derived inhibitory effects and accumulation of toxic intermediates (Leveau et
al., 1999; Bordel et al., 2007; Muiioz et al., 2007). Accumulation of (dead-end)
intermediates favors sequential degradation of compounds (Gaines ef al., 1996).

The fact that the presence of a methyl group on phenol ring changes the
kinetic parameters of substrate utilisation by representative strains can be due to
differences in catabolic pathways. The experiments were performed to specify
the degradation pattern of phenol and p-cresol from mixtures. In two-substrate
cultivations the initial concentrations of phenol and p-cresol in the growth
medium were 2.5 and 1.3 mM, respectively (Ref. ). It was revealed that phenol
and p-cresol were utilised simultaneously during the growth of P. mendocina
PC1 and P. fluorescens C PC24 on phenol and p-cresol mixture (Fig. 4 A,C,
Ref. I). Simultaneous utilisation of these compounds can be explained by the
absence of metabolic conflict: strain PC1 degraded the above mentioned com-
pounds via the same meta pathway by C230, and strain PC24 via the B-ketoadi-
pate pathway whereas the ring cleavage enzymes for phenol and p-cresol were
C120 and PC340, respectively. In contrast, during the growth of the strain
PC18 on phenol and p-cresol mixture, typical diauxic growth was observed with
p-cresol being the preferred substrate and degraded first (Fig. 4B, Ref. 1). As
phenol and p-cresol are biodegraded in this strain by alternative catabolic
pathways (catechol meta and protocatechuate ortho, respectively), sequential
consumption of substrates (diauxic growth) was observed. During growth on
benzoate-p-cresol mixture the strain PC18 preferred p-cresol to benzoate (Fig.
9A, Ref. ). In this case both substrates were catabolised via B-ketoadipate path-
way but using different ring cleavage enzymes, i.e. for benzoate by C120 and
for p-cresol by PC340. The activities of key enzymes of catabolic pathways in
each exponential growth phase in different substrate mixtures were also
monitored (Table 1, Ref. I). The enzymes specific for benzoate catabolism
showed a more pronounced increase in activity in second growth phase. In case
of preferential utilisation of p-cresol accumulation of the intermediate, p-
hydroxybenzoate (POB), in growth medium was detected. If POB accumulation
represses the expression of phenol meta pathway at growth of PC18 on phenol-
p-cresol mixture, then diauxie should also occur at growth of this strain in POB-
phenol mixture. Indeed, in this case diauxic growth was observed and de-
gradation of phenol took place only after consumption of POB (Fig. 5A, Ref. I).
Thus we showed that inability of the strain PC18 to degrade phenol and p-cresol
simultaneously is caused by reversible accumulation of POB.

No diauxie was observed during the growth of the strain PC24 on phenol and
POB mixture (Fig. 5B, Ref. I). This strain does not accumulate significant
amounts of POB in the growth medium (Fig. 4C, Ref. I). High specific activities
of p-hydroxybenzoate hydroxylase (POBH) in the first exponential growth
phase of strain PC18 showed that accumulation of POB was not caused by a
pathway bottleneck at the POBH step (Table 1, Ref. I). Our earlier work
showed that in PC18 phenol also induced the p-cresol protocatechuate pathway
by the induction of PCMH. Enzymological assays revealed that PCMH activity
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was two-fold higher during the growth on phenol than on p-cresol in PC18 (Fig.
8, Ref. IV).

We assume that induction of PCMH simultaneously by p-cresol and phenol
causes accumulation of the intermediate (POB), which at high concentration
represses the activity of the catechol meta pathway and thereby coordinates
utilisation of these two incompatible metabolic substrates.

5.4. Diversity of p-cresol methylhydroxylase genes and
their transcriptional activation in strains P. fluorescens
PC18 and PC24 (Ref. 1V)

PCMH was used as a tool to characterise catabolic differences between phenol-
and p-cresol-degrading P. fluorescens strains PC18 and PC24 in Paper IV.
Although both strains catabolise p-cresol using PCMH, the whole-cell kinetic
parameters for this compound and induction profiles during growth on phenol
were different. We supposed that these differences between the strains PC18
and PC24 were caused mainly by differences in sequence structure and
regulation of expression of respective PCMH genes (Ref. IV). In both strains
the pchACXF operon, which encodes p-hydroxybenzaldehyde dehydrogenase
and PCMH, was sequenced.

5.4.1. Characterisation of the pch gene cluster

Five putative ORFs of pch operon were identified (Fig. 4A, Ref. IV) based on
comparison of nucleotide and deduced amino acid sequences with correspon-
ding genes of P. putida NCIMB 9866 (Burlage et al., 1989; Cronin et al., 1999)
and P. mendocina KR1 (Ramos-Gonzalez et al., 2002; Wright and Olsen,
1994). The genes encoding PCMH and p-hydroxybenzaldehyde dehydrogenase
are organised as an operon (pchACXF) with pchA encoding the second and
pchCF encoding the first enzyme of the p-cresol metabolic pathway. The gene
designated as pchX encodes a protein of unknown function. The pchR gene,
transcribed divergently from the pchACXF operon encodes the sigma 54-
dependent transcriptional regulator of this operon. The structure of the pro-
moter, containing the consensus sequence (TGGCAC-N;-TTGCW) (Merrick,
1993) of sigma 54-dependent promoters was identified upstream of the pchA
gene of both strains (Fig. 4B, Ref. IV). However, these promoter sequences
differ from the consensus sequence, having T instead of C at position -12
(TGGCAC-Ns-TTGTT). The -12 element, with the central consensus sequence
TTGCW contributes to binding affinity. The latter element may play a more
complex role in RNA synthesis, beyond simply assisting in promoter recog-
nition (Buck and Cannon, 1989; Tintut ef al., 1995; Wang et al., 1997; Wang
and Gralla, 1998). Prior studies have suggested that the -12 region sequences
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contribute to establishment of the basal transcription level (Wang ef al., 1997).
The -12 region can contribute not only to transcription specificity but also to its
regulatory response. Thus, a common feature of deregulated promoters is a loss
of C at -12, thereby this nucleotide would appear as critical for fork junction
binding (Wang et al., 1999). Transcription starts at thymine located 261 bases
upstream of the pchA translational start site in PC24, and at guanine located 143
bases upstream of the translational start in PC18 (Fig. 4B, Ref. V). Transcrip-
tional regulation of these operons by PchR, a putative o *-dependent regulator,
was shown. PchR is a member of the sigma 54-dependent NtrC/XyIR family of
positive transcriptional activators (Morrett and Segovia, 1993; Shingler, 1996).
PchR proteins of PC18 and PC24 have all of the specific sequence characte-
ristics of this family (Fig. 5, Ref. IV). This type of regulator has a conserved
four-part structure that includes an amino-terminal (A-domain) region linked to
a central activation C-domain by a short B-domain, and a carboxyl-terminal
DNA binding D-domain (Helix-Turn-Helix). The number of residues separating
the C and D domains is highly variable within this family, and these regions
bear little sequence identity (Shingler ef al., 1993). An A-domain of sigma 54-
dependent regulator acts as the receiver module involved in recognition of
cognate environmental signals. This domain is poorly conserved and is most
variable in length. Sequence identity in the effector-binding domain A of PchR
proteins from PC18 and PC24 is 92% (19 amino acid differences) (Fig. 6, Ref.
IV). Fig. 6 shows the positions in XylR and DmpR where mutations affected
inducer binding and which were closest to our amino acid differences. In
XylR172, Glu (E) was mutated to Lys (K) (Delgado and Ramos, 1994); in
XyIR85, Pro (P) was mutated to Ser (S) (Delgado et al., 1995), and in
DmpR184, Arg (R) was mutated to Trp (W) (Shingler and Pavel, 1995).

Signal reception Transcription activation DNA-binding
211 234 472 566

A - C D
| L1

XyIR85 XylR172 DmpR184

Figure 6. Domains A, C and D of the XylR/DmpR regulators and locations of point
mutations, which were responsible for interactions with effectors (Delgado and Ramos,
1994; Delgado et al., 1995; Shingler and Pavel, 1995).

Comparison of pchR sequences with translated nucleotide sequence entries in
the GenBank database revealed highest homology of PchR proteins with PcuR
of P. mendocina KR1 (76-78% identity). TbuT of Ralstonia pickettii PKO1
(Byrne and Olsen, 1996), EugR of Pseudomonas sp. OPS1 (Brandt et al., 2001),
XyIR of P. putida mt-2 (Inouye et al., 1988), PhIR of P. putida H (Burchhardt
et al., 1997), MopR of Acinetobacter calcoaceticus NCIB8250 (Schirmer et al.,
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1997), TouR of P. stutzeri OX1 (Arenghi et al., 1999), and DmpR of Pseudo-
monas sp. strain CF600 (Shingler et al., 1993) showed 37 to 46% identity to
PchR of PC18 and PC24. Among these sequences, TbuT and EugR are more
similar to PchR. TbuT and EugR regulate operons involved in catabolism of
toluene and eugenol, respectively. Eugenol hydroxylase genes eiy4 and ehyB
have strong sequence similarities to the PCMH genes pchC and pchF from P.
putida NCIMB 9866, respectively (Brandt et al., 2001). Our analysis indicated
that PchR regulators of PC18 and PC24 and PcuR of KR1, which are all
activated in response to the aromatic substrate p-cresol, constitute a separate
cluster in the tree. Thus, they are far more similar to each other than to other
well-known sigma 54-dependent regulators (Fig. 7, Ref. V).

5.4.2. Diversity of transcriptional regulation
of the pch gene cluster

To investigate whether different induction patterns of the PchR regulators of
PC18 and PC24 observed are caused by some specific structural features of
these two proteins, a complementation assay in which pchR (entire pchR and the
upstream promoter-operator area) (Fig. 7A) of PC18 was introduced into PC24
was constructed (PC24+18RBS) and inducibility of the pch operon was ana-
lysed in the resulting strain.

As shown in Fig. 7B, expression of pch operon was induced by phenol in
PC24 bearing PchR of PC18. At the same time, in wild-type PC24 growing in
phenol-containing medium as well as in CAA (uninduced conditions), PCMH
activity was not found (Fig. 7B). As a control, strain PC24 was complemented
with plasmid containing the deficient pchR of PC18 (most of pchR was deleted,
Fig. 7A) and the induction of PCMH activity with phenol was not found.

In addition, complementation assay was conducted in which the native pchR
regulator in strain PC18 was inactivated by Km' gene insertion. As expected,
after complementation of PC18pchR™ with pchR (entire pchR and the upstream
promoter-operator area) of PC24 (Fig. 7A), PCMH activity was induced only
with p-cresol (Fig. 7B). Based on these results, we conclude that differences in
amino acid sequences of PchR regulators of the two studied strains lead to
different effector-binding capabilities of these proteins. Phenol is a more effi-
cient effector molecule for PchR of PC18 than p-cresol, but it does not activate
the regulator of PC24. At the same time, both regulators respond similarly to p-
cresol. The capability of bacteria to adapt to certain contaminated environments
by enhancing degradative capacities has been shown to be caused by mutational
change within the effector binding subregion of DmpR (Sarand et al., 2001).
Also, Delgado and Ramos (1994) have shown that due to a single amino acid
change at the N-terminal end of XyIR, the protein acquired the ability to bind a
new effector not recognised by the wild-type protein (Fig. 6). This and other
studies (Pavel et al., 1994; Delgado et al., 1995; Fernandez et al., 1995;
Shingler and Pavel, 1995; Pérez-Martin and Lorenzo, 1996a; Salto et al., 1998;
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Skirfstad er al., 2000; Wise and Kuske, 2000; O’Neill et al., 2001; Sarand et
al., 2001; Solera et al., 2004; Galvdao and de Lorenzo, 2006) support the regu-
latory noise hypothesis to describe how transcriptional regulators may evolve
competence to deal with novel environmental signals (de Lorenzo and Pérez-
Martin, 1996; Garmendia et al., 2001).
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Figure 7. A — Schematic representation of inserts 18RBS/24RBS/18RBS-Km' for
complementation assays. B — Expression of PCMH activities (nmoles min 'mg ' of pro-
tein) in cell-free extracts of strains PC18 and PC24; and constructs PC24+18RBS,
PC24+18RBS/Km" and PC18pchR +24RBS during growth on p-cresol, phenol and
casamino acids (CAA). Mean values for independent cultures are shown with standard
deviation.

Thus in the cases of PC18 and PC24, changes in pchR regulatory gene struc-
tures have led to different expression patterns of catabolic routes, probably for
overcoming potential metabolic conflicts during degradation of phenol and p-
cresol mixtures.
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5.5. Biodegradation efficiency of mixed bacterial
populations (Ref. II)

Catabolic pathways operating in natural communities reflect interactions
between microbial species under mixed culture conditions where extensive
sharing of nutritional resources is common (Pelz ef al., 1999) and interaction of
two or several strains is often a prerequisite for growth and biodegradation (Van
Hamme and Ward, 2001).

To examine biodegradation efficiency of mixed culture in leachate and oil-
amended microcosms, phenol- and oil-degrading mixed culture was used
comprised of four phenol and p-cresol degrading strains (PC1, PC18, PC20,
PC24) with known complementary degradative capabilities (defined consortia).
Among these, the strain PC18 is able also to degrade salicylate and strain PC20
salicylate and naphthalene. To understand interactions within a pollutant-
degrading bacterial consortium in situ, we identified functionally dominant
populations using analysis of the DNA isolated from laboratory microcosm
samples. TGGE and DGGE analyses of 16S rRNA- and LmPH encoding genes
have been used to study functional activity and structural fluctuations of
bacterial consortia in a microcosm (Futamata et al., 2003). The same kind of
molecular techniques are used in bioremediation studies. So, Watanabe and
coworkers (Watanabe et al., 1998) used a combination of molecular and micro-
biological methods to detect and characterise dominant phenol-degrading
bacteria in activated sludge. In our study, DGGE analysis of PCR products of
16S rRNA genes and of the gene encoding LmPH showed a shift in com-
position of bacterial population during incubation for 30 days on phenolic
leachate and crude oil.

DGGE analysis of PCR products of 16S rRNA genes showed that P. mendo-
cina PCl1 became dominant and P. fluorescens PC20 disappeared after
incubation of mixed population in leachate microcosms for 30 days (Fig. 1(a)
and (b), Ref. II). Phenol and benzoate were removed by mixed cultures during
the first day, cresols after 10 days, and from dimethylphenols 3,4-DMP in two
days (Fig. 3, Ref. II). Disappearance of a particular population (PC20) from
the leachate microcosm and maintenance of the same population in the
naphthalene-contaminated oil microcosms throughout the entire experiment
indicates that changes in bacterial consortia largely depend on substrate pro-
perties. In contrast, no dominant population was detected in oil-amended micro-
cosms by DGGE. The catabolic significance of LmPH-possessing strains (PC1
and PC18) in biodegradation of pollutant mixtures revealed dominance of the
strain PC1 in leachate and that of the strain PC18 in oil-amended microcosms
(Fig. 2, Ref. II). The ability to degrade salicylate, an intermediate of naphtha-
lene degradation, may be the reason why the LmPH-possessing strain PC18
dominated over PC1 through the first 10 days in oil-amended microcosms.
Molecular monitoring of genes coding for catabolic enzymes of pollutant
degradation pathways can show which population has major importance in a
specific polluted ecosystem. In leachate microcosms, relative proportions of
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bacteria having meta (PC1) and ortho (PC24) pathways for degradation of
phenol and p-cresol changed alternately (Fig. 7, Ref. II). It is well known that
meta and ortho ring fission of phenolic compounds are alternative pathways for
a single strain and that pollutants are degraded faster under mixed culture
conditions. Intermediates of a catabolic pathway of one strain (e.g., strain PC18)
may be further degraded by another strain (e.g., strain PC24) possessing
suitable catabolic pathway. The shifts in composition of mixed population
indicated that different pathways of metabolism of aromatic compounds do-
minated and that this process is optimised response to contaminants present in
microcosms.
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6. CONCLUSIONS

Bioavailability of pollutants as well as survival and catabolic activity of intro-
duced microorganisms play important roles in bioremediation technologies.
Therefore, before applying the bioaugmentation, it is necessary to isolate,
identify and characterise pollutant-degrading indigenous bacterial strains and
analyse their activity in situ.

Accordingly, the first scope of the current thesis was to analyse the structure
and regulation of expression of the key enzymes in catabolic pathways of
phenol and p-cresol degradation in pseudomonads isolated from river water
continuously polluted with phenolic compounds. The second aim of the thesis
was to characterise catabolic activity of the specific types of strains in single as
well as mixed substrate cultivations, and longevity of these strains in mixed
populations.

Based on results presented in the thesis, following conclusions were made:

1. In the studied natural consortium of phenol and p-cresol degraders the strains
bearing multicomponent phenol hydroxylases were most abundant. The
strains described belong to three species — Pseudomonas mendocina,
Pseudomonas putida and different biotypes of Pseudomonas fluorescens. In
most of these strains, aromatic ring is opened by the action of catechol 2,3-
dioxygenase. Multicomponent phenol hydroxylases and catechol 2,3-
dioxygenases clustered in similar phylogenetic groups case of P. fluorescens
biotype B strains. In P. mendocina strains, strong heterogeneity of these
enzymes appeared. In case of six strains possessing multicomponent phenol
hydroxylase, aromatic ring is cleaved by catechol 1,2-dioxygenase.

2. P. fluorescens strains from biotypes C and F were shown to possess the
pheBA operon, which was also detected in the majority of P. putida biotype
B strains. The strains P. putida PC16 and P. fluorescence P69 possessed
both, single and multicomponent phenol hydroxylases, but only single
component phenol hydroxylase activity was expressed.

3. The strains P. mendocina PC1, P. fluorescens PC18 and PC24, representing
different catabolic types, have different whole-cell kinetic parameters.
Expectedly, the growth rates of PC1 on phenol and p-cresol were similar, as
both these substrates are degraded via catechol meta pathway. Albeit in both
strains, PC18 and PC24, p-cresol is degraded via protocatechuate ortho
pathway, affinity for the substrate and specific growth rate were higher for
PC18 whereas maximum p-cresol tolerance was higher for PC24.

4. The degradation of phenol and p-cresol from their mixtures by bacteria
occurred simultaneously in cases where these substrates were degraded via
the same pathway (strains PC1 and PC24); and via diauxie if different
degradative pathways were involved (PC18). In case of sequential con-
sumption of phenol and p-cresol, the catabolism of phenol becomes inhibited
by the reversible accumulation of p-hydroxybenzoate (an intermediate of p-
cresol degradation pathway) due to the induction by phenol of the first
enzyme of p-cresol catabolism — p-cresol methylhydroxylase.
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5. Albeit in strains PC18 and PC24 the expression of p-cresol methylhydro-
xylase genes was induced differently, the deduced amino acid sequences of
the corresponding genes, pchC and pchF, revealed high identity value
(97%). Complementation assays confirmed that differences in amino acid
sequences of the PchR regulators between the two studied strains led to
different effector-binding capabilities of these proteins.

6. The microcosm experiments using mixed bacterial cultures on phenolic
leachate, and oil-amended microcosms to investigate biodegradation effi-
ciency indicated that specific bacterial populations were selected in both
microcosms. In mixed populations, relative proportions of bacteria having
meta (PC1) and ortho (PC24) pathways for degradation of phenol and p-
cresol changed alternately throughout the experiment.
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SUMMARY IN ESTONIAN

Kataboolseid v6tmeensiiiime kodeerivate geenide mitmekesisus
fenooli ja p-kresooli lagundamisel pseudomonaadides

Aromaatsed iihendid satuvad keskkonda peamiselt toOstustootmise tulemusena
ning need on toksilised enamikele elusorganismidele. Eestis pOhjustab olulisi
keskkonnaprobleeme podlevkivi kaevandamine ning pdlevkivikeemia- ja energia-
toostused. Kirde-Eesti jogedesse juhitavad kaevandus- ja leoveed (pdlevkivi
termilise tootlemise tagajarjel tekkinud poolkoksi ladestustest) sisaldavad
kdrges kontsentratsioonis sulfaate, raskemetalle, oliprodukte ja mitmesugust
toksilist aromaatikat. Erinevate asendustega fenoolide kui olulisema leovete
reostuse lagundamisega saavad hakkama bakterid. Sellise tugeva fenoolse
reostusega keskkond on selektiivseks survefaktoriks jogede looduslikule mik-
roobikooslusele, kujundades vélja erinevate katabolismiradadega mikroobid,
kes on vdimelised edukalt funktsioneerima mitmesugustes keskkonnatingimus-
tes. Teadmised sellistes tingimustes véljakujunenud mikroobikonsortsiumidest
on kas {iildised vdi puuduvad. Biodegradatsiooniradade tuvastamine ja nendes
osalevaid votmeenstiiime kodeerivate geenide uurimine lubab vilja selekteerida
ekstreemsetes tingimustes vastupidavad ja korgema biodegradatsiooni efektiiv-
susega tiived, kasutamaks neid bioremediatsioonis.

Sellest tulenevalt oli kédesoleva t60 eesmérkideks uurida pideva fenoolse
reostusega veest eraldatud geneetiliselt erinevate pseudomonaadide kui enim-
levinud biodegradatiivsete bakterite fenooli ja p-kresooli katabolismi vGtme-
ensiiime kodeerivate geenide struktuuri ja avaldumise regulatsiooni, iseloomus-
tada wvalitud tiiliptiivede kataboolset aktiivsust nii iiksiksubstraatidel kui ka
substraatide segudes ning nende vastupidavust segapopulatsioonidena.

T606s esitatud tulemused voib kokku votta jargnevalt:

1. Uuritud fenooli ja p-kresooli lagundajate konsortsiumis on enimlevinud
multikomponentset fenooli hiidroksiilaasi omavad bakteritiived, kes méérati
liigiliselt Pseudomonas mendocina, Pseudomonas putida ja erinevate bio-
tiilipidega Pseudomonas fluorescens esindajateks. Enamikel multikompo-
nentset fenooli hiidroksiilaasi omavatel tiivedel toimub aromaatse ronga
avamine katehhooli 2,3-dioksiigenaasi abil, kusjuures P. fluorescens biotiiiip
B tiivedes klasterduvad molemad enstiiimid fiilogeneetiliselt sarnastesse ning
P. mendocina tiivedes erinevatesse gruppidesse. Kuus tiive rithmituvad
multikomponentse fenooli hiidroksiilaasi jargi gruppi, kus aromaatset tuuma
lagundatakse katehhooli 1,2-dioksiigenaasi abil. Sellise lagundamisraja ehk
Mop-tiiiibi olemasolu pole varasemalt pseudomonaadides kirjeldatud.

2. P. fluorescens biotiliiibis C ja F ning paljudes P. putida tiivedes toimub
esmane fenooli lagundamine iihekomponentse fenooli hiidroksiilaasi ja
katehhooli 1,2-dioksiligenaasi abil (kodeeritud pheBA operoni poolt). Selle
kataboolse tiilibiga bakterite hulgas on kaks tiive (P. putida PC16 ning
P. fluorescens P69), kes omavad nii iihe- kui ka multikomponentset fenooli
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hiidroksiilaasi, kusjuures ekspresseerub vaid iihekomponentne fenooli hiid-
roksiilaas.

3. Erineva katabolismitiiiibiga fenooli ja p-kresoolilagundajaid baktereid P.
mendocina PC1, P. fluorescens PC18 ja PC24 iseloomustavad oluliselt
erinevad kineetilised kasvuparameetrid. Tiivel PC1 on kasvukiirused nii fe-
noolil kui p-kresoolil sarnased, sest modlemad substraadid lagundatakse
katehhooli meta rada méoda. Kuigi tiivedes PC18 ja PC24 toimub p-kresooli
lagundamine iile protokatehhuaadi ortho raja, omab tiivi PC18 suuremat
kasvukiirust ning afiinsust p-kresoolil kui selle substraadi suhtes tolerantsem
titvi PC24.

4. Fenooli ja p-kresooli lagundatakse nende substraatide segudest samaaegselt
juhul, kui lagundamine toimub samades degradatsiooniradades (tiived PCI1 ja
PC24), ja iile diauksia, kui lagundamisrajad on erinevad (tiivi PC18). Fenooli
lagundamine teises logaritmilises kasvufaasis tiive PC18 puhul toimub p-
kresooli katabolismi vaheprodukti p-hiidroksiibensoaadi poédrduva kogune-
mise tOttu, sest p-kresooli lagundamisraja esimest ensiilimi (p-kresooli
metiililhiidroksiilaas) indutseerib ka fenool.

5. Kuigi tiive PC18 p-kresooli methiiiilhiidroksiilaasi siintees on indutseeritud
lisaks p-kresoolile ka fenooliga, on seda ensiitimi kodeerivate geenide pchF
ja pchC ennustatav aminohappelise jérjestuse sarnasus tiivedel PC18 ja PC24
véga suur (97%). PC24-s indutseerib selle ensiiiimi siinteesi ainult p-kresool.
Mairksa olulisemad erinevused leiti nende kahe tiive regulaatorgeeni pchR
nukleotiidjarjestustes. Selle geeni produkt kuulub NtrC/XylIR perekonda, on
sigma 54-soltuv ja reguleerib pch kataboolse operoni transkriptsiooni.
Komplementatsioonikatsed tdestasid oletust, et regulaatorvalkude erinevast
jarjestusest tuleneb ka nende seondumine erinevate efektormolekulidega.

6. Biodegradatiivse efektiivsuse uurimine poolkoksi leovett ning pdlevkivi
toordli sisaldavates mikrokosmkatsetes tiiiiptiivedest koosneva segapopulat-
siooniga nditas, et erinevates mikrokosmides domineerivad kindlate aro-
maatsete tihendite lagundamisradadega populatsioonid. Fenooli ja p-kresooli
lagundamine nendest segudest toimub ainult meta (PC1) ja ainult ortho
(PC24) rada omavatel tiivedel alternatiivselt, s.t. kataboolne aktiivsus ning
suhteline arvukus on segapopulatsioonis ajaliselt koordineeritud.

Kéesoleva t60 tulemused néaitavad, et uuritud bakteritiived on efektiivsed ja
sobilikud kasutamiseks fenoolse reostusega alade ja leovete bioremediatsioonil.
Ténu antud uurimusele on voimalik vilja valida ning kombineerida erinevaid
kataboolseid votmeensiilime ning kineetilisi parameetreid omavaid tiivesid bio-
remediatsiooni efektiivsuse suurendamiseks.
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