
D
A

N
 B

O
G

D
A

N
O

V

Sharem
ind: program

m
able secure com

putations w
ith practical applications

Tartu 2013

ISSN 1024–4212
ISBN 978–9949–32–216–9

DISSERTATIONES
MATHEMATICAE

UNIVERSITATIS
TARTUENSIS

83

DAN BOGDANOV

Sharemind: programmable secure
computations with practical applications

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS
83

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS
83

DAN BOGDANOV

Sharemind: programmable secure
computations with practical applications

Institute of Computer Science, Faculty of Mathematics and Computer Science,
University of Tartu, Estonia

Dissertation is accepted for the commencement of the degree of Doctor of Phi-
losophy (PhD) on January 21th, 2013 by the Council of the Institute of Computer
Science, University of Tartu.

Supervisor:
Dr. Tech. Sven Laur

University of Tartu
Tartu, Estonia

Opponents:

Prof. PhD. Nigel P. Smart
University of Bristol
Bristol, United Kingdom

Dr. Ir. Berry Schoenmakers
Eindhoven University of Technology
Eindhoven, Netherlands

The public defense will take place on February 28th, 2013 at 16:15 in Liivi 2-403.

The publication of this dissertation was financed by Institute of Computer Science,
University of Tartu.

ISSN 1024–4212
ISBN 978–9949–32–216–9 (print)
ISBN 978–9949–32–217–6 (PDF)

Copyright: Dan Bogdanov, 2013

University of Tartu Press
www.tyk.ee
Order No. 17

ss
s
ss

s s s

Contents

List of publications 8

Abstract 10

1 Introduction 11
1.1 Why do we need secrets? . 11
1.2 Background and claims of this work 12
1.3 Thesis outline and contributions of the author 13

2 Secure computation in practice 17
2.1 Overview of practical secure computation systems 17
2.2 Introduction to circuits . 17
2.3 Two-party computation using garbled Boolean circuits 19
2.4 From Boolean circuits to arithmetic circuits 21
2.5 Two-party computation using homomorphic encryption 23
2.6 Secure multiparty computation 24
2.7 Resource cost estimates . 27

3 The design of Sharemind 30
3.1 Design goals and intended purpose 30
3.2 Different flavors of privacy . 31

3.2.1 Record-level privacy . 31
3.2.2 Source-level privacy . 32
3.2.3 Output-level privacy . 32
3.2.4 Cryptographic privacy 33

3.3 The model of a SHAREMIND application 33
3.3.1 Overview of parties . 33
3.3.2 Encoding private data . 34
3.3.3 The overall threat model 35
3.3.4 Reducing the power of the adversary 36
3.3.5 The optimal number of computing parties 41

5

2

3.3.6 The case for passive security in SHAREMIND 42
3.3.7 Constructing simulators for secure computation protocols 42
3.3.8 From simulatability to security and composability 46
3.3.9 Guidelines for designing secure protocols for SHAREMIND

. 55
3.4 Secure storage in SHAREMIND 56

3.4.1 Design goals for secure storage 56
3.4.2 The structure of secret-shared databases 56
3.4.3 Manipulating secret-shared databases 58
3.4.4 A protocol for data collection 61

3.5 Protocols for secure computation 64
3.5.1 The general secure computation process 64
3.5.2 Protocols for addition and multiplication 65
3.5.3 Protocols for comparison 66
3.5.4 The secure computation capabilities of SHAREMIND . . . 68

3.6 Notes on the design of SHAREMIND protocols 68
3.7 The software implementation of SHAREMIND 70

4 Practical performance of Sharemind 71
4.1 The complexity and performance of SHAREMIND 71
4.2 Benchmarking methodology . 72

4.2.1 The built-in protocol profiler 72
4.2.2 Benchmarking tools . 73

4.3 Performance analysis . 74
4.3.1 SHAREMIND protocol execution pipeline 74
4.3.2 The importance of processor speed 76
4.3.3 The importance of parallelization 77
4.3.4 The importance of network bandwidth and latency 80

4.4 Optimization goals for future protocols 82

5 Programming secure computations 84
5.1 Motivation and design goals . 84
5.2 The SHAREMIND secure virtual machine and assembly language . 86
5.3 SECREC—a high-level imperative language for implementing se-

cure functionality . 87
5.3.1 Secure data types . 87
5.3.2 Secure operations and parallelism 88
5.3.3 Making private data public 90

5.4 Developing secure SECREC programs 92
5.5 Additional developer tools . 94

5.5.1 The developer version of the SHAREMIND server 94

6

5.5.2 The SECRECIDE integrated development environment . . 95
5.6 A comparison of SECREC to other secure computation program-

ming languages . 97

6 Sharemind in practice 100
6.1 The process of developing a SHAREMIND application 100

6.1.1 Designing the application 100
6.1.2 Implementing the application 101
6.1.3 Deploying the application 102

6.2 Privacy-preserving application prototypes 103
6.2.1 Online surveys . 103
6.2.2 Frequent itemset mining 105
6.2.3 Privacy-preserving k-means clustering 108

6.3 The ITL financial benchmarking application 109

Conclusion 112

Bibliography 114

Acknowledgments 128

Kokkuvõte (Summary in Estonian) 129

Original Publications 132
Sharemind: A Framework for Fast Privacy-Preserving Computations . . 133
High-performance secure multi-party computation for data mining ap-

plications . 151
A universal toolkit for cryptographically secure privacy-preserving data

mining . 169

Curriculum Vitae 186

7

PUBLICATIONS INCLUDED IN THIS THESIS

The publications included in this thesis describe the main results achieved with
the Sharemind system developed by the author.

1. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast
privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) Proceed-
ings of the 13th European Symposium on Research in Computer Security,
ESORICS ’08. Lecture Notes in Computer Science, vol. 5283, pp. 192–206.
Springer (2008).

2. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance se-
cure multi-party computation for data mining applications. International
Journal of Information Security 11(6), 403–418 (2012)

3. Bogdanov, D., Jagomägis, R., Laur, S.: A universal toolkit for cryptograph-
ically secure privacy-preserving data mining. In: Chau, M., Wang, G.A.,
Yue, W.T., Chen, H. (eds.) Proceedings of the Pacific Asia Workshop on In-
telligence and Security Informatics, PAISI ’12. Lecture Notes in Computer
Science, vol. 7299, pp. 112–126. Springer (2012).

PUBLICATIONS NOT INCLUDED IN THIS THESIS

These publications by the author describe various aspects of SHAREMIND, but
are not included in this thesis. Some of the results achieved in these works are
referred to by the thesis. The list includes both papers and technical reports not
yet published as papers.

1. Bogdanov, D., Sassoon, R.: Privacy-preserving collaborative filtering with
sharemind. Tech. Rep. T-4-2, Cybernetica AS, Tartu, http://research.
cyber.ee/. (2008).

2. Bogdanov, D., Talviste, R.: A Comparison of Software Pseudorandom Num-
ber Generators. In: Cap, C. (ed.) Proceedings of Third Baltic Conference on
Advanced Topics in Telecommunication - BaSoTi 2009. pp. 61–71. Univer-
sität Rostock, Wissenschaftsverbund IuK (2009).

3. Bogdanov, D., Laur, S.: The design of a privacy-preserving distributed vir-
tual machine. In: Kaklamanis, C. (ed.) Collection of AEOLUS theoreti-
cal findings. Deliverable 1.0.6, pp. 269–280. Published online at http:
//aeolus.ceid.upatras.gr/deliverables (2010).

8

http://research.cyber.ee/
http://research.cyber.ee/
http://aeolus.ceid.upatras.gr/deliverables
http://aeolus.ceid.upatras.gr/deliverables

4. Bogdanov, D., Kamm, L.: Constructing privacy-preserving information sys-
tems using secure multiparty computation. Tech. Rep. T-4-13, Cybernetica
AS, Tartu, http://research.cyber.ee/. (2011).

5. Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party
computation for financial data analysis - (short paper). In: Keromytis, A.D.
(ed.) Proceedings of the 16th International Conference on Financial Cryp-
tography and Data Security, FC ’12. Lecture Notes in Computer Science,
vol. 7397, pp. 57–64. Springer (2012).

OTHER PUBLISHED WORK OF THE AUTHOR

These publications by the author are on various topics in information security.

1. Bogdanov, D., Crispino, M.V., Čyras, V., Lapin, K., Panebarco, M., Zu-
liani, F.: Virtual World Platform VirtualLife: P2P, Security, Rule of Law
and Learning Support. In: Proceedings of 2009 NEM Summit "Towards
Future Media Internet". Distributed as an eBook. NEM Initiative (2009).

2. Ahmed, A.S., Bogdanov, D.: A Model for Automatically Evaluating Trust
in X.509 Certificates. Tech. Rep. T-4-11, Cybernetica AS, Tartu, http:
//research.cyber.ee/. (2010).

3. Bogdanov, D., Livenson, I.: VirtualLife: Secure Identity Management in
Peer-to-Peer Systems. In: Daras, P., Ibarra, O.M., Akan, O., Bellavista, P.,
Cao, J., Dressler, F., Ferrari, D., Gerla, M., Kobayashi, H., Palazzo, S.,
Sahni, S., Shen, X.S., Stan, M., Xiaohua, J., Zomaya, A., Coulson, G. (eds.)
Proceedings of the 1st International ICST Conference on User Centric Me-
dia, UCM ’10. Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, vol. 40, pp. 181–188.
Springer (2010).

9

3

http://research.cyber.ee/
http://research.cyber.ee/
http://research.cyber.ee/

ABSTRACT

Information about the health, personal beliefs and wealth of an individual is con-
sidered sensitive and special care needs to be taken to ensure its privacy. Organi-
zations processing such data must take precautions to prevent its leakage to unau-
thorized parties. However, at the same time, both public and private organizations
are motivated to share information to make better decisions.

Secure multiparty computation is a cryptographic method for securely pro-
cessing data among several parties. While the first protocols were proposed in the
1980s, the first practical implementations were developed early this century.

In this thesis, we present SHAREMIND—a complete solution for building data
processing applications that use secure multiparty computation. The author is
both the designer and implementer of SHAREMIND. The thesis describes secure
computation and storage methods, performance measurements, application devel-
opment techniques and introduces several practical applications.

In the thesis, we describe and analyze the real-world threat model of secure
multiparty computation systems. We present a suite of protocols that is highly
optimized for secure data collection and processing in this model.

We introduce a secure database design based on secret sharing and describe
techniques for querying and updating this database. We show how data in a secret-
shared database can be processed using secure multiparty computation.

We present a performance analysis of the SHAREMIND system and its compu-
tation protocols. SHAREMIND achieves high performance in laboratory and cloud
settings, performing hundreds of thousands of secure operations each second.

We have created two languages for programming the SHAREMIND system—a
low-level assembly language and a high-level imperative programming language
called SECREC. Both allow the user to combine public and private computations.

Finally, we describe and benchmark several application prototypes and intro-
duce one real-world application of SHAREMIND—a financial information analysis
tool. This tool is, to our knowledge, the world’s first secure multiparty computa-
tion system running on the public Internet.

10

CHAPTER 1

INTRODUCTION

Should everyone who self-discloses information lose control over
that information forever, and have no say about whether and when the
Internet forgets this information? Do we want a future that is forever
unforgiving because it is unforgetting? (Viktor Mayer-Schönberger,
Delete: The Virtue of Forgetting in the Digital Age)

1.1 Why do we need secrets?

Digital computing technology has enabled the collection and processing of infor-
mation on a global scale. Every organization has the possibility to gather data
from its environment and study it in order to learn new ways for achieving its
goals. This includes monitoring the behavior of people and companies to find
patterns that could help predict their future interactions with the organization.

Retail companies study the shopping habits of customers to increase sales. Fi-
nancial institutions and insurance providers study people and companies to assess
whether they will default on loans or trigger contingencies that lead to insurance
payments. Governments analyze their populations to understand trends in migra-
tion, employment and welfare.

These actions are driven by our desire for efficiency and survivability. Indeed,
by understanding the future, we can adjust our own strategies to reach this future
in a more advantageous position than our competition. For example, having the
best information about one’s surroundings may become an essential requirement
of survival for a company.

However, as most companies now understand the value of information, they
have become more cautious about sharing it even if such sharing would ultimately
benefit them. Such fears are caused by the simple truth that once you disclose data
in digital form, it becomes trivially and perfectly copiable and thus the owner of

11

the data loses control over what else can be done with it. Indeed, attempts to con-
trol the use of digital content through techniques like digital rights management
have not been very successful.

The problem is also relevant when personal data are considered. People may
have many reasons why they would like to have their past actions or statements
forgotten. These concerns are typically an afterthought when those past actions or
statements have already caused harm in the present. However, with the systematic
tracking and profiling of individuals using digital services, potentially harmful in-
formation is continuously collected and placed outside the reach of the individuals
themselves.

To conclude, the main risk with digital personal information and business data
is that initially, they may be collected for a valid purpose. However, as they are
stored for an unspecified amount of time and out of the reach of their owners, they
can be used for any other purpose without the original owner being able to stop
it. In the digital world, the existence of secrets is being justified with the lack of
control over data.

1.2 Background and claims of this work

Cryptography is the mathematical science of secrets. Cryptography has given us
encryption schemes as a tool for confidentiality, digital signatures as a tool for
non-repudiation, message authentication codes and hashing as tools for check-
ing integrity and many other useful primitive operations that are used in digital
communications.

However, many of these primitives are final—once you transform data us-
ing a cryptographic function, the resulting form usually cannot be meaningfully
modified anymore without reversing the transformation. There are exceptions—
cryptographic functions whose output is homomorphic. Such functions can be
used to perform secure computation—to manipulate data even when it has been
encrypted or digitally signed while preserving the security guarantees offered by
the cryptographic primitive.

Secure computation has been researched for at least three decades. Recent
developments in the field are becoming more and more efficient to the point that
we can use the technology in real-life applications.

Research on secure multiparty computation focuses on the complexity of pro-
tocols, the strength of security guarantees and efficient solutions for particular
problems. However, the results are rarely taken outside the academical environ-
ment to solve real world problems in real world settings with actual stakeholders.

This work approaches secure computation from a more practical standpoint.
We claim that secure multiparty computation can be made suitable for use in ev-

12

eryday applications. More specifically, we make three claims. First, we claim that
secure multiparty computation can provide building blocks for creating complex
data processing tools without the need to design new protocols for each task. Sec-
ond, a secure multiparty computation implementation can be made fast enough
for processing databases with millions of records on easily obtainable hardware.
Third, we claim that secure multiparty computation can be packaged as a tool so
that it can successfully be applied by specialists in any field who do not have the
training of a cryptographer.

To achieve these goals, we take secure computation all the way from elegant
mathematical constructions to a deployment at the customer with their individual
wishes and requests. This work focuses on how to deliver secure computation
capability to applications, what kind of tools are needed to implement the appli-
cations and their business logic, and what kind of processes have to be followed
to ensure that the assumptions we bring from the theoretical solutions also hold in
the final application.

1.3 Thesis outline and contributions of the author

The author is the designer, architect and implementer of the SHAREMIND secure
multiparty computation system. This thesis provides the rationale and decisions
that directed the design of SHAREMIND. The author has also developed several
tools to measure the performance of SHAREMIND and direct its optimization ef-
forts. This thesis describes how the system is constructed, explains the security
guarantees and measures performance. The author developed the secure virtual
machine that can execute cryptographic protocols to perform secure computa-
tions, integrated this machine with a secure database and created interfaces for
end-user applications. The author has designed protocols that enable the secure
virtual machine to collect and store data and has actively participated in the design
of computation protocols.

The author of the thesis has designed developer tools such as the SECREC pro-
gramming language to simplify the creation of SHAREMIND applications and has
developed the necessary interfaces for integrating these tools into the SHAREMIND

system. The programming language interpreters and compilers have been im-
plemented in co-operation with students. Finally, the author has analyzed the
real-world deployment issues, including the necessity for software development
procedures, user interfaces, maintenance and economic aspects. This analysis is
based on prototype applications that the author has designed and implemented
with co-authors.

In the following, we introduce the thesis chapter by chapter and describe the
author’s contribution to different parts of SHAREMIND and the associated tools.

13

4

Chapter 2 describes secure computation and provides an overview of general-
purpose secure computation implementations. The thesis presents different secure
computation paradigms and provides a survey of published implementations of
general-purpose secure computation systems.

Chapter 3 introduces the SHAREMIND secure computation system and its de-
sign decisions. The thesis describes the design goals and the security model of
SHAREMIND secure computation protocols. The work continues with an expla-
nation of the storage model and data management protocols of SHAREMIND and
an overview of the software implementation of the system.

The chapter refers to the following papers included in this thesis.

1. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast
privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) Proceed-
ings of the 13th European Symposium on Research in Computer Security,
ESORICS ’08. Lecture Notes in Computer Science, vol. 5283, pp. 192–206.
Springer (2008).
This paper contains the secure computation protocols designed by the au-
thor and the co-authors. The author’s contributions include the software
architecture of the SHAREMIND system, the implementation of the vector-
ized secure computation protocols, the design and implementation of the
networking layer, secure database, controller library, profiling mechanism
and performance analysis tools. The author also conducted benchmarking
experiments and analyzed performance results.

2. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance se-
cure multi-party computation for data mining applications. International
Journal of Information Security 11(6), 403–418 (2012).
This paper proposes a new set of secure computation protocols that are sig-
nificantly more efficient than the ones in the original paper [25]. The au-
thor collaborated in the design and implementation of the new protocols
in the SHAREMIND system. The author’s personal contributions include
the design of the new secure protocol implementation interface that sup-
ports secure batch execution of larger vector operations, the benchmarking
and performance analysis of the new protocols in comparison with the old
protocols, the design, implementation and benchmarking of the privacy-
preserving k-means clustering algorithm.

The chapter also refers to several other works of the author.

1. A preliminary version of the SHAREMIND design was proposed in the au-
thor’s Master’s thesis [20].

14

2. The overall architecture of SHAREMIND is described in a technical re-
port [24]. The report describes the design of the storage and computation
features in SHAREMIND that are designed and implemented by the author.

Chapter 4 is an in-depth discussion on the performance and practical feasibility
of secure computations with SHAREMIND. The thesis lists the measurement and
analysis methods used to build the performance model of secure computations.
Several different aspects of the performance are considered, including computa-
tional complexity and communication complexity. The thesis describes experi-
ments that validate the analysis.

Parts of the chapter are based on joint work with students:

1. The performance analysis of SHAREMIND with different pseudorandom
generators is joint work with Riivo Talviste [29].

2. The performance analysis of SHAREMIND in different network settings and
in a cloud deployment is joint work with Reimo Rebane. The full analysis
appears in [106].

Chapter 5 explains the programming model of the SHAREMIND system. The
thesis explains the choices that have driven the design of the SHAREMIND pro-
gramming languages. Two languages—the SHAREMIND assembly language and
the SECREC language—have been implemented as joint work of the author and
his students. The thesis introduces both languages and gives an overview of their
features and use.

The thesis discusses how to ensure that privacy is preserved in SHAREMIND

programs and introduces a new analysis tool for detecting privacy leaks in SECREC
programs. The thesis also shows how an integrated development environment for
the SECREC language can simplify the development of secure applications. The
chapter ends with a survey of other secure multiparty computation languages.

Parts of this chapter are based on joint work with students:

1. The design and implementation of the SHAREMIND assembly language in-
terpreter is joint work with Roman Jagomägis [70].

2. The design and implementation of the SECREC language compiler is joint
work with Roman Jagomägis [71].

3. The design of the SECREC privacy leak analyzer is joint work with Jaak
Ristioja [107].

4. The design and implementation of the SECRECIDE integrated development
environment is joint work with Reimo Rebane [105].

15

Chapter 6 explains how to use the SHAREMIND framework in application de-
velopment and presents a list of practical secure computation applications that
have been built using the SHAREMIND framework. The thesis gives guidance for
developing secure applications that make use of secure computing. Several exam-
ple applications and algorithms are then discussed, including the first real-world
application of SHAREMIND.

The chapter gives an overview of the application. The detailed design of data
mining applications can be found in the following paper that is also a part of this
thesis.

1. Bogdanov, D., Jagomägis, R., Laur, S.: A universal toolkit for cryptograph-
ically secure privacy-preserving data mining. In: Chau, M., Wang, G.A.,
Yue, W.T., Chen, H. (eds.) Proceedings of the Pacific Asia Workshop on In-
telligence and Security Informatics, PAISI ’12. Lecture Notes in Computer
Science, vol. 7299, pp. 112–126. Springer (2012).
The paper presents SHAREMIND as a universal toolkit for creating privacy-
preserving data mining applications based on secure multiparty computa-
tion. The author collaborated with the co-authors on the design, imple-
mentation and optimization of the secure frequent itemset mining algo-
rithms presented in the paper. The author’s personal contributions include
the presentation of the generic data mining framework, descriptions of the
deployment and optimization options, the comparison of SHAREMIND to
other secure computation frameworks. The author also designed and im-
plemented the performance testing tools and performed benchmarking on
the SHAREMIND implementations of the algorithms

Parts of this chapter are based on the following joint works:

1. The proposal of using SHAREMIND-style secure computation for frequent
itemset mining, association rule mining and collaborative filtering comes
from a technical report jointly authored with Richard Sassoon [28].

2. The method for collecting secret-shared data in web applications has been
jointly developed with Riivo Talviste. A detailed description of the tech-
nique is given in [122].

3. The design, implementation, deployment and maintenance of the first real-
world SHAREMIND application is joint work with Riivo Talviste. The tech-
nical description of the application appears in [123]. Another study of the
application together with end-user feedback appears in [30].

16

CHAPTER 2

SECURE COMPUTATION IN PRACTICE

2.1 Overview of practical secure computation systems

In this work, we focus on general-purpose secure computation frameworks that
can easily be tailored for new algorithms and applications. There are task-specific
protocols and implementations, but our goal is to show that general-purpose sys-
tems can be made efficient enough for practical use. We also focus on systems
designed for data analysis rather than ones specifically designed for a single task
like voting or auctions.

The theory of secure computation is significantly older than practice. The con-
cept of secure function evaluation was introduced by Yao in 1982 [129]. The first
practical implementation work on garbled circuits was done over twenty years
later when Fairplay was introduced in 2004 [95]. Similarly, multiparty solutions
based on secret sharing were proposed in 1987 [40, 64, 17], but practically feasi-
ble implementations were not demonstrated before 2006 in Denmark [32]. Since
then, several secure computation frameworks have been developed. They differ in
their goals, security guarantees, efficiency and programming paradigms. Table 2.1
gives a general overview of the published secure computation frameworks. The
information has been collected both from public sources and personal communi-
cation with the researchers who created the systems. This overview will not focus
on security issues, but instead on deployment models and efficiency.

2.2 Introduction to circuits

Circuits are used as a model of computation in digital electronics and computa-
tional complexity theory. A circuit is a graph where edges are called wires and
vertices are called gates. Wires carry data values. Gates perform operations on
the values coming from input wires and put the results on the output wires. While

17

5

Framework Project started Techniques References
Fairplay 2003, Israel Yao circuits [95, 57]
SCET 2004, Denmark secret sharing [32]
SHAREMIND 2006, Estonia secret sharing [20, 25, 114]
FairplayMP 2006, Israel Yao circuits + secret sharing [15, 58]
SMCR 2006, Denmark secret sharing [31]
VIFF Passive 2007, Denmark secret sharing [61, 127]
VIFF Active 2008, Denmark secret sharing [46, 127]
VIFF Paillier 2008, Denmark homomorphic encryption [61, 127]
VIFF Orlandi 2008, Denmark secret sharing, additively

homomorphic encryption
and additively homomor-
phic commitments

[49, 127]

SEPIA 2008, Switzer-
land

secret sharing [35, 112]

TASTY 2009, Germany Yao circuits and additively
homomorphic encryption

[66, 124]

VMCrypt 2010, USA Yao circuits [94]

Table 2.1: General-purpose secure multiparty computation frameworks.

18

in Boolean circuits wires carry bit values, this is not an inherent limitation as we
can also construct arithmetic circuits with wires that carry integer data.

Formally, we define a circuit as an directed acyclic graph (G,W) where G
is the set of gates and W is the set of wires. A gate g ∈ G has input wires and
output wires. While binary gates with two input wires and one output wire are
most popular, gates with an arbitrary number of inputs may be useful in certain
applications. A wire (gi, gj) ∈ W represents a connection between an output
gate gi ∈ G and an input gate gj ∈ G. Wires that do not originate from a gate
within the circuit, provide external input for the whole circuit and output wires
that do not lead to a gate within the circuit hold the computational result after the
evaluation of the circuit. We currently omit the details on composing of circuits
by connecting output wires to the input wires of other circuits. Figure 2.1 gives
an example of a simple circuit that computes the greater-than-or-equal function
on two one-bit inputs u and v with the result on wire w.

AND

XOR

OR

u

v

w

NOT

NOT

Figure 2.1: A circuit evaluating greater-than-or-equal-to on one-bit inputs.

A circuit is executed as follows. The input values are written on the input
wires and gates are executed one-by-one or in parallel. A gate can be executed,
if all inputs for a gate are available. During execution, the inputs of a gate are
gathered, the function of the gate is evaluated on the inputs and the outputs are
written on the respective wires. When all gates are executed, the result can be
read from the wires.

2.3 Two-party computation using garbled Boolean
circuits

Circuits are useful for secure function evaluation, as their strict mathematical
structure provides a clever way to hide the values transferred on the wires dur-
ing evaluation. This approach was first proposed by Yao in 1982 [129]. The
original solution used an interactive protocol for evaluating each gate, but also
provided hints on a non-interactive version. Later, the interaction requirement
was lowered with the circuit garbling approach that requires interactions during
the preparation of the garbled circuit, but not during the actual execution. Yao’s

19

techniques have been extensively studied and used in theoretical work and appli-
cations alike [64, 108, 76, 82, 14].

The goal of circuit garbling is to build a circuit that computes a function f
and does not leak the values on the wires in the process. The core idea behind the
garbling process is to transform a circuit by replacing the values on the wires with
random bit strings and use a pseudorandom function in a gate to derive the output
bit string from the two input bit strings. For efficiency, several implementations
have used hash functions (Fairplay [95], FairplayMP [15], VMCrypt [94]), but a
symmetric encryption scheme can be used as well. While the evaluation of circuits
garbled using hash functions is very efficient, it is hard to give a formal proof of
security for such constructions. Usually, an implementation uses a fixed hash
function such as SHA-1 that cannot be modeled using a pseudorandom function
family. However, the latter is required for a formal proof.

We will now present a modern view on secure function evaluation via circuit
garbling. First, we will discuss solutions that provide security against a passive
adversary. Assume, that parties P1 and P2 have agreed to evaluate a function f
and have agreed to the structure of the respective Boolean circuit. The process of
evaluating this circuit with two parties is shown in Figure 2.2. First, P1 constructs
the circuit, encodes its inputs and passes it to P2. P2 then uses oblivious transfer to
learn the garbled versions of its inputs from P1. After that, P2 evaluates the circuit
and learn the resulting value that it may pass to P1. This model is implemented
by Fairplay and VMCrypt, among other systems.

Protocols based on Boolean circuits can also be extended to more than two
parties [12, 98, 47]. One implementation of such protocols is the FairplayMP
system [15]. Parties are divided into input parties (IP), computing parties (CP)
and result parties (RP). Input parties provide their masked input bits to the result
parties and share the mask bits using threshold secret sharing between the com-
puting parties. The computing parties garble the circuit in a secure and distributed
manner, using the secret-shared inputs and pass it to the result parties. The result
parties get the circuit from computing parties and masked inputs from the input
parties and evaluate the circuits. An illustration of the FairplayMP model is shown
on Figure 2.3.

Evaluating garbled circuits may require a lot of memory, especially if the
whole circuit is constructed in advance and stored in computer memory during
evaluation. VMCrypt takes steps to streamline the performance of circuit evalua-
tion and reduce the memory footprint [94]. Boolean circuits can be large and their
construction and garbling is time-consuming. VMCrypt works in the classical
Yao circuit evaluation model, but takes a streaming approach to circuit generation.
When a part of a circuit is ready, it is passed to the evaluator and the necessary
oblivious transfers are performed. To simplify, VMCrypt streams the circuit gate

20

Send result
to .

Learn input keys
from using OT.

P1 P2

Construct the
garbled circuit.

Encode own
inputs in the

circuit.

Send circuit
to .P2

P1

Receive circuit.

Participate in the
oblivious transfer.

Evaluate circuit.

P1
Receive result.

Figure 2.2: Yao style circuit evaluation with two parties.

by gate. This way, the evaluator does not have to wait for the whole circuit to
be garbled to start the computation process. The technique has been developed
further to evaluate larger circuits [69].

It is also possible to achieve security against malicious adversaries. Such
adversaries may, for example, build the wrong kind of circuit or wire the circuit
so that it leaks the inputs of the other party. There are various ways of forcing the
circuit builder to prove the correct structure of the circuit. The solutions differ in
the construction of the proof. For example, one can prove the correct construction
of the whole circuit [72], single gates [102] or just generate many circuits and
randomly check some of them [90] using the cut-and-choose technique.

2.4 From Boolean circuits to arithmetic circuits

The use of Boolean circuits is practical, as similar methods are used in hardware
design. This allows hardware circuit designs to be reused in secure computation.
However, the circuit garbling technique adds a computational overhead to each
gate. If a single bit is encoded with a pseudorandom function such as a hash
function or a symmetric cipher, the runtime representation of the bit is typically
at least 80–128 bits long.

21

6

Learn input keys
from using OT.

Send circuit
to the .

CP1 CPnIP

IP

RP

RP

Construct shared
garbled circuit.

Encode masked
shared inputs in

the circuit.

Receive circuit.

Participate in the
oblivious transfer.

Evaluate circuit
and learn result.

Share and mask
inputs and send

them to each .

...

CPi

Figure 2.3: Yao style circuit evaluation with multiple parties.

In most garbled circuit systems, a binary gate with a single output wire con-
tains a truth table with four garbled values. This means, that a gate requires 320–
512 bits to encode a binary Boolean function and this does not include the memory
cost of storing the structure of the circuit. Recent implementations can process
circuits with hundreds of millions of gates [69, 82], but the compilers for such
circuits still require significant computing power for large circuits.

Some secure computation techniques enable the secure evaluation of arith-
metic circuits where one gate processes values larger than a single bit. Figure 2.4
shows an arithmetic circuit that receives integer inputs x, y and a bit value b. The
value b is used to choose which of the input integers is output on wire z. Such
a circuit is highly useful in secure computation, since it provides a replacement
for branching operations. Instead of publishing a secret branching decision we
can evaluate both branches and obliviously select the correct value to be the final
result. Another significant property of this design is that it decreases the secure
computation overhead per processed bit.

The example contains gates for addition, subtraction and multiplication. Each
gate can process ring or field elements. The obvious benefit of such an approach
is the reduction of circuit size and depth. However, we require an efficient con-
struction for secure arithmetic operations, because implementing arithmetic gates
using Boolean circuits does not give us the efficiency gain that we are looking for.
Fortunately, there are several cryptographic protocols that fit our need. We will

22

1 -
×

+
×

z

x

b

y

Figure 2.4: The arithmetic oblivious selection circuit.

now describe two such techniques—homomorphic encryption and secret sharing.

2.5 Two-party computation using homomorphic
encryption

Homomorphic encryption is a suitable tool for creating secure computation sys-
tems in the client-server model. This is thanks to the homomorphic property that
allows the encrypted values to be meaningfully modified by manipulating the ci-
phertext in certain ways. However, if we want to build a secure computation sys-
tem using homomorphic encryption, we require two additional properties from the
encryption scheme—semantic (IND-CPA) security and circuit hiding. Semantic
security is an obvious confidentiality requirement. Circuit hiding means that if
a ciphertext has been computed by combining two other ciphertexts, the cipher-
text leaks no non-trivial information about the plaintexts of combined ciphertexts
when decrypted or processed by a computationally unbounded adversary. This is
usually achieved by using a special rerandomization procedure.

Notice that malleability is a direct side-effect of the homomorphic property
and therefore, a homomorphic encryption scheme cannot be IND-CCA secure.

Consider a client C and a server S. First, C generates a keypair for the chosen
homomorphic encryption scheme and uses it to encrypt its input data. The public
key is made available to S. Now, C can send its values to S, who uses the homo-
morphic property of the encryption scheme to run secure operations and evaluate
a secure function f on the data. Once the computation is complete, the encrypted
result is returned to C who decrypts it using the private key from the generated
keypair.

As practical homomorphic encryption schemes like Paillier [103], Damgård-
Jurik [48], Damgård-Geisler-Krøigaard [44, 45] and lifted ElGamal are only ad-
ditively homomorphic, the server can perform only additions and multiplication
with public constants autonomously. For more complex operations like multipli-
cation, the server needs to engage in a specific protocol with the client. For an

23

example, see [120, 80]. Note that this approach is not limited to a client-server
architecture and can be extended to a larger number of parties.

Furthermore, protocols in this model typically achieve security against a pas-
sive server S. However, homomorphic encryption is a useful primitive in the con-
struction of protocols that offer some level of protection against a malicious ad-
versary in both two-party [7, 85] and multiparty settings [50].

Homomorphic encryption also has an overhead in its data representation. For
example, to achieve practical security with current state of computing hardware,
the message space of the Paillier homomorphic encryption scheme must be based
on RSA moduli of at least 2048 bits in size. Hence, if we want encode a single
value in a single ciphertext, the overhead is even larger than for garbled circuits.

The TASTY [66] and the PaillierRuntime of VIFF [61] are two implementa-
tions of secure computation frameworks that use additively homomorphic encryp-
tion. The TASTY framework deserves attention for combining additively homo-
morphic encryption with garbled circuits to balance the benefits of both two-party
approaches.

There also exist homomorphic encryption schemes that can perform both ad-
ditions and multiplications locally. These schemes are called fully homomor-
phic. The first practical and provably secure fully homomorphic encryption (FHE)
scheme was proposed by Gentry in 2009 [62]. A proof-of-concept implementation
was presented in [63]. However, no practical secure computation system has been
constructed yet due to the high resource requirements of the current schemes. To
illustrate the overhead of an FHE scheme, consider Gentry’s scheme that is based
on intractable problems in integer lattices. The encryption scheme uses integers
with over 800 000 bits to achieve a scheme-specific medium level of security. The
overhead can be reduced through better encoding mechanisms, but these encoding
mechanisms need to be designed to preserve the homomorphic property. For an
example of such an encoding scheme that is designed for use with FHE, see [118].

Figure 2.5 illustrates how homomorphic encryption can be used to build a
client-server secure computation system. The additively and fully homomorphic
cases are presented separately for comparison.

2.6 Secure multiparty computation

The solutions discussed up to now have protected each value by using techniques
such as encryption. Until now, we have focused on two-party solutions that trans-
form each input value to a single value (with FairplayMP being the exception). We
will now consider secure computation techniques based on secret sharing [113].
Secret sharing is used to divide a secret value into several pieces called shares.
Each share looks random to the holder and a predetermined number of shares is

24

Send result to . C

C S

Encrypt inputs
and send to . Perform local

additions and
client-assisted
multiplications.Help server with

multiplications.

Receive and
decrypt result.

S

(a) Additively homomorphic encryption

Send result to . C

C S

Encrypt inputs
and send to . Perform local

additions
and local

multiplications.

Receive and
decrypt result.

S

(b) Fully homomorphic encryption

Figure 2.5: Secure two-party computation using homomorphic encryption.

required to reconstruct the original value.
More formally, let s be a secret value in the message spaceM and S be the

space of secret shares. A k-out-of-n secret sharing scheme is a tuple (Share,Rec)
defined as follows:

1. Share(s) = (s1, . . . , sn) is the randomized sharing function that computes
the shares of a secret,

2. Rec(si1 , si2 , . . . sik) is the reconstruction function that reconstructs the se-
cret from at least k shares, and

3. having access to any k − 1 shares from (s1, . . . , sn) gives no information
about the value of s, i.e., the probability distribution of k − 1 shares is
independent of s.

In this thesis, we use [[x]] as a shorthand for Share(x).
Two constructions for secure computation based on secret sharing were pub-

lished in 1988 [17, 39]. Secure multiparty computation has been continuously
improved since then. Implementations differ in security models, number of par-
ties and the used secret sharing schemes and protocols.

We will now describe how secure computation circuits are expressed in se-
cret shared form. As secret sharing distributes every value into several pieces,
the computation gates must be able to process data in this form. Figure 2.6 il-
lustrates the concept by presenting the oblivious selection circuit from Figure 2.4
in secret-shared form. On the figure, each wire is separated into three lines, each
representing one share of the value being processed. The three wires represent

25

7

1 -

×

+

×
[[x]]

[[b]]

[[y]]

[[z]]

Figure 2.6: The arithmetic oblivious selection circuit with secret sharing and secure mul-
tiparty computation among three parties.

Reconstruct
result from

shares.

CP1 CPnIP RP

Perform secure
operations using
SMC protocols.

Send shares of
the result to .

Share inputs and
send them to

each .

...

CPi

RP

Figure 2.7: General secure multiparty computation using secret sharing.

the three shares of a value. We have chosen three for illustration only, as secure
multiparty computation is not limited to three parties.

It follows, that each binary gate needs to be able to process six shares and
output three shares representing the output value. The gate itself represents a
secure multiparty computation protocol that can compute a secret-shared output
from two secret-shared inputs. Intuitively, the protocol must not reconstruct the
shares of the inputs as this would compromise the secret values. Instead, it uses
distributed computation protocols to compute the result.

We will now describe how secure computation systems based on secret shar-
ing can be deployed. We will use the same party classification for a secret sharing
system that was used in the client-server model of the protocols in [47] and in the
FairplayMP system [15]. IP stands for an input party, CP stands for a computing
party and RP stands for a result party. Figure 2.7 shows the secure computation
process with secret sharing.

Input parties use secret sharing on the input data and distribute the shares
among the computing parties. Computing parties engage in secure multiparty

26

computation protocols to evaluate the distributed gates in the function f . Once f
is computed, the computing parties send shares of the result to the result parties.
In practice, input parties and result parties can be the same entities.

This kind of model is implemented in several frameworks. Examples include
SHAREMIND, implementations from the SCET [32] and SIMAP projects [31],
PassiveRuntime in VIFF [46, 61] and the SEPIA system [35]. SHAREMIND,
SEPIA and the VIFF PassiveRuntime are the most similar frameworks, provid-
ing similar security guarantees. The VIFF ActiveRuntime and VIFF OrlandiRun-
time can withstand more complex forms of corruption. Security models for secure
multiparty computation are discussed further in Section 3.3.4.

Remarkably, the VIFF OrlandiRuntime combines secret sharing, additively
homomorphic encryption and additively homomorphic commitments to achieve
a secure computation method that can remain secure even when the majority of
the computing nodes are dishonest. This is different from the other mentioned
implementations that only provide security given an honest majority.

2.7 Resource cost estimates

Every secure computation system has its own bottlenecks and this makes good
comparative benchmarking a challenging task. In this work, we present an anal-
ysis of the practical complexities of the described secure computation paradigms.
We have taken an efficient design for each paradigm and analyzed its practical
complexities and overheads.

We chose two data types for the analysis—the bit and the 32-bit integer. For
both data types, we considered the size of the secure representation, the communi-
cation and computational cost of the secure addition and multiplication operations.
These choices were made because they allow generic computations. More fine-
tuned protocols may exist for specific tasks, but our goal in this work is to create
generic, programmable secure computations. We are analyzing the performance
of a single operation, thus ignoring protocol-specific parallelization opportunities.

For secure multiparty computation (SMC), we look at the SHAREMIND pro-
tocols given in [27]. The protocols are based on additive secret sharing with three
parties, so each secret value is shared into three pieces and requires three times as
much storage. As the chosen secret sharing scheme is additively homomorphic,
addition requires no communication. The cost of the multiplication operation was
measured from the SHAREMIND multiplication protocol.

For garbled circuits (GC), we assume an abstract construction with a number
of standard features. The implementation follows the standard two-party construc-
tion and uses a 128-bit pseudo-random function (PRF) such as the SHA-1 hash
function or the AES block cipher. The oblivious transfer primitive is not speci-

27

fied, but its use is counted in the cost analysis. The constructions for addition and
multiplication circuits for 32-bit integers are reasonably optimized. The addition
circuit uses 128 XOR and 32 AND gates and the multiplication circuit consists of
1984 XOR gates and 1024 AND gates. We assume, that the XOR gates can be
evaluated with no communication [81]. The computation complexity is presented
in the amount of randomness needed to generate the keys, the number of PRF
calls and number of oblivious transfer calls. The communication complexity is
given in bits to transfer the circuit and in the instances of the oblivious transfer
(OT) protocol.

For additively homomorphic encryption (HE), we consider the Paillier scheme
with plaintexts in the 2-kilobit range and ciphertexts twice as large. We assume,
that packing is used in the multiplication protocol to reduce the number of en-
cryption operations and communication. We have deconstructed the encryption
and decryption operations into ring operations to improve comparability.

For fully homomorphic encryption (FHE), we generalize over several schemes
providing local additions and multiplications. We assume that homomorphic op-
erations are local over a field where the integer representation of each element
is more than a million bits large. This achieves the “small” security level of the
implementation described in [63]. The current fully homomorphic encryption
schemes require a bootstrapping operation after a certain number of operations
to control the noise in the ciphertext. This operation is very expensive and is the
main limiting factor of the FHE technique. We do not measure it, as different
schemes use different methods to perform this task.

The performance results for processing single bits are given in Table 2.2 and
Table 2.3. Results for 32-bit integers are given in Table 2.4 and Table 2.5.

Storage size XOR communication cost AND communication cost
SMC 3 bits none 15 bits
GC 128 bits 640 bits + OT for 1 bit 640 bits + OT for 1 bit
HE ~4 Kbits none ~8 Kbits

FHE > 1 Mbit none none

Table 2.2: Storage and communication cost of securely processing 1-bit Booleans.

28

XOR computation cost AND computation cost

SMC
1 Z2 operation 3 bits of randomness

+ 13 Z2 operations

GC
512 bits of randomness 512 bits of randomness

+ 10 PRF calls + OT for 1 bit + 10 PRF calls + OT for 1 bit

HE
1 Z2n operation (n > 4000) ~12 Kbits of randomness

+ 10 Z2n operations (n > 4000)

FHE
1 Z2n operation (n > 106) 1 Z2n operation (n > 106)
+ control noise as needed + control noise as needed

Table 2.3: Computational complexity of securely processing 1-bit Booleans.

Storage size ADD communication cost MUL communication cost
SMC 96 bits none 480 bits
GC 4 Kbits 28 Kbits + OT for 32 bits 500 Kbits + OT for 32 bits
HE ~4 Kbits none ~8 Kbits

FHE > 1 Mbit none none

Table 2.4: Storage and communication cost of securely processing 32-bit integers.

ADD computation cost MUL computation cost

SMC
1 Z232 operation 96 bits of randomness

+ 13 Z232 operations

GC
16 Kbits of randomness 250 Kbits of randomness

+ 384 PRF calls + OT for 32 bits + 9312 PRF calls + OT for 32 bits

HE
1 Z2n operation (n > 4000) ~12 Kbits of randomness

+ 10 Z2n operations (n > 4000)

FHE
1 Z2n operation (n > 106) 1 Z2n operation (n > 106)
+ control noise as needed + control noise as needed

Table 2.5: Computational complexity of securely processing 32-bit integers.

29

8

CHAPTER 3

THE DESIGN OF SHAREMIND

3.1 Design goals and intended purpose

SHAREMIND is designed to be deployed as a distributed secure computation ser-
vice that can be used for outsourcing data storage and computations. The dis-
tributed design is a requirement for using the secret sharing technique to guarantee
the confidentiality of data during storage. Figure 3.1 illustrates the general usage
model of SHAREMIND.

Data provider
Data user

?
Sharemind

secure database
and application

server

Confidential
data

Queries

Results

Figure 3.1: The deployment model of a SHAREMIND system.

In the deployment model, data providers control the confidential data that data
users want to analyze. As the data are confidential, data providers cannot simply
give it to the data users. In practice, there are various possibilities. For example, if
the data providers are individuals, they may hesitate before providing behavioral
information for a scientific study. Similarly, companies are reluctant to disclose
metrics about their performance, as these can give advantages to a competitor.
In a more mixed case, a company cannot share information about its customers
because of data protection restrictions.

On the other hand, the data users have an interest in aggregating data to learn

30

the statistical properties of the attributes or discover patterns. The secure com-
putation technology may let data users analyze information that they previously
had no access to. For example, data providers will be more inclined to provide
confidential data if they have provable guarantees for their security during storage
and computations. This encourages data users to commit resources to deploying
secure computation tools such as SHAREMIND.

From a technical standpoint, SHAREMIND is a general secure computation
system designed with the following major goals in mind:

1. SHAREMIND will be used in data mining to arrange or outsource the pro-
cessing of confidential data;

2. SHAREMIND must be sufficiently efficient to be used in practice;

3. SHAREMIND must be usable by non-cryptographers.

These goals have been the motivators behind several features of SHAREMIND

that we discuss in this thesis. Also, given that the efficiency of the implementa-
tion is a key goal, we prefer techniques that are efficient on current computing
hardware.

3.2 Different flavors of privacy

3.2.1 Record-level privacy

We will now look at a number of threats to privacy in typical data analysis sce-
narios. We consider record-level, source-level, output-level and cryptographic
privacy. Most of these goals are are independent, i.e., we can achieve one without
satisfying the others.

First, we look at record-level privacy. Each record in a database of individuals
corresponds to a certain person who wants to prevent anyone from discovering
specific values about him or her. For example, no researcher should be able to
tell with certainty, whether an individual is a drug addict or not by looking at the
respective database record. Record-level privacy is most important in statistical
surveys and scenarios where databases are published, e.g. for research purposes.

A classical solution for preserving record-level privacy is the randomized re-
sponse technique used in social studies and data mining [128, 42, 1, 5, 3]. The
technique is useful in the application model where individuals submit personal
data to a distrusted data collector. In such a survey, the individual will flip a coin
before giving an answer to a sensitive question. If the coin comes up heads, the
answer is expected to be truthful. Otherwise, a default answer to the question is
given.

31

In the alternative microdata publishing model, a trusted data collector dis-
closes a part of its database without revealing sensitive information about indi-
viduals. Similarly, this problem has been thoroughly studied in security and data
mining communities, see [60] for an overview.

Common methods for ensuring record-level privacy involve randomization in
some way. However, the randomization of data values has several weaknesses.
First, it requires a trade-off between privacy and accuracy. If we increase noise in
the data, we get better privacy, but the quality of global estimates will decrease.
Second, the added noise can be cancelled only for some aggregation functions
and the randomization method needs to be tailored for that function. Third, pri-
vacy is preserved on average and it can be breached by using related background
information. These weaknesses and several attacks have been discussed in the
literature [121, 93, 75, 99].

3.2.2 Source-level privacy

The idea behind of source-level privacy is very similar to record-level privacy.
The main difference is in the number of records. In a typical scenario, a data
owner wants to limit the amount of information that leaks to others during data
processing. Source-level privacy is mostly relevant in settings where the data are
split between several organizations who want to collectively analyze them.

Privacy-preserving data aggregation over horizontally and vertically parti-
tioned data are the two most common scenarios studied in this context, see [89,
126, 74]. Notably, only a few published solutions are cryptographically secure.
Others can leak significantly more information that the desired output.

The main reason behind solutions without cryptographic security is the per-
ceived inefficiency of cryptographic solutions. Theoretically valid proposals have
been overly inefficient for practice and even the computation of simple data min-
ing primitives like scalar products has been a resource-demanding task [120]. The
inefficiency of most solutions can be attributed to reliance on slower asymmetric
cryptographic primitives like homomorphic encryption.

However, recent developments in secure computation have made the technol-
ogy much faster and it is now possible to design solutions that rely on crypto-
graphic primitives and provide source-level privacy. SHAREMIND is well-suited
for this scenario as the distributed nature of the system is an ideal match for a
setting with several data owners.

3.2.3 Output-level privacy

While the previous two types of privacy were concerned about what can be learned
by looking at the source data, output-level privacy looks directly at the result of

32

the data analysis procedure. More specifically, we want to know how much the
outputs of a data mining procedure leak information about its inputs.

Output-level privacy has been studied mostly in the context of query auditing
where a trusted database owner can refuse to answer queries in order to protect
individuals. Starting from the original problem statement [52], many hardness
and impossibility results for naïve solutions have been derived, see [79, 77].

The most rigorous results about output-level privacy can be given in the frame-
work of differential privacy [54]. Differential privacy studies how much a change
in an input data record affects the output of a data analysis task. Intuitively, an
algorithm achieves output-level privacy, if it can compute the correct aggregation
of a set of records so that a single change to the records does not affect the output
in a way that would leak the inputs. However, the construction of such algorithms
is hard and typical solutions fall back to adding noise to the input and output data.
This again reduces the accuracy of the analysis. Furthermore, differential privacy
does not easily address the issue of privacy leaks as a result of a large number of
repeated queries.

It is important to see that a breach in output-level privacy may constitute
breaches to record-level privacy and source-level privacy. This is because break-
ing output-level privacy means that we learned something about the private inputs
that we should not have learned.

3.2.4 Cryptographic privacy

There is a fourth kind of privacy that is orthogonal to the three previous ones.
Cryptographic privacy guarantees that only the final result of a data analysis task
is published. All inputs and intermediate values are protected using encryption,
secret sharing or other similar methods. This protection is maintained throughout
the secure computation process.

If a data analysis task can be completed with both cryptographic privacy and
output-level privacy, then we cannot learn anything substantial about the private
inputs and have successfully achieved also record- and source-level privacy.

3.3 The model of a SHAREMIND application

3.3.1 Overview of parties

We will follow a similar notation for parties that was used to describe the parties in
FairplayMP. A secure computation system consists of any number of input parties
IP1, IP2, . . . , IPm, computing parties CP1, CP2, . . . , CPn and result parties
RP1, RP2, . . . , RPr. In a deployed application, the input parties map to the
data providers. Similarly, the result parties map to data users like data analysts.

33

9

Computing parties perform secure computations using the SHAREMIND miner
server software.

There may also be cases when a single organization fills the roles of several
parties. For example, an organization may be both providing data and receiving
the results of queries.

3.3.2 Encoding private data

SHAREMIND applications represent data as unsigned integers. We have chosen
standard types from programming languages such as 8-bit, 16-bit, 32-bit and 64-
bit unsigned integers, because these types are efficiently implemented in modern
computing hardware. We also support the boolean type for logical operations.
The default data type in the SHAREMIND implementation is the 32-bit integer.
Therefore, in our protocols we will use this data type as an example.

SHAREMIND computing parties use secret sharing to securely store confiden-
tial data. The mathematical representation of the chosen integer data types is a
ring, e.g., Z232 for the set of 32-bit unsigned integers in the range 0, 1 . . . , 232 − 1.
The classic Shamir secret sharing scheme [113] is most suitable for protecting el-
ements of fields. Also, the secure multiparty computation protocols relying on
the properties of Shamir’s secret sharing are not secure on rings like Z232 . We,
therefore, use the additive secret sharing scheme instead.

We write x←M to show that the element x has been uniformly chosen from
the set M . To share a value s ∈ Z232 among n parties we compute the shares s1,
s2, . . . , sn as follows:

s1 ← Z232

s2 ← Z232

. . . (1)

sn−1 ← Z232

sn = s− s1 − s2 − · · · − sn−1 mod 232.

In SHAREMIND, each party will receive one share of every secret value. The
original secret can be reconstructed by collecting all the shares of a value and
adding them up using the addition operation in the ring. The correctness and effi-
ciency of this secret sharing scheme are trivial, but we will argue about its security,
because it helps us later in showing the security of storage and computations.

Theorem 1. For each secret value s ∈ Z232 , any subset of n − 1 shares of s
is uniformly distributed and for any two secret values u, v ∈ Z232 , their secret

34

shared forms are indistinguishable for any coalition of parties holding up to n−1
shares.

Proof. According to the secret sharing algorithm (1), the shares s1, s2, . . . , sn−1
are uniformly chosen from Z232 . We will now show that s2, s3, . . . , sn are also
uniformly distributed. The same argument can be extended for any other n − 1
different shares. We know that s2, s3, . . . , sn−1 are uniformly distributed and
independent.

Let s′ = s2 + s3+, . . . ,+sn−1 for a fixed s2, s3, . . . , sn−1. Now, according
to algorithm (1),

sn = s− s1 − (s2 + · · ·+ sn−1)

= (s− s′)− s1 .

As s1 is still uniformly distributed when s2, . . . , sn−1 are fixed, we get that sn
is uniformly distributed and independent from s2, . . . , sn−1.

The uniformity of a single share is a useful property for showing that the
shares controlled by a single party reveal no information about the information
processed. We will use this property later to argue about the security of a secure
database.

3.3.3 The overall threat model

In the most common case, the behavior for all parties in our secure computa-
tion system will be implemented in software and will run on standard computing
hardware. Messages will be transmitted on public computer networks. Also, in
the real world there is no global clock in the system so both communication and
processing are asynchronous.

Our main security goal is that the values provided by the input parties remain
secret from all other parties. As the data of the input parties will be stored and
processed by the computing parties, we need to ensure that they cannot learn
anything from the information available to them.

Furthermore, the result parties must not learn anything except for the final
results of the secure computation performed by the computing parties. Note, that
depending on the used algorithms and provided data, the desired output may leak
the input of one or more input parties. This threat is not handled by the threat
model in this section. Possible solutions are discussed in Section 5.4.

The environment surrounding the parties is hostile and the adversary has many
ways for breaking the security. To illustrate the situation, consider an input party
who has been asked to provide private data for computations. From the perspec-
tive of this party, the situation looks really bad.

35

1. The adversary could be reading and modifying the messages exchanged
between parties.

2. The adversary could be scheduling communication between the parties, de-
laying messages in the communication channel.

3. The adversary could be controlling all the other input parties.

4. The adversary could be controlling all the computing parties.

5. The adversary could be controlling all the result parties.

It is evident, that it will be impossible to do anything in this environment of
paranoia, so we have to deploy security mechanisms that lower the probability
of the listed threats. We will now discuss both cryptographic and administrative
methods that reduce the attacking capabilities of the adversary and help us achieve
our set security goal.

3.3.4 Reducing the power of the adversary

In our threat model we take the pessimistic view and assume that all adverse
behavior is directed by a global adversary that can use any means available to
break the security of the system. In a distributed setting, the adversary may corrupt
any component or party in the system.

The most common corruption models describe active and passive corruption.
In the active case, the adversary behaves maliciously and can make the party do
anything. This includes making any or no computations, sending incorrect values,
too much values or no values at all.

In the passive (honest-but-curious) case, we assume that the corrupted party
follows the protocol but also reports everything that it sees to the adversary, who
tries to compute the inputs and outputs of honest parties based on all the available
information.

As an omnipotent adversary can defeat any security measure, we have to com-
bine several methods and build a holistic defense model for a secure computation
system. We will use two methods to reduce the power of the adversary. First, we
will use established cryptographic techniques to secure the communication chan-
nels. Second, we will identify the threats that we cannot or will not solve using
cryptographic means and we will either use administrative and legal methods to
defeat them or accept the related risks.

Security of the communication channels. We start by securing the communica-
tion infrastructure. The use of standard secure channels such as TLS [51] over an
Internet protocol like TCP ensures privacy, authenticity, integrity and the correct

36

order of messages. TLS and TCP require an underlying communication channel
with at least some reliability to function properly. However, it is trivial to see that
if all messages are dropped by the adversary, then any kind of communication
between parties is not possible. In practice, we focus on a scenario where reliable
communication links can be deployed and provide fallbacks for the case when
they fail temporarily. Therefore, we can assume that it is possible to form secure,
point-to-point communication channels between the parties using cryptographic
communication protocols.

The current implementation version of SHAREMIND at the time of writing
this thesis is SHAREMIND 2. Its network layer is based on UDP networking,
so we have to account for a malicious network scheduler that can drop mes-
sages or change their order. This corresponds to the asynchronous network model
described in several works on secure computation [16, 36, 68]. However, the
SHAREMIND 2 network layer uses algorithms to guarantee reliability and message
ordering. In a nutshell, messages are retransmitted until they arrive and buffered
until they can be delivered in the correct order. If multiple retransmissions fail,
the connection is considered to be lost. This means that the actual communication
model of SHAREMIND 2 is less asynchronous than the one usually found in the
literature.

It is evident, that lost connections will lead to troubles terminating the proto-
col. Even though the passive adversary model adopted by SHAREMIND does not
accommodate for lost connections, we want to provide a solution for real-world
applications. In practice, this means that SHAREMIND applications can use restart
points between individual protocols to reconnect and continue computations.

General techniques against corruption. One should never underestimate the
usefulness of organizational and legal measures. Even though secure multiparty
computation reduces the need for non-disclosure agreements and penalties in con-
tracts, we must combine cryptographic methods with proper usage procedures to
ensure that cryptographic privacy is actually achieved in practice.

For example, organizations deploying secure multiparty computation must en-
sure that data security controls are in place to prevent the theft of the secret shares
available to a single computing party. If such thefts occur at several computing
parties, it may be possible to recover the original secrets by combining the shares.
Therefore, standard data security controls are a natural complement to secure mul-
tiparty computation.

Technologies like secure hardware and secure virtualization are outside the
scope of this thesis. Their use may reduce the risk of both insider and outsider
attacks on secure computation.

Corruption of input parties. If the adversary controls any input parties, it can

37

10

convince them not to enter data or to enter invalid values. In the first case, the
privacy of the input party who entered data in good faith, can be compromised,
if secure computation outputs a trivial aggregation of the inputs. For example, if
just one party enters data, aggregations such as sum or mean will leak the inputs.
This constitutes a breach of output-level privacy and all means of countering such
a breach also apply to the described case (see Section 3.2).

In the second case, incorrect data provided by other input parties can affect
the result of data aggregation. Because the data are private, the computing parties
cannot just look at individual values and discard them from the computations. All
corrections must be made obliviously, without seeing the data. This requires an
oblivious input validation method such as outlier detection. Furthermore, by clev-
erly selecting the inputs of the dishonest parties, the adversary may be able to learn
the outputs of the honest ones. For example, entering zeroes can be equivalent to
entering no value at all, if the aggregation function contains a sum.

In both cases, the adversary may need to corrupt several parties and possibly
do this over a period of time. This means that the adversary can adaptively corrupt
the input parties. However, for our secure goal to have a meaning, we assume, that
at least one honest input party remains.

In our model, we consider corrupted input parties a risk that can be mitigated
with the clever design of secure computation algorithms. We must reduce the
dependence of outputs on exceptional values in the inputs and we have to do it by
using oblivious filtering and similar techniques.

For example, we can implement algorithms for detecting exceptional values.
The algorithm can output a secret-shared mask that can later be used to exclude
exceptional values from processing. Examples on how this can be achieved in a
privacy-preserving manner are given in Section 3.4.3. Note that making the output
less dependent on the input is also a feature of differential privacy.

It must be noted that both described cases also apply to non-secure compu-
tations and general-purpose administrative techniques can be adapted to secure
computations as well.

Corruption of computing parties. The greatest risk to privacy comes from the
corruption of computing parties, as they store all the confidential data collected
from the input parties, albeit in secret-shared form. The properties of the additive
secret sharing scheme guarantee that all shares of a secret value are needed for
reconstruction. This gives us the first obvious (but necessary) assumption—we
cannot let the adversary corrupt all the computing parties.

However, this assumption is not constructive enough and, therefore, we look
at two kinds of adversarial models. The threshold model sets a limit on how many
parties can be corrupted by adversary. The classical results of [17, 39] state that
unconditional security against a passive adversary can be achieved with an honest

38

majority—less than n
2 parties of n can be corrupted. To achieve security against

an active adversary, the number of corrupted computing parties must be smaller
than n

3 .
The more general adversary structure model describes sets of corrupted parties

that the protocol can still tolerate without losing security [67]. The most common
adversary structures are Q2 and Q3. In the Q2 structure, no two sets of corrupted
parties can form the full set of parties. This corresponds to the passively corrupted
minority case in the threshold model. Similarly, in Q3, no three sets of corrupted
parties can form the full set of parties and this has been shown to correspond to
the threshold case less than n

3 parties can be actively corrupted.
As the additive secret sharing scheme is an n-out-of-n scheme, we cannot

prevent actively corrupted parties from modifying the shares during secure com-
putation. Solutions to that include the use of verifiable secret sharing schemes [41,
109] or using a shared MAC to check the shares [18].

It is also possible to achieve security against an active adversary with a dis-
honest majority, but such systems cannot guarantee the successful termination of
the protocol. Furthermore, such constructions need to rely on slower asymmetric
cryptographic primitives. Experimental results have shown that going from the
passive model to the active model at least doubles the complete running time of a
secure computation protocol, that may include a precomputation phase [56].

Precomputation allows a secure computation protocol to perform the majority
of the expensive computations in an offline phase. Typically, the offline phase
does not depend on the computational task at hand. However, the requirement for
precomputing may limit the usability of the protocols in certain scenarios where
quick reaction times are needed immediately after starting the secure computation
system. Some of the secure computation protocols that are secure against active
adversaries and use an offline phase are described in [49, 50].

Note that there are also other security models that provide different security
guarantees. Security against active adversaries is a very strong property and comes
with a relatively large overhead. However, in some application scenarios, honest
parties do not need to detect malicious behavior, if it does not affect their outputs.

In the covert model, the privacy of the input party cannot be guaranteed if the
adversary cheats. However, a cheating adversary can be detected with a significant
probability and, therefore, a rational adversary will not cheat, especially, if the
penalty for getting caught is higher than the expected gain [8].

Security models can also control, how much the adversary can learn about the
inputs of the honest players. For example, in the k-leakage model, the adversary
can learn up to k bits of information about the inputs of the honest players [97].
The somewhat stronger consistent model ensures that the honest parties can detect
malicious behavior that modifies their outputs and actively corrupted parties learn

39

nothing but their own outputs [86].
We assume static corruption—that is, formally, the adversary can pick the

parties to corrupt before the application is started and cannot corrupt any new
parties during the execution.

As SHAREMIND tolerates only passive corruption in at most one computing
party, we need to handle the residual risk of a computing party not following the
protocol. Given that our protocols do not make use of commitments or proofs of
inputs, it is easy to see how an actively corrupted party can make the result of the
computations incorrect by sending arbitrary messages. Similarly, it is easy to stop
computations from completing by not participating in the protocols.

A computing party may also try to modify the messages in the secure compu-
tation protocol to break the privacy of the input parties. However, the computing
party needs a feedback channel to see how its changes affected the final output.
Unless the computing party colludes with the other computing parties and man-
ages to collect all the shares of a computed value, the only way to get such feed-
back is to analyze the published outputs of the computed function when they are
published by the other computing parties.

Such an attack is more successful, if the dependency between the input of the
function and the output of the function is stronger. Essentially, the adversary can
try to modify the function being computed by modifying its share in the computa-
tion. Therefore, SHAREMIND achieves better privacy guarantees, if the computed
function performs aggregations of several input values and filters out exceptional
values from its inputs. The properties of such functions are discussed further in
Section 5.4. Not all useful functions have such properties, so an application using
passively secure protocols should also consider this risk.

However, it is not trivial to break the privacy of the input parties, even if a com-
puting party changes messages in the protocols. The protocols of SHAREMIND are
designed in such a way that if a single party does not follow the protocol, it cannot
extract the contents of the shared database without at least one more computing
party disclosing the shares of the affected values.

Even by changing the messages in the protocol, a corrupted party will need ac-
cess to the published results of the computation to successfully extract the leaked
bits. If the application does not provide the computing party with this output,
it needs to corrupt another computing party at least passively to learn the shares
needed to leak any bits. Therefore, without collusions, SHAREMIND 2 can also
maintain privacy even when one computing party does not follow the protocol.
Assuming that the protocols are information-theoretically secure, the number of
bits leaked about the private inputs in a collusion is limited by the size of the pub-
lished output. If the protocols are computationally secure, the leaked bits may
help us compute many or even all of the bits of the private input.

40

Of course, if no computations take place, all computing parties need to be
corrupted for data to leak, as all three shares are needed for reconstructing the
secret values.

Corruption of result parties. The result parties are the ones who send queries
to the SHAREMIND system. The main motivation for corrupting a result party is
to siphon as much information about the stored secure data and use it to break
output-level privacy. Therefore, we assume that the adversary is interested in
corrupting the result parties to make malicious queries. We consider that the ad-
versary corrupts result parties adaptively and there is no threshold on how many
result parties are corrupted.

The only way the result parties affect the system is through queries and their
parameters. Therefore, we need to make sure that SHAREMIND applications are
designed so that the queries leak the minimal amount of information to the result
party. We provide examples on how to achieve this for some practical applications
in Chapter 6.

The model for secure computation protocols. To conclude, we have described
potential attacks against secure computation in the cryptographic model. In our
chosen model, the adversary can passively corrupt computing parties and control
message scheduling in the network connections. In our applications, we have to
assume that the input parties and result parties are actively corrupted and provide
malicious inputs and malicious queries.

In the next section, we will describe the context in which our protocols are
proven secure. Our goal is to achieve a set of protocols that allow efficient, pro-
grammable execution of secure computation operations.

3.3.5 The optimal number of computing parties

As the goal of SHAREMIND is to achieve maximum efficiency, we choose to use
three computing parties. This is the lowest number for which we can form an
honest majority of computing parties that processes secret-shared data. While
secret-shared data can be processed with just two parties, these protocols require
computationally more expensive cryptographic primitives than what we plan to
use.

At the same time, adding more parties will increase the communication com-
plexity of the secure computation protocols and reduce the performance. There-
fore, three is the optimal number of parties for countering passively corrupted
computing parties.

41

11

3.3.6 The case for passive security in SHAREMIND

The SHAREMIND secure computation framework presented in this thesis is based
on protocols that are secure against a passive adversary. This means that if a
computing party actively tampers with the software implementation, it may be
able to break the security guarantees that SHAREMIND offers. Such attacks can be
detected or even countered by protocols that are secure against an active adversary.
However, such protection requires additional overhead and makes the protocols
less efficient.

Taking all this into account, the version of SHAREMIND described in this the-
sis is most suitable for use in scenarios where multiple parties want to jointly
process data, but are prevented from doing so by data protection rules. The par-
ties can set up SHAREMIND and share data without any of them seeing each others
inputs.

It must also be noted that SHAREMIND is not only defined by its protocols.
It is a full framework for developing secure multiparty computation applications.
The server infrastructure, programming language and application model are all
suitable for other kinds of protocols. Therefore, SHAREMIND can be updated to
use an actively secure suite of protocols and provide the benefits that they bring.

3.3.7 Constructing simulators for secure computation protocols

We will now present the security proof framework for SHAREMIND protocols.
This framework has evolved during the development of the system. The first
version was published in [25] together with the first set of secure computation
protocols. New protocols and an updated model is presented in [27]. This thesis
presents these models in more detail.

The security proofs of SHAREMIND protocols are built on the ideal versus real
world paradigm. Assume that we want to evaluate the function

(y1, y2, y3) = f(x1, x2, x3)

so that each computing party CPi provides the input xi and learns the result yi
and nothing else. In the real world, parties CP1, CP2, CP3 exchange messages to
evaluate the function f given the secure multiparty computation protocols. How-
ever, we have to account for one corrupted party. Consider an example where CP3

is passively corrupted. The adversary A is now controlling CP3 and has access to
all its input and output messages and the local state. However, given the passive
adversary assumption, it cannot change the local state or outgoing messages. The
real world setting is illustrated in Figure 3.2.

In the ideal world (see Figure 3.3), there is a trusted third party F that collects
the inputs from the computing parties, evaluates the function f , and returns the
results. As CP3 is corrupted, we handle it differently from the honest parties.

42

CP1

CP2

A CP3
protocol
messages

Figure 3.2: SHAREMIND protocols in the real world setting.

CP1

CP2

F S
x1

x2

x3

y3
y2

y1

A CP3

simulated
messages

adversary’s
messages

Figure 3.3: SHAREMIND protocols in an ideal world setting.

Our goal is to show that for any real-world attack there exists an attack in the
ideal world so that both attacks use roughly the same amount of resources and
have roughly the same probability of success. In more detail, an attack should
corrupt the same parties, use the same background information and have similar
computational and storage complexities. The standard approach to show the exis-
tence of an attack in the ideal world is to construct a simulator S that can simulate
every protocol run of the real world in the ideal world.

In a typical setting, the simulator in the ideal world interacts with the trusted
third party on one side and the adversary A on the other side. Its goal is to simulate
protocol messages to A so that A cannot distinguish the ideal world from the
real world. If we can design such a simulator, we have shown the simulatability
of the secure multiparty computation protocol, as everything that the adversary
can see, has been derived from either its own input or the output and nothing is
learned about the inputs or outputs of other computing parties. For security, we
also require that the output of all honest parties is correct and the joint output
distribution of all parties coincides in the real world and in the ideal world.

43

In our setting, the outputs of all computing parties are in the forms of shares.
Therefore, no computing party gets the reconstructed output from a protocol. This
allows us to simulate protocol messages for the adversary without interacting with
a trusted third party. The resulting security property is weaker and simplifies the
security analysis of protocols in our model.

We consider a simulation perfect when the distributions of the adversary’s
view in the real world and in the ideal world coincide. The simulator is non-
rewinding, when it goes through the protocol in a straight line without rewinding
the adversary algorithm to an earlier state.

We will now give a more thorough explanation of how simulatability is used
in the SHAREMIND model. Every computing party CPi has an input φi. The
input consists of the party’s input value xi and any background information that
the party has available. We assume, that CP3 has been corrupted by the adversary
A so the input φ3 is also given to the adversary. We write SA to show that the
simulator S has black-box access to the adversary A in the ideal model. We
write ACP1,CP2 to show the execution of the adversary in the real world and in
communication with parties CP1 and CP2.

Definition 1. A secure computation protocol is perfectly simulatable if there ex-
ists an efficient universal non-rewinding simulator S so that for all adversaries A
and for all inputs φ1, φ2, φ3, the output distribution of the simulator SA and of the
adversary running in the real world setting ACP1,CP2 coincide.

Notice that this is not the standard definition of simulatability used in cryp-
tographic proofs. Our version of simulatability is a restricted notion that is more
related to the definition of privacy for secure multiparty computation protocols
that are secure against a passive adversary.

For completeness, this definition blueprint must be extended by specifying the
model for communication, by defining what is the class of efficient computations
and so on. Note that the definition is given in the standalone setting where no other
computations are performed before, after or during the execution of a protocol.

However, both sequential and parallel composition are important for imple-
menting programmability and vector operations in SHAREMIND. Therefore, we
must preserve security under composition. For that, we extend the universal com-
posability framework by Canetti [38] to our notion of simulatability.

Our definition of simulatability does not directly imply security. Simulata-
bility ensures that the adversary gets the expected output, but the honest parties
might get different outputs in the real world and in the ideal world. If these out-
puts are used in followup computations, information may leak to the adversary.
Considering this, we will define the security of a secure computation protocol in
Section 3.3.8.

44

The simulatability proofs for SHAREMIND typically follow a similar blueprint.
We look at the incoming messages of each computing party and show that these
messages are independent from the input shares held by the other computing par-
ties. The latter guarantees that no computing party learns the inputs of others. If
the secure computation protocol is symmetrical, we can also simplify the proof
by only looking at the incoming messages of one of the computing parties.

This independence is useful for constructing the simulator. The protocols
of SHAREMIND often use uniformly chosen values to mask protocol messages
and make them look random. This way, the simulator can generate uniformly
distributed messages for the adversary without it being able to distinguish the
messages provided by the simulator from protocol messages in the real world
setting.

Consider Vi as the view of a computing party CPi. Let Vi(φ1, φ2, φ3) be a
program that takes the inputs of the parties and outputs a tuple (a1, a2, . . . , ak)
containing the values that this party sees during the execution of a protocol. This
includes the inputs, randomness and received values of CPi.

We write 〈Vi〉 to denote the distribution of the values (a1, a2, . . . , ak) output
by Vi. Let Vi,0 denote the view corresponding to the original secure computation
protocol. Then we can transform this view to form a sequence of modified views
such that

〈Vi,0〉 ≡ 〈Vi,1〉 ≡ . . . ≡ 〈Vi,n〉
so that the output of the view Vi,n does not contain any references to the inputs
of the other computing parties. Here, 〈Vi,j〉 ≡ 〈Vi,j+1〉 means that the output
distributions of 〈Vi,j〉 and 〈Vi,j+1〉 coincide. Note that such a Vi,n performs almost
all the duties of a proper simulator, as it takes the inputs of the parties and produces
the randomness and messages of the protocol that coincide with the real world
view. To build the simulator, we need to use CPi together with Vi,n to successfully
simulate the internal state of CPi. For this last part we also require that Vi,n is an
efficient algorithm. That is, every Vi,j in the sequence must have roughly the same
complexity that the initial game Vi,0 has1.

We now show a theorem that we will later use for constructing the sequence
of views and building the simulator.

Theorem 2. Let G be a finite additive group. Let (a1, . . . , aj ± r, . . . , ak) be the
output of Vi so that aj ∈ G and r ← G and r is independent from all values al.
Then

〈Vi〉 ≡ 〈Vi[aj ± r/r]〉 ,
1This is usually formalized by requiring that in asymptotic model, the overhead of Vi,j compared

to Vi,j−1 is polynomial in the security parameter of the protocol.

45

12

where Vi[aj±r/r] is a program that runs Vi and replaces all occurrences of aj±r
with r.

Proof. Let (a1, . . . , aj± r, . . . , ak) be the output of Vi for a fixed randomness ex-
cept for the value r. Then, r is uniformly distributed in G and, therefore, indepen-
dent from all al and so r± aj is also uniformly distributed, as any fr(x) := r±x
is a bijective mapping for G. We have shown both distributions to be uniform and
proved the claim of the theorem.

3.3.8 From simulatability to security and composability

For simulatability, we needed to convince the adversary that it is in the real world
even when it is really in the ideal world. Simulatability is a weak property, as
it does not take into account the outputs of honest computing parties. To achieve
security, all honest parties in the real world must get the same output as they would
get in the ideal world. For this, we must allow the simulator to also interact with
the trusted third party F .

Definition 2. A secure computation protocol is perfectly secure if there exists an
efficient universal non-rewinding simulator S so that for all adversaries A and for
all inputs φ1, φ2, φ3, the joint output distribution of all computing parties and the
adversary coincide in the real world and in the ideal world. That is, the outputs
of CP1, CP2, CP3 and SA,F in the ideal world coincide with the outputs of CP1,
CP2, CP3 and ACP1,CP2 in the real world.

Similarly to Definition 1, this definition can be adapted for sequential, parallel
or concurrent composability by adding the relevant context. We stress that the
non-rewinding property is necessary for achieving universal composability. In the
following proofs and proof sketches, we will assume that we are working in the
synchronous model, where computation is split into well defined rounds.

We will now discuss the resharing protocol that helps us achieve both security
and universal composability in SHAREMIND protocols. The resharing protocol in
Algorithm 1 is used by the computing parties to create a version of a secret-shared
value with the same public value but different shares. We also remind the reader
that the protocols are defined over integer rings of the form Z2n .

New uniformly distributed values are injected into the shares to make the out-
put shares of w independent from the shares of the input u. We will now show
that the resharing protocol in Algorithm 1 is perfectly secure.

Theorem 3. Algorithm 1 is perfectly secure in the standalone model with one
passively corrupted computing party.

46

Algorithm 1: Resharing protocol [[w]]← Reshare([[u]]).
Data: Shared value [[u]].
Result: Shared value [[w]] such that w = u, all shares wi are uniformly

distributed and ui and wj are independent for i, j = 1, 2, 3.
1 CP1 generates an uniformly distributed r12 ← Z2n .
2 CP2 generates an uniformly distributed r23 ← Z2n .
3 CP3 generates an uniformly distributed r31 ← Z2n .
4 All values ∗ij are sent from CPi to CPj .
5 CP1 computes w1 ← u1 + r12 − r31.
6 CP2 computes w2 ← u2 + r23 − r12.
7 CP3 computes w3 ← u3 + r31 − r23.
8 Return [[w]].

Proof. To show correctness of the reconstruction of outputs, we show that w = u
as follows:

w = w1 + w2 + w3

= u1 + r12 − r31 + u2 + r23 − r12 + u3 + r31 − r23
= u1 + u2 + u3 = u .

Similarly to the proof of Theorem 2, it is easy to see that any two shares in the
triple w1, w2, w3 are uniformly and independently distributed. All values wi are
uniformly distributed as they are of the form uj + r − s for randomly generated
elements r, s. As any two values wi are computed from independent uniformly
distributed values then any two of values wi, wj where i 6= j are independent.

CP1

CP2

A CP3
resharing
protocol

r12

r23

r31

r12

r12

r31

r31

r23

r23

u1

u2

u3

w3

w2

w1

Figure 3.4: Network messages and local values in the resharing protocol.

As the protocol is symmetric, we can choose CP3 to be the corrupted party.
First, we illustrate the exchange of messages in the real world. Figure 3.4 shows

47

what messages are exchanged and what values are available to the computing
parties. The corrupted party CP3 sends out r31 and expects r23 in return so that it
can compute w3 as its share of the reshared value u.

CP1

CP2

F S
u1

u2

u3

w�
3

w�
2

w�
1

A CP3

simulated
message

u3

r�31

adversary’s
inputs

r�23 = u3 � r�31 � w�
3

Figure 3.5: Simulator for the resharing protocol.

Figure 3.5 shows the protocol in the ideal world. The trusted partyF computes
the output shares w◦1, w◦2 and w◦3 as follows:

u← u1 + u2 + u3

w◦1 ← Z232

w◦2 ← Z232

w◦3 ← u− w◦1 − w◦2.

Each share w◦i is sent to CPi, except for w◦3 that is given to the simulator S.
The simulator S simulates the value r◦23 by computing

r◦23 = u3 + r◦31 − w◦3.

The simulator can compute r◦23 even before it receives r◦31 from the adversary,
because it is providing the adversary with all the randomness and, therefore, it can
precompute the value of r◦31.

This way, when A computes its output, it gets the expected value, because

w◦3 ← u3 + r◦31 − r◦23
= u3 + r◦31 − u3 − r◦31 + w◦3
= w◦3.

We need to show that the distribution of the shares is the same in both the
ideal and the real world. In the ideal world, w◦1 and w◦2 are uniformly generated
and independent. We already showed thatw1 andw2 are also uniformly generated
and independent in the real world.

48

To complete the proof, we have to show that the joint distribution of the out-
puts of honest computing parties and the messages received by the adversary in
the real coincide with the matching outputs and messages in the ideal world. This
is sufficient, as the randomness and messages received by the adversary uniquely
determine its output. According to Algorithm 1, both r31 and r◦31 are uniformly
generated. As the following equation holds in both the ideal and real settings,

r23 = u3 + r31 − w3 ,

all received messages are identical.

We do not give a full universal composability proof here as the corresponding
proof would be highly technical and the result can be concluded by combining the
characterization of universal composability in the standalone setting. For details,
see the discussion in Section 4.3.1 of [37] and Chapter 7 in [84]. In brief, our
simulator construction satisfies the universal composability requirements as it is
non-rewinding and has black-box access to the adversary.

We will now show how to compose other protocols with the resharing protocol
to make any perfectly simulatable protocol secure and universally composable.

We start by providing proof sketches for composing simulatable protocols in
the SHAREMIND model. The first step towards universal composability is to show
that perfect simulatability is preserved when we compose protocols sequentially
or concurrently under certain restrictions. In such a composition, a top-level pro-
tocol consists of several sub-protocols, each of which is an instance of a perfectly
simulatable protocol. Several sub-protocols can be instantiated from the same
kind of protocol. For example, the top-level protocol can many instances of the
multiplication protocol as sub-protocols.

The main restriction is on how we can use the output shares of a sub-protocol
of the top-level protocol. Specifically, we can do one of three things:

1. Forget the output shares.

2. Use them as inputs to another perfectly simulatable subprotocol.

3. Use them as an output of the main protocol.

The need for such a restriction is easily shown with an example. Figure 3.6
shows two protocols with the respective ideal functionalities F1 and F2. The
figure also contains possible implementations for both protocols. Note that in the
implementation of the first protocol, CP1 also sends r⊕ a to CP2. Both protocols
are trivially perfectly simulatable for both computing parties, as all messages can
be emulated with random values.

49

13

Input: a
r R

Input: a
CP1 CP2F1r

a

Ideal functionality F1:

F2

Ideal functionality F2:

CP2CP1

Implementing F2 using F1: Composed protocol:

Ideal world Real world

a r

Possible implementation of F1:

CP1 r � a
r R CP2

CP2CP1 r

CP1 CP2

CP1 r � a
r R CP2

Possible implementation of F2:

r

r

F1
r

a
Input: a

r

Figure 3.6: A perfectly simulatable protocol and its non-simulatable composition.

Now, consider a third protocol that implements F2 using the ideal functional-
ity of F1. The ideal implementation of this third protocol is perfectly simulatable.
However, if we substitute the ideal implementation of F1 for the perfectly sim-
ulatable implementation of F1, the resulting composed protocol is not perfectly
simulatable any more. The composed protocol implementation sends both r and
r ⊕ a to CP2 and we cannot simulate these messages to CP2 together.

The problem is that we are using the implementation of F1 in an environment
where the output of F1 is sent to CP2 via CP1. This allows the adversary to learn
both the outputs even though we have sub-protocol simulatability proofs for the
outputs that CP2 receives in the sub-protocols. The fact that CP1 sending r ⊕ a
to CP2 invalidates the simulatability and we should therefore restrict how sub-
protocol outputs are used.

Theorem 4. A protocol consisting of several sub-protocols is perfectly simulat-
able, if the following conditions hold:

1. All the sub-protocols are perfectly simulatable.

2. The output of each sub-protocol is either the input of another sub-protocol
or the output of the main protocol.

3. The data dependency graph of sub-protocols is a directed acyclic graph.

Proof sketch. According to our assumptions, all simulators Si of sub-protocols
are non-rewinding. Therefore, we can combine them to form a single compound

50

simulator S∗ that runs the simulators Si sequentially or concurrently to provide
the adversarial computing party with all the required messages. In the case of de-
pendencies between sub-simulators, outputs from one sub-simulator can be used
as inputs for the next sub-simulator. We also compose all the trusted third parties
into a single functionality by composing their code. Figure 3.7 illustrates how the
new simulator is constructed.

CP1

CP2

A

CP3

CP1

CP2

CP1

CP2

Fn Sn

S2

S1

S⇤F⇤
F1

F2

Figure 3.7: Composing several simulators into a single simulator. The line between S1
and S2 illustrates the case where the input of sub-protocol 2 is dependent on the output of
sub-protocol 1.

As every simulator provides a perfect simulation, the final view of the adver-
sarial computing party is also perfectly simulated. Assume that some messages
in the protocol are computed from the output shares of a sub-protocol. If any of
these messages are then sent to other computing parties, we cannot properly sim-
ulate them for the receiving party. This is because the adversary acquires some
information about the shares of the honest parties and this invalidates the security
guarantees that are given by the simulatability definition.

We require that the sub-protocols do not have cyclic dependencies between
them as this would make the top-level protocol impossible to execute. This is

51

because at least one input for one of the sub-protocols would not be available
when the protocol is executed.

In the next step we show how to make a perfectly simulatable protocol secure
by finishing it with a resharing step such as the one in Algorithm 1.

Theorem 5. A perfectly simulatable secure computation protocol that is followed
by a perfectly secure output resharing is perfectly secure in the standalone model.

Proof sketch. In this proof sketch we show how to prove the claim for a single
output share. The approach is similar for protocols with multiple output shares.
Let xi be the input share for party CPi. Let Scomp be the simulator for the perfectly
simulatable computation protocol and Sreshare be the simulator for the perfectly
simulatable resharing protocol. Let zi be the output share of Scomp for CPi.

Let Fcomp be the trusted third party for the computation protocol and Freshare

be the trusted third party for the resharing protocol. Note, that Scomp and Fcomp

can be compositions of other simulators and trusted third parties, respectively. Let
F be the composition of Fcomp and Freshare and similarly, let S be the composi-
tion of Scomp and Sreshare. This structure is illustrated in Figure 3.8.

S
Scomp

Sresharey3

y1 y2

CP1

x1

ACP3

r23

CP2

x2

CP1 CP2

Fcomp

Freshare

F
x3 x3

r31

z⇤1 z⇤2 z⇤3
...

z�3

x3

CP3

y3

Figure 3.8: The simulator for a universally composable secure computation protocol

The simulator S learns x3 from CP3 and passes it to the adversary A. The
simulator uses Scomp to generate all messages of the secure computation protocol
including the output share z◦3 that is passed to the resharing simulator Sreshare.

52

Let us observe the state of all parties after the completion of the secure compu-
tation protocol and the corresponding simulator. In the real world, the computing
parties have their output shares z1, z2 and z3 from the secure computation pro-
tocol. The adversary has its internal state σ. In the ideal world, the trusted third
party has not finished and the honest parties have not received their output shares.
However, S has computed the output share z◦3 for CP3 and the adversary has its
internal state σ◦. As the secure computation is perfectly simulatable, the distribu-
tion of (z3, σ) coincides with the distribution of (z◦3 , σ

◦).
To complete the proof, we show how perfectly secure resharing ensure that the

joint output distribution of all parties coincides in the real and ideal world. This
directly follows from the proof of Theorem 3, as the input values of the resharing
protocol and Freshare represent the same value z = z1 + z2 + z3 in both the real
and ideal world and the honest parties discard the values z1 and z2. Recall, that
this is achieved by computing the message r23 from r31 and the simulated output
share z◦3 .

It may seem that resharing at the end of every protocol is wasteful. Especially,
if the protocol is used as a sub-protocol and the intermediate results will never be
published outside the computing parties. In some cases, we may inline resharing
into the computation protocol to lower the round count of the composed protocol.

However, such inlining requires that we run the first round of the resharing
protocol in parallel with the secure computation protocol and not after it as re-
quired by Theorem 5. This requires a slightly different construction for the simu-
lator. The main challenge of such a simulator is that the first round of the resharing
protocol has to be simulated without access to the output shares of the secure com-
putation protocol. We sketch the construction of such a simulator in Theorem 6.

Theorem 6. A perfectly simulatable secure computation protocol that runs a per-
fectly secure and universally composable output resharing protocol in parallel
and outputs the reshared output, is perfectly secure and universally composable.

Proof sketch. We follow the construction of Theorem 5 with one important differ-
ence. We want to run the resharing simulator in parallel with the secure compu-
tation protocol, but the inputs of the first are technically dependent on the outputs
of the second.

The simulator resolves this issue by internally running the simulator construc-
tion from Theorem 5 to learn the output share z◦3 of the computing protocol. It
then uses z◦3 and the output y3 from the trusted third party F to start the concurrent
simulation of the secure computation protocol and the secure resharing protocol
with the adversary. The simulator can do this, as CP3 is passively corrupted and
S can clone and run the code of Scomp with the same randomness to get the same
output. Note that this does not mean that we are rewinding Scomp.

53

14

Algorithm 2: A protocol illustrating asynchronous communication
Data: CP1 has an input a, CP2 has an input b.
Result: CP3 learns c so that c == b.

1 Round 1:
2 r ← Z232

3 CP1 computes a′ ← a+ r
4 CP1 sends a′ to CP2

5 CP1 sends a′ to CP3

6 Round 2:
7 CP2 computes b′ ← b+ a′

8 CP2 sends b′ to CP3

9 Round 3:
10 CP3 computes c← b′ − a′

The argument for the joint output distribution of all parties is exactly the same
as in Theorem 5.

The proof can also be done by relying only on the definition of universal
composability, provided that we have proved the security of the resharing protocol
in contexts where the first round of resharing can be run before the resharing
protocol gets its inputs.

The last remaining task is to resolve the issue of malicious network schedul-
ing. As explained in Section 3.3.4, we expect that our communication channel
implementation guarantees the reliability and ordering of messages on a single
channel. Still, the lack of a central clock leaves us with the chance that a party
receives values from another party earlier than anticipated.

Consider the protocol in Algorithm 2. In the implementation of a distributed
system, it may happen that the latency on the channel from CP1 to CP3 is much
higher than the latency between CP1 and CP2 or CP2 and CP3. We cannot, there-
fore, rule out that CP3 receives b′ before it receives a′ and our simulator must be
capable of simulating either option to the adversary.

Fortunately, there is a simple result that helps us build protocols that are secure
even in the presence of a malicious scheduler.

Theorem 7. If the values of protocol messages that are sent out by a party do not
depend on the order in which this party receives protocol messages, then a proto-
col executing on a network with malicious scheduling is as secure as a protocol
executing in a synchronous network.

Proof. An adversarial scheduler can change the order in which messages arrive
at a party. However, if corruption is passive and static, then this does not change

54

the view of the adversary as values received by the adversarial parties remain the
same.

To complete the proof, we need to show, how to construct a simulator that
can simulate the messages to the adversary in any order chosen by the malicious
scheduler. We start with the simulator S that can simulate the messages in a
synchronized model. In this setting, the adversary observes the simulated values
at the end. According to the assumption, the outgoing messages of our protocol do
not depend on the order of incoming messages. Therefore, we can simply reuse
S to simulate and release the messages in the order specified by the malicious
scheduling given by the adversary.

We have now shown how to prove the security of secure multiparty computa-
tion protocols in the SHAREMIND model. For examples on protocols that can be
proven secure using this approach, see Section 3.5. For proofs of the SHAREMIND

protocols, we refer the reader to the papers included in this thesis [25, 27].

3.3.9 Guidelines for designing secure protocols for SHAREMIND

The described proof model establishes some requirements that must be followed
to simplify the security proofs of SHAREMIND protocols. The general blueprint
remains the same—to show security, we need to show that the protocol is correct
and perfectly simulatable in the synchronous communication model. After that,
we add a resharing step and gain security and universal composability.

Given the discussion on asynchronous communication, it is also necessary to
construct the protocols in such a way that outgoing messages do not depend on the
order of arriving messages. This way the simulator can simulate these messages
in all situations.

There are several strategies for choosing when to reshare results. First, one
can reshare after every atomic operation. Then it will always be safe to publish
results, but this makes every computational operation a bit less efficient. The
second option is to skip resharing during computation and do it only when shares
are going to be published. This can improve performance, but makes the system’s
designer responsible for resharing the values in all possible cases where shares
might be published. In the current SHAREMIND implementations, all computation
protocols that exchange messages perform resharing at the end of the protocol.

Until now, we have focused on achieving information-theoretic security for
the secure computation protocols in SHAREMIND. However, the real-world im-
plementation of SHAREMIND uses computational primitives such as a pseudo-
random number generator and an encrypted secure channel. It is possible to im-
plement the SHAREMIND protocols using non-computational replacements, such

55

as random number generators that use environmental noise and secure channels
secured using physical means or even one-time pad.

Computationally secure primitives can also be used as an optimization tech-
nique. For example, consider the work in [87].

3.4 Secure storage in SHAREMIND

3.4.1 Design goals for secure storage

It is not reasonable to assume that all data providers are online at the same time to
give SHAREMIND the input data necessary for performing computations. Indeed,
data may need to be collected over a period of time, and if for large databases the
collection process can take a significant amount of time. Therefore, we need to
provide SHAREMIND with a means for securely storing data.

We propose the use of a database within the secure computation system. Since
a secure computer is capable of representing data securely during computations,
we will use the same capability for persistent storage. The SHAREMIND system
uses a shared database where each computing party stores a single share of each
value in the database. The most important use-cases for this database are:

1. secure storage of collected data;

2. retrieval of stored data for use in secure computations;

3. secure storage of data output by secure computations and;

4. removal of data when it is no longer needed.

3.4.2 The structure of secret-shared databases

Most data processing applications work on structured data—tuples, matrices and
key-value pairs. For example, relational database systems contain tables consist-
ing of tuples of equal length. Non-relational databases use a variety of different
structures with key-value storage being the most popular. We discuss how to adapt
these database paradigms to secret-shared storage.

The construction of secret-shared relational database is straightforward. A
typical relational database table contains tuples where each value corresponds to
an attribute. To convert such a table into a secret-shared form, we use secret
sharing on each value stored in the table and store the resulting shares in new
tables that replicate the structure of the original. If a database contains many
tables, the procedure is repeated for each table. In an application, all input parties

56

enter their data into such databases by using secret sharing for all input values and
sending one share to each database.

We use an example to illustrate this construction. SHAREMIND uses three
computing parties and therefore all data are shared into three shares. Each com-
puting party stores a copy of the database, but instead of storing the original value,
it stores a share of that value. Such a database is illustrated in Figure 3.9. The fig-
ure shows how each value xi in the original tuples is shared into three shares—xi1,
xi2 and xi3 and the shares are stored in the servers’ databases.

a1
a2

g1
g2

Age Gender

d1
d2

t1
t2

Date Total

Customer
Transaction

Retailer database

a11
a21

g11
g21

Age Gender

d11
d21

t11
t21

Date Total

Customer
Transaction

Miner 1 database

a12
a22

g12
g22

Age Gender

d12
d22

t12
t22

Date Total

Customer
Transaction

Miner 2 database

a13
a23

g13
g23

Age Gender

d13
d23

t13
t23

Date Total

Customer
Transaction

Miner 3 database

Secret sharing

Figure 3.9: Using secret sharing on a relational database.

The main advantage of a secret-shared database is its high level of confiden-
tiality. It is nearly impossible for an individual computing party storing the data
to learn anything about the values provided by the input parties. This is possible
because of the security of the secret sharing scheme.

There are other options for securely storing data, such as encryption. How-
ever, processing encrypted data requires the use of homomorphic encryption sche-
mes that are less efficient than systems based on secret sharing.

Privacy-preserving storage has also been studied using statistical methods.
For example, data perturbation methods are a standard solution for protecting
anonymized data against reidentification. The k-anonymization technique was
proposed for privacy-preserving microdata releases [110]. The idea is to partition

57

15

the tuples of a published database into equivalence classes so that the (quasi)-
identifiers in each class are indistinguishable from each other and each class
contains at least k tuples. The approach has been improved by introducing `-
diversity [92] and t-closeness [88].

However, all these approaches require that database values are generalized and
this makes randomization less accurate. Furthermore, data perturbation is not a
good guarantee against reidentification, as has been demonstrated by several high-
profile attacks [10, 99]. Secret sharing takes a fundamentally different approach
to protecting data and does not require value to be modified while still allowing
the data to be efficiently processed.

We can also transform non-relational key-value stores into secret-shared form.
For that, we will use secret sharing on all the values in the input database and store
them in a replicated structure on the three SHAREMIND miners.

We will now provide an easy-to-use formal model of the database for use in
our protocol descriptions. We consider a simple case where the database of a
SHAREMIND application is represented as an n × m matrix D = (dij), where
i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and dij ∈ Z232 . We also use individual rows in
this matrix as tuples in the form T = (ti), for i ∈ {1, . . . , n}.

3.4.3 Manipulating secret-shared databases

A secret shared database is somewhat different from standard databases when it
comes to queries. As the raw values are not accessible, we cannot use standard
techniques for filtering out individual records from the database.

While we can use secure comparison operations to obliviously evaluate fil-
tering conditions on secret-shared data, we cannot use this information to reduce
the amount of data to process. Identifying filtered database records in the physical
memory requires that we publish their location and this is an obvious privacy leak.
Instead, we need a way for applying filters on the data without leaking informa-
tion about which records matched the filtering condition. We will now describe
some basic approaches to processing data in a secret-shared database.

Structural addressing. We can use the name or index of a database column to
load all the values of that column. For example, if we want to compute the average
age from a table of person records, each computing party extracts the respective
column of shares fromD and uses a summation protocol and a division to compute
the average.

Similarly, we can load individual rows of the table by their index. This is
useful when we need to process each record individually. Also, by combining the
column and row addressing, we can address individual values by their location in
the table.

58

Hybrid databases. In practice, we do not have to make all the columns in a
table contain shares. Instead, we can use hybrid tables where public values and
shared values coexist. Public values are replicated across all three computing
parties and stored along the shared values. Sufficient metadata must be available
for separating columns with shared values from those with public values.

In such a database, we can use public columns as keys to the records. Consider
a data collection application, that generates a unique identifier for each entered
record and returns it to the provider of the data. For added security, this identi-
fier could be digitally signed. This data provider now has the ability to update
the data record using this identifier. By providing a new secret shared record and
requesting a computing party to identify and replace the old record using the pub-
lic identifier, the original private input is not leaked to the computing party. It is
basically replacing some random-looking values with others, based on a random
identifier with no inherent meaning.

If secret-shared data is linked to any public identifier, the computing party
may be able to identify the related real-world individual. However, it still cannot
understand the values that the individual has provided.

Oblivious data access. It is also possible to keep the data access patterns secret
by using techniques similar to oblivious RAM [65] and PIR-writing [33]. We
will now describe specific constructions for oblivious database queries on secret-
shared data. The blueprint gives a general construction for performing filtered
queries on secret-shared data. It does not depend on the particular set of arithmetic
and comparison primtives used. The basic protocols used in SHAREMIND are
given in Section 3.5.

Given a condition expression like “person is male”, it is possible to secure
compare all values of the gender column to the constant representing the male
gender and get a secret-shared boolean result. Each such result is stored as a
zero or one in a mask vector that can be used in further processing to include
or exclude certain values from processing. For example, if we want to find the
average income of male individuals in a database, we take the following steps.

1. Get the number of records in the database table as n.

2. Load the gender attribute from the database table by extracting the respec-
tive column from D into a vector ~g = (g1, . . . , gn).

3. Assuming, that the male gender is encoded using the value one, compute
the mask vector ~m using secure computation:

mi =

{
1, if gi = 1
0, otherwise.

59

4. Load the income attribute from the database by extracting the respective
column from D into a vector ~d.

5. Filter out the males by multiplying the vectors ~m and ~d elementwise using
secure computation and storing the result in the vector ~f . Note that the
incomes of non-male individuals will be replaced with zeroes. The result
will be

~fi =

{
di, if mi = 1
0, otherwise.

6. Compute the average by evaluating

avg =
f1 + f2 + · · ·+ fn
m1 +m2 + · · ·+mn

using secure computation.

7. Publish the computed average avg.

Alternatively, we can publish the sums computed in step 6 and perform the
division using public computations. While this allows us to skip a costly pri-
vate division operation, it leaks the number of male individuals represented in the
database.

Oblivious queries are rather simple to construct and use for data retrieval.
They can also be used for updating data. Consider an example where we want to
increase the wage of everyone who has worked in the company for at least five
years by ten percent. We take the following steps.

1. Get the number of records in the database table as n.

2. Load the work experience attribute from the database table by extracting
the respective column from D into a vector ~w = (w1, . . . , wn).

3. We find the mask vector ~m using secure computation:

mi =

{
1, if wi > 5
0, otherwise.

4. Load the wages attribute from the database by extracting the respective col-
umn from D into a vector ~d.

60

5. At each location where the mask contained a 1, the wage will be increased
by 10%. The value remains the same in other locations.

d′i = di + 0.1dimi

6. Store the new wages vector in D.

The proposed solution can be more efficient than oblivious RAM, because we
do not need to shuffle the vectors or the database. For more details on oblivious
database queries in the SHAREMIND model see [87].

3.4.4 A protocol for data collection

Input parties form a secure channel to each computing party and use additive
secret sharing over the selected ring of integers to distribute their input values into
shares. One share is sent to each computing party over a secure channel. Note
that this requires the input parties to have access to a good source of randomness.

It may occur, that the input party does not have access to a good randomness
generation mechanism at the protocol implementation level. For instance, this is
the case if the data collection protocol is implemented in a current web browser
using JavaScript. The web browser can acquire randomness to form secure chan-
nels with a web server, but does not make this service available to the JavaScript
virtual machine.

In such cases, we can still assume that the input party can access a pseudo-
random generator PRG : {0, 1}k → {0, 1}n. Then, it can use the protocol in
Algorithm 3 to generate the randomness needed for securely performing secret
sharing on the private inputs. This protocol lets the computing parties generate
secure random values and send it to the input party. The input party uses the XOR
operation to combine the bit strings and uses the result as a seed to PRG. This
way, none of the computing parties knows the randomness, as long as they do not
all collude.

Algorithm 4 shows how to securely collect data represented as 32-bit unsigned
integer values. The protocol assumes that a relational database with tables in the
form of matrices is used. It is trivial to extend this protocol to perform more
complex data management operations, like storing full records, adding new rows
or columns to the table, or even use a different database paradigm.

Given that SHAREMIND is designed using the same principles as a database
and application server, it can also have multiple users and multiple databases.
In most scenarios, we want to restrict users to accessing only the databases and
algorithms that they are allowed to query.

61

16

Algorithm 3: Protocol for providing secure random values to a input party.
Data: IP has the size of required random bits n.
Result: IP has an n-bit random bitstring s.

1 CPi:
2 ri ← {0, 1}k
3 Send ri to IP.
4 IP:
5 r = r1 ⊕ r2 ⊕ r3
6 s = PRG(r)

Algorithm 4: Protocol for securely collecting a 32-bit unsigned integer.
Data: IP holds a private value s ∈ Z232 , a database table name table and

indices x, y.
Result: A shared value [[s]] is stored by parties CP1, CP2 and CP3 in

database table table in column x and row y.
1 IP:
2 s1 ← Z232

3 s2 ← Z232

4 s3 ← s− s1 − s2 mod 232

5 Send (table, x, y, s1) to CP1

6 Send (table, x, y, s2) to CP2

7 Send (table, x, y, s3) to CP3

8 CPi:
9 Each CPi looks up its local database matrix D for table table.

Dx,y ← si

Applications based on SHAREMIND can use access control [2] to enforce any
access policies. Each computing party can authenticate the input party and deter-
mine its access rights to the particular table before storing the values.

We note that a real-world deployment of a secret-shared database shares is-
sues with any distributed database. For example, we need to consider the situation
where multiple input parties send secret-shared data simultaneously. During com-
munication, the order of the shares may be switched by the network and they will
arrive at the computing parties in a different order. This will corrupt the values
in the database as wrong sets of shares will be used in processing. Therefore, if
several input parties want to add a row or a column to the secure database, then
these transactions must be executed in the same order by all computing parties to
ensure that the databases remain consistent among them.

One such example is illustrated in Figure 3.10. In this figure, IP1 is sharing

62

CP1 CP2 CP3

IP1 IP2

D D D

s1

s1

s2

s2

s3

t3

t3

s3

t2

t1

t1

t2

Figure 3.10: Example of a possible database inconsistency.

a value s and IP2 is sharing a value t. The value is appended as a new record
in the databases. However, since the share of IP2 reaches CP2 before the share
from IP1 arrives, it is stored in its place. Now, if we reconstruct the records of the
database, both will give us corrupted random values.

The solution is for the computing parties to maintain distributed queues of
transactions and jointly decide on the order in which they are executed. Each
input party will be assigned a session identifier that will be used to fix the order
of transactions. We can use standard consensus protocols, e.g., one of the Paxos
protocols [83], to achieve this goal.

Even if we can ensure the consistency of the secret-shared database, the vari-
ation in the order of database records means that the protocol in Algorithm 4
violates the precondition of Theorem 7 (security of SHAREMIND protocols in an
asynchronous network) by having messages arrive in any order. The main security
risk is that the order, in which input parties send their messages, may change the
output of the computed function. The most obvious example of such a function is
the computation of the mean of the first ten collected values.

We describe three possible ways for reducing the risk. First, this risk does not
endanger algorithms that do not depend on the order of records in the database.
For example, if we aggregate every value in a database column and publish the
sum, it will be the same regardless of the order of the records. The second option
is to use public identifiers in the data collection protocol and during data lookup.
Examples include addressing a record in the database by its row and column and
addressing it by a publicly accessible key column, creating a key-value database.
If all lookups in such a key-value database are performed using the key column,
then the order in which the values arrived will make no difference.

Finally, if our algorithm is dependent on the order of messages in the database
and it does not make sense to use a key-value database, we can randomly reorder

63

the values in the database to remove the dependency between record order and the
output of the computation. Note that this reordering does not have to be oblivious.
It is enough if the ordering remains uniform even if the adversary can choose any
initial ordering.

There is also an alternative way for collecting data into a secret-shared database.
Instead of forming direct connections with the computing parties, the input par-
ties encrypt each share with the public key of the target computing party and send
the encrypted shares to a proxy server that transfers the shares to the computing
parties at a later time. Such a solution can be used when the input parties do not
have the capability of forming direct secure channels with the computing parties.
A similar solution was used in practice in the Danish sugar beet auction [31].

Furthermore, if it is possible to set up a public key infrastructure that includes
all the input parties, the data collection protocol can also include the signing of
the shares by the input parties. This allows the miners to use the digital signatures
for authenticating the input parties during the processing of input shares. This is
critical when we want to use the alternative data collection method employing a
proxy server, because the SHAREMIND secure computation servers need a way
for checking the source of the input shares that the proxy server is passing on.

Collecting secure data in a database simplifies the deployment of SHAREMIND

as different input parties can upload their data independently from each other and
over a longer time period. Once data collection is complete, we can start running
secure computation algorithms.

3.5 Protocols for secure computation

3.5.1 The general secure computation process

Once the data are collected, a result party may send a query to the computing
parties over secure channels. The query contains the following components:

1. the name of the algorithm to run,

2. public query parameters, and

3. private query parameters.

The computing parties determine the protocols to run based on the name of
the algorithm. Public query parameters contain information that does not have to
be secret (e.g., the name of the database table) and are sent without secret sharing.
Private query parameters are secret shared. This allows the result party to hide
query parameters from the computing parties.

Algorithm 5 gives the general protocol for running queries on the computing
parties. The query is sent to each computing party who looks up the algorithms

64

Algorithm 5: General protocol for running queries on computing parties.
Data: RP holds a query q. Computing parties have the algorithms and data

to process q.
Result: RP receives the result r of query q run on the data held by the

computing parties.
1 RP:
2 Secret-share all private parameters and send the query q to each CPi.
3 CPi:
4 Find and prepare the algorithm needed to run q.
5 Store the parameters given in q. Load the databases needed to run q.
6 For each operation in the algorithm:
7 Prepare inputs for the computation protocol.
8 Run the protocol.
9 Store outputs of the protocol.

10 Prepare the result share ri.
11 Send ri to RP

12 RP:
13 Compute r ← r1 + r2 + r3.

and data for completing the computations. Because of universal composability,
the computing parties can schedule computing protocols in any order. Some form
of runtime storage can be used for storing intermediate result shares. The final
result shares are sent to the result party, who reconstructs the result.

The use of secure computation protocols allows the computing parties to eval-
uate the required function on the shares of the input data without reconstructing
the original values. However, the computing parties also need to process public
values such as public parameters and control flow constants. For this, each com-
puting party replicates the necessary public operations. Public operations do not
touch the shares of secret data so they compose trivially with secure operations.
For more details, see Chapter 5.

3.5.2 Protocols for addition and multiplication

The most important protocols in a secure computation system are the basic arith-
metic protocols for addition and multiplication. This is so, because often, other
protocols can be composed from addition and multiplication. In this section, we
introduce the protocols that SHAREMIND uses for these operations.

Addition on SHAREMIND is trivial thanks to the additively homomorphic
property of the additive secret sharing scheme. To learn the sum of two shared
values, we just need to add the shares at each computing party. The complete

65

17

Algorithm 6: SHAREMIND protocol for secure addition
Data: Parties CP1, CP2, CP3 hold shared values [[u]] and [[v]].
Result: Parties CP1, CP2, CP3 hold a shared value [[w]] so that w = u+ v.

1 Each CPi computes wi ← ui + vi

protocol is given in Algorithm 6. Addition is a local protocol that does not need
communication with other parties.

As additive secret sharing is not multiplicatively homomorphic, we need a
more complex approach for multiplying secret shared values. The product of two
secret-shared values, [[u]] and [[v]] can be expressed as follows:

uv = (u1 + u2 + u3)(v1 + v2 + v3)

= u1v1 + u1v2 + u1v3+

u2v1 + u2v2 + u2v3+

u3v1 + u3v2 + u3v3.

Each computing party CPi can autonomously compute the value uivi from
this sum. However, the computing parties need to exchange information about the
shares to be able to complete sum. At the same time, the parties must keep the
shares confidential to protect the original secrets. Our protocol resolves the issue
by creating a temporary resharing of the input secrets so that some new shares
can then be exchanged between the computing parties. Basically, we temporarily
transform the single-share encoding that SHAREMIND typically uses into repli-
cated secret sharing, where each party holds two shares of a value. For this, we
use the resharing protocol given in Algorithm 1 in Section 3.3.8. The protocol
ends with another resharing step that ensures composability. The complete proto-
col is given in Algorithm 7.

The security of the addition protocol is trivial to show, as no messages are
exchanged. The security proof for the multiplication protocols is given in [27].

3.5.3 Protocols for comparison

The most important computation operations beside basic arithmetic are the oper-
ators for equality and greater-than (or less-than) comparison. Both are required
for filtering and making other decisions based on data. Greater-than comparison
is also an important primitive for implementing privacy-preserving sorting.

While addition and multiplication are basic algebraic operations, comparison
operators work on the bit level of values. In equality, we want to know if all
the bits of two values are equal. In greater-than comparison, we want to know in

66

Algorithm 7: SHAREMIND protocol for secure multiplication
Data: Parties CP1, CP2, CP3 hold shared values [[u]] and [[v]].
Result: Parties CP1, CP2, CP3 hold a shared value [[w]] so that w = uv.

1 [[u′]]← Reshare([[u]])
2 [[v′]]← Reshare([[v]])
3 CP1 sends u′1 and v′1 to CP2.
4 CP2 sends u′2 and v′2 to CP3.
5 CP3 sends u′3 and v′3 to CP1.
6 CP1 computes w′1 ← u′1v

′
1 + u′1v

′
3 + u′3v

′
1.

7 CP2 computes w′2 ← u′2v
′
2 + u′2v

′
1 + u′1v

′
2.

8 CP3 computes w′3 ← u′3v
′
3 + u′3v

′
2 + u′2v

′
3.

9 [[w]]← Reshare([[w′]]).

Algorithm 8: SHAREMIND protocol for secure equality comparison
Data: Parties CP1, CP2, CP3 hold shared values [[u]] and [[v]].
Result: Parties CP1, CP2, CP3 hold a shared value [[w]] so that w = 1 if

and only if u = v. Otherwise, w = 0.
1 CP1 generates random r2 ← Z2n and computes r3 ← (u1 − v1)− r2.
2 CP1 sends ri to CPi (i = 2, 3).
3 CPi computes ei = (ui − vi) + ri (i = 2, 3).
4 CP1 sets ~p1 ← 2n − 1 = 111 . . . 1.
5 CP2 sets ~p2 ← e2.
6 CP3 sets ~p3 ← (0− e3).
7 [[w′]]← BitConj([[~p]]).
8 [[w]]← Reshare([[w′]]).

which value the bit representation difference occurs first. These observations have
inspired the design of the following protocols.

The equality of two values can be determined by computing the difference
of the two values and making sure that all bits in this difference are zeroes. Our
protocol achieves this privately by computing the conjunction of all bits in the
difference. The protocol is given in Algorithm 8. The protocol contains an opti-
mization that temporarily reshares the input between two miners among the three.
The details on this approach and the bit conjunction sub-protocol BitConj() are
omitted here, see [27] for the details and the security proofs.

The greater-than comparison protocols in SHAREMIND are all based on the
observation that we learn the relation between two values by extracting the highest
bit from their difference. Note that this approach is restricted to cases where we

67

Algorithm 9: SHAREMIND protocol for secure greater-than comparison
Data: Parties CP1, CP2, CP3 hold shared values [[u]] and [[v]].
Result: Parties CP1, CP2, CP3 hold a shared value [[w]] so that w = 1 if

and only if u > v (according to the restrictions defined above).
Otherwise, w = 0.

1 CPi computes di ← ui − vi.
2 [[w′]]← ShiftRight([[~d]], 31).
3 [[w]]← Reshare([[w′]]).

interpret the highest bit of a value as the sign bit. This way, comparison on the 32-
bit unsigned integers of SHAREMIND is effectively a 31-bit unsigned comparison
or 32-bit signed comparison.

SHAREMIND extracts the highest bit by using a right shift protocol. The high-
est bit of the difference is shifted right so that it becomes the lowest bit of the
value. This value can then be flipped to turn a greater-than protocol into a less-
than-or-equal protocol. It can also be multiplied with the input values to build
a simple minimum or maximum value computation protocol. The outline of the
comparison protocol is shown in Algorithm 9. The bit shift right protocol is de-
tailed in [27]. The given protocol works for 32-bit inputs. For other input sizes,
the shift size parameter will need to be changed accordingly.

3.5.4 The secure computation capabilities of SHAREMIND

The current protocol suite of SHAREMIND covers basic arithmetic on integers.
All operations are designed to be performed pointwise on vectors of inputs. Both
unary and binary operations are supported. Table 3.1 gives an overview of the
protocols that have been implemented on SHAREMIND and refers to the papers
that describe them in more detail. Each protocol can take inputs in private vector
form and produces a private scalar or vector value.

The boolean data type can be supported using shares in Z2. Logic operations
on booleans can be composed from the addition and multiplication operations on
1-bit integers. These operations correspond to the exclusive or and disjunction op-
erators on boolean values. All the protocols are implemented in the SHAREMIND

version 2. The performance of SHAREMIND protocols is analyzed in Chapter 4.

3.6 Notes on the design of SHAREMIND protocols

Work on the SHAREMIND system started in 2006. The first preliminary version—
the SHAREMIND version 1—became operational in 2007. The implementation

68

Operands Operation Reference

private ~u ∈ Z2n

Addition [25]

private ~v ∈ Z2n

Multiplication [27]
Equality [27]
Greater-than [27]
Division [27]
Remainder computation [27]

private ~u ∈ Z2n
Multiplication [27]

public ~v ∈ Z2n
Division [27]
Remainder computation [27]

private ~u ∈ Z2n Shifting bits left v places [27]
public ~v ∈ Z2n Shifting bits right v places [27]
private ~u ∈ Z2 Conversion of shares from Z2 to Z232 [27]
private ~u ∈ Z2n Random element shuffling [87]

Table 3.1: The most efficient known secure protocols in the SHAREMIND model.

contained protocols for secure addition, multiplication, comparison and bit ex-
traction. The addition protocol was derived naturally from the additively homo-
morphic property of the secret sharing scheme. Multiplication was achieved by
extending an atomic protocol proposed by Du and Atallah [53] which is based
on the standard multiplication triple solution [11]. The other protocols were im-
plemented as compositions of the addition and multiplication protocols. All the
protocols were shown to be universally composable in the passive security model.
An optimized version of this work was benchmarked and the SHAREMIND system
was introduced to the wider scientific community at the ESORICS 2008 confer-
ence [25].

In the following years, protocol development continued and, based on a new
approach to multiplication, a new protocol set was designed. The existing arith-
metic operation protocols were rewritten from scratch and new ones were pro-
posed for bit shifting, division and remainder calculation. The original protocol
suite was extensible to a number of computing parties different than three, given
that a multiplication operation exists. The new protocol suite was significantly
more efficient, but this was achieved by limiting the protocols to three computing
parties. SHAREMIND version 2 was completed in 2010. For more details on the
protocol suite in SHAREMIND 2, see [27].

More high-level protocols for database operations like oblivious selection, fil-
tering, shuffling and sorting were built on the secure arithmetic protocols and they
were published in [73, 87].

69

18

Work on the SHAREMIND protocol suite is an ongoing effort. Our goal is to
add support for more operations on integers and also start supporting other data
types such as fractional numbers. Furthermore, we plan to extend the SHAREMIND

secure computation paradigm to different numbers of computing parties. This
work will be done for future versions of SHAREMIND.

3.7 The software implementation of SHAREMIND

SHAREMIND is implemented in the form of two software components. The first
component is the SHAREMIND server (also called miner server). It performs the
duties of a computing party by establishing secure channels to other servers, ex-
ecuting secure computation protocols and providing services to the input parties
and result parties.

The interfaces for the input and result parties are implemented as controller
applications using the controller library. The controller library provides an inter-
face for sending data and issuing requests to the SHAREMIND miner server. The
controller library performs automatic secret sharing and hides the cryptographic
details of secure computation from the developer and the user. Similarly, the re-
sults are reconstructed from shares and comprehensible values are returned to the
user. SHAREMIND is modular regarding the size of the shares. It can work equally
well with shares of any size that the protocol suite supports.

SHAREMIND is implemented in C++ for efficiency reasons. SHAREMIND 2
uses the RakNet library [104] for networking because of its low overhead. Boost
libraries [34] are used for cross-platform threading and configuration processing.

Various database libraries are used to implement the database interfaces. The
default database in SHAREMIND 2 is based on SQLite [119]. SHAREMIND sup-
ports the Tokyo Cabinet database [125] and any ODBC-compatible database us-
ing the ODBC connector libraries. Finally, the built-in profiling and performance
analytics tools use the libcsv library [43].

We discuss the tools and applications associated with the SHAREMIND system
in the following chapters.

70

CHAPTER 4

PRACTICAL PERFORMANCE OF
SHAREMIND

4.1 The complexity and performance of SHAREMIND

SHAREMIND supports a range of secure computation operations. All the proto-
cols described in Section 3.5 listed in Table 3.1 in Section 3.5.4 are implemented
using a number of core protocols. Table 4.1 lists their round and communication
complexities.

The communication and round complexities of secure computation protocols
depend on the bit length of the data element n and its logarithm ` = log2 n. Integer
division depends also on precision parameters n′ and m computed using the error
calculation of Goldschmidt division [27]. For 32-bit unsigned integers, n = 32,
` = 5, n′ = 37 and m = 254. Secure addition is a local operation and therefore
takes no rounds and requires no communication.

The performance of SHAREMIND has been measured and analyzed in sev-
eral works. The performance of the original protocols was given in [25]. The
benchmarks in this paper were conducted on a distributed systems research clus-
ter where each machine contained a dual-core CPU, 2 GB of RAM and exchanged
information over a gigabit network.

SHAREMIND 2 uses protocols described in [27]. The paper also contains a
more detailed performance analysis. The original protocols from [25] were com-
pared to the new ones. Both protocol suites were benchmarked on a dedicated
experimental cluster consisting of three servers where each machine had 24 CPU
cores and 48 GB of RAM. Also, each machine had a direct gigabit Ethernet in-
terface to other nodes and a 100 Mbit interface to the public internet. This setup
was used to show that the new protocols are significantly more efficient and robust
than the earlier ones.

It is easy to see that this setup is ideal for SHAREMIND and a separate analysis

71

SHAREMIND 2 [27] SHAREMIND 1 [25]
Protocol name Rounds Data bits Rounds Data bits

Addition 0 0 0 0

Multiplication 1 15n 3 24n

Cast Z2 to Z232 2 5n+ 4 4 39n

Equality `+ 2 22n+ 6 `+ 9 87n2 − 18n+
2`(n− 1)2

Bit shift right `+ 3 12(`+ 4)n+ 16 — —
Bit extraction `+ 3 5n2 + 12(`+ 1)n `+ 8 63n2 + 6n+

2`(n− 1)2

Division with
public divisor

`+ 4 (108 + 30`)n+ 18 — —

Division with
private divisor

4`+ 9
2mn + 6m` +
39`n + 35`n′ +
126n+ 32n′ + 24

— —

Table 4.1: Complexities of core SHAREMIND protocols [25, 27].

must be conducted in a setting with more common network configurations. A
more detailed analysis of that setting is described in Section 4.3.4.

We benchmarked protocols in SISD (single operation, single data) and SIMD
(single operation, multiple data) modes. For the SIMD case, we present the best
speed that was achieved. All speeds are presented in operations per second. Ta-
ble 4.2 contains the performance results.

4.2 Benchmarking methodology

4.2.1 The built-in protocol profiler

The SHAREMIND implementation contains several built-in features for measuring
the performance of protocols. The protocol profiler traces the execution of each
secure computation protocol and SHAREMIND assembly script and measures the
time spent on executing an assembly program, that consists of:

1. time spent on executing a secure computation protocol, consisting of

(a) time spent on generating randomness,

(b) time spent on database operations,

(c) time spent on sending messages,

(d) time spent on receiving messages,

72

SHAREMIND 2 [27] SHAREMIND 1 [25]
SISD SIMD SIMD

Private u

Addition 105 ops 5.9 · 107 ops 5.9 · 107 ops

private v

Multiplication 39 ops 5.6 · 105 ops 2.9 · 105 ops
Equality 10 ops 2.0 · 105 ops 4.5 · 102 ops
Comparison 8 ops 6.4 · 104 ops 2.2 · 102 ops
Division 2 ops 1.7 · 103 ops —

Private u Multiplication 105 ops 1.8 · 108 ops 1.8 · 108 ops
public v Division 8 ops 1.9 · 103 ops —
Private u Cast Z2 to Z232 65 ops 1.2 · 106 ops 5.6 · 104 ops
Private u Bit extraction 9 ops 1.9 · 104 ops 7 · 102 ops

Table 4.2: Speed of SHAREMIND in secure operations per second (ops) [27, 25].

(e) time spent on waiting for messages to arrive,

2. time spent on code interpretation.

If the profiler is enabled on a SHAREMIND server, it caches the measured tim-
ings in memory and stores them in a file in a background process. The profiler
collects measurements according to the hierarchy presented in the list—each mea-
sured execution section is assigned a parent section. Once the measured task is
complete, we can store the section durations and their hierarchy in a file and use
a separate tool to output the timing breakdown of a script or a protocol.

We chose a hierarchical profiling method to be able to analyze the perfor-
mance of a script with different granularity levels. For example, if we want to
know the bottlenecks of an algorithm, we can analyze the timings on the level of
individual operations and discard the runtime breakdown of protocol execution.
However, if we are optimizing a protocol and want to know the time spent on net-
work delays, we can discard the higher level and focus on a single protocol and
its breakdown.

Each section can also be tagged with metadata, like the size of inputs to the
secure computation protocol or the size of the vector to send on a network. This
information is preserved in the post-processing phase and allows us to analyze
large benchmarks with ease.

4.2.2 Benchmarking tools

There are specific tools for benchmarking protocols and assembly programs. The
OperationBenchmark tool is used to coordinate performance tests for secure
computation protocols. The user provides the tool with the name of the secure

73

19

operation to test and the number of iterations for testing each input size. It is also
possible to specify the range of input sizes to use and the order of experiments by
input size—ascending, descending or random.

The range specification controls which input sizes are tested. For example,
the user can request that the secure multiplication operation is benchmarked with
input sizes ranging from 100 000 to 1 000 000 with 100 000-element increments.

Given this information, the OperationBenchmark tool will generate the
list of experiments to perform. This list contains one experiment for each iteration
for each input vector size. These experiments can then be performed in ascending
order from the smaller vector sizes to the larger ones or in reverse.

Optionally, the order can be randomized to reduce any effects that may result
from a sorted ordering, such as the ones resulting from the flow control algorithms
of the underlying networking layer. Furthermore, there is an additional option to
“warm up” the machine by performing a number of large secure multiplications.
This ensures that the flow control algorithm has converged on an estimate for the
maximum speed and network throughput has stabilized. In our experiments, we
always apply a warmup period and randomize the order of the experiments.

Experiments are coordinated by a result party that requests that the com-
puting parties generate random inputs and then perform the experiment. The
OperationBenchmark tool also measures the execution time on the client
side. However, this timing also includes the round trip time between the result
party and the computing parties that is not present in the results of profiling. In
our benchmarking, we use the profiling results, because in algorithms, operations
are run one after the other with no interactions with the result party.

There is a separate tool called ScriptBenchmark that is used to measure
the execution of an assembly program. The tool sends the program name to the
computing nodes that execute the program and profile it. ScriptBenchmark
also measures execution time on the client side.

Client-side measurements are more justified in this case, as queries in most
real applications consist of requests exactly like this. Therefore, the measurements
of ScriptBenchmark are a good indication of query response times in real
applications. Profiling results can also be used during development to understand
the breakdown of the execution time between individual secure operations.

4.3 Performance analysis

4.3.1 SHAREMIND protocol execution pipeline

Before we analyze how different resources affect the performance of secure pro-
tocols on SHAREMIND, we describe how protocols perform computations and
exchange messages. We focus on how a protocol running on one SHAREMIND

74

miner server sends a message to a protocol running on another miner server. Once
the protocol instance in one miner server sends a message, it needs to be passed
through the SHAREMIND network layer, encrypted and sent over the public net-
work, then decrypted and passed to the protocol instance in the destination miner
server.

SHAREMIND is capable of SIMD operations that are performed by a single
protocol. Whenever such a protocol would process a value, it processes a vector
instead. This means that SHAREMIND can pack the messages of several secure
computation protocols into a single network message and reduce the networking
overhead We will give more details on the effectiveness of this optimization in
Section 4.3.3.

On the other hand, if an application uses a vector that is very large, it need-
lessly increases the memory usage and also the risk of failure in the networking
layer. Therefore, we introduce a configurable batching parameter b. All protocols
are implemented so that input data will be processed in batches with a maximum
size b. For example, in a pointwise multiplication with 100 million values, if the
batching parameter b = 100000, SHAREMIND will slice 100000-element pieces
from the inputs and will run the protocol in 1000 batches.

As SHAREMIND supports multiple parallel users, it also has to manage par-
allel protocol instances and share the network layer among the users’ sessions.
The protocols of each user session run in a separate thread. If they want to send
or receive messages, they inform the main thread of the miner server. The miner
thread talks to the networking thread every few milliseconds to send messages and
pick up everything that has arrived.

When messages are passed to the network thread, it encrypts them and buffers
a copy for retransmissions. The messages are then sent out as UDP datagrams.
Similarly, when messages arrive from the network, they are decrypted, acknowl-
edgments are sent and they are buffered until the miner server thread requests
them.

Most of the operations in sending are asynchronous (sending is non-blocking).
On the other hand, receiving is a blocking operation so the protocol thread simply
waits until the responses arrive. In the future, we will consider making message
receiving more asynchronous as well, as it may improve efficiency. However, this
will require a review of the protocols to make sure that the values exchanged on
the network are not affected by the scheduling of network packets.

This design may not provide the lowest latency, but it can robustly handle large
vectors. The networking pipeline has been optimized for performing large SIMD
operations, as SHAREMIND is more efficient with them. Figure 4.1 illustrates the
whole pipeline between miner servers A and B.

75

loop [for each batch]

Protocol
<<thread>>

MinerServer
<<thread>>

Network
<<thread>>

sendVector (v, B)

prepare (v)

Miner A

sendVector (v, B)
encrypt (v)
MAC (v)
buffer (v)
send (v)

network

loop [for each batch]

Protocol
<<thread>>

MinerServer
<<thread>>

Network
<<thread>>

receiveVector (v, B)

process (v)

Miner B

decrypt (v)
verify (v)
sendAck (v)

receive (v)

receiveVector (v, B)

network

receiveVector (v, B)

Figure 4.1: Message exchange during SHAREMIND protocol execution

4.3.2 The importance of processor speed

SHAREMIND is based on very simple ring arithmetics and, therefore, does not
require heavy-duty cryptographic primitives to operate. However, there are two
important cryptographic primitives that use up processing power in SHAREMIND.
The first is the suite of encryption schemes that enable the secure channels in the
system. The second is the pseudorandom generator that enables secret sharing
and provides randomness for all protocols.

Modern secure channel implementations are considered efficient enough for
use in mainstream applications. Secure channels functionality in SHAREMIND 2
is provided by the RakNet library. RakNet creates a secure channel with authenti-
cated encryption using 256-bit elliptic curve key agreement, a key derivation func-

76

tion based on Skein [117], the ChaCha stream cipher [19] and a MAC based on
HMAC-MD5. ChaCha is not a standard stream cipher, but known attacks against
it are not yet in a practically feasible range [9]. Similarly, while the MD5 hash
function is no longer considered collision resistant and thus not secure in the con-
text of digital signing, HMAC-MD5 is not dependent on its collision resistance
properties [13].

The performance cost of secure channels in the SHAREMIND system has not
been studied in detail. The current assumption is that as RakNet is mostly used
in real-time computer games, its secure channels must be efficient enough for
performance-critical applications. We also plan to experiment with more standard
implementations of secure channels such as TLS in future SHAREMIND versions.
TLS was considered inefficient at the time when SHAREMIND was started. How-
ever, recent developments such as the hardware-implemented AES-NI instruction
set have made TLS significantly faster and it should be evaluated for inclusion in
future versions of SHAREMIND.

SHAREMIND protocols require significant amounts of randomness. In fact,
the amount of randomness consumed by a protocol is roughly the same as its
communication cost. Therefore, we need a source of randomness with a high
output rate. For practical reasons, we currently use pseudorandom generators in
the implementation.

A preliminary analysis of the effects that the type of the source of randomness
has on secure computation speed has been conducted in [29]. We experimented
with several pseudorandom generators and then profiled SHAREMIND with two of
them. The first is an ANSI X9.17 Appendix C compliant randomness generator
based on the AES block cipher and the second is the SNOW 2 stream cipher [55].

Our profiling showed, that with the AES-based generator, SHAREMIND spends
a significant amount of time generating randomness for the protocols. By substi-
tuting the generator for one based on SNOW 2, the randomness generation part in
the execution profiles was reduced from a few seconds to a few milliseconds. For
this reason, SHAREMIND 2 uses the SNOW 2 stream cipher as its source of ran-
domness. However, the pseudorandom generator is modular and can be replaced
with other implementations. Most importantly, the hardware-accelerated AES-NI
instruction set could be used to build an efficient randomness generator that is
faster than the current software implementation based on SNOW 2.

4.3.3 The importance of parallelization

Assuming that we have a fast random number generator and efficient secure chan-
nels, the next major bottleneck in SHAREMIND is network throughput. The more
complex the secure operation, the more rounds and communication it uses. In
each protocol round, several messages are exchanged among the SHAREMIND

77

20

Number of parallel operations

R
un

ni
ng

−
tim

e
in

 m
ill

is
ec

on
ds

101

102

103

104

105

106

●
●

● ● ●●●
●●● ● ● ● ●●●●

●● ● ● ● ●●●●●● ● ● ●
●●●●●●

●
●

●
●●

●●
●●

●

●
● ●

●
●●●●

●
●

●
●

●
●●

●●

●

●
●

●●
●●●●

100 101 102 103 104 105 106 107 108

Mult
● Old protocol

New protocol

Figure 4.2: Running time of secure multiplication depending on the input vector size [27].

computing nodes. As sending each message has a similar overhead, it makes
sense to try to use each message to process several values in parallel.

SHAREMIND implements parallelization by allowing an operation to take any
number of inputs (or input pairs, in the case of a binary operation). The proto-
cols perform all operations in parallel and package the values of several secure
operations into a single network message. We also remind the reader that such
parallel composition is secure thanks to the universal composability property of
SHAREMIND protocols.

Figure 4.2 is based on actual experiments and shows that the running time of
secure multiplication does not grow significantly with the size of inputs, until a
saturation point is reached. At that point, the running time starts to grow linearly
with the size of inputs. On the figure, this is represented with two linear fits.

Figure 4.3 presents the same data from another angle. It plots the amortized
cost of a single operation depending on the size of the inputs. The lines show
the same significant speedup up to the saturation point. Table 4.3 shows similar
speedup factors for various SHAREMIND 2 protocols. For each protocol we show
the most efficient input size and the speedup achieved by performing operations
with that input size.

Given the promise of large performance gains, it makes sense to set the batch
size parameter for a protocol to be not much higher than its saturation point. This
ensures that we are using the best parallelization, but also that we are not wasting
memory on huge vectors. However, the batch size must not be too small, as slicing
the input vectors for each batch will then reduce the efficiency of the protocol.

It follows, that the main optimization goal of a data processing algorithm run-

78

Number of parallel operations

T
im

e
pe

r
op

er
at

io
n

in
 m

ill
is

ec
on

ds

10−3

10−2

10−1

100

101

●

● ●
●

●
●●

●●●

●

●
●

●●
●●

●●

●

●
●

●
●●●

●●

●
●

● ●●
●●●●

● ● ● ●●●
●
●● ● ● ● ●●●●●● ● ● ● ●●●●●● ●

● ● ●●●●●●

100 101 102 103 104 105 106 107 108

Mult
● Old protocol

New protocol

Figure 4.3: Price of a single multiplication depending on the size of the input vector [27].

Protocol Lowest efficient input size Speedup factor
Multiplication 15000 14000

Cast Z2 to Z232 24000 19000

Equality 27000 20000

Bit shift right 12000 7700

Bit extraction 2600 2200

Division with public divisor 3500 2800

Division with private divisor 800 730

Table 4.3: SHAREMIND performance improvements from parallelization [27].

ning on SHAREMIND should be to process many values at once. It is safe to par-
allelize as much as possible, because SHAREMIND can automatically execute the
protocol with the most efficient calibrated batch size. On the other hand, making
a non-parallel algorithm use more parallel operations is a known hard problem.

Making an algorithm use parallel operations increases its memory footprint
and also requires additional computational resources. Also, not all algorithms can
be easily made parallel as some of them have strong sequential data dependencies.
However, it pays off to try, as the possible speedup of more than 10 000 times
should be a sufficient motivator for designing one’s algorithms around massive
parallelization. Also, practical tests have shown, that the overhead of building
the input vectors for parallel processing is significantly smaller than the achieved
reduction in running time.

In our analysis present in [27], we show that all the secure computation proto-

79

cols in SHAREMIND that use communication behave similarly. The main change
is in the position of the saturation point among the different input sizes. For more
complex protocols, the saturation point is lower, as the larger communication re-
quirement fills the network capacity more quickly.

The benchmarks also illustrate another important fact—SHAREMIND is robust
enough to handle very large input vectors. Figures 4.2 and 4.3 show multiplication
operations processing up to 100 million input pairs at a time. In some data mining
prototypes, SHAREMIND has successfully processed input vectors ranging to half
a billion values. This is possible thanks to the batching mechanism described in
Section 4.3.1.

4.3.4 The importance of network bandwidth and latency

Up to now, we have described the performance of SHAREMIND in near-ideal set-
tings where the network links are very fast. In real-life deployments, we cannot
always assume that this is possible. Therefore, we need to understand the effects
of lower bandwidth and higher latency on secure computation performance.

We carried out performance experiments in various network settings and ana-
lyzed the results as joint work with Reimo Rebane [106]. We configured the ex-
perimental SHAREMIND cluster with special software that allowed us to emulate
network links with lower bandwidth and higher latency. We performed experi-
ments with a variety of network settings and built a linear regression model that
linked the performance of secure operations with the network settings.

The analysis of the model indicated that an increase in network latency does
not decrease the efficiency of secure operations on vectors. This is likely because
SHAREMIND protocols use a single message for many parallel operations and the
transfer of larger messages takes some time in any case. Furthermore, the secure
computation performance is strongly dependent on the communication complex-
ity of the protocol. As bandwidth decreased, so did the performance. Similar
patterns were noticed for all protocols.

Another goal of the work in [106] was to experiment with SHAREMIND on
the public cloud. This was driven by the practical consideration that it must be
feasible to deploy SHAREMIND on the cloud as this will help with the adoption of
the new technology. Each SHAREMIND installation requires three servers hosted
by three independent hosts and controlled by separate entities. However, not all
organizations have the capability of hosting a SHAREMIND server. Cloud ser-
vice providers can rent the infrastructure required for deploying SHAREMIND to
organizations with no such capability.

Rebane experimented with SHAREMIND using several cloud service providers.
We chose two different settings for the experiments—the worst case scenario,
where SHAREMIND servers are deployed as distantly from each other as possible,

80

and a more realistic scenario where the computing nodes are in the same part of
the world—Europe. To determine, how far these settings are from the ideal lab
setting, Rebane also compared the performance on the cloud to the performance
in the lab.

In the European deployment, SHAREMIND was installed on servers provided
by three different cloud providers located in the United Kingdom and Ireland.
In the global deployment, one server was set up in the United States, one in the
United Kingdom and one in Japan.

Deployment
Operation Lab European cloud Global cloud

Multiplication 690000 ops 48300 ops 27850 ops
Share conversion 1360000 ops 120000 ops 58500 ops

Equality 254000 ops 21500 ops 12800 ops
Bit shift right 95000 ops 3000 ops 2600 ops
Bit extraction 28000 ops 1000 ops 600 ops

Table 4.4: SHAREMIND performance on the cloud in secure operations per second [106].

Table 4.4 gives a comparison of performance for five operations in the three
settings. The data shows a slowdown factor of 10–30 times in the performance
of secure operations. Even with decreased performance, SHAREMIND remains
practical as it can still perform tens of thousands of secure operations each second.

Deployment
Operation Lab European cloud Global cloud

Multiplication 27.79 Mbit/s 1.02 Mbit/s 0.57 Mbit/s
Share conversion 13.65 Mbit/s 1.17 Mbit/s 0.73 Mbit/s

Equality 18.84 Mbit/s 1.54 Mbit/s 0.42 Mbit/s
Bit shift right 39.96 Mbit/s 2.03 Mbit/s 0.84 Mbit/s
Bit extraction 24.85 Mbit/s 1.28 Mbit/s 0.78 Mbit/s

Table 4.5: Average network throughput comparison in the lab and on the cloud [106].

Table 4.5 shows the average bandwidth during the performance measure-
ments. It clearly shows similar ratios between performances and bandwidths.
However, the maximal measured bandwidth between individual SHAREMIND ser-
vers in the cloud (and also, in the lab) was significantly higher. For example, the
lab deployment had direct gigabit network links between the servers, of which
only up to 40 Mbit/s were reported as used during the experiments.

81

21

The results reported in [106] show that SHAREMIND was not using all the
available bandwidth in the experiments. This suggests that there may be room for
optimization in the SHAREMIND protocol execution pipeline. Further profiling
is needed to determine, which computational step (secure transport, randomness
generation or other) is limiting bandwidth usage.

Furthermore, the effect of communication complexity in the overall perfor-
mance must be taken into account during the design of new protocols. We hypoth-
esize that the best secure computation protocols are balanced—their rounds have
a similar communication complexity so that the batching system works equally
well on all the rounds of the protocol. Otherwise, if a protocol has rounds with
significantly unbalanced communication, it is hard to choose a batch size that
guarantees an even flow of data in all the rounds.

4.4 Optimization goals for future protocols

SHAREMIND protocol designers are faced with many choices as they create new
protocols for the system. For example, should the number of rounds be the main
optimization goal or should we limit communication instead? We propose general
guidelines based on an analysis of a simplified model for SHAREMIND protocols.

Consider the protocol execution pipeline illustrated in Figure 4.1. Message
transmission in this model has an inherent amount of latency. It is caused by the
combination of local processing and network transfers. There are many factors
that contribute to this latency, ranging from thread scheduling and other processes
on the operating system to the physical parameters of the network connection. For
these reasons, message transmission latency is stochastic and it cannot be avoided
completely.

However, we can assume that the time of transferring a message over the
network is mostly in the size of the data. Copying messages between threads,
encrypting and authenticating them are all linear activities. The physical latency
of the network is dependent on the quality of the network connection and not on
the size of the data. The physical latency between two non-mobile nodes is typi-
cally constant over time, unless the network infrastructure between these nodes is
overloaded or improved.

From this, we can derive a simplified statistical model for message delivery
time. Let n be the message size in bits, b the bandwidth of the network in bits
per millisecond and ` the roundtrip time on the network in milliseconds. We can
express the transmission time t as

t =
n

b+ εb
+ `+ ε` , (4.1)

where εb and ε` are random error terms for bandwidth and error, respectively.

82

Most secure computation protocols in SHAREMIND exchange messages in
several rounds. In principle, one can create a model of the protocol running time
by extending Equation (4.1) with details about the messages exchanged in each
round. The resulting model of the protocol execution time can be used for deter-
mining how the number of rounds or the communication complexity affects the
total running time. However, this approach is not practical without special tools
to assist the developer in the analysis.

We can still derive useful rules from the simplified model (4.1). If the time
cost of network latency is larger than the cost of transmitting the data bits so that

n

b+ εb
� `+ ε` ,

then the protocol running time grows linearly in the number of rounds. In this
case, we should prefer protocols with a lower number of rounds. This situation is
more probable, if we are running the protocol with just a few inputs, as otherwise
the message size grows and the impact from the bandwidth becomes more signifi-
cant. Therefore, if we know that a protocol will mostly be used with small inputs,
we should aim for reducing the number of rounds in the protocol.

If the amount of transmitted data is sufficiently large then latency becomes
less important as the time taken to transmit bits grows to be greater than the accu-
mulated latency. Parallel operations on vectors can easily make the data size grow
and reduce the importance of round complexity in protocol design.

It follows that developers who optimize secure computation protocols for
SHAREMIND or a similar system must find a balance between bandwidth and la-
tency. If the protocol must work on small inputs, one should aim for fewer rounds.
If the protocol is intended to be run with multiple inputs, the designer should take
steps to reduce the communication complexity of messages.

With SHAREMIND, one also has to understand that as the messages grow,
SHAREMIND starts to automatically split messages to keep the input sizes of pro-
tocols near the saturation point. However, each piece of the message requires its
own round trip time and this adds to the number of rounds. The perfect balance
between the number of rounds and communication complexity is not yet known,
but first steps towards finding this balance have already been taken [106].

83

CHAPTER 5

PROGRAMMING SECURE
COMPUTATIONS

5.1 Motivation and design goals

In Chapter 3 we showed how to perform secure computations on SHAREMIND

and presented general protocols for collecting data and processing them using se-
cure computation. In Section 3.5, we presented a protocol for processing queries
received from result parties. In practice, we need a way for specifying the algo-
rithms that control the secure computation protocols in these queries. Our solution
is to use domain-specific programming languages to specify the secure operations
that SHAREMIND must perform to complete the query.

We set several goals for the whole programming experience.

1. The programming language must support operations on both public and
private data.

2. The programming language must clearly separate public and private data
and control when private data becomes public.

3. The programming language must be independent of any particular secure
computation paradigm.

4. The programming language must provide tools that simplify the implemen-
tation of algorithms that process large databases.

5. It must be possible to run the programs written in the language on the
SHAREMIND computing parties.

The choice of these particular goals were driven by several considerations.

84

First, the decision to include public operations in the programming model
comes directly from the efficiency goal of SHAREMIND. It is not feasible to hide
the whole state space of the secure computation. Each branching statement in-
creases the number of parallel states we need to secure and maintain, because
otherwise the security can be compromised using side channel attacks like tim-
ings. The situation is worse for loops, because each loop condition is basically a
branching decisions and hiding the size of the loop either becomes very expensive
or leaks bits about the loop condition. Also, most circuit evaluators unroll loops,
thus needing to know the size (or, at least the maximum size) of the loop.

Instead, we focus on hiding the values in private data and supporting pro-
gramming patterns that hide the control flow and defeat side-channel attacks. By
restricting flow control to decisions based on public values we gain a lot of effi-
ciency. For example, loop conditions can be evaluated using only public values,
condition statements can be made only on public values. The naïve way for han-
dling branching in secure circuits is to evaluate both branches and obliviously
choose the results. It is easy to see how this can quickly grow the computation
complexity of the program.

We can use significantly less secure computation resources by allowing the
programmer to combine both public and private decisions in a program. For ex-
ample, loop conditions can be evaluated publicly during runtime without requiring
secure operations.

The second goal of SHAREMIND programming language design partially fol-
lows from the first. In order to prevent programming errors where private values
are used instead of public ones, the programming language must keep a strict
separation between the types. In our design we decided to allow the implicit con-
version of public values to private values but allow only explicit conversions of
private values to public values. The type system of the programming language
takes care of the separation and enforces all possible assignments in the compiler.

Although the SHAREMIND design fulfills the goals we set for the secure com-
putation engine, we acknowledge that cryptographic research moves on and more
protocols can emerge, providing a comparable degree of efficiency and ease of
use. Therefore, to keep the language independent from the underlying crypto-
graphic protocols, we refrained from including protocol-specific constructs like
parties in the programming language. The cryptographic parts of SHAREMIND

are hidden in the type system and compiler. This allows us to adapt the language
to other secure computation paradigms such as homomorphic encryption.

Fourth, we believe that secure aggregation and data mining will be a signifi-
cant use case for SHAREMIND and, therefore, we intend to provide tools for the
creation of such applications. This includes adding vector and matrix types to the
language and supporting pointwise operations on these types. Furthermore, we

85

22

chose to design an imperative language to simplify the porting of data processing
algorithms in the literature.

Finally, it is our goal to provide a runtime for the language. To achieve this
without becoming protocol-specific, we created a low-level assembly language
that is specific to the SHAREMIND system and supports all the operations sup-
ported by SHAREMIND. We then proceeded to design a high-level language called
SECREC (pronounced as secrecy) that meets all the goals we have set and created
a compiler to translate SECREC programs into SHAREMIND assembly language.
As a final link, we added an assembly interpreter to the SHAREMIND machine,
allowing SECREC language programs to be executed so that the separation of
private and public data is enforced by the SHAREMIND runtime.

5.2 The SHAREMIND secure virtual machine and
assembly language

The SHAREMIND assembly language is an interpreted language. The interpreter
is implemented within SHAREMIND where it interfaces directly with two vir-
tual machines—the privacy-preserving virtual machine that runs secure multiparty
computation protocols and the public virtual machine that performs public opera-
tions.

The abstract machine of SHAREMIND 2 is a hybrid of a stack machine and a
register machine. A private stack is used for passing operations to private opera-
tors. This allows the programmer to easily set up input vectors for larger SIMD
operations. For intermediate results, however, there are public and private reg-
isters (including vector registers). The runtime state of the virtual machine is
formed by the contents of the stack, the registers and also the private database.

As the main data type of the SHAREMIND 2 implementation is the 32-bit
unsigned integer, it is also the type of the private stack. Public and private registers
can contain scalar or vector values of the same type. Public registers can also store
string data to help with the processing database metadata and handle logging.

To run a secure operation, the programmer pushes the inputs on the stack from
either the database or the registers. The programmer can then invoke the secure
computation operation that will take its inputs from the private stack and, after
completion, will put the results back on the stack. Private operations can take
parameter vectors of any size from the stack.

To speed up the implementation process, public expressions have been di-
rectly integrated into the assembly language. Public arithmetic works directly on
registers.

SHAREMIND also has operations for loading data from the database and sav-
ing them to the database. For efficiency, the operations can push database columns

86

directly on the stack for immediate processing. This allows the programmer to op-
timize the code and skip the copying of large vectors through registers.

Even though the assembly interpreter keeps a strict separation between the
public data and the private data, it does not have many built-in restrictions on
making private data public. There are some operations (e.g., moving data from
a private register to a public register, popping values from the private stack to a
public register) that trigger the collection of shares and the reconstruction of se-
crets. As the assembly language represents the “hardware” layer in SHAREMIND,
it must provide such operations. We give a more detailed description of the pro-
gramming model of the SHAREMIND virtual machine in [24].

In the majority of cases, secure functionality is developed in the high-level
SECREC programming language and therefore, it is useful to implement the rele-
vant restrictions in that language. The translation from SECREC to assembly lan-
guage must preserve the same security guarantees. It is possible to show formally,
that the translation from a high-level language to a low-level language preserves
the claims about the information flow. These claims include the movement of data
between public and private types.

However, even with such claims, the compiler may contain errors that cause
the generation of incorrect assembly code. One solution is to create a compiler that
generates a proof of the data flow claims and embeds this proof in the assembly
code. The interpreter of such proof-carrying assembly code will then be able to
check the information flow claims during execution. Even then, it is important to
control the quality of the compiler through testing and analysis of the resulting
code, as developer errors may still create security risks. At the time of writing
this thesis SHAREMIND does not use proof-carrying assembly code and adding
support for this remains a future goal.

The assembly language interpreter of SHAREMIND 2 has been built and in-
tegrated into SHAREMIND as joint work with Roman Jagomägis [70]. The inter-
preter is fully functional and is powering the SECREC programming language.

5.3 SECREC—a high-level imperative language for
implementing secure functionality

5.3.1 Secure data types

SHAREMIND assembly provided the hardware abstraction for secure computa-
tion protocols. We used this abstraction to design and implement the SECREC
(secrecy) programming language that hides the details of the secure computation
protocols. SECREC is a C-like language that separates public and private data
on the type system level. Variables that are typed as private are processed using

87

/ / D e c l a r a t i o n s f o r p u b l i c v a l u e s .
public bool publicValue ;
public uint32 [1 0] publicVector ;
public uint32 [3] [3] publicMatrix ;
public string tableName ;

/ / P r i v a t e s c a l a r va lue , v e c t o r and m a t r i x d e c l a r a t i o n s .
private uint32 secretValue ;
private bool [5] secretVector ;
private uint32 [1 0] [1 0] secretMatrix ;

Figure 5.1: Variable declarations in SECREC

secure computation whereas public values are stored and processed as usual.
Each type in SECREC consists of a data type and a security type. As the

SHAREMIND 2 platform works with 32-bit unsigned integers, the uint32 data
type in SECREC is a 32-bit unsigned value. There is also a bool type that is em-
ulated on 32-bit shares. The string and void data types are only available for
public types. The latter is used only for methods with no return value. Figure 5.1
shows how to declare variables in SECREC.

5.3.2 Secure operations and parallelism

As parallel operations are efficient on SHAREMIND, SECREC supports pointwise
operations on vectors and matrices. There are also operations for aggregating
whole vectors of values (e.g., summing them). Table 5.1 shows the available
binary and unary operators for processing private data in SECREC. All the listed
operators also work on scalar values and public variables. Additionally, SECREC
can expand a scalar value to the same shape as a vector or matrix to simplify such
operations for the programmer. See Figure 5.2 for examples.

Other functions are available through the standard library of the language. The
reference is given in the documentation of the software development kit [115].

In Chapter 4, we showed that the use of parallelization can significantly sim-
plify and optimize code. As processing a single value may take the same amount
of time as processing a thousand values, SECREC programs should be designed so
that they use pointwise operations and built-in aggregations as much as possible.

Figures 5.3 and 5.4 show two functions that perform a similar task. Both
functions count the number of occurrences of a private value in a private vector (an
interesting subtask in, e.g., histogram computation). The countFast function
performs fewer operations, but these have a higher degree of parallelism.

88

Operands Operation

private uint32[] a

c = a + b;

private uint32[] b

c = a - b;

private uint32[] c

c = a * b;
c = a / b;
c = a % b;
c = -a;

private uint32[] a c = a < b; c = a > b;
private uint32[] b c = a <= b; c = a >= b;
private bool[] c c = a == b; c = a != b;
private bool[] a c = a || b;
private bool[] b c = a && b;
private bool[] c c = !a;

Table 5.1: Secure binary and unary operations in the SECREC language.

/ / D e c l a r e d a t a .
private uint32 threshold ;
private uint32 [1 0] data ;
private bool [1 0] result ;
/ / Expand t h r e s h o l d i n t o a v e c t o r .
private uint32 [1 0] thresholdVector = threshold ;
/ / E v a l u a t e g r e a t e r−t h a n p o i n t w i s e t o g e t a b o o l e a n
/ / v e c t o r where a ` ` t r u e ' ' means t h a t t h e v a l u e a t t h i s
/ / p o s i t i o n was g r e a t e r o r e q u a l i n t h e f i r s t p a r a m e t e r .
result = (data >= thresholdVector) ;
/ / Now c o u n t t h e number o f t r u e v a l u e s .
private uint32 count = vecSum (result) ;

Figure 5.2: Pointwise and aggregation operations in SECREC

In Section 4.3.3, we showed that a single operation on a thousand values
can take nearly the same amount of time than a single operation on one value.
Therefore, the algorithm in Figure 5.4 has a significantly smaller running time on
SHAREMIND than the algorithm in Figure 5.3.

In these examples, all intermediate values are declared to show the security
types of each value and convince the reader that the secure inputs are not made
public in the algorithm.

89

23

private uint32 count (private uint32 [] data ,
private uint32 value) {

/ / Get t h e s i z e o f t h e d a t a .
public uint32 size ; size = vecLength (data) ;
/ / Loop ove r v a l u e s and pe r fo rm p r i v a t e c o m p a r i s o n s .
public uint32 i = 0 ;
for (i = 0 ; i < size ; i = i + 1) {

/ / Per fo rm s e c u r e compar i son .
private bool match ; match = (data [i] == value) ;
/ / Ca s t t o i n t e g e r (t r u e = 1 , f a l s e = 0) and add .
public uint32 matchInt = boolToInt (match) ;
matchcounter += match ;

}
/ / Re tu r n r e s u l t a s a p r i v a t e v a l u e .
return matchcounter ;

}

Figure 5.3: A non-parallel counting function in SECREC

private uint32 countFast (private uint32 [] data ,
private uint32 value) {

/ / Get t h e s i z e o f t h e d a t a .
public uint32 size ; size = vecLength (data) ;
/ / Expand t h e i n p u t t o a v e c t o r .
public uint32 [size] valueVector = value ;
/ / Pe r fo rm p a r a l l e l compar i son .
private bool [size] matches ;
matches = (data == valueVector) ;
/ / Cas t and sum up t h e r e s u l t s .
private uint32 matchcounter ;
matchcounter = vecSum (matches) ;
/ / Re tu r n r e s u l t a s a p r i v a t e v a l u e .
return matchcounter ;

}

Figure 5.4: A parallelized counting function in SECREC

5.3.3 Making private data public

The only way to make a private value public in SECREC is to pass it to the
declassify operator. No other operator or function can take a value typed

90

private as an input and output the same value to a value with a public type.
Also, no function of the standard library uses the declassification operator inter-
nally. This restriction makes all share reconstructions explicit and simplifies the
security analysis.

If the SHAREMIND assembly program in its execution reaches a call to the
declassify operator, the computing nodes will send their shares of the declas-
sified value to all other computing nodes and receive shares sent by others. This
way, each computing node can reconstruct the value in a public register, replicated
over the computing nodes. No computing node can send others a declassification
call, each node must engage in the declassification synchronously for it to suc-
ceed.

When the execution of a secure algorithm is completed, the result can be pub-
lished to the result party who requested the computation. This can be done using
the publish function. The main function in SECREC acts as an entry point
that processes the input parameters from the result party and sends the output. For
example, consider the code in Figure 5.5.

/ / Count o c c u r r e n c e s o f a v a l u e i n a d a t a b a s e column
public void main (public string db , public string table ,

public string column , private uint32 value) {
/ / Load t h e d a t a b a s e by name .
dbLoad (db) ;
/ / Get t h e d a t a from t h e d a t a b a s e column .
private uint32 [0] data = dbGetColumn (column , table) ;
/ / C a l l t h e more e f f i c i e n t c o u n t i n g f u n c t i o n .
private uint32 result = countFast (data , value) ;
/ / D e c l a s s i f y and p u b l i s h t h e r e s u l t .
public uint32 publicresult = declassify (result) ;
publish ("countresult" , publicresult) ;

}

Figure 5.5: Declassification and result publishing in a SECREC main function.

This code also demonstrates the use of database functions in the SECREC
standard library. The result party publicly provides the database, table and column
names and also gives a private query parameter. Data from the specified column
is loaded and passed to a counting function together with the private parameter.
The private result is returned and then published to the result party. The main
function does not have a return type, as the publish function provides greater
flexibility and makes returning several values easier.

The compiler for the SECREC language was designed and implemented as

91

joint work with Roman Jagomägis [71]. The compiler processes source code files
with the .sc extension and outputs SHAREMIND assembly files with the .sa
extension. The resulting assembly can be executed on the SHAREMIND machine.

5.4 Developing secure SECREC programs

SECREC algorithms must be constructed in such a way that the amount of declas-
sified data is kept to a minimum. In the example discussed in Section 5.3.2, the
following information is public:

• the location of the data in the SHAREMIND database,

• the amount of values loaded for processing, and

• the number of times the private parameter occurred in the private database
column.

The following information remains private:

• the values in the database,

• the inputs and results of comparisons and

• information about which vector elements are added to the total sum of oc-
currences.

SHAREMIND and SECREC provide cryptographic privacy, but special care
has to be taken to achieve other types of privacy. Secure multiparty computation
guarantees that nothing except for the intended outputs of the algorithm is leaked.
However, if the outputs are computed from the inputs, they always leak something
about them. For example, if the number of occurrences is equal to the number of
elements, then we know the contents of the whole database column. This is an
example of an attack against output-level privacy (see Section 3.2 for details).

SHAREMIND achieves record-level privacy and source-level privacy in the
storage phase, thanks to the use of secret sharing. Both kinds of privacy are
harder to maintain during computations, as it will require that we do not change
the program flow according to declassified variables among other things. How-
ever, declassifying intermediate values can significantly improve our performance
and, therefore, a balance is needed. The issues affect source-level privacy.

The only known provable method for defeating attacks against output-level
privacy is to design algorithms so they satisfy the property of differential privacy.
However, this comes with the risk of lowered accuracy. Therefore, for practical
applications, we use use clever algorithmic techniques for reducing the amount of

92

information that leaks from the output. This means accepting certain risks, but as
long as these are acknowledged and quantified, the privacy leaks are controlled.

In practice, the algorithm developer is responsible for deciding when to de-
classify values. Until we build tools that can automatically point out privacy leaks
in SECREC programs, the developers themselves have to consider the privacy im-
plications of declassification. The privacy proof of an algorithm can be trivial, if
only the final results are declassified. However, if intermediate results are used,
the developer must consider the implications of such disclosures to computing
parties.

We can analyze and quantify the privacy leaks of SECREC algorithm through
an analysis of declassifications. Figure 5.6 illustrates the flow of private informa-
tion in a SECREC program. A SECREC program can have two kinds of secure
inputs in addition to the public parameters and hardcoded constants—the private
parameters to the main function and data in the private database. These inputs are
processed by the computing parties using secure multiparty computation. The pro-
gram may declassify values that become visible to the computing parties. Some
public values can be published to the result parties.

private
database

RP

IP⇤
CP⇤

private
parameters

SecreC
program

state
(private

variables)

declassified
variables

published
variables RP

CP⇤

Figure 5.6: The flow of private data in SECREC programs.

Ideally, only the final results of the computation are published and the shares
are sent straight to the result party so that the other computing parties do not learn
them. However, as discussed earlier, we want to allow a program to declassify
intermediate values that might affect the flow of the program. Therefore, we need
to consider the information that these values disclose.

One way of proving that declassifications of intermediate data are not a pri-
vacy leak is to use a technique similar to the simulatability proofs that we use
to prove the security of SHAREMIND protocols. To prove that declassifying the
intermediate values in a SECREC program does not leak additional data, we show
that the results of all these declassifications can be directly inferred from the final
output.

If the final output is published and the miners can learn it, it is not a risk to pub-
lish some pieces leading to it earlier in the program to improve efficiency. This

93

24

technique has been used in proving the security of privacy-preserving frequent
itemset mining algorithms in [22]. The model is applicable if the computing par-
ties learn the output of the algorithm through declassification or collusion with the
result party. However, if the final output is not available to the computing parties,
such intermediate declassifications may leak too much information.

The other, more mechanical method is to consider the flow of individual pri-
vate values through the execution of the program. Whenever a value is declas-
sified, we look at how it has been processed up to that point. We prohibit the
declassification of values that come directly from either of the two private input
channels (parameters or the database) without any processing. We consider a de-
classification “safe”, if the variable being declassified contains an aggregation of
several private or public values. We stress that this kind of analysis provides a
heuristic for detecting leaks, but does not give absolute guarantees.

The first software implementation of such an analysis was developed as joint
work with Jaak Ristioja. The resulting static analysis framework for the SECREC
programming language is described in [107]. We formalized the semantics of the
SECREC language and created a prototype analysis tool that can detect several
kinds of privacy leaks in SECREC programs. However, there are also several
cases, where leaks are not detected and improving the analysis methods is a goal
for future work.

5.5 Additional developer tools

5.5.1 The developer version of the SHAREMIND server

In production deployments, SHAREMIND is deployed on three separate servers
connected over the network to satisfy the independence requirement of the secu-
rity model. However, during the development of the system, the setup of three
servers can be an unnecessary burden. We resolved this issue by creating a devel-
oper version of the SHAREMIND server, called the DEVMINER. Figure 5.7 shows
the DEVMINER application immediately after starting up.

The DEVMINER is an application that runs three SHAREMIND computing
parties on a single machine. The communication between these nodes is not per-
formed over the network, but through in-memory channels. The DEVMINER still
uses the network to service the requests of input parties and result parties. Fig-
ure 5.8 illustrates the difference between the production and developer deploy-
ments of SHAREMIND.

The DEVMINER application is built from the same components that are used
in the standard SHAREMIND server application. The main differences are in some
hardcoded configuration values, and a different communication model. Addition-
ally, DEVMINER accepts developer commands such as instructions to debug a

94

Figure 5.7: The DEVMINER application after startup.

SHAREMIND assembly program by single-stepping or retrieving the contents of
private values. Production deployments of SHAREMIND do not service such re-
quests. DEVMINER is available as a part of the SHAREMIND SDK [115].

We stress that the DEVMINER system does not give the same security guar-
antees as a normal SHAREMIND installation, because all three computing party
processes in DEVMINER are under the control of a single entity. However, a
solution such as DEVMINER could be made secure if all three computing party
processes are run in virtual machines that are separated from each other by a se-
cure hypervisor process. Furthermore, SHAREMIND could be deployed in three
separate servers in the same physical location, provided that physical access to the
servers is restricted to three different owners.

5.5.2 The SECRECIDE integrated development environment

Modern software is often developed using integrated development environments
(IDEs). These environments assist the developer by providing tools and documen-
tation for project management, compilation and debugging.

SHAREMIND provides a fundamentally different programming paradigm when

95

CP1 CP2

CP3

IP RP&

Server 1

Input and result parties

Server 2

Server 3

(a) SHAREMIND in a production en-
vironment.

CP1 CP2

CP3

IP RP&

Server

Input and result parties

(b) SHAREMIND in a deve-
loper environment.

Figure 5.8: Different deployment options of SHAREMIND.

compared to systems running on standard computing hardware. The main differ-
ence is in the use of secret sharing for storing the data. This makes the devel-
opment and debugging of SHAREMIND applications more complex, as inspecting
the data at a single party yields only a single share and gives no useful information
to the developer. These inconveniences inspired the creation of a tool that helps
develop and debug SECREC code. The first version of the SECRECIDE tool was
developed as joint work with Reimo Rebane and the general design is documented
in [105].

SECRECIDE stands for the SECREC Integrated Development Environment.
It supports the developer in several ways.

• SECRECIDE assists the developer in editing SECREC and SHAREMIND

assembly source code by providing syntax highlighting and indenting.

• SECRECIDE simplifies compiling SECREC code into SHAREMIND assem-
bly.

• SECRECIDE can connect to SHAREMIND miner servers to upload com-
piled code and execute it.

• SECRECIDE can be used for debugging SHAREMIND assembly on a run-
ning DEVMINER. This includes setting breakpoints, single-stepping and
continuing code execution, inspecting public and private values in the pri-
vate stack and both public and private registers.

• SECRECIDE contains reference documentation for both the SHAREMIND

assembly and SECREC languages.

96

Figure 5.9: The SECRECIDE application with an open code file.

Figure 5.9 shows the SECRECIDE tool with an opened code file that has just
been compiled.

5.6 A comparison of SECREC to other secure
computation programming languages

We conclude the description of SECREC with a quick comparison to other lan-
guages designed for implementing secure multiparty computation protocols or
applications. Table 5.2 gives a comparison of secure programming languages
with a secure multiparty computation backend.

The table contains several aspects of the languages. First, we list the interme-
diate representation and runtime of each language. Then we describe the secure
computation model represented by the language by giving the number of sup-
ported parties and describing, if the language requires the programmer to write
code that is specific to a certain party. We show, which languages contain explicit
syntax for exchanging messages between parties.

The overview continues with the secure and public computation features of the
language and the runtime. We list the data types and operations and pay special

97

25

attention to how private values are made public. The table then describes the data
structures and flow control mechanisms that the language provides. Finally, we
list the papers from which the information in the table was gathered.

Based on the comparison, we can evaluate the suitability of each language
for a particular task. We consider two main use cases—the development of new
secure computation protocols and the development of secure data analysis appli-
cations. For protocol development, we require a language that can specify the
functionality for each party and provides message exchange facilities. The best
candidates for protocol development are L1 and TASTYL, as they have the listed
capabilities and they also support several secure data representations such as gar-
bled circuits and homomorphic encryption. While SMCL also has party-specific
code, it does not support different secure data representations.

The best languages for data processing applications are SMCL and SECREC.
The main difference between the two languages is the application development
paradigm. Whereas SMCL has special objects representing different clients and
their inputs and outputs, SECREC code is independent of the deployment of the
underlying cryptographic protocols. Furthermore, the SECREC standard library
contains functions for vector and matrix manipulation and secure database access
that simplify the development of applications. Both languages have been used for
developing real-world applications [100, 30].

The SFDL language is also suitable for applications and it is excellent for
specifying purely secure functionalities. This is well illustrated by the fact that
the SFDL language is used as an input language by several secure computation
implementations, e.g., Fairplay, FairplayMP and TASTY. Its main downside is the
inconvenience of working with public data. SFDL programs do not contain public
variables and this makes the development of real-life applications significantly
more complex.

We have discussed the strengths of each language and conclude that they share
many similarities, but their intended purpose makes them different. For example,
SECREC is probably the easiest language to develop algorithms in, as it does not
require the developer to think about parties or networking. However, this makes
SECREC less optimal for applications where the roles of parties are strictly fixed.

98

L
an

gu
ag

e
SF

D
L

(1
an

d
2)

SM
C

L
TA

ST
Y

L
L

1
SE

C
R

E
C

C
om

pi
le

st
o

SH
D

L
Ja

va
D

SL
—

Ja
va

D
SL

as
se

m
bl

y
R

un
tim

e
Fa

ir
pl

ay
,

Fa
ir-

pl
ay

M
P,

TA
ST

Y
SM

C
R

TA
ST

Y
Ja

va
V

M
S

H
A

R
E

M
IN

D
2

N
um

be
r

of
pa

rt
ie

s
2

or
m

or
e

3
or

m
or

e
2

2
or

m
or

e
N

ot
fix

ed
C

od
e

st
yl

e
Pa

rt
y-

sp
ec

ifi
c

Pa
rt

y-
sp

ec
ifi

c
Pa

rt
y-

sp
ec

ifi
c

Pa
rt

y-
sp

ec
ifi

c
U

ni
ve

rs
al

N
et

w
or

ki
ng

Im
pl

ic
it

E
xp

lic
it

E
xp

lic
it

E
xp

lic
it

Im
pl

ic
it

Se
cu

re
in

te
ge

rs
Y

es
Y

es
Y

es
Y

es
Y

es
Se

cu
re

+
,×

Y
es

Y
es

Y
es

Y
es

Y
es

Se
cu

re
=

=
,<

,>
Y

es
Y

es
Y

es
Y

es
Y

es
Se

cu
re
/
,m

o
d

N
o

N
o

N
o

Y
es

Y
es

Se
cu

re
bo

ol
ea

ns
Y

es
Y

es
Y

es
Y

es
Y

es
Se

cu
re

lo
gi

c
Y

es
Y

es
Y

es
Y

es
Y

es
D

ec
la

ss
ifi

ca
tio

n
Im

pl
ic

it
E

xp
lic

it
Im

pl
ic

it
Im

pl
ic

it
E

xp
lic

it
Pu

bl
ic

ty
pe

s
an

d
op

er
at

io
ns

N
on

e
B

oo
le

an
,i

nt
eg

er
B

oo
le

an
,i

nt
eg

er
B

oo
le

an
,

in
te

ge
r,

st
ri

ng
B

oo
le

an
,

in
te

ge
r,

st
ri

ng
A

rr
ay

s,
m

at
ri

ce
s

O
nl

y
ar

ra
ys

O
nl

y
ar

ra
ys

B
ot

h
O

nl
y

ar
ra

ys
B

ot
h

SI
M

D
op

er
at

io
ns

N
o

N
o

Y
es

Y
es

Y
es

O
bl

iv
io

us
ar

ra
ys

Y
es

N
o

N
o

N
o

Sp
ec

ia
lf

un
ct

io
n

Pr
iv

at
e

br
an

ch
in

g
L

im
ite

d
L

im
ite

d
N

on
e

N
on

e
N

on
e

L
oo

ps
C

on
st

an
ts

iz
e

Pu
bl

ic
si

ze
C

on
st

an
ts

iz
e

Pu
bl

ic
si

ze
Pu

bl
ic

si
ze

R
ef

er
en

ce
s

[9
5,

15
]

[1
01

,1
00

]
[6

6]
[7

8,
11

1]
[7

1,
10

7]
,

th
is

th
es

is

Ta
bl

e
5.

2:
A

se
le

ct
io

n
of

se
cu

re
co

m
pu

ta
tio

n
pr

og
ra

m
m

in
g

la
ng

ua
ge

s
w

ith
se

cu
re

m
ul

tip
ar

ty
co

m
pu

ta
tio

n
ru

nt
im

es
.

99

CHAPTER 6

SHAREMIND IN PRACTICE

6.1 The process of developing a SHAREMIND

application

6.1.1 Designing the application

We will now propose a process for developing secure applications based on the
SHAREMIND system. This guidance has been developed through the study of sev-
eral implemented and deployed prototypes. The process will be detailed further
when SHAREMIND technology is developed into an industry-accepted toolkit.

The development of a secure computation system with SHAREMIND starts
with determining the problem and its stakeholders. The important questions are:

1. Who has the data?

2. Who wants to process the data?

3. Are there any other organizations who benefit from processing the data?

4. Are there any other organizations whose goal it is to protect the data?

We must consider these answers as we determine the input parties, computing
parties and result parties. The people that can provide the necessary data will act
as input parties. The organizations who want to process data become the result
parties. The three computing parties are chosen from among all the identified
stakeholders in accordance to the following requirements.

First, the organizations must have an interest in preserving the privacy of
the data providers. Second, these organizations must be as independent from
each other as possible. Finally, each organization must be capable of hosting a
SHAREMIND server or, alternatively, must arrange the hosting, e.g., on a cloud.

100

These requirements are in place to prevent the unauthorized exchange of secret
shared data as that would compromise the privacy guarantees. For details, refer to
the the passive adversary assumptions as discussed in Section 3.3.3.

The next step is to design the secure application as a collection of data models
and algorithms for processing the data. As the result party knows what kind of
data are needed to perform the analyses, it proposes the initial data model. The
designed data model must include information on which attributes are stored as
public values and what will be stored in secret shared form. The resulting data
model will later be used to set up the SHAREMIND database.

While the result party is the initiator behind application design, the process
should be witnessed by both the computing parties and the result parties. This
way, the computing parties will get an understanding of the kind of data they will
jointly be processing. Furthermore, it may be beneficial to involve a representative
of the input parties as one of the computing parties. This way, the input parties
have a stronger involvement in the whole process.

After agreeing on the data model, the result party presents the list of analyses
to be performed on the data. Each analysis in the application should be described
so that it is clear, what data are used and what will be declassified as a result of
the computation. This transparent communication allows all involved parties to
understand the extent of information use.

6.1.2 Implementing the application

Once the application description has been agreed on, the three main components
of a SHAREMIND application are implemented.

First, the data entry application implements the behavior of the input parties.
The data entry application is implemented using the controller library specific to
the platform that will be used for data entry. For example, if the data are en-
tered using a desktop application or imported from an existing database or file, a
desktop version of the controller library should be used. A web-based data appli-
cation can be implemented with a specific library that allows secret sharing to be
performed in the web browser.

The developer will design a suitable user interface for collecting the secret
data and implement it using the SHAREMIND controller library. The controller
library will take care of secret sharing and uploading the collected data to the
SHAREMIND database.

The data analysis application represents the behavior of the computing parties.
It consists of secure data processing algorithms implemented in the SECREC lan-
guage. The developer can use the SECRECIDE environment and the DEVMINER

during development to simplify debugging and testing. All the analysis algorithms
must be implemented so that the declassifications are in accordance with the ap-

101

26

plication description. Should it happen that an algorithm cannot be implemented
without additional declassifications (or the implementation would be inefficient),
the application description must be updated. Moreover, all parties must be in-
formed of the new declassifications.

The data analysis application implements the behavior of the result parties.
This application will also be implemented using the controller library. To send
queries to SHAREMIND, the application will give the controller library the name
of the algorithm to run, together with all the required parameters. The controller
library will relay the information to SHAREMIND servers that will, in turn, start
the algorithm with the given parameters.

Once the computation is complete, all the published values will be sent to
the controller library application from where the query originated. The library
will return the results to the analysis application. The application may then use
any suitable presentation method to show the data. Alternatively, the analysis
application can also store the results locally for later lookup.

6.1.3 Deploying the application

When the necessary components of the SHAREMIND application have been cre-
ated, they can be deployed for use. The data entry applications must be delivered
to the data provider in a trustworthy manner.

For desktop applications, this means ensuring the correctness and authenticity
of the code by techniques such as code signing. For web applications it is also
important to inform the users of the correct URL for the data entry application.
Note that these precautions are not unique to secret sharing technology, but they
provide additional guarantees. There is always the alternative of setting up trusted
data entry terminals, but then we would have to convince the users that there are
no additional tracking systems such as keyboard loggers on

The SHAREMIND server software must be deployed by each host individu-
ally to ensure that no party has access to more than one SHAREMIND server. The
servers will then be configured with each others addresses and encryption keys.
This information must be exchanged in the most direct manner possible to en-
sure that the configuration is correct and the keys for setting up secure channels
between the servers are not compromised.

When SHAREMIND has been successfully set up, it is time to deploy the
SECREC code. The code must be delivered to each SHAREMIND server host who
can also exchange hashes of the code to make sure that they have the same version
of it. For better security, the code could be digitally signed and each SHAREMIND

server host could validate the signature.
It makes sense to deliver SECREC code instead of compiled code as it is easier

to read and validate. As an optional step, the host can perform a final verification

102

to check that the code conforms to the agreed application description. The code is
then compiled to SHAREMIND assembly and deployed at the server. This step ef-
fectively confirms the server’s readiness to execute the given analysis algorithms.

We note here a possible research direction for improving the security of de-
ploying SECREC code for SHAREMIND. It is possible that the compiler makes
mistakes in the translation and generates assembly code that does not preserve the
secure data flow of the SECREC program. We could enhance the SECREC lan-
guage and compiler to employ proof-carrying code techniques so that the security
properties of a SECREC program could easily be validated on the lower-level as-
sembly code.

Finally, the setup of the data analysis application is similar to the setup of the
data entry application. Whereas the data entry application was delivered to the
input parties, the data analysis application is set up for the result parties who can
use it for sending queries to the running SHAREMIND application.

6.2 Privacy-preserving application prototypes

6.2.1 Online surveys

We demonstrate a prototype application for SHAREMIND that helps a user perform
surveys that ask for numeric values or selections from pre-determined options.
These multiple choice questions are usually connected to a numeric scale or an
encoded classifier. For now, we do not consider questionnaires with text fields.

It is possible to conduct the survey in the form of an interview, where a spe-
cialist asks the question from an individual and enters the results into a special
data collection application. However, it is often cheaper for the survey organizer
to make the form available on the internet and request that members of the target
group fill it out themselves.

Deploying SHAREMIND data entry applications as web pages raises several
technical challenges. For best privacy, we must ensure that the data leaves the
input party in secret shared form and reaches the computing parties without inter-
mediaries, secret sharing must be performed in the web browser. Hence, the web
application forms secure connections to several servers and has access to a good
source of randomness.

These issues were investigated as joint work with Riivo Talviste [122]. We
implemented a web-based secret shared data collection mechanism that performs
secret sharing in the web browser using a simple SHAREMIND controller library
written in JavaScript. As most standard client-side web technologies do not pro-
vide developer access to a secure randomness source, we also described a general
solution for obtaining secure randomness in a web browser that has no built-in
access to good entropy.

103

We also describe graphical user interface elements that help the user distin-
guish secret-shared data collection from standard web forms. The proposed so-
lution displays visual identifiers of the computing parties together with the web
form to show that these are the parties that are responsible for preserving privacy.

A demonstration of the secure survey technology was developed by Esto-
nian companies Cybernetica, Quretec and Software Technology and Applications
Competence Centre (STACC). This application consisted of a data entry form that
sent data to SHAREMIND servers and a report generator that regularly compiled a
web page that represented the collected data as histograms.

Figure 6.1 illustrates this design. The figure shows an example deployment
where all three computing nodes are deployed by the same host. As this is not the
case in practical applications, an example of a similar application with different
hosts will be presented in Section 6.3.

Figure 6.1: An example of a secure survey questionnaire using SHAREMIND.

To generate the report, a result party application requests the computing par-
ties to execute a SHAREMIND assembly program that computes several histograms.
The published data from these histograms is passed to a report generation tool that
presents them in the form of bar charts, as shown in Figure 6.2. The demonstration
has been published on the web [116].

104

Figure 6.2: An example of a secure survey report.

6.2.2 Frequent itemset mining

Data mining is a technique for analyzing large databases in order to extract new
information. We consider it to be a primary application of the SHAREMIND sys-
tem and, therefore, we have also adapted data mining algorithms for SHAREMIND.
Even though SHAREMIND and SECREC allow standard data mining algorithms to
be naïvely converted into a secure form, we can often get better performance and
security by redesigning algorithms specifically for SHAREMIND.

There are two main reasons for why optimizing algorithms for SHAREMIND

brings significant benefits. First, the hybrid programming model of SECREC re-
quires that private data are identified and separated. Furthermore, only the mini-
mal amount of information should be declassified. For some algorithms, no inter-
mediate declassifications are required, whereas others may need them to be more
efficient.

Second, the properties of SHAREMIND motivate us to use parallelization as
much as possible. While some data mining algorithms (e.g., ones based on breadth-
first search) are easy to parallelize, others require more work. Our research group
has found, that parallelization and minimal declassification are easy to achieve
through the use of oblivious choice primitives [87].

105

27

The first non-trivial data mining problem we solved was that of frequent item-
set mining [22, 71]. Frequent itemset mining is an underlying technique for col-
laborative filtering and market basket analysis. Privacy-preserving collaborative
filtering can be used for a variety of tasks, including product suggestions in e-
commerce and item suggestions in museums [28].

We chose to adapt and implement two well-known frequent itemset mining
algorithms—Apriori [4, 96] and Eclat [130]. Apriori uses a breadth-first searching
approach and Eclat uses depth-first search. The two algorithms were implemented
in SECREC and also in the form of SHAREMIND protocols. The latter was done
to measure the overhead of SHAREMIND assembly interpretation. The details of
the implementation and the security analysis is given in [22].

Preliminary results showed that the highly parallelized secure Apriori imple-
mentation is significantly faster than the secure Eclat implementation. However,
Apriori also used significantly more memory. Based on these results, we imple-
mented a version of Apriori with controlled levels of parallelization and a version
of Eclat with some levels of parallelization.

As expected, the hybrid Apriori used less memory and it also performed only
slightly slower than the fully parallel version. Similarly, we observed that the hy-
brid Eclat algorithm performed better without requiring significantly more mem-
ory. A comparison of the performance of the algorithms is given in Figure 6.3.
The experiments were run on the mushroom database from UC Irvine Machine
Learning repository [59]. Note that in the experiments we only set limits on the
threshold and not the contents of the itemset so that all the itemsets meeting the
threshold criteria were found.

Absolute support

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

101

101.5

102

102.5

103

103.5

●

●

●

●

●

●

1000 1500 2000 2500 3000
Absolute support

A
llo

ca
te

d
m

em
or

y
in

 G
ig

ab
yt

es

1

2

3

4

5

6
●

●

●
● ● ●

1000 1500 2000 2500 3000

C++ implementations

● Apriori

Eclat

HybApriori

HybEclat

Figure 6.3: Comparison of secure frequent itemset mining performance [22].

To measure the overhead of SHAREMIND assembly execution we compared
the running time of the SECREC implementation to the C++ protocol implemen-
tation. We also decided to compare SHAREMIND to other secure computing
systems. Based on published benchmarks, we found that SEPIA [112] is the

106

best match for SHAREMIND in terms of secure computation performance. We
implemented the fastest Apriori algorithm also on SEPIA and benchmarked it
on the same hardware and network configuration that was used for measuring
SHAREMIND. The results are given in Figure 6.4.

Absolute support

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

101

101.5

102

102.5

103

103.5

104

104.5

●

●

●

●

●

●

1000 1500 2000 2500 3000
Absolute support

A
llo

ca
te

d
m

em
or

y
in

 G
ig

ab
yt

es

5

10

15

20

●

●

● ● ● ●

1000 1500 2000 2500 3000

Apriori comparison

● Sharemind (C++)

Sharemind (SecreC)

SEPIA (Java)

Figure 6.4: Comparison of the performance of different Apriori implementations [22].

According to the results the C++ protocol implementation is the fastest among
the compared versions. The SECREC version is faster than the SEPIA implemen-
tation for some vector sizes, but becomes slower for larger vectors. The memory
usage of both SHAREMIND implementations were similar, with SEPIA using sig-
nificantly larger amounts of memory.

Profiling suggests that the slowdown of the SECREC implementation of the
Apriori algorithm is caused by the inefficient handling of large vectors in the
SHAREMIND assembly interpreter. The stack-based design of SHAREMIND oper-
ations is very easy to model and generate code for. However, copying large data
vectors to and from the stack has a significant performance cost. Also, we found
the virtual machine of SHAREMIND is not optimized for public operations and an
algorithm with many public operations has a significant interpretation overhead.

Based on these result, we plan to improve the interpreter to reduce the over-
head. We intend to resolve the data copying issue by moving towards a design
where data vectors are passed around using handles in order to reduce copying
them. Instead of pushing input data on the stack for secure processing, we will
push handles to these vectors so that the protocol can work on the memory ar-
eas directly. We expect that this design change will further reduce the runtime
memory requirements of the SHAREMIND system.

Furthermore, we will optimize the virtual machine that interprets SHAREMIND

assembly to reduce the overhead of executing a single public operation. Both of
these changes will be significant in ensuring that secure algorithms implemented
in the SECREC programming language will not be significantly slower than their
C++ counterparts.

107

6.2.3 Privacy-preserving k-means clustering

Our secure frequent itemset mining algorithm used secure operations for addition,
multiplication and greater-than comparison. However, several algorithms require
the division operation for normalization and similar tasks. SHAREMIND is cur-
rently one of the few systems with an implemented secure division operation. We
decided to test this operation in practice and implemented the k-means clustering
algorithm [91].

Clustering analysis is used to group similar objects or observations accord-
ing to an attribute space. The k-means algorithm is considered geometrical or
centroid-based clustering, as it determines groups by defining a representative ob-
jects for each group and then finding the closest items around that object.

We implemented k-means clustering on the SHAREMIND system as an exam-
ple of applying the new protocols proposed in [27]. Our implementation of secure
k-means clustering hides the coordinates of each data point, but does not hide the
size of the cluster or the set of points in a cluster. In each iteration, we declassify
the index of the closest centroid for each data point and if this index has changed,
we move the data point to the new cluster. In cases where we also need to hide,
which shares belong to which clusters, we can add random shuffling and oblivious
lookups, but that may slow down the algorithm several times.

We tested the implementation on the example databases from the UC Irvine
Machine Learning repository [59]. The experiments were conducted on the same
experimental setting that was used for performance benchmarks and frequent
itemset mining measurements. Table 6.1 gives an overview of the running times of
the algorithms and the number of secure computation operations that were needed
to complete the analysis. In each case, execution continued until the clusters con-
verged.

During development, we found that for some databases, the accuracy of clus-
ters was not good enough because integer division was inaccurate in computing
the distances. We resolved the issue by emulating fixed point number using in-
teger arithmetics. We multiplying the coordinates of the data points by 10000
to make them large enough so that the integer division results become accurate
enough. This allowed us to get the same degree of accuracy that was achieved
with a non-private implementation of the k-means algorithm.

We can conclude from these results that even though the secure clustering
operations require hundreds of millions of secure operations, the running times
remain in the practical range and take under an hour.

108

Database k Time Iter. Multiply Compare Divide
iris

3 1 s 4 9600 5400 44
150× 4

synthetic
3 3 s 5 7.2 · 105 2.7 · 104 900

600× 60
5 6 s 8 1.7 · 106 1.2 · 105 2400
8 8 s 7 2.3 · 106 2.7 · 105 3360

plants
3 4 min 58 s 12 1.2 · 108 3.8 · 106 2520

34781 × 70
5 22 min 42 s 28 4.1 · 108 2.4 · 107 9800
10 36 min 35 s 17 4.6 · 108 5.9 · 107 11900

Table 6.1: k-means clustering performance and operation counts on SHAREMIND.

6.3 The ITL financial benchmarking application

SHAREMIND has been used in a real-world setting. The Estonian Association of
Information Technology and Telecommunications (ITL) is a trade organization of
Estonian companies who are active in the field of information and communica-
tion technology. In 2010, we developed and deployed a secure economic bench-
marking application that ITL uses to measure the health of the information and
communication technology sector in the country [30, 123].

According to the problem statement, members of the ITL enter a selection of
economic metrics twice a year. This information is analyzed to produce trends and
aggregated metrics that can be visualized and presented to the member companies.

We learned of the problem statement of ITL in the summer of 2010. We
drafted a solution proposal that followed the three-part application blueprint pre-
sented in Section 6.1.2. The proposal was accepted and we started to construct
the application. According to the design, data would be entered using a collec-
tion form in the members area of the ITL web page. The same web page would
also host the analytics and reporting application. A SHAREMIND installation was
planned to host the collected data.

The data collection form was implemented using an improved version of the
secure survey technology described in Section 6.2.1. The details of the construc-
tion is described in [123]. The role of the input parties is fulfilled by all eligible
members of ITL.

Three organizations were chosen among the ITL members to hold the roles of
computing parties and host the SHAREMIND nodes. In the context of SHAREMIND

these nodes act as computing parties. Since all three companies were capable of
hosting a SHAREMIND server, no outside hosting was needed.

In the solution, the result party is the ITL board who sends queries to the
SHAREMIND installation and then presents the results to the member companies.

109

28

Figure 6.5: A screenshot of the ITL data entry form.

The application was deployed in late 2010 and the first data collection and
analysis took place in early 2011. For the second data collection period in the third
quarter of 2011, we added a small survey to the system to ask for user feedback
and attitude towards the system. The results and analysis are presented in the
paper [30]. Figure 6.5 shows a screenshot of the deployment.

The ITL application is unique for several reasons. First, it is the first real-
world application where secure multiparty computations are performed over the
public internet. Second, it is the most complex reported application in practice, as
it uses a large set of different primitives and algorithms (see Table 6.2 for details).
Third, it is built using a general purpose secure multiparty computation system,
instead of a specific protocol. This shows that general purpose secure computation
systems can be usable in practice.

110

Analysis operation Required secure computation capabilities
Sorting financial indicator
columns

The oblivious vector sorting network uses

• secure multiplication,

• secure addition and

• secure comparison.

Privacy-preserving
database filtering

Oblivious choice requires

• casting secure booleans to secure integers and

• secure multiplication.

Calculating the added
value per employee

Oblivious ratio calculation requires a secure division
operation.

Computing time series of
financial indicators

The oblivious matrix sorting network is an extension
of the oblivious vector sorting network and requires
the same operations.

Table 6.2: The privacy-preserving algorithms used in the ITL application [30].

111

CONCLUSION

Secure processing of confidential data is a problem with many solutions. Some
companies prefer organizational measures such as non-disclosure agreements and
penalties, others apply standard data protection mechanisms. Unfortunately, ig-
norance is still a common approach to confidentiality, as some organizations dis-
regard the risks associated with inadequate data protection.

The goal of this thesis is to improve the state of the art of practical secure
computation by introducing a practical secure multiparty computation framework
called SHAREMIND. SHAREMIND uses cryptographic techniques such as secret
sharing and secure multiparty computation to ensure that confidential data is pro-
cessed as securely as possible. In this thesis, we present the necessary tools for
building secure computation protocols, using them in applications and deploying
such applications in a real-world setting.

The main result of the thesis is a highly efficient and universally composable
protocol suite for secure computation on integers. We show how SHAREMIND

can securely perform basic arithmetic operations such as addition, multiplication,
comparison and division. The basic operations can be composed sequentially to
form programs and in parallel to achieve operations on vectors. Vector operations
are important in SHAREMIND because they significantly reduce the amortized
cost of secure computation. SHAREMIND encourages the developer to make use
of parallelization by simplifying operations on vectors and matrices.

The efficient processing of vector data makes SHAREMIND a good platform
for privacy-preserving data mining. We have implemented several data analy-
sis application prototypes on SHAREMIND that can compute simple aggregations
like sums and histograms. We have also developed secure algorithms for more
complex tasks like frequent itemset mining and clustering.

All the secure computation capabilities of SHAREMIND are usable by non-
cryptographers thanks to the specially designed programming language SECREC.
SECREC allows data analysis algorithms to be implemented with a clear sepa-
ration of public and private data. All operations on data that have been marked
private are performed using secure computation. SECREC has been designed to
be familiar to software developers and works well with the specially tailored in-

112

tegrated development environment called SECRECIDE. SHAREMIND also pro-
vides a special controller library for creating user interfaces for its applications.
The controller library provides a simple interface to the secure computation ca-
pabilities of SHAREMIND, further reducing the complexity of applying the new
technology in practice.

We believe that our work has brought secure computation technology closer to
real-world applicability. The performance of SHAREMIND is good enough for se-
cure processing of databases with millions of rows. Furthermore, our experiments
show that SHAREMIND is robust enough to be deployed in real-world data centers
internationally. Even more importantly, SHAREMIND has been successfully used
in a real application for privacy-preserving financial benchmarking. This appli-
cation is built on a SHAREMIND installation shared by three separate companies
which makes it the first ever secure multiparty computation application to run on
the public internet.

Data processing applications that use SHAREMIND are significantly more se-
cure than ones that do not use secure multiparty computation. The risk of insider
attacks is greatly reduced as individual computing parties cannot deduce informa-
tion from the shares of the data available to them. The risk of data leaks through
negligence or malicious behavior is reduced for the same reason. We believe that
policy enforcement technologies like SHAREMIND will play a significant role in
securing information systems and protecting confidential data.

113

29

Bibliography

[1] Adam, N.R., Worthmann, J.C.: Security-control methods for statistical
databases: a comparative study. ACM Computing Surveys 21(4), 515–556
(1989)

[2] Afyouni, S.: Database Security and Auditing: Protecting Data Integrity and
Accessibility. Course Technology Press, Boston, MA, United States (2005)

[3] Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy
preserving data mining algorithms. In: Buneman, P. (ed.) Proceedings of
the Twentieth ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems. PODS’01. ACM (2001)

[4] Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in
large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Proceedings
of 20th International Conference on Very Large Data Bases. VLDB’01. pp.
487–499. Morgan Kaufmann (1994)

[5] Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Chen, W.,
Naughton, J.F., Bernstein, P.A. (eds.) Proceedings of the 2000 ACM SIG-
MOD International Conference on Management of Data. pp. 439–450.
ACM (2000)

[6] Ahmed, A.S., Bogdanov, D.: A Model for Automatically Evaluating Trust
in X.509 Certificates. Tech. Rep. T-4-11, Cybernetica AS, Tartu, http:
//research.cyber.ee/. (2010)

[7] Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell
digital goods. In: Pfitzmann, B. (ed.) Proceedings of the 20th International
Conference on the Theory and Application of Cryptographic Techniques,
EUROCRYPT ’01. Lecture Notes in Computer Science, vol. 2045, pp.
119–135. Springer (2001)

[8] Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient

114

http://research.cyber.ee/
http://research.cyber.ee/

protocols for realistic adversaries. Journal of Cryptology 23(2), 281–343
(2010)

[9] Aumasson, J.P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New
Features of Latin Dances: Analysis of Salsa, ChaCha, and Rumba. In:
Nyberg, K. (ed.) 15th International Workshop on Fast Software Encryp-
tion. FSE’08. Lecture Notes in Computer Science, vol. 5086, pp. 470–488.
Springer (2008)

[10] Barbaro, M., Jr., T.Z.: A face is exposed for AOL searcher no. 4417749.
The New York Times (August 9th, 2006)

[11] Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
Feigenbaum, J. (ed.) Proceedings of the 11th Annual International Cryptol-
ogy Conference. CRYPTO ’91. Lecture Notes in Computer Science, vol.
576, pp. 420–432. Springer (1991)

[12] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure proto-
cols (extended abstract). In: Ortiz, H. (ed.) Proceedings of the 22nd Annual
ACM Symposium on Theory of Computing. STOC’90. pp. 503–513. ACM
(1990)

[13] Bellare, M.: New proofs for NMAC and HMAC: security without collision-
resistance. In: Dwork, C. (ed.) Proceedings of the 26th Annual Interna-
tional Cryptology Conference. CRYPTO’06. Lecture Notes in Computer
Science, vol. 4117, pp. 602–619. Springer (2006)

[14] Bellare, M., Hoang, V.T., Rogaway, P.: Garbling schemes. Cryptol-
ogy ePrint Archive, Report 2012/265 (2012), http://eprint.iacr.
org/

[15] Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure
multi-party computation. In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM
Conference on Computer and Communications Security. CCS’08. pp. 257–
266. ACM (2008)

[16] Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computa-
tion. In: Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) Proceedings
of the Twenty-Fifth Annual ACM Symposium on Theory of Computing.
STOC’93. pp. 52–61. ACM (1993)

[17] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems
for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended
Abstract). In: Simon, J. (ed.) Proceedings of the 20th Annual ACM Sym-
posium on Theory of Computing. STOC’88. pp. 1–10 (1988)

115

http://eprint.iacr.org/
http://eprint.iacr.org/

[18] Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic en-
cryption and multiparty computation. In: Paterson, K.G. (ed.) Proceedings
of the 30th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, EUROCRYPT ’11. Lecture Notes in
Computer Science, vol. 6632, pp. 169–188. Springer (2011)

[19] Bernstein, D.: ChaCha, a variant of Salsa20. http://cr.yp.to/
chacha.html. Last accessed August 14th, 2012. (2008)

[20] Bogdanov, D.: How to securely perform computations on secret-shared
data. Master’s thesis, University of Tartu (2007)

[21] Bogdanov, D., Crispino, M.V., Čyras, V., Lapin, K., Panebarco, M., Zu-
liani, F.: Virtual World Platform VirtualLife: P2P, Security, Rule of Law
and Learning Support. In: Proceedings of 2009 NEM Summit "Towards
Future Media Internet". Distributed as an eBook. NEM Initiative (2009)

[22] Bogdanov, D., Jagomägis, R., Laur, S.: A universal toolkit for cryptograph-
ically secure privacy-preserving data mining. In: Chau, M., Wang, G.A.,
Yue, W.T., Chen, H. (eds.) Proceedings of the Pacific Asia Workshop on
Intelligence and Security Informatics, PAISI ’12. Lecture Notes in Com-
puter Science, vol. 7299, pp. 112–126. Springer (2012)

[23] Bogdanov, D., Kamm, L.: Constructing privacy-preserving information
systems using secure multiparty computation. Tech. Rep. T-4-13, Cyber-
netica AS, Tartu, http://research.cyber.ee/. (2011)

[24] Bogdanov, D., Laur, S.: The design of a privacy-preserving distributed vir-
tual machine. In: Kaklamanis, C. (ed.) Collection of AEOLUS theoreti-
cal findings. Deliverable 1.0.6, pp. 269–280. Published online at http:
//aeolus.ceid.upatras.gr/deliverables (2010)

[25] Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast
privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) Proceed-
ings of the 13th European Symposium on Research in Computer Security,
ESORICS ’08. Lecture Notes in Computer Science, vol. 5283, pp. 192–
206. Springer (2008)

[26] Bogdanov, D., Livenson, I.: VirtualLife: Secure Identity Management in
Peer-to-Peer Systems. In: Daras, P., Ibarra, O.M., Akan, O., Bellavista,
P., Cao, J., Dressler, F., Ferrari, D., Gerla, M., Kobayashi, H., Palazzo,
S., Sahni, S., Shen, X.S., Stan, M., Xiaohua, J., Zomaya, A., Coulson,
G. (eds.) Proceedings of the 1st International ICST Conference on User

116

http://cr.yp.to/chacha.html
http://cr.yp.to/chacha.html
http://research.cyber.ee/
http://aeolus.ceid.upatras.gr/deliverables
http://aeolus.ceid.upatras.gr/deliverables

Centric Media, UCM ’10. Lecture Notes of the Institute for Computer Sci-
ences, Social Informatics and Telecommunications Engineering, vol. 40,
pp. 181–188. Springer (2010)

[27] Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance se-
cure multi-party computation for data mining applications. International
Journal of Information Security 11(6), 403–418 (2012)

[28] Bogdanov, D., Sassoon, R.: Privacy-preserving collaborative filtering
with sharemind. Tech. Rep. T-4-2, Cybernetica AS, Tartu, http://
research.cyber.ee/. (2008)

[29] Bogdanov, D., Talviste, R.: A Comparison of Software Pseudorandom
Number Generators. In: Cap, C. (ed.) Proceedings of Third Baltic Confer-
ence on Advanced Topics in Telecommunication - BaSoTi 2009. pp. 61–71.
Universität Rostock, Wissenschaftsverbund IuK (2009)

[30] Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party
computation for financial data analysis - (short paper). In: Keromytis, A.D.
(ed.) Proceedings of the 16th International Conference on Financial Cryp-
tography and Data Security, FC ’12. Lecture Notes in Computer Science,
vol. 7397, pp. 57–64. Springer (2012)

[31] Bogetoft, P., Christensen, D.L., Damgård, I., Geisler, M., Jakobsen,
T.P., Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J.,
Schwartzbach, M.I., Toft, T.: Secure Multiparty Computation Goes Live.
In: Dingledine, R., Golle, P. (eds.) 13th International Conference of Finan-
cial Cryptography and Data Security. FC’09. Lecture Notes in Computer
Science, vol. 5628, pp. 325–343. Springer (2009)

[32] Bogetoft, P., Damgård, I., Jakobsen, T.P., Nielsen, K., Pagter, J., Toft, T.:
A practical implementation of secure auctions based on multiparty integer
computation. In: Crescenzo, G.D., Rubin, A.D. (eds.) 10th International
Conference on Financial Cryptography and Data Security. FC’06. Lecture
Notes in Computer Science, vol. 4107, pp. 142–147. Springer (2006)

[33] Boneh, D., Kushilevitz, E., Ostrovsky, R., III, W.E.S.: Public Key Encryp-
tion That Allows PIR Queries. In: Menezes, A. (ed.) 27th Annual Inter-
national Cryptology Conference, CRYPTO’07. Lecture Notes in Computer
Science, vol. 4622, pp. 50–67. Springer (2007)

[34] Boost C++ libraries. http://www.boost.org/. Last accessed June
1st, 2012.

117

30

http://research.cyber.ee/
http://research.cyber.ee/
http://www.boost.org/

[35] Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.A.: SEPIA:
Privacy-Preserving Aggregation of Multi-Domain Network Events and
Statistics. In: 19th USENIX Security Symposium. USENIX’10. pp. 223–
240. USENIX Association (2010)

[36] Canetti, R.: Studies in Secure Multiparty Computation and Applications.
Ph.D. thesis, Weizmann Institute of Science (1995)

[37] Canetti, R.: Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. Cryptology ePrint Archive, Report 2000/067 (2000),
http://eprint.iacr.org/. Last revision from 2005.

[38] Canetti, R.: Universally composable security: A new paradigm for cryp-
tographic protocols. In: Proceedings of the 42nd Annual Symposium on
Foundations of Computer Science. FOCS’01. pp. 136–145. IEEE Com-
puter Society (2001)

[39] Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure
protocols (extended abstract). In: Simon, J. (ed.) Proceedings of the 20th
Annual ACM Symposium on Theory of Computing. STOC’88. pp. 11–19
(1988)

[40] Chaum, D., Damgård, I., van de Graaf, J.: Multiparty computations ensur-
ing privacy of each party’s input and correctness of the result. In: Pomer-
ance, C. (ed.) Proceedings of the 7th Annual International Cryptology Con-
ference. CRYPTO ’87. Lecture Notes in Computer Science, vol. 293, pp.
87–119. Springer (1987)

[41] Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret shar-
ing and achieving simultaneity in the presence of faults (extended ab-
stract). In: 26th Annual Symposium on Foundations of Computer Science.
FOCS’85. pp. 383–395. IEEE Computer Society (1985)

[42] Conway, R., Strip, D.: Selective partial access to a database. In: Proceed-
ings of the 1976 Annual Conference of the ACM, ACM ’76. pp. 85–89.
ACM (1976)

[43] libcsv—a small, simple and fast CSV library. http://sourceforge.
net/projects/libcsv/. Last accessed June 1st, 2012.

[44] Damgård, I., Geisler, M., Krøigaard, M.: Homomorphic encryption and
secure comparison. International Journal of Applied Cryptography 1(1),
22–31 (2008)

118

http://eprint.iacr.org/
http://sourceforge.net/projects/libcsv/
http://sourceforge.net/projects/libcsv/

[45] Damgård, I., Geisler, M., Krøigaard, M.: A correction to “Efficient and
secure comparison for on-line auctions”. International Journal of Applied
Cryptography 1(4), 323–324 (2009)

[46] Damgård, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous mul-
tiparty computation: Theory and implementation. In: Jarecki, S., Tsudik,
G. (eds.) 12th International Conference on Practice and Theory in Pub-
lic Key Cryptography, PKC’09. Lecture Notes in Computer Science, vol.
5443, pp. 160–179. Springer (2009)

[47] Damgård, I., Ishai, Y.: Constant-Round Multiparty Computation Using a
Black-Box Pseudorandom Generator. In: Shoup, V. (ed.) Proceedings of
the 25th Annual International Cryptology Conference. CRYPTO’05. Lec-
ture Notes in Computer Science, vol. 3621, pp. 378–394. Springer (2005)

[48] Damgård, I., Jurik, M.: A Generalisation, a Simplification and Some Appli-
cations of Paillier’s Probabilistic Public-Key System. In: Kim, K. (ed.) 4th
International Workshop on Practice and Theory in Public Key Cryptogra-
phy, PKC’01. Lecture Notes in Computer Science, vol. 1992, pp. 119–136.
Springer (2001)

[49] Damgård, I., Orlandi, C.: Multiparty Computation for Dishonest Major-
ity: From Passive to Active Security at Low Cost. In: Rabin, T. (ed.) Pro-
ceedings of the 30th Annual Cryptology Conference. CRYPTO’10. Lecture
Notes in Computer Science, vol. 6223, pp. 558–576. Springer (2010)

[50] Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty compu-
tation from somewhat homomorphic encryption. In: Safavi-Naini, R.,
Canetti, R. (eds.) Proceedings of the 32nd Annual Cryptology Conference.
CRYPTO’12. Lecture Notes in Computer Science, vol. 7417, pp. 643–662.
Springer (2012)

[51] Dierks, T., Rescorla, E.: RFC 5246 - The Transport Layer Security (TLS)
Protocol Version 1.2. Tech. rep., IETF (Aug 2008), http://tools.
ietf.org/html/rfc5246

[52] Dobkin, D., Jones, A.K., Lipton, R.J.: Secure databases: protection against
user influence. ACM Trans. Database Syst. 4, 97–106 (1979), http://
doi.acm.org/10.1145/320064.320068

[53] Du, W., Atallah, M.J.: Protocols for Secure Remote Database Access with
Approximate Matching. In: Ghosh, A.K. (ed.) E-Commerce Security and
Privacy, Advances in Information Security, vol. 2, pp. 87–111. Springer
(2001)

119

http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://doi.acm.org/10.1145/320064.320068
http://doi.acm.org/10.1145/320064.320068

[54] Dwork, C.: Differential privacy: A survey of results. In: Agrawal, M., Du,
D.Z., Duan, Z., Li, A. (eds.) Proceedings on the 5th International Confer-
ence of Theory and Applications of Models of Computation. TAMC’08.
Lecture Notes in Computer Science, vol. 4978, pp. 1–19. Springer (2008)

[55] Ekdahl, P., Johansson, T.: A New Version of the Stream Cipher SNOW. In:
Nyberg, K., Heys, H.M. (eds.) Proceedings of the 9th Annual International
Workshop on Selected Areas in Cryptography. SAC’02. Lecture Notes in
Computer Science, vol. 2595, pp. 47–61. Springer (2002)

[56] EU FP7 Project CACE: D4.6—MPC Virtual Machine Implementation.
http://www.cace-project.eu/ (2010)

[57] Fairplay. http://www.cs.huji.ac.il/project/Fairplay/
fairplay.html. Last accessed June 1st, 2012.

[58] FairplayMP. http://www.cs.huji.ac.il/project/
Fairplay/fairplayMP.html. Last accessed June 1st, 2012.

[59] Frank, A., Asuncion, A.: UCI Machine Learning Repository (2010),
http://archive.ics.uci.edu/ml

[60] Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data pub-
lishing: A survey of recent developments. ACM Computing Surveys 42,
14:1–14:53 (2010)

[61] Geisler, M.: Cryptographic Protocols: Theory and Implementation. Ph.D.
thesis, Aarhus University (February 2010)

[62] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzen-
macher, M. (ed.) Proceedings of the 41st Annual ACM Symposium on The-
ory of Computing. STOC’09. pp. 169–178. ACM (2009)

[63] Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic En-
cryption Scheme. In: Paterson, K.G. (ed.) Proceedings of the 30th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques. EUROCRYPT’11. Lecture Notes in Computer Science, vol.
6632, pp. 129–148. Springer (2011)

[64] Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game
or A Completeness Theorem for Protocols with Honest Majority. In: Aho,
A.V. (ed.) Proceedings of the 19th Annual ACM Symposium on Theory of
Computing. STOC’87. pp. 218–229. ACM (1987)

120

http://www.cace-project.eu/
http://www.cs.huji.ac.il/project/Fairplay/fairplay.html
http://www.cs.huji.ac.il/project/Fairplay/fairplay.html
http://www.cs.huji.ac.il/project/Fairplay/fairplayMP.html
http://www.cs.huji.ac.il/project/Fairplay/fairplayMP.html
http://archive.ics.uci.edu/ml

[65] Goldreich, O., Ostrovsky, R.: Software Protection and Simulation on
Oblivious RAMs. Journal of the ACM 43(3), 431–473 (1996)

[66] Henecka, W., Kögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.:
TASTY: tool for automating secure two-party computations. In: Al-Shaer,
E., Keromytis, A.D., Shmatikov, V. (eds.) Proceedings of the 17th ACM
Conference on Computer and Communications Security. CCS’10. pp. 451–
462. ACM (2010)

[67] Hirt, M., Maurer, U.M.: Complete characterization of adversaries tolerable
in secure multi-party computation (extended abstract). In: Burns, J.E., At-
tiya, H. (eds.) Proceedings of the Sixteenth Annual ACM Symposium on
Principles of Distributed Computing, PODC’97. pp. 25–34. ACM (1997)

[68] Hirt, M., Nielsen, J.B., Przydatek, B.: Cryptographic Asynchronous
Multi-party Computation with Optimal Resilience (Extended Abstract).
In: Cramer, R. (ed.) Proceedings of the 24th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, EURO-
CRYPT’05. Lecture Notes in Computer Science, vol. 3494, pp. 322–340.
Springer (2005)

[69] Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party compu-
tation using garbled circuits. In: Proceedings of the 20th USENIX Security
Symposium. USENIX’11. USENIX Association (2011)

[70] Jagomägis, R.: A programming language for creating privacy-preserving
applications. Bachelor’s thesis. University of Tartu (2008)

[71] Jagomägis, R.: SecreC: a Privacy-Aware Programming Language with Ap-
plications in Data Mining. Master’s thesis, Institute of Computer Science,
University of Tartu (2010)

[72] Jarecki, S., Shmatikov, V.: Efficient Two-Party Secure Computation on
Committed Inputs. In: Naor, M. (ed.) Proceedings of the 26th Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques. EUROCRYPT’07. pp. 97–114 (2007)

[73] Jónsson, K.V., Kreitz, G., Uddin, M.: Secure multi-party sorting and ap-
plications. Cryptology ePrint Archive, Report 2011/122 (2011), http:
//eprint.iacr.org/

[74] Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of
association rules on horizontally partitioned data. IEEE Transactions on
Knowledge and Data Engineering 16(9), 1026–1037 (2004)

121

31

http://eprint.iacr.org/
http://eprint.iacr.org/

[75] Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: Random-data perturba-
tion techniques and privacy-preserving data mining. Knowledge and Infor-
mation Systems 7(4), 387–414 (2005)

[76] Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M.K. (ed.) Proceedings of the 24th Annual International Cryp-
tology Conference. CRYPTO’04. Lecture Notes in Computer Science, vol.
3152, pp. 335–354. Springer (2004)

[77] Kenthapadi, K., Mishra, N., Nissim, K.: Simulatable auditing. In: Li, C.
(ed.) Proceedings of the 24th ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems. PODS’05. pp. 118–127. ACM
(2005)

[78] Kerschbaum, F.: Automatically optimizing secure computation. In: Chen,
Y., Danezis, G., Shmatikov, V. (eds.) Proceedings of the 18th ACM Con-
ference on Computer and Communications Security. CCS’11. pp. 703–714
(2011)

[79] Kleinberg, J.M., Papadimitriou, C.H., Raghavan, P.: Auditing boolean at-
tributes. Journal of Computer and System Sciences 66(1), 244–253 (2003)

[80] Kolesnikov, V., Sadeghi, A.R., Schneider, T.: From Dust to Dawn: Practi-
cally Efficient Two-Party Secure Function Evaluation Protocols and their
Modular Design. Cryptology ePrint Archive, Report 2010/079 (2010),
http://eprint.iacr.org/2010/079

[81] Kolesnikov, V., Schneider, T.: Improved Garbled Circuit: Free XOR Gates
and Applications. In: Proceedings of the 35th International Colloquium on
Automata, Languages and Programming, ICALP’08. pp. 486–498 (2008)

[82] Kreuter, B., Shelat, A., Shen, C.H.: Towards billion-gate secure compu-
tation with malicious adversaries. IACR Cryptology ePrint Archive 2012,
179 (2012)

[83] Lamport, L.: The part-time parliament. ACM Transactions on Computer
Systems 16(2), 133–169 (May 1998)

[84] Laur, S.: Cryptographic protocol design. Ph.D. thesis, Helsinki University
of Technology (2008)

[85] Laur, S., Lipmaa, H.: A new protocol for conditional disclosure of secrets
and its applications. In: Katz, J., Yung, M. (eds.) Proceedings of the 5th

International Conference on Applied Cryptography and Network Security,

122

http://eprint.iacr.org/2010/079

ACNS ’07. Lecture Notes in Computer Science, vol. 4521, pp. 207–225.
Springer (2007)

[86] Laur, S., Lipmaa, H.: On the feasibility of consistent computations. In:
Nguyen, P.Q., Pointcheval, D. (eds.) 13th International Conference on
Practice and Theory in Public Key Cryptography. PKC’10. Lecture Notes
in Computer Science, vol. 6056, pp. 88–106. Springer (2010)

[87] Laur, S., Willemson, J., Zhang, B.: Round-Efficient Oblivious Database
Manipulation. In: Lai, X., Zhou, J., Li, H. (eds.) Proceedings of the 14th
International Conference on Information Security. ISC’11. Lecture Notes
in Computer Science, vol. 7001, pp. 262–277. Springer (2011)

[88] Li, N., Li, T., Venkatasubramanian, S.: Closeness: A New Privacy Measure
for Data Publishing. IEEE Transactions on Knowledge and Data Engineer-
ing 22(7), 943–956 (July 2010)

[89] Lindell, Y., Pinkas, B.: Privacy preserving data mining. Journal of Cryptol-
ogy 15(3), 177–206 (2002)

[90] Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Com-
putation in the Presence of Malicious Adversaries. In: Naor, M. (ed.) Pro-
ceedings of the 26th Annual International Conference on the Theory and
Applications of Cryptographic Techniques. EUROCRYPT’07. pp. 52–78
(2007)

[91] Lloyd, S.: Least squares quantization in PCM. IEEE Transactions on Infor-
mation Theory 28(2), 129 – 137 (March 1982)

[92] Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-
diversity: Privacy beyond k-anonymity. IEEE Transactions on Knowledge
Discovery from Data 1(1) (2007)

[93] Malin, B., Sweeney, L.: How (not) to protect genomic data privacy in
a distributed network: using trail re-identification to evaluate and design
anonymity protection systems. Journal of Biomedical Informatics 37(3),
179–192 (2004)

[94] Malka, L.: VMCrypt: modular software architecture for scalable secure
computation. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) Proceedings
of the 18th ACM Conference on Computer and Communications Security.
CCS’11. pp. 715–724 (2011)

123

[95] Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - Secure Two-Party
Computation System. In: Proceedings of the 13th USENIX Security Sym-
posium. USENIX’04. pp. 287–302. USENIX (2004)

[96] Mannila, H., Toivonen, H., Verkamo, A.I.: Efficient Algorithms for Dis-
covering Association Rules. In: Proceedings of the KDD Workshop ’94.
pp. 181–192 (1994)

[97] Mohassel, P., Franklin, M.K.: Efficiency tradeoffs for malicious two-party
computation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) Pro-
ceedings of the 9th International Conference on Theory and Practice of
Public-Key Cryptography, PKC ’06. Lecture Notes in Computer Science,
vol. 3958, pp. 458–473. Springer (2006)

[98] Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mech-
anism design. In: Proceedings of the 1st ACM conference on Electronic
Commerce, EC’99. pp. 129–139 (1999)

[99] Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse
datasets. In: Proceedings of the IEEE Symposium on Security and Privacy,
S&P ’08. pp. 111–125. IEEE Computer Society (2008)

[100] Nielsen, J.D.: Languages for Secure Multiparty Computation and Towards
Strongly Typed Macros. Ph.D. thesis, Aarhus University (2009)

[101] Nielsen, J.D., Schwartzbach, M.I.: A domain-specific programming lan-
guage for secure multiparty computation. In: Hicks, M.W. (ed.) Proceed-
ings of the 2007 Workshop on Programming Languages and Analysis for
Security. PLAS’07. pp. 21–30. ACM (2007)

[102] Nielsen, J.B., Orlandi, C.: Lego for two-party secure computation. In:
Reingold, O. (ed.) TCC. Lecture Notes in Computer Science, vol. 5444,
pp. 368–386. Springer (2009)

[103] Paillier, P.: Public-key cryptosystems based on composite degree residuos-
ity classes. In: Stern, J. (ed.) Proceedings of the 17th International Confer-
ence on the Theory and Application of Cryptographic Techniques, EURO-
CRYPT’99. Lecture Notes in Computer Science, vol. 1592, pp. 223–238.
Springer (1999)

[104] RakNet—Multiplayer game network engine. http://www.
jenkinssoftware.com. Last accessed June 1st, 2012.

[105] Rebane, R.: An integrated development environment for the SecreC pro-
gramming language. Bachelor’s thesis. University of Tartu (2010)

124

http://www.jenkinssoftware.com
http://www.jenkinssoftware.com

[106] Rebane, R.: A Feasibility Analysis of Secure Multiparty Computation De-
ployments. Master’s thesis, Institute of Computer Science, University of
Tartu (2012)

[107] Ristioja, J.: An analysis framework for an imperative privacy-preserving
programming language. Master’s thesis, Institute of Computer Science,
University of Tartu (2010)

[108] Rogaway, P.: The round complexity of secure protocols. Ph.D. thesis, MIT
(1991)

[109] Rogaway, P., Bellare, M.: Robust computational secret sharing and a uni-
fied account of classical secret-sharing goals. In: Ning, P., di Vimercati,
S.D.C., Syverson, P.F. (eds.) Proceedings of the 2007 ACM Conference
on Computer and Communications Security, CCS ’07. pp. 172–184. ACM
(2007)

[110] Samarati, P.: Protecting respondents’ identities in microdata release. IEEE
Transactions on Knowledge and Data Engineering 13(6), 1010–1027 (Nov
2001)

[111] Schröpfer, A., Kerschbaum, F., Mueller, G.: L1 - An Intermediate Lan-
guage for Mixed-Protocol Secure Computation. In: Proceedings of the 35th
Annual IEEE International Computer Software and Applications Confer-
ence. COMPSAC’11. pp. 298–307. IEEE Computer Society (2011)

[112] SEPIA—Security through Private Information Aggregation. http://
sepia.ee.ethz.ch/. Last accessed June 1st, 2012.

[113] Shamir, A.: How to share a secret. Communications of the ACM 22, 612–
613 (November 1979)

[114] The SHAREMIND secure computation system. http://sharemind.
cyber.ee. Last accessed June 1st, 2012.

[115] The SHAREMIND Software Development Kit. Available from http://
sharemind.cyber.ee. Last accessed January 1st, 2013.

[116] A secure survey prototype based on SHAREMIND. https:
//sharemind.cyber.ee/survey/promo/index.html. Last
accessed January 1st, 2013.

[117] The Skein Hash Function Family. http://www.skein-hash.info.
Last accessed August 3rd, 2012.

125

32

http://sepia.ee.ethz.ch/
http://sepia.ee.ethz.ch/
http://sharemind.cyber.ee
http://sharemind.cyber.ee
http://sharemind.cyber.ee
http://sharemind.cyber.ee
https://sharemind.cyber.ee/survey/promo/index.html
https://sharemind.cyber.ee/survey/promo/index.html
http://www.skein-hash.info

[118] Smart, N., Vercauteren, F.: Fully Homomorphic SIMD Operations. Cryp-
tology ePrint Archive, Report 2011/133 (2011), http://eprint.
iacr.org/

[119] SQLite—a serverless relational database system. http://www.
sqlite.org/. Last accessed June 1st, 2012.

[120] Subramaniam, H., Wright, R.N., Yang, Z.: Experimental Analysis of
Privacy-Preserving Statistics Computation. In: Jonker, W., Petkovic, M.
(eds.) Proceedings on the VLDB 2004 Workshop on Secure Data Manage-
ment. SDM’04. Lecture Notes in Computer Science, vol. 3178, pp. 55–66.
Springer (2004)

[121] Sweeney, L.: k-anonymity: a model for protecting privacy. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5),
557–570 (2002)

[122] Talviste, R.: Web-based data entry in privacy-preserving applications.
Bachelor’s thesis. University of Tartu (2009)

[123] Talviste, R.: Deploying secure multiparty computation for joint data
analysis—a case study. Master’s thesis, Institute of Computer Science, Uni-
versity of Tartu (2011)

[124] TASTY—Tool for Automating Secure Two-partY computations. http:
//tastyproject.net. Last accessed June 1st, 2012.

[125] The Tokyo Cabinet database manager. http://fallabs.com/
tokyocabinet/. Last accessed June 1st, 2012.

[126] Vaidya, J., Clifton, C.: Privacy preserving association rule mining in ver-
tically partitioned data. In: Proceedings of the 8th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. KDD’02.
pp. 639–644. ACM (2002)

[127] VIFF—the Virtual Ideal Functionality Framework. http://viff.dk.
Last accessed June 1st, 2012.

[128] Warner, S.: Randomized response: A survey technique for eliminating eva-
sive answer bias. Journal of the American Statistical Association 60(309),
63–69 (1965)

[129] Yao, A.C.C.: Protocols for Secure Computations (Extended Abstract). In:
23rd Annual Symposium on Foundations of Computer Science. FOCS’82.
pp. 160–164. IEEE (1982)

126

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.sqlite.org/
http://www.sqlite.org/
http://tastyproject.net
http://tastyproject.net
http://fallabs.com/tokyocabinet/
http://fallabs.com/tokyocabinet/
http://viff.dk

[130] Zaki, M.J.: Scalable algorithms for association mining. IEEE Transactions
on Knowledge and Data Engineering 12(3), 372–390 (2000)

127

ACKNOWLEDGMENTS

Parts of my doctoral studies have been supported by the European Regional De-
velopment Fund through the Estonian Center of Excellence in Computer Sci-
ence (EXCS), the Software Technology and Applications Competence Centre
(STACC) and by the European Social Fund through the Estonian Doctoral School
in Information and Communication Technology (IKTDK) and the Doctoral Stud-
ies and Internationalisation Programme (DoRa). I would also like to acknowledge
the support from EU FP6-IST project No. 15964 "AEOLUS".

My research efforts have also received support from the Estonian Information
Technology Foundation through the Tiger University programme and the Ustus
Agur scholarship and from the the Estonian Science Foundation through grant
No. 8124.

Throughout my studies and my professional career I have had the luck of
being mentored by teachers, professors and leaders. I have been inspired and
given opportunities that have helped me become a better specialist and a better
researcher. I remain thankful for the trust that I have been granted.

I have had the luck to work together with a wonderful team of engineers and
researchers who have helped with the design and construction of protocols, tools
and applications for the SHAREMIND system. I have enjoyed the collaboration and
I would like to thank the whole SHAREMIND team, my colleagues in Cybernetica
and my co-authors for helping me build my vision.

This vision and my work on SHAREMIND were sparked from discussions with
my supervisor, Sven Laur. His practical view on computer science has been an
inspiration to my engineering spirit and I respect and appreciate his guidance
throughout my studies. He has taught me many beautiful things about mathe-
matics and computer science.

I give my deepest gratitude to all my family, whose interest in my work and
continued support has been the best motivator there can be. I am truly happy to
share this journey with my wife, Liina, who gives me an excellent reason for doing
everything I do.

128

KOKKUVÕTE
(SUMMARY IN ESTONIAN)

SHAREMIND: PROGRAMMEERITAV
TURVALINE ARVUTUSSÜSTEEM
PRAKTILISTE RAKENDUSTEGA

Andmeid isiku tervise, uskumuste ja toimetuleku kohta peetakse tundlikuks ning
seda infot tuleb hoolikalt kaitsta. Selliseid andmeid töötlevad asutused peavad ka-
sutama meetmeid, mis välistavad andmete lekke kolmandatele osapooltele. Sa-
mas on nii avaliku kui erasektori asutused huvitatud andmete jagamisest, sest see
annab neile ligipääsu suuremale infohulgale, mis aitab omakorda teha paremaid
otsuseid.

Turvaline ühisarvutus on krüptograafiline meetod, mille abil mitu osapoolt
saavad andmeid turvaliselt jagada ja töödelda. Kuigi esimesi protokolle esitleti
juba eelmise sajandi 80ndatel aastatel, jõuti esimeste praktiliste lahendusteni al-
les käesoleva sajandi alguses. Sellest ajast alates on loodud järjest keerukamaid
lahendusi ning turvalised ühisarvutused on muutumas teooriast tehnoloogiaks.

Käesolev doktoritöö esitleb autori poolt välja töötatud turvalist arvutussüstee-
mi nimega SHAREMIND. SHAREMIND on täielik lahendus turvalise ühisarvutuse
kasutamiseks andmeid töötlevates rakendustes. Autor on kavandanud ja realisee-
rinud virtuaalmasina, mis suudab krüptograafiliste protokollide abil töödelda and-
meid nii, et need ei ole arusaadavad isegi mitte neid töötlevale arvutusseadme-
le. Andmetöötlusrakenduste loomiseks on autor kavandanud ka virtuaalmasinaga
ühilduva konfidentsiaalsust tagava andmebaasi ning liidesed kasutajaliideste ja
programmeerimisvahendite loomiseks.

Töö kolm väidet on järgmised. Esiteks, me väidame, et turvalise ühisarvutu-
sega on võimalik luua universaalseid komponente, mida kasutades saab omakorda
ehitada keerukaid andmetöötlussüsteeme ilma iga kord uusi protokolle loomata.

129

33

Teiseks, me väidame, et realiseerituna on turvaline ühisarvutus piisavalt efektiiv-
ne miljonite andmekirjete töötlemiseks mõistlikus ajas. Viimaks, me väidame, et
töövahendite loomisega on turvaline ühisarvutus võimalik kättesaadavaks teha ka
neile, kellel puuduvad krüptograafilised teadmised.

Töö koosneb kuuest peatükist ja kolmest artiklist. Esimene peatükk juhatab
töö sisse, kirjeldades turvalise andmetöötluse vajalikkust ja tutvustades töö üles-
ehitust. Teine peatükk kirjeldab erinevaid krüptograafilisi meetodeid andmete tur-
valisuse tagamiseks arvutusprotsessis ning võrdleb nende efektiivsust.

Kolmas peatükk kirjeldab SHAREMINDi protokollide turvamudelit, analüüsi-
des reaalses maailmas juurutatud turvalise ühisarvutuse süsteemi varitsevaid ohte.
Seejärel esitatakse protokollide kogumik, mille abil sellises mudelis on võimalik
andmeid turvaliselt koguda ja töödelda. Peatükk tutvustab ka uudset, ühissalas-
tusel põhinevat andmebaasisüsteemi ja kirjeldab päringute tegemist sellises and-
mebaasis. Lisaks näidatakse, kuidas sellises andmebaasis salvestatud andmeid
saab töödelda turvalise ühisarvutusega.

Peatükki täiendavad kaks tööle lisatud artiklit. Esimene neist, “Sharemind:
A Framework for Fast Privacy-Preserving Computations” (“Sharemind: raamis-
tik andmete kiireks töötlemiseks privaatsust säilitaval moel”), kirjeldab turvalise
ühisarvutuse protokolle täisarvuliste andmete töötlemiseks [25]. Artiklis alusta-
takse lihtsamatest operatsioonidest nagu liitmine ja korrutamine ning kirjeldatakse
seejärel protokolle täisarvu bittide leidmiseks, suurem-kui võrdlemiseks ja võrd-
suse kontrolliks. Artikkel sisaldab ka eksperimentide käigus mõõdetud jõudlus-
näitajaid

Hilisemas artiklis, “High-performance secure multi-party computation for da-
ta mining applications” (“Suure jõudlusega turvaline ühisarvutus rakendustega
andmekaeves”), esitatakse efektiivsemad protokollid täisarvude korrutamiseks ja
võrdlemiseks [27]. Lisaks kirjeldatakse uusi turvalise ühisarvutuse protokolle bi-
tikaupa nihete tegemiseks, jagamise ja jäägi leidmiseks. Protokollide efektiivsust
näitab jõudlusvõrdlus eelmiste protokollidega. Lisaks kirjeldab artikkel eksperi-
mente, kus uue jagamistehte kasulikkuse näitamiseks mõõdetakse SHAREMINDi
jõudlust andmete klasterdamisel.

SHAREMINDi jõudlusest annab parema ülevaate neljas peatükk. Peatükis kir-
jeldatakse, kuidas erinevad aspektid nagu protsessori ja arvutivõrgu kiirus jõud-
lust mõjutavad. Jõudlustulemuste põhjal järeldatakse, et SHAREMIND on oluliselt
efektiivsem, kui selle rakendused teevad mitu sarnast tehet paralleelselt. Jõudlu-
ses saadav võit on piisavalt suur, et selle saavutamiseks algoritme ja rakendusi
kohandada.

Viies peatükk kirjeldab programmeerimiskeeli ja töövahendeid, millega saab
SHAREMINDi jaoks rakenduste loomist lihtsustada. SHAREMINDi rakendusi saab
programmeerida kahe programmeerimiskeele abil. SHAREMINDi virtuaalmasin

130

oskab interpreteerida madala taseme assemblerkeelt. Kuid kuna assemblerkeeles
programmeerimine ei ole piisavalt mugav, siis oleme loonud ka mugavama impe-
ratiivse programmeerimiskeele SECREC, mille abil saab kasutada SHAREMINDi
kõiki võimalusi ning mis ei nõua krüptograafilisi teadmisi.

Kuuendas peatükis näidatakse SHAREMINDi praktilist rakendatavust erineva-
te prototüüprakenduste näitel. Üheks olulisemaks näiteks on SHAREMINDi esime-
ne rakendus reaalses maailmas: Eestis juurutatud finantsandmete turvalise kogu-
mise ja analüüsi süsteem. See süsteem on autori teada maailma esimene turvali-
se ühisarvutuse rakendus, milles infovahetus toimub avaliku interneti abil. Selles
peatükis annab autor ka juhiseid, kuidas kavandada, realiseerida ja juurutada ra-
kendust, mis kasutab turvalist ühisarvutust.

Peatüki juurde kuulub ka doktoritöö kolmas artikkel: “A Universal Toolkit for
Cryptographically Secure Privacy-Preserving Data Mining” (“Universaalne töö-
vahend krüptograafilise turvalisusega privaatsust säilitavaks andmekaeveks”), mis
kirjeldab, kuidas SHAREMINDi abil lahendada tihtiesinevate alamhulkade otsingu
ülesannet [22]. Artiklis kirjeldatakse SHAREMINDi jaoks kohandatud versioone
populaarsetest tihtiesinevate alamhulkade leidmise algoritmidest Apriori [4, 96]
ja Eclat [130]. Artikkel kirjeldab algoritme, nende privaatsusgarantiisid ja esitab
eksperimenditulemused, mis näitavad piisavat jõudlust praktiliseks kasutuseks.

131

ORIGINAL PUBLICATIONS

Publication Pages
Dan Bogdanov, Sven Laur, Jan Willemson ”Sharemind: A
Framework for Fast Privacy-Preserving Computations”

133 – 149

Dan Bogdanov, Margus Niitsoo, Tomas Toft, Jan Willemson
”High-performance secure multi-party computation for data min-
ing applications”

149 – 166

Dan Bogdanov, Roman Jagomägis, Sven Laur ”A Universal
Toolkit for Cryptographically Secure Privacy-Preserving Data
Mining”

166 – 182

CURRICULUM VITAE

Personal data

Name Dan Bogdanov

Birth February 28th, 1983

Citizenship Estonian

Marital Status Married

Languages Estonian, English, German, Russian, French

Contact +372 52 75 525
dan@cyber.ee

Education

2007– University of Tartu, Ph.D. candidate in Computer Science

2005–2007 University of Tartu, M.Sc. in Computer Science

2001–2005 University of Tartu, B.Sc. in Computer Science

1998–2001 Pärnu Sütevaka School of Humanities, secondary education

1993–1998 Pärnu Sütevaka School of Humanities, primary education

1989–1993 Pärnu 1st Secondary School, primary education

Employment

2007– Cybernetica AS, researcher

2006–2007 OÜ Quretec, systems analyst

186

2005–2006 AS EGeen, systems analyst

2003–2005 OÜ Web Expert, software developer

2000–2001 OÜ Maripuu Meedia, software developer

ELULOOKIRJELDUS

Isikuandmed

Nimi Dan Bogdanov

Sünniaeg ja -koht 28. veebruar 1983

Kodakondsus eestlane

Perekonnaseis abielus

Keelteoskus eesti, inglise, saksa, vene, prantsuse

Kontaktandmed +372 52 75 525
dan@cyber.ee

Haridustee

2007– Tartu Ülikool, informaatika doktorant

2005–2007 Tartu Ülikool, MSc informaatikas

2001–2005 Tartu Ülikool, BSc informaatikas

1998–2001 Pärnu Sütevaka Humanitaargümnaasium, keskharidus

1993–1998 Pärnu Sütevaka Humanitaargümnaasium, põhiharidus

1989–1993 Pärnu 1. keskkool, algharidus

Teenistuskäik

2007– Cybernetica AS, teadur

2006–2007 OÜ Quretec, analüütik

187

2005–2006 AS EGeen, analüütik

2003–2005 OÜ Web Expert, tarkvaraarendaja

2000–2001 OÜ Maripuu Meedia, tarkvaraarendaja

 1. Mati Heinloo. The design of nonhomogeneous spherical vessels, cylindrical

tubes and circular discs. Tartu, 1991, 23 p.
 2. Boris Komrakov. Primitive actions and the Sophus Lie problem. Tartu,

1991, 14 p.
 3. Jaak Heinloo. Phenomenological (continuum) theory of turbulence. Tartu,

1992, 47 p.
 4. Ants Tauts. Infinite formulae in intuitionistic logic of higher order. Tartu,

1992, 15 p.
 5. Tarmo Soomere. Kinetic theory of Rossby waves. Tartu, 1992, 32 p.
 6. Jüri Majak. Optimization of plastic axisymmetric plates and shells in the

case of Von Mises yield condition. Tartu, 1992, 32 p.
 7. Ants Aasma. Matrix transformations of summability and absolute summa-

bility fields of matrix methods. Tartu, 1993, 32 p.
 8. Helle Hein. Optimization of plastic axisymmetric plates and shells with

piece-wise constant thickness. Tartu, 1993, 28 p.
 9. Toomas Kiho. Study of optimality of iterated Lavrentiev method and

its generalizations. Tartu, 1994, 23 p.
10. Arne Kokk. Joint spectral theory and extension of non-trivial multiplica-

tive linear functionals. Tartu, 1995, 165 p.
11. Toomas Lepikult. Automated calculation of dynamically loaded rigid-

plastic structures. Tartu, 1995, 93 p, (in Russian).
12. Sander Hannus. Parametrical optimization of the plastic cylindrical shells

by taking into account geometrical and physical nonlinearities. Tartu, 1995,
74 p, (in Russian).

13. Sergei Tupailo. Hilbert’s epsilon-symbol in predicative subsystems of
analysis. Tartu, 1996, 134 p.

14. Enno Saks. Analysis and optimization of elastic-plastic shafts in torsion.
Tartu, 1996, 96 p.

15. Valdis Laan. Pullbacks and flatness properties of acts. Tartu, 1999, 90 p.
16. Märt Põldvere. Subspaces of Banach spaces having Phelps’ uniqueness

property. Tartu, 1999, 74 p.
17. Jelena Ausekle. Compactness of operators in Lorentz and Orlicz sequence

spaces. Tartu, 1999, 72 p.
18. Krista Fischer. Structural mean models for analyzing the effect of

compliance in clinical trials. Tartu, 1999, 124 p.

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

188

19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

20. Jüri Lember. Consistency of empirical k-centres. Tartu, 1999, 148 p.
21. Ella Puman. Optimization of plastic conical shells. Tartu, 2000, 102 p.
22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.
23. Varmo Vene. Categorical programming with inductive and coinductive

types. Tartu, 2000, 116 p.
24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p.
25. Maria Zeltser. Investigation of double sequence spaces by soft and hard

analitical methods. Tartu, 2001, 154 p.
26. Ernst Tungel. Optimization of plastic spherical shells. Tartu, 2001, 90 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 p.
28. Rainis Haller. M(r,s)-inequalities. Tartu, 2002, 78 p.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
30. Eno Tõnisson. Solving of expession manipulation exercises in computer

algebra systems. Tartu, 2002, 92 p.
31. Mart Abel. Structure of Gelfand-Mazur algebras. Tartu, 2003. 94 p.
32. Vladimir Kuchmei. Affine completeness of some ockham algebras. Tartu,

2003. 100 p.
33. Olga Dunajeva. Asymptotic matrix methods in statistical inference

problems. Tartu 2003. 78 p.
34. Mare Tarang. Stability of the spline collocation method for volterra

integro-differential equations. Tartu 2004. 90 p.
35. Tatjana Nahtman. Permutation invariance and reparameterizations in

linear models. Tartu 2004. 91 p.
36. Märt Möls. Linear mixed models with equivalent predictors. Tartu 2004.

70 p.
37. Kristiina Hakk. Approximation methods for weakly singular integral

equations with discontinuous coefficients. Tartu 2004, 137 p.
38. Meelis Käärik. Fitting sets to probability distributions. Tartu 2005, 90 p.
39. Inga Parts. Piecewise polynomial collocation methods for solving weakly

singular integro-differential equations. Tartu 2005, 140 p.
40. Natalia Saealle. Convergence and summability with speed of functional

series. Tartu 2005, 91 p.
41. Tanel Kaart. The reliability of linear mixed models in genetic studies.

Tartu 2006, 124 p.
42. Kadre Torn. Shear and bending response of inelastic structures to dynamic

load. Tartu 2006, 142 p.

189
48

43. Kristel Mikkor. Uniform factorisation for compact subsets of Banach
spaces of operators. Tartu 2006, 72 p.

44. Darja Saveljeva. Quadratic and cubic spline collocation for Volterra
integral equations. Tartu 2006, 117 p.

45. Kristo Heero. Path planning and learning strategies for mobile robots in
dynamic partially unknown environments. Tartu 2006, 123 p.

46. Annely Mürk. Optimization of inelastic plates with cracks. Tartu 2006.
137 p.

47. Annemai Raidjõe. Sequence spaces defined by modulus functions and
superposition operators. Tartu 2006, 97 p.

48. Olga Panova. Real Gelfand-Mazur algebras. Tartu 2006, 82 p.
49. Härmel Nestra. Iteratively defined transfinite trace semantics and program

slicing with respect to them. Tartu 2006, 116 p.
50. Margus Pihlak. Approximation of multivariate distribution functions.

Tartu 2007, 82 p.
51. Ene Käärik. Handling dropouts in repeated measurements using copulas.

Tartu 2007, 99 p.
52. Artur Sepp. Affine models in mathematical finance: an analytical approach.

Tartu 2007, 147 p.
53. Marina Issakova. Solving of linear equations, linear inequalities and

systems of linear equations in interactive learning environment. Tartu 2007,
170 p.

54. Kaja Sõstra. Restriction estimator for domains. Tartu 2007, 104 p.
55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.

Tartu 2007, 162 p.
56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-

tions. Tartu 2008, 123 p.
57. Evely Leetma. Solution of smoothing problems with obstacles. Tartu 2009,

81 p.
58. Ants Kaasik. Estimating ruin probabilities in the Cramér-Lundberg model

with heavy-tailed claims. Tartu 2009, 139 p.
59. Reimo Palm. Numerical Comparison of Regularization Algorithms for

Solving Ill-Posed Problems. Tartu 2010, 105 p.
60. Indrek Zolk. The commuting bounded approximation property of Banach

spaces. Tartu 2010, 107 p.
61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory

systems. Tartu 2010, 153 p.
62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-

ture by Counting Method. Tartu 2010, 87 p.
63. Marek Kolk. Piecewise Polynomial Collocation for Volterra Integral

Equations with Singularities. Tartu 2010, 134 p.

190

64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

65. Larissa Roots. Free vibrations of stepped cylindrical shells containing
cracks. Tartu 2010, 94 p.

66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

67. Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

68. Olga Liivapuu. Graded q-differential algebras and algebraic models in
noncommutative geometry. Tartu 2011, 112 p.

69. Aleksei Lissitsin. Convex approximation properties of Banach spaces.
Tartu 2011, 107 p.

70. Lauri Tart. Morita equivalence of partially ordered semigroups. Tartu
2011, 101 p.

71. Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.
72. Margus Treumuth. A Framework for Asynchronous Dialogue Systems:

Concepts, Issues and Design Aspects. Tartu 2011, 95 p.
73. Dmitri Lepp. Solving simplification problems in the domain of exponents,

monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

74. Meelis Kull. Statistical enrichment analysis in algorithms for studying gene
regulation. Tartu 2011, 151 p.

75. Nadežda Bazunova. Differential calculus d3
 = 0 on binary and ternary

associative algebras. Tartu 2011, 99 p.
76. Natalja Lepik. Estimation of domains under restrictions built upon gene-

ralized regression and synthetic estimators. Tartu 2011, 133 p.
77. Bingsheng Zhang. Efficient cryptographic protocols for secure and private

remote databases. Tartu 2011, 206 p.
78. Reina Uba. Merging business process models. Tartu 2011, 166 p.
79. Uuno Puus. Structural performance as a success factor in software develop-

ment projects – Estonian experience. Tartu 2012, 106 p.
80. Marje Johanson. M(r, s)-ideals of compact operators. Tartu 2012, 103 p.
81. Georg Singer. Web search engines and complex information needs. Tartu

2012, 218 p.
82. Vitali Retšnoi. Vector fields and Lie group representations. Tartu 2012,

108 p.

	List of publications
	Abstract
	Introduction
	Why do we need secrets?
	Background and claims of this work
	Thesis outline and contributions of the author

	Secure computation in practice
	Overview of practical secure computation systems
	Introduction to circuits
	Two-party computation using garbled Boolean circuits
	From Boolean circuits to arithmetic circuits
	Two-party computation using homomorphic encryption
	Secure multiparty computation
	Resource cost estimates

	The design of Sharemind
	Design goals and intended purpose
	Different flavors of privacy
	Record-level privacy
	Source-level privacy
	Output-level privacy
	Cryptographic privacy

	The model of a Sharemind application
	Overview of parties
	Encoding private data
	The overall threat model
	Reducing the power of the adversary
	The optimal number of computing parties
	The case for passive security in Sharemind
	Constructing simulators for secure computation protocols
	From simulatability to security and composability
	Guidelines for designing secure protocols for Sharemind

	Secure storage in Sharemind
	Design goals for secure storage
	The structure of secret-shared databases
	Manipulating secret-shared databases
	A protocol for data collection

	Protocols for secure computation
	The general secure computation process
	Protocols for addition and multiplication
	Protocols for comparison
	The secure computation capabilities of Sharemind

	Notes on the design of Sharemind protocols
	The software implementation of Sharemind

	Practical performance of Sharemind
	The complexity and performance of Sharemind
	Benchmarking methodology
	The built-in protocol profiler
	Benchmarking tools

	Performance analysis
	Sharemind protocol execution pipeline
	The importance of processor speed
	The importance of parallelization
	The importance of network bandwidth and latency

	Optimization goals for future protocols

	Programming secure computations
	Motivation and design goals
	The Sharemind secure virtual machine and assembly language
	SecreC—a high-level imperative language for implementing secure functionality
	Secure data types
	Secure operations and parallelism
	Making private data public

	Developing secure SecreC programs
	Additional developer tools
	The developer version of the Sharemind server
	The SecreCIDE integrated development environment

	A comparison of SecreC to other secure computation programming languages

	Sharemind in practice
	The process of developing a Sharemind application
	Designing the application
	Implementing the application
	Deploying the application

	Privacy-preserving application prototypes
	Online surveys
	Frequent itemset mining
	Privacy-preserving k-means clustering

	The ITL financial benchmarking application

	Conclusion
	Bibliography
	Acknowledgments
	Kokkuvõte (Summary in Estonian)
	Original Publications
	Sharemind: A Framework for Fast Privacy-Preserving Computations
	High-performance secure multi-party computation for data mining applications
	A universal toolkit for cryptographically secure privacy-preserving data mining

	Curriculum Vitae
	Elulookirjeldus
	Dissertationes mathematicae universitatis Tartuensis

