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Chapter 1

Introduction

In statistics and other fields there is often the need to restore data or transform
data to the form where further analysis can be made.

Spline functions are a fundamental and prevalent ingredient in the endeavors of
scientists and engineers. The design of curves and surfaces plays an important role
not only in the construction of different products such as car bodies, ship hulls,
airplane fuselages and wings, propellers blades, etc., but also in the description
of geological, physical and even medical phenomena. In the majority of these
applications, it is important to construct curves and surfaces that have certain
shape properties.

Piecewise polynomials were used in the approximation theory already in the
early 1900s but the terminology spline function was first introduced by Schoenberg
in 1946 [51]. Schoenberg states that he started to use this terminology by the
connection of piecewise polynomials with a certain mechanical device called a spline

a thin rod of some elastic material equipped with a groove and a set of weights
with attached arms designed to fit into the groove. It appears that the use of
piecewise polynomial functions offers significant advantages — it is simpler and
more powerful (see, e.g., [8]). Piecewise polynomial functions are more adaptable
to special problems as well. Up until 1960 the theory of spline functions had
a rather modest development and prior to the mid-1960s there were only a few
papers which dealt with the problem of how well classes of smooth functions can
be approximated by piecewise polynomials or splines.

In the early 1900s there was also quite extensive development of interpolation
using piecewise polynomials. Interpolation is the simplest way to reconstruct a
function according to discrete data. The intensive development of the theory of
interpolating splines began in the early 1960s. It led to achieving error bounds.
Some of the early contributors are Ahlberg and Nilson [1], Birkhoff and de Boor
[7], Ahlberg, Nilson, and Walsh [2, 3], Atkinson [6], Schoenberg [52, 53, 54].



The works by Stechkin and Subbotin [60], Zavyalov, Kvasov and Miroshnicenko
[62] and Schumaker [58] present a comprehensive treatment of the theory and
numerical analysis of polynomial spline functions (see also [12, 28]). The book
[60] is intended as a supplement and complement to the book [4]. Thus, much
space is given to detailed analysis of parabolic spline interpolation. Splines of
higher degree than cubic appear only with uniformly spaced knots. In his work
the author of [58] states that his original intention was to cover both the theory
and application of spline functions. This book covers the main algebraic, analytic
and approximation-theoretic properties of various spaces of splines. The detailed
study of approximation of functions, numerical differentiation and integration, and
solution of boundary value problems for ordinary differential equations is given in
[62].

Interpolation and histopolation problems are connected in the sense that the
derivative of the interpolant is a solution of the corresponding histopolation prob-
lem (as done in [23]) and, vice versa, the integral of the histopolant is a solution
of the corresponding interpolation problem, see, e.g., [55]. In case of the interpo-
lation problem we have a given mesh a = xg < 21 < ... < x, = b and function
values f;, ¢ =0,...,n, corresponding to points x;. We need to construct function
S : |a,b] — R such that interpolation conditions

S(x,‘):fi, i:O,...,n,

apply.
In histopolation problem we have a mesh a = g < 1 < ... < x, = b and
given numbers z;, ¢ = 1,...,n, which correspond to the mean values of data on

subintervals [z;_1,x;]. We need to construct function 7" : [a,b] — R in such a way
that histopolation conditions

T
/ T(x)dx = zi(x; — xi-1), 1=1,...,n,
Ti—1

hold.

If we have histopolation problem we can fix fy € R and calculate f; = f;—1 +
zi(xi—wxi—1),i=1,...,n. Finding interpolant S corresponding to this data we get
that S’ is solution of the primary given histopolation problem. In other way, if we
have a given interpolation problem and we calculate z; = (f; — fi—1)/(xi — zi—1),
i=1,...,n, then we can find the histopolant T". It turns out that the function

xT

S(z) = fo +/ T(s)ds
a
is the solution of the interpolation problem. Therefore, if one problem is thoroughly
studied then the result of another one could be immediately derived. Such an
approach is adequate in the case of polynomial spline interpolants and histopolants.



In practical cases, it is often important to preserve geometrical properties of
data: positivity (nonnegativity), monotonicity, convexity. It is the classical knowl-
edge that polynomial splines do not preserve geometric properties like positivity,
monotonicity, convexity of the function to approximate. A good example is the
function f(z) = 1/2%, x € [~2,-0.2], in [34] with appropriate knots and boundary
values and it is valid also as an example in the case of different problems. The same
numerical example is used in [25] which studies interpolation with quadratic/linear
rational splines.

There are two traditional ways to preserve these properties, both are using
suitable choice of free parameters. The first approach of them uses additional knots
[32, 33, 35, 36, 38, 57]. The second strategy uses higher degree polynomials with
less smoothness [44, 49, 50|. In book [31] and in article [49] general information and
references about preserving geometrical properties are presented. Author of the
article [47] also studies the shape-preservation of histopolation. On the other hand,
linear /linear rational spline of class C'! is monotone by itself, quadratic/linear of
class C? convex (or concave).

The first development of nonlinear spline spaces with the rational functions
and generalizations of them was carried out by Schaback [45] and by Werner [64].
A very general space of rational splines was also defined by Schumaker [56]. A
generalization of the results of [45] is presented in [9]. Since then various classes
of rational splines have been studied. In article [63] is presented an interpolat-
ing rational spline with which solving nonlinear equations can be avoided. For
example, in [14] a class of rational C? quadratic/quadratic and in [15] a class of
C* cubic/cubic splines for interpolation are considered. In [30] algorithms for in-
terpolation by rational splines containing, as a special case, parabolic splines and
piecewise-linear interpolation are discussed. A class of rational C? cubic/quadratic
splines is studied in [20]. The accuracy O(h3) or O(h?) is achieved. These splines
may have some advantages over rational linear/linear and quadratic/linear splines
because of their possibly large choice of coefficients but low degree rational splines
are simpler and more convenient to use. They do not lose the accuracy, too. For
a smooth function f and interpolating linear/linear rational spline S it is known
that || S — f ||eo= O(h3), see, e.g., [24, 39]. For consistent data, the linear/linear
rational spline interpolant of class C'* always exists and is unique [39, 41]. In [24],
the expansions on subintervals via the derivatives of the smooth function to inter-
polate could be found. They give the superconvergence of the spline values and
its derivatives in certain points. In interpolation the linear/linear rational splines
of class C'! have the same accuracy as the classical quadratic splines and none of
them have an advantage in comparison with real errors [24].

The problem of shape-preserving interpolation has been considered by several
authors [13, 14, 15, 19, 20, 43, 48]. Firstly they kept in mind monotonicity and
convexity. For example, in [10], cubic interpolant is used to preserve local convexity
or concavity of data with necessary and sufficient conditions for second derivative



of spline. A construction of convex histogram is studied in [61]. A review with 164
references of shape preserving approximation methods and algorithms univariate
functions or discrete data is given in [27]. Main ideas about the methods of solving
the nonlinear system of equations could be found in [42].

The theory of adaptive interpolation is developed, e.g., in [46] with cubic poly-
nomial and quadratic/linear rational splines and in [41] for any data with quadratic
polynomial and linear/linear splines.

In case of linear/linear rational splines, the number of parameters can be mini-
mal. This idea is used in [16, 39, 40, 41, 46]. With linear/linear rational splines we
can solve the histopolation problem, where histogram heights are making a sudden
rise [16] (the primal data of this example is given in [5]). In [16] the convergence
of classical Newton method (see [29]) is used for calculating the convergence rate.

Linear/linear rational splines are versatilely studied at interpolation [41], at
histopolation [16, 17, 18, 21|, at solving differential equations [26, 37].
Quadratic/linear rational splines are studied at interpolation [45, 46]. But there
are no studies about interpolation with splines which derivative is quadratic/linear
rational spline. Thus, the histopolation with quadratic/linear rational splines of
class C? is an independent problem and article [22] is an attempt to provide some
answers to basic questions in the field. Existence and uniqueness of the polyno-
mial spline interpolant in general cases, i.e., at arbitrary placement and multi-
plicity of interpolation and spline knots, at arbitrary degree of polynomial pieces,
is characterized by Schoenberg-Whitney theorem [58], the interpolant exists for
arbitrary interpolation values. In the particular case of cubic and quadratic poly-
nomial spline interpolation as the beginning of this kind of researches, we refer to
[4]. The existence of linear/linear spline interpolant also takes place for arbitrary
strictly monotone values [41], quadratic/linear spline interpolant exists for arbi-
trary strictly convex data [46]. The same is known for linear/linear histopolant for
any strictly monotone histogram[16, 18]. It occurs that the situation is completely
different at histopolation with quadratic/linear rational splines.

Among other works more closely related to this dissertation about histopolation
we mention [44, 50, 47, 49, 11]. General information about shape-preservation
could be found in [59] and [31].

Let us mention that in general, the convergence of interpolating splines is better
studied than that of histopolating ones [31, 59].

In the following we provide a brief overview of the dissertation by chapters.
The present work consists of seven chapters.

In Chapter 1 we have already given an overview of histopolation problems and
a short review of main books and papers on spline histopolation with rational
splines.

In Chapter 2 we refer to article [16]. For given monotone data we propose
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the construction of an histopolating linear/linear rational spline of class C'. The
uniqueness and existence of this spline is proved. The method is implemented via
the representation with histogram heights and first derivatives of the spline. The
use of Newton’s method and ordinary iterations are discussed.

In Chapter 3 we refer to article [17]. The convergence rate of histopolation
on arbitrary nonuniform mesh with linear/linear rational splines of class C? is
studied. Established convergence rate depends on Lipschitz smoothness class of
the function to histopolate.

In Chapter 4 we present the algorithms for constructing histopolating splines
consisting of linear /linear rational or quadratic polynomial pieces. A unique como-
notone histospline of such kind exists for any histogram with weak alternation
of data. In general, without weak alternation of data, a modified comonotone
spline histopolation strategy should be used. The method is implemented via the
representation with histogram heights and knot values of first derivatives of the
spline. The results of Chapter 4 are published in [18].

In Chapter 5 we study the convergence rate of histopolation on an interval with
combined splines of class C! having linear/linear rational or quadratic polynomial
pieces. The function to histopolate may have a finite number of derivative zeros and
the established convergence rate depends mainly on the behaviour of the derivative
near its zeros. The results of Chapter 5 are published in [21].

Chapter 6 is devoted to the quadratic/linear rational spline histopolation prob-
lem. These splines keep the sign of its second derivative on the whole interval and
therefore the given histogram should be strictly convex or strictly concave. The
grid points of the histogram and a suitable number of the spline knots between
them are supposed to be placed arbitrarily. The uniqueness of such an histopolant
is established. It is shown that the histopolant may not exist but some sufficient
conditions for the existence are given. The results of Chapter 6 are presented in a
submitted article [22].

Chapter 7 provides numerical results which completely support the theoretical
analysis.
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Chapter 2

Monotonicity preserving rational
spline histopolation

This chapter consists mainly of the results from the paper [16]. The notation
will be used later when presenting other results. We find that the inclusion of the
material from [16] to the thesis makes it much more self-contained and considerably
facilitates reading. Here we expand several reasonings from [16].

2.1 The histopolation problem

Let x; be given points in an interval [a,b] such that a = 29 < z1 < ... < x, = b
and let z;, i = 1,...,n, be given real numbers. We want to construct a C'! smooth
function S on [a, b] of the form

a; + bl(.’E — 1‘2;1)

S(x) = 2.1
@) = T de o) (2.1)
with 1 + d;(z — x;-1) > 0 for z € [wi—1, 3], ¢ = 1,...,n, (ie., a linear/linear
rational spline) satisfying the histopolation (area-matching) conditions
Zg
/ S(x)dx = zi(zv; —xi—1), i=1,...,n. (2.2)
Ti—1
In addition, we impose the boundary conditions
S'(xo) =a, S'(zn)=p8 (2.3)
or
S(xo) =, S(zn) =5 (2.4)

12



2.2. Uniqueness of the histopolant

for given o and . However, one condition from (2.3) and another from (2.4) at
different endpoints zg and x,, may be used.

Observe at once that on [z;_1, x;], we have

bi — Q; di

Sl(w) - (1 + dl(.’t — .’Ei_l))Z ’

(2.5)

which means that S being in C![a, b] is strictly increasing or strictly decreasing or
constant on [a,b]. This, in turn, implies that for the existence of the solution of
(2.2) with (2.3) or (2.4), it is necessary that

271 <...<zp O 21>...>2z, O 21=...=2, (2.6)

and the boundary data has to be consistent with z;, for example, in the first case
S (z9) = a>0and S'(z,) =8 > 0o0r S(zg) = a < z and S(xy,) = S > z,.

2.2 Uniqueness of the histopolant

Theorem 2.1. There are no two different linear/linear rational splines of class C*
satisfying histopolation conditions (2.2) and boundary conditions (2.3) or (2.4).

Proof. Let S; and Sy be linear/linear rational functions on [z;_1, z;], then

ay; +byi(r —x5-1)
14 dyi(z —25-1)

81(.%') =

and

Sy(x) = ag; + bai(x — xi-1)
14 dyi(x — z4-1)

if © € [x;_1,x;]. Denoting ¢1; = by; — aq;dy; and co; = by — ag;ds; and using (2.5),

we get

)

C1i B 2;
L+di(z—2-1))2 (1 +do(z—2i-1))%

Equation ¢’'(z) = 0 is equivalent to

g(df):(

C1; C2i

1+ dii(z —2i—1))? (1 +doi(x —x-1))%

Considering the sign of the nominator in (2.1) (1 + dy;(z — x;—1) > 0 and
1+dy;(x—z;—1) > 0), we can see that ¢1; and cg; have the same sign. If ¢1; = c9; =0
then ¢'(z) = 0 everywhere on [z;_1,2;]. If ¢1;¢9; > 0 then ¢/(z) = 0 is equivalent
to

1+ dh(l’ — l‘i_]) B <&> 1/2

1+ dzi(fL’ — 331;1) C9;

13



2.3. Representation of the histopolant

or
e\ V2
1+ di(x — 1) = (5> (1 + doi(x — wi_1)).
3
Last linear equation is satisfied only in one point on [z;_1,2;] or everywhere or
nowhere. Therefore, if there is no subinterval with ¢’(z) = 0 everywhere, then the
function ¢’ can have at most n zeros on [zg, ).

Suppose S; and Sy satisfy (2.2) with the same z; and the same boundary
conditions. Then

/g(az)dmzo, i=1,...,n, (2.7)

which implies that there are & € (x;_1, ;) so that g(&) = 0.

First assume that there is no interval [z;_1,x;] where ¢'(z) = 0 everywhere.
From conditions (2.4) we get g(xg) = 0 and g(z,) = 0. This means that the
function g has at least n + 2 different zeros on [z, x,]. Then by Rolle’s theorem
the function ¢’ has at least n+ 1 different zeros in (zg, ). This is in contradiction
with the fact that the function ¢’ has no more than n zeros. From other boundary
conditions (2.3) we get ¢'(z9) = 0 and ¢'(z,) = 0. Additionally, the function ¢’
has n — 1 different zeros between points &;, i = 1,...,n. Therefore, we get at least
n+ 1 zeros for the function ¢’, which is a contradiction. In any case, from equation
(2.2) with boundary conditions (2.3) or (2.4), we get that the function ¢’ has at
least n + 1 zeros on [xg, z,], which is a contradiction.

If there is an interval [z;_1,;], where ¢'(x) = 0 everywhere, we can apply the
same discussion on maximal sequence of adjacent intervals, where the function ¢’
is not zero everywhere. If one of adjacent intervals endpoint is x;, i =1,...,n—1,
then we can use boundary condition ¢'(z;) = 0.

Finally, if ¢'(z) = 0 in [zg,x,], then g is constant and any of conditions (2.7)
implies that g(x) = 0 everywhere. This completes the proof. (|

2.3 Representation of the histopolant

Denoting ¢; = b; — a;d;, i = 1,...,n, then we can write the derivative (2.5) of the
function (2.1) on [z;_1, z;] as

Ci

S'(z) = . 2.8
( ) (1+di(£€*l‘i_1))2 ( )
Let us denote S'(z;) =m;, i =0,...,n,and h; = z; —x;-1,4=1,...,n. From
the formula (2.8) we get
and G (2.9)
ci = m;_ n =m;. .
) i—1 (1+dzhz)2 i

14



2.3. Representation of the histopolant

In Section 2.2 it was already stated the strict increase or decrease or constancy
of S and in terms of m; these properties may be expressed that either m; > 0 or
m; < 0or m; =0 for any i =0,...,n.

If m; # 0, we get from (2.9)

Dl (14 hady)?,

mg

di=£;<<f;1>v2—1>. (2.10)

Let d; # 0 (then m;_1 # m;). Then

from what

b; G

S(x) = - — : 9211
o) = T AT A —m) (2.11)
Since
a3 ZT; b Cs
S(z)dx = / {—’ — ¢ da
/ﬂﬂi1 ( ) Ti1 di di(l + di(x — sz‘—l))
b; G
= d_zhi - d—zz log(1 + hid;),

then from histopolation conditions (2.2) we get

Ci

h;d?

1

&l&

From equation (2.12) we have

4 &

Thus, rational spline (2.11) represents in form

mi;—1 mi—1
S(x) = 2 log(1 + hyd;) — 2.13
(.Z‘) %t hldg Og( + ) dz(l + dz(l' — xi_l)) ( )

or, taking into account the equation (2.10), as
mi—1 mi—1 12
S(LE) =Z; -+ hz' 1/2 D) lOg ( )
mi—1 -1 my

m (2.14)

-k

()= 0e( () )



2.4. Continuity conditions

Z‘E[xi,l,l‘i], i1=1,...,n, t:(IL‘—ZL‘Z;l)/hi.

In the case d; = 0, however, m;_1 = m; and b; = ¢; = m;. The condition (2.2)
gives a; = z; — hym;/2 and we obtain for x € [z;_1, ;] the representation

St s (e— (02 ). s

Clearly, for m; = 0 we have S(z) = z;, © € [a,b], which is also consistent with
(2.15).

2.4 Continuity conditions

The representation of S in terms of m; asin (2.14) and (2.15) ensures the continuity
of S’. In this section we will express the continuity of S in the knots z1,...,2,_1
by the corresponding equations.

We restrict ourselves to the case m; > 0 for all ¢, the case m; < 0 for all ¢ may
be treated similarly. Let d; # 0. Since m;_1 = m;(1 + h;d;)? we can write because
of (2.13) that

(1 + hid;)*log(1 + hid;) — hidi(1 + hid;)

S(LL‘, — 0) =z +hm; 2

(1 + hldl)Q(log(l + hldl) o 1) + 14 h;d;
h2d?

mi_1 mi_1 1/2 mi_1 1/2
) )+ (52)

= z,+hm;

. (2.16)

Also from (2.13) we get

log(1 + h;d;) — h;d;

S(mi_1 + 0) = z;+hm;_1 h?d?

(]. + hidi)_2 (log(l + hidi>_1 — ].) + (1 -+ h,’di)_l
(1 + hid;)=1 — 1)°

=z —himi

16



2.4. Continuity conditions

1/2 1/2
m; m; m;
<log ( ) — 1) + ( )
m;—1 mi—1 mi—1

=z —himi

From (2.15) it follows (in the case d; = 0)

h; h;
S(z; —0) =z + Ezmia S(zi—1 +0) =2z — éml

Let us introduce the function
2?(logx — 1) +x
(x — 1)

— for z=1.
2

for >0, x#1,

o(z) =

Lemma 2.1. It holds

1) o(z) >0, ¢'(x) >0 and ¢"(x) <0 for x >0,

—~

7

W —

: r ..,
2) lim p(z) = 5, lim ¢'(z) =

3) lim P@) o 2@y
z—=0+ T z—o0 log x

1
4)—<M<1f0r0<m<1,
2 T
5) o(z/?) < logx for x > 1.84.
Proof. 1) Assume that x > 0 and consider the expression (z2(log z—1)+z)/(z—1)2.
Here the limit of the numerator is

1
logx — 1 . —a?
li 2(1 -1 =1 = =1 T | —=0.
Jm (2%(logz — 1) + ) = lim —— Jm 5= lim - =0
) 23

Therefore, lim, .o, ¢(x) = 0.

Next, if z > 0, x # 1, we find

() = (2z(logx — 1) 4+ 2% - % +1)(z —1)? . (2(logz — 1) + ) - 2z — 1)
(z—1? (x —1)*

xz? —2xlogx — 1
(x —1)3
If # > 1, then (x —1)3 > 0. Let f(x) = 22 — 2xlogx — 1. It is clear that f(1) = 0.
Now f'(z) = 2z —2logx —2 = 2(x —logx — 1). We see that f’(1) = 0. In addition

17



2.4. Continuity conditions

f(z) =201 —-1/x) > 0if @ > 1, thus f'(z) > 0 if > 1 which gives us that
f(z) > 0if > 1. In consequence ¢'(x) > 0 if z > 1. We find

2
2 —
¢ —2zxlogx — 1 2 1
1. / = 1. = 1. x— = — .
sl (z) o (2 1)3 B >0

Let us now consider the domain 0 < z < 1 and investigate the sign of ¢/(z). Then
(z—1)3 < 0. For the function f(z) = 2> —2xlogz — 1 we have lim,_,o, f(z) = —1
and also lim, o, f'(x) = oo. Furthermore f”(z) =2(1—-1/z) <0if 0 <z < 1,
e.g., f' is strictly decreasing in (0,1). Because of f’(1) = 0, this means that
f/(x) > 0in (0,1). This gives us that f is strictly increasing in (0,1). Therefore,
f(z) <0if 0 <z < 1. Hence, ¢'(x) > 0 always if 0 < x < 1. In addition, we get
lim,1_ ¢(x) = 1/3. In conclusion we have proved that ¢'(z) > 0 if z > 0 which
means that ¢ is strictly increasing if # > 0. Due to the property lim, o, ¢(z) =0,
we have shown that ¢(z) > 0if =z > 0.

Similar calculations allow to establish the negativity of ¢”.

2) We get
5 1
2e(logz — 1)+ 27 - —+1
lim p(z) = lim = L
z—1 r—1 Q(x — 1)
x#1 x#1
. 2xlogx —x+1
= lm —————
rz—1 2(1’ — 1)
r#1
1
2logz +2x - — —1
= lim &z
r—1 2
r#£1
_ 2logx + 1 1
- o 2 T
r#l
Thus,
lim p(z) = L
xlﬁlgp = 2

The limit of ¢’ at the point 1 was already found in part 1) of the proof.

3) We have

z(logr —1)+1

lim P _ lim =1

=0, T 204 (x —1)2

because lim,_,o, xlogz = 0.
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2.4. Continuity conditions

We already know that ¢(z) > 0 for x > 0. Actually

2 —
lim P8 gy ZU0BTZ) g T
oo loge  w—oo (z—1)2logx  z—oo (z —1)2logx

Second addend is approaching to zero in process x — oo. Hence

p(r) .. 2 . logx—1

xh—>nolo log x T a0 (x —1)2 22— logz

where both factors are equal to one. We get that

lim M

z—o0 log x

=1

4) Denote ¥ (z) = p(z)/x = (z(logx — 1) + 1)/(x — 1)2. Then

(logz—1)+ 2 - %)(m “ 12— (a(logz — 1) + 1)2(x — 1)

1/)/(1‘) = (z — 1)2

—(x+1)logx +2(x —1)
(z—1)°

Let us investigate the sign of ¢/(z) if z € (0,1).

We use the notation x(z) = —(z + 1) log x + 2(z — 1) for numerator of the last
fraction. Then lim, .o, x(z) = oco. It is clear that x(1) = 0. We also get that
X'(x) = —1/z +1/2? = (—z +1)/2? > 0if 0 < 2 < 1. Thus, X’ is increasing if
0 < 2 < 1. Considering the equality x'(1) = 0 we get x/(x) < 0if 0 < z < 1 which
means that y is decreasing if 0 < x < 1. From x(1) = 0 we get that x(z) > 0 if
0 < x < 1. With that we have shown that ¢/(z) = x(z)/(z —1)3 < 0if0 < 2 < 1.
Therefore, the function ¢(z)/x is decreasing if 0 < x < 1. From properties 3) and
2) follows lim, 0, ¢(z)/z = 1 and lim,_,; ¢(z)/z = 1/2, thus, the property 4)
holds.

5) From property 3) we get that if x is great enough then ¢(z)/logx < 2 or
o(z) < 2logz. Let us find maximal solution z* of equation ¢(x) = 2logx. Note
that because of p(1) = 1/2 and logl = 0 we get lim,_,1, ¢(x)/logx = oo and
x* exists. If x > x* then p(z)/logz < 2. Actually z* < +/1.84, therefore, if
x> +/1.84 then = > z* and ¢(z)/logx < 2.

With this Lemma 2.1 is proved. O

Using the function ¢ we can write equalities (2.16) and (2.17) as
e\ 1/2
S(z; —0) = z; + hymyp (( 2_41> ) (2.18)
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2.4. Continuity conditions

and
me \ /2
S(.Tifl + 0) = Z; — himi,up ( . ) . (2.19)
mi—1
From continuity conditions of spline S, ie., S(x; — 0) = S(z; + 0),
i=1,...,n—1, we get

m; <hig0 ((mn’;l)m) + hi1p ((mngl ) W)) =5, (2.20)

where §; = z;41 — 2;. Assuming m; > 0 the spline S is strictly monotone and
therefore we have to assume that §; > 0.

If d; = 0 and d;11 = 0 then from equalities

h;
S(:El - 0) =2z + gmz (2.21)
and
h;
S(xi1+0) =z — 5 m
we get
mi(hi + hi+1) = 26;. (2.22)

If d; = 0 and d;1+1 # 0 (case d; # 0, d;+1 = 0 is analogical), then from (2.19)

and (2.21), we get
hi mip1 \
il 5 i = 0;. 2.2

Note that (2.22) and (2.23) are special cases of (2.20). The condition d; = 0 is
the same as m;_1 = m;, remember that ¢(1) = 1/2.

Boundary conditions (2.3) fix the values my = « and m,, = 5. But boundary
conditions (2.4) do not depend on values of dy and d,, and could be written as

1/2
my
21 — h1m0<p<<> > =a,
mo
m 1/2
mpy

Notice that the equations (2.24) may be considered as special cases of (2.20) with
i=0,i=nand hg =0, 20 =, hypt1 =0, 2,41 = B.

(2.24)
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2.5. Emistence of histosplines

2.5 Existence of histosplines

The main result of this chapter is the existence of linear/linear rational spline for
any strictly monotone data z; and consistent boundary condition values «, .

Theorem 2.2. For any z; with the property (2.6) and consistent boundary values
«, B3, there is a linear/linear rational spline of class C' satisfying (2.2) and (2.3)
or (2.2) and (2.4).

Proof. Suppose there is §; = 0. Then, by (2.20) (or by any of the equations (2.22),
(2.23) or (2.24) as special cases of (2.20)) m; = 0 for the solution S of (2.2) with
(2.3) or (2.4). But this yields constancy of S. Therefore, we may assume J; > 0,
t=1,...,n—1,witha>0,5>0in (2.3) and a < z1, 5 > 2, in (2.4).

We write all the equations of type (2.20)—(2.23) with two additional ones ob-
tained from the boundary conditions in the form m; = ¢;(m) with m = (mq, ..., m,)
and we show that there is an interval [c, M] such that all functions map as
@i+ [e, M]"*1 — [¢, M] and ¢; are continuous. Then by the Bohl-Brouwer fixed
point theorem the system m; = ¢;(m), i = 0,...,n, has a solution.

The equation (2.20) is in fact

m; = @i(m) = 0 . (2.25)

() ) e (5

Suppose m;_1, m;, mit1 € [¢, M] where 0 < ¢ < M. Then, as ¢ is strictly
increasing, we have

0;
e (@))

By Lemma 2.1, 4), o((¢/M)Y?) > (¢/M)*/?/2. Continuing with the estimation

pi(m) <

we get
1/2
@i(m) < %(%) <M
if
hiéhﬂ < (Me)'2, (2.26)

On the other hand, for sufficiently small ¢ and large M (actually, it sufficies to
take M/c > 1.84), it holds @((M/c)'/?) < 2log(M/c)'/?, and we get

i
2(h; + hit1)log (%)1/2

pi(m) > >c
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2.6. Rate of convergence

if v
>clog—. (2.27)
c

We have mentioned in the previous section that the equations (2.22) and (2.23)
are special cases of (2.20), therefore, the estimates with them also lead to the
inequalities (2.26) and (2.27). The same could be said about (2.24), but as for
boundary conditions (2.3) we simply have to take care of the requirement «, 3 €
[¢, M] in the choice of ¢ and M.

Denote (we mean hy = 0, hy41 = 0 as needed in (2.24))

20; 0;
A=max ———, B= min ———.
o<i<n h; + hi-',-l o<i<n h; + hi+1

Keeping A = (M¢)'/? and decreasing ¢ (accompaning the increase of M) we achieve
B > clog(M/c). The proof is complete. O

2.6 Rate of convergence

Suppose we have additional knots &; in intervals (z;_1,2;), ¢ = 1,...,n, and con-
sider the interpolation conditions

S(&)=f(&), i=1,...,n, (2.28)
for some function f defined on [a,b]. In [39] it is proved the following

Proposition 2.1. Given strictly monotone f with f” € Lip1, the linear/linear
rational interpolating spline S of class O satisfying (2.28) and (2.3) or (2.4) on
uniform mesh (i.e. x; = a+th, h = (b—a)/n, i = 0,...,n) has the rate of
convergence O(h?) in uniform norm.

Remark 2.1. The proof of the rate O(h3) is presented explicitly in [39] merely in
the case of boundary conditions (2.4). As for (2.3), the argument is quite similar.
The only modification is that, for exzample, the condition S'(xzo) = fi = ['(z0)
leads to the equation (with S; = S(x;), 1 =10,1)

R fo(S1 = f(&1)) = h(f (&) = So)(S1 — So) =0
which replaces the first one in the system (3.1) in [39].

Consider a linear/linear rational spline S satisfying

/S(x)dx: /f(x)da?, i=1,....,n, (2.29)
Ti—1 Ti—1
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2.7, On actual construction of histopolants

for a function f being at least continuous. By the mean value theorem there are
& € (w;_1, ;) such that

T

/ (S(2) — F(a))de = (S(&) — FE)) (@i — 1) = 0

Ti—1
which gives S(&) = f(&;). This means that the histopolant S is also an interpolant.

Consider the boundary conditions
S'(wo) = f'(wo),  S'(an) = f'(zn) (2.30)

and
S(xo) = f(wo),  S(zn) = f(an). (2.31)

Based on Proposition 2.1 we have the following

Theorem 2.3. For given strictly monotone function f with f” € Lip1 (in par-
ticular, with f € C3[a,b]), the linear/linear rational histopolating spline S of class
C* satisfying (2.29) on uniform mesh and boundary conditions (2.50) or (2.51)
has the rate of convergence O(h?) in uniform norm.

We will present a considerable improvement of this result in Chapter 3.

2.7 On actual construction of histopolants

The representation of the histopolant (2.14) or (2.15) requires the knowledge
of parameters m;. They are uniquely determined by the equations (2.20) for
i =1,...,n — 1 (including (2.22) and (2.23) as special cases) with additional
two ones (2.24) (special cases of (2.20), too) obtained from boundary conditions
(2.4) or simply mg = «, m,, = . This system could be written in the form

wo(m)=my—a=0,

Pi(m) = m; (hw((mn?)m) + hi+1<p<<mﬂi;1>l/2>> —0=0, g

Yp(m)=m, — =0

with obvious modifications if we use the equations (2.24). We will use the function
U(m) = (Yo(m),...,¥m(m)) and ¥(m) = 0 as a brief form of (2.32).

One way to find the solution of (2.32) is the Newton’s method. A step of
Newton’s method means the solution of the linear system

T/ (mFYmkE = o/ (mFym* — w(mk) (2.33)
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2.7. On actual construction of histopolants

with tridiagonal matrix. The entries of the matrix W' are (in i-th row)

oy 1,1

= Zh:— (u:
Gmi_l 2 Zui(p(uﬁ’

albi o 1 / 1 !
om; hip(ui) — ﬁhzuﬁp (u;) + hit1p(vi) — ihz—&-lvﬂp (vi)
ob 1.1
= —hip1—¢ (v
Mt o i+l UZ}P (v3)

with U; = (mi,l/mi)l/Q and V; = (mHl/mi)l/Q.

Proposition 2.2. For any u; > 0, v; > 0 it holds 0v;/Om; > 0.

Proof. Consider the function x(z) = ¢(x) — x¢'(z)/2. Then we can find
X'(x) = (¢ () — 2¢"(x))/2. From Lemma 2.1, 1), it follows x'(x) > 0 for = > 0.
Since x(0) = 0 (more precisely, lim x(z) = 0 as  — 04), we get the assertion of
the proposition. O

It is clear that dv;/0Om;—1 > 0 and 9v¢;/Om;;1 > 0 (except some boundary
cases (2.24) where these derivatives may be equal to zero). Therefore, the difference
of domination in ¢-th row is

0Y; 0Y; 0P

om;  Omi—1  Omip

= ha(otu) = 5 (w3 ) o)) o (st = 5 (w4 1)) )

Let us introduce the function

3o = pta) ~ 50+ 1 ).
Then ) ) . . / . . )
@=3(1452)¢@-5(a+ 1)@

and, by Lemma 2.1, '(z) > 0 for x > 0. The equation §(z) = 0 (or, equivalently,
the equation 2z*logz — 32 + 423 — 222 + 2xlogx + 1 = 0) has the solution
x* ~ 0.734. Consequently, we have the following:

Proposition 2.3. The diagonal of the matriz in Newton’s method is dominant if

mi_1/m; = (v%)% = 0.54, m;1/m; > (2%)? and at least one of these inequalities
18 strict.
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2.7, On actual construction of histopolants

Let us remark that, histopolating a strictly monotone function in the process
n — oo, we have m;_1, m; and m;41 to be close each other and, thus we have the
diagonal dominance.

In practical calculations with given data we do not know in advance which
representation, (2.14) or (2.15), should be used. The solution of the system (2.22)
itself determines which case we have to deal with because d; = 0 is equivalent to
m;—1 = My.

We will use the following (see, e.g. [29]) classical result about the convergence
of Newton’s method.

Proposition 2.4. Suppose there is a ball B(mP, R) such that, with respect to some
norm,
|9 (2) = ¥'(y)|| < Lllz =yl Va.y € B(m’ R),

(% (m®) || < bo, (2.34)
(@' (m®) " @ (m")]| < by (2.35)

with bob1L < 1/2 and R > (1 —+/1 — 2by)b1/by. Then the method (2.33) converges
to the solution m* € B(m%, R) of the system (2.32).

Let us also recall that due to Lipschitz continuity of ¥’ the convergence is
quadratic, i.e. [|[mFtt —m*|| = O(||m* — m*||?).

In our case, Lipschitz continuity of ¥’ is guaranteed by the smoothness of the
function ¢. The estimate (2.34) is satisfied in many natural situations, e.g. in the
case described just after Proposition 2.3. Finally, if m® (or any m* which could be
considered as an initial value) is quite close to the solution then (2.35) is satisfied
for some small b;.

To be more precise, suppose we have to histopolate a function f € C3[a, b] with
given histogram heights

i
1

z,-:—/f(:v)dm, i=1,...,n.
hi
Ti1

Take the initial values

2(zi41 —2i) .
m; = bt by i=1,...,n—1. (2.36)
The use of Taylor’s formula gives that m{ = f(x;) + O(h) (here h = maxh;)
and even m{ = f'(z;) + O(h?) in the case of uniform mesh. More complicated
but straightforward calculations lead to m] = f’(x;) + O(h) and, consequently,
m{ —m} = O(h). Thus, for small h, Proposition 2.4 is applicable to ensure the
convergence of Newton’s method starting with indicated choice of initial values.
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2.7. On actual construction of histopolants

Let us add that, if possible, we should use the boundary conditions mgy = f/(zg)
and m,, = f'(x,). Having only given histogram we may form (at the left end of the
interval [a, b], the other end of [a,d] is similar) the linear or quadratic interpolant,
say p(x), at the points (z;_1 +;)/2, i = 1,2 for linear and ¢ = 1, 2, 3 for quadratic
case using the values z1, 29 and 21, 29, 23 correspondingly and take S(z¢) = p(z0)
or mg = p'(zo). Then we have my = f'(z9) + O(h) for the linear interpolant and
mo = f'(xg) + O(h?) for the quadratic interpolant even on nonuniform mesh. In
both cases we have S(z¢) = f(zo) + O(h?). The precision S(zg) = f(xo) + O(h?)
could be obtained by the quadratic histopolant using 21, 22, 2z3.

However, the described choice of initial values (2.36) and myg, m,, is natural
having arbitrary monotone histogram.

Consider again the system
m; =pi(m), i=0,...,n, (2.37)

briefly, m = ®(m) with ®(m) = (@o(m),...,ps(m)), consisting of equations
(2.25), i = 1,...,n — 1, and two ones obtained from (2.24) or simply the given
values mog = a and m,, = 8. Another natural method for solving (2.37) is ordinary
iterations m¥ = o;(mF1), k = 1,2,.... We will analyze the behaviour of itera-
tions only for i = 1,...,n—1as for ¢ = 0 and ¢ = n this is similar and even simpler.
Represent the difference A¥ = m}F —m? = p;(m*=1) — p;(m*) by Lagrange formula
taking the derivative at the point p = &m*~1 4+ (1 — &)m*, £ € (0,1), where, for
briefness, we do not indicate the dependence of p on k. We have

- k-1 k-1
AF 1 (( _ Akt AR ’Y‘AiH)
2
Hi Hi—1 Hit1

where

h hi(%)lmw’(<% 1/2>
higp((%)l/Q) + hz’+1<ﬂ< - )1/2)
(5227 (52 )
hi¢<(%)l/2) *hz‘ﬂ@((ﬁfl)l/g) |

By Lemma 2.1, it holds g8; +v; < 1 — ¢ for some 6 > 0 depending on particular
system (2.37). It may happen that «; > 1.

9’

=
+

Yi =

Suppose we are in a small neighborhood of m*, i.e. mF ~ m* and, thus,

p =~ m*. Then o; ~ 1 and relative errors |A¥|/m? (consequently, absolute errors
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2.7, On actual construction of histopolants

|Af|, too) converge to zero geometrically with the quotient f3; 4+ ;. Actually, as
©(1) = 1/2 and ¢'(1) = 1/3, this quotient is 2/3. Note that the worse case is
AfflAfjll < 0 and AfflAf;f < 0 which always has been realized in practical
calculations where, nevertheless, the actual quotient is rather 1/2 than 2/3.

The behaviour of iterations nearby the solution is almost as an exact geometric
progression and this suggests the use of some acceleration method. For example,

coordinatewise Aitken’s transform could be recommended.
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Chapter 3

Convergence rate of monotonicity
preserving rational spline
histopolation

In this chapter we consider the histopolation problem introduced in Section 2.1.
The text originates from [17] and some following results are based on these con-
siderations. The purpose is the same as in the previous chapter - to be more
self-contained in the text of the thesis.

3.1 Estimates of first moments

Suppose that for given function f we calculate

1
zi:—/ fle)dze, i=1,...,n.
hi Ti—1

Consider the boundary conditions S(zg) = f(zg) or S'(zg) = f'(zo) with their
similar counterparts in z,,. We derive our convergence rate results basing on the
estimates of m; which will be established in this section.

Lemma 3.1. Suppose f' € Lip a for some o € (0,1] and f'(x) > 0 for all x € [a, b].
Then m; — f'(z;) = O(h*).

Proof. Take K; = [f'(z;) — ch®, f'(x;) + ch®] with a number ¢ > 0 independent of
h and which will be specified later. Showing that ¢; : [[;-, K; — K; for all i, we
may use Bohl-Brouwer fixed point theorem and the uniqueness of the solution of
the system m; = ¢;(m), i = 0,...,n, to state that m; € [f'(x;) —ch®, f'(z;)+ch®].

28



3.1. Estimates of first moments

First, let us analyze the main case ¢ = 1,...,n — 1. Using in integrals of

Ti41 x

1 1
i /f(a:)dx—h—i/f(x)dx

1

5 =

the Taylor expansion f(x) = f(x;) + f'(z;)(x — z;) + R, where it holds
|R| < (L/(1 + )|z — x;|**® and L is the Lipschitz constant of f’, we get

L

Traera ) (3.1)

1
0 = §(hz’ + hip1) (i) £
(the compact writing p = ¢ £+ r, as usual, denotes the two-sided inequality

g—r<p<q+r).

Next, consider the expansion

o((™1)") = e+ e (M) 1), (32

m; i
e (1 (2",

Choose m; = f'(x;) £ ch®, i =0,...,n. Then we obtain

mi_l_lzmi_l—mi:i 2c+ L B

m; m; () — che

(3.3)

Let us remark, in addition, that this yields m;_1/m; — 1 as h — 0. Using the
Taylor expansion up to the second derivative for (1 + 9(:)1/ 2 at 0, we obtain

Vi-1 = JI+@-1)—-1

—1 (x —1)2
- $2 _8(13”—’_5)3/2’ Ee(0,z—1).

This, applied in the case x = m;_1/m; with the help of (3.3) leads to

(miq)l/? = l(mi—l _ 1) + O(hH’O‘)

m; 2 my;

L
C‘l‘j

(mfﬂ + 0(h1+a))

c+L
=+ 2 p h*)). 4
(Frragh™ +0u) (3.4)
We may conclude that, in (3.2) and then in (2.25), it holds
1
¢(&) = 3+ O(h). (3.5)
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3.1. Estimates of first moments

Analogous calculations could be done for the term @((mg1/m;)"/?) in (2.25).
Taking in (2.25) into account (3.1) and (3.2), (3.4), (3.5) with their counterparts

for m;y1, we obtain

5(hi + hin) ' (00) £ e aray (T + Rt

wilm) =1 1 etk
« 2 1« 2c
5 i+ hisn) = (hi + hisn) (5 + O ))(f/(xi)h +0(*))

f/(xi)i%ha
1 a 2¢c+ L a 2a
1i(§+0(h))(f(x h® + O(h )
+

2.4 L
= (/) + %h )(1+ (3 e ih +0(h*)))
= f'(z;) £ (@C * (% T a)2(2 + a)>L> he Mh2‘1> (3:6)

with certain M > 0 depending, however, on ¢, L and f. We have the inclusion

2 1 2
- -4 — )L+ MR K
3c+<3+(1+a)(2+a)) * ¢

which, in turn, takes place for sufficiently large ¢ (e.g., in the case a = 1, for
¢ > 2L) and small h.

The boundary condition S’(x¢) = f/(x¢) does not need any analysis and we
deal briefly with S(zg) = f(zo) leading to

do
mo = @o(m) = ——— 7. (3.7)
hip((5)1/2)
Then it holds b I
8o = = f'(x0) £ ———————hl*®
=Sl ET M

and with the help of the expansion

(7)) = ot + e ((22) 1)
oe(L(2)")

we get for ¢y the same final form of two-sided estimate (3.6). This completes the
proof. O

Lemma 3.2. Suppose f” € Lipa for some a € (0,1] and f'(z) > 0 for all
x € [a,b]. Then m; — f'(x;) = O(h1T9).
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3.1. Estimates of first moments

Proof. Let us write the equations (2.25) in the form

mi_1\1/2 ™m; 1/2
Fy(mi—1, mi, miy) :himi‘P(( m 1) )+h"+1mi¢<( 7:1) )

i

=6, di=1..,n—1, (3.8)

at the same time introducing functions Fj. By Taylor expansion we establish
1 1
0y = 5 (hi + hiv1) f' (i) + g(h?H — B3) " (2s) + O(hIH* + hIT). (3.9)

At left hand side of (3.8) we use the Taylor expansion

_ a4 _
Fy(mi—1,mi,mi1) = Fy(mi, mi,my) + F} (mg, mi,m;)h; + 12<,£A) 12

with Ez = (mi,1 —m;,0,mjy1 — mi), some \ € (0, 1) and &, = (mi7m¢,mi) + /\Ez
Here we have at once F;(m;, m;,m;) = (h; + h;+1)m; /2. Concerning the term with

F! we calculate
8E h@‘ ’ mi—1 1/2 m;_q —-1/2
=545 ) )
8mi,1 2 m; my

which gives OF;/Om;_1(m;,m;,;m;) = h;/6 and similarly we obtain the value
OF;/0mit1(m;, m;,m;) = hi11/6. In F}" we actually need only

2 ‘ ] ; . _
in;ill - %#(g@"((mmz_;l)lﬂ) B w’((mnzl)m) <mﬂ;_l1) 1/2)

and similar derivative 82Fi/8m?+1. Observe that, by Lemma 3.1, it holds
m; € [c1,c0) with ¢1,c2 > 0 for sufficiently small values of h. This gives
Ami—y + (1 — N)m;i, Amipr + (1 — A\)m; € [e1,¢2]. After standard calculations
we can conclude that

F/'(€x)
2

where «; and §; are bounded. Thus, the left hand side of (3.8) reduces to

—2
hi = hiai(mi—1 —m)* 4+ hiv1Bi(mirr — my)?

1 1 1
—himi—1 + 5 (hi + hip1)mi + Zhipimi
6 3 6
+ hiai(mi_l — mi)Q + hi+1ﬁi(mi+1 — mi)Q. (3.10)
In addition, using the formulae f'(z;) — hif"(x;) = f'(zi—1) + O(h;T®) and
F(@i) + higa f" (i) = f'(@ig1) + O(hiT) let us write (3.9) as
]‘ !/ ]‘ ! 1 !/
0i = chif (wi-1) + 3 (hs + hiz1) f(0) + Ghipa f (@ir1)

+O(hFT™ + hZHM). (3.11)
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3.1. Estimates of first moments

Now (3.10) and (3.11) permit to transform (3.8) to the form
Ai(mio1 = f'(@iz1)) + 2(mi — (i) + pi(migr — f'(@it1))
= —6)\2'011'(77%;1 — mi)2 — 6uiﬂi(mi+1 — mi)Q + O(hl+a) (3.12)

with A\; = h;/(h; + hit1) and p; =1 — \;.
In the case of boundary condition S(z¢) = f(zo) write (3.7) as

ma N 1/2
F()(m(),ml) = hlmocp((—l) > = 60 . (313)
mo
Here we use the expansions
1 1
do = ihlf,(x()) + éh%fﬂ(iﬂo) +O(hit?)
1 1
= ghlf'(fﬂo) + Ehlf/(xl) +O(hi™)
and
_ F// —9
Fo(mo, m1) = Fo(mo, mo) + Fy(mo, mo)ho + %ho

with hg = (0,m1 —mg) and &, = (mg, mg) + Ahg. In the last formula we have
Fo(mo, mo) = himo/2, 0Fy/0my(mg, mg) = hy/6 and

Fy(€))

-2
B) hO = hlao(m1 — m0)2

where ag is bounded. The equation (3.13) takes the form

2(mg — f'(z0)) + (m1 — f'(x1)) = —6ag(my —mg)® + O(h%). (3.14)

Observe that the assumption f” € Lip a guarantees f’ € Lip1 and then, by
Lemma 3.1, m; — m;_1 = O(h) or (m; —m;_1)?> = O(h?) for all 4.

Considering now the equations (3.12) and (3.14) with its analogue at z,, as a
linear system with respect to m; — f/'(x;), i = 0,...,n, we find out that there is
the diagonal dominance in rows. However, the condition S'(xzo) = f'(zo) gives
the trivial equation mg — f/(zg) = 0 which preserves the property of diagonal
dominance. This yields m; — f/(x;) = O(h'*®) which completes the proof. O

Remark 3.1. Instead of ezxact boundary conditions S(zg) = f(xo) and
S'(x0) = f'(x0) it may be used their perturbed versions S(xo) = f(xo) + O(h}T)
and S'(xo) = f'(x0) + O(h) in Lemma 3.1, as well S(xo) = f(x0) + O(h¥™*) and
S'(xo) = f'(x0) + O(hi™®) in Lemma 3.2.
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3.2 Convergence estimates

In this section we establish the convergence rate of uniform norm
IS = flloo = maxg<z<p |S(x) — f(z)| for S being the linear/linear rational spline
histopolant to a function f as was described in Sections 2.1 and 3.1. In addition,
the convergence rate of ||S" — f’||« is obtained.

Lemma 3.3. In the assumptions of Lemma 3.1 (respectively, of Lemma 3.2) it
holds ||S" — f'||cc = O(R®) (respectively, ||S" — f'||oc = O(h'T9)).

Proof. Let us recall the representation (2.14) of histopolating spline

o ' mi—1 mi—1\ /2
S(x)_zl + hl((m;;l)l/?_l)? log( m; )
— h mi—1
(5 =D () - )
for x € [x;_1,x;]. This gives
S'(z) = il .
(.’L’) (1 + x—]f:,1 ((m;;l )1/2 . 1))2

First, let f satisfy the assumptions of Lemma 3.1. We have found in its proof

that
A= (mi*1)1/2 1= 1(mH —1) + O

my; 2 my;

and we know that A = O(h®). Thus, we have

S'(z) = i
1+ 25 A+ O(h?*)
= mi_(1 - Q%A + O(h>))

T — Xi—1 Mi—1
h; m;

=m;_1 — (mi_l — mz) + O(hQa). (315)

Using here the replacements m;_; = f/(x;—1)+O(h®) and m;—1 —m; = f'(x;—1)+
O(h*) — (f'(x;) + O(h*)) = O(h®) together with m;_1,m; € [c1,co] for some
c1,c2 > 0, we obtain

S’(x) = f/(.’L’i_l) +O(hY), =€ w1,z (3.16)

Obviously, f'(z) = f'(xi—1) + O(h*), z € [z;—1, x;], and this with (3.16) gives one
of the assertions of Lemma 3.3.
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Secondly, consider the case of f satisfying the assumptions of Lemma 3.2. Now
use in (3.15) the replacements

mi—1 = f'(zi—1) + O(h*),

mi-1 _ f/(l‘i_1) + O(hlJra) _ f’(l‘z) + O(h)
m; f(zi) + O(hM*e)  f'(2) + O(htte)

=1+ 0(h),

mi—1 —m; = f'(i-1) + O(WF) = (f'(@:) + O(WT)) = —hif"(zi—1) + O(h'T).

Observe also that, at this time, A = O(h) and the rest term in (3.15) is O(h?).
Then we have

S,(.’E) = f/(l‘ifl) + (33 — .’Eifl)f”(xifl) + O(h1+a), RS [xi,l,:vi].

This with the Taylor expansion f'(z) = f'(x;_1) + (z — x—1) f"(zi—1) + O(h'T¥),
x € [wi—1,x;], implies the other assertion of Lemma 3.3. The proof is complete. O

We summarize the estimates of values in lemmas in the following:

Theorem 3.1. Suppose f'(x) > 0 for all x € [a,b] and f' € Lipa for some
a € (0,1]. Then the histopolating spline S satisfies ||S — f|loo = O(R'T). If, in
addition, f" € Lipa, a € (0,1], then ||S — f|ls = O(h*T9).

Proof. The histopolation condition

1 1
h—i/S(x)dx—h—i/f(x)dx
Ti—1 Ti—1

is equivalent to [ (S(z) — f(z))dx = 0 which implies the existence of

& € (wim1,x4) such that S(&) = f(&). Therefore, it holds S(x) — f(x) =
fg(S’(s) — f'(s))ds. Assuming ||S” — f'llcc < MAP for some M > 0, we have
for x € [wj_1, 2]

S@) 5@l < | [186) - £s)las
&i
< MBP|lz — & < MRPHL,

Basing now on Lemma 3.3 we get the assertion of Theorem 3.1. O
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Chapter 4

Comonotone shape-preserving
histopolation

While in Chapter 2 we looked at the case of strictly monotone data, in this chapter
we consider any kind of data given as histogram to histopolate. Our purpose is to
preserve the shape of the data as much as possible.

The main results of this chapter are published in [18].

4.1 Histopolation problem

Let [a,b], a,b € R, a < b, and we choose points x;,7 = 0,...,n, such that

a<ry<r<...<xp<b neN.

And let z;, ¢ = 1,...,n, be given real numbers. We are interested in the
construction of a C! function S on [a,b] that, in every subinterval [z;_1,z],
i = 1,...,n, is either quadratic polynomial or a rational function of the form

(2.1) with 1+ d;(z — x;—1) > 0 satisfying the histopolation conditions (2.2).

In addition to (2.2), we impose two boundary conditions (2.3) or (2.4). Or we
can use a combination of these conditions, for example S’(x¢) = « and S(z,,) = B.

4.2 Uniqueness of the histopolant

In the previous section we considered the histopolation problem with the given
mesh z;, ¢ = 0,...,n, and given numbers z;, ¢ = 1,...,n. Let it be set when the
spline is linear/linear rational function of a form (2.1) or quadratic polynomial on
subintervals [z;_1,2;], i =1,...,n.
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4.3. Representation of spline

Theorem 4.1. There are no two different splines being equally linear/linear ra-
tional function or quadratic polynomial on particular intervals and satisfying the
same histopolating conditions (2.2) and boundary conditions (2.3) or (2.4).

Proof. Suppose S7 and Sy are two different histopolating splines with the same z;,
the same boundary conditions and the same choice of kinds for particular intervals.
Denote g = S1 — Sy and analyze zeros of the function ¢’ on interval [z;_1,z;]. If
S1 and Sy are both quadratic polynomials on this interval then ¢ is quadratic and
g is linear, therefore ¢’(z) = 0 everywhere or nowhere or only in one point on
[@i—1,24).

If S7 and Sy are both linear/linear rational functions on [z;_1, ;] then by proof
of Theorem 2.1 we have that ¢/(x) = 0 everywhere or at most in one point on this
interval.

Assume that S; and Sy satisfy conditions (2.2) with the same numbers z; and
boundary conditions. As in proof of Theorem 2.1 we get that only the case which
does not lead to a contradiction is ¢’(x) = 0 everywhere on [z, z,] and then
condition (2.7) gives us that g(z) = 0 everywhere. This completes the proof. O

4.3 Representation of spline

In this section we see how to present spline which corresponds to the problem in
Section 4.1, where spline S from class C' is on [z;_1, x;] either quadratic polynomial
or linear/linear rational function. Depending on spline S type we are naming
intervals [z;_1, x;] quadratic or rational. We also assume that we have numbers z;
and histopolation conditions (2.2) hold.

In this section we give representations of S for quadratic and rational intervals.
For rational intervals we use representation (2.14) or (2.15) if d; = 0.

On a quadratic interval [z;_1,x;] we use the representation
S(z) =ap+ ar1(x — x;-1) + as(x — xi,l)Q.
From S'(z) = a1 + 2as(x — z;—1) we get
S'zim1) = a1 = m;—1,
S'(x;) = a1 + 2azh; = m;.

These last equations give us

1

= 2—hl(ml — mi_l).

az
From histopolation conditions (2.2) we can find

1
ap = zj — Ehi<mi +2m;_q).
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4.4. Continuity conditions

Thus the spline S represents on quadratic interval [z;_1,x;] as

S(x) =z + %((72 + 6t — 3t*)m;_1 + (—1 + 3t*)m;), (4.1)

where x = x;_1 + th;.

4.4 Continuity conditions

In this section we give the basic equations depending on continuity conditions.

If we denote m; = S’(2;), i =0,...,n, and the spline S is found on subinterval
[zi—1,x;] presented by parameters m;_; and m; for every i then by this we mean
that m; = S’(z; — 0) and m; = S’(z; +0), i = 1,...,n — 1, which means that the
derivative S’ is continuous in points 1, ..., Z,_1.

Let there be intervals [z;_1, ;] and [x;, 2;11] both rational. We consider the
case where m; > 0 for every i (the case m; < 0 is analogical). Continuity of

S is analyzed in Section 2.4 and we can write the continuity of S in point x;,
i=1,...,n—1, as equation (2.25).

On a quadratic interval [z;_1, ;] we get from (4.1) that

S(z; —0) =z + %(mi—l + 2my), (4.2)
hi
S(xi-1+0) =2z + E(_2mi71 —m;). (4.3)

If the intervals [x;_1, z;] and [x;, x;+1] are quadratic then for the continuity of
S in point x;, i = 1,...,n — 1, it has to hold the equality S(z; — 0) = S(z; + 0).
From that condition we get

hit1

Ziy1 + (=2m; —mit1) = 2z + Ei(mi—l + 2m;)
or, denoting d; = z;+1 — 2,
h; h; + h; h;
—tmi_q + Mmi + =i =6, (4.4)

6 3 6
what we can write as
60; — himi—1 — hip1m g1
2(h; + hit1)

m; = pi(m) = (4.5)

Let the interval [x;_1, ;] be rational and the interval [z;, z;11] quadratic. From
(2.18) and (4.3) we get continuity condition

1/2
mi— hi
zi + him;p (( 1) ) = Zig1 + —2(=2m; — miy1)

m; 6
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4.5. A priori estimates

or

himigo i1 v — hi—H (—27774 — mi+1) = 51 (4.6)
m; 6

and we may write it as

h.
0; — lglmiJrl

m; = @i(m) = - :
. /2 hz‘
hi ((—mn%f) ) L

In symmetrical case where the interval [x;_1, ;] is quadratic and the interval
[, i41] rational we use (4.2) and (2.19) and get the continuity of S in point x;,
i=1,...,n—1, as

h; Mt 1/2
zi + — (Mi—1 + 2my) = zip1 — hiyamip < >

(4.7)

6

or

hi mig1 )
E(mi—l +2m;) + hipimip p— = i,
and
;i — %imiq

%- ¥ hirip <<mﬁ';;1)1/2> .

For actual construction of the spline we have to solve a system of n+1 equations
(generally nonlinear) with n + 1 unknowns my, ..., m,. Equations that form this
system are of type (2.25), (4.5), (4.7) or (4.8) depending on the interval types. In
addition, we use boundary conditions. Histopolation conditions (2.2) are already
counted in these equations. If the parameters my,...,m, are found then, the spline

is represented on the rational interval as (2.14) and on the quadratic interval as
(4.1).

m; = @;(m) = (4.8)

It is clear that an algorithm of finding described combined splines consists in
determination of kinds, linear/linear rational or quadratic, for any interval and
then the solution of a nonlinear system.

4.5 A priori estimates

In this section we continue the groundwork for researching the existence of histopo-
lating spline.

In the following we give some a priori estimates for functions ¢; on closed
intervals, which are defined by equations (2.25), (4.5), (4.7) and (4.8). These
estimates will be used later for proving the existence of histopolating spline.

38



4.5. A priori estimates

Lemma 4.1. Let [x;—1, ;] and [z;,xi11] be rational intervals where 6; > 0. As-
sume that K; = [rj,R], r; >0, j=i—1,4,i+1. If mj € Kj, j =1—1,4,i+1,
then p;(m) € K; if next inequalities are satisfied:
1/2 2
20; < (hi7”¢11 + hi+1TZ»1_{_1)R1/2

and

0 > rilo
hithis ” oo

with R/r; > 1.84.

Proof. Let the intervals [x;—1,x;] and [z;, x;+1] be rational and ¢; > 0. Then
0

hie <(m111>1/2> + hit1p <(mmi—?)l/2> |

Assume that K; = [r;,R], r; > 0,and m; € K, j =1 — 1,4,i+ 1.

pi(m) =

From the upper estimate of y;(m) we get
9

T () e ()

0;

N R )

Using the property 4) for function ¢ from Lemma 2.1 we get that
<7"i—1>1/2 - 1 (7"1'—1)1/2
“\\Ur 2 \'R
Ti+1)1/2 1 <7“z'+1>1/2
> — .
v (( R 2 R

With the help of these estimates

pi(m) <

and

20i <R
hi (Tij%l)l/ + hit1 (n§1)1/2

26, < (har/ + hiari{}) RY2,

Estimating ¢;(m) from below we get

o;
hio <(m111)1/2) g <(mlt1)1/2>
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4.5. A priori estimates

NCRE=CE)

From the property 5) of Lemma 2.1 we get o((R/r;)"/?) < log(R/r;) if R/r; > 1.84.
Then

0;
pi(m) > R =i
(hi + hit1) log
if
0i > r;log —
hz + hi+1 = 108 %
We have proved the lemma. O

Lemma 4.2. Let the intervals [z;—1,x;] and [x;,x;11] be quadratic with §; > 0.
Suppose K;_1 = [—R, _5i—1]; K, = [€i7R], Kyl = [—R, —8i+1] and g; = 0,
j=i—1ii+1. Ifm; € K, j =i—1,i,i+ 1, then ¢;(m) € K; on assumption
that
60; < (hi + hi+1)R (4.9)
and
66; + higi—1 + hiy1€i01 > Q(hi + hz‘+1)5i, (4.10)

in special case of §; = 0 we may take (4.10) in form

h; h;
L o=9(1 N S
s ( - hz’+1> T !

Proof. Let [x;—1,2;] and [x;, 2;,41] be quadratic intervals with ¢; > 0. Then

(m) = 60; — him;—1 — hip1miq
i 2(hi + hit1)

Suppose that K; | = [—R, —52;1], K; = [Ei,R], Ky = [—R, —€¢+1] and g5 = 0,
m; 6Kj,j=i-1,i,i—|-1.

First let us estimate ¢;(m) from above. We get

60; — himi—1 — hip1mi
2(h; + hiy1)

pi(m) =

66; + R(h; + hiy1)
2(hi + hit1)

gRy

~

if
60; + R(h; + hit1) < 2R(hi + hit1)

or
60; < R(h; + hit1).
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4.5. A priori estimates

Estimating the value ¢;(m) from below we get

60; — himi—1 — hiy1mip
2(h; + hiy1)

pi(m) =

69; + higi—1 + hiy1€i41 N
- 2(hz + hi+1) -

if
66; + hici—1 + hiv1€i41 = 2(hi + hiy1)e;.

If 0; = 0 then the equation
higi—1 + hiv1giv1 = 2(hi + hit1)e;

h; h;
11 =211 ;i — ——— &
Eit1 ( + hi—i—l) & hi+1 Ei—1

or

gives us (4.10). Lemma is proved. O

Lemma 4.3. Let [x;—1,x;] be rational and [x;, ;1] quadratic intervals with 6; > 0.
Suppose that K;,_1 = [Ei_l,R], K, = [Ei,R], KH—I = [—R, —Ei+1], with €;,_1 > 0,
i >0and ey 2 0. If mj € Kj, j =i— 14,1+ 1, then ¢;(m) € K; on the
assumptions

h; h;

6 < 2 RV + 2R

2 6
and
hit1

hiy1
i+ . &;.

R
0i + ——¢€i41 = hig;log — +
6 E;

In symmetrical case, i.e., for [x;_1, ;] being quadratic and [z;,z;+1] rational
with d; > 0, we take K; 1 = [—R,Eifl], K; = [é:i,R], K1 = [€¢+1,R], with
€i—1 =20,¢ >0, €41 > 0 and assume that

h hiv1

0; < ER + 5 (5i+1R)1/2
and 5 5 R
0 + éc‘:i—l Z gl&‘ + hit1€;log o

In both cases we suppose that R/e; > 1.84.
Proof. Let [x;—1,z;] be rational and [z;, x;41] quadratic interval with ¢; > 0. Then

h;
§; — —dtmig

e ()7 + 2

41

@i(m) =
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Suppose that K;—1 = [g;—1, R], K; = [;, R], K;+1 = [~ R, —€;41], with ;.1 > 0,
€i >0, €41 >Oandmj eK;, j=1—1,4,i+1

Again we estimate the value ¢;(m) from above and get
52‘ — %ﬂmzqu 57, + %Jr—lR
i1\ /2 hivi i1\ /2 hig1
hiw((mmi ) >+T+1 h@‘@((ERl) )—&-TH

Using the property 4) from Lemma 2.1 we get o((g;_1/R)"/?) > (ei_1/R)"/?/2.
Further estimating gives us

pi(m) =

h;
o; + T—HR
; < <
@l(m) ~ & (51—1)1/2 + hi+1 X R
2\ R 3
. h h 1/2 h
5; i+l < i (€i—1 it+1
+ 6 R 2 ( R ) Rt 3 R
or h L
b <5 (ei1R)Y? + %IR.

Now we estimate the value ¢;(m) from below. We get

hii1 hii1
8 — —mig 0 + %&'H

6
) /2 I R 1/2 h
hig mz—‘l + i+1 hig - + i+1
m; 3 €; 3

Using the property 5) from Lemma 2.1 we obtain ¢((R/e;)Y/?) < log(R/s;) if
R/e; > 1.84. Continuing with the estimation of @;(m) we get

hA
0; + Z6+15z+1

2,
h;log (?) 4

pi(m) =

> Eiy
3

if

hit1

h.
i+1 5 &

R
0y + —p—€it1 > hicilog o'

In symmetrical case the proofs of estimates are similar.

This completes the proof. O

Note that, for opposite signs of J;, obvious modifications should be made in
Lemmas 4.1-4.3.
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4.6. Comonotone shape-preserving strategy

4.6 Comonotone shape-preserving strategy

In this section we prove the existence of histospline in the case of weak alternation
of data.

Denote
5i=Zi+1—ZZ‘, z':l,...,n—l,

0o =a, &, =0 (for boundary conditions (2.3)),

do =2 —a, O0p=p—2z, (for boundary conditions (2.4)).

As comonotone shape-preseving strategy, we determine a subinterval [z;_1, 2]
to be rational if §;_19; > 0 and quadratic otherwise.

A quadratic section, i.e., a maximal sequence of adjacent quadratic intervals
[i, Xix1]s -« - [Titk—1, Titx], has a weak alternation of data if the interval [x;_1, 2]
is rational, intervals [z;, xiy1], ..., [Titk_1, Tirk] quadratic, interval [z;.k, i1 ki1]
rational and

8 > 0,011 < 0,642 > 0,..., (=1)"6;4 51 < 0,(=1)F6;54 > 0

or
8 < 0,8i41 20,642 < 0,..., (=1)" 61451 = 0, (=1)"6; 14 < 0.

Theorem 4.2. If a weak alternation of data takes place on quadratic sections then
a comonotone shape-preserving histospline exists and it is strictly monotone on
rational intervals.

Proof. First, we write all equations of type (2.25),(4.5), (4.7), (4.8) with two addi-
tional ones which we get from boundary conditions in the form m; = ¢;(m). We
find a compact convex set K = [[" | K; C R+ where intervals K; are closed, such
that ¢; : K — K; and the functions ¢; are continuous. Then by the Bohl-Brouwer
fixed point theorem the system m; = p;(m), i = 0,...,n, has a solution.

For every rational interval [z;—1,2;], if 0;—1 > 0, & > 0 choose
K, 1=K, = [’I", R] and in case §;_1 < 0, 0; < Olet K; |1 = K; = [—R, —T‘] with
0 < r < R. We assume that between rational intervals [x;_1, ;] and [Z;1%, Titk+1)
there are quadratic intervals [x;, i11], - - -, [Ti1k_1, Tirk] with the weak alternation
of data. If K; = [r, R] then we choose K;+1 = [-R,0], K;12 = [0, R],... . But if
K; = [-R,—r] then we take K;1; = [0,R], K;4y2 = [-R,0],... . Choose m € K
orm; € K;, ©=0,...,n. We have the next three cases to analyze.

First, for rational intervals [x;_1,z;] and [z, zj+1] with §; > 0, by Lemma 4.1
with 7; =7, j =i —1,4,i 4+ 1, we have p;(m) € K; if R/r is large enough,

20; < (hi + hiy1)(rR)? (4.11)
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4.7. Modified comonotone shape-preserving strategy

and

di

R
%S leg 412
Bl e (4.12)

Secondly, suppose the intervals [x;_1, ;] and [z;,2j41] are quadratic. If, for
example, 0; > 0, then K; = [0, R] and K;_1 C [-R,0], Kj;1 C [-R,0]. Lemma
4.2 implies p;(m) € Kj if

60; < (hj +hj1)R. (4.13)

Thirdly, for example, let the interval [z;_1,2;] be rational and the interval
[€;, zit1] quadratic. Let K,y = K; = [r,R] and, therefore, 6; > 0. Then
Kiy1 = [*R, 0] or K;11 = [*R, *7‘} (if [.1’1‘_;,_1,%1'_,_2] is a rational interval). Lemma
4.3 gives us that ¢;(m) € K; if

hi
5; < 6* LR (4.14)
and R A
8; > hirlog — + Zglr (4.15)
T

with sufficiently large R/r.

Now we choose R such that all conditions (4.13) and (4.14) are satisfied. Notice
that the increase of R does not spoil them. Then, decreasing the value of r and
increasing R, if needed, we may satisfy (4.11), (4.12), their counterparts for other
pairs of neighboring rational intervals and all inequalities (4.15).

With that we have proved the existence of the comonotone shape-preserving
histospline. We have also shown that at the endpoints of rational intervals first
derivatives of the spline are different from zero, hence, we have also the last asser-
tion of the theorem. The proof is complete. O

Remark 4.1. If all 6; # 0,9 = 0,...,n, then a weak alternation of data takes
place on quadratic sections.

4.7 Modified comonotone shape-preserving strategy

In this section we treat the data without weak alternation on some quadratic
sections. For this it is necessary that there is an interior knot with é; = 0, i.e.,
there are two neighbouring histogram heights with the same height. The strategy
around quadratic sections with alternating data is the same as indicated in Section
4.6. We will show how to proceed with quadratic sections without alternating data.

Particular case 4.1 Let us consider a histogram with §;_o > 0, 6,1 > 0,
0; =0, d;41 <0, d;12 < 0. We choose the intervals [x;_o,x; 1] and [z;41, Zi12] to
be rational. At first, we analyze the comonotone shape-preserving strategy in the
choice of intermediate intervals.
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4.7. Modified comonotone shape-preserving strategy

Example 4.1 By comonotone shape-preserving strategy let the intervals
[zi—1,x;] and [z;,x;41] be rational. Write the equations (4.7), (4.5) and (4.8)
for knots x;_1,x; and x;41 in the following form:

hi mi_o\ '/ -
—(2mi,1 + mz) + hi—1mi_1¢ = 0;—1, (4.16)

6 m;_1
himi—1 + Q(hZ + hi_H)mi + hirimiy1 =0, (4.17)
hita mia\ 2
6 (ml + 27774‘_;,_1) + hitomiy1e = 5i+1~ (4.18)
mMi+1

Retaining the notation of general context, consider x;_o and z;y2 as boundary
points and let m;_o = S’'(x;_2) > 0 and m;+2 = S'(z;42) < 0 be fixed. Fix also
hj,j=1—1,...,i4+2, and 6;41. Assume that ;1 — co. We look for the solution
of system (4.16) — (4.18) as m;—1 > 0 and m;+1 < 0. First, (4.16) implies that
m;—1 — 0o or m; — 0o. The condition m; — oo and equation (4.18) together give
us that m;;1 — —oo. Taking into account ¢(z)/z — 1 if x — 04 we get from
(4.18) that m;/m;y1 — —2 and therefore m; 41 = —m;/2 + o(m;). Now we have
(4.17) in the form

3
him;—1 + (2h; + ihz‘-pl)mi +o(m;) =0,

but on the other hand, it must be m;_; > 0 and m; — oo, which is a contradiction.
The possibility m; — —oo does not match with (4.8) and m;41 < 0. If m; remains
bounded then the equation (4.18) gives us the boundedness of m;;1 but this with
m;—1 — oo is contradicting to (4.17).

With this example we have shown that, generally, it may happen that a comono-
tone shape-preserving histopolating spline does not exist. However, more detailed
analysis show that such a choice of interval types may be successful for some data.

This example forces us to renounce the comonotone shape-preserving strategy
and try some other approach. Let the intervals [z;—2,x;—1] and [z;41,x;+2] be
rational like in the example. We now choose the interval [z;_1,z;] to be rational,
too. Then [z, x;41] must be quadratic. Let K; o = K;_1 = [r, R], Kj11 = K;12 =
[—R,—r] and K; = [e, R] with € > 0. We assume that m; € K; for every j. By
Lemma 4.1 we have ¢;_1(m) € K;_ if

25@',1 < hifl(TR)l/Z (419)
and

0i—1 R
LS S P 4.20
hi—1 4 h; = (4.20)

Lemma 4.3 with §; = 0 gives us p;(m) € K; if

hit1

R Iy
r > hiclog = + 3“5. (4.21)
g
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Finally, symmetrical part of Lemma 4.3 with inequalities (4.9) and (4.10) gives us
pir1(m) € Kipy if

hi hi
10i41] < ZGHR + %Q(TR)W (4.22)
and B R
|0it1| = %11“ + hitorlog —. (4.23)
r

In conclusion, we choose r and R so that they satisfy the conditions given in the
proof of Theorem 4.2. Then decreasing, if needed, the value of r and increasing
R we could satisfy inequalities (4.19), (4.20), (4.22) and (4.23). Finally, we take
¢ such that condition (4.21) holds. Then by the Bohl-Brouwer fixed point the
theorem histopolating spline exists.

With this we have described the strategy for Particular case 4.1 and showed
that this modified comonotone strategy could be used.

Particular case 4.2 Assume that a quadratic section of the given histogram
does not have a weak alternation of data with d;_ o > 0, &_1 > 0,
8 = 0,04k = 0, (=DF6 1301 < 0, (=1)*64p42 < 0. If & = 0 then we
have Particular case 4.1. From Particular case 4.1 we know that there may be no
comonotone shape-preserving histopolating spline. Suppose now that k£ > 1. The
reasoning of Example 4.1 works as well for & > 1, i.e., taking J;_; — 0 and other
parameters fixed, we get a contradiction in comonotone shape-preserving strategy.

Let us describe the modified comonotone shape-preserving strategy at choosing
the type of subintervals. The intervals [x;_o,z;—1] and [©;1 k11, Ti1 k2] are chosen
to be rational in any case. As in Particular case 4.1 we choose the interval [x;_1, x;]
to be rational and the intervals [x;, z;11], ..., [Zi1k, Tizkr1] to be quadratic. Now
we prove that such choice guarantees the existence of the histopolating spline.

Let Ko = K;—1 = [’I‘,R], Kj = [EJ,R], 7 =141+ 2,..., Kj = [—R, —Ej],
j=i+1i+3,..., Kitgt1 = Kippio = [r, R if kis odd and K41 = Kipgy2 =
[—R,—r] if k is even with £; > 0 for all j. We show that, under certain conditions,
we can get ¢j(m) € Kj, j=1i—1,...,i+k+1if m; € Kj for all j. If conditions
(4.19) and (4.20) hold we get p;_1(m) € K;—1. If

hit1

Rl
Tsiﬂ = h;e;log - + Zgl g (4.24)

then ¢;(m) € K;. By Lemma 4.2 p;j(m) € Kj, j=i+1,...,i+k—1,if

h; h;
gj41 =2 (1 + ) gj — —L¢€j1 (4.25)
hj1 hj

and @ik (m) € Kigp, if

h; h;
r>2 (1 4 itk ) Einh — — T e 1. (4.26)
hiyks1 Ryt
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By Lemma 4.3, @i y1(m) € Kijpy if

h; h;
|0ivkr1] < +6k+1 R+ +2k+2 (rR)\/? (4.27)
and y R
|5i+k+1| 2 MT + hz‘+k+2’l" IOg ? (428)

We choose r and R from inequalities (4.19), (4.20), (4.27), (4.28) and by conditions
in other knots outside of this quadratic section. Starting with sufficiently small
€i, determining ;41 from condition (4.24) and next values of €; by (4.25), we can
satisfy the inequality (4.26).

Remark 4.2. Previous argumentation works as well if, for some j =i+1,... i+
k, it occurs that §; > 0 corresponding to K; = [gj, R] or 6; < 0 corresponding
to Kj = [—R, —¢;]. The suitable signs of 0; do not spoil upper estimate of [p;(m)|
(value of R should be sufficiently large) and helps to improve a little bit the lower
estimate without any changes in conditions (4.19), (4.20), (4.24) — (4.28).

Remark 4.3. Instead of choosing interval [x;_1,x;] to be rational, we can choose
[@itk, Tipht1] to be rational if 0; =0, j =14,...,i+ k.

General case. Let us now describe a modified comonotone shape-preserving
strategy in the general case of a quadratic section without weak alternation of data
0;—0>0,01>0,6<0,..., (—1)l5i+k >0, (—1)l5i+k+1 < 0, (—1)l5i+k+2 < 0.
The intervals [z;—o,z;—1] and [T;4k+1, Titkr2] are rational. We choose the closed
intervals K; o, K;_1, K;yry1 and K; 1o as in Particular cases. Consider that
signs of 6; < 0, d;41 = 0,... are coincident with the weak alternation of data.
For example, in Particular case 4.2 we have all ;, ..., d; 1, with suitable signs and
di+k+1 has the first unsuitable sign. We have seen in Particular case 4.2 that if
we choose one additional rational interval, we can create a quadratic section with
suitable signs for all §;. Following the same idea, for the first value d;;, of un-
suitable sign (this means that d;, # 0 and d;4p41 = 0), we take the interval

[@i4p—1,Titp) to be rational and the intervals [x;—1,z;], ..., [Titp—2, Titp—1] to be
quadratic. In this case, the form of Kj, j = i,...,i 4+ p, is determined to be
K; = [gj,R] or K; = [-R,—¢;]. Similarly to the Particular cases, we take
€itp—1 = Ei+p and continue with the part d;1,—1,...,0;+k+2, where the intervals

[Titp—1, Titp) and [Tipk41, Titrt2] are chosen to be rational. Remarks 4.2 and 4.3
allow to establish the inclusion ¢;j(m) € Kj for all j. Existence of the solution
follows again from the Bohl-Brouwer theorem.

Remark 4.4. Instead of starting from the left end of quadratic section, we can
also start using Remark 4.3 from the right end. In this case some subintervals are
of different type than they would be if started from the left end.

The main idea of the modified comonotone shape-preserving strategy is that in
quadratic sections without weak alternation of data we choose one of the outermost
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intervals to be rational (instead quadratic). In this way we create a new quadratic
section with the weak alternation of data.

Considering Theorem 4.1 we have proved:

Theorem 4.3. For any data and boundary conditions there is a modified comono-
tone shape-preserving histopolating spline which is linear/linear rational function
or quadratic polynomial on particular intervals. This spline is unique for deter-
mined choice of the kind of intervals.

Consider again Particular case 4.2 and the presented modified comonotone
shape-preserving strategy. This approach introduces a nonsymmetry in the con-
struction of histopolant. With the given data we actually have m;—1 > 0, m; > 0
and the equation (4.7) gives us m;;1 < 0 and also |mjp1| > 2m;. Using the
equation (4.5) in the form

3h,
3hj+1

h,
mj+1——<2—|— )mj—ﬁ(mj—l—Qmj_l),j—i+1,...,i+k,
J

we get, by induction, that (—1)7"'m; > 0, |m;| > 2|m;_1], j=i+1,...,i+k+1.
Because of that undesirable amplifying effect we try to find other approaches.

The second strategy may be, for sufficiently large k, to histopolate separately on
[z0,2;] and [z;1g,x,] with the boundary conditions S(z;) = 2z and
S(xitr) = zivk = zi. We also choose S(z) = z; if © € [z, x;15]. A weakness
of this strategy is the possible lack of C'' smoothness in the points x; and z; .

Note that it is possible to histopolate separately on intervals [zg,2;—1] and
[®itk+1, Tn] with boundary conditions S(x;—1) = z; and S(%i4x+1) = zivk. If we
take S(z) = 2, © € [vi_1, %114 1] then it is somehow unnatural and is not C*
smooth in the points z;—1 and ;4 py1.

The third opportunity is to histopolate separately on [xg, z;] and [x; 4, 2] like
in the second case. But here we choose the function S to be cubic polynomial
on intervals [x;—1,%;] and [Ty, Titx+1) with boundary conditions S(x;) = z;,
S'(z;) = 0 and S(xi4k) = zivk, S'(zirx) = 0 keeping S(z) = z;, x € [z;, xig). In
this case the function S preserves the C! smoothness.

These last two possibilities for strategies do not guarantee the constancy of the
function S on [x;_1,x;1k11]. Having such an objective we may take S(z) = z;,
x € [®i—1, Tirkr1] and on intervals [z;—o, x;—1] and [T k41, Tivkre] let S be cubic
polynomial, with boundary conditions in x;_; and ;41 for S to be with C!
smoothness. Then, for © € [x;_2,x;—1], we can write the spline in the form

hi—1
6

S(IL’) =Zi—1+ 5,'_1(*1 + 612 — 4t3) + mi—o(—1+ 6t — 9% + 4t3)
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with £ = x;_o + th;—1 and

12
S'(z) = - 151-_1(15 —12) 4+ my_o(1 — 3t 4 2t%).

Assume 6;—1 > 0. A direct analysis gives us that S’(z) > 0, z € [z;-2,%i-1],
if and only if 0 < m;_9 < 126,_1/h;—1. In the opposite case, when this method
gives us a nonincreasing cubic polynomial, some tension function between linear
and cubic polynomial could be used on [x;_2,x;—1] (see, e.g., [31]). In case of
d; — 1 < 0 obvious modifications should be done. On the interval [z;{f+1, Zitk+2)
the analysis is similar.
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Chapter 5

Convergence of comonotone
histopolating splines

The main purpose of this chapter is to find out the convergence rate of histopolating
combined splines consisting of linear /linear rational or quadratic polynomial pieces
if the function to histopolate is not strictly monotone. The results of this chapter
are published in [21].

5.1 Analysis of basic equations

Here we consider the histopolation problem given in Section 4.1. We will follow
the notation and notions of Chapter 4.

Suppose that the given function f has a finite number of points ¢; in [a, b] such
that f/(¢;) = 0. Then the technics of Chapter 3 cannot be applied directly. At
each point ¢; we may allow the Taylor expansion

(ki=1) (¢, -
@) = Fle) + £ =) oo+ TS @ et

(k) ( ¢
- fT;Q)(l’ — )M+ o((x —e)*)

with f'(c;) = 0,...,f® V(¢;) = 0, f*)(¢;) # 0. Generalizing the situation,
we carry out our analysis for the differentiable functions f such that there are
limx—>ci7 T>c; f/(ZL')/IIL' - Cilal =N 7é 0 and hmw—mi, r<c; f’(x)/|m - Ci‘az =72 74‘ 0
with some constants ag, g being positive and ~1,v2. Our reasoning is adequate
in the small neighbourhood of points ¢;. For the regions far enough from ¢; the
analysis of Chapter 3 could be applied.

Let us indicate some general observations.
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5.1. Analysis of basic equations

Supposing that f’ € Lip o, 0 < a < 1, ie., |f'(z) — f'(y)] < Lz — y|* for
some L, we have in the Taylor expansion f(z) = f(a) + f'(a)(x — a) + R that
|R| < (L/(1 4 )|z — a|'T®. Then

1 Tit1 1 Ti 1
5 — / f@)de — L / f@)da = = (h + hist) f/(2:) + Ry
hit1 x5 hi Ti-1 2

with [R;] < (L/((1 4 )2+ @))) (b + R,

At histopolation the estimate ||S” — f']lc = O(h%) always yields ||S — fllooc =
O(h'T®), see Chapter 3. We also discuss in Section 5.2 how the estimate |m;— f/|
O(h®) gives ||S” — f'l|oc = O(h%).

We will perform the reasoning in particular cases and later see the ways of
generalization. For simplicity of presentation, take the uniform partition of [a, b],
ie, z;=a+ih, i=0,...,n, h=(b—a)/n. In the case of sufficiently smooth
function f we have

L5, — fi+ h—fo”+O(h3)
R DA '

here and in the sequel we mean f/ = f’(z;) with similar significance for other
functions. Observe that outside of certain (small) neighbourhood of each ¢; the
reasoning of Chapter 3 is applicable and the estimate |m; — f/| = O(h?) for smooth
functions holds (or |m; — f/| = O(h*), 0 < @ < 2, in the case of lower smoothness,
see Chapter 3). Thus, the study only in the neighbourhoods of ¢; is needed.
Nevertheless, we give a complete analysis independent of Chapter 3.

Let us start with the function f(z) = 2%sgnz, z € [-1,1].

For n even, we have x; = 0,7 = n/2, and elementary calculations give

2
0= S ik =G = 2kh%, k= 1,...,%- 1.

As boundary conditions (2.3) in form S’(x¢) = f'(z0), S'(z) = f'(x,) are con-
sistent we choose all subintervals to be rational. For n odd, the point 0 is the
midpoint of the interval [z;, z;41] with i = (n — 1)/2. Then

1
(Si:6i+1 :Tghz, (Si+k:(2k‘*1)h2, k:2,...,(n71)/2,

and
o1 =0tk = 2k +1)R*, k=1,... (n—3)/2.

Here also all subintervals are rational. We will focus our attention mainly on the
case of n even.

The equations of the type (2.20) corresponding to the points x; are now

(A () ) B o
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or
mj = 1\ 12 i yen\ 12
and thus
B mi_1\1/2y M1\ 12
W_ﬂ:ﬂlw«n”>> A(C) ) o

mi_—1 1/2 mji4+1 1/2
A1) ) el
m; m;
Denote p; = mj_1/myj,j = 1,...,i, and u; = mj/mj_1,j =i+ 1,...,n. Our
aim is to estimate the values p; and then use them in (5.2). Let us consider the

situation at right hand side from x; = 0 (by symmetry, p;1x = pi—r+1 for all k),
then the equations (5.1) for j =i+ k and j + 1 give

1/2
b ey /)+<p(u/+1) 5 3
iop(pp) +eluls)

with §;41/0; =1+ 1/k. Denote = (pu1, ..., tn) and introduce the functions

Pl %) + (i)

~1/2 172

D) =
v oy )+ e(pjhs)

and 5
Tj(n) = —— P;(n).
5]',1
Then the equations (5.3) are p; = W;(u)

We have seen in Section 3.2 that the estimate |m; — f/| = O(h%) yields
15" = f'lloc = O(h®) and this in turn, gives ||S — f|l = O(R'*®). While the
last consequence is universal at histopolation, the first one was given in the case
of linear /linear rational splines for smooth function having strictly positive deriva-

tive. We will return to these estimates later in more general case. We need the
following technical

Lemma 5.1. Suppose pjp; € [1+1/(k+1-1)—0,1+1/(k+1—-1)+4],
1 =0,1,2, with sufficiently small § > 0. Then for some positive constants c1,cy it
holds

Qi 1(p) € [1 - E - —5 — 6% 1+ —= + 5 + 0252}

k3

Proof. Take fij1;=1+1/(k+1—1),l =0,1,2, and estimate then ®;; (). The
use of the Taylor expansion

o2 =o((1+ 1)) = e + 2 (14 1) 1)
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() ) 20 (1))
and inside that
22 1= %(ac - %(a: 124 0((e - 1)) (5.4)

gives

We get also

“"(/_‘132) - ‘P((l - %ﬂ)m) - % N 6(k=1+ 1 16(k1+ 1)2 +O(%)'

Then

o) +o(i8) =1 - g +0 (i)

o(it) + () =1 - g +O )

and

Now

2j110) = (1= gz + 0 () (14 g + 0 ) = 1+ 05w

If the components of u are such that ;4 € [fij41 — 0, fij41 + 0], 1 = 0,1,2, we take
into account ¢’'(1) = 1/3, the boundedness of ¢” and the Taylor expansion (5.4)
to arrive at the inclusion of ®;;(p) stated in the assertion. O

As a consequence, in the assumption of Lemma 5.1, we get the inclusion

1 e 2 9 1
\Il]_H(u)E[l_'—E_E_gé c20”, 1+I{Z+k‘3

where the constants ¢q, co may be different compared to those of Lemma, 5.1.
Take in Lemma 5.1 6 = ¢o/k,co > 0, then W, 1(u) € [14+1/k—0,1+1/k+4] if
c1/k? +czco/l<: co/3 for 1, co in (5.5). This holds for some ¢y > 0 and for k > ko

with some fixed kg taken after the choice of ¢y. Basing on the proof of Lemma 5.1
we get for the solution of pj11 = W;11(p) the estimate

+ = 5 + 0% (5.5)

1—o(u; %) = o(ui?) 1
71]/2 1/3 - O(kQ) +0(9)
ey "7) +ephy)
and, taking into account fj’ = 2kh,
1
m; — f} = 2kh(0(ﬁ) +0(8)) = O(h). (5.6)
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It remains to study the behaviour of m; — f]’ for j =4,...,i+ ko — 1. Because
of fj’ = 2kh,j = i+k, it is sufficient to establish the boundedness of u; from below
and from above by positive constants (not depending on h) for finite number of
indicies k. The symmetry considerations allow to assert that m; 1 = m;;q (still
for n even and i = n/2) and then u; = pi+1. The equation (5.3) is in this case

~1/2 1/2
_ el )+ o) 57
Hi = 12 172, (5.7)
op; )+ (kiis)
First, assume that p; — oo. Then gp(uilm) ~ (logpi)/2, p;' — 0 and

@(MZI/Q) ~ I — 0 (here and in the sequel ~ means that the quotient of

these terms converges to some positive constant, mainly to 1). In the equation
(5.7) in the form

~1/2
i

~1/2 1/2 ~1/2 1/2
ol %) + (i) = 3ol ) + o) (5.8)
the right hand side of (5.8) behaves as 3(log ;) /2 but the left hand side increases at

least as uil/Q which gives a contradiction. Secondly, let p; — 0. Then (p(u}/Q) — 0,

u;1/2 — 00 and the right hand side of (5.8) is of order 3(log zz; *)/2 while in the left

hand side this order has to have the term ulga(uzlfz) This yields that ;1o — 0o

and go(p{l/Q)/go(u;fQ) ~ 24;/3 — 0. The particular case of (5.3) for j =i+ 1
gives
~1/2 1/2 ~1/2 1/2
Pit2 (sO( e )+90(ui43)) = 2(@(% / )"‘SD(N@'.{.z))

112

where at right the main term is of order log ;12 but at left we have at least 1,15
which is impossible.

This completes the proof of boundedness of u; (and j;41). It remains to carry
out the induction step which differs from the just presented reasoning only by
details and we omit it.

We have proved the estimate m; — f/ = O(h) for the investigated function
f(z) = 2%sgnmw,x € [—1,1].

Let us consider now briefly some other particular cases.

The function f(z) = 23,2 € [—1,1], generates §; > 0 for all j and any par-

tition. On uniform partition, for n even and i = n/2 we get &;/h = h%/2 and
Sivk/h = h%(6k* +1)/2, k > 1, and then

Oivk 2 1
=14t O(k2>' (5.9)

For n odd and ¢ = (n — 1)/2 we have z; = —h/2, z;y1 = h/2, 6;/h = di41/h
= 5h%/4, 6;1pr1/h = (3(2k +1)?/4 + 1/2)h? and still (5.9) holds. The assertion
of Lemma 5.1 about the inclusion of the value ®;1(u) takes places if we choose
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pj € 1 +2/(k+1-1)=0,1+2/(k+1—-1)+0], [=0,1,2, we only have to
take fij4; =1+2/(k+1—1) in the proof. Then

_— _ 1 1
o(i; Y2 4 @(Mjl-fl) =l-ost O(p)

and other changes in the proof of Lemma 5.1 are obvious. Taking into account
(5.9) we establish the inclusion ¥;1(u) € [1+2/k—0,1+2/k+ 4] if the inequality

<1+%+§5+0252)<1+%+%><1+%+6

holds (c3 reflects (5.9)). This is achieved with § = cp/k? where cq is sufficiently
great and k > ko for some fixed ko. Now d;/h = 3k*h* 4+ h* {1 /12 and instead of
(5.2) we have

mi— [ = 1—¢((%)1/2) _@((%)1/2)
IR E

Ef’-”
1277

A AT

thus (5.6) is replaced by

1

m; — f} = 36°h%(0(

)+ow0+om%:omﬂ (5.10)

The boundedness of p; for finite number of j could be obtained exactly as
presented above and, consequently, we have m; — f]’- = O(h?) for the function
f(x) =232 €[-1,1].

Next, consider the function f(z) = 22,2 € [~1,1], and uniform partition on
[-1,1]. For n even, we have x; = 0,i = n/2, and z; = 2,11, thus §; = 0. We have
alsod; < 0,7 =0,...,i—1,and 9; > 0,5 = i+1,...,n. By the comonotone strategy
it should be chosen [z;_1, ;] and [x;, z;11] quadratic, all other particular intervals
rational. But there is no weak alternation of data in this section of quadratic
intervals and, by the modified strategy, we choose [z;_1, ;] to be rational, too.
For n odd, the point 0 is the midpoint of the interval [x;, z;41] with i = (n —1)/2.
Then 6; < 0,5 =0,...,4, and 0; >0, j =i+ 1,...,n. The comonotone strategy
makes the subinterval [x;,2;11] to be quadratic and all others rational. Here we
have the weak alternation of data. It is clear that only a finite number of basic
equations corresponding to the neighbourhood of [x;, 2;11] need the study. The
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equations of the types (2.20), (4.4), (4.6) corresponding to the points x; 1, 2;, 11

are now
mea(o((2) ") o) ")) = o = st G

mi—\1/2y 1 1 1 ,
mio((Fnt) ) + gt gman = 0= . (5.12)
1 1 mii9 1/2 1
g+ gt miap( (D)) = phi = (5.13)

Actually, we have to estimate m; — f]’ for j =4i—1,4,i+ 1, for j <7 —1 and

j > i+ 1 the reasoning about the function f(z) = x?sgnz is valid provided we
prove the boundedness of p; = m;_1/m; and p;y2 = miro/m;r1. We see that, for

n even, in (5.11) fi_; = —2h, in (5.12) f/ = 0, in (5.13) fi,; = 2h, for n odd,
i1=—3h, fi=—h, fis1=h.

Suppose m;_1/m; — oo. First, consider the case ¢; < m;/h < co with some
1,2 < 0. Dividing (5.12) by h, we see that m;+1/h — oo. Then (5.13) divided
by h gives a contradiction. Secondly, let m;/h — —oo. Dividing (5.12) by m;
we conclude that m;y1/m; — —oc. Then (5.13) divided by m; leads to a con-
tradiction. Thirdly, let m;/h — 0, however m; < 0. Then h/m; — —oo and
|h/m;i| — co. Consider the case n even (then f/ =0). Dividing (5.12) by m; gives
mig1/m; = —00, we have also ((mi—1/m;)'/?) ~ miy1/mi| /6 or

A 1| mit1
Tzt 3] (5.14)
m;
Dividing (5.11) by m; we get
(mz’q)l/? n mifl(p((mi72)1/2) ~9 h
m; m; mi_1 m;
and according to (5.14)
1| mit1 1| mita o\ 1/2 h
ebl m; +e3 m; @((m’t 2) ) ~ 2—]. (5.15)
mi—1 m;
Dividing (5.13) by m; gives
11mi M1 S0<(mi+2)1/2) N Q)i
3 my; my; mi41 my; '

The boundedness of m;;o/m;1 means that |m;y1/m;| and 2|h/m;| have the same
order and the left hand side of (5.15) has also the order of |m;i1/m;| which is
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5.1. Analysis of basic equations

impossible. It remains to consider the case m;y2/m;+1 — co. Dividing the coun-
terpart of (5.11) corresponding to x; 1o by m; 41 gives

. N 1/2 CaN1/2 h
e (e(G) ) o) 7)) ~ (5.10
mi+1 Mi+2 mi4+2 mi+1
which means also that h/m;y1 — oo because m;y1/m;r2 — 0. Then (5.13) di-

vided by m;41 implies that h/m;;1 has the order of log(m;yo/mit+1) which is in
contradiction with (5.16). Consider now the case of n odd. Dividing (5.12) by m;

we get
mi—1\1/2 1 1 ;
(p(( 11) )+_:_mz+1+

The possibility o((mi_1/m;)*/?) ~ |miy1/mi| (the quotient is bounded from above
and below by positive constants) could be treated as in the case of n even. If
o((mi_1/mi)"/?) ~ |h/m;| then dividing (5.11) by m; we get

mi—1 mi—o\ 1/2 mi_1 m; \1/2 h

G ) e lGn) ) =l
mj mi—1 mj mi—1 mj
Here the right hand side is of order log(m;_1/m;) while the left hand side is of

order at least (m;_1/m;)"/? which is a contradiction. This completes the proof of
the boundedness of m;_1/m; from above.

h

my;

Suppose next that m;_1/m; — 0, then m;/m;_1 — oc. Dividing (5.11) by m;_1

e set m;_o\ 1/2 m; \1/2 h
(o) ) o(Ga) ) =1

with [ = 2 or [ = 3 depending on n to be even or odd. This means that

1/2
|h/mi—1| — oo. If @((mi,g/mi,l) ) is of order |h/m;_1| then

mi—1

. h
i ek} | (5.17)
mi—1
with some constant k (here also, ~ means that the quotient is two-sided bounded).
Dividing (5.12) by m;_1 we see that
Mixl, Wi, o (5.18)
mi—1" M1

Dividing (5.13) by m;_1 gives
oy G Ga) ) =1
6mi—1 3 M1 mi—1 mi—1

with [ = 1 or [ = 2 and this is a contradiction due to (5.18) and (5.17). If
@((mi_g/mi_1)"/?) is of order |h/m;_1| then

mis k|| (5.19)
m;_q
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5.2. Convergence results

Now the counterpart of (5.11) corresponding to the point x;_o divided by m;_1

gives
m;_2 m;_3\1/2 mi_g\1/2 h
(GG~
mi—1 m;—2 mi—1 mi—1
which is a contradiction due to (5.19) and this ends the proof of boundedness of
m;—1/m; from below by a positive constant.

As any point z; is an endpoint of a rational interval and the quotient of two
values m; in any rational interval is bounded from above and below by positive
constants, we obtain the estimate m; — f]{ = O(h) for all j like in the case of
function f(x) = 2?sgn .

The function f(x) = |23, * € [~1,1], could be treated joining the argu-
ments from treatments of two previous functions. Here we have the estimate

mj; — f], = O(hQ)

Ending this section let us indicate the framework at establishing the estimates.
First, we prove the boundedness of p; for finite number of indices j =14,...,74+ ko
(or for j < ), with suitable fixed k¢ and then use (5.6) or (5.10). For j > i + kg
(or j < i — ko) we use Bohl — Brouwer fixed point principle as it was done by us
several times [16, 18, 17] basing on inclusions (5.5) or its analogue in the analysis
of function f(z) = x3.

However, we need a boundary value p1j41 = piyk, but, e.g., we take it from the
estimates m; = f]’ + o, mjg1 — J‘]’~Jr1 = ao, |aq| < ch, |as| < ch, ¢ =const, then
Wiv1 = mjp1/mj; = 1+ 1/ko + 6, |8] < co/ko. Such an estimate is valid due to
(5.6) but works as well if we use (5.10). At the other end we choose as boundary
condition g, 11 = 1+2/n or pi,r1 = 1+ 1/n for the cases f(z) = 2% or f(z) = 23,

respectively.

5.2 Convergence results

In Section 5.1 we established the estimates m; — f/ = O(h®), 0 < o < 2, depending
on the function of f to histopolate. In the beginning we show how this implies
the estimate ||S" — f/||loc = O(h®). We have already mentioned that this yields
IS = flloo = O(R!*).

The representation (2.14) gives on a rational interval [z;_1, x;]

S'(x) = it (5.20)

(R ()

and on a quadratic interval [z;_1, ;] from (4.1) follows

SI(JI) = (]. — t)mi,l + tmi, (521)
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5.2. Convergence results

actually, as the linear interpolation representation for derivative S’. On rational
intervals we have using (5.20) and (5.1)

S'(x) = f'(x) = S"(x) = fi1 + fi_1 — f(2) (5.22)
) iy

(=2 (=) =) (=) ) + () )

— fi_1 + O(h).

In the case of function f(z) = nd f(z) = 2?sgnz it holds &_1/h = fI_,
and (5.22) gives S'(z) — f’(x ) because fi ., = 2kh, j = n/2+k (or
j+l=m-1)/24k),j >n/2 and ,u]+1 = 1+ O(1/k). Near the central knot
we only use the boudedness of y1;. The same reasoning works as well in the case of
functions f(x) = 23 and f(z) = |x|? for k < ko, ko fixed, because of fim= 3k2h?
and f/_, — f(z) = O(h?) due to f"(x) = O(h), 0 < & < &, /24x,. Then we obtain
S'(x) — f'(z) = O(h?). For k > ko, use the expansion

S'(x) = f'(x) =mi1 — fi_g + (x —21)(Siy — fi"1) (5.23)
LT — Tj—1 2 11 "
P EZIeD g e

Let us show how to establish S/ ; — f/ ; = O(h). From (5.20) follows

" 2mi— ((miq)l/Q )
i-1 = 7 o —1).
h my;

It was shown that (i > n/2 + ko) p; = mi/mi—1 = 1+ 2/k + O(1/k?), then
(mi_1/mi)"/? =1 = =1/k + O(1/k>)(see, e.g., [17]), f/_, = 3k*>h? and we get due
to m;_1 = fi,fl + O(h2)

= _2(3k2h2h+ Zila) (—% + 0(%)) — 6kh + O(h).

Now, as f/" | = 6kh, we get S/ — f; = O(h). In addition, (5.20) gives

e () )
i 1IN1/2 4
(== (G )
and using again (m;_1/m;)Y? —1 = —1/k + O(1/k?), m;_1 = 3k*h® + O(h?), we

obtain the uniform boundedness of S’ and from (5.23) S’(z) — f'(x) = O(h?) for
k > ko, too. On the quadratic interval (5.21) gives

S'(@) = fi(x) = A=) (mia = fi1) +t(ms — fi) + (L= 8)fiy +1fi = f(2)

S///(.’L') —
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5.2. Convergence results

and from this the required order follows if we take into account the order of linear
interpolation on dependence on the smoothness of f.

It is quite clear how all presented reasonings could be generalized to the
case considered at the beginning of Section 5.1. Let us indicate some impor-
tant moments. If in the point ¢; the function f’ does not change the sign, we
should argue as in the case of f(x) = a?sgnx or f(z) = 3. Then in (5.3)
§j+1/0; = 1 +1/k + O(1/k?) with some constant | which can be fractional. Such
a fractionality of constants appears also in other formulae but all presented steps
of the proofs are valid. If f’ changes the sign in the point ¢;, we follow the proof
of the cases of f(z) = 2 or f(z) = |z|> and again the fractionality phenomina

should be taken into account. We have proved the following:

Theorem 5.1. Suppose that a function f has a finite number of points ¢; in [a,b]
such that f'(¢;) =0 and

. f/ x . f/ T
x<c; |x - Ci| " I>CZ |.’E — Ci| i2

Let « = min ; min{o;1,a2,2}. We also assume that f' € Lipa if 0 < a < 1
or f" € Lip (a« — 1) if 1 < a < 2. Then the combined histopolating spline S
which is constructed by comonotone or modified comonotone strategy, has in the
uniform norm on [a,b] the convergence rate ||S — flloo = O(RY*®) together with

15" = f'lloc = O(h®).

Remark 5.1. We formulated and proved the results in the case of uniform mesh. It
is quite evident that our arguments work also in the case of a mesh with
0 < q1 < hj/hi < q2 for |i —j| = 1 where q1,q2 are constants. The reason
here is that far emough from the points c; the results hold by Section 3.2, but in
finite number of intervals around the points ¢; such nonuniformity can change only
the constants, not the order of all given estimates. However, around the points c;
where the theoretical rate of convergence is lower than in regions with strict uni-
form monotonicity, we can use the mesh with smaller step as the idea of adaptive
meshes. This compensates such a lower rate.
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Chapter 6

Convexity preserving rational
spline histopolation

6.1 The histopolation problem

Let z; be given points in an interval [a,b] such that a = zg < 21 < ... <z, =
and let z;, « = 1,...,n, be given real numbers corresponding to subintervals
[€;—1, 2;], as histopolation data in the form of a given histogram. It is natural
to suppose that n > 2. Now we choose spline knots &;, ¢ = 1,...,n, such that
§1 = mo, w1 < & < T2, Tio1 <& < Tiyo o, Tp—2 < §no1 < Tp—1,§p = Tpn. We
want to construct a C? smooth function S on [a,b] in the form

with 1+d;(z—x;) > 0 for x € [§;,&+1], (i-e., a quadratic/linear rational spline) sat-
isfying the histopolation (area—matching) conditions (2.2). In addition, we impose
the boundary conditions

S"(x0) =a, S"(xn) =2 (6.2)
S'(xo) =, S'(xn) =8 (6.3)
S(zo) =a, S(zn) =2 (6.4)

for given o and B. However, for example, one condition from (6.2) and another
from (6.3) at different endpoints x¢ and x,, may be used or some other combination
of boundary conditions may be used.
A direct calculation from (6.1) shows that the second derivative
QCid?

S"(z) = AT d@—a)) (6.5)
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6.2. Uniqueness of the histopolant

preserves the sign on each particular interval [§;,&;+1] and, consequently, on the
whole interval [a, b] and because of that S is strictly convex or strictly concave or
constant.

6.2 Uniqueness of the histopolant

Theorem 6.1. There are no two different splines of class C? being quadratic/linear
rational function on intervals and satisfying the same histopolating conditions (2.2)
and boundary conditions (6.2) or (6.3) or (6.4).

Proof. Let there be two different quadratic/linear splines of class C? Sy and So
which satisfy the same histopolating conditions and boundary conditions. Then

/ (S1(x) = Sa(z))dz =0, i=1,...,n,
Ti—1

implies that there are n; € (x;-1, 2;) such that S1(n;) = Sa(n;), i =1,...,n.
Denote g = S1 — S2. We have the following possibilities:

1) If we use boundary conditions (6.4), the function g has n + 2 different zeros
Ay My -y Mn, b in [a,b]. Then the function ¢’ has n+ 1 and ¢” has n different zeros
in (a,b).

2) If we use boundary conditions (6.3) and from the knowledge that the function
g has n different zeros 1y, ...,7, in (a,b) we get that the function ¢’ has n—1 zeros
in (a,b) and 2 additional zeros from boundary conditions. Therefore, the function
g” has n zeros in (a,b).

3) From boundary conditions (6.2) and from the fact that the function g” has
n — 2 different zeros in (a,b) we get altogether that ¢” has n zeros in [a, b].

Thus, we have at least one interval [;, ;1] where there are two different zeros
of ¢”. From (6.5) we get

”(x) _ 201id%i _ 2C2id%i
g o (]. + dh(x — CL‘Z))S (]- + dQZ(x - xz))s .

If, e.g., c1;d?, = 0 then Sy(z) = 0 for all x € [§,&4+1] and ¢"(x) = 0 for some
x € [&,&+1] gives also that SY(z) = 0 for all = € [§;,&11] and, thus, ¢"(x) = 0 for
all x € [§;,&+1]. Consider next the case c1;d3; # 0 and c9;d3; # 0. Then ¢’ (z) = 0
if and only if

Clid%i CQid%i

(1 + dli(x — .Z’Z))?’ B (1 + d2i(£L' — ZL'Z'))?’
or

<1 + dyi(x — l“i))3 _ c1d3;

1+ dgi(l‘ — xl) CQid%i
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6.3. Representation of the histopolant

or

14 dy(x— xz) _ (Clidi‘)l/?’- (66)

1+ dy; (l‘ — ZEZ) Cgid%i
Equation (6.6) could be true only for every = € [§;,&;+1] or only in one point. At
least on interval [¢;,&;+1] the function ¢” has two different zeros, therefore (6.6)
applies for every x € [§;,&4+1]. Then in endpoints & and &4 the functions S7 and
SY are equal. Now we repeat the discussion in intervals [a,&;] and [§;41,b]. Finally
we get that ¢”(z) = 0 for every x € [a,b]. This means that ¢ is at most first degree
polynomial. As n > 2 the histopolation condition f;;l g(x)dz = 0 gives us that

g(x) = 0 for every z € [a,b] which completes the proof. O

6.3 Representation of the histopolant

In this section we show what kind of representation we will use for S. We as-
sume that S satisfies (2.2) and also we require the smoothness C? for S. Let us
denote M; = S”(&;), i = 1,...,n, and &; = x; — &, n; = &+1 — ;, particularly,
€1 ="h1, 01 =h1+n1, M1 =hn, On-1 =¢€n—1+hy and 6; =& +1; = §p1 — &y
i=1,...,n—1,alsohy =ni—1+e =2, —xi—1, i =1,...,n.

We mentioned that S” preserves the sign on the whole interval [a, b]. Therefore,
we consider the case M; > 0 and d; # 0, i = 1,...,n. Later we give a separate
remark about the case M; = 0 and, more generally, about d; = 0.

From (6.1) we can calculate

—cid;

! P— . . .
S (SC) - bz + (1 T dl(ZIf — $i>)27 UIS [§Z7£l+1]7
and S”(z) is presented as (6.5). Then
2¢;d?
M,; = " ) = e
s (5 ) (1 — dié‘l’)3
and 2
gy 2adi
M = S"(&i41) = T dn) (6.7)

From these we get

<M¢+1>1/3 1 —dgy

Mi o 1 + di"?i
or
Ml
d; = 1/3 1/3 (6.8)
e 4 miM Ly
or
1 —p M 1\1/3
hm o (M)
i + Mifti M;
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6.3. Representation of the histopolant

Denote
@

§it1
Ai = S(z)dz, piz/ S(x)dx, i=1,...,n—1.
& T
From histopolation conditions (2.2) we get
pi-1+Xi=hizi, 1=1,...,n,

particularly, Ay = hiz; and p,—1 = hpz, with pg = 0, A, = 0 if needed. From
(6.1) follows

b;
/\i = QiE; — B 8 - = log( — digi) (69)
and
bi 2 C;
pi=ami+ 5 + - log(1 + d;in;). (6.10)

Now we additionally denote o; = 1 — d;e; and B; = 1+ d;m;, i = 1,...,n, then
a; = pif;. We see that o = uiéi/(ai + m‘ui) > 0 and §; = 51‘/(51' + m,ui) >0
because p; > 0. By symmetry consideration we use also v; = (M;_1/M;)'/3, then,
e.g., di = (Viy1 — 1)/(Eivit1 +mi)-

From equations (6.9) and (6.10) we can eliminate a;

2 2= 4e)+ —=(=logB; + —log o). 6.11
m € 9 (77@ 51) di<77i 0g i Py 0og z) ( )

From (6.7) we get

Ci (1+ dmz) i+1

d; 2d3
and replacing 14 d;n; = §; gives us for v; = ¢;/d;
53 83 M; M;
Vi = 26613 M'Hrl mMiJrl = it a 3" (612)
T )
From (6.11) we can calculate
2 .Y 1 1
; = —(ﬁ——l—%(—logﬁi—k—logai)) (6.13)
di \mi & ni €

and then from (6.9)
1 i 20
a; = 5—( A + p,—i—’yl( ilogal—alogﬂl)). (6.14)

So using (6.8), (6.12), (6.13) and (6.14) we can represent the spline S via M;,
M1, Ai, pi and this gives the representation of the histopolant (we keep here d;
given in (6.8)) ifx e [&‘,&4_1] as

S(z) :5% (Z—Z)\z + %Pz +%<Z—: log a; — %bg ﬁz)) (6.15)
+62<Z_ - 2_ _%(%bgﬁ"+e%-1°ga"))<x_xi) - 1+dj(iji—xi)'
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6.4 Continuity conditions

With the representation of S in terms M; we ensure the continuity of S”. We also

need the continuity of S and S’ in knots &;, ¢ = 2,...,n — 1, this means we want
S —0)=S8(&+0), i=2...,n—1, (6.16)
and
S'(&—0)=8(+0), i=2,...,n—1. (6.17)
From (6.15)
SE+0) =5 ((2+ 2= Zpt (24 Llogai + log i) ) + 2
0i € ni € ni @
and
S(Eir —0) = l(—ﬁ/\- + (24 2 ) ity (~Logai — (24 2 ) log i) ) + iy
o 6 € i Pt & B i B Bi
Because of (6.16) we get
I ni—1 1 Ei-1 1 i &
B TRt = (R (TS I
di—1 €i-1 vt di—1 * Ni—1 pict d; - g/ " - 51'771‘/)Z
1 i — —
=51 (77 Lloga;_1 + (2 4 S 1) log ﬁi,l) (6.18)
i—1 €i—1 Ni—1
1 i i i—1di— idi
+ —%—((2+ 77—) log a; + ilog,ﬁ,—) S e L, i=2,...,n—L
di i i Bi-1 %
The derivative of (6.15) is
9@ =2 (2 (Liogas Liogal)) -  selngnl
(z) G \mi & 7 Ul o8 +€Z’ 08 i (14 di(x — 24))? @ € [6ir Gl
From that
2 i N 1 1 id?
S(E+0) == (2 -2 —ni( = log i+ —logay) ) — 15
0\ & i € o;
and \ 2
2 i i 1 1 14y
S' (i1 —0) = 5—1(% T —%‘(Elogﬁz‘ + z—:_ilOgai)) - 7@2 :
We require (6.17), so we get the equations
1 1 1 1
I Y - N = —0p:
Si1ei1 * 52‘71772‘71[0@ o Sigi 51‘77‘/)1
1 1 1
:6—%—,1< log a1 + log 51;1) (6.19)
i—1 €i—1 i—1
1 (1 1 Virdi oy wdi
- =% —1 i — 1 z) 71——1, :2,..., — 1.
51'7 (5i og o +77¢ og i) + 257, 202 i n
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6.5 Basic equations

Let us write the histopolation conditions in the form
pi—1+XNi—hizi=0, 1=1,... n. (6.20)

We refer to the just introduced equations (6.18)—(6.20) also as (6.18,4)—(6.20,1).

Consider now together the equations (6.18,7 — 1), (6.20,4 — 1), (6.19,7 — 1),
(6.18,14), (6.20,4), (6.19,4), (6.18,% + 1), (6.20,7 + 1), (6.19,% + 1). Although, in
general, the ordering here is not important, in the presented form we have a system
of 9 linear equations with respect to 8 unknowns \;_2, pi—2, \i—1, Pi—1, Ai; Pis Nit+1,
pi+1 and the entries of the matrix are placed more compactly. Thus, there is a
nontrivial linear combination of these equations where all coefficients of Aj, pj,
Jj=14—2,...,1+ 1, become equal to zero. We can indicate this combination with
the coefficients as follows:

h; + h;
(618,i—1) — Tl
hi—1
(6.20,i — 1) _M
hi—1
h; + h;
(619,i—1) —— L
hi—1
(6.18,1) (hi + hiz1)ei —ni—1(hi—1 + hy)
18, W
h;_ 2h; + h;
(6.20, 1) s - +
(6.19, 1) _771‘2_1(hi—1 + hi) — (hi—thi +ni—1(hi +€3))(hi + hit1)
.19, h
h;_ h;
6.18,i+1) —irthi
hit1
h;— h;
(6.20,i +1)  —tizitl
hit1
h;— h;
(6.19,i +1) Lithie
hit1

At the left hand side of this combination it remains (we introduce here the notation
of D;, too)

D; = (hi + hiz1)zi—1 — (hi—1 + 2hi + hit1)zi + (hic1 + hi)zig1, i=2,...,n—1.

We suppose in the sequel that D; > 0 for all 4, which is, in fact, the strict convexity
of the given histogram.
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6.5. Basic equations

The right hand side of this combination contains as unknowns M;_o, M;_1,
M;, M1, Miyo. This combination in the form

Q;(Mi—2, Mi—1, M;, Miy1, M;2) = D; (6.21)
will be called basic equation. Our following purpose is to study the structure of
the function ®;.

Only (6.18,7 — 1) and (6.19,7 — 1) contain ~;_5 and in (6.21) we obtain from
them the term with the coefficient of ~;_o
hi + hiy1
hi—1

(logﬁ» _ Mi—2dip E(Th‘—de;Q)Q)
T B 2\ B '

Denoting 0;_5 = &;_2/ni_o (recall that v;_; = (M;_o/M;_1)'/3), we calculate

ey = 07 yMi—s

i—2 2(’/1‘71 — 1)37
Biy— (0i2+ v

- oiovi1+ 1"
Ni—2di-2 _ vig—1

Bi—o (oiovi1 + Dy’
and obtain the term
hi +hiz1 63 5 Mo (log (Giot+Dvicn  viq—1
hi—1 2 (Vi1 —1)3 oiovic1+1  (oi—a+1)vi

(o))
2\(oj—2+ Vvq/ /7

Here appears the function of the argument v;_1 (denote o = g;_9 + 1)

pale) = . E (10g (afzfqu 1 ma_xl - %(xa_xl)2> (6:22)

which deserves our special attention. Similar reasoning with (6.18,7 + 1) and
(6.19,4 + 1) containing ;41 gives the term

hi_1+ h; 63
T%MHQ@A(/LH&)
1+1

where now p;i1 = (Mi+2/Mi+1)1/3, o = Niy1/€i+1 + 1. The value ~;_1 is present
in (6.18,7 — 1), (6.19,4 — 1), (6.18,4) and (6.19,4). This part is represented in the
basic equation (6.21) as the summand consisting of 7;_1 with the multiplier

hi + hiq1

i— di, 1 T)i— di, 2
2 1 ( 2 1) )
hi—l

(— log a1 +
o1 2\ i
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6.6. Basic equations on uniform mesh

hi—1 + 2hi + hit1 Ni—1di-1 1 /ni—1di—1?
_ log B;_1 — _
h; ( o8 Fi-1 Bi-1 2< Bi-1 ) )
di_ d?_
—(hi + hit1) 7 = — (hi + hit1) (2mi-1 + hio1) 5
i—1 251’—1

Similar term could be written with v; and they will generate in (6.23) the summand
containing the function ¢p.

The study in general case is technically quite complicated and we restrict our-
selves in what follows mainly to the particular case of uniform mesh and corre-
sponding uniform replacement of spline knots. Nevertheless, sometimes we add
some results in general case.

6.6 Basic equations on uniform mesh

Let us consider the mesh where h; = h, i = 1,...,n, with spline (interior) knots
& = (vim1+m)/2,i=2,...,n—1. Then ey = h, g; = h/2, i = 2,...,n — 1,
ni:h/2,i:2,...,n—1, Tin—1 :h, 01 =0p_1 = (3/2)h, 5i:h,’i:2,...,’l’b—2.
We have ¢;/n; = 1 and o = 2. The basic equation (6.21) takes the form

M;—2p4 ((Mi_2>1/3) + M98 ((]\@_1 ) 1/3> + Mit19B <<Mi+1 ) 1/3)

M; i M;
Mio\13\
+Mipapa (( Mm) ) = Di (623)
where 1 2%  lz—1 1/z—1)\2
X xr — xr —
- ] = f—( ) ) 24
palr) (m—1)3(0gx—|—1 2 8\ =z (6.24)
1 z+1 2 1 1 , 3 z—1\2
= 1 — 21 -1+ =(z-12-2
#5(z) (x—1)3(0g 2 g 7ty -U+gl-1) 4( m ))
1 2z lo—1 1(z—1)>2(2?-06)
= 1 - - 2
(x—1)3<0gx+1 2 7z '8 22 ) (6:25)

with rescaled values D; = (22,1 — 4z; + 2z;11)/h?, i=2,...,n— 1.

Le us collect together the main properties of the functions (6.24) and (6.25) in
the following

Lemma 6.1. It holds
Dlimy_1 pa(z) = 1/24, lim, 1 pp(x) = 23/24,
2)pa(x) >0, ¢4(x) <0, ¢4(x) >0, for x > 0, the same properties has ¢pg,
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6.7. Boundary equations

3)pa(z) + 2oy (2)/3 >0, pp(x) + 2¢p(x)/3 > 0 for z >0,
4)e(x) = 3/(42?) for v < 1, pp(x) < 0.393 for x > 3.

The proof is a quite standard calculus, similar to that of Lemma 2.1, but
sometimes long and consists of several steps.

To compare the general case (6.22) the calculations give there ¢4 (1) = 1/(303),
Pa(1) = —(do — 1)/(40), @4 (1) = 2(100% — 50 + 1)/(50%).

6.7 Boundary equations

Near the boundary of the interval [a,b] appear some differences compared to the
equation (6.21). We analyze only the vicinity of the endpoint a, the changes for
b are obvious. The 7 equations (6.20,1), (6.18,2), (6.19,2), (6.20,2), (6.18,3),
(6.19,3), (6.20,3), are linear with respect to 6 unknowns A1, p1, A2, p2, A3, ps
and we eliminate them by a nontrivial linear combination. Actually, the same
coefficients as in general case are convenient here if we consider them for i = 2.
The only difference is the absence of (6.18,1) and (6.19,1). Instead of (6.21) we
have

Dy (M, My, M3, My) = Ds. (6.26)

Continue now with the uniform partition of knots. Then the equation (6.23) is
replaced by

e (32)) () ) () ) =21 o

where

volz) = —8(x27 7 (1og (252621)3 + é(-’f - 1)2>,

however, with rescaled Ds.

The assertions 2), 3) of Lemma 6.1 take place as well for oo and we have
lim, 1 pe(x) = 1.

Let us analyze now the boundary conditions.

Conditions (6.3) fix the values My and M,,. Then we have for n — 2 unknowns
Mo, ..., M,_1 the equal quantity of equations, namely (6.26) with its counterpart
containing D,,_1 and (6.21) fori=3,...,n — 2.

At conditions (6.4) and (6.5) M; and M, are also unknowns. Thus, we need
two more equations to determine all the values M;.

Consider first S(a) = a. We calculated already S(&; 4+ 0) and we have

01+ hy
5181

h d
(M + i logaq) + 5—1(*P1 + 1 log B1) + A _ . (6.28)
1M (€3]
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6.7. Boundary equations

Together with this we take (6.20,1) (which actually gives the value A1), (6.18,2),
(6.19,2), (6.20,2). These 5 equations are linear with respect to 4 parameters Ay,
p1, A2, p2. A nontrivial combination gives us the equation

(h] + h2)a — (2h1 + hg)zl + hiz9
72h1 + ho

h h
ylogar + yplog B — s log ag
hi ho

ho

Yidi ezl (_71651 n Yoda n Y1d? 272d§>
(03] hg 2&%

+ (h1 + ha) 5 o o
i

containing unknowns My, My, Ms.
In the case of uniform mesh this equation takes the form
Maon1/3 MsN\1/3
Moo ((37) )+ Maer((37) ) =2 6.29
2¥D M, + M3pp M, 1 ( )
where
27 1 813 3 22+ 5+ 24
= — log + — ,
16(1—2) °24x)* 32 z(1l-2x)

(2) 1 | 2z n 1 -5z
x)=— o
e 2(1—x)3 1tz 1622(1 — z)2,

¢p()

1
Dy = ﬁ@a — 321 + 22).

Now we have lim,_,1 pp(x) = 1/48 and lim,_,; op(z) = 31/48.
Next consider the condition S’(a) = . Then instead of (6.28) we get

2 ’Yld%
(M +mlogan) + ——(=p1 +mlogB) — —-

b1 d1m et

and this with (6.20, 1), (6.18,2), (6.19,2), (6.20,2) admits a nontrivial combination

o 1 1 1
zp—z1— (h+ha) o = —mlogan + —mlog B1 — —y2logas
2 €1 hg h2
mdi | e (mdi M 72ds "2d3
+h1+h27+*< — &9 - + &2 )
( ) 204% hg 51 2,3% a9 2&%
Note that the consistency of S(a) = « and histogram means here that

(h1+h2)a—(2h1+ha)z1+h122 > 0 and for S'(a) = « that 2(z0—21)— (h1+ha)a > 0.
However, for S”(a) = « the consistency is the requirement o > 0.

In the case of uniform mesh this equation is

e (12)"") raen((3) )2 o
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6.8. Euxistence of the histopolant

where at this time

(w)_g LR 3 2° +52° — 8z 48
PRI =160 —23 2 2+a)? 32 22(1-2)2

D, 29 — 21 — ha).

1
We calculate lim,_,1 ¢op(x) = 47/48. The assertions 2), 3) of Lemma 6.1 take place
for ¢p, ¢r and pr.

6.8 Existence of the histopolant

The quadratic/linear rational histopolant could be constructed if the values \;, p;
and M; are known. These parameters satisfy the equations (6.18), (6.19), (6.20)
and therefore the basic equations. Thus, for the existence of the histopolant, it is
necessary and sufficient that the system of basic (nonlinear) equations and then a
linear system determining \;, p; have a solution.

Suppose the system of basic equations has the solution, it is unique due to the
uniqueness of the histopolant. Let us derive an appropriate system to determine
the values \;, p;.

Consider the equations (6.18) and (6.19). The combination (6.18) + £;(6.19)
eliminates p;, the combination (6.18) — 7;_1(6.19) eliminates \;—; and we obtain
the equations

hi di—1+ hy 1
N i — =\ =g, (6.31)

0i—18i-1 i—17i—1 Ei

1 h; + 0; h;

— i1 — Ai + ——pi = q; 6.32
Th‘qu 1 b, " 5,11 Pi =4 ( )
with the known right hand sides p; and ¢;. We take the equations (6.32,2),
(6.31,3),...,(6.31,n — 1) as interior equations of a three-diagonal system for un-

knowns in ordering pi, Ao, p2,...,pPn_2, An_1. We get the first equation in this
system as (6.18,2) + €2(6.19,2) of the form

01+ he
m

1
p1— —A2=p2 (6.33)
&2

and the last one as (6.18,n — 1) — 1,-2(6.19,n — 1) of the form

1 hp—1+ 0y
—Pn—2 — M)\nq = Qn—1 (6.34)
TNin—2 5n71€n71

where p2 and ¢,_1 contain the known values A\; and p,_1, respectively.

Proposition 6.1. The system (6.31)-(6.34) has unique solution.
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6.8. Existence of the histopolant

Proof. We use the standard elimination to show that the matrix of the system is
regular. With the help of (6.33) eliminate p; in (6.32, 2), then the coefficient of Ao
will be ho(81+0d2+h2)/(£202(61+h2)) # 0 and the coefficient of py does not change.
With the help of this equation eliminate then in (6.31, 3) Ay, the coefficient of po
will be (01 + 2 + ha + h3)/(n2(51 + 02 + ha)) # 0. Continuing by the induction,
we have the coefficients of \; (diagonal entries of transformed triangular matrix)

K3 K3
Y0+ > hg
hi =1 k=2
6i6i i—1 7 # 0
O + > Iy
k=1 k=2
and of p;
7 141
1 Z O + Z hy,
; kjl ij # 0
G+ Y
k=1 k=2
which completes the proof. [l

Let us turn to the analysis of basic equations in uniform mesh case. Denote
M = (M, ..., M,), then the equation (6.23) is, in fact, ®;(M) = D;. We calculate

sare =ea((22) ) + 3 (20 e (52) ),

sar =en((52)) + 3 (5 e (24 ”)
3G a2,
(e (1)) - 5 () e (R,
o =ee(()) + 3 () e (((E)™)
3G "G,
s =) + 3 () eGP,

Basing on Lemma 6.1 we conclude that (0®;/0M;)(M) >0, j=14i—2,...,i+2.
Similar assertions hold for (6.27), (6.29) and (6.30). This means that all functions
®,; are increasing by each argument. The whole system for boundary conditions
(6.3)is (M) = D with ®(M) = (Po(M),...,P,_1(M))and D = (Dg, ..., Dyp_1).

72



6.8. Euxistence of the histopolant

For (6.4) and (6.5) ® and D contain two more components. Write ®(M) = D in
equivalent form M = W(M) introducing U(M) = M + ~v(®(M) — D), v # 0. We
intend to use Bohl-Brouwer fixed point theorem and try to find numbers r and R
such that R > r > 0 and M € [r, R]" implies U(M) € [r, R]™. More generally,
look for ; and R;, R; > r; > 0, implying ¥ mapping the set K = [, [r;, R;]
into itself.

Observe that, for M; = R;, ¥;(M) = R; + v(®;(M) — D;) > R; if v > 0 and
®,;(M) > D;. The last inequality is very natural to hold. Similarly, for M; = r;,
V(M) =r; +v(®;(M) — D;) <r;if y>0and ®;(M) < D;. Consequently, the
natural choice is v < 0 and the actual value will be chosen later.

We analyze equations (6.23) in more details, the reasoning for near-boundary
is very similar. Taking M € K, it holds ¥;(M) = M; + ~(®;(M) — D;) < R; if
and only if

M; ®;(M) — D)) < R;. .
ma (M + 5(2(M) — D)) < R (6.3)

As 00;/0M; >0, j =14 —2,...,i+ 2, it holds 0¥;/0M; > 0 for sufficiently small
| 7| and 0¥;/OM; <0, j =1i—2,i—1,i+1,i+ 2. Thus, (6.35) is equivalent to
Wi(ri—2,mi-1, Ri, Tig1, Tig2) < Ry or

rese(22)) rnea( (52)") w«gw“ﬁ 038

+ Tit2pA ((

+1
Similar calculations give that, for all M € K, the inequality ¥;(M) > r; is satisfied
if and only if

Ri—2p4 ( (gzj ) 1/3) + Ri—1¢B ( (Rizl ) 1/3) + Riviys ((R;:rl ) 1/3) (6.37)

+ Ri+2@A(<Ri+2)1/3) < D;.
Rit1
It could be checked that it holds ¢p(z) > 3/(42?) for * < 1 (actually,
lim, 0, 2%¢pp(z) = 3/4) and zpp(z) < 2/5 for > 3. Basing on the just in-
dicated behaviour of ¢p and p4(1) = 1/24 we see that the inequality (6.36) is
satisfied if

( /3 1/3)R2/3

(mln{ﬁ 2, Ti— 1} + mln{rz+1;r1+2}) 4 LI e PR D; (638)

24
and (6.37) holds if, e.g., Ri—1/r; = 3, Riy1/r; > 3 and

1
Sq(max{ Rz, Rt} + max{ R, Z+2}>+g rP(RS + RIS < Di. (6.39)

Taking r; = r and R; = R for all ¢ the inequality (6.38) turns to
1

-+ 1/3R2/3 5
12r+ 27“ R D; (6.40)
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6.8. Existence of the histopolant

and (6.39) to

1 4
LA 5r1/3R2/3 < D;. (6.41)

Analogously we establish the estimates for (6.27), (6.29) and (6.30).

The given analysis suggests that the system of basic equations may not have
the solution. This is confirmed by

Proposition 6.2. There is strictly convez histogram on uniform mesh with corre-
sponding spline knots where quadratic/linear spline histopolant does not exist.

Proof. Consider the basic equations (6.23,7 — 1) and (6.23,7). Suppose that the
solution exists for arbitrary values D;_1 > 0, D; > 0. Take, e.g., D;—1 — 0,
D; — oco. Then at left hand side of (6.23,¢— 1) all summands converge to zero. At
the left hand side of (6.23,7) at least one summand goes to infinity (by appropriate
subsequence).

1) Let Mi_ggoA((Mi_Q/Mi_l)l/g) — OQ.

If Mi,Q < const then @A((Mi,Q/Mi,1)1/3) — oo and Mi,Q/Mi,1 — 0. It
holds o ((M;_o/M;_1)"/3) ~ (M;_o/M;_1)~/3 (the sign ~ between terms means
here that the quotient of these terms converges to some positive constant) and
M;_a0a((M;_o/M;_1)V/3) ~ MM3M% —5 oo which yields M;_; — co. Now in
(6.23,i—1) M;_s0p((Mi_o/Mi_1)'/3) ~ MM3MP? 5 o0 which is a contradiction.

i—

If Mi,Q — oo then Mifl < const yields MZ‘,QQOA((Mi,Q/Mi,1)1/3)
~ M;_1 — oo, contradiction. It remains M;_; — oco. Then in (6.23,7 — 1)

M;_oN\1/3 const 2/3 1 ,1/3
Mi—Q@B((Mi_l) ) > FQW ~ M Lo M7} — oo,
M;_1

which is again contradiction.

2) Suppose Mi_1<p3((Mi_1/Mi)1/3) — OQ.

If M;_1 < const then goB((Mi,l/Mi)l/z)’) — oo and M;_1/M; — 0 with
op((M;_1 /M;)/3) ~ (M;_1/M;)~2/3. But in this case M;_1pp((M;_1/M;)"/?)
~ Milzi’Mlz/g — 00. In the equation (6.23,7 — 1), due to M;/M;_1 — oo, we get

Miop((M;/M;_1)Y/3) ~ Mil_/fMiQ/g — 00, contradiction.

If M;—1 — oo then M; < const implies the convergence M;_1/M; — oo and
M;_yop((Mi_y JM)Y3) ~ MMM = 00, In (6.23,i— 1), due to M;/M;_y — 0,

Mipp((M;/M;_1)V/3) ~ M3MM® = 00 which is impossible. If M; — 0o then in
(6.23,7 — 1) we have

M;—1
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6.8. Euxistence of the histopolant

which is contradiction.

Clearly, two other summands in (6.23,7) could be treated in the same way.
Note that the structure of the proof could be used as well in the case of D; 1
bounded and D; — oco. The proof is complete. |

Despite of quite restrictive sufficient conditions of existence (6.36) and (6.37)
they are satisfied if we histopolate a strictly convex function f € C?[a,b] (f"(z) > 0
for all # € [a,b]) and calculate the histogram heights 2, = h;* f;iil f(x)dx,
i =1,...,n. Then in general case (equation (6.21)) the Taylor expansion allows to
get

1 _
Di = 5 (hie1 + ha)(hi + higa)hi f (&) + o(h)
where h; = max{h;_1,h;, hiy1}. In uniform case (equation (6.23)) rescaled values
are D; = 2f"(&) + o(1). Sufficiently small h assures the quotients D;/D;_1 to

be approximately equal to 1 and (6.36), (6.37) or (6.38), (6.39) are satisfied with
reasonable gaps between r; and R;.

Remark 6.1. The representation (6.1) does not include quadratic polynomial
pieces of S. With this the case of S”(x) = const # 0, x € [§,&+1], is excluded.
The simplest way here is to allow additionally on some intervals the representation

S(x) = a; + bi(x — x;) 4+ ci(x — )%, = € [&, &l

Then we obtain ¢; = M;/2 and

2(pigi — Nimi) - M

b = PR AR L i),

i 5z77157, + 3 (52 772)
1 ; &4 M;

ai = _<&)\i+_lpi — i
0; \¢&; i 6

representing S via unknowns X\;, p;, M;. In equations (6.18) and (6.19) the left
hand sides remain unchanged which gives the validity of all results concerning the
determination of the values \;, p;. However, basic equations contain this situation
as limit case with the values of functions wa, B, .. .,©r in the point 1, correspond-
ing to the equality of neighbouring values M;.
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Chapter 7

Numerical tests

7.1 Monotonicity preserving spline histopolation

First, we histopolated the function f(z) = sinz on the interval [0, 1] with uniform
mesh using (2.29) and end conditions S’(0) = f/(0), S’(1) = f’(1). The system
(2.32) was solved by Newton’s method with starting values for m; as cos z;+0.1 and
iterations were stopped at ||m* —m*~1||, < 1077, Actually, 4-5 steps were needed.
We calculated the error ||S — f||o approximately as maxo<;<ion |(S — f)(i/(10n))].
The results are presented in Table 7.1 and confirm the rate of convergence O(h?).

Tabel 7.1. Errors of histopolation of the function f(z) = sinx on the interval [0, 1]

no | 4 8 16 32 64
IS — fllso \ 817-107* 1.07-107* 1.36-107° 1.70-107% 2.13.1077

In the second example taken from [47] we histopolated with uniform mesh on
the interval [0, 7] the values z; as 5.78, 3.51, 2.11, 1.27, 0.75, 0.49, 0.29, using end
conditions S’'(0) = —2.6, S’(7) = —0.19. Newton’s method for solving the system
(2.32) was started from values m; = —2.5, mg = —2.2, mg = =2, my = —1.7,
ms = —1.5, mg = —1.2. The histopolant is shown in Figure 7.1 and is practically
coinciding with that of [47].

In the next example, we used two different meshes for the same histogram
heights z; written in Table 7.2.

Tabel 7.2. Histogram heights and meshes used in Figs. 7.2 and 7.3.

zi | 0 2 2.5 3 4 )
0 24 2.5 2.6 4 )
Z 1.25 2.5 2.6 3 11
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7.1.  Monotonicity preserving spline histopolation

In both cases, as boundary conditions we took S(0) = 1, S’(5) = 5 and
starting values were m; = 1.1, mo = 1.2, mg = 1.3, my = 1.4. The histopolants
are represented in Figures 7.2 and 7.3.

N

0 1 2 3 4 5 6 7

Fig. 7.1. Linear/linear rational spline histopolant for the data taken from [47].

L

0 1 2 3 4 5

Fig. 7.2. Histogram and linear/linear rational histopolant corresponding to the first
mesh in Table 7.2.

We considered an example inspired by classical Akima’s test data [5]| for in-
terpolation. On uniform mesh x; = ¢, ¢ = 0,...,5, we took histogram heights
z1 = 10, z9 = 10.1, z3 = 100, z4 = 100.1, z5 = 101. The heights z; were inter-
polated linearly at points 1/2 and 3/2 to get o = S(z¢) and similarly g = S(z5).
Fixed 61 = 21 — a and 65 = [ — z5 were then used in ordinary iterations with
initial values calculated by (2.36) and also with m{ = m{ and m2 = mj. Ordinary
iterations converged to mg = 0.371, m; = 0.0116, my = 1.83 - 10°, m3 = 0.0106,
ma = 2.62, ms = 0.555.
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7.2. Comonotone shape-preserving histopolation

In the third example we also took the mesh z; = ¢, ¢« = 0,...,5, and the
histogram heights z; = 100, zo = 200, 23 = 300, 24 = 400, z; = 500. The initial
values were taken as mo = 100 (fixed), m{ = 1, mJ = 101, mJ = 1, m$ = 101,
ms = 100 (fixed). The matrix ®’(m") has the (maximal by modulus) eigenvalue
7.66 which is the spectral radius of ®'(m"). Thus, ® could not be contractive in
the neighborhood of m? with respect to some norm in R**.

5* J

Fig. 7.3. Histogram and linear/linear rational histopolant corresponding to the second
mesh in Table 7.2.

All considered examples were tested with ordinary iterations and Seidel’s met-
hod. Linear convergence with a quotient between 1/2 and 2/3 was observed.
This rate determines the number of steps depending directly on required precision.
Aitken’s transform accelerated considerably the convergence but Newton’s method
nearby the solution being easy to implement, could be recommended.

7.2 Comonotone shape-preserving histopolation

For spline S representation with equations (2.14) and (4.1) on rational and quadratic
intervals we need parameters m;. We can find them from the system which con-
tains equations of type (2.25), (4.5), (4.7) or (4.8) with corresponding boundary
conditions. To solve this system we can successfully use Newton’s method [16, 18].

Now we look at some examples. In the first example we have a weak alternation
of the data. We take the mesh xo =0, 21 =1, 20 = 1.9, x3 =2.8, x4 = 4, x5 = 4.9,
rg = 6.2, 7 = 7.5 and histogram heights are 21 = 2, 20 = 3, 23 = 24 = 25 = 9,
26 = 5, 27 = 2. We use boundary conditions S’(0) = 1 and S’(7.5) = —2. In this
case the intervals [zg, 23], [€3,24] and [z4, x5] are quadratic, all remaining intervals
are rational. Figure 7.4 shows plots of corresponding histospline.

78



7.2.  Comonotone shape-preserving histopolation

’" /\ N

> \
N

0 M k] 4 5 ] 7 ]

Fig. 7.4. Histogram and comonotone shape-preserving histospline.

Next we present four numerical examples without weak alternation of data.

In the second example we have the mesh zg =0, z1 = 1, 9 = 1.9, 3 = 2.8,
xy =4, v5s = 4.9, xg = 6.2 and histogram heights 21 = 2, 20 = 3, 23 = 24 = 7,
z5 = 6, 26 = 4 with boundary conditions S’(0) = 1 and S’(6.2) = —1. We use the
modified comonotone strategy to find the corresponding shape-preserving spline
and we choose [r3,x3] to be rational. Then [x3, 4] is quadratic interval and all
others are rational intervals. Corresponding spline is on Figure 7.5.

Fig. 7.5. Histogram and modified comonotone shape-preserving histospline.
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7.2. Comonotone shape-preserving histopolation

For the third example we take the mesh zg = 0, 1 = 1, z9 = 1.9, 3 = 2.8,
ry =4, x5 = 4.9, g = 6.2, x7 = 7.5 and histogram heights are z; = 2, 20 = 3,
23 =24 =25 =T, 26 = 8, z7 = 10 and boundary conditions S’(0) = 1 and 5'(7.5) =
12. We choose [x3,x4] and [z4,25] to be quadratic and remaining intervals to be
rational (interval [x9,z3] is chosen to be rational because of modified comonotone
shape-preserving strategy). This spline is presented in Figure 7.6. Figure 7.6 shows
the growth of absolute values of m; on the quadratic section as predicted by the
theory.

Fig. 7.6. Histogram and modified comonotone shape-preserving histospline.

In the fourth example we have mesh zg = 0, 1 = 1, 29 = 1.9, 23 = 2.8,
gy =4, x5 = 4.9, g = 6.2, 7y = 7.5, g = 8.5 and histogram heights z; = 2,
20 =0, 23 =24 =25 =26 =7, 21 = 5, 28 = 2. We use boundary conditions
S’(0) =1 and S’(8.5) = —1. Histospline which corresponds to this data is shown
in Figure 7.7.

Finally, for the mesh 2o = 0, 1 = 1, 9 = 1.9, 23 = 2.8, 4 = 4, x5 = 4.9,
zg = 6.2 we chose histogram heights 21 = 1, 20 = 4.7, 23 = 24 = 7, 25 = 6.75,
zg = 3. This histospline is plotted in Figure 7.8. Spline uses constant function on
intervals [x9, x3] and [x3, x4], linear/linear rational function on [xg, 21| and [x5, x¢]
and cubic polynomial on [z1, 3] and [z4,z5]. Boundary conditions are S’(0) = 1
and S'(6.2) = —1 with appropriate C'' smoothness in points z3 and x4. Calculated
values m; = 2.801 and ms = —7.549 correspond to monotone and nonmonotone
shape of cubic polynomials (because of condition 0 < m;_o < 126;—1/h;—1).
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Fig. 7.7. Histogram and modified comonotone shape-preserving histospline.

Fig. 7.8. Histogram and C! smooth histospline with constant part.

7.3 Convexity preserving histopolation

We histopolated the functions f(x) = e® and f(x) = 2 for x € [~2,2] on uniform
mesh. Histogram heights were calculated by z; = h;l f;iil flx)dz, i =1,...,n.
Boundary conditions S”(a) = f”(a) and S”(b) = f”(b) were used. Numerical
results are presented in Tables 7.3 and 7.4, histopolants in Figures 7.9 and 7.10.
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7.3. Convexity preserving histopolation
Table 7.3. Histogram heights and spline parameters for f(z) =e*, n =8
T;| -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
& -2 -1.25 -0.75 -0.25 0.25 0.75 1.25 2
2 0.176 0.289 0.477 0.787 1.297 2.139 3.627 5.815
Ai 0.088 0.081 0.134 0.221 0.365 0.601 0.992 0
pi 0 0.063 0.105 0.172 0.284 0.469 0.772 2.907
M;| 0.135 0.29 0.475 0.783 1.297 2.117 3.551 7.389
Table 7.4. Histogram heights and spline parameters for f(z) = 2%, n =8
;| -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
&i| -2 -1.25 -0.75 -0.25 0.25 0.75 1.25 2
Z; 9.762 2.638 0.388 0.013 0.013 0.388 2.638 9.762
Ai 4.881 0.408 0.047 -0.001 0.011 0.151 0.912 0
pil 0 0.912 0.151 0.0112 -0.001 0.047 0.408 4.881
M;| 48 19.98 7.944 0.782 0.781 7.946 19.98 48

Fig. 7.9. Histogram and shape-preserving histospline corresponding to the data in
Table 7.3.

2

Fig. 7.10. Histogram and shape-preserving histospline corresponding to the data in
Table 7.4.
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7.4. Convergence rate of monotonicity preseving spline histopolation

We tested the solution of basic equations on uniform mesh where in equations
(6.23) the right hand sides were taken alternately D; = ¢, D;11 = ¢ !, Djjo =c
etc. Boundary values were M7 = M,, = 1 and n = 8. The Mathcad package solved
the system for ¢ = 1.8 but not for ¢ = 1.9. This is in consistence with the estimates
(6.40) and (6.41) confirming that they are quite adequate.

7.4 Convergence rate of monotonicity preseving spline
histopolation

We histopolated on the interval [0,1] the function f(z) = sinz to confirm the
highest theoretical rate O(h?) and also the piecewise quadratic function

2
1
—x——f—x for 0<z< =,
_ 2 2
f(x)_ 2
z —i—l fo 1< <1
—+ = r — <z
2 4 2\ X b

having f’ € Lip 1. However, the last function is such that f” € Lip a does not hold
for no one o € (0, 1]. Thus, here the rate O(h?) coincides with those predicted by
Theorem 3.1.

The mesh was nonuniform of the following form. Taking h = 1/n, central knots
were calculated as
_1+h

x )
2

Tn_1=2xn —h
51 2 ’

|3

xg_zzxg_l—h, LE%+1:LE%+E

Another ones were spaced uniformly on rest parts of the interval, i.e.,

Trn_o n
— 2
xi—z%_Z, 1=1, ,5—3,
L—znyy

x%+1+i:x%+1+i 7;:17“‘7

o1
We used the boundary conditions (2.3) with a = f/(x¢) and 8 = f/(x,).

The "tridiagonal" nonlinear system to determine the values of m; consisting of
equations (2.25) was solved by Newton’s method.

The errors ||S — f||oo were calculated approximately on tenfold refined grid as

en, = max max |(S — f)(zi—1 + khi/10)].

1<i<n 0<k<10

Results of numerical tests are presented in Tables 7.5 and 7.6.
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7.5. Convergence rate of comonotone shape-preseving spline histopolation

Table 7.5. Numerical results for f(z) = sinz.

no| s 16 32 64 128
en [1.15-107%1.46-107°1.84-10762.30-10772.87- 1078
€n/2/En 7.874 7.961 7.988 7.996

Table 7.6. Numerical results for piecewise quadratic function.

no |8 16 32 64 128
€n 17.39-107%1.79-107%4.41-107°1.09 - 1072 2.71 - 1076
€a/n/€n 4117 4.071 4.040 4.021

7.5 Convergence rate of comonotone shape-preseving
spline histopolation

We histopolated the functions f(z) = 2%sgnx, f(z) = 23, f(r) = 2? and
f(x) = |z|® on the interval [~1,1]. For the first and the third functions we obtain
the convergence rate O(h?) and for others the rate O(h?). In our tests we used the
uniform mesh, for the third function we also used a nonuniform mesh, where central
knots were calculated as z(,y1)/2 = /2, T(n41)/2-1 = —1/2, T(ng1)/2-2 = —3h/2,
T(ng1)/241 = 3h/5. Other knots were spaced uniformly on rest parts of the inter-
val, i.e., ¥; = 20 +i(T(ny1)/2-2 — 0)/((n+1)/2-2), i=1,...,(n+1)/2—3 and
T(ng1)/2414i = Tn— (= 1) (T —T(nq1)/241)/((n+1)/2-2), i=1,...,n—1. For
the function f(z) = 22 we made tests for both, n odd and n even. Other functions
were tested only for n odd or for only n even and on uniform mesh. Selection of
the subinterval was made by comonotone shape-preserving strategy in case of n
odd and by modified comonotone shape-preserving strategy in case of n even.

We used the boundary conditions o = f/(x¢) and 8 = f’(x,). The approxi-
mates to the errors ||S — f|lco were calculated on ten times refined grid as

kh kh
en = max max |S(zi-1+75) — f(zi1+5)1
Nonlinear system of m;,i = 0,...,n, was solved by Newton’s method. Results of

numerical test are presented in the next tables.

Table 7.7. Numerical results for f(z) = 2%, x € [~1,1], uniform mesh, n odd

n \5 15 45 135 405
n 734 x 1038.39 x 1074 9.33 x 1075 1.04 x 1075 1.15 x 106
En/3/En 8.741958  9.000082  9.000000  9.000000

84



7.5.  Convergence rate of comonotone shape-preseving spline histopolation

Table 7.8. Numerical results for f(z) = 2%, = € [~1,1], uniform mesh, n even

N 8 16 32 64 128
n 788 x10731.97 x 10734.93 x 10741.23 x 10~43.08 x 105
€n/2/En 3.098068  3.999997  4.000000  4.000000

Table 7.9 Numerical results for f(z) = 2%, 2 € [~1, 1], nonuniform mesh, n odd

n \5 15 45 135 405
3.95%x 1072944 x 10741.05 x 107%1.16 x 1075 1.29 x 10~¢
41.790849 9.012392  9.003344  9.001046

En

En/3/5n

Table 7.10 Numerical results for f(x) = 23, = € [~1, 1], uniform mesh, n even

N 8 16 32 64 128
3.70 x 1073 5.23 x 107%6.81 x 107°8.66 x 10791.09 x 10~
7.086933  7.681549  7.856177  7.931600

En

5n/2/6n

Table 7.11 Numerical results for f(z) = |[2#3|, x € [~1,1], uniform mesh, n odd

n \5 15 45 135 405
n 1.27 % 1072632 x 10-42.47 x 1075 9.31 x 107 3.47 x 108
En/3/En 20.130665 25.566869 26.557522 26.858469

Table 7.12 Numerical results for f(z) = x2sgnx, x € [—1,1], uniform mesh, n even

N 8 16 32 64 128
439%x 1073 1.10 x 10732.75 x 107%6.86 x 107°1.72 x 10~°
3.998591  3.999998  4.000000  4.000000

3 n

€n/2/5n

These numerical results are completely in concordance with theoretical ones.
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Sisukokkuvote
Ratsionaalsplainidega histopoleerimine

Funktsioonide taastamisel mootmistulemuste voi katseandmete pohjal on prak-
tikas esinevatel juhtudel tihti oluline, et séilitataks algandmete geomeetrilisi oma-
dusi: positiivsust (mittenegatiivsust), monotoonsust, kumerust. On iildiselt teada,
et siledad poliinomiaalsed interpoleerivad splainid ei séilita lihteandmete geomeetri-
lisi omadusi. Klassikaline niide selle kohta on funktsioon f(z) = 1/22, z €
[-2,-0.2], ja tema interpoleerimine kuupsplainidega [34]. See funktsioon on ka
néide sellest, kuidas andmete positiivsus, monotoonsus ja kumerus ei siili ruut-
splainidega interpoleerimisel [31], ja seotuse tottu histopoleerimisiilesandega ei séi-
litata geomeetrilisi omadusi ka histopoleerimisel.

Kui meil on {ilesandeks konstrueerida monotoonne histopolant, siis iiks voi-
malus on moodustada ekvivalentne interpolatsiooniiilesanne ja selle lahendi S
tuletis S’ votta histopolandiks 7. Kiillaldase sileduse korral on T monotoon-
selt kasvav parajasti siis, kui 7'(z) > 0, z € [a,b], mis on samaviirne sellega,
et S”(xz) = 0, x € [a,b], ehk S on kumer. Seega saab monotoonse histopolandi
leidmise iilesande taandada kumera interpolandi leidmise iilesandele. Kumeraks
interpolandiks sobib néiteks ruut/lineaar ratsionaalfunktsioonidest koosnev klassi
C? kuuluv splain [46]. Kuid ruut/lineaar ratsionaalfunktsiooni tuletis ei pruu-
gi olla lineaar/lineaar ratsionaalfunktsioon, seepirast ei saada selliselt kiesolevas
doktoritoos kirjeldatud meetodit. Lisaks sellele ei ole ruut/lineaar ratsionaalfunkt-
sioonidest koosnevate splainidega interpolatsiooniiilesannet kergem lahendada kui
lineaar/lineaar splainidega histopoleerimisiilesannet. Sarnast arutluskiiku voime
1&bi viia ka kumeruse séilitamiseks.

Kaesolev doktoritéd koosneb seitsmest peatiikist. Esimeses peatiikis antakse
lithike iilevaade t&0st, ratsionaalsplainide ajaloost ning tutvustatakse varasemaid
t6id uuritava valdkonna kohta.

Teine ja kolmas peatiikk baseeruvad artiklitel [16] ja [17]. Need peatiikid on
lisatud, et t606 moodustaks iseseisva terviku. Teises peatiikis on artiklis kirju-
tatule lisaks toestatud moned artiklis esitatud viited ja laiendatud moningate
vorrandite tuletamist. Selles peatiikis tutvustatakse monotoonsust siilitavat
lineaar/lineaar ratsionaalsplainidega histopoleerimist. Lineaar/lineaar ratsionaal-
splaini esitus on antud esimeste momentide m; = S’(x;) ja histogrammi korguste
z; kaudu. T606s on toestatud selliselt esitatud ratsionaalsplaini iihesus ja olemas-
olu. Peatiiki lopus antakse esmane hinnang meetodi koonduvuskiirusele ning kol-
mandas peatiikis on seda hinnangut tdpsustatud. Saadud koonduvuskiirus oleneb
histopoleeritava funktsiooni voi selle tuletise Lipschitzi tingimuse taidetusest.

Neljandas peatiikis on uuritud monotoonsuse séilitamist adaptiivsel juhul. Pea-
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tiikkis esitatud meetod kasutab splaini konstrueerimiseks osaldikudel kas
lineaar /lineaar ratsionaalfunktsioone voi ruutpoliinoome, vastavalt valitud osaldigu
tiiiibile. Splaini esitus on antud kasutades histogrammi kérguseid ja splaini S esi-
mesi tuletisi splaini solmedes. Selline adaptiivne splain eksisteerib ja on iihene
igasuguste andmete korral, millel on olemas ndrga alterneerimise omadus. Kui
andmetel pole norga laterneerimise omadust, kasutatakse modifitseeritud kaas-
monotoonset strateegiat osaldikude liigi miaramiseks.

Viies peatiikk on piihendatud neljandas peatiikis kirjeldatud strateegia koon-
duvuskiiruse leidmisele. Eeldatakse, et histopoleeritava funktsiooni tuletisel on
loplik arv nullkohti. Meetodi koonduvuskiirus soltub peamiselt selle funktsiooni
tuletise kditumisest nullkohtade iimbruses.

Kuuendas peatiikis uuritakse ruut/lineaar ratsionaalsplainidega histopoleeri-
mist. Uuritakse juhtu, kus etteantud histogramm on rangelt kumer voi rangelt
nogus. Ruut/lineaar ratsionaalsplaini esitus on antud histogrammi korguste z;,
osaloigu pikkuste h;, splaini teiste tuletiste M; = S”(&;) ja osaintegraalide ); ja
pi kaudu, mis rahuldavad vordust p;—1 + A; — h;z; = 0. Selliselt esitatud splain
on {ihene. Samuti on peatiikis ndidatud, et selline histopoleeriv splain ei eksisteeri
igasuguste andmete korral. Samas on peatiikis leitud tingimused algandmetele,
mille korral selline splain eksisteerib.

Seitsmendast peatiikist leiab teoreetiliste tulemuste numbrilised testid. Saadud
arvulised tulemused on kooskolas doktoritods toodud teoreetiliste tulemustega.

Neljanda peatiiki tulemused on avaldatud artiklis [18] ja viienda peatiiki tule-
mused artiklis [21]. Kuuenda peatiiki tulemused [22] on publitseerimiseks valmis ja
vormistatud preprindina. Dissertatsioonis esitatud tulemusi on tutvustatud neljal
rahvusvahelisel teaduskonverentsil ja vastavates konverentsiteesides.
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