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1. INTRODUCTION 

In the last decades, there has been a growing interest in climate change and 
associated with it carbon cycle (Cox et al. 2000). The particular attention was 
given to peatlands – a type of wetlands that are defined by at least 30 cm thickness 
of a surface soil layer storing the partially decomposed vegetation (known as 
peat). Peatlands cover only 2.84% of the global land area, nevertheless, they store 
approximately 21% of the global total soil organic C stock (Scharlemann et al. 
2014; Xu et al. 2018). Previous studies have demonstrated that there is much 
more peat C accumulated in northern (75–80%) than in tropical and southern 
peatlands (10–15%) (Yu 2011; Frolking et al. 2011). Northern peatlands – those 
located in mid to high latitudes – contain one-third of the global terrestrial carbon 
that ranges from 250 to more than 1000 Gt (Post et al. 1982; Roulet et al. 2007; 
Yu et al. 2010). The accumulation of this tremendous amount of carbon took 
thousands of years and led to the net long-term cooling effect of peatlands on 
Earth climate (Frolking and Roulet 2007; Yu et al. 2011). 

One of the main factors that contribute to carbon accumulation in peatlands is 
anoxia. Anoxic conditions caused by shallow water table depth (WTD) led to the 
exceedance of vegetation production over the decays in natural peatlands 
(Damman 1996). WTD is a position of the water table in the peat layer relative 
to the ground surface, which alter aerobic to anaerobic conditions in peat and 
causes a shift in fluxes of greenhouse gases (GHG), particularly CO2, N2O and 
CH4 (Alm et al. 1999; Salm et al. 2012; Pärn et al. 2018). Deeper WTD exposes 
peat soil to oxygen, which allows peat aerobic oxidation and leads to increase in 
CO2 emissions (Moore and Knowles 1989; Hooijer et al. 2012; Salm et al. 2012). 
While, shallow WTD inhibit C losses from microbial respiration and leads to 
anaerobic decomposition and release of CH4 to the atmosphere (Rosenberry et al. 
2003). CH4 has larger radiative efficiency than CO2; nevertheless, it has a much 
shorter lifetime in the atmosphere (Myhre et al. 2013). The study by Günther et 
al. (2020) suggests that CH4 emissions from peatlands do not increase the long-
term warming effect of the atmosphere, unlike CO2 emissions, which have 
negative effects on the magnitude and timing of global warming. Thus, peatlands 
with shallow WTD act as an ongoing C sink and have a cooling effect on the 
climate.  

Destabilisation of hydrological conditions could turn peatlands from carbon 
sinks into carbon emission hotspots through the increase of CO2 emissions 
(Dorrepaal et al. 2009). The accurate estimation of the hydrological conditions in 
peatlands is of high interest because it is pivotal for modelling carbon exchange 
between peatlands and the atmosphere (Limpens et al. 2008). Mitigation of global 
climate change requires the assessing of greenhouse gases, including those emitted 
by peatlands. For this, an accurate estimation of WTD in peatlands is needed.  

Nowadays, several approaches exist to monitor the WTD dynamics in 
peatlands. The field-based monitoring is the oldest approach to directly measure 
WTD in a field. For example, one of the longest field measurements of WTD in 
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the world is from Männikjärve peatland in Estonia. The monitoring station in this 
peatland was founded in 1950 and since 1951 the WTD records began (Paal and 
Leibak 2011; Swindles et al. 2019). Usually, data from one or several monitoring 
wells are enough to conclude about the general dynamic of WTD in one peatland. 
Peat soil, in contrast to mineral soils, does not have a watertight layer (Ivanov 
1981). This leads to low resistance to horizontal water movement in the upper 
peat layer within a peatland. Therefore, WTD in peatlands fluctuates rather 
coherently in space. 

However, in some types of peatlands surface runoff can change the local 
behaviour of WTD. There are two main types of peatlands: bogs, which are only 
rain-fed, and fens, which are additionally fed with groundwater and, sometimes, 
surface runoff. Despite bogs and fens are widespread in the northern region (Xu 
et al. 2018), in-situ data have been collected only in a very limited number of 
peatlands. The main reasons for that are the high costs and need for much labour 
for the field campaigns.  

Remote sensing, unlike the in-situ data collection, can provide global moni-
toring of WTD dynamic in peatlands. It relies on physically-based relationships 
between WTD and peat soil moisture. Usually, strong relationships exist between 
WTD and peat moisture. This is because of the tight capillary connection between 
shallow WTD and soil moisture in peatlands (Lindholm and Markkula 1984; 
Price 1997; Price and Schlotzhauer 1999; Kellner and Halldin 2002; Lafleur et 
al. 2005b; Kull et al. 2008; Strack and Price 2009). In previous studies, this tight 
connection was illustrated by scatterplots presenting temporal changes of WTD 
and soil moisture at an individual location in peatland. In these scatterplots, points 
of data align in narrow bands, which says that a new soil water equilibrium was 
quickly established in peat, even after precipitation events. Thus, based on the 
estimation of peat soil moisture, it is possible to conclude about the position of 
WTD in peat soil.  

Peatlands’ soil moisture can be estimated using remotely sensed microwave 
and optical data. Passive and active microwave sensing enables the estimation of 
soil moisture due to the large difference between the dielectric constants of water 
(~80) and dry soil particles (~4) (Entekhabi et al. 2010; Kerr et al. 2010; Ulaby 
and Long 2014; Dorigo et al. 2017). Because of that microwave remote 
observations directly reflect the soil moisture in the top few centimetres of the soil. 
Passive microwave missions, such as Soil Moisture and Ocean Salinity (SMOS) 
and Soil Moisture Active Passive (SMAP), are equipped with L-band radiometers 
(Entekhabi et al. 2010; Kerr et al. 2010). The long wavelength of L-band in the 
passive microwave observations enables accurate estimation of soil moisture by 
accounting for the vegetation roughness effect. The main disadvantage of passive 
microwave observations is their coarse resolution (40–50 km), which is in-
appropriate for monitoring moisture dynamic in peatlands that are usually much 
smaller in size. However, these observations are used in a global assimilation 
framework to improve the modelling of WTD in peatlands. For example, SMAP 
data can be used in the state-of-the-art land surface water and energy budget 
model Catchment Land Surface Model (CLSM) of the NASA Goddard Earth 
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Observing System (GEOS) framework (Bechtold et al. 2019a). SMOS L-band 
brightness temperature was applied to a PEATland-specific adaptation for CLSM 
(PEATCLSM) (Bechtold et al. 2020). 

Active microwave missions, for example, Sentinel-1 (Torres et al. 2012), 
collecting data of higher spatial resolution. However, an active radar signal is 
highly affected by land surface properties (Ulaby et al. 1981). In natural peatlands, 
the confounding effects occur due to scattering in the vegetation and upper fibric 
peat layer. As a result, active microwave observations have low sensitivity to the 
WTD in peatlands (Wagner et al. 1999; Bourgeau‐Chavez et al. 2007; Bechtold 
et al. 2018; Zwieback and Berg 2019). 

Optical remote sensing with missions such as Landsat, MODerate-resolution 
Imaging Spectroradiometer (MODIS) and Sentinel-2 allows monitoring of soil 
moisture indirectly, through the monitoring of spectral properties of the canopy 
(Jackson et al. 2004; Sadeghi et al. 2017). Optical observations enable the studying 
of the vegetation conditions, which in turn highly dependent on soil moisture in 
the rooting zone (Sadeghi et al. 2017). One of the most known methods to 
estimate soil moisture from optical data is the so-called “trapezoid” or “triangle” 
model. Two types of trapezoid models exist and they differ in the used moisture-
sensitive signal. The first type of the model utilises thermal data – Land Surface 
Temperature (LST) – and called Thermal-Optical TRApezoid Model (TOTRAM) 
(Goward et al. 2002; Sandholt et al. 2002; Patel et al. 2009; Mallick et al. 2009; 
Wang et al. 2011). TOTRAM relies on the physical principle of evaporative cooling 
(wetter = cooler). The second type of the model – called OPtical TRApezoid 
Model (OPTRAM) – uses absorption of Shortwave Infrared (SWIR) radiation of 
water and calculates the Shortwave infrared Transformed Reflectance (STR) 
from SWIR (Sadeghi et al. 2017). In both types of the model, the moisture-
sensitive signal is used together with vegetation index, e.g. the Normalized 
Difference Vegetation Index (NDVI), the Fractional Vegetation Cover (FVC) or 
Leaf Area Index (LAI) to construct a trapezoid space (Goward et al. 1985; 
Carlson et al. 1994; Moran et al. 1994; Carlson 2007; Sadeghi et al. 2017; El Hajj 
et al. 2017; Carlson and Petropoulos 2019). In this trapezoid space, the lowest 
LST or highest STR along the vegetation index gradient defines the wettest soil 
moisture, whereas the highest LST or lowest STR defines the driest soil moisture 
in the landscape.  

Despite trapezoid models, particularly OPTRAM, have high accuracy in 
estimating soil moisture in mineral soil, yet, their applicability has not been tested 
for the northern peatlands. In this thesis, I cover this gap of knowledge and 
discuss the potential of remote sensing techniques, which are based on optical 
and thermal satellite imagery, for monitoring WTD dynamics in different types 
of peatlands (i.e. bogs and fens). The novelty of this thesis is that it, for the first 
time, provides the discussion about the applicability of TOTRAM and OPTRAM 
in northern peatlands and provides the basis for a future global application of 
OPTRAM for monitoring WTD in peatlands.  

The general aim of the thesis is to improve the monitoring of temporal changes 
in the position of WTD in the peat layer of northern peatlands with the use of 
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optical and thermal satellite data. This thesis focuses on specific remote sensing 
approaches, namely, LST and based on it TOTRAM, and OPTRAM. In this work, 
I explore the potential of each of this technique to be used for monitoring of 
WTD. To achieve the general aim, the following tasks were set out: 

a) evaluate the applicability of LST data for monitoring hydrometeorological 
conditions (including WTD) in Estonian peatland (Article I); 

b) test the performance of two trapezoid models, the first is based on optical and 
thermal imagery, also known as TOTRAM, and the second one is based on 
optical imagery alone, also known as OPTRAM for monitoring temporal and 
spatial dynamic in WTD in two Estonian peatlands (Article II); 

c) analyse the performance of OPTRAM approach in comparison to modelled 
PEATCLSM WTD for monitoring temporal dynamic in WTD using long-
term (>10 years) dataset for five northern peatlands (Article III and 
Article IV). 
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2. MATERIALS AND METHODS 

2.1. Remotely sensed LST as an indicator  
of hydrometeorological conditions in one Estonian 

peatland (Article I) 
In Article I, we studied the potential of solely taken LST to reflect the 
hydrometeorological conditions in one peatland, where the long-term in-situ data 
were available. Here, we explained the variability of LST with in-situ measure-
ments, particularly, we tested the sensitivity of LST to changes in WTD. We 
conducted this analysis for the growing periods 2008–2016 when LST of peatland 
vegetation could potentially present vegetation moisture conditions, given the 
assumption that wetter conditions would be sensed with lower LST.  
 
 

2.1.1. Study area 

We chose Männikjärve peatland in Estonia as a study area because of the long-
term (> 60 years) hydrometeorological records available. This peatland located 
in central Estonia and it has heterogeneous microtopography: hummocks, ridge-
hollow and ridge-pool complexes. Pinus Sylvestris grows mainly at the peatland’s 
edge (marked as treed bog in Figure 1) and on the ridges. The vegetation of the 
treeless peatland is presented by Ledum palustre, Vaccinium uliginosum, Calluna 
vulgaris, Empetrum nigrum, and Sphagnum species. 
 

 
Figure 1. Study area. Water measurement site 212 is located in a pool and data for pool’s 
water table was collected there. Water measurement site 323 is located on organic soil 
and data of WTD in peat were sampled there. The location of the research station is 
presented with the red-filled circle; weather data were collected there. The grayscale 
tetragons represent the MODIS MOD11A1 grid. The darkest grey tetragon represents the 
MODIS pixel, which time-series data were used in Article I. Source: Article I, Figure 1. 
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2.1.2. Research data 

In-situ data 
To study the sensitivity of LST to hydrometeorological conditions in peatland, 
we used data for vegetation period of nine years (from May to September 2008–
2016). In this research, we used the following in-situ data: TAir – air temperature 
(measured at a height of 2 m every 3 h), Prec – precipitation (measured once a 
day), WVPP – water vapour partial pressure (measured every 3 h), TSoil – soil 
temperature at depths of 5, 10, 15, 20 cm and TSurf – surface temperature 
(measured every 6 h), WT 212 – water table in peatland pool and WTD 323 – 
WTD in peat soil (Figure 1). 
 
Remotely sensed data 
We used LST time-series data sensed by MODIS Terra mission obtained through 
AρρEEARS (Application for Extracting and Exploring Analysis Ready Samples 
https://lpdaacsvc.cr.usgs.gov/appeears/). LST data from MODIS were chosen 
because of the high temporal resolution of these data – MODIS overpasses the 
study area every day and provides with the daily-based measurements. However, 
MODIS LST suffers from the coarse spatial resolution – 1 km. Our study area 
was covered by several MODIS pixels, but only one of them was more than 90% 
covered with peatland. In further analyses, the time-series of LST for this pixel 
was used (Figure 1). 
 

Figure 2. Variability of field-measured temperature with LST from the beginning of May 
till the end of September 2008–2016 (121–274 days of the year). TAir at 12:00, TSurf 
and TSoil at 15:00 are presented only for the days when LST was sensed. Source: 
Article I, Figure 3. 
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The footprint of the selected pixel mainly corresponds to the peatland area; 
however, some areas of forest at mineral soil are also present within this pixel. 
For the pre-test, we plotted time-series data of LST and in-situ TAir, TSurf and 
TSoil to determine whether pixel’s LST signal corresponds to the thermal 
conditions in the peatland (Figure 2). Generally, the seasonal curve of LST 
matches a lot with those for TAir, TSurf and TSoil. It is seen that TSurf at 15:00 
was, usually, higher than LST while TAir at 12:00 was much similar to LST values. 
Based on this, we concluded that the LST values of the selected MODIS pixel 
reflect the thermal condition of the peatland. Thus, despite this pixel includes 
some small area of forest, its LST values are still representative of the studied 
peatland. 
 
 

2.1.3. Statistical analysis 

With the reason to account for a cumulative effect of temperature and precipitation, 
we summarised TAir, TSurf, TSoil and Prec for last 5 and 10 days before LST 
was sensed. Further, the summarised time-series was used together with the raw 
time series. 

The linear association between the hydrometeorological observations and 
LST was examined using Pearson correlation analysis (R) in R software (R Core 
Team 2018). We calculated R between data for a) each year, b) each month over 
the different years, c) total period of study.  

A multiple linear regression was used to model relationships between the in-
situ predictors and remotely sensed LST for each month (from May to September) 
over the different years. A linear regression method was applied to standardized 
variables. The mean-centre method was chosen to standardise the data. Regression 
diagnostics were done to the hydrometeorological data. A random forest approach 
together with forward selection was used to fit the regression models. 

 
 

2.2. Estimation of TOTRAM and OPTRAM  
for monitoring changes in WTD  

in two Estonian peatlands (Article II) 

After assessing the potential of LST solely to reflect hydrometeorological con-
ditions, we aimed to test the applicability of two trapezoid models to monitor 
changes in WTD in peatlands. The first trapezoid model – TOTRAM – utilises 
LST together with vegetation index, the second model – OPTRAM – utilises STR 
instead of LST, and vegetation index. In Article II, we extended the study period 
(growing seasons in 2008–2019) and study area (two peatlands), and we used 
remotely sensed data of higher spatial resolution (30 m). Here, we estimated 
TOTRAM and OPTRAM based on Landsat 5, 7 and 8 data. Landsat spatial 
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resolution of tens of metres integrates soil moisture small-scale variability 
over hummock and hollow microtopography (Figure 3), but in comparison to 
MODIS resolution, it is still informative to analyse the spatial patterns of 
moisture indices. 
 

Figure 3. Sketch illustrating the concept of the link between WTD and remotely sensed 
parameters via the capillary connection between WTD, moisture in the soil, and 
vegetation. The remotely sensed parameters used in this study: NDVI, FVC, LST and 
STR. Source: Article II, Figure 1. 
 
 
Given the assumption that WTD and surface soil moisture have a tight capillary 
connection, we hypothesise that remotely sensed moisture indices, i.e., TOTRAM 
and OPTRAM, are sensitive to the changes in WTD in peatlands (Figure 3). In 
this article, we evaluated the temporal and spatial correlation of the TOTRAM 
and OPTRAM based on in-situ measured WTD. 
 
 

2.2.1. Study area 

In Article II we extended the study area to two Estonian peatlands: Linnusaare 
and Männikjärve (Figure 4). The in-situ data from Männikjärve peatland were 
previously used in Article I. Both peatlands are of limnogenic origin and located 
within the East-Baltic Bog Province (Sillasoo et al. 2007). The tree layer of both 
bogs consists mainly of sparse Pinus sylvestris. The grass and dwarf shrub layers 
consist of Calluna vulgaris, Eriophorum vaginatum, Chamaedaphne calyculata 
(Burnett et al. 2003). The typical moss species are Sphagnum fuscum, 
Sphagnum balticum, Sphagnum magellanicum, and Sphagnum rubellum (Burnett 
et al. 2003). 
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Figure 4. Base map showing the study area of Article II: Linnusaare and Männikjärve 
bogs with (red circles) locations of water table measurement sites, (blue square) weather 
station, and (green shading) treed and treeless bog areas (designed by authors based on 
data from Estonian Topographic Database, Land Board 2020 (Estonian Land Board 
2020)). The upper inset presents (dark grey) two overlapping Landsat scenes and (red 
square) the clipped area used in the modelling of trapezoids. The lower inset is a zoom of 
the clipped area and highlights the two bogs (red polygons). Source: Article II, Figure 3. 
 
 

2.2.2. Theoretical concepts of trapezoid models 

TOTRAM: Thermal-Optical Trapezoid Model 
TOTRAM is one of the most widely used remote sensing approaches to estimate 
surface moisture in mineral soils (Goward et al. 2002; Sandholt et al. 2002; 
Mallick et al. 2009; Zhang et al. 2015; Capodici et al. 2020). This approach is 
based on the trapezoidal-shaped distribution of pixel values in the space defined 
by LST and a vegetation index, for example, FVC, NDVI or LAI (Nemani et al. 
1993; Carlson et al. 1994; Moran et al. 1994) (Figure 4). The highest and lowest 
values of LST along the vegetation cover gradient represent the so-called dry and 
wet edges (Figure 4). In addition to the wet and dry edges, more isopleths can be 
drawn indicating transitional moisture conditions (Prihodko and Goward 1997). 
The moisture condition of each pixel, WTOTRAM, is estimated based on its location 
relative to the dry and wet edges within the trapezoidal-shaped distribution of 
pixels in a single scene, 
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 𝑊்ை்ோ஺ெ,௜ = ௅ௌ்೘ೌೣ,೔ି௅ௌ்೔௅ௌ்೘ೌೣ,೔ି௅ௌ்೘೔೙,೔ (1) 
 
where LSTi is the LST value of the pixel i and LSTmax,i and LSTmin,i are the LST 
values of the dry and wet edge at FVCi (Figure 5a). 

Figure 5. Illustration of the concept of: (a) TOTRAM; and (b) OPTRAM. For TOTRAM, 
both the observed (Scenario 1) and the modelled (Scenario 2) dry edges are presented. 
The dry edges are indicated by points LSTsmax׳ and LSTcmax׳ for TOTRAM Scenario 1, 
LSTsmax׳׳ and LSTcmax׳׳ for TOTRAM Scenario 2, and STRsmin and STRcmin for OPTRAM. 
The wet edges are indicated by points LSTsmin and LSTcmin for both TOTRAM scenarios, 
and STRsmax and STRcmax for OPTRAM. The colour gradient shows the soil moisture 
availability from blue (wet edge) to red (dry edge). Point i is a surface with LSTi, FVCi, 
STRi, and NDVIi. For i within LST-FVC space, the temperature of the wet edge is LSTmin,i, 
observed dry edge is LSTmax,i׳, and modelled dry edge is LSTmax,i׳׳. For i within STR–NDVI 
space, the STR value for the wet and dry edge are STRmax,i and STRmin,i, respectively. 
Source: Article II, Figure 2. 
 
TOTRAM approach has several limitations. It requires, firstly, that the location 
of the isopleths within LST-VI space is determined by the water availability and 
not by the difference in atmospheric conditions. For this reason, TOTRAM is not 
applicable to mountain regions and to the images sensed on different days. 
Secondly, LST decreases not only in space but also in time with increasing values 
of vegetation index (Price 1990; Gillies et al. 1995). In this study, we applied two 
TOTRAM scenarios from literature, they mainly differ in the treatment of these 
application criteria in the context of the dry edge determination. 
 
Scenario 1: Observed dry edge 
In TOTRAM Scenario 1, the dry and wet edges were determined from the 
observed highest and lowest LST values along the FVC gradient following the 
algorithm in (Tang et al. 2010). Following this algorithm, we split the LST pixels 
based on FVC values in LST–FVC space into 20 intervals and each interval into 
5 subintervals. For each interval, the minimum and maximum LST values were 
calculated. After, the wet and dry edges were modelled as the linear fit to the 
mentioned minimum and maximum LST values. 
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Scenario 2: Modelled dry edge 
For the accurate determination of wet and dry edges TOTRAM approach requires 
sufficient variability of land surface moisture (Carlson 2007). However, after 
widespread precipitation events, the dry edge can not be defined because of the 
lack of pixels representing the dry areas. To overcome this limitation, it has been 
proposed to derive the dry edge theoretically, i.e. based on models (Zhang et al. 
2008; Long and Singh 2012; Zhang et al. 2014). The modelled dry edge was 
determined by two modelled temperatures: the temperature of the driest bare 
surface (LSTsmax׳׳) and the driest fully vegetated surface (LSTcmax׳׳) (Figure 5a). 
We followed the algorithm for retrieving LSTsmax׳׳ and LSTcmax׳׳ developed by 
Long et al. (2012), which is based on solving for the system of physically-based 
non-linear equations in an iterative manner (Article II Appendices A and B). We 
applied Scenario 2 for a shorter period (2009–2019) than Scenario 1 (2008–2019) 
because the in-situ meteorological measurements needed for modelling the dry 
edge were only available starting from June 2009.  
 
OPTRAM: Optical Trapezoid Model 
OPTRAM approach was introduced by Sadeghi et al. (Sadeghi et al. 2017) as an 
alternative to TOTRAM. OPTRAM utilises STR instead of LST as a soil 
moisture-sensitive parameter (Figure 5b). In OPTRAM, the trapezoid is formed 
by NDVI as a measure of vegetation cover and STR as a measure of moisture 
content (Sadeghi et al. 2015). In contrast to TOTRAM approach, OPTRAM 
allows merging the data sensed on different days for constricting one joint 
trapezoid space. To determine the wet and dry edges, firstly, we randomly 
sampled 10% of the pixels from the total dataset. Secondly, the full range of 
sampled NDVI values was divided into 100 intervals. Within each interval, the 
median, standard deviation, maximum, and minimum STR values were obtained. 
The dry edge was modelled as a linear fit to the minimum STR values. The dry 
edge was modelled as a linear fit to the “median + standard deviation” values of 
the 100 intervals. To exclude the pixels that correspond to water bodies, we 
filtered out pixels with negative NDVI before the OPTRAM calculation.  
 
The OPTRAM soil moisture index, WOPTRAM, is then derived using the equation: 
 
 𝑊ை௉்ோ஺ெ,௜ = ௌ்ோ೔ିௌ்ோ೘೔೙,೔ௌ்ோ೘ೌೣ,೔ିௌ்ோ೘೔೙,೔ (2) 
 
where STRi is the STR value of the pixel i, while the STRmax,i and STRmin,i are the 
STR values of the dry and wet edge at the NDVI of pixel i (Figure 5b). 
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2.2.3. Research data 

In-situ data 
We used air temperature and air pressure measured at an hourly resolution at 
Tooma weather station, which is located on the mineral soil close to the study 
area (Figure 4). The data were available beginning from June 2009. Additionally, 
we used WTD data from eight monitoring wells installed in hollows along a 
transect (Figure 4). Daily measured WTD data for the growing seasons (May–
September) 2008–2019 were used in this study.  
 
Reanalysis and remotely sensed data 
ERA 5 is the atmospheric reanalysis of the global climate produced by the Euro-
pean Centre for Medium-Range Weather Forecasts (Hersbach et al. 2020). We used 
ERA 5 data of friction velocity and total column water vapour for modelling of the 
dry edge required for TOTRAM Scenario 2 (Article II Appendices A and B). 

For LST estimation we utilised brightness temperature data of Landsat 5, 7 and 
8, emissivity data of MODIS and water vapour data of NCEP/NCAR datasets. NDVI, 
FVI and surface albedo were calculated based on data of Landsat 5, 7 and 8. 
 
Variable Derivation 
The basic workflow of data preparation is presented in Figure 6. This figure 
shows the analysis steps with data inputs and outputs. Data processing was 
performed on the Google Earth Engine (GEE) online platform (Gorelick et al. 
2017). The final TOTRAM and OPTRAM calculation and statistical analyses 
were performed in R software (R Core Team 2018). The detailed description of 
the data preparation steps can be found in Article II. 
 

 
Figure 6. Data preparation for the two TOTRAM scenarios and OPTRAM. Blue-filled 
rectangles represent input parameters and variables and green-filled rectangles with 
diagonal corners rounded represent intermediate parameters and variables. The numbers 
of equations refer to the equations presented in Article II. Source: Article II, Figure 4. 
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2.2.4. Statistical analysis 

We calculated the temporal Pearson correlation coefficients (R) between soil 
moisture indices of the three different trapezoid models (TOTRAM scenarios 1 
and 2, and OPTRAM) and in situ WTD measurements. Anomaly Pearson corre-
lation coefficients (anomR) were calculated to evaluate the capability of the 
trapezoid models to monitor the variability of WTD. Anomaly time series of in-
situ and soil moisture indices were obtained by removing the multi-year one-
month-smoothed average from the original time series values. 
 
 

2.3. Testing OPTRAM performance in five northern 
peatlands by comparison with PEATCLSM WTD  

(Article III and IV) 

In Article III, we assessed the accuracy of up-to-date modelling techniques for 
estimation of the modelled WTD. Later, in Article IV we compared the perfor-
mance of OPTRAM index in comparison to the modelled WTD. Article IV 
addresses the challenges of OPTRAM application that we faced with and described 
in Article II, particularly: dependency of OPTRAM representativeness for WTD 
monitoring from vegetation cover, and a limited number of peatlands where 
OPTRAM was tested. Since the sensitivity of OPTRAM index to changes in WTD 
depends highly on vegetation cover, in this work we suggest an approach, which 
can localize OPTRAM pixels with the highest sensitivity to WTD (further called 
‘best pixels’).  

In Article IV we suggest that ‘best pixels’ can be localised using in-situ WTD 
(if such is available) or WTD modelled by a land surface model (if no in-situ 
records are available) (Figure 7). Given the assumption that WTD varies rather 
coherently within a peatland, in-situ measurements from one monitoring well are 
sufficient to determine the overall temporal variation of WTD in a peatland. The 
localizing of the ‘best pixels’ on the basis of WTD measured in-situ allows 
estimating the temporal changes in WTD beyond the time period for which in-
situ records are available. However, the in-situ WTD is measured only in a small 
number of peatlands. To provide the basis for a future global application of 
OPTRAM over northern peatlands, we propose localizing the ‘best pixels’ by the 
use of WTD data modelled by a land surface model with PEATCLSM (Ducharne 
et al. 2000; Koster et al. 2000; Bechtold et al. 2019a). 
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Figure 7. Schematic illustration of the approach proposed in this study. The ‘best pixel’ 
for the monitoring of water table depth (WTD) with OPTRAM index can be localized by 
measured or modelled WTD data when assuming that WTD varies uniformly within a 
peatland. Source: Article IV, Figure 1. 
 
Article IV seeks to address the challenges of OPTRAM application in peatlands 
to localize the ‘best’ OPTRAM pixels for monitoring WTD by using either in-
situ or modelled WTD data. In this study, we used data of five northern peatlands 
(fens and bogs) where long-term records of in-situ WTD were available. We, 
firstly, compared the performance of OPTRAM based on different spatial reso-
lutions (namely, Landsat, MODIS and Landsat spatially rescaled to the MODIS 
resolution); secondly, compared the performance of applying in-situ and 
PEATCLSM WTD data for selecting the ‘best’ OPTRAM pixels; thirdly, assessed 
the quality of OPTRAM index in comparison to PEATCLSM WTD data for 
WTD monitoring. 

Besides, we seek to compare the performance of ‘best’ OPTRAM pixels with 
modelled PEATCLSM WTD for the need of in-situ WTD monitoring. The 
PEATCLSM WTD data were obtained as model output in Article III. 

 
 

2.3.1. PEATCLSM simulation and modelled WTD data (Article III) 

In Article III we addressed the problem of poor representation of peatlands in 
global Earth system models nowadays. Here, we suggest using the new module 
for monitoring hydrological conditions in peatlands, namely, PEATCLSM. This 
suggested module accounts for peat hydraulic properties and performed better in 
comparison to basic CLSM simulation. 

The basic structure of CLSM was used in combination with peatland-specific 
parameters taken from the literature sources. We compared the performance of 
PEATCLSM (ExpC) with one simulation that used CLSM with default mineral 
soils (ExpA), and the second simulation that used CLSM with the updated peat 
soil parameters (ExpB) in northern peatlands. A more detailed description of 
simulations is given in Section 2 of Article III. 
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For this research, the unprecedentedly large data set of WTD was used: data 
from 94 monitoring wells and 44 peatlands (22 bogs and 22 fens). All the 
peatlands are located in the Northern Hemisphere between 40°N and 75°N 
(Appendix A in Article III). We compared the performance of tree simulations 
using these data of in-situ WTD.  

Comparing to ExpA and ExpB scenarios, overall, PEATCLSM outputs 
significantly better agree with in-situ WTD (Figure 8): the R values are 0.64 for 
bogs and 0.66 for fens, average bias is –0.12 m, the average root‐mean‐squared 
difference is 0.19 m, and average unbiased root‐mean‐squared difference is 0.10 m. 
For the unfrozen period between January 1988 through December 2017, 
PEATCLSM resulted in mean WTD of –0.20 m with a standard deviation of 
0.10 m. 

 
Figure 8. Groundwater table depth (a) bias (model‐minus‐observation), (b) root‐mean‐
squared difference (RMSD), (c) unbiased root‐mean‐squared difference (ubRMSD), (d) 
time series correlation coefficient (R), and (e) anomaly time series correlation coefficient 
(anomR) for the 30″ simulations (ExpA, ExpB, and ExpC), computed separately for bogs 
and fens. Bog metrics are based on 55 sites collected into 14 regional clusters. Fen metrics 
are based on 39 sites collected into 11 regional clusters. The anomR metric is computed 
from slightly fewer sites (44 and 38, respectively, with 11 clusters each). The time period 
(1988–2017) varies per site depending on data availability and the length of snow and 
freezing periods, which were excluded. Also shown are 95% confidence intervals. Source: 
Article III, Figure 6. 
 
Further, in Article IV we used PEATCLSM WTD data at 30’’ spatial and  
3-hourly temporal resolutions presented in Bechtold et al. (2019b). PEATCLSM 
simulation output contains data from 1988 to 2017 years. PEATCLSM data were 
used for the same days when in-situ WTD and remotely sensed data were 
available. We extracted one grid cell PEATCLSM output for each peatland at the 
times nearest to the Landsat acquisition times. 
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2.3.2. Study area and in-situ WTD data 

In Article IV, we used data of five peatlands that is a subset of WTD data from 
Article III. We selected only those peatlands, that have more than 10 years of in-
situ WTD data to ensure that the study sites were covered by a sufficient number 
of remote sensing images (Figure 9). The studied peatlands included two bogs 
and three fens (Table 1). Table 1 presents a short overview of the peatlands 
studied in Article IV. All of these peatlands have at least 30 cm thickness of the 
peat layer and shallow WTD. 
 

 

Figure 9. Study sites (red dots) used in Article IV and distribution of northern peatlands 
(based on Xu et al. (2018)). Source: Article IV, Figure 2. 
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2.3.3. OPTRAM estimation and parameterisation 

We estimated OPTRAM index using Landsat, MODIS and Landsat rescaled to 
the MODIS resolution for the period covering in-situ WTD measurements. We 
conducted our research over the vegetation period (from May to October) to 
exclude periods when the peat soil was frozen. Data processing was performed 
on the Google Earth Engine (GEE) online platform (Gorelick et al. 2017). All the 
remotely sensed data were re-projected to WGS 84 / Pseudo-Mercator projection 
(EPSG:3857).  

Landsat SWIR data of band 7 (2.08–2.35 μm in Landsat 5 and 7, and 2.107–
2.294 μm in Landsat 8) was used for STR calculation. The respective spectral 
difference of the Landsat SWIR band is a source of the potential bias for STR 
calculation, which was beyond the scope of our methodological framework. To 
compare the performance of OPTRAM of various spatial resolution, we also 
estimated OPTRAM based on data from the MODIS aboard Terra MOD09GA 
with 500 m spatial resolution. The surface reflectance for MODIS band 7 (2.105–
2.155 μm) was used for the STR calculation. Landsat and MODIS SWIR data 
have different ranges of bands used for the STR calculation. To eliminate the effect 
of different spectral resolutions, we upscaled the 30-m Landsat data (further 
called Landsat_30m) to the 500-m MODIS resolution (Landsat_500m), in this 
way, allowing an assessment of the OPTRAM for various spatial resolutions, 
while using the same spectral information. The new values of Landsat_500m pixels 
were estimated as the mean value of the Landsat_30m pixels using the function 
“reduceResolution()” in GEE. It should be noted that the calculation of mean has 
the inherent bias of dependency on the extreme values. A comparison of 
upscaling approaches was, however, beyond the scope of our study.   

In Article IV, in contrast to Article II, we estimated dry and wet edges of 
OPTRAM trapezoid space subjectively, based on the visual inspection of NDVI – 
STR scatterplots. This approach is common and widely used with OPTRAM 
(Sadeghi et al. 2017; Babaeian et al. 2018; Mananze and Pôças 2019; Huang et 
al. 2019; Chen et al. 2020; Ambrosone et al. 2020). We chose this approach for 
Article IV because for some peatlands we observed inadequate determination of 
wet edges with the approach used in Article II. Therefore, we here determined 
the wet and dry edges subjectively using the visual inspection of NDVI – STR 
scatterplots for each peatland separately. 

 
 

2.3.4. Statistical analysis 

Prior to estimating temporal correlation coefficients, we tested the normality of 
variables’ distributions with the Kolmogorov-Smirnov test (p-value 0.05). A 
normal distribution was observed for all the variables except in-situ WTD at 
CA_MER and US_LOS peatlands (p-values were 0.001 and 0.03 respectively). 
During the pre-test, we calculated both Pearson and Spearman correlation 
coefficients for those sites and results were consistent. Thus, for simplicity, we 
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only provide Pearson correlation coefficients for all sites, including CA_MER 
and US_LOS. 

For each comparison of OPTRAM indices with WTD, the per-pixel temporal 
Pearson correlation coefficients (R) and anomaly Pearson correlation coefficients 
(anomR) were estimated. This was done for OPTRAM indices obtained with 
Landsat_30m, MODIS, and Landsat_500m, and for WTD either in-situ or 
modeled with PEATCLSM. Anomalies were obtained by removing the multi-
year one-month smoothed average from the original values. 

We performed a random sampling test to validate the stability of spatial patterns 
of temporal per-pixel correlation. Two randomly selected subsets, each containing 
50% of total data in each peatland, were used to calculate R between OPTRAM 
and in-situ WTD (Article IV, Figure S2). 

For each of the three versions of OPTRAM as well as PEATCLSM WTD, 
95% confidence intervals (CIs) of the ‘best pixels’ correlation coefficients were 
estimated, first, for each site, taking into account the reduction of the sample size 
due to temporal autocorrelation (as in (De Lannoy and Reichle 2016; Bechtold et 
al. 2019a)). We then aggregated the CIs of the five sites, again separately for each 
of the three versions of OPTRAM as well as PEATCLSM WTD, by dividing the 
average of the CIs by the square root of the number of sites (De Lannoy and 
Reichle 2016; Bechtold et al. 2019a). Only one ‘best pixel’ was localized as the 
one with the highest statistically significant (p-value < 0.05) R values calculated 
between OPTRAM index and WTD (either in-situ or modelled) in each peatland. 
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3. RESULTS 

3.1. Dependency of LST on hydrometeorological 
parameters in Estonian peatland (Article I) 

3.1.1. Relationships between LST and hydrometeorological parameters 

Figure 10 shows the correlation matrix with the monthly and total R values. 
Generally, LST had the highest R values with TAir, TSurf and TSoil. The 
strongest R was observed between LST and TAir 12:00: monthly R values varied 
between 0.78–0.89, R value for the total period of time was 0.87. In Figure 10, it 
is seen that relationships between LST and WTD 323 were not statistically signi-
ficant in May and September; however, in other months and for the whole period 
of study we observe the weak negative R values between LST and WTD 323. 
 

 
Figure 10. A correlation matrix with R values. TAir – air temperature at 9:00, 12:00 and 
15:00, TSurf – surface temperature at 9:00 and 15:00, Prec – sum 10 d – cumulated pre-
cipitation of the last 10 days, Tsoi – soil temperatures at the depths of 5 and 10 cm at 9:00 
and 15:00, WL 323 (WTD 323 in the text) – water table depth at the measurement point 
№ 323, and WVPP 12:00 – water vapour partial pressure at 12:00 in the total study period 
and the individual months. The crossed-out cells have a p-value >0.05, the rest have a  
p-value <0.05. Source: Article I, Figure 5. 
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3.1.2. Main hydrometeorological drivers of LST 

Table 2 presents the results of multiple linear regression analysis between 
hydrometeorological drivers and LST for each month (from May to September) 
over the 2008–2016 years. The adjusted R2 is presented in the order in which 
variables were added to the models. It can be seen, that TAir was the main factor 
of monthly changes of LST. WTD and WT were significant predictors of LST 
and included in the linear models with a negative association with LST in May, 
June and July. 
 
Table 2. Results of the multiple linear regression. 

 Estimated Std. error t value Pr(>|t|) Adj. R2 

May 

Intercept 0.15 0.05 3.01 0.003  

TAir 12:00 0.65 0.06 11.09 <0.001 0.721 

WT 212 –0.21 0.07 –2.92 0.004 0.747 

TSurf 15:00   0.22 0.07 3.18 0.002 0.765 

Prec – sum 10 d –0.18 0.07 –2.48 0.015 0.776 

Residual std. error: 0.41 on 107 degrees of freedom, Multiple R2.:  0.78, Adjusted R2.:  
0.78, F-statistic: 97.14 on 4 and 107 DF,  p-value: < 0.001 

June 

Intercept 0.04 0.06 0.64 0.524  

TAir 15:00 0.54 0.13 4.23 <0.001 0.632 

TAir 9:00 0.37 0.14 2.66 0.009  0.651 

WTD 323 –0.10 0.05 –2.09 0.038 0.661 

Residual std. error: 0.54 on 116 degrees of freedom, Multiple R2.:  0.67, Adjusted R2.:  
0.66 , F-statistic: 78.42 on 3 and 116 DF,  p-value: < 0.001 

July 

Intercept 0.12 0.08 1.55   

TAir 15:00 0.52 0.093 5.53 <0.001 0.671 

TAir 9:00 0.41 0.09 4.14 <0.001 0.701 

WTD 323 –0.15 0.043 –3.41 <0.001 0.709 

Tsoil-5 cm 9:00 – sum 10 d –0.24 0.08 –3.06 0.003 0.726 

Residual std. error: 0.3985 on 131 degrees of freedom; Multiple R2.: 0.73, Adjusted R2.: 
0.73; F-statistic: 90.46 on 4 and 131 DF, p-value: <0.001 



 

30 

 Estimated Std. error t value Pr(>|t|) Adj. R2 

August 

Intercept –0.09 0.034 –2.81 0.006  

TAir 12:00 0.758 0.06 13.27 <0.001 0.784 

TSurf 15:00   0.194 0.05 3.59 <0.001 0.804 

Residual std. error: 0.35 on 115 degrees of freedom; Multiple R2.: 0.81, Adjusted R2.: 
0.80; F-statistic: 241 on 2 and 115 DF, p-value: <0.001 

September 

Intercept –0.20 0.06 –3.17 0.002  

TAir 15:00 0.72 0.06 11.49 <0.001 0.735 

TAir 12:00 – sum 10 d 0.45 0.11 4.24 <0.001 0.761 

Tsoil-5 cm 9:00 – sum 10 d –0.27 0.11 –2.41 0.018 0.772 

Residual std. error: 0.38 on 103 degrees of freedom; Multiple R2.: 0.78, Adjusted R2.: 
0.77; F-statistic: 120.5 on 3 and 103 DF, p-value: <0.001 

 
 

3.2. Performance of TOTRAM and OPTRAM for estimation 
changes in WTD in two Estonian peatlands (Article II) 

3.2.1. Temporal Correlation of Soil Moisture Indices with WTD 

Figure 11 presents boxplots (for eight wells) of the temporal correlation coef-
ficients between in-situ WTD and three moisture indexes (two TOTRAM 
scenarios and OPTRAM) as average values across four pixels closest to the wells. 
TOTRAM Scenarios 1 and 2 resulted in negative average R (–0.19 and –0.16, 
respectively) and anomR (–0.23 and –0.08, respectively) values. OPTRAM 
resulted in positive R and anomR with average values of 0.41 and 0.37, 
respectively. 

Figure 12 illustrates exemplarily time series for four of twelve years of WTD 
and TOTRAM Scenarios 1 and 2, and OPTRAM. Time series are presented for 
monitoring wells 323 (treeless bog, Figure 12a) and 225 (treed bog, Figure 12b) 
as an average value across four pixels closest to the wells. Time series in Figure 
12 shows that soil moisture indices estimated from TOTRAM Scenarios 1 and 2 
do not agree with temporal changes in WTD. In contrast, the OPTRAM soil 
moisture index follows reasonably well the WTD dynamics, in particular in the 
treeless bog. However, some obvious outliers are still present in OPTRAM time-
series. 
 
 

Table 2. Continue 
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Figure 11. Temporal Pearson correlation coefficient for (a) original (R) and (b) anomaly 
time series (anomR) for TOTRAM Scenario 1, TOTRAM Scenario 2, and OPTRAM. 
Dots present the value of R and anomR of individual wells (numbers as indicated in 
Figure 4) in treed (red) and treeless (blue) parts of the bog. Boxplots present the 
distribution of all wells with the bold line indicating the median value and the diamond 
representing the mean value. Source: Article II, Figure 6. 
 

 
Figure 12. Time series of water table depth (WTD) and soil moisture index from 
TOTRAM Scenario 1, TOTRAM Scenario 2, and OPTRAM. Time series are exemplarily 
shown for four years of data from monitoring wells 323 (a) in a treeless part and 225 (b) 
in a treed part of the bogs. Source: Article II, Figure 7. 
 
Given the assumption that WTD fluctuates coherently in peatlands, we calculated 
the mean WTD of the eight monitoring wells. Further, we estimated the temporal 
per-pixel R between mean WTD and three different soil moisture indices. Thus, 
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the resulting spatial differences in R were assumed to be dominated by the local 
specifics of the temporal relationship between the WTD and soil moisture index. 
Figure 13 shows that both TOTRAM scenarios resulted in R values close to zero. 
However, R values for OPTRAM are positive throughout the whole peatlands 
area. The highest OPTRAM R values (0.7–0.8) can be observed for treeless areas. 

Figure 13. The long-term per-pixel temporal correlation coefficient (R) estimated for the 
mean water table depth from all eight monitoring wells and soil moisture indices derived 
from TOTRAM Scenario 1, TOTRAM Scenario 2, and OPTRAM. Source: Article II, 
Figure 8. 
 
 

3.2.2. Spatial Variability of Soil Moisture Indices and WTD 

Figure 14 shows scatterplots, regression line and R values between the moisture 
indices and WTD across all times for two exemplary monitoring wells (same as 
in Figure 12). It is seen that only the OPTRAM index shows a positive correlation 
over the entire WTD range (Figure 12c). Moreover, it is shown that OPTRAM 
values are systematically higher over treed parts of the bogs and lower over 
treeless parts of the bogs. 
 

Figure 14. Soil moisture index from (a) TOTRAM Scenario 1, (b) TOTRAM Scenario 2, 
and (c) OPTRAM as a function of water table depth (WTD) measured in wells 225 (treed) 
and 323 (treeless). TOTRAMs and OPTRAM values are presented as an average of four 
pixels the closest to the wells. Source: Article II, Figure 9. 
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Figure 15 shows spatial patterns of TOTRAM Scenario 1, TOTRAM Scenario 2 
and OPTRAM for an exemplary wet (5 May 2016) and dry (23 August 2018) 
conditions. None of the trapezoid models could show plausible variability in soil 
moisture. For 23/08/2018 it was expected to observe drier soil moisture and 
deeper WTD towards the margins. However, the opposite can be observed for 
OPTRAM, while TOTRAM Scenarios 1 and 2 show little variability. On 
05/05/2016 the deepest WTD was at wells 217 and 222, which are installed in the 
treed parts of the peatlands. The OPTRAM index, however, did show relatively 
high values around those two wells. 
 

Figure 15. Maps of soil moisture index generated with TOTRAM Scenario 1, TOTRAM 
Scenario 2, and OPTRAM together with indicated water table depth (WTD) for each 
monitoring well. The white areas within the bogs represent missing data resulting from 
Landsat 7 Scan Line Corrector failure (striped pattern on 05/05/2016) or methodological 
constraints (filtering of oversaturated pixels in OPTRAM). The black hatched pattern 
indicates the treed bog areas. Source: Article II, Figure 10. 
 
  



 

34 

Figure 16 presents the maps of the anomaly time series of TOTRAM scenarios 
and OPTRAM, for four exemplary dates and the corresponding soil moisture 
anomaly averaged over eight monitoring wells. There is again a good agreement 
between anomalies in WTD and OPTRAM index. In contrast, the TOTRAM 
scenarios did not yield changes that could be related to WTD. 

Figure 16. Maps of anomalies in soil moisture index derived from TOTRAM Scenario 1, 
TOTRAM Scenario 2, and OPTRAM for four exemplary dates and corresponding 
anomalies in water table depth (anomWTD) averaged over all the monitoring wells. The 
white areas within the bogs represent missing data resulting from Landsat 7 Scan Line 
Corrector failure (striped pattern on 05/05/2016) or methodological constraints (filtering 
of oversaturated pixels in OPTRAM). Source: Article II, Figure 11. 
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3.3. Usefulness of the ‘best’ OPTRAM pixels to study WTD 
dynamic in comparison to modelled PEATCLSM WTD 

(Article III and IV) 

3.3.1. Spatial patterns of temporal correlation  
between OPTRAM and WTD 

In Article IV, our first task was to evaluate the applicability of OPTRAM based 
on remotely sensed data of various spatial resolutions for monitoring temporal 
changes in WTD measured in-situ in northern peatlands. Figure 17 presents the 
maps of per-pixel R values between in-situ WTD and OPTRAM based on 
MODIS (panels a–e), Landsat_30m (panels f–j) and Landsat_500m (panels k–o) 
data for five studied peatlands. It is noticeable, that the strength of R varied 
depending on the remote sensing data used for the OPTRAM estimation.  
 

 
Figure 17. The temporal per-pixel correlation (R) between in-situ water table depth 
(WTD) and OPTRAM based on Landsat_30m (a–e), MODIS (f–j) and Landsat_500m  
(k–o), and between WTD modelled with PEATCLSM and OPTRAM based on 
Landsat_30m (p-t). Panels f–j show the location of the monitoring wells (black square) 
and the pixels of Landsat_30m data with the highest temporal correlation with in-situ 
WTD, i.e. the ‘best pixel’ (black circle). Source: Article IV, Figure 5. 
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Despite MODIS and Landsat_500m have the identical spatial resolution, 
Landsat_500m yielded higher values of maximum R metrics. The highest values 
of maximum correlation with in-situ WTD were observed for OPTRAM based 
on Landsat_30m. 

I need to highlight here, that for all peatlands except for SE_DEG, the highest 
R values between in-situ WTD and OPTRAM based on Landsat_30m were not 
located close to the WTD monitoring wells (Figure 16, panels f–j). This result 
supports our initial assumption that in-situ WTD fluctuates rather uniformly within 
a peatland in time. Thus, it suggests searching in a wider radius for a ‘best’ 
OPTRAM pixel. 
 
 

3.3.2. Dependency of the temporal correlation between OPTRAM and 
WTD on vegetation cover 

Furthermore, we were interested in types of vegetation cover that led to high 
(> 0.5) and low (< 0.1) R values between in-situ WTD and OPTRAM based on 
Landsat_30m. For this reason, we analysed available maps of vegetation in the 
studied peatlands and summarized the results in Table 3. Mainly, areas 
dominantly covered with mosses and graminoids with very shallow WTD (hollows 
or lawns) or permanently flooded conditions showed the highest sensitivity of 
OPTRAM to changes in WTD. The lowest sensitivities of OPTRAM to changes 
in WTD were present in the areas dominantly covered with shrubs and trees. 

 
Table 3. Overview of vegetation cover attributed to the high and low correlation between 
WTD and OPTRAM 

Site code Characteristics of sites  
with high R 

Characteristics of sites  
with low R 

EE_LIN Hollow-ridge complex with 
permanently flooded depressions. 
Pixels’ area is mainly covered with 
hollows (Estonian Land Board 2019; 
Estonian Land Board 2020).  
The dominant vegetation is 
Sphagnum species and graminoids 
(Lode et al. 2017).  

Hummocks covered with dwarf 
pines, graminoids and Sphagnum 
species (Keskkonnaagentuur 
2002). 

CA_MER A higher density of hollows 
microtopography with lower plant 
area index (Arroyo-Mora et al. 2018). 
Vegetation is dominated by 
Sphagnum species, evergreen shrubs, 
deciduous shrubs, and sedges 
(Sonnentag et al. 2007; Li et al. 2007; 
Kalacska et al. 2013). 

Relatively dense tree canopy of 
black spruce and tamarack 
(Strilesky and Humphreys 2012; 
Arroyo-Mora et al. 2018); drained 
areas east of ditch with gray 
birch, tamarack and white pine 
(Talbot et al. 2010). 
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Site code Characteristics of sites  
with high R 

Characteristics of sites  
with low R 

SE_DEG Permanently flooded Sphagnum-
dominated hollows, lawns and flarks 
(Arens 2017; Osterwalder et al. 2018; 
Nijp et al. 2019). 

Forested peatland with pine and 
spruce (ICOS 2018). 

FI_LOM* A high percentage of Sphagnum 
cover (70–98%). Sites are covered 
with mosses, graminoids, shrubs and 
trees.  
This territory matches with the area 
covered by vegetation community 
described as cluster 3 (Räsänen et al. 
2019). 

Corresponds to riparian areas of 
the stream running through the 
FI_LOM site. It is primarily 
vegetated by 60-cm-high Salix 
(Räsänen et al. 2019).  

US_LOS Emergent or wet meadows, and 
lowland shrubs (2019).  

Forested wetland and shrubs 
(2019). 

* vegetation data available only for the central part of the peatland 
 
 

3.3.3. Temporal relationships between in-situ WTD and OPTRAM,  
and between in-situ and modelled WTD 

Another objective was to reveal how well the OPTRAM index is agreed with in-
situ WTD in comparison to PEATLCSM simulations obtained in Article III. 
Figure 18 shows ‘best pixel’ with the highest R value (Figure 17) together with 
its anomR value for each peatland. In addition, Figure 17 presents R and anomR 
values between in-situ WTD and PEATCLSM WTD. It is seen, that the highest 
mean R between in-situ WTD and OPTRAM was obtained OPTRAM based on 
Landsat_30m. Moreover, the high temporal R and anomR values between in-situ 
WTD and OPTRAM based on Landsat_30m are almost as good as those between 
in-situ WTD and WTD modelled with PEATCLSM. Nonetheless, both the 
OPTRAM based on Landsat_30m and PEATCLSM WTD performed worse in 
FI_LOM site because peat soil was inundated most of the time. For PEATCLSM 
data the R and anomR were estimated for the same days as for Landsat_30m. The 
correlation metrices for the whole period of time when in-situ WTD data were 
available can be found in Article III Table A2. Generally, values R and anomR 
between in-situ and modelled WTD are very alike in Article III and Article IV. 
 

Table 3. Continue 
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Figure 18. Temporal Pearson correlation coefficients between in-situ water table depth 
(WTD) and 3 versions of OPTRAM as well as PEATCLSM WTD for (a) original (R) and 
(b) anomaly (anomR) time series data. R and anomR are shown only for pixels with the 
highest R value within each peatland site, i.e. the ‘best pixel’, and for PEATCLSM WTD 
and in-situ WTD (data taken for the same days as for estimating R between in-situ WTD 
and OPTRAM based on Landsat_30m). The black dots and text on the right-hand side of 
these dots present the R and anomR values of the selected pixel and site code where this 
pixel is located. The height of the bars indicates the mean value of R and anomR. The 
error bars represent the 95% confidence intervals after having taken into account the 
temporal autocorrelation. Source: Article IV, Figure 6. 
 
To show the relationships between in-situ WTD and OPTRAM Landsat_30m 
which are presented with the correlation values in Figure 18, Figure 19 presents 
scatterplots of those two variables together with scatterplots of in-situ WTD vs 
PEATCLSM WTD. On average, OPTRAM based on Landsat_30m and 
PEATCLSM performed very similar: R values ranged from 0.56 to 0.74 (average 
0.7) for OPTRAM based on Landsat_30m, and from 0.38 to 0.79 (average 0.65) 
for PEATCLSM WTD. 
 

 
Figure 19. Scatterplots of (panels a–e) in-situ water table depth (WTD) and OPTRAM 
based on Landsat_30m ‘best pixel’, and (panels f–j) in-situ WTD and PEATCLSM WTD 
taken for the same days as for OPTRAM based on Landsat_30m and in-situ WTD. 
Source: Article IV, Figure 7. 
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The time series of in-situ WTD, OPTRAM based on Landsat_30m and 
PEATCLSM WTD for three consecutive years are given in Figure 20.  

Figure 20. Exemplary three-year periods of the long-term time series of water table depth 
(WTD) measured in situ and modelled with PEATCLSM, and OPTRAM based on 
Landsat_30m. OPTRAM values are shown for the ‘best pixel’ within each peatland site. 
For better visual comparison, the OPTRAM range is adjusted to the in-situ WTD range 
of each site for the shown period. Source: Article IV, Figure 8. 
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To illustrate the consistency in time dynamics between those variables, the 
OPTRAM range was adjusted to the in-situ WTD range of each site for the shown 
period. It can be seen, that OPTRAM values exhibit the seasonal cycle of in-situ 
WTD (especially in SE_DEG and CA_MER sites) and short-term dynamics of 
in-situ WTD for all peatlands, except for FI_LOM, where the lowest agreement 
between OPTRAM and in-situ WTD is observed. 
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4. DISCUSSION 

4.1. The weak correlation between LST and TOTRAM index  
with in-situ WTD in Estonian peatlands 

All the satellite imagery, used in the thesis, have the inherent error bias related to 
mission-specific geometric distortions. Such distortions originate from a wide 
range of factors, such as the following: sensor optics view angle, scanning system 
motion and orientation, satellite stability and velocity, land relief and its dynamics, 
Earth curvature and rotation. These factors likely influenced the raw satellite 
imagery, but since we relied on the post-processed products distributed by 
AρρEEARS and GEE, their accounting was beyond the scope of our study. 

The results from the Article I suggest that solely taken LST is a strong 
predictor of thermal conditions within the peatland; however, it is a weak 
predictor of in-situ WTD. We found out that in June, July and August LST had a 
negative statistically significant R with WTD. It could be, firstly, because of the 
cooling effect of the shallower WTD in peat layer (Weiss et al., 2006); secondly, 
because of the increase of vegetation productivity during the summer months 
(Harris 2008; Letendre et al. 2008; Péli et al. 2015).  

In Article I, we faced several limitations of LST data: the coarse spatial 
resolution of MODIS data and associated with that only one pixel used in the 
analyses. To overcome those limitations and to explore deeper the potential of 
LST for WTD monitoring, we used Landsat data of higher spatial resolution in 
Article II. We estimated LST-based TOTRAM moisture index, which in theory 
should correlate positively with in-situ WTD. Although TOTRAM has been used 
as a good indicator of soil moisture in other studies (Garcia et al. 2014; Holzman 
et al. 2014; Sadeghi et al. 2017), we did not observe the strong positive association 
with WTD in peatland for both scenarios of TOTRAM. Here we provide two 
main aspects of TOTRAM that hampered its applicability to our study area; both 
aspects are related to the generally wetter conditions in northern latitude eco-
systems. 

The first limitation is that the TOTRAM indices were computed per each day 
of observation. This limits the ability to constrain the trapezoid space with both 
dry and wet surfaces present. We attempted to overcome this limitation with 
modelling the dry edge for TOTRAM Scenario 2; however, this did not improve 
the performance of TOTRAM approach.  

The second reason for the lack of correlation between WTD and TOTRAM 
indices might be that vegetation growth is much more limited by energy than by 
moisture in the northern region (McVicar et al. 2012). Karnieli et al. (2010) 
described that in high latitude regions, warming is accompanied by vegetation 
growth and, thus, LST and VI have a positive association.  

These results suggest a general inapplicability of the LST and LST-based 
TOTRAM index for the temporal WTD monitoring in northern peatlands. Never-
theless, LST can be used as a strong predictor of thermal conditions. 
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4.2. Factors affecting the ability of OPTRAM to reveal  
the changes in WTD 

This thesis showed that the ability of OPTRAM to detect the changes in WTD 
depends mainly on two factors: (i) the spatial resolution used for OPTRAM 
estimation, and (ii) vegetation cover within OPTRAM pixel.  

Results of Article II and Article IV demonstrates a high potential of the 
OPTRAM index with a high spatial resolution (Landsat_30m) to monitor 
temporal changes of WTD dynamics in different types of peatlands. This is the 
point to which the current thesis contributes. The good temporal correlation 
statistics suggest that OPTRAM of high spatial resolution might be a new type of 
observation used for global monitoring of WTD in peatlands. The worse perfor-
mance of lower spatial resolution (Landsat_500m or MODIS) could be explained 
by the high fragmentation of vegetation cover, which is in hummock – hollow/ 
lawn complexes in peatlands. 500-m sized pixel seems to be insufficient to 
capture the SWIR signal comes from vegetation communities, which have the 
highest OPTRAM sensitivity to changes in WTD (Figure 21). 

Figure 21. Comparison of the area represented by one Landsat pixel (a) and one MODIS 
pixel (b). The location of the Landsat_30m ‘best pixel’ in EE_LIN site is shown. Source: 
Article IV, Figure 9. 
 
The performance of OPTRAM varied for data with a similar spatial resolution, 
i.e. Landsat_500m and MODIS. A first possible explanation for this might be the 
difference in their SWIR bands used for the STR calculation. Landsat data with 
longer SWIR wavelengths resulted in a higher maximum temporal R values with 
in-situ WTD than the MODIS data with shorter SWIR wavelengths. This result 
agrees with the previous study, which illustrates the better performance of longer 
SWIR wave for mineral soil moisture estimation (Sadeghi et al. 2015). This is a 
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promising finding, which shows a high potential for Sentinel-2 data (SWIR 2.10–
2.28 μm) to be used for OPTRAM estimation to monitor WTD changes in 
peatlands. Previous studies indicated that data of narrow SWIR band (wave-
lengths 2.3 μm) from hyperspectral imagery are highly sensitive to the vegetation 
conditions in different ecosystems, including wetlands (Serbin et al. 2015; DuBois 
et al. 2018). Future studies may be focused on the applicability of OPTRAM based 
on hyperspectral imagery to reveal the WTD dynamic in peatlands.  

A second possible explanation for the different performance of OPTRAM 
based on MODIS and Landsat_500m could be the different temporal frequency 
of remotely sensed data. The difference in MODIS and Landsat temporal reso-
lutions leads to a larger number of MODIS observations than Landsat_500m 
ones. Therefore, these results need to be interpreted with caution. 

 
 

4.3. OPTRAM performance in different types of peatlands:  
bogs and fens 

In our study, we observed that OPTRAM performance was similar in bogs and 
fens; both types of peatlands resulted in similar high temporal correlation metrics. 
Only in FI_LOM site we observed a weak correlation between in-situ WTD and 
OPTRAM. It might be because FI_LOM was the only site in our database with 
very high and stable in-situ WTD, and thus, the vegetation growing on 
permanently saturated peat soil might have a less explicit response to changes in 
soil moisture and WTD. Harris et al. (2005) described a similar effect on 
Sphagnum mosses, which have an uneven curve of the relationship between 
remotely based moisture stress index (utilises SWIR and near-infrared spectra) 
and volumetric moisture content in the peat soil. Interesting to notice, that for 
other studied sites, where WTD fluctuates much more in time, areas with shallow 
WTD and without tree cover performed the highest correlation metrics between 
OPTRAM and in-situ WTD. In contrast, the areas of weak sensitivity of 
OPTRAM to WTD dynamic were covered with trees and shrubs in both types of 
the peatlands. 
 
 

4.4. Potential of using in-situ and PEATCLSM WTD for selecting  
the OPTRAM pixels with the highest sensitivity to WTD fluctuations 

In Article II we revealed the issue that OPTRAM sensitivity to changes in WTD 
highly varies between vegetation cover. We found that pixels of treeless peatland 
yielded much higher temporal correlation with in-situ WTD than pixels of treed 
peatland. Thus, we highlighted the need for localizing OPTRAM pixels, which 
are the most sensitive to temporal changes in in-situ WTD, i.e. ‘best pixels’. In 
Article IV we suggested applying in-situ and modelled WTD data for selecting 
the ‘best pixels’. For this purpose, we used modelled PEATCLSM WTD gene-
rated in Article III.  
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The results presented in Figure 17 suggest that both in-situ and modelled WTD 
can be used to localize the ‘best’ OPTRAM pixels. The patterns of R values in 
panels f–j of Figure 16 are highly consistent with those shown in panels p–t; and 
in both cases, they are attributed to certain vegetation cover within the peatlands. 
This finding supports the hypothesis that both in-situ and modelled WTD can be 
used interchangeably to detect the ‘best’ OPTRAM pixels. A concrete application 
would be to find the ‘best’ OPTRAM pixel based on historical simulations or in 
situ data and subsequently use OPTRAM data at this pixel to monitor WTD near 
real-time.  

Although our results indicated a high potential of localizing ‘best pixels’ for 
OPTRAM by using PEATCLSM WTD, there is the risk of selection bias towards 
zones in a peatland area that are conform to model physics used in PEATCLSM. 
The coherence of the WTD fluctuations in peatland is not perfect, and, e.g., 
variable input fluxes of minerotrophic water, which are not simulated in 
PEATCLSM, generate some spatial variation of WTD dynamics. Similarly, a 
selection of the ‘best pixel’ based on only a single in situ location will always be 
biased towards the WTD dynamics of that specific location. These two limitations 
are important to keep in mind when using monitoring data based on the ‘best 
pixel’ approach. 

 
 
4.5. Quality assessment of OPTRAM in comparison to PEATCLSM 

We showed in Article IV that OPTRAM based on Landsat_30m and PEATCLSM 
WTD yielded similar correlation metrics with in-situ WTD (Figure 18). For 
EE_LIN, FI_LOM and SE_DEG sites OPTRAM performed slightly better than 
PEATCLSM WTD. This better performance of OPTRAM can be explained by 
the fact that PEATCLSM can not reflect all the fluctuations in in-situ WTD  either 
due to the coarse resolution global forcing data (was shown in Article III) or lack 
of local peatland processes such as the variable dependency of fens to minero-
trophic water inputs. 

Based on the good temporal correlation statistics together with a feasible 
application for long-term monitoring, we suggest that OPTRAM index could be 
suitable for assimilation into the peatland-specific hydrological models. OPTRAM 
index has the potential to contribute independent information to PEATCLSM by 
providing valuable peat moisture information at high spatial resolution. More-
over, long-term Landsat observations (started from 1972) have great potential to 
be used for revealing decade-long WTD changes in peatlands driven by climate 
change and also anthropogenic disturbances that are not accounted for in 
PEATCLSM. 

The future challenge is to determine the reason for the OPTRAM outliers 
detected in Article II and Article IV. The identification of the reasons for these 
outliers and methods to filter them out will be critical for future global OPTRAM 
application for monitoring WTD dynamics in peatlands.  
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5. CONCLUSIONS 

This thesis evaluated the relationships between in-situ measured WTD and 
remotely sensed indicators of moisture conditions, namely, LST and tree different 
trapezoid models, two of them are based on thermal and optical data (TOTRAM), 
and one – optical data solely (OPTRAM). We conducted this study to reveal the 
potential of mentioned techniques to be used for monitoring changes in WTD in 
northern peatlands. Based on the results obtained in each article, the following 
conclusions are formulated: 
• LST solely is a moderate predictor (R = 0.35–0.5) of WTD in Estonian 

peatland. Our study demonstrated that LST has a statistically significant 
correlation with WTD only in June, July and August. Also, we observed a 
statistically significant moderate correlation (R = 0.41) between LST and in-
situ WTD for the whole vegetation period (Article I).  

• A general inapplicability of both TOTRAM scenarios for the spatial and 
temporal monitoring of in-situ WTD in northern peatlands (Article II). 

• OPTRAM sensitivity to WTD in peatlands highly depends on vegetation 
cover that dominant within OPTRAM pixel. The maximum temporal Pearson 
correlation coefficients (R = 0.56–0.74, an average of 0.7) between in-situ 
WTD and OPTRAM based on Landsat_30m were observed for pixels with 
dominantly hollows and lawns covered with mosses and graminoids with little 
or no shrubs or trees (Article II and Article IV). 

• There is a high potential of OPTRAM for monitoring temporal changes in 
WTD in both types of peatlands: bogs and fens. However, OPTRAM per-
formance is worse in FI_LOM site, which is a peatland with a very high (often 
above the surface) and stable WTD (Article IV). 

• The spatial resolution of remotely sensed data used for OPTRAM estimation 
can critically affect the OPTRAM performance; the best performance of 
OPTRAM for in-situ WTD monitoring was obtained with data of high spatial 
resolution – Landsat_30m (Article IV). 

• Either WTD measured in-situ or modelled with PEATCLSM can be used to 
detect ‘best’ OPTRAM pixels, allowing for subsequent near real-time WTD 
monitoring using OPTRAM (Article IV). 

• OPTRAM and PEATCLSM WTD yielded in comparable high correlation 
metrices with in-situ WTD (Article III and Article IV). It is suggested to 
assimilate OPTRAM to PEATCLSM with the purpose to contribute inde-
pendent information of peat moisture information at high spatial resolution. 
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SUMMARY IN ESTONIAN 

Põhjapoolkera soode põhjaveetaseme seire täiendamine optiliste ja 
termiliste satelliidiandmete abil 

Doktoritöö eesmärgiks on arendada optilise ja termilise satelliitkaugseire and-
mestiku põhjal boreaalsete märgalade veetaseme ajalise muutlikkuse seire 
võimalusi. Töös keskendutakse kitsamalt kaugseire termokanalitest teisendatud 
maapinna temperatuurile (LST) ja lühi-infrapunase spektrikanali (SWIR) and-
metele ning nendel põhinevatele TOTRAM ja OPTRAM mudelitele, et hinnata 
nende sobivust veetaseme seiramiseks.  

Publikatsioonis I hinnati LST andmete rakendatavust hüdrometeoroloogiliste 
tingimuste (sealhulgas ka veetaseme) jälgimiseks Eesti soodes. Kasutasime 
MODIS platvormi LST ja Männikjärve raba (Eesti) kohapeal mõõdetud hüdro-
meteoroloogilisi andmeid, mis hõlmasid 2008–2016 aastate vegetatsiooni-
perioode (maist-septembrini). Selle põhjal järeldasime, et LST ajaline muutlikkus 
on veetasemega mõõdukalt seotud (R = 0.35–0.5 statistiliselt oluliselt).  

Soo veerežiimi ajalis-ruumilise käigu kirjeldamiseks katsetasime kahte 
trapetsoidil põhinevat mudelit: TOTRAM mudel põhineb optilistest kanalitest 
arvutatud vegetatsiooniindeksi ja maapinna temperatuuri (LST) teljestiku kasuta-
misel, OPTRAM mudel põhineb aga ainult optilistel andmetel ja kasutab vegetat-
siooniindeksi ning infrapuna lühilaine peegeldumise STR (Shortwave infrared 
Transformed Reflectance) teljestikku. Mõlemat mudelit kasutati veetaseme 
ajalis-ruumilise dünaamika hindamiseks Männikjärve rabas ja Linnusaare soos. 
Tulemused näitasid, et TOTRAM mudel ei ole boreaalsetes rabades veetaseme 
seireks rakendatav. Seevastu OPTRAM mudelil on edasistes uuringutes vee-
taseme ajaliste muutuste hindamiseks suur potentsiaal.  

Töös esitatakse NASA Goddard instituudi maavaatlussüsteemi (GEOS) loodud 
valgla maapinnamudeli (Catchment Land Surface Model – CLSM) märgaladele 
kohandatud valgla maapinna hüdroloogia moodul (PEATCLSM). See moodul 
kasutab CLSM-i põhistruktuuri, mida on täiendatud kirjandusest pärit turvas-
muldadele omaste parameetritega. Simulatsioonis kasutasime nii CLSM kui 
PEATCLSM-i, mille tulemusi on võrreldud neljakümne nelja põhjapoolkera 
(vahemik 40°–75°N) märgala veetaseme pikaajaliste andmetega. Tulemused 
näitavad, et PEATCLSM suudab veetaseme muutusi paremini kirjeldada kui 
algne CLSM, mistõttu edasises töös kasutati kasutati PEATCLSM mudelit.  

PEATCLSM arvutuste tulemusi kasutati sisendina publikatsioonis IV, kus 
analüüsiti OPTRAM mudeli kasutatavust veetaseme dünaamika kirjeldamiseks 
viiel pikaajaliste (üle 10 aastat) kohapealsete vaatlusandmetega märgaladel Eestis, 
Soomes, Kanadas ja USAs, mis hõlmasid nii rabasid kui madalsoid. Pakkusime 
lähenemisviisi nn lokaalsete esinduslike OPTRAM-pikslite valimiseks, mis on eel-
datavasti veetaseme muutuse suhtes kõige tundlikumad. Järeldati, et OPTRAM-i 
tundlikkus veetaseme suhtes sõltub suuresti valitud piksli domineerivast taim-
kattest. Pikslite puhul, mis asuvad älvestes või tasastel aladel, kus domineerivad 
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sambla-rohukooslused ning kus on hõre puhma- ja puurinne, täheldati kohapeal 
mõõdetud veetaseme ja OPTRAM tulemuste vahel kõige tugevamat seost 
(R = 0.56–0.74, keskmiselt 0.7). Lisaks leiti, et OPTRAM-i kaugseire andmete 
ruumiline eraldusvõime võib mudeli jõudlust kriitiliselt mõjutada. OPTRAM-i 
parim jõudlus saavutati 30 meetrise ruumilise eraldusvõimega Landsat andmete 
kasutamisel. Viimaks selgus, et lokaalsete sobilike veetaseme muutusele tundlike 
OPTRAM-pikslite leidmiseks võib kasutada nii kohapeal mõõdetud, kui ka 
PEATCLSM-iga modelleeritud veetaseme andmeid.  

Kuigi uuringus kasutatud soode arv on piiratud, näitavad tulemused olulist 
ajalise muutlikkuse seost neil uurimisaladel ning seega võib OPTRAM mudelil 
põhinevat indeksit rakendada pikaajaliseks ja peaaegu reaalajaliseks veetaseme 
hindamiseks suures laiuskraadivahemikus paiknevatel märgaladel. 
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