
DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS
72

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS
72

MARGUS TREUMUTH

A Framework for
Asynchronous Dialogue Systems:

Concepts, Issues and Design Aspects

Institute of Computer Science, Faculty of Computer Science, University of
Tartu, Estonia.

Dissertation is accepted for the commencement of the degree of Doctor of
Philosophy (PhD) on May 19, 2011 by the Council of the Institute of Computer
Science, University of Tartu.

Supervisors:

Prof. PhD Mare Koit
 University of Tartu
 Tartu, Estonia

Prof. PhD Kristiina Jokinen
 University of Helsinki
 Helsinki, Finland

Visiting Prof. of the University of Tartu

Opponents:

Prof. PhD Ramón López-Cózar Delgado
 University of Granada
 Granada, Spain

Senior researcher, PhD Hele-Mai Haav
Tallinn University of Technology

 Tallinn, Estonia

The public defense will take place on June 29, 2011 at 16:00 in Liivi 2–404.

The publication of this dissertation was financed by the Institute of Computer
Science, University of Tartu.

Autoriõigus Margus Treumuth, 2011

ISSN 1024–4212
ISBN 978–9949–19–701–9 (trükis)
ISBN 978–9949–19–702–6 (PDF)

Tartu Ülikooli Kirjastus
www.tyk.ee
Tellimus nr 346

5

Contents

LIST OF ORIGINAL PUBLICATIONS ... 8

1 INTRODUCTION ... 9
1.1 The Overview .. 9
1.2 Related Work ... 10

1.2.1 CSLU Toolkit .. 10
1.2.2 AIML ... 10
1.2.3 VoiceXML .. 11
1.2.4 Olympus/RavenClaw .. 11
1.2.5 Semantra .. 12
1.2.6 Other Frameworks ... 13

1.3 The Problem .. 14
1.4 Major Contributions .. 15
1.5 Thesis Outline .. 17
1.6 Acknowledgements ... 17

2 THE ADS DIALOGUE MANAGEMENT FRAMEWORK 18
2.1 Introduction ... 18
2.2 The ADS Framework Architecture ... 19
2.3 The Relational Model in Language Analysis 20
2.4 The Overview of the Rule Based Semantic Resolution 21

2.4.1 The Resolution of Basic Keyphrases 21
2.4.2 The Resolution of Temporal Expressions 23
2.4.3 Triggering Functions upon Matched Patterns 25
2.4.4 The Conclusions of the Rule Based Approach 25
2.4.5 The Core Competencies of the ADS Framework 26

2.5 Handling Repetitions in Conversation ... 27
2.6 Turn Management ... 30

2.6.1 The Serial Synchronous Communication Pattern 31
2.6.2 The Asynchronous Communication Pattern 32
2.6.3 The Asynchronous Communication and Wizard-of-Oz 33

2.7 The Dialogue Task Specification .. 34

3 NATURAL LANGUAGE PROCESSING MODULES 35
3.1 Handling Estonian in Language Analysis ... 35
3.2 The Morphology Module .. 36
3.3 Spell-Checking and Error Correction .. 36

3.3.1 Jaro-Winkler vs Levenshtein ... 37

6

3.3.2 Domain Lexicon .. 38
3.3.3 Accuracy Score .. 38

3.4 Word Order Issues in Language Analysis ... 39
3.5 The Resolution of Temporal Expressions ... 43

4 DOMAIN ADAPTATION .. 45
4.1 Adjusting the Knowledge Base ... 45

4.1.1 Domain Adaptivity to Pattern-Response Pairs 46
4.1.2 Defining the Rules in the Knowledge Base 46
4.1.3 A Sample Process of Knowledge Engineering 47

4.2 Adjusting the Dialogue Management .. 50
4.3 Adjusting the User Interface .. 50
4.4 Domain Adaptation Experiments .. 50

5 SYSTEM DESIGN .. 51
5.1 Client-side Code .. 51

5.1.1 Conversation Interface .. 52
5.1.2 Wizard-of-Oz Interface .. 53

5.2 Server-side Code ... 55
5.2.1 PHP Modules ... 55
5.2.2 Database ... 55

5.3 Remote Services .. 56
5.3.1 Speech-Synthesis Server .. 56
5.3.2 SMTP Server ... 57
5.3.3 Data Import from an Optional Remote Database 57

6 APPLICATION ISSUES AND EVALUATION 58
6.1 Application Issues ... 58
6.2 Evaluation by Public Testing ... 59
6.3 Evaluation by Test Users ... 60
6.4 Reducing the Amount of Human Assistance 61
6.5 Word Count per Utterance ... 62
6.6 Wizard-of-Oz Experiments ... 64

7 FUTURE WORK .. 65
7.1 Improving the Data Collection .. 65
7.2 Handling Data Update Requests by the User 65
7.3 Handling User Input in Multiple Passes .. 66

8 CONCLUSIONS ... 67

BIBLIOGRAPHY .. 69

KOKKUVÕTE (Summary in Estonian) ... 72

Appendix A
 Technical specifications .. 74

7

Appendix B
 Estonian language: noun cases and verb inflections 76

Appendix C
 Excerpts from the knowledge bases .. 78

Appendix D
 Sample conversations with the ADS based systems 85

Appendix E
 Glossary of terms used in the thesis .. 88

Curriculum Vitae .. 90
Elulookirjeldus ... 91

8

List of Original Publications

1. Huang, H.-H.; Cerekovic, A.; Tarasenko, K.; Levacic, V.; Zoric, G.; Treu-
muth, M.; Pandzic, I.S.; Nakano, Y.; Nishida, T.1 (2006). An agent based
multicultural user interface in a customer service application. In: Procee-
dings of the eNTERFACE'06 Workshop on Multimodal Interfaces: eNTER-
FACE'06 The SIMILAR NoE Summer Workshop on Multimodal Interfaces;
Dubrovnik, Croatia, 12–21.

2. Treumuth, Margus; Alumäe, Tanel; Meister, Einar2 (2006). A natural lan-
guage interface to a theater information database. In: Language Techno-
logies, IS-LTC 2006: Proceedings of 5th Slovenian and 1st International
Conference, Ljubljana, Slovenia, 27–30.

3. Treumuth, M. (2006). A Natural Language Interface to a Theater Infor-
mation Database. In: SPECOM'2006 Proceedings: XI International Confe-
rence Speech and Computer, St. Peterburg, 179–181.

4. Treumuth, M. (2006). Dialoogsüsteemid – kuupäevade tuvastamine ja vas-
tusemallid. Keel ja arvuti. Tartu Ülikooli Kirjastus, 210–220.

5. Treumuth, M. (2007). A Method for Recognizing Temporal Expressions in
Estonian Natural Language Dialogue Systems. In: Proceedings of the 16th
Nordic Conference of Computational Linguistics: NODALIDA 2007, Tartu,
Estonia, 265–268.

6. Treumuth, M. (2008). Automatic Extraction of Time Expressions and Repre-
sentation of Temporal Constraints. In: Proceedings of the Third Baltic Con-
ference on Human Language Technologies, HLT 2007: The Third Baltic
Conference on Human Language Technologies; Kaunas, Lithuania; 311–
317.

7. Treumuth, M. (2008). Normalization of Temporal Information in Estonian.
In: Text, Speech and Dialogue, 11th International Conference, TSD 2008,
Proceedings: Text, Speech and Dialogue, 11th International Conference,
TSD 2008; Brno, Czech Republic; Springer, 2008, (Lecture Notes in Com-
puter Science, Lecture Notes in Artificial Intelligence; 5246), 211–218.

8. Treumuth, M. (2010). A Framework for Asynchronous Dialogue Systems.
In: Frontiers in Artificial Intelligence and Applications: HUMAN LANGUAGE

TECHNOLOGIES — THE BALTIC PERSPECTIVE; Riga, Latvia; IOS Press, 107–
114.

1 Contribution in paper No 1: shared ideas and experiments, contribution 10%.
2 Contribution in paper No 2: shared ideas and text writing, equal contribution

9

CHAPTER 1

Introduction

1.1 The Overview

A dialogue system is a type of user interface (UI) where linguistic phenomena
such as verbs, phrases and clauses act as UI controls for selecting data in soft-
ware applications. In addition, the dialogue system is intended to converse with
a human, with a coherent structure. Such an interaction involves the basic prop-
erties of human conversation, including turn-taking, initiative, significant
silence and even manners.

The most frequent use of dialogue systems entails automatically answering
questions posed in human language. To find the answer to a question, a com-
puter program may use a pre-structured database or a web page (whether local
or remote).

The thesis is about text-based human-computer conversations on the inter-
net, where the user input is a written request to the dialogue system in a natural
language and the output of the system is an answer to the user in the same lan-
guage.

The goal of the work is to develop concepts to analyze dialogue systems on a
uniform base, so that these concepts can be used to design and implement a
framework for building dialogue systems – modular software that can be easily
adapted to different domains.

The author of the thesis has implemented the Asynchronous Dialogue Sys-
tem framework (ADS framework) – a software system that consists of a collec-
tion of integrated modules, including several Natural Language Processing
(NLP) modules that can be used in developing text-based natural language
dialogue systems.

The ADS framework is currently tailored for Estonian language, yet most of
its features and modules are easily transferable to English language. The dialo-
gue systems based on the ADS framework mimic the natural interaction
between people better than the models used so far.

10

1.2 Related Work

The available software for building dialogue systems is usually limited to a spe-
cial domain or to a special language (mostly English) or to a special modality
(e.g. spoken language). There are several projects that are similar to the ADS
framework. Yet, none of them offers web-based asynchronous turn management
and human-assisted chat*. No evidence of such implementations was available.
The following sections provide reviews about the other dialogue system frame-
works.

1.2.1 CSLU Toolkit

The Center of Spoken Language Understanding Toolkit (CSLU Toolkit) [CSLU
Toolkit, 2009] [Sutton et al., 1998] was created to provide the basic framework
and tools to build, investigate and use interactive language systems. The CSLU
Toolkit incorporates speech recognition, natural language understanding, speech
synthesis and facial animation technologies.

However, these modules of CSLU Toolkit are not language independent.
Also, the CSLU Toolkit is not easily portable to the web.

The CSLU Toolkit is an example of a finite-state dialogue manager. It does
not scale well for more complex applications or interactions. For instance, in a
mixed-initiative system (where the user is also allowed to direct and shift the
focus of the conversation), the number of transitions in the finite-state auto-
maton grows very large; the representation becomes difficult to handle.

1.2.2 AIML

Artificial Intelligence Markup Language (AIML) [AIML, 2009] is an XML
dialect for creating natural language software agents. The XML based AIML
was developed by Richard Wallace and a worldwide free software community
between the years of 1995 and 2002. Free AIML sets in several languages have
been developed and made available by the user community. There are AIML
interpreters available in Java, Ruby, Python, C++, C#, Pascal, and other lan-
guages.

AIML is highly portable, however, the pattern matching* in AIML is too
limited. It permits only one wild-card (*) match character per pattern. AIML has
no regular-expression support. Maybe the goal was ultimate simplicity at the
price of functionality. Pattern matching with one wild-card symbol is not flexi-
ble enough. The frameworks that are based on AIML also do not have asyn-
chronous turn management.

* see Appendix E for definition.

11

1.2.3 VoiceXML

VoiceXML [VoiceXML, 2009] [Lucas, 2000] is another example of a finite-
state dialogue manager. VoiceXML (VXML) is the W3C's standard XML for-
mat for specifying interactive voice dialogues between a human and a computer.
It allows voice applications to be developed and deployed in an analogous way
to HTML for visual applications. Just as HTML documents are interpreted by a
visual web browser, VoiceXML documents are interpreted by a voice browser.

As in CSLU Toolkit, the flow of the interaction in VoiceXML is described
via a finite-state automaton. At each point in the dialogue, the system is in a
certain state (each state typically corresponds to a system prompt). In each state,
the system expects a number of possible responses from the user; based on the
received response, the system transitions to a new state. To develop a dialogue
management component for a new application, the system author must construct
the corresponding finite state automaton.

VoiceXML is well suited only for implementing relatively simple systems
that retain the initiative throughout the conversation. In these cases, the finite-
state automaton representation is very easy to develop, interpret, and maintain.
VoiceXML is not supported by common web browsers like Internet Explorer,
Firefox and Opera.

1.2.4 Olympus/RavenClaw

Olympus [Bohus et al., 2007] is a dialogue system framework; RavenClaw
[Bohus and Rudnicky, 2003] is the dialogue manager that acts in this frame-
work.

Olympus/RavenClaw is a freely available framework for developing dialo-
gue systems. It has been deployed by several dialogue systems in various do-
mains including

– ConQuest – the system utilized at the Interspeech conference,
– RoomLine – the system is used to reserve rooms on campus,
– BusLine – a system for Pittsburgh bus information.

Olympus is based on the Galaxy Communicator. Each dialogue module (speech
recognition, text-to-speech, parser, back-end, dialogue manager, etc.) runs as a
separate server and communicates through the Galaxy hub. In the default setup,
Olympus uses Sphinx2, Festival, the Phoenix parser, the Rosetta natural lan-
guage generator, and the RavenClaw dialogue manager. Any module of the
system can be replaced. In theory, any application can be wrapped to be an
Olympus server. Servers (and wrappers) can be developed in C, Java, Python,
Lisp or Perl.

RavenClaw, a dialogue manager server, adds value for a dialogue designer.
RavenClaw is developed in C++. There is a logical separation between the
system independent dialogue manager implementation and the design of a

12

particular dialogue system. The dialogue system designer needs no skills in C or
C++ programming. The system specific part of the dialogue manager is defined
using preprocessor macros. The dialogue is specified as a tree, with pre and
post-conditions, and execution effects defined for each node. The leaf nodes of
a dialogue tree are the agents responsible for some finite task of a dialogue:
getting information from a user, presenting information, or accessing a
database. During the runtime, the tree nodes are placed on the stack and
executed in the order determined by each agent's pre-conditions. The dialogue
designer specifies the tree nodes where each tree system allows grammar rules
to be enabled in particular agents of the dialogue tree.

Yet, Olympus/RavenClaw did not seem suitable for these goals:
– to explore the advantages of asynchronous turn taking;
– to have a tight integration with a relational database;
– to have an availability for human-assisted chat*.

1.2.5 Semantra

Semantra is a commercial Natural Language Interface (NLI) framework [Se-
mantra, 2009] [Elder, 2004] for building search tools that let non-technical users
make ad hoc queries in plain English.

The principle parts of the solution include:
– a semantic engine that parses natural language;
– a collection of ontologies and business rules that provide context;
– a dynamic query generator that creates the appropriate SQL (structured

query language) command to be executed against a targeted database.

These foundational elements form a “semantic layer” between knowledge
workers and enterprise applications with their relevant corporate data source(s).
Semantra’s natural language processor is the core semantic engine responsible
for parsing users’ common-language requests. The user submits the inquiry by
typing into a search box. The NLP breaks down the sentence structure, inter-
prets the grammar and phrases, handles the synonyms and part-of-speech ele-
ments, and even resolves misspellings on the fly. Should any semantic mis-
matches or ambiguities* still exist, the NLP assists the user in clarifying the
request.

Once parsing is complete, the inquiry is mapped against the OntoloNet™, a
hierarchical repository of business concepts, terminology and business rules that
collectively form the backbone of Semantra’s technology. This expanding and
adaptable knowledge base* allows most any business to quickly bootstrap se-
mantics into their enterprise while inheriting any shared (non-proprietary) con-
cepts, business rules, jargon, and acronyms from Semantra’s vertical industry

* see Appendix E for definition.

13

ontologies. These concepts and terms, along with target database metadata, are
captured during Semantra’s pre-deployment process, known as “semantifica-
tion”.

Once the inquiry is fully understood, the final step is to dynamically convert
the request into the appropriate query command (SQL or related format) which
is executed against the structured enterprise database(s). Within seconds of the
initial request, the results of the query are displayed in the user’s browser, in the
selected graphical or tabular format. Additionally, query results can be exported
to third-party applications such as business intelligence systems, report beau-
tifiers, charting or mapping tools, or spreadsheets.

As Semantra is a commercial closed-sourced framework, it is not available
for general development activities such as development of dialogue systems.

1.2.6 Other Frameworks

[Popescu et al., 2003] have presented a domain independent framework that can
map natural language questions to SQL queries and have implemented a system
PRECISE based on that framework. They prove that, for a broad class of
semantically tractable natural language questions, PRECISE is guaranteed to
map each question to the corresponding SQL query. They report on experiments
testing PRECISE on several hundred questions drawn from user studies over
three benchmark databases. They find that over 80% of the questions are
semantically tractable questions, which PRECISE answers correctly. PRECISE
automatically recognizes the 20% of questions that it cannot handle, and
requests a paraphrase. However, there was now description about the amount of
work involved in porting the NLIs between domains using PRECISE. Their
system seems to do the porting automatically which is not convincing. The
demo is not available. There is no way to tell whether PRECISE is a framework
for building conversational agents or an attempt to handle question answering
problems.

[Cimiano et al., 2007] have also presented a new model for user-centered
adaption of NLIs to a certain domain. The model assumes that domain experts
without any background knowledge about computational linguistics will per-
form the customization of the NLI to a specific domain. In fact, it merely re-
quires familiarity with the underlying knowledge base as well as with a few
basic sub-categorization types.

They have implemented a system called ORAKEL, which is a natural lan-
guage interface to ontologies and knowledge bases. It was designed to be porta-
ble to different domains and knowledge bases. It provides a tool called Frame-
Mapper which can be used to graphically map natural language expressions to
relations defined in the knowledge base, thereby customizing the system for a
specific knowledge base. Currently, ORAKEL supports two Semantic Web
formalisms: F-Logic and OWL/SPARQL.

14

This section presented an overview of the available/accessible frameworks
for building dialogue systems. The analysis of these frameworks led the author
of this thesis to formulate the problem. In addition, the following chapters con-
tain references to various related theoretical and/or technical solutions that have
been used in building the ADS framework.

1.3 The Problem

The preliminary questions that triggered the work done in this research were:
1. Is there a suitable framework available for Estonian language that could

be used in building dialogue systems? The aim is to have a generic
framework with reusable components that could be adjusted for several
domains with little programming effort.

2. Do any of the related frameworks have the support for asynchronous
communication pattern and human-assisted chat*?

After the study of the related work, the problem arose, as none of these frame-
works were sufficient to be used due to the following reasons:

– lack of pre-processing (including stemming* or morphological analysis)
for Estonian language, and no support for custom pre-processing adjust-
ments;

– no support for human-assisted chat;
– no support for web based asynchronous communication pattern.

Consequently, the task of this research was formulated – to implement a new
framework that would be suitable for Estonian language, including:

– asynchronous communication,
– optional human assisted chat interface,
– support for Estonian morphology*,
– support for Estonian temporal expressions*,
– tight integration with a relational database,
– automated correction of spelling errors.

The need for pre-processing in Estonian language is due to the rich mor-
phology. None of these tools offered an easy option to integrate a morpho-
logical analyzer into the system. Therefore, it would be rather uncomfortable to
build systems for Estonian (or any other agglutinative language) with these
tools.

The need for human-assisted chat and asynchronous communication pattern
is based on exploitation issues. In simple restricted domains, the dialogue sys-
tem can usually satisfy the information needs of the user. Yet, even in the sim-

* see Appendix E for definition.

15

ple domains it is unrealistic to expect that the capabilities of the system can
handle all user requests correctly. It mostly leads to user disappointment when
the system fails to perform as expected.

The ADS framework provides a hybrid approach – “a human assisted dialo-
gue system” that allows a single human agent to handle a number of simulta-
neous chat sessions by having an AI-engine (the module that aims to implement
the Artificial Intelligence (AI) abilities, incl. natural language processing) han-
dle the bulk of common, repeat questions. The AI-engine will allow the human
agent to focus his or her attention on the few chat sessions needing unique
service and will effectively lower the cost of supporting chat sessions. The
server-side technology of the ADS framework uses an AI-engine as well as a
live agent backend interface to deliver live-agent experience without the user
having to know whether the answer is from the AI-engine or from the human
agent. The asynchronous communication pattern is an essential element in this
approach, as both parties (human and computer) can provide input at any given
moment.

This approach allows us to put these dialogue systems into practical use and
avoid user disappointment. It can be compared to machine assisted translation,
where part of the translation is done by the translation program and part by a
human. The reason is the same – the translation programs are not good enough
to fully satisfy the needs of the users.

Although, the dialogue systems developed in the ADS Framework, can be
assisted by a human, still the goal of this research has always been maximizing
the AI-participation in the conversation and minimizing the human intervention.

The human assisted approach is not a goal itself – it is merely providing the
system developer with a constant flow of real data, as the dialogue systems can
be brought out of the lab environment into real usage. The incoming real data
from the real users leads to the development of better natural language under-
standing algorithms and conversational management. Also any small improve-
ments to the system can be easily made available for real users.

Two dialogue systems have been built based on ADS framework. One of
them (a virtual dental consultant Zelda) has been evaluated in practice by real
users. The other dialogue system (movie schedule information provider Alfred)
is a prototype and has been tested mostly by students or random visitors.

1.4 Major Contributions

The contribution of the author of this thesis is the implementation of the ADS
framework, including all the components and methods listed below that were
not available in other DS frameworks:

a) Asynchronous turn-taking strategy, so that both parties (human and com-
puter) can provide input at any given moment and can take any number of

16

sequential turns without waiting for the other party to acknowledge each
turn.

b) AI-assisted live agent chat, so that the unanswered questions can be han-
dled by an optional human operator.

c) A language independent solution for the word-order problem, thus allow-
ing skipping the syntactic analysis and optionally ignoring the word-order
problem in the knowledge engineering* process. This is essential for lan-
guages with relatively free word order (such as Estonian).

d) A collection of temporal constraints for Estonian temporal expression
recognition.

In addition, the author created the following features of the ADS framework
that can be found in other DS frameworks:

a) A web-based conversation interface with optional speech synthesis.
b) Separation of declarative domain knowledge and procedural code. The

domain specific knowledge and temporal constraints are separated from
the central dialogue management.

c) Robust language analysis, so that the misspellings in the user input are
corrected by the system. This method also includes the stemming (the
process of reducing a word to its root word), to ease the pattern creation
in knowledge engineering.

d) Easy and compact representation of knowledge, so that the domain adap-
tation and knowledge base engineering would contain a minimal amount
of programming effort. The knowledge is represented as a set of pattern-
response pairs. The system also includes pattern-function pairs to
represent procedural knowledge.

The novelty of this work is in implementing a complex framework, containing
all the components and features listed above, and exploiting this framework in
building dialogue systems for Estonian language, thus effectively reducing pro-
gramming effort in this task. The thesis is not so much about the techniques
used, but about combined application and deployment of these techniques for a
higher level task.

In the implementation of the ADS framework the author has also used the
software that was created by others:

a) morphological analyzer of Estonian (by language software company Filo-
soft),

b) speech synthesis of Estonian (by Tallinn University of Technology and
The Institute of the Estonian Language),

c) common software solutions (such as PHP [Atkinson and Suraski 2003],
AJAX [Eichorn, 2006], Oracle [Loney, 2004], etc), which are all refe-
renced in the thesis.

* see Appendix E for definition.

17

1.5 Thesis Outline

The rest of the thesis is organized as follows:
– Chapter 2 outlines the essential features of the ADS framework, including

the semantic resolution* of user input and turn management.
– Chapter 3 describes the Estonian language and NLP modules in the ADS

framework, including spell-checking, word-order and normalization of
temporal expressions.

– Chapter 4 describes the domain adaptation issues and knowledge base
creation.

– Chapter 5 discusses the implementation details about the system design:
the user interfaces, the server modules and the database.

– Chapter 6 outlines the application issues and provides evaluation of the
ADS framework.

– Chapter 7 discusses future research and Chapter 8 concludes the thesis.
– Appendix A defines a list of acronyms and gives an overview of technical

specifications.
– Appendix B contains tables of noun cases and verb inflections of Esto-

nian language.
– Appendix C lists some pattern-response pairs from the knowledge bases

of ADS based dialogue systems.
– Appendix D contains sample conversations with the ADS based systems.
– Appendix E provides definitions to some basic terms that were used in

the thesis.

1.6 Acknowledgements

I would like to thank my supervisors – professor Mare Koit and professor Kris-
tiina Jokinen. I am very grateful to Mare Koit for her guidance, patience and
understanding during my studies, and for providing consistent encouragement
and assistance. I am also very grateful to Kristiina Jokinen who provided valu-
able suggestions and discussions. I would like to thank my wife Ene-Renate and
my children Karmen and Sander for their constant support. I thank my parents,
Peeter and Anneli, for having faith in me.

This dissertation was financially supported by the Center of Excellence in
Computer Science (EXCS), the Tiger University Program of the Estonian
Information Technology Foundation, the Estonian Science Foundation projects
7503 and 5685, by the National Programme for Estonian Language Technology
projects EKT5, EKKTT09-57, EKKTT06-15.

* see Appendix E for definition.

18

CHAPTER 2

The ADS Dialogue Management
Framework

This chapter outlines the essential features of the ADS framework. It starts with
a brief overview of author’s previous systems. Then an overview of the dialo-
gue management engine of the ADS framework is given. The section continues
with descriptions of the relational model of language analysis, the semantic
resolution, word order issues, handling of repetitions, turn-management con-
cepts, and dialogue task specification.

2.1 Introduction

The previous dialogue systems of the author [Treumuth et al., 2006] were im-
plemented for the Estonian language without much emphasis on reusable com-
ponents. These systems were author’s first attempts to implement a dialogue
system for restricted domain with open prompt approach. The only similarities
of these previous systems with the current ADS framework are:

– the usage of morphological analyzer in the pre-processing step,
– the usage of the base forms* in the semantic resolution,
– the usage of speech synthesis.

One of the previous systems Teatriagent [Treumuth et al., 2006] was also inte-
grated with the speech recognition component [Alumäe, 2006] (the speech rec-
ognition was tested only in lab conditions, not over the Internet in public use).

In the ADS framework the author has dropped the speech recognition com-
ponent as its availability to the general public is still limited. Instead the author
has implemented a new turn management approach which is suitable only for
text-based dialogue systems. This asynchronous communication pattern is de-
scribed in Section 2.6.

* see Appendix E for definition.

19

In addition, some other noteworthy features that were not used in the pre-
vious systems and that became available with the ADS framework, are dis-
cussed later in this thesis, including:

– a solution to the word order problem in semantic resolution,
– a solution for spell checking the user input,
– a solution for the live agent assistance.

These features are discussed later in the thesis.

2.2 The ADS Framework Architecture

The complete client-server model of the ADS framework is described in
Chapter 5. In this section the overview of the dialogue management engine is
given. See Figure 2.1 for the diagram of the dialogue management engine.

The Dialogue Management Engine

Domain
Information

User

Morphological
Analysis Speller

Linguistic
Generation

Semantic
Resolution

Speech Synthesis
(optional)

Typed text

Audio

Text

Figure 2.1: The Dialogue Management Engine of the ADS framework.

The morphology module is used for extracting the base forms from the user
utterance (described in Section 3.2). This module integrates the morphological
analyzer for Estonian language – Estmorf [Kaalep and Vaino, 2001].

The speller module is used for the correction of typing errors. This is a lan-
guage independent module implemented by the author and is described in more
detail in Section 3.3.

The semantic resolution is described in this chapter. The linguistic genera-
tion is used mainly with temporal expression and a brief description of this is
given also in this chapter. Domain information is the rule-based knowledge base
which is referred to through the thesis.

20

Speech synthesis is an optional external component which is discussed in
Section 5.3.1. The technical details of speech synthesis can be also found in
[Treumuth et al., 2006] and [Meister et al., 2003].

2.3 The Relational Model in Language Analysis

Resolving the user input involves parsing the input stream and placing its con-
tents into a relational model.

The relational model is shown below in Figure 2.2. All the attributes and
constraints have been removed from the diagram to keep the diagram readable.
Only the entities and relations have been kept.

All relations are “one-to-many”. A one-to-many relationship means that one
row in one of the tables will relate to many rows in the other table. The Crow's
Foot notation is used in relations – identifying the many, or child, side of the
relationship, using the crow's foot at the line endpoint.

This entity-relationship diagram implements the following relations:

– A user utterance can contain more than one word, base form or
n-gram*.

– N-grams are generated from the user input and are initiated by words or
base forms.

– One word or a base form can initiate more than one n-gram.
– Words can have more than one base form.

* see Appendix E for definition.

Figure 2.2: The entity-relationship diagram for the pre-processing stage.

USER INPUT

BASE FORMS

WORDS

NGRAMS

21

Entities (User Utterance, Words, Base forms, N-grams) are implemented as
tables. Relations are implemented by referential integrity constraints (primary
keys and foreign keys). This part of the entity-relationship model is session
based. This means that many simultaneous conversations (sessions) can be held
with the dialogue system. The session support is implemented by session refer-
ence attributes in all entities.

There is a considerable amount of pre-processing done to reach this model
(tokenization, morphological analysis and spell checking). After the system has
completed this model by filling out the tables, the semantic resolution of user
input can begin.

2.4 The Overview of the Rule Based
Semantic Resolution

There are two main rule-based approaches in the ADS framework for semantic
resolution. The first approach resolves the semantics of basic key phrases. The
second approach resolves the semantics of temporal expressions. Both of these
rule-based approaches use a declarative representation and the knowledge base
consists of pattern-response pairs.

This separation of knowledge bases is rather similar to the approach used by
[Dzikovska et al., 2003] where they decided to separate the knowledge used in
general purpose language parsing from the knowledge used in reasoning. This
section describes the similarities and differences of both approaches and pro-
vides an essential overview in understanding the process of the user input reso-
lution as a whole.

2.4.1 The Resolution of Basic Keyphrases

The structure of the rules is given as:

RULE
PATTERN – a regular expression*
RESPONSE – a static response
STATE – reference to additional responses
IGNORE_WORD_ORDER – ignore word order (Y/N)

The reference to additional responses (attribute STATE) can be blank. The pat-
terns are given as regular expressions. The pattern may contain just one key-
word. The switch for ignoring word order of the input phrase
(IGNORE_WORD_ORDER) is explained in more detail in Section 3.4.

* see Appendix E for definition.

22

The sentences for answering are given as predefined fixed sentences. The
ADS framework also uses dynamic responses that are generated based on the
information retrieved from the database. Yet, these dynamic responses are not
represented in the declarative knowledge base. They are represented as proce-
dures.

An example of a rule with attribute STATE undefined:

RULE
PATTERN: (kartma|hirm) (valu|arst)
RESPONSE: Ei ole põhjust karta!
STATE: <undefined>
IGNORE_WORD_ORDER: Y

RULE (translated)

PATTERN: (scared|fear) (pain|doctor)
RESPONSE: There is no reason to be scared!
STATE: <undefined>
IGNORE_WORD_ORDER: Y

There are numerous pre-processing steps and morphologic transitions that are
applied to the user input prior to the semantic resolution. The semantic resolu-
tion uses the knowledge base to find the suitable answer.

The search for a suitable answer starts by matching the patterns of the rules
to the pre-processed user input. The relational model from Figure 2.2 is ex-
panded by a global entity RULES in Figure 2.3 to show how the rules are
attached to the user input after the semantic resolution has been completed.

The expanded entity-relationship diagram (ERD) in Figure 2.3 shows that a
pattern of a rule can match:

– a word,
– a base form,
– an n-gram.

After matching the patterns of the rules to the pre-processed user input, the
according response sentence (or set of sentences) is selected. The selected sen-
tence or set of sentences is forwarded to the planning module. The planning
module decides whether and how to use this sentence or set of sentences in
replying to the user.

23

2.4.2 The Resolution of Temporal Expressions

The general structure of the rules is given as:

RULE
PATTERN – a regular expression
CONSTRAINT – an SQL constraint

The structure is similar to the structure of the rules of basic key phrases. The
patterns of temporal expressions are also given as regular expressions, exactly
as in the basic key phrase approach. Yet, the constraint is not given as a fixed
constraint. The constraint contains back references that are dependent on the
regular expression of the temporal expression. In addition, the constraint is for-
mulated as an SQL expression. This also means that the constraint cannot be
used directly as a response.

Figure 2.3: The entity-relationship diagram for resolving the user input.

USER INPUT

BASE FORMS

WORDS

RULES

NGRAMS

24

For example:

RULE
 PATTERN – kell (\d{1,2}\:\d{2})
 CONSTRAINT – to_char(kuupaev, 'hh24:mi') =
lpad('\1', 5, '0')

RULE (translated)
 PATTERN – at (\d{1,2}\:\d{2}) o'clock
 CONSTRAINT – to_char(date, 'hh24:mi') = lpad('\1', 5, '0')

In this example, there is a back reference '\1' which value is dependent on the
regular expression sub-pattern (\d{1,2}\:\d{2}). This back reference is
evaluated and a final SQL constraint is formed in order to pass the query to the
database.

After the pre-processing steps and morphological transitions the similar
search is performed over these rules. If a match for a temporal expression is
found then the according SQL constraint is selected.

However, the selected SQL constraint is not forwarded to the planning mod-
ule. Instead, it is forwarded to a certain semantic resolution module for identi-
fying compound temporal expressions. The SQL constraint may be joined with
other existing SQL constraints to form a compound constraint.

The final SQL constraints are forwarded to the query generation module.
The query generation module concatenates the constraints with the query tem-
plates.

The queries created by the query generation are executed on the domain spe-
cific timetable (movie schedule, train schedule, etc), which is structured as a
calendar:

CALENDAR
TIME – date
EVENT – a static name of an event
PLACE – a location of the event

For example:

CALENDAR
TIME: 14.05.2010 17:00
EVENT: Avatar
PLACE: CINAMON

The queries find all EVENTS which meet the TIME criteria specified by the con-
straint. (The event “Avatar” is the name of a movie and “Cinamon” is the name
of a movie theatre.)

25

2.4.3 Triggering Functions upon Matched Patterns

Most of the knowledge is expressed as pattern-response pairs. Most of the sys-
tem responses are predefined sentences (facts that are listed in the knowledge
base). The exceptional cases of knowledge representation* involve search for
temporal information from the schedule.

However, much of the knowledge cannot be expressed as pattern-response
pairs. The ADS framework is improved to use the pattern-function pairs in the
knowledge base, in addition to the pattern-response pairs. This provides an
option to the ADS framework to execute a procedure (function) based on any
matched pattern. This option can be used in cases where finding an appropriate
response involves some procedural knowledge. Then an appropriate procedure
could be triggered to determine an appropriate response.

The ADS framework includes an additional column in the RULES table that
holds the name of the procedure to be triggered upon a matching pattern.

2.4.4 The Conclusions of the Rule Based Approach

The experiments with the ADS framework have shown that within a restricted
domain the framework has proven to work well. As previously said, two dialo-
gue systems have been built with this framework. One of them has been in pub-
lic use since 2008.

These experiments confirm that the rule based semantic analysis that uses
pattern-response pairs in the knowledge representation is a reasonable and
effective approach.

The key phrases describe the knowledge of the domain. The process of
gathering domain specific knowledge and creating the rules for the knowledge
base involves administrative work. The representation of patterns by regular
expressions can require special skills. This process is described in more detail in
Section 4.1.2.

Yet, the process of understanding the user input is not merely handled by the
rule based semantic analysis. In addition, the pragmatic analysis is involved in
the conversation. For example, the system understands and reacts appropriately,
when:

– the input from the user is a repeated input,
– there has been too long (2 minutes) pause between two inputs,
– there has been long enough (5 minutes) pause between two repeated

inputs.

The features of this pragmatic analysis establish the core competencies of the
framework and are described in the following section.

* see Appendix E for definition.

26

2.4.5 The Core Competencies of the ADS Framework

There are certain conversational skills in the ADS framework that are built in
the system core. The title “Core Competencies” applies rather well to these
features. Also “Situation Policies” or “Timing Policies” are relevant titles for
such procedural knowledge. [Bohus et al., 2007] have referred to such features
also as “universal dialogue mechanisms”. These features are domain-indepen-
dent and partially language-independent and cannot be expressed by declarative
rules in the knowledge base. The representation of this knowledge is procedural.
These are also the features that most Eliza-like dialogue systems are lacking.

These features mainly depend on:

– time;
– the frequency of the user input;
– the user input patterns;
– previous dialogue (i.e. dialogue history).

Examples of these features can be:
– knowing the date and time;
– knowing what has already been said in a conversation (e.g. the system is

able to repeat and is able to avoid repetitions);
– ability to tell when the user repeats itself and ability to respond to the user

repetitions;
– knowing how to react to a long pause;
– ability to understand that after a certain amount of mishandled inputs, the

system has failed to reply, ability to provide an appropriate reaction in
case of such failure (e.g. by admitting its failure and offering an apology);

– ability to understand if the user is very active or rather inactive, ability to
react to such situation;

– ability to understand that the user is just testing the system by entering
only single keywords and not using full sentences, ability to react to such
situation;

– ability to understand if the user’s sentences are too long, asking the user
to rephrase in shorter words;

– ability to understand that the conversation has been going on for a long
time, ability to react to such situation;

– ability to understand if asked to be silent, to speak more quickly, to talk
more slowly;

– ability to adjust the turn-taking pace by the user's writing speed
– knowing how to start a conversation from the beginning (e.g. by flushing

conversation memory upon a specific command from the user).

These features have a specific role in the conversation. They describe the
awareness of the situation in which the dialogue system is. They also describe
how to respond to these situations. The aim is to keep the conversation smooth,

27

to assist and to appear intelligent. They can be considered as a sub-task on
“Problem Solving” stage.

Looking at the classic model of a dialogue system, there are three main stages:

1. Language Analysis
2. Solution to the problem
3. Language Generation

The sub-features of a dialogue system built on the ADS framework can be
grouped below these stages as follows:

Language Analysis:

– morphological analysis, finding the base forms of words;
– spell checking;
– normalization of calendar expressions;
– language identification.

Problem Solving:
– core competencies (or conversational skills);
– query generation;
– querying the database.

Language Synthesis:
– generating sentences;
– speech synthesis.

As the text-based conversations with the ADS framework take place on the
internet, the language used can be a bit different at times. For example, the users
of the dialogue system usually do not use capital letters. They also tend to use
short phrases similar to spoken language. The dialogue systems built on the
ADS framework have also been adjusted to look natural for the internet chat.
For example, the system responses also drop the capital letter from the begin-
ning of the sentence.

2.5 Handling Repetitions in Conversation

This section describes the repetition problem. In any conversation, both the
system and also the user can repeat a previous utterance. The ADS framework
does not set a limit to the user repetitions. However, the ADS framework sets a
limit to the system repetitions.

In the spoken language conversations the repetition can be a part of the
repair strategy. For example, the user might not have heard what was said in the
conversation and therefore specifically requests for a repetition (possibly by

28

also repeating itself). In this case, it is appropriate for the system to repeat the
previous utterance.

However, in the text based conversations, the user can always scroll back in
the chat history and look at the whole conversation. So, in the text based con-
versations the repetition by the system is usually not needed and should be
avoided or used only after a period of expiration to prevent user frustration.

In order to avoid unnecessary repetitions by the system, there should be a
clear understanding why these repetitions occur. There are two main reasons
that are causing the repetitions by the system.

Firstly, the system repetitions can be triggered by the user who has repeated
a previous utterance.

A simple example would be:

System: Good morning!

User: Hello.

System: Hello.

System: I can provide information about ...

User: Hello.

System: Hello.

Secondly, the repetitions can also occur if the system produces the same output
from the different inputs, which is a less likely scenario. For example, various
greetings from the user could be replied with a certain single phrase, thus
repeating the same greeting.

An example would be:

System: Good morning!

User: Hi.

System: Hello.

System: I can provide information about ...

User: Hello.

System: Hello.

The repetitions in both cases are usually considered to be a sign of poor intelli-
gence of the system. [Vrajitoru, 2006] has said that the repetition decreases the
life-like impression of the system and undermines the credibility of the system.

The repetition testing is also the most frequent test done by the first-time
users. Many first-time users are quite often testing the system capabilities by
saying the same greeting more than once. If they see that the system returns the
same greeting the exact same amount of times, their respect towards the system
is decreased. Yet, if the system does not fall for this test, the attitude of the user
is better in the following conversation as the system has passed a basic test of
intelligence.

29

A simple way to avoid repetitions by the system would be to check the chat
history prior to using a phrase in replying to the user.

In case the planned reply is found in the chat history, one of the following
actions could be taken:

a) the reply will not be issued and the system will be silent;
b) the reply will not be issued and the system will use another reply if there

are any other pending replies in the stack;
c) the same reply will be rephrased and issued;
d) the same reply will be issued referring to the recurrence of this reply (e.g.

“as I previously said, …”).

The ADS framework currently uses options a) and b).

In addition, the expiration interval is used by the ADS framework. This means
that the repetitions are only those recurring replies that are not older than two
minutes from the previous occurrence. If the same reply is older than two
minutes, it is not considered to be a repetition of the reply and it is issued as a
regular reply. This way the repetition is less disturbing as some time has passed
since the previous output.

Also, the ADS framework does not simply search the chat history for the
previous occurrences of a phrase, because in the ADS framework the response
might be a combination of many phrases and the chat history contains a full
version of the response. This is explained by the following example.

Let’s have rules R1 and R2, so that

R1 would produce output W1;

R2 would produce output W2.

If both of these rules

1R and 2R

are matched simultaneously, then the system could very likely produce a con-
catenated output S1 by adding the phrases together (usually separated by a space
character and a comma):

211 WWS   .

The concatenated answer S1 would be stored in the chat history. This means,
that W1 and W2 are not stored in the chat history as two distinct replies.

If the rule R2 is matched later again in the same conversation, then the reply
W2 would have to be issued. Yet, it has already been issued as part of S1. The
problem is that W2 is not found in the chat history on its own. This is why the
simple search in the chat history cannot be used in avoiding repetitions.

We could search for a substring from the chat history and see that W2 is a
substring of S1, as

30

12 SW  .

Yet, the search for a substring would also not be a valid approach in many
cases. For example, the reply “OK” could be a substring of many previous res-
ponses. So, W2 could even be a substring of W1.

Therefore, instead of searching the chat history, a separate log (rule history)
is used, which records the rules that have been resolved and used during the
conversation. This way it is easy to see, that the rule R2 has been used in the
conversation less than two minutes ago and therefore the reply W2 will not be
issued.

Similar logs are kept about the states and templates. We could have skipped
the log of states, and only used the log of rules. Yet, the rule and the state are
not in one-to-one relationship. One state could be triggered by many rules, as in:

DisplayStates Rules

The template history is also a completely separate history. The templates are
used to provide variations while generating the response by rephrasing a certain
part of the sentence. The same phrasing is avoided by keeping the history of
previous phrasings.

2.6 Turn Management

An essential feature of a dialogue system is turn taking. The spoken language
systems and text-based systems both handle turn taking usually in synchronous
communication pattern. These dialogue systems assume a rigid (you speak – I
speak) turn-taking behavior.

The main problem with this approach is that the system has to wait for
the user to provide input and cannot give additional information. User
usually does not have to wait for the system, as in such dialogue systems the
reply to the user is usually immediate (depending only on the time that it took to
process the input and find the answer).

In the ADS framework the synchronous communication pattern is replaced
by asynchronous communication pattern. We never consider a user input ending
point as passing the turn to the computer. The user can keep on giving input at
any time. This input is all stored and the computer can answer at any time.

As in a normal text-based chat – all parties can speak at any given moment
and can take any number of sequential turns without waiting for the other party
to acknowledge each turn.

31

The asynchronous communication pattern also has some advantages in
Wizard-of-Oz (WOZ) data collection [Rieser and Lemon, 2008] and in live-
agent assisted chat. The pause in the asynchronous communication pattern is
not a sign (give-away) that the computer has been replaced by a human, because
the computer has been making pauses all along the way.

The user of a dialogue system with synchronous communication pattern can
be tricked into WOZ assistance too, but long pause is not normal in dialogue
systems with synchronous communication pattern. The long pause in text-based
synchronous dialogue systems is rather rare. The user has to be explained why it
is sometimes taking so long to reply while usually the answer came in just a few
milliseconds. So it is complicated to switch to WOZ or live-agent assistance in
dialogue systems that are using the synchronous communication pattern.

The new turn management approach – asynchronous communication pattern
– which is suitable for text-based dialogue systems was implemented in the
ADS framework and is described in this section.

2.6.1 The Serial Synchronous Communication Pattern

The importance of turn management is often underestimated in dialogue sys-
tems. The emphasis in modeling dialogue systems is mostly on providing an
intelligent answer to the user. Most of these systems however are totally help-
less and stay quiet without the user input. Most dialogue system architectures
are either pipelined or are restricted to a pipelined flow-of-information.

The following is a conversation structure with the synchronous turn-taking
and it follows the pattern:

Human=>Computer=>pause=>
Human=>Computer=>pause=>
…
Human=>Computer

Normal human-to-human text-based chat that lasts more than a minute hardly
ever takes this form. This is unnatural and disregards the central theme and
advantages of natural language interfaces – their natural feel and look. The
unnatural model “forgets” that the main advantage of intelligent user interfaces
compared to direct manipulation systems (point-and-click interfaces) is the
natural and easy communication. This advantage is lost when the user has to
communicate in an unnatural style and has to be constantly active participant in
the conversation.

In the synchronous turn-taking, only one of two collaborators (either system
or user) issues a unit of text and then waits for the input of the other. This turn-
taking is quite unnatural in written internet conversation. Yet, this is mostly the
case with text-based dialogue systems. These systems are able to provide rather
intelligent answer at times, yet the conversational pattern is very limited.

32

2.6.2 The Asynchronous Communication Pattern

The ADS framework provides the asynchronous communication pattern. Then
the turn-taking process refers mostly to the sequential submission of elaborated
units of information, namely collaborative contributions. In this case, quite
complex patterns of turn-taking may evolve:

Human=>Computer=>Computer=>short pause=>
Computer=>Human=>short pause=>
Human=>Human=>longer pause=>
Human=>short pause=>
Computer=>Computer

The ADS framework allows real-time user-initiated interruptions, which gives
an impression of a natural conversation.

The analogy to normal human behavior is not the only benefit of this com-
munication pattern. Asynchronous turn-taking opens up many ways to enhance
the dialogue, e.g. the DS can:

– answer many questions at once,
– provide system initiative recommendations [Misu et al., 2010],
– acknowledge a question while it is still working on finding the answer

[Blaylock et al., 2002],
– inform the user of a new, important event, regardless of whether it is tied

to the user’s last input [Allen et al, 2001].

The technical implementation of the asynchronous communication is achieved
by using AJAX (see Figure 2.4). The browser (client) is sending one initial
request and then starts two background processes at certain intervals: one for
sending data and the other one for receiving information. The server is also con-
stantly monitoring the process (whether there is input or pause) and creates res-
ponses accordingly.

33

Figure 2.4: The implementation of asynchronous communication in the ADS frame-
work.

2.6.3 The Asynchronous Communication and Wizard-of-Oz

One of the benefits of the asynchronous communication pattern is revealed in
the process of WOZ data collection.

It is known that the user is quickly adjusting to the partner in the conver-
sation [Stenchikova and Stent, 2007]. This also means that there are certain
differences in the human-to-human conversations and in the human-to-computer
interactions.

We want to model the human-to-human communication, so we need to col-
lect the data that is similar to the human-to-computer interaction.

Therefore, while performing the WOZ data collection, it is essential to hide
the fact that the computer is replaced by a human. If the user discovers the trick,
the dialogue might change into a complex human-to-human communication.
This we do not want to happen. We need to keep the secret from the user while
collecting sample conversations. Yet, this might be impossible while using
dialogue systems that are running in serial synchronous communication pattern.

If the dialogue system is running in the serial synchronous communication
pattern, then the main problem in the WOZ data collection, is the high predic-
tability of the turn-taking pace. The user can easily guess when and how quickly
the system usually would reply, because the serial synchronous systems always
use a fixed turn-taking pace.

For example, after a few turns the user knows that the system usually replies
within 1 second. Most of the dialogue systems that are using serial synchronous

Browser

Server

HTML page
with chat
contents

AJAX
routines

Initial page
request

Initial
response

Updated content

JavaScript calls

D
ata

re
quest

U
p

da
t ed

X
M

L
 da

t a

34

communication pattern, usually reply in less than three seconds. Often the reply
is given immediately without any delay. The only delay is generated due to
slow computing environment (the time spent on parsing the request) and in
some cases a short delay also appears due to the slow network traffic. These
systems never change this turn-taking pace during the whole conversation.

If the wizard (a human) takes over the conversation, it is very hard to main-
tain this high fixed turn-taking pace. The human needs more time to find the
answer and more time in typing the response. The time spent on replying is not
quick and not with fixed rate any more – it is slower and irregular during each
turn.

In the WOZ data collection also some additional phrases (such as “Please
wait!”; “Hold on, please”) are used by the wizard to extend the time for infor-
mation retrieval. These additional phrases with irregular and longer pauses can
unfortunately be a quick give-away. If the system used to have a certain turn-
taking rate before the wizard took over, then additional pauses and phrases, such
as – “Please wait!” – might appear suspicious to the user. If the user suspects
that the partner in the conversation is not a computer but a human, then the user
usually starts a more complex conversation and the data collection results
reflect the human-to-human conversations.

However, in the asynchronous communication pattern we have much better
chances to trick the user into believing that the partner is still the computer. As
stated before, in the asynchronous communication pattern:

– the user can enter input at any given moment;
– the system can reply at any given moment.

In this case, the additional and irregular pauses are typical and accepted by the
user. There has not been any fixed turn-taking rate that the user could have
memorized. So, the user has no grounds for any suspicions based solely on turn-
taking pace.

The other matters that could lead to suspicions (like change in style and
complexity) are irrelevant at this point in discussion as they can appear in both
kinds of systems, independently from the turn-taking issues.

2.7 The Dialogue Task Specification

The dialogue task specification describes an overall plan for the interaction. The
ADS framework provides a way to make some minor domain-specific adjust-
ments to the plan of interaction, yet the fundamental execution pattern is fixed
and not adjustable without additional programming effort.

35

CHAPTER 3

Natural Language Processing Modules

The ADS framework consists of several independent NLP modules. At first,
this chapter gives a brief overview of Estonian morphology and syntax as the
ADS framework is currently tailored for Estonian language. After that the fol-
lowing NLP modules are described:

– morphology module [Kaalep and Vaino, 2001],
– spell-checking module,
– normalization of temporal expressions.

3.1 Handling Estonian in Language Analysis

The ADS framework accepts the user input without any constraints and limita-
tions. The system does not restrict the user and does not present prompts with a
selection of limited answers. This approach is also known as the open prompt
approach or non-restrictive approach [Jurafsky and Martin, 2000]. The restric-
tive approach would be to constrain the user to some specific response, such as:
“Say yes if you accept the booking, otherwise, say no”.

The grammar in the non-restrictive approach must recognize any kind of
response, since the user could say anything. This brings us to the problem of
linguistic complexity and this is when the morphology and syntax become an
important issue.

Estonian is an agglutinative language, which means that the morphemes that
contain grammatical information are appended to the word stems (mostly as
suffixes). The stem of the word can also be modified in this process. Therefore
the Estonian language is also an inflected language. For example, the Estonian
illative case is expressed by a modified root: vesi ‘water’ → vette ‘into the
water’.

In Estonian compound words can be formed to express complex concepts as
single words. For example, the words abi ’help’ and palve ’request’ can be
combined to form a word abipalve ’help request’. In Estonian, more than two
stems can be added together, which is rather rare in English. Estonian nouns
have 14 cases while English has only two cases. The 14 noun cases and verb
inflections are listed in Appendix B.

36

In Estonian language:
– neither nouns nor pronouns have grammatical gender;
– there are no words that consist of only one letter [Alumäe, 2006].

The word order in Estonian is relatively free. Sometimes the words in a sen-
tence can be reordered without a change in the meaning of the sentence. The
word order problem is handled by the ADS Framework as described in Section
3.4.

3.2 The Morphology Module

The morphology module of the ADS framework integrates the morphological
analyzer of Estonian [Kaalep and Vaino, 2001]. The morphological analyzer is
used in the preprocessing step to generate base forms from the original word
forms. After this step the user input is stored in two different versions:

– an original version
– a version with base forms

The version with original word forms has the priority over the version with base
forms in the pattern matching process. In case the original form is successfully
matched to the knowledge base patterns, then the version with base forms is
ignored.

It was a rather complex technical task to integrate this analyzer with the
ADS framework. The morphological analyzer is a command line tool written in
C. The binary is wrapped with Java [Arnold and Gosling, 1996] and packaged
in Oracle as a Java package. In addition, the file system is used for storing tem-
porary input and output files.

The resulting interface is a simple Oracle PL/SQL function which provides a
seamless way to use the morphological analyzer straight in the Oracle database
with PL/SQL. This multi-step integration looks like an unstable integration, yet
it works without any problems.

3.3 Spell-Checking and Error Correction

The spell checking approach in the ADS framework is language independent
and developed by the author of this thesis.

While studying the conversation logs of the dialogue systems that were built
using the ADS framework, it turned out, that approximately 80% of the users
make spelling errors in major keywords. As the keywords are essential in
understanding the user input, the ADS framework implements a basic spell
checking as a pre-processing step in resolving the meaning of the sentence. In
one of the dialogue systems developed with the ADS framework (a dialogue

37

system called “Zelda”) the number of spelling errors corrected was 380 for the
total of 4500 user utterances (that is 8.4% of utterances were corrected).

The spell checking approach used in the ADS framework can be thought of
as context-sensitive approach that is exploiting string similarity.

3.3.1 Jaro-Winkler vs Levenshtein

The most well known string similarity metric is Levenshtein distance [Black,
2005], yet it is not good enough for spell checking.

The Jaro-Winkler distance [Cohen et al., 2003] is used in the ADS frame-
work while spell checking the user input. The Jaro-Winkler distance is a
measure of similarity between two strings. This is implemented as a function:

Similarity = Jaro_Winkler(string_1, string_2)

and the return value of the function is normalized as

 1..0Similarity

The similarity score 0 equates to no similarity and 1 is an exact match.
 Jaro-Winkler distance [Cohen et al., 2003] uses a prefix scale which gives

more favorable ratings to strings that match from the beginning for a set prefix
length. This is the main advantage if compared to the Levenshtein distance
[Black, 2005].

It is a good assumption that the mistake is not usually in the beginning of the
word. With Levenshtein, the beginning of the word would be treated equally
with the end of the word and the results would not be as good as with Jaro-
Winkler.

For example, if the user input would be

naistes (in women)

and the lexicon would contain a word

paistes (swollen)

then the unwanted replacement by the Levenshtein would be made

naistes  paistes (both words were grammatically correct).

The unwanted replacement by the Levenshtein would occur as the number of
edits would be the minimum similarity threshold – just one edit from the exact
match. This is an unwanted replacement and Jaro-Winkler approach would not
make this replacement. The Jaro-Winkler approach does not consider these two
words similar (based on static similarity threshold 91.2% which was used in the
ADS framework).

38

Yet, if the userinput would be

paisteb (swollen – misspelled)

and the lexicon would contain a word

paistes

then the replacement b y the Jaro-Winkler would be made

paisteb  paistes.

In both cases just one of the symbols was different. Yet, the beginning of the
word is usually a bit more important as it defines the stem. Therefore, the first
example was not acceptable by Jaro-Winkler algorithm.

3.3.2 Domain Lexicon

The domain lexicon (made from the pattern-response pairs and contains words
from the patterns) is refreshed automatically daily at 6 AM. An automated task
in the ADS framework generates a domain lexicon, based on the words that
appear in the recognition patterns defined as regular expressions. This auto-
mated generation of the lexicon is necessary to minimize the risk that the
administrator of the system updated the knowledge base (changed/added/
removed the rules) yet forgot to update the lexicon.

Words shorter than 6 letters are not spell-checked as the ambiguity risk
would be too high. So, these shorter words will not be added to the lexicon.

The lexicon is made of the words that appear in the rules. The reason is that
there is no need to spell-check the words that the system does not “understand”.
The language analysis capability is limited to the rules. So, the rules contain all
the words that we need to capture and understand.

3.3.3 Accuracy Score

The score above 0.912 turned out to be good enough for acceptance in correc-
tion. So the similarity threshold was set to 0.912 in the ADS framework.

IF the Jaro-Winkler similarity measure of a user input word A and a lexicon
word B is greater than or equal to 0.912; and A is not equal to B

THEN make the replacement:

BA 

39

The sentence before the replacement was:

21ww A 4w

The sentence after the replacement is:

21ww B 4w

The number 0.912 was decided by experiments.

3.4 Word Order Issues in Language Analysis

In the language analysis process, usually the grammar is adjusted to look for the
phrases relevant to the domain [Jokinen et al., 2002].

The ADS framework uses a similar approach. The grammar in the ADS
framework can be a simple grammar that is meant to extract just the single
keywords and their relevant word forms, with the help from a morphological
parser. In such a simple case, the word order is not an issue.

Yet, in a more complex task, the single keyword approach is not enough to
capture the meaning of the sentence. Then, in addition to matching the single
words, the phrases have to be matched and then the word order of a phrase be-
comes an issue. Usually more than two different wordings have to be consi-
dered to recognize the relevant phrase.

One of the options is to handle the word order of the sentence manually by
defining all possible word order permutations in the grammar. In this case, the
number of permutations can be rather high and usually only the most probable
permutations are listed in the grammar to keep the grammar readable. The ma-
nual approach is also supported by the ADS framework. The word order can be
ignored by adding manual word permutations into the rules of the grammar.

The problems with this manual approach are:
– readability of the grammar is decreased,
– the developer can forget to add the permutations to the grammar,
– the developer can provide an insufficient amount of permutations.

The ADS framework also includes an optional automated approach, as the ma-
nual approach is not always efficient and elegant as shown in the following
examples.

Let us suppose that the phrase

321 www

could be accepted in all possible permutations:

40

123

213

132

312

231

321

www

www

www

www

www

www

By acceptable permutation we mean that the permutation of the phrase captures
the meaning of the sentence. So, we would have the maximum of six acceptable
permutations of a three word phrase, as 63  .

As the ADS framework uses regular expressions to define the patterns of
phrases, the rule would be a regular expression listing all the six possible
wordings:

)(|)(|)(|)(|)(|)(123213132312231321 wwwwwwwwwwwwwwwwww

The pattern from the example above seems rather readable, yet it is not mostly
true. The problem is that iw can be a regular sub-expression (e.g. set of syn-

onyms), as in the following example 1w and 2w contain a set of synonyms
expressed as a regular expression:

1w (hea|ilus|tore),

2w (uus|algav).

To further illustrate this problem, we should look at a rule that is defined by a
phrase with three words 321 www so that the phrase would also accept syn-

onyms.

For example a pattern 1p for 321 www could be:

Example of a pattern (hea|ilus|tore) (uus|algav) aasta

 (good|beautiful|happy) (new|starting) year

This pattern 1p “(hea|ilus|tore) (uus|algav) aasta” is sufficient to match the
input:

Example of an user input “head uut aastat”

 “Happy New Year”

41

However, there can be more than one acceptable permutations of this phrase.
For example, this pattern is not enough to match any input where the word order
is a bit different, such as:

Example of an user input “uut aastat ilusat” *

 “starting year beautiful”

So, there is a need to write an additional pattern to match this order of words
“uut aastat ilusat”. The word order of the new pattern would be defined as:

2p 132 www

and would be written as:

Example of a pattern (uus|algav) aasta (hea|ilus|tore)

 (new|starting) year (good|beautiful|happy)

At this point we can choose whether to have these two separate rules R1 and R2
for patterns p1 and p2 in the system to match the same meaning (which is not an
elegant solution) or whether to concatenate these two rules R1 and R2 into a sin-
gle long pattern listing all alternative word orders, such as:

((hea|ilus|tore) (uus|algav) aasta)|((uus|algav) aasta (hea|ilus|tore))

From the example above, we can see that even by allowing just two different
word orders, the simple pattern quickly becomes unreadable. And we still have
described only two different word order patterns. We would have to concatenate
all permutations for all the possible word order variations. There would be a
maximum of six permutations for a three word phrase as P3 = 24, and four word
phrases would need 24 permutations as P4 = 24.

As a solution to the word order problem, the ADS framework has an addi-
tional attribute (IGNORE_WORD_ORDER) in the definition of a rule to allow
automated word permutations. This allows us to keep the patterns simple and
still be able to handle the word order.

The attribute can have two values:

IGNORE_WORD_ORDER = [YES; NO]

This attribute also leaves an option to turn off automated permutations for a
certain pattern. Automated permutations have to be closed for some patterns
where changing the word order would change the meaning.

* Comment to the previous example: In Estonian, the word order of the previous sample
phrase is acceptable in some sentences. Yet, it might be a bad example for English as this
particular word order might be rather unusual.

42

The attribute IGNORE_WORD_ORDER = YES for all the rules where an
arbitrary sequence of words does not change the meaning of what the rule needs
to capture.

And respectively, IGNORE_WORD_ORDER = NO for all the rules where
only a fixed sequence of words is allowed to capture the meaning.

Automating the permutations greatly simplifies the process of grammar
design and keeps the grammar more readable. Without this method we would
have to explicitly indicate word order variations by listing all possible realiza-
tions. With this new approach, if the rule is marked to allow free word order, all
the variations of word order can be accepted.

How does it work? All permutations of an n-gram are considered in the
matching process. The pattern of the rule will not be permutated because it is a
very complicated task to permutate the regular expression. It is much easier to
permutate the words in the n-grams.

If we receive an input phrase from the user such as “ma nägin sind juba”
(meaning “I saw you already”), then all the 24 permutations of the phrase would
be:

ma nägin juba sind
ma juba nägin sind
ma juba sind nägin
ma sind nägin juba
ma sind juba nägin
...
sind ma juba nägin
...
sind ma nägin juba

All these 24 n-grams would be considered in the matching process, and this way
all word order variations are accepted with just one rule

RULE
PATTERN: mina nägema sina juba
RESPONSE: Tore, siis me oleme kohtunud!
STATE: <undefined>
IGNORE_WORD_ORDER: Y

RULE (translated)

PATTERN: I see you already
RESPONSE: Great, then we have met before!
STATE: <undefined>
IGNORE_WORD_ORDER: Y

Notice that all the words in the pattern above are in the base form (in the Esto-
nian example the word “nägema” vs. “nägin”, in translation “see” vs. “saw”).
This provides a way to accept all possible forms of a given word. See Section
3.2 for detailed information about the morphological analyzer.

43

The ADS framework has been provided with a list of predefined permu-
tation keys that define all possible patterns. These predefined keys will be used
as indexes to the words in the phrase, thus producing all the necessary permu-
tations without major computational complexity.

The ADS Framework also includes an option to define stop words*. The
removal of stop words can further improve the phrase search. Stop words are
words which are filtered out prior to semantic resolution. There is not one defi-
nite list of stop words. It can be different for each domain.

3.5 The Resolution of Temporal Expressions

The resolution of temporal expressions was discussed in Section 2.4.2. Some
additional aspects of this process are described in this section.

The resolution of temporal expressions is not used in all domains, so the
ADS framework contains an optional component for this task. This component
was developed previously by the author as the temporal information can often
be a significant part of meaning communicated in dialogues. The component
and related work is described in more detail in [Treumuth, 2008].

The normalization of calendar expressions in the ADS framework is imple-
mented as a separate domain independent module and is integrated into the
semantic resolution module. The database of the normalization model contains
rules that are used in the process of normalizing the date expressions. (See
Appendix C for a sample listing of the rules.)

Table 3.1 lists a few examples of calendar expressions and their normali-
zation results, to give a basic idea of the temporal normalization. The normali-
zation result is usually dependent on a given date, in this example the starting
point or reference date is March 21, 2008. This reference date is used to deter-
mine which calendar day is meant by the expression. If no special reference date
is given as a starting point then usually the current date is assumed to be the
reference date.

Table 3.1: Examples of calendar expressions and their normalization

Estonian English Normalization

3 aastat tagasi 3 years ago 21.03.2005 00:00

14. veebruaril 2004 a February 14, 2004 14.02.2004 00:00

kell 17:00 at 5 PM 21.03.2008 17:00

jõulud Christmas DAY=[24.12, 25.12, 26.12]

esmaspäeviti kell 8 on Mondays at 8 AM
(DAY=Monday) AND
(TIME=8:00)

* see Appendix E for definition.

44

The ADS framework has implemented a task specific approach where the nor-
malization is formulated as a constraint to be applied on a calendar in the data-
base.

Conjunctive and disjunctive expressions are also formed into an SQL con-
straint. This means that a larger temporal unit is a concatenation of smaller tem-
poral units. This provides a way to capture duration, intervals and recurrences.

The ADS framework implements an empirical judgment that the word “ja”
(“and”) in Estonian natural language is mostly used to indicate that it is meant
to be handled as disjunctive rather than conjunctive expression. There remains
some ambiguity in this approach, yet in most cases this empirical assumption
has proven to be a correct choice.

The composition of rules is also based on the time granularity measures. The
granularities hour, day and month are used. The change in the granularity level
indicates that a conjunctive expression has to be created.

A task specific constraint relaxation is also used by the ADS framework in
resolving the temporal expression. For example, the user might mention a date
to a dialogue system that would result in “not found” response. Then it would be
appropriate to relax this date constraint, as in the following dialogue.

<User>: Are there any performances on Saturdays?
<System>: No, yet I found one on this Sunday . . .

This was an example of a constraint relaxation where the original date con-
straint was relaxed by adding one day. This way the users of the system can
receive some alternative choices, instead of plain “not found” responses.

The relaxation parameters are not rule-based and are defined in the proce-
dures of the temporal resolution. The programming effort is required in adjust-
ing the relaxation parameters.

45

CHAPTER 4

Domain Adaptation

This section discusses the adaptivity of the ADS framework to a new do-
main/topic.

The ADS framework has been built so that the domain dependent dialogue
management and the generic dialogue feature handling are separated. This sig-
nificantly decreases the development effort when the ADS framework has to be
adjusted for a new domain. The domain shift does not mean that the entire
knowledge base has to be replaced. There are many common phrases (e. g.
greetings and small talk) that can be kept for the new domain.

The following three points are addressed in the domain adaptation process:
– The adjustments in the knowledge base: What are the requirements for

changing the knowledge base? How well can we represent the knowledge
of a target domain as pattern-response pairs?

– The adjustments in the dialogue management: What are the components
of the ADS framework that can be changed?

– The adjustments in the user interface: titles, names and pictures.

4.1 Adjusting the Knowledge Base

Most of the domain specific logic is kept in the knowledge base. The overview
of the semantic resolution is given in Section 2.4. It states that the rule based
semantic resolution is used in the ADS framework and most of the knowledge is
represented as pattern-response pairs.

The process of changing the knowledge base involves two main considera-
tions:

– How well can we represent the knowledge of a target domain as pattern-
response pairs?

– How to define the rules in the knowledge base?

46

4.1.1 Domain Adaptivity to Pattern-Response Pairs

Many forms of knowledge representation have been developed over the years
for conversational interfaces. Rules, frames, scripts and semantic network are
the typical examples of knowledge representation scheme [Sajja and Akerkar,
2010]. The most common form has been to represent the knowledge as pattern-
response pairs.

It seems that a rather high number of domains could be represented as pat-
tern-response pairs, or at least could be represented in this form to some extent.

Supporting this consideration, is the fact that there are many examples in
non-conversational information systems where the knowledge is represented in
the similar way. For example, many internet sites provide information in a form
known as “Frequently Asked Questions”, or FAQs. The FAQs are listed ques-
tions and answers, all supposed to be frequently asked in some context, and
pertaining to a particular topic. All these FAQs are rather similar to pattern-
response pairs.

Certainly, there can be domains that cannot be represented simply by FAQ
models. Examples of such domains involve task-specific reasoning and domains
with many variables and a dynamically changing database.

The feasibility issue is also rather important in the decision process for a
new domain. For example, the experiments show that it is not feasible to pro-
vide information about timetables in conversational form. This information
should be presented in table form. However, this is a rather subjective statement
as the conversational form can be the only acceptable form in some cases (e.g.
phone conversations).

4.1.2 Defining the Rules in the Knowledge Base

As we have previously stated in Section 2.4 the structure of the basic rules is
given as:

RULE
PATTERN – a regular expression
RESPONSE – a static response
STATE – reference to additional responses

The pattern may contain just one keyword and the set of sentences can contain
just one sentence. The patterns are given as regular expressions. The sentences
for answering are given as predefined fixed sentences. The ADS framework
also uses dynamic responses that are generated based on the information
retrieved from the database. Yet, these dynamic responses are not represented in
the declarative knowledge base. They are represented as procedures.

These pattern-response pairs are defined in the database tables RULES and
STATES. The attributes of these tables are:

47

Table “RULES” Attributes

 pattern

 response

 ignore word order (y/n)

 reference to the state

Table “STATES” Attributes

 name of the state (non-unique)

 response

 order of response

The relation of these entities is “one-to-many”, as in:

DisplayStates Rules

“Triggering a state” means that the response is made of many sentences that
are presented to the user in an adjustable order.

As shown in the table description of States the name of the state is a non-
unique attribute. This means that there can be many responses under the same
name in the table States. This denormalization was more effective rather than
implementing a 3NF many-to-many relationship.

The pattern first activates the rule and the rule issues the first response sen-
tence and then triggers the state. This means that the information is provided in
several parts. This leaves the impression for the user that the system remains in
the topic with several successive turns providing the details of the same topic.

Most of the patterns are phrases where all the words are represented by their
lexical base forms. This way fewer patterns need to be defined as in most cases
the morphological form is not important for a pattern in the semantic resolution.
The morphological analyzer adjusts the user input to the base forms as said
above.

One pattern can contain a set of expressions in the same context. By the
“same context” we mean that the phrases in the pattern are equal in the semantic
sense and the same response can be used.

4.1.3 A Sample Process of Knowledge Engineering

A sample process of knowledge engineering is discussed in the following
example. It makes no difference whether we would like to alter the knowledge
base a new conversation topic or to expand the knowledge base for a new ques-

48

tion in the same domain. In both cases, there are two basic options to consider
in the process of altering/expanding the knowledge base:

– to add a new rule;
– to alter an existing rule (for example, by adding new synonyms to the

pattern).

In the following examples the discussion is mostly about the patterns in the rule
and not about the responses of the rule.

If the ADS framework contains a rule with a pattern:

Pattern parkima sõiduk

 park vehicle

Then the system is able to answer to the question:

Question Kuhu võin parkida sõiduki?

 Where can I park the vehicle?

It is important to notice that the transitions:

parkida  parkima

sõiduki  sõiduk

are done with the morphological analyzer [Kaalep and Vaino, 2001].

Yet, the system is unable to answer the question:

Question Kuhu võin parkida auto?

 Where can I park the car?

In this case, a new rule could be added to the system with the following pattern:

Pattern parkima auto

 park car

Yet, there is also another option. The existing rule could be altered by adding
the word “car” to the pattern. So, the existing rule would be changed to contain
a pattern:

Pattern parkima sõiduk|auto

 park vehicle|car

If we know that in this domain the users can talk about cars only when they are
interested in parking information, then we could allow a less specific pattern:

49

Pattern sõiduk|auto

 vehicle|car

Also the synonyms may be added as desired:

Pattern sõiduk|auto|masin

 vehicle|car|machine

If, however, we know that in this domain, it is necessary to distinguish between
the two topics regarding cars, then we need at least two rules with the following
patterns:

For example:

Pattern parandama|töökoda|katki sõiduk|auto

 repair|workshop|damaged vehicle|car

and

Pattern parkima|jätma sõiduk|auto

 park|leave vehicle|car

The same way, if we know that there is no need to distinguish between repair-
ing cars and repairing some other things, we could drop the cars from the pat-
tern, as in:

Pattern parandama|töökoda|katki

 repair|workshop|damaged

and

Pattern parkima|jätma

 park|leave

This is not a very safe approach as we have the risk that the broad meaning of
the words “damaged” and “leave” may be used in a different context that is not
connected to the cars.

Therefore, it would be better not to remove the part of the rule referring to
the cars.

50

4.2 Adjusting the Dialogue Management

The dialogue management engine has currently only one parameter that can be
configured in domain adaptation:

– PARAMETER_INFORM_SUGGEST – an option to turn off the module
INFORM_SUGGEST.

By turning off the INFORM_SUGGEST module, no suggestions are made to
the user. For example, then the dialogue system is not using user pauses for
giving system initiative recommendations, such as “I would recommend to see
the movie …”.

4.3 Adjusting the User Interface

The graphical user interface (GUI) contains the name of the avatar (system cha-
racter, such as our implementations Alfred or Zelda) and the picture of the ava-
tar. It also contains a title of the system.

The GUI can easily be modified to meet the needs of a specific domain.
Some basic knowledge of HTML [Raggett et al, 1999] and CSS [Lie and Bos,
1997] is required to make the necessary adjustments to the GUI.

4.4 Domain Adaptation Experiments

The ADS framework has been tested on the following three domains:
– conversation with a virtual politician,
– conversation with a virtual dental consultant,
– conversation with a virtual movie schedule administrator.

The first one (the virtual politician) was a simple test with some voluntary
users. The second one (the virtual dental consultant) has also been tested in a
commercial environment. The third example (virtual movie schedule infor-
mation desk) is a natural language interface to a database. It serves as an inter-
face to a dynamically changing database.

The first two domains are based on “Frequently Asked Questions” and static
answers. The third domain is a more complex domain with a dynamic know-
ledge base.

The distinction between the complexities of the domains is fuzzy. It is hard
to distinguish between the domains that are simple and those that are complex,
in terms whether the ADS framework is able to accommodate to this domain.
Yet, the domains with the static knowledge base can usually be considered to be
less complex than those with a dynamic knowledge base.

51

CHAPTER 5

System Design

This chapter discusses the implementation details about the ADS framework:
the user interface, the server modules and the database. Figure 5.1 represents the
client-server model of the ADS framework.

Remote services (external)Client-side modules

Conversation
client

(AJAX)

Wizard of Oz
client

(AJAX)

 Server-side modules

Web server
(Apache, PHP)

Database server
(Oracle) Morphology

module
(C++)

SMTP
server

Speech-synthesis
server

http://kiisu.eki.ee

Dialogue
Management

Engine
(PL/SQL)

Optional
remote

database

Figure 5.1: The client-server model of the ADS framework.

5.1 Client-side Code

The ADS framework is very much a server-centric model where client-side
code is kept to a minimum. All updates and effects to the user are “pushed” to
the client in response to an AJAX request. There are many reasons for this
approach that are not relevant at this point, e.g. one of the reasons being code
copy protection.

52

Even though the client is kept very thin, there are still many essential fea-
tures of the user interface that are controlled by the client-side code. One of
them is response timing.

There is currently no way to implement an HTTP [Fielding et al., 1997]
push. This means that the server cannot initiate any transactions. The alternative
would be using a thick client (applet/Flash [Allaire, 2002]) but the intention was
to keep the client thin for better accessibility of the end-users (as applets or
Flash might be disabled at the end-user’s browser).

So, it is the client that initiates all transactions by polling the server for any
new information. The client uses AJAX request to periodically poll the server.
As it is essential to keep the incoming traffic to the server as minimal as possi-
ble, all AJAX requests between the client and server are reduced in frequency
and size. The client polls the server at a variable rate – usually between 2 and 10
seconds (almost “real-time”). Also all redundant information is stripped from
the package by the server and added later by the client. Multiple equal requests
from the client are not prevented as it is very hard to anticipate what the server
“wants” to reply to any request, as the server is keeping its own history of the
conversation where timing and pauses can have a certain meaning and therefore
can trigger certain events independently from the client. For example, the server
might consider it appropriate to provide some additional suggestions if the
client has been quiet for a long time.

5.1.1 Conversation Interface

The Conversation Interface is a thin AJAX client which communicates with the
server via HTTP protocol [Fielding et al., 1997] over the Internet. Figure 5.2
represents the graphical user interface components of the conversation interface.

The GUI is built to be moderate and simple. There are no un-necessary con-
trol elements (no menus, no links) – just a text area with chat contents, an input
area, and an option to turn ON/OFF voice (speech synthesis).

This GUI should be relatively intuitive for any user who has seen a common
text-chat interface before.

It is easy to modify the GUI for any specific need. A developer with some
basic knowledge of HTML and CSS can change any component of the GUI to
meet the needs of a specific domain.

53

Conversation Interface

Chat contents

User input area

Voice ON/OFF

Optional
picture
(avatar)

Banner, title, topic, ... etc.

User: hi
System: hi
System:
System:
User:

Figure 5.2: The GUI components of the conversation interface.

5.1.2 Wizard-of-Oz Interface

The WOZ interface is a thin AJAX client which communicates with the server
via HTTP protocol over the Internet.

The WOZ interface supports unlimited number of wizards and unlimited
number of conversations, while the number of conversations being more than or
equal to the number of wizards.

The wizard will see a list of available conversations in the WOZ interface.
The conversation becomes visible in the list if the user of the dialogue system
has provided its first input in the dialogue. A conversation turns idle (become
unavailable for the wizard), if the user has provided no input in 2 minutes. Idle
conversation is not available for the wizard. Only available conversations are
listed to all wizards. Figure 5.3 represents the graphical user interface compo-
nents of the WOZ interface.

Each wizard can join any number of available conversations. Joining a con-
versation immediately eliminates access to the same conversation by the other
wizards. This way the wizards do not get to join the same conversations. Only
one wizard can be in any conversation. So, a conversation also becomes
unavailable for other wizards after it has been joined by a wizard.

The process of joining is not reversible, that is – after joining, the wizard can
not release a conversation to the other wizards. This would be a nice feature to
have, yet is not implemented at this moment.

If a wizard has joined more than one conversation, a selection between these
conversations has to be made before providing input to the conversation. The
wizard can change this selection, so that all open conversations would receive
some input from the wizard. This can be quite a difficult task to switch between

54

many ongoing conversations and keep track of all of them. It could be rather
hard for a human assistant to handle more than five parallel conversations.

Wizard-of-Oz Interface

Chat contents of the selected conversation

Wizard input area

List of
available

conversations

Banner, title, topic, ... etc.

User: hi
System: hi
System:
System:
User:

Figure 5.3: The GUI components of the Wizard-of-Oz interface.

While the wizard is helping the system, the system (i.e. the dialogue engine) is
not turned into the silent mode. The system still keeps answering to the ques-
tions if able to do so. This can be quite helpful but can also lead into duplicate
answers if the wizard is not aware of the system capabilities.

The interface would be better, if it could inform the wizard about the inten-
tions of the dialogue engine (e.g. “The dialogue engine is willing to answer ...”).
The planned answer of the system could be shown only to the wizard and the
wizard can approve or disapprove the answer. This way the wizard could have
control of the conversation and the system would not be able to interrupt. This
feature of interruption control is not implemented yet and the system can inter-
rupt at any moment. Usually this is not a problem, as the wizard is usually
aware of system capabilities and is able to lead the conversation in a way that
system can complete its responses and wizard can assist where necessary.

The WOZ interface is currently also able to inform the wizard about a start-
ing conversation by sending a text message to the wizard’s mobile phone. This
way the wizard does not need to constantly monitor the interface for available
conversations. This notification is sent by a SMTP protocol [Postel, 1982]. That
means the system needs a SMTP server or has to have access to such a server.
Currently the system uses an SMTP server that is freely provided by the internet
service provider. This server can be replaced with any available SMTP server.

These notification messages are very useful, as the conversations with live
systems can be rather rare and the wizard would have to spend too much idle
time waiting for a conversation to start.

55

5.2 Server-side Code

Most of the code in the ADS framework is server-side code, the main reason
still being the code security (copy prevention).

5.2.1 PHP Modules

Some PHP code is used to wrap the function calls to the database and to provide
some basic pre-processing to the input by removing potential security risks from
the input.

The PHP code in the ADS framework is also and essential element in ses-
sion management. Sessions are initiated and handled by PHP. The session num-
ber is passed to the database upon each request along with additional input data
from the client. Client-side session handling is covered by the client browser.

5.2.2 Database

Most of the key procedures in the ADS framework are implemented as stored
procedures in the Oracle database. The choice of database (Oracle vs. MySQL
[Widenius et al., 2002]) was a matter of experience. Any of these database
engines could be used.

These key procedures include:
– input processing (including morphological analysis)
– finding the answer
– output processing

The main reason for implementing the key procedures in the database is the fact
that the ADS framework stores most configuration parameters and data in the
database. This data includes rules and templates. The database also contains all
log files, including conversation logs and bug logs.

An alternative implementation would be to store data as text files on disk or
in the database and keep the procedures as server-side code.

The main advantage of using stored procedures is the seamless integration
with the data.

For example, there is no need to load the rules from the text file or database
prior to the matching process. The rules are in the table and the processing is
done by simply selecting the rules from the table.

There is also no need to make frequent connections to the text file or to the
database to store conversation logs. The stored procedures can simply insert the
sentences into the conversation log table. This keeps the number of connections
to the database at minimal level.

56

The process of input parsing in the database is well observed as all the
intermediate data during the parsing process is inserted into the database tables.
The relational model is described in Figure 2.2.

The relational model provides a solid logical structure for the following
relations:

– the words are associated with the base forms and n-grams
– the base forms are associated with the n-grams
– the rules are associated with n-grams, words and base forms

This data structure is created and stored for each conversation and is available
during the entire session. These session references are also used during the
WOZ process.

5.3 Remote Services

Currently two remote services are used by the ADS framework:
– Speech-synthesis server
– SMTP server

These services are non-essential in a sense that their unavailability or mal-
function is not an issue for the system health as a whole. The system can con-
tinue without these services.

5.3.1 Speech-Synthesis Server

The speech-synthesis server is used to create speech output for the user. The
speech output is a nice addition to the plain text output that is generated any-
way.

The key point to mention in using the speech-synthesis option is that the
server-side modules do the very minimal communication with the speech-syn-
thesis server (by sending the server the sentence to be synthesized) and the most
is done by the client-side code (by downloading the speech file to the clients
machine real-time). This load-balancing is a crucial point as the ADS server
would not be able to handle the requests for speech files and provide Dialogue
Manager functionalities at the same time. This solution helps to keep the net-
work traffic of the ADS server minimal.

The lack or malfunction of speech-synthesis would only affect the output in
a way that the output would be plain text without speech. As the speech-syn-
thesis option is left optional in the client module by a certain checkbox (speech
ON/OFF). As the default setting is OFF, the user can be rather certain that this
is not a crucial feature to have.

Currently the speech-synthesis server at http://kiisu.eki.ee/ is used. This
speech-synthesis server has been created by Tallinn University of Technology

57

and the Institute of the Estonian Language [Meister et al., 2003], [Mihkla et al.,
1999].

5.3.2 SMTP Server

The use of SMTP server is completely irrelevant to the end-user and is meant
only for the wizards (the users of WOZ). The SMTP server is used to send noti-
fications to the wizard’s mobile phone to inform the wizard that a conversation
has started.

The lack or malfunction of the SMTP server results in no notifications being
sent to the wizard's mobile phone. This is rather bad as the wizards would then
miss most of the conversations. No wizard usually sits and waits for a conver-
sation to just happen. The frequency of conversations is usually rather low.

The system could be set up so that the invitation is sent only when the sys-
tem is in trouble (that is – unable to find an appropriate answer). Currently, this
option is not used and the notification is sent immediately after the user has
issued a first sentence. There is also an expiration interval – that is notifications
are not sent in the next X minutes to avoid many parallel notifications in case
many parallel conversations start.

Currently, an SMTP server is used that is freely provided by the internet ser-
vice provider.

5.3.3 Data Import from an Optional Remote Database

There is a component “Optional Remote Database” on Figure 5.1. This means
that the ADS framework can communicate with external databases.

This feature is implemented and used in a dialogue system (Alfred) that cur-
rently imports the new movie schedule into the ADS framework. This auto-
mated import takes place once a day.

ADS framework currently uses the HTTP protocol to connect to a remote
database and import the movie schedule. The rest of the procedure (parsing the
movie schedule to a suitable format) is rather task specific and probably not
reusable.

58

CHAPTER 6

Application Issues and Evaluation

This chapter is about the application issues and evaluation. The intention is to
show the process of getting the system to the state as it is currently in. This
would provide information on further domain adaptations and also provides
some insight on the flexibility of the ADS framework.

The process of resolving application issues includes evaluation from the
point of developer and the evaluation from the point of the real users and the
test users.

Most of the application issues (e.g. temporal resolution) were resolved dur-
ing the analysis process and did not affect the overall implementation and dep-
loyment process. Yet, some of the interesting application issues (e.g. resolution
of spelling errors) arose after testing of the first release of the framework. This
chapter outlines these issues, the changes that were made to the framework to
resolve these issues and the evaluation process.

6.1 Application Issues

The first release of the framework contained the core functionality, including
the client side and the server side modules for basic chat interface. As the com-
munication style seemed too limited the asynchronous communication was
immediately added to the framework.

The next stage of the application process was the domain adaptation, starting
from the knowledge engineering. This involved “character anticipation” (design
of the domain character that the system had to become). This involved an-
ticipating all the possible scenarios the system would get into and the infor-
mation that the users might need.

As previously stated, the ADS framework is running as a base for two dialo-
gue systems: Alfred and Zelda (Zelda, a virtual dental consultant, and Alfred, a
provider of movie schedule information). These domains are rather different,
which illustrates the flexibility and adaptability of the ADS framework.

After the knowledge had been added into the dialogue systems (Alfred and
Zelda), the systems were ready for testing. A note to be made here is that the

59

number of rules in the knowledge base was about 20% of the current amount.
This shows that the anticipation process is not as good as one would expect.
Many unhandled issues seem to arise after deployment and after the real user
testing. It is also important to note, that in building the knowledge base for
Zelda, much assistance from a dental professionals was used. This external
expert assistance could be inevitable for many expert domains.

The important feature that was added directly prior to the public testing was
the interface for human assistance. The main reason for providing human assis-
tance, was the fact that Zelda was built for a rather serious domain with real
users. Without the human assistance, the number of disappointed users would
be very high. For example, the public testing of Zelda without the human assis-
tance would contain very high risk of doing serious damage to the reputation of
the dental clinic that placed Zelda on its main internet page. So, the availability
of human assistance in the framework is essential in the first public release. This
also might be the reason why we don’t see many dialogue systems in public use,
because the frameworks usually lack the interface for human assistance.

6.2 Evaluation by Public Testing

The public testing quickly showed that spelling errors from the real users are
very common. To resolve this issue, the usual solution would be to relax the
pattern-matching process that would allow mistakes in the user input. Yet, this
involves writing additional patterns (relaxed patterns) or a different parsing of
regular expressions. None of these approaches are robust enough. Instead, ADS
framework implements the support for resolving spelling errors – the process
that executes immediately before the pattern-matching process (see Section
4.2).

The results in resolving spelling errors show that for Zelda the number of
spelling errors corrected is 380 for the total of 4500 user utterances. That is
8.4% and it is a significant amount. This could well mean that 380 conver-
sations would have failed without the speller.

The next issue that arose during the public testing was the word order prob-
lem. As the input from the real users had a free word order, the patterns had to
be adjusted to resolve this issue.

As shown in Section 3.5 the approach that involved pattern modification was
wrong as it resulted in pattern structures becoming more and more complex.
This caused additional problems in the management of the knowledge base.

The correct solution to the word order problem was to add the word order
resolution by allowing automated permutations.

As always, the improvements to the ADS framework (resolving of spelling
errors and resolving word order problem) had to be tested. The best testing was
to run a full check that was based on the previous input. The full test involved
all the user input sentences that were automatically tested again, to see how

60

many of them would be resolved now as the framework has been improved. The
tests showed that every improvement reduced the number of unanswered ques-
tions.

The similar testing was also carried out always after the knowledge base was
improved. Yet, the improvement was rather small if only the rules were
adjusted. For example, the increase in the number of rules by 20% (that means
new rules were added into the knowledge base), the number of unanswered
questions was reduced only by 10%.

It seems that at a certain point the increase in the number of rules gives a
very little effect in the system quality. It shows that a certain small set of rules
(approx 100 rules) are used very frequently and the rest of the rules are used
very seldom.

The minor issue appeared with temporal queries that were necessary in
Alfred but resulted in “Not found.” responses in Zelda. The solution was to
allow this functionality of temporal resolution to be turned off in the ADS
framework if not needed in a particular domain.

6.3 Evaluation by Test Users

Most of the user evaluation is based on Zelda (as Alfred was built mainly for
illustrative reasons), yet many same aspects here apply for both of the dialogue
systems.

The tests with the real users on Zelda show that the user disappointment
level is quite low. The conversation logs show 20 utterances (from the total of
4500 utterances) that express disappointment of some level. Two of them
expressed very high disappointment. This low rate is possible only because of
the human assistance. Most of the Zelda users expressed gratitude at the end of
the conversations. This could be influenced by the fact that the domain of the
dialogue system was picked such that gave the users valuable information. If
compared to Alfred, the movie information is not as valuable.

The real users were not questioned afterwards. The other tests were with test
users and these users were questioned afterwards. However, the tests from the
test users did not provide valuable input in the form of user utterances. The test
users probably didn't have a dental issue to discuss with the system. So, they did
not provide sentences that could come from the real users. Yet, they made some
interesting remarks.

One of the complaints was the slow response rate. The test users were
mostly very computer literate and fast in typing. So, they expected the same
from the system – a fast response. Yet, the real users are not so fast and have
expressed the opposite. So, this is the main reason for keeping the response
timing a bit slower (the response timing is intentionally slow, it is not slow due
to the computing speed or bad algorithms). The other reason is that the slow
timing allows the human assistant to step in easily and give human assistance. It

61

takes about 30 seconds from receiving a sms-alert from the system, for the
human assistant to get to the computer and start helping the system.

As the users are familiar with the timing from seeing the introducing sen-
tences from the system being issued at this slow rate, they are still there waiting
and the human assistant can assist. If the response timing would be faster, the
users would consider the pause in the case of unanswered sentence too long and
leave before the human assistant could provide assistance.

The solution to this slow response rate would be adjusting the response rate
later on based on user typing speed.

A few minor remarks were on the appearance and usability of Alfred and
Zelda. Most of the users gave very high rating on the easy chat interface that did
not require any additional information or any additional actions from the user.
The user was just able to enter the conversation and start typing right away. The
users were satisfied that no registration, no menu selections, no setup of any
kind was necessary, just a click on “start conversation” button and the chat
interface was opened and ready to accept input.

Some of the test users suggested adding more “small talk” functionality.
This was resolved by adding 20 rules for covering the small talk, such as
answers to these “how are you?”, “what have you been up to?”, “how old are
you?”, “what are you?”, etc.

6.4 Reducing the Amount of Human Assistance

As stated earlier, the goal of this research has always been maximizing the part
of the conversation held with the program and minimizing the human inter-
vention.

The additional features (correcting spelling errors, ignoring word order) and
data collection with human assistance has helped to lower the percentage of
human assisted answers.

It appears that in the early stages of testing while these new features were
not available, 25% of answers were given by human operator in a conversation.
After these new features were added and knowledge base was corrected, the
percentage of human-assisted answers has decreased to 15%. We also must take
into account the factor that the human-assistance was needed in some conver-
sations, yet was not given as the human operator was not available. Therefore, it
was necessary to check each conversation to see whether assistance was needed.
This made the percentage go up a bit, up to 19%.

The ultimate goal is to have all answers given by the system and have 0% of
human assistance. However, in most real life situations this goal will not be
realistic. There will always be a small percentage of questions that need human
assistance in answering. Therefore, this human-assisted approach seems a rea-
sonable way to go in making these systems more available to public.

62

6.5 Word Count per Utterance

As one of the main features of the ADS framework is the asynchronous com-
munication pattern (ACP), this chapter is concentrated on experiments looking
into the benefits of the ACP. First of all the word count per utterance is
examined, to determine whether using the ACP has any effect on making the
users talk with more expressiveness (that is using more words per utterance and
less single-word utterances).

The word count per utterance is an important issue in evaluating the mixed-
initiative dialogue systems. This shows how expressive the users tend to be
while talking to the dialogue system. It is not a good sign if the average number
of words per utterance is very low. This means that the users have captured the
keyword based approach of the system and are over-simplifying the conver-
sation by using only single keywords. If the users use too many single-word
utterances, the system is likely to fail in responding correctly [Liljenback,
2007].

Three dialogue systems were studied in evaluating the word count. One of
the systems (Teatriagent) was a system with synchronous communication pat-
tern which was not built in the ADS framework. The other two systems (Alfred
and Zelda) were using asynchronous communication pattern and were imple-
mented in the ADS framework.

Teatriagent and Alfred are very similar in domain – the first one gives
information about theatre schedules and the second one gives information about
the movie schedules. Zelda is a bit different in domain – a virtual dental con-
sultant.

One of the aims of implementing the asynchronous communication pattern
was to make the system more life-like, so that the users would not capture the
keyword based approach of the system. We expected that in a life-like conver-
sation pattern the users would try to be more expressive and use longer sen-
tences while talking to the system. This would be beneficial as longer sentences
contain more semantic information. We had a belief that when the system is not
life-like in communication pattern, the users would tend to use just single key-
words while talking to the system. The use of single keywords from the users is
not a good sign and it makes it hard to provide appropriate answers.

Looking at the word count per utterance (see Table 6.1) shows that the sys-
tems with asynchronous communication pattern have higher numbers in word
counts per utterance. It looks like the asynchronous communication pattern of
the ADS framework has succeeded in making the users talk using more words.

Teatriagent has a large number (36.29%) of single-word utterances. Alfred
and Zelda have less of these single-word utterances (accordingly 26.10% and
24.41%). This means, that users were more expressive while using Alfred and
Zelda.

63

Table 6.1: Word count per utterance

 Teatriagent Aivo Alfred Zelda

average number of words
in utterance

2.66 3.20 3.26 4.71

% of single-word
utterances

36.29% 31.96% 26.10% 24.41%

% of utterances with
more than 5 words

6.71% 14.31% 12.12% 24.04%

There is also a system called Aivo that has been shown in the comparison (see
Table 6.1). Aivo is also implemented in the ADS framework. However, Aivo is
an exceptional system as it contains only WOZ conversations with asyn-
chronous communication pattern. The number of single-word utterances is
rather high in WOZ conversations (31.96%). This is probably due to the fact
that the test users were not interested in asking information from Aivo. The
recruited testers probably wanted to take the easy way out of the testing task.
This resulted in using many single-word utterances.

The distribution of word count per utterance is shown in Figure 6.1.

Figure 6.1: Word count per utterance.

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 2 3 4 5 6 7 8 9 10 > 10
number of words per utterance

p
e
r
c
e
n
t

o
f

t
o
t
a
l

u
t
t
e
r
a
n
c
e
s

Teatriagent
Alfred

Zelda

64

The word count per utterance of Aivo is not shown in Figure 6.1 as it compares
rather well to Alfred and the graph would become visually hard to capture.

There is one strange phenomenon to notice in Figure 6.1. The number of
utterances with 4 words is higher than those with 3 words. This is true for
Alfred and Zelda. There seems to be no meaningful explanation to this indi-
cation.

6.6 Wizard-of-Oz Experiments

The benefits of the asynchronous communication pattern in the process of WOZ
data collection in text-based chat are discussed in Section 2.6.3.

It was stated that in the asynchronous communication pattern we have much
better chances to trick the user into believing that the partner is still the com-
puter, thus preventing the conversation from falling into the human-to-human
communication pattern. The main reason being that asynchronous commu-
nication pattern helps to disguise the slower response rate of the human assis-
tant.

There is no statistical data available to make a comparison to support this
claim, i.e. to show how many times the slower response rates by the human
assistants have caused the users to suspect that the system is assisted by a hu-
man.

However, it is a fact that 0% of WOZ conversations that were held with the
ADS framework fell into the human-to-human communication pattern due to
slower response rate problem.

There were some WOZ conversations with the ADS framework where the
user discovered that the system is assisted by a human. However, all these
problems were caused by the responses of the human assistant that were consi-
dered to be too intelligent for a system. Being too intelligent as a wizard, is
another common give-away in WOZ conversations and there is no way to pre-
vent this with the asynchronous communication pattern.

There is an alternative that is widely used to prevent the long pauses from
causing suspicion. The task of WOZ data collection is set up so that all users are
informed that the system is slow and makes longer pauses in answering.

65

CHAPTER 7

Future Work

This chapter lists a few ideas that will be implemented in the ADS framework
in the near future.

7.1 Improving the Data Collection

Adding a new rule to the knowledge base is a subtask of knowledge engi-
neering. The absence of a rule may be identified by analyzing the domain, pos-
sibly by browsing the dialogue corpora. In many cases, the lack of rules also
appears during the WOZ process. So, the need to add a new rule usually arises
from a new conversation topic or a new question that has not yet been handled
by the system.

This approach is very inefficient, yet any automated ways to harvest know-
ledge are too much uncontrolled.

It would be reasonable to implement a semi-automatic approach in the ADS
framework. This would involve supervised additions to the knowledge base
during or after the WOZ process. The administrator is presented with the ques-
tions that were answered by WOZ and the administrator will use these question-
answer pairs to design new rules. The question-answer pairs could be presented
in Comma Separated Values (CSV) form and the words in the question could be
presented as base forms. This would facilitate the process of adding new pat-
tern-response pairs to the database.

An additional useful feature in managing the knowledge base would be an
error-reporting solution. This reporting would provide information about dupli-
cate rules (including duplication by word order), similar rules (by using Jaro
Winkler) and syntax errors in rules.

7.2 Handling Data Update Requests by the User

A paper by Minock [Minock, 2006] opens the topic of natural language updates
to databases. A database protocol to handle database updates of the Insert-
Delete-Modify class is proposed and implemented. This protocol exploits

66

modern relational update facilities and constraints and structures update dialo-
gues using DAMSL [Core and Allen 1997] dialogue acts Dialog. The protocol
may be used with any natural language parser that maps to relational queries. So
far the dialogue systems built on the ADS framework have been selecting data
from the database (not inserting, deleting, updating), it would be interesting to
experiment with an interface that would do updates to database.

7.3 Handling User Input in Multiple Passes

The user might issue one meaning in multiple passes, as in:

User: I have a problem with my tooth.
User: It hurts!

Or the user could issue even one sentence in multiple passes, as in:

User: I would need to have my tooth, how to say it …
User: extracted or removed.

In this case the match is not found, as none of the inputs did contain suitable
patterns: [tooth hurt; tooth extracted|removed].

Yet, there is enough information available to find a meaning in such input
and to provide an answer.

The pattern search in the user input currently looks at every specific input
pass. The solution would be to extend the pattern search to multiple passes. We
would need to concatenate the consequtive unanswered input sentences and try
to search for a pattern again.

67

CHAPTER 8

Conclusions

This thesis presents the ADS framework – a collection of integrated modules
(including several NLP modules) that can be used in developing text-based
natural language dialogue systems. The ADS framework is currently tailored for
Estonian language, yet most of its features and modules are easily transferable
to English language. The dialogue systems based on the ADS framework mimic
the natural interaction between people better than the models used so far.

The ADS framework provides a hybrid approach – “a human assisted chat
system” that allows a single human agent to handle a number of simultaneous
chat sessions by having an AI-engine handle the bulk of common, repeat ques-
tions. The AI-engine will allow the human agent to focus his or her attention on
the few chat sessions needing unique service and will effectively lower the cost
of supporting chat sessions. The server-side technology of the ADS framework
uses an AI-engine as well as a live agent backend interface for a site to deliver
live-agent experience without the customer having to know whether the answer
is from the AI-engine or from the human agent.

This approach allows us to put these dialogue systems into practical use and
avoid user disappointment. Although, the dialogue systems developed in the
ADS Framework, can be assisted by a human, still the goal of this research has
always been maximizing the AI-participation in the conversation and mini-
mizing the human intervention.

The contributions of the thesis are listed as the features of the ADS frame-
work, including:

a) Easy and compact representation of knowledge, so that the domain adap-
tation and knowledge base engineering would contain a minimal amount
of programming effort. The knowledge is represented as a set of pattern-
response pairs. The system also includes pattern-function pairs to
represent procedural knowledge. The patterns are expressed as regular
expressions with added support for free word order problem.

b) Asynchronous turn-taking strategy, so that both parties (human and com-
puter) can provide input at any given moment and can take any number
of sequential turns without waiting for the other party to acknowledge
each turn.

68

c) AI-assisted live agent chat, so that the unanswered questions can be han-
dled by an optional human operator.

d) Robust language analysis, so that the misspellings in the user input are
corrected by the system. The language analysis also includes the stem-
ming (the process of reducing a word to its root word), to ease the pattern
creation in knowledge engineering.

e) Separation of declarative domain knowledge and procedural code. The
domain specific knowledge and temporal constraints are separated from
the central dialogue management.

f) A flexible and modular design for rapid development of mixed-initiative
dialogue systems with a web-based interface.

g) A web-based conversation interface with optional speech synthesis.
h) A language independent solution for the word-order problem, thus allow-

ing skipping the syntactic analysis and optionally ignoring the word-order
problem in the knowledge engineering process. This is essential for lan-
guages with relatively free word order (such as Estonian).

i) A collection of temporal constraints for Estonian temporal normalization.

69

Bibliography
[AIML, 2009] AIML (2009). Artificial Intelligence Markup Language. Retrieved Aug

1, 2009 from http://www.alicebot.org/aiml.html
[Allaire, 2002] Allaire, J. (2002) Macromedia Flash MX – A next-generation rich client.

Technical report, Macromedia.
[Allen et al, 2001] Allen, J., Ferguson, G. and Stent, A. (2001). An architecture for

more realistic conversational systems. In IUI ’01: Proceedings of the 6th inter-
national conference on Intelligent user interfaces, Santa Fe, New Mexico, United
States, pages 1–8. ACM Press.

[Alumäe, 2006] Alumäe, T. (2006). Methods for Estonian large vocabulary speech
recognition. Ph.D. Thesis. Tallinn University of Technology. TUT Press.

[Arnold and Gosling, 1996] Arnold, K. and Gosling, J. (1996). The Java Programming
Language. Reading, Mass.: Addison-Wesley.

[Atkinson and Suraski 2003] Atkinson, L. and Suraski, Z. (2003). Core PHP Program-
ming, Third Edition, Prentice Hall Professional Technical Reference.

[Black, 2005] Black, P. E. (2005). Dictionary of Algorithms and Data Structures.
Information Technology Laboratory, National Institute of Standards and Technology
(NIST).

[Blaylock et al., 2002] Blaylock, N., Allen, J., Ferguson, G. (2002). Synchronization in
an asynchronous agent-based architecture for dialogue systems. In: Proceedings of
the 3rd SIGdial Workshop on Discourse and Dialogue, pages 1–10, Philadelphia,
Pennsylvania.

[Bohus and Rudnicky, 2003] Bohus, D. and Rudnicky, A. (2003). RavenClaw: Dialog
management using hierarchical task decomposition and an expectation agenda. In:
Proceedings of Eurospeech.

[Bohus et al., 2007] Bohus, D., Raux, A., Harris, T., Eskenazi, M. and Rudnicky, A.,
(2007). Olympus: an open-source framework for conversational spoken language
interface research. In: Proceedings of HLT-2007. Rochester, NY.

[Cimiano et al., 2007] Cimiano, P., Haase, P. and Heizmann, J. (2007). Porting natural
language interfaces between domains – a case study with the ORAKEL system. In:
Proceedings of the International Conference on Intelligent User Interfaces, pages
180–189.

[Cohen et al., 2003] Cohen, W. W., Ravikumar, P. and Fienberg, S. E. (2003). A com-
parison of string metrics for matching names and records. In: Proceedings of KDD-
2003 Workshop on Data Cleaning and Object Consolidation.

[Core and Allen 1997] Core, M. and Allen, J. (1997). Coding dialogs with the DAMSL
annotation scheme. In: AAAI Fall Symposium on Communicative Action in Humans
and Machines, Boston, MA.

70

[Crockford, 2008] Crockford, D. (2008). JavaScript: The Good Parts, O'Reilly Media,
Inc.

[CSLU Toolkit, 2009] CSLU Toolkit. (2009). Retrieved Aug 1, 2009 from
http://cslu.cse.ogi.edu/toolkit/

[Dzikovska et al., 2003] Dzikovska, M.O., Allen, J.F. and Swift, M.D. (2003). Inte-
grating linguistic and domain knowledge for spoken dialog systems in multiple do-
mains. In: Proc. of IJCAI-03 Workshop on Knowledge and Reasoning in Practical
Dialogue Systems, Acapulco, Mexico.

[Eichorn, 2006] Eichorn, J. (2006). Understanding AJAX: Using JavaScript to Create
Rich Internet Applications, Prentice Hall PTR, Upper Saddle River, NJ.

[Elder, 2004] Elder, M. (2004). Preparing a data source for a natural language query.
United States Patent Application No 20050043940.

[Fielding et al., 1997] Fielding, R., Gettys, J., Mogul, J., Frystyk, H. and Berners-Lee,
T. (1997). Hypertext Transfer Protocol – HTTP/1.1, RFC Editor.

[Jokinen et al., 2002] Jokinen, K., Kerminen, A., Kaipainen, M., Jauhiainen, T., Wil-
cock, G., Turunen, M., Hakulinen, J., Kuusisto, J. and Lagus, K. (2002). Adaptive
dialogue systems – interaction with interact. In: Proceedings of the 3rd SIGdial
Workshop on Discourse and Dialogue.

[Jurafsky and Martin, 2000] Jurafsky, D. and Martin, J. H. (2000), Speech and Lan-
guage Processing: An Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition, Prentice-Hall, Upper Saddle River, NJ.

[Kaalep and Vaino, 2001] Kaalep, H.-J. and Vaino, T. (2001). Complete morphological
analysis in the linguist's toolbox. In: Congressus Nonus Internationalis Fenno-
Ugristarum Pars V, pages 9–16, Tartu, Estonia.

[Lie and Bos, 1997] Lie, H.W. and Bos, B. (1997). Cascading style sheets: designing for
the Web, Addison-Wesley Longman Publishing Co., Inc., Boston, MA.

[Liljenback, 2007] Liljenback, M. E. (2007). ContextQA: Experiments in Interactive
Restricted-Domain Question Answering, MSc. in CS Thesis, San Diego University,
2007.

[Loney, 2004] Loney, K. (2004). Oracle Database 10g: The Complete Reference,
Osborne. McGraw-Hill, New York.

[Lucas, 2000] Lucas, B. (2000). VoiceXML for Web-based distributed conversational
applications, Communications of the ACM, Vol. 43, pages 53–57.

[Meister et al., 2003] Meister, E., Lasn, J. and Meister, J. (2003). SpeechDat-like Esto-
nian database. In: Text, Speech and Dialogue : 6th International Conference, TSD
2003, Czech Republic, September 8–12, 2003 / Eds. Matoušek [et al.]. Berlin [etc.] :
Springer, Lecture Notes in Artificial Intelligence, Vol. 2807, pages 412–417.

[Mihkla et al., 1999] Mihkla, M., Eek, A. and Meister, E. (1999). Text-to-Speech Syn-
thesis of Estonian. In: Proceedings of the 6th European Conference on Speech
Communication and Technology, Budapest, Vol. 5, pages 2095–2098.

[Minock, 2006] Minock, M. (2006). Natural language updates to databases through
dialogue. In: Proceedings of Applications of Natural Language to Data Bases
(NLDB), pages 203–208, Klagenfurt, Austria.

[Misu et al., 2010] Misu, T., Ohtake, K., Hori, C., Kashioka, H., Kawai, H. and Naka-
mura, S. (2010). Construction and Experiment of a Spoken Consulting Dialogue
System. In Proc. IWSDS.

[Popescu et al., 2003] Popescu, A.-M., Etzioni, O. and Kautz, H. (2003). Towards a
theory of natural language interfaces to databases. In: Proceedings of the Inter-
national Conference on Intelligent User Interfaces, pages 149–157, Miami, USA.

71

[Postel, 1982] Postel, J. (1982). Simple Mail Transfer Protocol, RFC Editor.
[Raggett et al, 1999] Raggett, D., Hors, A. L. and Jacobs, I. (1999). HTML 4.01 Speci-

fication. W3C Recommendation. Retrieved May 12, 2011 from
http://www.w3.org/TR/html4/

[Raynor, 1999] Raynor, W. (1999). The International Dictionary of Artificial Intelli-
gence, USA: The Glenlake Publishing Company Ltd.

[Rieser and Lemon, 2008] Rieser, V. and Lemon, O. (2008). Learning Effective Multi-
modal Dialogue Strategies from Wizardof-Oz data: Bootstrapping and Evaluation,
In: Association for Computational Linguistics (ACL), Columbus, OH, USA, pp.
638–646.

[Sajja and Akerkar, 2010] Sajja, P.S. and Akerkar, R. (2010). Knowledge-Based Sys-
tems for Development, Advanced Knowledge Based Sytem: Model, Application &
Research, Vol. 1, 2010, pages 1–3.

[Semantra, 2009] Semantra, (2009). Semantra Technology Overview. Retrieved Aug 1,
2009 from http://www.semantra.com/solutions/technology.cfm

[Stenchikova and Stent, 2007] S. Stenchikova and A. Stent. (2007). Measuring adap-
tation between dialogs. In: Proceedings of the 8th SIGdial Workshop on Discourse
and Dialogue, Antwerp, Belgium.

[Sutrop, 2004] Sutrop, U. (2004). Estonian language. Retrieved Aug 1, 2009 from
http://www.einst.ee/failid/eestikeel.web_1.pdf

[Sutton et al., 1998] Sutton, S., Cole, R., De Villiers, J., Schalkwyk, J., Vermeulen, P.,
Macon, M., Yan, Y., Kaiser, E., Rundle, B., Shobaki, K., Hosom, J.P., Kain, A.,
Wouters, J., Massaro, D. and Cohen, M. (1998). Universal speech tools: The CSLU
toolkit. In: Proceedings of the 5th International Conference on Spoken Language
Processing (ICSLP'98, Sydney, Australia). ICSLP, 3221–3224.

[Toney et al., 2008] Toney, D., Rosset, S., Max, A., Galibert, O. and Bilinski, E. (2008).
An Evaluation of Spoken and Textual Interaction in the RITEL Interactive Question
Answering System. In: Proceedings of the Sixth International Language Resources
and Evaluation (LREC'08), Marrakech, Morocco.

[Treumuth et al., 2006] Treumuth, M., Alumäe, T. and Meister, E. (2006). A Natural
Language Interface to a Theater Information Database. In: Proceedings of the 5th
Slovenian and 1st International Language Technologies Conference 2006 (IS-LTC
2006), pages 27–30.

[Treumuth, 2008] Treumuth, M. (2008). Normalization of Temporal Information in
Estonian. In: Proceedings of the 11th international conference on Text, Speech and
Dialogue. Brno, Czech Republic.

[VoiceXML, 2009] VoiceXML, (2009). VoiceXML specification. Retrieved Aug 1,
2009 from http://www.voicexml.org

[Vrajitoru, 2006] Vrajitoru, D. (2006). NPCs and Chatterbots with Personality and
Emotional Response. In: Proceedings of the 2006 IEEE Symposium on Compu-
tational Intelligence and Games (CIG06), pages 142–147.

[Widenius et al., 2002] Widenius, M., DuBois, P. and Axmark, D. (2002). Mysql
Reference Manual, O'Reilly & Associates, Inc., Sebastopol, CA.

[Wilson, 2000] Wilson, B. (2000). The Natural Language Processing Dictionary.
Retrieved May 12, 2011 from http://www.cse.unsw.edu.au/~billw/nlpdict.html

72

Kokkuvõte (Summary in Estonian)

Asünkroonsete dialoogsüsteemide raamistik:
mõisted, probleemid ja kavandamise aspektid

Käesolevas doktoritöös realiseeriti nn. asünkroonsete dialoogsüsteemide (ADS) raamis-
tik – tarkvara, mida saab kasutada tekstipõhiste, kasutajaga loomulikus keeles üle Inter-
neti suhtlevate dialoogsüsteemide loomisel. Eeskätt on arvestatud eestikeelse suhtlu-
sega, kuid kuna süsteem on modulaarne ja enamik mooduleid on püütud teha keelest
sõltumatuks, siis on raamistik – erinevalt olemasolevaist – suhteliselt hõlpsasti üle-
kantav ka teistele keeltele. Raamistikus realiseeritud suhtlusmudel jäljendab loomulikku
inimestevahelist suhtlust paremini kui seni kasutusel olnud mudelid.

Dialoogsüsteemide laiema praktilise kasutuse üheks peamiseks takistuseks on
asjaolu, et süsteemid ei ole veel piisavalt head, et garanteerida kasutaja rahulolu. Ka
kõige parema dialoogsüsteemi puhul on ebareaalne eeldada, et süsteem suudab korrekt-
selt lahendada 100% kasutaja pöördumistest.

ADS raamistik võtab kasutusele kombineeritud lähenemise: inimabiga dialoog-
süsteemid, kus üksikutele süsteemi poolt vastamata jäetud küsimustele vastab reaalajas
inimoperaator. Seejuures teeb ta seda nõnda, et kasutaja jaoks ei ole inimoperaatori või
arvuti vastused eristatavad.

Selline lahendus on analoogiline masintõlke valdkonnas kasutatava lähenemisega.
Ka masintõlge ei suuda käesoleval hetkel pakkuda 100% korrektsust ning inimene peab
kas tõlkeprotsessi sekkuma või tõlgitud teksti redigeerima.

Inimabiga dialoogsüsteeme on turvalisem pakkuda praktilisse kasutusse ning tulenev
lisaväärtus on arvestatav nii kasutajaile kui ka arendajaile. Näiteks infotelefonikõned
saab nüüd asendada suhtlusega Internetis ja seejuures delegeerida suures osas vastamine
masinale. Kümnete samaaegsete vestluste pidamiseks piisab ühestainsast operaatorist,
kes aitab vaid üksikuid vestlussessioone, kus arvuti vastamisel hädas on. Ülejäänud
juhtudega, kus vestlus kulgeb tavapärast rada, suudab tegeleda masin. Seeläbi saab
kokku hoida inimoperaatorite aega ja pakkuda suhtlemisvõimalust suuremale kasuta-
jaskonnale.

Arendaja seisukohalt on aga lisaväärtuseks reaalse kasutuse käigus tekkivate and-
mete suur hulk. Dialoogsüsteemi varjatud abistamisel saab koguda vestlusi ja nende
põhjal hiljem laiendada süsteemi teadmisi. Dialoogsüsteemide arendajana on autor
märganud, et reaalse kasutuse käigus tekkivad andmed on arendajale tunduvalt väärtus-
likumad kui testijate poolt tekitatud kunstlikud stsenaariumid, mida reaalses elus ena-
masti ei esine.

ADS raamistikku realiseerides ei olnud siiski põhieesmärk inimabi liidese loomine.
Laiem eesmärk on jätkuvalt uurida inimese ja arvuti vahelises suhtluses tekkivaid
probleeme ning töötada välja lahendusi nende probleemide ületamiseks. Nõnda pidevalt

73

parandades konkreetset dialoogsüsteemi ja/või ADS raamistikku, on inimabi osakaal
vestlustes üha langenud.

ADS raamistiku üheks peamiseks iseärasuseks, nagu ütleb ka raamistiku nimi, on
asünkroonse suhtlusmudeli kasutuselevõtt. Kui varem loodud dialoogsüsteemides oli
süsteemi voorude arv jäigas vastavuses kasutaja voorude arvuga, siis uus vestlusmudel
teeb suhtluse loomulikumaks: dialoogsüsteem ei pea enam ootama kasutajalt sisendit,
püsides vaikides ooterežiimis, vaid saab vabalt valitud hetkel ise vooru võtta. Töös
näidatakse, et asünkroonse vestlusmudeli kasutuselevõtt parandas ka kasutaja vest-
lusstiili, mille üheks tulemuseks oli ühesõnaliste lausungite arvu vähenemine. Suurem
sõnade arv lausungis parandab aga lause mõistmist ja tõstab süsteemi korrektse vastuse
tõenäosust.

Lisaks eeltoodule, on ADS raamistiku mõned olulisemad panused:
– keelest sõltumatu lahendus õigekirja kontrollimiseks ja kasutaja sisendis leidu-

vate võimalike kirjavigade automaatseks parandamiseks;
– keelest sõltumatu lahendus sõnade järjekorra ignoreerimiseks, mis ühelt poolt

annab võimaluse loobuda süntaktilisest analüüsist ning teisalt teeb lihtsamaks
teadmusbaasi täiendamise;

– komplekt eestikeelseid ajaväljendeid ja nende esitus formaalsete kitsendustena,
mida saab kasutada eestikeelsete ajaväljendite normaliseerimiseks info otsingul.

74

Appendix A

Technical specifications

1. List of acronyms (and their references if applicable):

ADS Asynchronous Dialogue System

AJAX Asynchronous JavaScript and XML
 http://www.w3.org/TR/XMLHttpRequest/

Retrieved 07.04.2011.

CSS Cascading Style Sheets
 http://www.w3.org/TR/CSS21/

Retrieved 07.04.2011.

GUI Graphical User Interface

HTML HyperText Markup Language

http://www.w3.org/TR/1999/REC-html401-19991224/
Retrieved 07.04.2011.

XHTML eXtensible HyperText Markup Language

http://www.w3.org/TR/2010/REC-xhtml11-20101123/
Retrieved 07.04.2011.

HTTP HyperText Transfer Protocol

http://tools.ietf.org/html/rfc2616
Retrieved 07.04.2011.

PHP PHP: Hypertext Preprocessor (scripting language)
http://www.php.net/
Retrieved 07.04.2011.

PL/SQL Procedural Structured Query Language

http://www.oracle.com/
Retrieved 07.04.2011.

75

SMTP Simple Mail Transfer Protocol
 http://tools.ietf.org/html/rfc5321

Retrieved 07.04.2011.

SQL Structured Query Language
http://www.oracle.com/
Retrieved 07.04.2011.

XML Extensible Markup Language
 http://www.w3.org/TR/REC-xml/

Retrieved 07.04.2011.

2. A brief summary of technical details

The ADS framework is a collection of integrated modules that can be used in de-
veloping text-based natural language dialogue systems. The ADS framework is very
much a server-centric model where client-side code is kept to a minimum. The client-
side logic is written in JavaScript [Crockford, 2008] (AJAX). The server-side logic is
written in PHP and Oracle PL/SQL. Flash plugin [Allaire, 2002] is used for sound sup-
port (audio playback of optional speech synthesis).

AJAX (asynchronous JavaScript and XML) is a group of interrelated web de-
velopment techniques used for creating interactive web applications or rich Internet
applications. With AJAX, the dialogue system can retrieve data from the server asyn-
chronously in the background without interfering with the display and behavior of the
existing page. Data is retrieved using the XMLHttpRequest object.

XMLHttpRequest is an API that is used by JavaScript to transfer XML and other
text data between a web server and a browser. The data returned from XMLHttpRequest
calls is provided by the back-end database. Using Ajax, the dialogue system can request
only the content that needs to be updated, thus reducing the bandwidth usage.

The layout of chat client is fully customizable by using CSS (Cascaded Style
Sheets). XHTML is used for the content-type.

No setup is needed on the client machine. The client works within the browser. The
system is successfully tested with common web browsers (most recent versions of Fire-
fox, Opera, Internet Explorer and Chrome). No browser plugins are required for main
functionality. Optional Flash 9.0 is required for speech synthesis.

76

Appendix B

Estonian language: noun cases and verb inflections

1. Estonian cases [Sutrop, 2004]

Case Example Meaning

Grammatical cases
1. Nominative ilus maja (a) beautiful house

2. Genitive ilusa maja of a beautiful house; a beautiful
house (as a total object)

3. Partitive ilusa-t maja a beautiful house (as a partial object)

Semantic cases
Interior local cases
4. Illative ilusa-sse maja-sse

(ilusasse majja)
into a beautiful house

5. Inessive ilusa-s maja-s in a beautiful house

6. Elative ilusa-st maja-st from a beautiful house

Exterior local cases
7. Allative ilusa-le maja-le onto a beautiful house

8. Adessive ilusa-l maja-l on a beautiful house

9. Ablative ilusa-lt maja-lt from a beautiful house

Other cases
10. Translative ilusa-ks maja-ks [to turn] (in)to a beautiful house

11. Terminative ilusa maja-ni up to a beautiful house

12. Essive ilusa maja-na as a beautiful house

13. Abessive ilusa maja-ta without a beautiful house

14. Comitative ilusa maja-ga with a beautiful house

77

2. Estonian verb inflections [Alumäe, 2006]

Plurality Person Example Meaning

Singular I (ma) armasta-n I love

 II (sa) armasta-d you love (sg.)

 III (ta) armasta-b he/she/it loves

Plural I (me) armasta-me we love

 II (te) armasta-te you love (pl.)

 III (nad) armasta-va-d they love

78

Appendix C

Excerpts from the knowledge bases

1. Examples of temporal constraints used in temporal resolution

Temporal expression in Estonian Constraint in SQL

(nädalavahetus|nädalalõpp)
trim(to_char(kuupaev, 'DAY')) = 'SATURDAY' or
trim(to_char(kuupaev, 'DAY')) = 'SUNDAY'

hommik
to_char(kuupaev, 'hh24:mi') between '06:00' and
'12:00'

lõuna
to_char(kuupaev, 'hh24:mi') between '12:01' and
'14:00'

õhtu
to_char(kuupaev, 'hh24:mi') between '17:01' and
'23:00'

öö
(to_char(kuupaev, 'hh24:mi') between '23:01' and
'23:59' or to_char(kuupaev, 'hh24:mi') between
'00:00' and '05:59')

üleeile trunc(kuupaev) = trunc(sysdate)-2

eile trunc(kuupaev) = trunc(sysdate)-1

täna trunc(kuupaev) = trunc(sysdate)

homme trunc(kuupaev) = trunc(sysdate)+1

ülehomme trunc(kuupaev) = trunc(sysdate)+2

esmaspäev trim(to_char(kuupaev, 'DAY')) = 'MONDAY'

teisipäev trim(to_char(kuupaev, 'DAY')) = 'TUESDAY'

...

(jaanuar|näärikuu) to_char(kuupaev, 'mm') = 1

(veebruar|küünlakuu) to_char(kuupaev, 'mm') = 2

(märts|paastukuu) to_char(kuupaev, 'mm') = 3

(aprill|jürikuu) to_char(kuupaev, 'mm') = 4

(mai(l|ni|le)?|lehekuu) to_char(kuupaev, 'mm') = 5

(juuni|jaanikuu) to_char(kuupaev, 'mm') = 6

...

suvi to_char(kuupaev, 'mm') in (6, 7, 8)

sügis to_char(kuupaev, 'mm') in (9, 10, 11)

talv to_char(kuupaev, 'mm') in (12, 1, 2)

kevad to_char(kuupaev, 'mm') in (3, 4, 5)

(hommikul |õhtul |öösel |lõuna
ajal)?kell (\d{1,2}\:\d{2})

to_char(kuupaev, 'hh24:mi') = lpad('\2', 5, '0')

(hommikul |õhtul |öösel |lõuna
ajal)?kell (\d{1,2})

to_char(kuupaev, 'hh24') = lpad('\2', 2, '0')

(mõne|kolme) tunni pärast
kuupaev between sysdate+2.5/24 and
sysdate+3.5/24

((paari|kahe) tunni
eest|(paar|kaks) tundi tagasi)

kuupaev between sysdate-2.5/24 and sysdate-
1.5/24

(\d{1,2})\.?\s?(jaanuar|näärikuu)
to_char(kuupaev, 'dd.mm') = lpad('\1', 2, '0')
|| '.01'

79

Temporal expression in Estonian Constraint in SQL
(\d{1,2})\.?\s?(veebruar|küünla-
kuu)

to_char(kuupaev, 'dd.mm') = lpad('\1', 2, '0')
|| '.02'

(\d{1,2})\.?\s?(märts|paastukuu)
to_char(kuupaev, 'dd.mm') = lpad('\1', 2, '0')
|| '.03'

(\d{1,2})\.?\s?(aprill|jürikuu)
to_char(kuupaev, 'dd.mm') = lpad('\1', 2, '0')
|| '.04'

(\d{1,2})\.?\s?(mai(l|ni|le)?|
lehekuu)

to_char(kuupaev, 'dd.mm') = lpad('\1', 2, '0')
|| '.05'

(\d{1,2})\.?\s?(juuni|jaanikuu)
to_char(kuupaev, 'dd.mm') = lpad('\1', 2, '0')
|| '.06'

(\d{1,2})\.?\s?(juuli|heinakuu)
to_char(kuupaev, 'dd.mm') = lpad('\1', 2, '0')
|| '.07'

(\d{1,2})\.?\s?(august|lõikuskuu)
to_char(kuupaev, 'dd.mm') = lpad('\1', 2, '0')
|| '.08'

(\d{1,2})\.?\s?(september|mihkli-
kuu)

to_char(kuupaev, 'dd.mm') = lpad('\1', 2, '0')
|| '.09'

(\d{1,2})\.?\s?(oktoober|viina-
kuu)

to_char(kuupaev, 'dd.mm') = lpad('\1', 2, '0')
|| '.10'

(\d{1,2})\.?\s?(november|talve-
kuu)

to_char(kuupaev, 'dd.mm') = lpad('\1', 2, '0')
|| '.11'

(\d{1,2})\.?\s?(detsember|jõulu-
kuu)

to_char(kuupaev, 'dd.mm') = lpad('\1', 2, '0')
|| '.12'

((mõne|kolme) tunni
eest|(mõni|kolm) tund tagasi)

kuupaev between sysdate-3.5/24 and sysdate-
2.5/24

(paari|kahe) tunni pärast
kuupaev between sysdate+1.5/24 and
sysdate+2.5/24

(tunni (aja)?pärast|ühe tunni
pärast)

kuupaev between sysdate+1/24 and sysdate+1.5/24

(tunni (aja)?eest|tund
(aega)?tagasi)

kuupaev between sysdate-1.5/24 and sysdate-1/24

jõulud
to_char (kuupaev, 'dd.mm') in ('24.12', '25.12',
'26.12')

(näärid|uusaasta) to_char (kuupaev, 'dd.mm') = '01.01'

(valentinipäev|sõbrapäev) to_char (kuupaev, 'dd.mm') = '14.02'

(aprillipäev|naljapäev) to_char (kuupaev, 'dd.mm') = '01.04'

(volbripäev|maipüha|töörahvapüha|
kevadpüha)

to_char (kuupaev, 'dd.mm') = '01.05'

(esimene koolipäev|tarkusepäev) to_char (kuupaev, 'dd.mm') = '01.09'

(jõululaupäev|jõuluöö|jõuluõhtu) to_char (kuupaev, 'dd.mm') = '24.12'

esimene jõulupüha to_char (kuupaev, 'dd.mm') = '25.12'

teine jõulupüha to_char (kuupaev, 'dd.mm') = '26.12'

...

pärastlõuna
to_char(kuupaev, 'hh24:mi') between '14:01'
and '17:00'

...
...
...

2.
 E

xa
m

p
le

s
of

 r
u

le
s

fr
om

 t
h

e
k

no
w

le
d

ge
 b

as
e

of
 Z

el
d

a

T
he

 m
ea

ni
ng

 o
f

th
e

co
lu

m
n

“X
”

is
 “

Ig
no

re
 w

or
d

or
de

r”
 w

it
h

va
lu

es
 Y

 a
nd

 N
 (

Y
es

/N
o)

. I
f

va
lu

e
=

 Y
 th

en
 th

e
w

or
d

or
de

r
ca

n
be

 ig
no

re
d

w
hi

le
 m

at
ch

in
g

th
is

 p
at

te
rn

.
 T

he
 s

eq
ue

nc
e

“
…

 ”
 in

 r
eg

ul
ar

 e
xp

re
ss

io
ns

 d
en

ot
es

 th
e

op
ti

on
 f

or
 in

te
rm

ed
ia

te
 w

or
ds

 a
nd

 is
 r

ep
la

ce
d

du
ri

ng
 th

e
pa

rs
in

g
w

it
h

th
e

se
qu

en
ce

 “
(

.
*
)
?

”.

P

at
te

rn

R
es

p
on

se

S
ta

te

X

a
a
d
r
e
s
s
|
t
ä
n
a
v
|
a
s
u
k
o
h
t
|
k
a
a
r
t
|
k
u
h
u
|
k
o
n
t
a
k
t
|
(
k
o
h
a
l
e

t
u
l
e
m
a
)
|
(
k
u
s

.
.
.

a
s
u
m
a
)

m
e
i
e

a
s
u
k
o
h
a

l
e
i
a
t
e

s
i
i
t

[
v
a
a
t
a

k
o
n
t
a
k
t
a
n
d
m
e
i
d
]

Y

a
e
g

.
.
.

o
l
e
m
a
|
k
e
l
l
a
a
e
g
|
k
e
l
l
|
m
i
l
l
a
l
|
(
v
a
s
t
u

v
õ
t
m
a
)
|
p
ä
e
v
i
t
i
|
p
ä
e
v
a
d
e
l
|
v
a
s
t
u
v
õ
t
t
|
(
m
i
l
l
a
l
|
k
u
n
a
)

.
.
.

(
a
v
a
t
u
d
|
l
a
h
t
i
)

D
r
.

*
*
*
*

v
a
s
t
u
v
õ
t
u
a
j
a
d

o
n
:

E

9
-
1
7
,

T

1
4
-
2
0

j
a

N

9
-
1
7
,

a
g
a

s
a
a
b

k
a

m
u
u

a
j
a

k
o
k
k
u

l
e
p
p
i
d
a

Y

a
n
e
s
t
e
e
s
i
a
|
a
n
e
s
t
e
s
i
o
l
o
o
g
|
t
u
i
m
e
s
t
u
s
|
t
u
i
m
e
s
t
a
m
a
|
n
a
r
k
o
o
s
|
v
a
l
u
t
u
|

ü
l
d
n
a
r
k
o
o
s
|
m
a
g
a
m
a

.
.
.

(
p
a
n
e
m
a
|
p
a
n
d
|
p
a
n
n
a
|
p
a
n
e
k
|
p
a
n
e
m
i
n
e
)

ü
l
d
n
a
r
k
o
o
s
i

m
e
i
l

e
i

t
e
h
t
a
,

t
e
h
a
k
s
e

p
a
i
k
n
e

t
u
i
m
e
s
t
u
s

N
A
R
K
O
O
S

Y

a
r
s
t
i

.
.
.

j
u
u
r
d
e

a
g
a

s
i
i
s

t
a
s
u
k
s

t
u
l
l
a

v
a
s
t
u
v
õ
t
u
l
e

N

(
a
s
e
n
d
a
m
a
|
a
s
e
n
d
a
m
i
n
e
|
a
s
e
m
e
l
e
|
p
u
u
d
u
o
l
e
v
|
p
u
u
d
u
|
p
u
u
d
u
m
a
|
p
u
u
d
u
v
)

k
a
o
t
a
t
u
d

h
a
m
m
a
s
t
e

a
s
e
n
d
a
m
i
s
e
k
s

o
n

k
a
k
s

v
a
r
i
a
n
t
i
:

s
i
l
d

v
õ
i

i
m
p
l
a
n
t
a
a
t

I
M
P
L
A
N
T
A
A
T

N

b
r
e
k
e
t
.
*
|
p
u
s
e
r
i
t
i
|
r
i
s
t
i
|
r
i
s
t
h
a
m
b
u
m
u
s

o
r
t
o
d
o
n
t
i
a
g
a

(
s
h

b
r
e
k
e
t
i
t
e
g
a
)

m
e
i
e

e
i

t
e
g
e
l
e
,

v
a
a
d
a
k
e

n
ä
i
t
e
k
s

[
w
w
w
.
*
*
*
*
.
e
e
]

N

b
ü
ü
g
e
l
|
b
ü
ü
g
e
l
p
r
o
t
e
e
s

b
ü
ü
g
e
l

o
n

s
u
u
s
t

e
e
m
a
l
d
a
t
a
v

p
r
o
t
e
e
s
,

m
i
s

k
o
o
s
n
e
b

m
e
t
a
l
l
k
a
r
k
a
s
s
i
s
t

j
a

p
l
a
s
t
m
a
s
s
i
s
t

h
a
m
m
a
s
t
e
s
t

N

d
i
a
g
n
o
o
s
|
d
i
a
g
n
o
o
s
i
m
a

d
i
a
g
n
o
o
s
i

s
a
a
m
e

p
a
n
n
a

e
s
m
a
s
e
l

v
i
s
i
i
d
i
l
,

k
u
i
g
i

v
a
j
a
l
i
k

o
l
e
k
s

k
a

p
a
n
o
r
a
a
m
ü
l
e
s
v
õ
t
e

(
r
ö
n
t
g
e
n
)

N

g
a
r
a
n
t
i
i

g
a
r
a
n
t
i
i
d

r
e
g
u
l
e
e
r
i
b

t
a
r
b
i
j
a
k
a
i
t
s
e
s
e
a
d
u
s
,

p
õ
l
e
t
i
k
u

r
a
v
i
s

p
u
u
d
u
b

g
a
r
a
n
t
i
i
,

m
a
t
e
r
j
a
l
i
d
e
l
e

o
n

g
a
r
a
n
t
i
i

N

g
i
n
g
i
v
i
i
t
|
i
g
e
m
e
p
õ
l
e
t
i
k
|
p
a
r
a
d
o
n
d
i
i
t
|
p
a
r
o
d
o
n
t
i
i
t
|
p
a
r
o
d
o
n
t
o
o
s

|
i
g
e
m
e
h
a
i
g
u
s

g
i
n
g
i
v
i
i
t

o
n

i
g
e
m
e

p
õ
l
e
t
i
k

j
a

p
a
r
o
d
o
n
t
i
i
t

o
n

h
a
m
m
a
s
t

ü
m
b
r
i
t
s
e
v
a
t
e

k
u
d
e
d
e

k
r
o
o
n
i
l
i
n
e

h
a
i
g
u
s

P
A
R
O
D
O
N
T
I
I
T

N

h
a
i
g
e
t

e
i

s
a
a

v
ä
g
a

h
a
i
g
e
t
,

o
n

j
u

t
u
i
m
e
s
t
u
s

j
a

k
a
a
s
a
e
g
s
e
d

v
a
h
e
n
d
i
d

N

(
h
a
l
b
|
e
b
a
m
e
e
l
d
i
v
|
v
a
s
t
i
k
)

.
.
.

(
h
i
n
g
e
õ
h
k
|
h
a
i
s
)

h
a
l
b

h
i
n
g
e
õ
h
k

v
õ
i
b

o
l
l
a

i
g
e
m
e
p
õ
l
e
t
i
k
u
g
a

s
e
o
t
u
d

Y

(
h
a
l
b
|
p
a
h
a
)

o
l
e
m
a

p
õ
l
e
t
i
k
u
s

h
a
m
b
a
d

k
a
h
j
u
s
t
a
v
a
d

ü
l
d
t
e
r
v
i
s
t

o
l
u
l
i
s
e
l
t

Y

h
a
m
b
a
k
a
u
n
i
s
t
u
s
|
b
r
i
l
j
a
n
t
|
k
a
u
n
i
s
t
u
s

p
a
i
g
a
l
d
a
m
e

h
a
m
b
a
k
a
u
n
i
s
t
u
s
i

N

h
a
m
b
a
k
i
v
i
|
k
i
v
i
|
k
a
t
t
|
h
a
m
b
a
k
a
t
t

h
a
m
b
a
k
i
v
i

o
n

h
a
m
b
a
l
e

l
a
d
e
s
t
u
n
u
d

k
õ
v
a

k
a
t
t
,

m
i
s

t
u
l
e
k
s

k
i
n
d
l
a
s
t
i

a
r
s
t
i
l

e
e
m
a
l
d
a
d
a

H
A
M
B
A
K
I
V
I

N

h
a
m
b
a
p
a
s
t
a
|
p
a
s
t
a
|
s
u
u
v
e
s
i
|
l
o
p
u
t
u
s
|
l
o
p
u
t
u
s
v
a
h
e
n
d
|
h
a
m
b
a
h
a
r
i
|
h
a
r
i

h
a
m
b
a
h
a
r
j
a
,

-
p
a
s
t
a

j
a

s
u
u
v
e
e

v
a
l
i
k

o
n

p
e
r
s
o
n
a
a
l
n
e

j
a

m
ä
ä
r
a
t
a
k
s
e

e
s
m
a
s
e
l

v
i
s
i
i
d
i
l

K
O
D
U
N
E

H
O
O
L
D
U
S

N

80

P
at

te
rn

R

es
p

on
se

S

ta
te

X

h
a
m
b
a
p
e
s
u
|
(
h
a
m
m
a
s

.
.
.

(
p
e
s
e
m
a
|
p
e
s
e
m
i
n
e
|
h
a
r
j
a
m
i
n
e
|
h
a
r
j
a
m
a
)
)

h
a
m
m
a
s
t
e

p
e
s
e
m
i
n
e

a
i
t
a
b

ä
r
a

h
o
i
d
a

p
i
n
d
m
i
s
e

p
õ
l
e
t
i
k
u

e
.

g
i
n
g
i
v
i
i
d
i

t
e
k
e
t
.

l
u
u
p
õ
l
e
t
i
k
k
u

e
.

p
a
r
o
d
o
n
t
i
i
t
i

a
i
n
u
l
t

h
a
m
b
a
p
e
s
u
g
a

r
a
v
i
d
a

e
i

s
a
a

K
O
D
U
N
E

H
O
O
L
D
U
S

Y

h
a
m
b
a
r
a
v
i

p
a
k
u
m
e

h
a
m
b
a
r
a
v
i
,

i
g
e
m
e
r
a
v
i
,

p
r
o
t
e
e
s
i
m
i
s
t

j
a

i
m
p
l
a
n
t
a
a
t
e

N

h
a
m
m
a
s

.
.
.

(
v
i
l
t
u
|
v
i
l
t
u
n
e
)

o
r
t
o
d
o
n
t
i
a
g
a

(
s
h

b
r
e
k
e
t
i
t
e
g
a
)

m
e
i
e

e
i

t
e
g
e
l
e
,

v
a
a
d
a
k
e

n
ä
i
t
e
k
s

[
w
w
w
.
*
*
*
*
.
e
e
]

Y

h
e
l
i
s
t
a
m
a
|
h
e
l
i
s
t
a
m
i
n
e
|
t
e
l
e
f
o
n
|
r
e
g
i
s
t
r
e
e
r
u
m
a
|
r
e
g
i
s
t
r
e
e
r
i
m
a

h
e
l
i
s
t
a
g
e

j
u
l
g
e
s
t
i

D
r
.

*
*
*
*

n
u
m
b
r
i
l

*
*
*
*

N

h
ü
g
i
e
n
i
s
t
|
s
u
u
h
ü
g
i
e
n
i
s
t

k
o
r
r
a

a
a
s
t
a
s

v
õ
i
k
s

k
ä
i
a

h
ü
g
i
e
n
i
s
t
i

v
a
s
t
u
v
õ
t
u
l
,

k
u
s

e
e
m
a
l
d
a
t
a
k
s
e

k
a
t
t

n
i
n
g

h
a
m
b
a
k
i
v
i

N

h
ü
v
a
s
t
i
|
(
h
e
a
d

a
e
g
a
)
|
n
ä
g
e
m
i
s
t

n
ä
g
e
m
i
s
t

N

i
b
u
m
e
t
i
n
|
p
a
r
a
c
e
t
a
m
o
l
|
p
a
r
a
c
e
t
a
m
o
o
l
|
p
a
r
a
t
s
e
t
a
m
o
l
|
p
a
r
a
t
s
e
t
a
m
o
o
l

|
i
b
u
p
r
o
f
e
n
|
i
b
u
p
r
o
f
e
e
n
|
i
b
u
m
a
x

t
e
g
e
m
i
s
t

o
n

j
a
h

t
u
n
t
u
d

v
a
l
u
v
a
i
g
i
s
t
i
g
a
,

m
i
l
l
e
g
a

v
õ
i
b

v
a
l
u

a
j
u
t
i
s
e
l
t

m
a
h
a

v
õ
t
t
a

R
A
V
I
M

N

i
g
e
m
e
r
a
v
i

i
g
e
m
e
r
a
v
i

o
n

h
a
m
m
a
s
t

ü
m
b
r
i
t
s
e
v
a
t
e

k
u
d
e
d
e

r
a
v
i

I
G
E
M
E
R
A
V
I

N

i
m
p
l
a
n
t
a
a
t

.
.
.

(
b
r
e
k
e
t
|
b
r
e
k
e
t
i
d
|
b
r
e
k
e
t
r
a
v
i
|
b
r
e
k
e
t
i
t
e
)

i
m
p
l
a
n
t
a
a
t

t
u
l
e
k
s

p
a
i
g
a
l
d
a
d
a

a
l
l
e
s

p
ä
r
a
s
t

b
r
e
k
e
t
r
a
v
i

l
õ
p
p
u

Y

i
m
p
l
a
n
t
a
a
t
|
i
m
p
l
a
n
t
a
a
ž
|
i
m
p
l
a
n
t
a
t
s
i
o
o
n
|
t
e
h
i
s
j
u
u
r
|
k
r
u
v
i
|
t
e
h
i
s
h
a

m
m
a
s
|
v
a
l
e
h
a
m
b
a
d
|
k
u
n
s
t
h
a
m
m
a
s
|
h
a
m
b
a
i
m
p
l
a
n
t
a
a
t
|
(
l
u
u

.
.
.

s
i
s
s
e
)

p
õ
h
j
a
l
i
k
u
m

i
n
f
o

o
n

s
i
i
n
:

[
l
o
e

i
m
p
l
a
n
t
a
a
t
i
d
e
s
t
]

I
M
P
L
A
N
T
A
A
T

N

i
n
t
e
r
n
e
t

.
.
.

(
a
e
g
|
a
e
g
a
)
|
v
a
b
a

.
.
.

(
a
e
g
|
a
e
g
a
)
|
k
u
i
d
a
s

.
.
.

(
a
e
g
|
a
e
g
a
)
|
(
(
a
e
g
|
a
e
g
a
)

.
.
.

k
i
n
n
i
)
|
k
i
r
j
a
|
k
i
r
j
u
t
a
m
a
|
k
i
r
i

i
n
t
e
r
n
e
t
i

k
a
u
d
u

s
a
a
b

a
e
g
a

k
ü
s
i
d
a

s
i
i
t

[
s
a
a
d
a

k
i
r
i
]

Y

j
u
u
r
e
r
a
v
i

j
u
u
r
e
r
a
v
i

p
a
k
u
m
e
,

t
ä
p
s
e
m
a

i
n
f
o

s
a
a
m
e

a
n
d
a

e
s
m
a
s
e
l

v
i
s
i
i
d
i
l

N

j
ä
r
e
l
m
a
k
s
|
j
ä
r
e
l
m
a
k
s
u
v
õ
i
m
a
l
u
s
|
(
(
m
a
k
s
m
a
|
t
a
s
u
m
a
)

.
.
.

(
[
^

]
*
h
a
a
v
a
l
|
k
a
u
p
a
)
)
|
g
r
a
a
f
i
k
|
o
s
a
m
a
k
s
|
o
s
a
m
a
k
s
e
|
(
(
m
a
k
s
m
a
|
t
a
s
u
m
a
)

.
.
.

(
o
s
a
s
|
o
s
a
l
i
s
e
l
t
)
)

t
e
a
t
u
d

o
s
a
s

o
n

v
õ
i
m
a
l
i
k

j
ä
r
e
l
m
a
k
s

J
Ä
R
E
L
M
A
K
S

Y

j
ä
r
j
e
k
o
r
d

j
ä
r
j
e
k
o
r
r
a
d

e
i

o
l
e

m
e
i
l

ü
l
d
j
u
h
u
l

p
i
k
a
d

J
Ä
R
J
E
K
O
R
D

N

k
a
a
r
i
e
s
|
a
u
k
|
h
a
m
b
a
a
u
k

k
a
a
r
i
e
s

o
n

h
a
m
b
a

k
õ
v
a
k
u
d
e
d
e

k
r
o
o
n
i
l
i
s
e

k
u
l
u
g
a

h
a
i
g
u
s
,

m
i
l
l
e

t
a
g
a
j
ä
r
j
e
l

t
e
k
i
b

h
a
m
b
a
s
s
e

a
u
k

N

(
k
a
o
t
a
m
a
|
k
a
o
t
a
t
u
d
|
k
u
k
k
u
m
a
|
(
t
u
l
e
m
a
|
t
u
l
i
)

.
.
.

(
v
ä
l
j
a
|
ä
r
a
)
|
l
ö
ö
m
a
|
l
o
o
m
a
|
l
a
n
g
e
m
a
|
l
ö
ö
d
i
|
l
õ
i
|
l
õ
i
d
)

.
.
.

h
a
m
m
a
s

k
a
o
t
a
t
u
d

h
a
m
m
a
s
t
e

a
s
e
n
d
a
m
i
s
e
k
s

o
n

k
a
k
s

v
a
r
i
a
n
t
i
:

s
i
l
d

v
õ
i

i
m
p
l
a
n
t
a
a
t

I
M
P
L
A
N
T
A
A
T

Y

k
a
r
t
m
a
|
h
i
r
m
|
h
i
r
m
u
n
u
d
|
h
i
r
m
u
m
a
|
k
a
r
t
u
s
|
p
e
l
g
a
m
a
|
k
a
r
t
m
i
n
e
|
j
u
l
g
e
|
h

i
r
m
u
t
a
m
a
|
j
u
l
g
u
s
|
j
u
l
g
e
m
a

ä
r
g
e

k
a
r
t
k
e
,

t
e
i
e

p
r
o
b
l
e
e
m
i

s
u
h
t
u
t
a
k
s
e

m
õ
i
s
t
v
a
l
t

j
a

p
r
o
f
e
s
s
i
o
n
a
a
l
s
e
l
t

N

k
e
s
t
v
u
s
|
k
e
s
t
m
a

r
a
v
i

k
e
s
t
v
u
s

o
n

i
n
d
i
v
i
d
u
a
a
l
n
e

j
a

s
e
l
g
u
b

e
s
m
a
s
e
l

v
i
s
i
i
d
i
l

N

k
i
r
u
r
g
|
d
o
k
t
o
r
|
a
r
s
t
|
h
a
m
b
a
a
r
s
t

D
r
.

*
*
*
*

n
u
m
b
e
r

o
n

*
*
*
*

N

k
l
o
o
r
h
e
k
s
i
d
i
i
n
|
l
o
p
u
t
u
s
v
e
d
e
l
i
k
|
l
o
p
u
t
a
m
a
|
s
o
o
l
v
e
s
i
|
l
a
h
u
s

k
l
o
o
r
h
e
k
s
i
d
i
i
n
i

k
a
s
u
t
a
t
a
k
s
e

p
r
o
f
ü
l
a
k
t
i
l
i
s
e

v
a
h
e
n
d
i
n
a

(
l
o
p
u
t
u
s
v
e
d
e
l
i
k
)

R
A
V
I
M

N

(
k
o
d
u
|
k
o
d
u
n
e
|
i
s
e
)

.
.
.

(
r
a
v
i
m
a
|
r
a
v
i
|
h
o
o
l
i
t
s
e
m
a
|
h
o
o
l
i
t
s
u
s
|
h
o
o
l
d
u
s
|
t
e
g
e
m
a
)

k
o
d
u
s
e

r
a
v
i

j
a

h
o
o
l
d
u
s
e

s
a
a
b

m
ä
ä
r
a
t
a

a
r
s
t

K
O
D
U
N
E

H
O
O
L
D
U
S

Y

81

P
at

te
rn

R

es
p

on
se

S

ta
te

X

k
r
e
d
i
i
t
|
k
r
e
d
i
i
t
k
a
a
r
t
|
p
a
n
g
a
k
a
a
r
t
|
k
a
a
r
d
i
m
a
k
s
e
|
m
a
k
s
m
a

.
.
.

k
a
a
r
d
i
g
a

k
a
h
j
u
k
s

m
e
i
e

j
u
u
r
e
s

s
a
a
b

m
a
k
s
t
a

v
a
i
d

s
u
l
a
r
a
h
a
s

v
õ
i

ü
l
e
k
a
n
d
e
g
a

Y

k
r
i
g
i
s
t
a
m
i
n
e
|
k
r
i
g
i
s
t
a
m
a

h
a
m
m
a
s
t
e

k
r
i
g
i
s
t
a
m
i
n
e

o
n

h
a
l
b

h
a
r
j
u
m
u
s

N

l
a
m
i
n
a
a
t

p
o
r
t
s
e
l
a
n
i
s
t

v
õ
i

p
l
a
s
t
i
k
u
s
t

v
a
l
m
i
s
t
a
t
a
v
a
d

l
a
m
i
n
a
a
d
i
d

o
n

õ
h
u
k
e
s
e
d

"
k
o
o
r
i
k
u
d
"
,

m
i
s

l
i
i
m
i
t
a
k
s
e

h
a
m
b
a

e
s
i
p
i
n
n
a
l
e

N

l
o
k
s
u
m
a
|
l
i
i
k
u
m
a
|
l
o
k
s
u
m
i
n
e
|
l
i
i
k
u
m
i
n
e
|
l
i
i
k
u
v
u
s
|
l
o
g
i
s
e
m
a

h
a
m
m
a
s
t
e

l
i
i
k
u
v
u
s

(
l
o
k
s
u
m
i
n
e
)

o
n

o
h
u

m
ä
r
k
,

t
u
l
e
k
s

t
u
l
l
a

v
i
s
i
i
d
i
l
e

N

l
u
u

(
k
a
d
u
|
v
ä
h
e
n
e
m
i
n
e
|
p
i
i
s
a
v
u
s
)

i
m
p
l
a
n
t
a
a
t
i
d
e
g
a

r
a
v
i

e
d
u
k
u
s
e

v
õ
t
i

o
n

l
õ
u
a
l
u
u

h
u
l
k

j
a

k
v
a
l
i
t
e
e
t

i
m
p
l
a
n
t
a
t
s
i
o
o
n
i

p
i
i
r
k
o
n
n
a
s

N

l
õ
u
a
l
u
u

l
õ
u
a
l
u
u

p
l
a
s
t
i
k
a

p
a
r
a
n
d
a
b

o
l
u
l
i
s
e
l
t

r
a
v
i

e
s
t
e
e
t
i
l
i
s
t

j
a

f
u
n
k
t
s
i
o
n
a
a
l
s
e
t

t
u
l
e
m
u
s
t

N

m
a
a
r
j
a
m
õ
i
s
a
|
m
a
a
r
j
a
m
õ
i
s
a
s
|
e
r
a
k
o
r
r
a
l
i
n
e
|
h
ä
d
a
a
b
i
|
v
ä
l
j
a
k
u
t
s
e
|
ö
ö
s

e
l
|
ö
ö
s
i
t
i
|
k
e
l
l
a
a
e
g

.
.
.

h
i
l
i
n
e

m
a
a
r
j
a
m
õ
i
s
a
s

o
n

v
õ
i
m
a
l
i
k

ö
ö
p
ä
e
v
r
i
n
g
s
e
l
t

v
a
l
u

k
o
r
r
a
l

a
b
i

s
a
a
d
a

(
t
e
l
e
f
o
n

1
1
2
)

Y

m
a
k
s
u
m
u
s
|
m
a
k
s
m
a
|
k
u
l
u
k
a
s
|
k
i
r
v
e
s
|
p
a
p
p
i
|
r
a
h
a
|
t
a
s
u
|
h
i
n
d
|
h
i
n
n
a
k
i
r

i
|
k
a
l
l
i
s
|
e
u
r
|
e
u
r
o
|
s
u
m
m
a

t
ä
p
s
e

h
i
n
n
a

s
a
a
b

a
r
s
t

ö
e
l
d
a

p
e
a
l
e

e
s
m
a
s
t

k
o
n
t
r
o
l
l
i
,

h
i
n
d
a
d
e
s
t

s
a
a
t
e

ü
l
e
v
a
a
t
e

s
i
i
t

[
a
v
a

h
i
n
n
a
k
i
r
i
]

N

(
m
u
r
d
u
m
a
|
m
u
r
d
m
a
|
m
u
r
d
|
m
u
r
d
u
n
u
d
|
p
o
o
l
e
k
s
)

.
.
.

h
a
m
m
a
s

m
u
r
t
u
d

h
a
m
m
a
s
t

s
a
a
b

ü
l
d
j
u
h
u
l

p
a
r
a
n
d
a
d
a
,

p
e
a
k
s
i
t
e

s
e
d
a

a
r
s
t
i
l
e

n
ä
i
t
a
m
a

Y

m
ä
d
a
|
m
ä
d
a
p
u
n
n
|
v
i
l
l
|
h
a
a
v
a
n
d
|
m
ä
d
a
n
e
m
a
|
p
u
n
n
|
s
t
o
m
a
t
i
i
t

t
e
g
e
m
i
s
t

v
õ
i
b

o
l
l
a

k
a

s
u
u

l
i
m
a
s
k
e
s
t
a

p
õ
l
e
t
i
k
u
g
a
,

o
l
e
k
s

m
õ
i
s
t
l
i
k

s
e
d
a

a
r
s
t
i
l
e

n
ä
i
d
a
t
a

S
T
O
M
A
T
I
I
T

N

m
ä
d
a
n
i
k
|
p
õ
l
e
t
i
k
|
(
i
g
e

.
.
.

l
a
h
t
i
)
|
t
a
s
k
u
|
t
u
n
d
l
i
k
|
s
u
u
r

v
a
h
e
|
v
a
l
u
l
i
n
e
|
t
u
r
s
e
s
|
p
a
k
i
t
s
e
b
|
e
s
i
h
a
m
m
a
s
|
p
u
r
i
h
a
m
m
a
s
|
s
i
l
m
a
h
a
m
m

a
s

s
o
o
v
i
t
a
m
e

t
u
l
l
a

v
i
s
i
i
d
i
l
e
,

v
a
a
t
a
m
e

t
e
i
e

o
l
u
k
o
r
r
a

ü
l
e

N

n
a
k
k
a
v
|
n
a
k
k
a
m
a
|
p
e
r
e
|
p
e
r
e
k
o
n
d

n
a
k
k
u
s
e

k
o
h
t
a

o
s
k
a
b

t
ä
p
s
e
m
a
l
t

ö
e
l
d
a

a
r
s
t
,

m
i
k
r
o
o
b
i
d

i
k
k
a

l
e
v
i
v
a
d

p
e
r
e
l
i
i
k
m
e
t
e

v
a
h
e
l

N

n
ä
d
a
l
a
v
a
h
e
t
u
s
|
l
a
u
p
ä
e
v
|
p
ü
h
a
p
ä
e
v

n
ä
d
a
l
a
v
a
h
e
t
u
s
e
l

s
a
a
b

e
r
a
n
d
j
u
h
u
l

v
a
s
t
u
v
õ
t
u
l
e

t
u
l
l
a
,

k
u
i

a
r
s
t
i
g
a

e
e
l
n
e
v
a
l
t

k
o
k
k
u

l
e
p
p
i
d
a

N
Ä
D
A
L
A
V
A
H
E
T
U
S

N

n
ä
r
i
m
i
s
t
u
b
a
k
a
s

n
ä
r
i
m
i
s
t
u
b
a
k
a
s

o
n

p
a
i
k
s
e
l
t

k
a
s
v
a
j
a
t
e
k
k
i
m
i
s
e

r
i
s
k
i
t
e
g
u
r

N

o
l
e
m
a

.
.
.

v
a
l
u
s

t
e
h
a
k
s
e

t
u
i
m
e
s
t
u
s

j
a

e
i

o
l
e

v
a
l
u
s

N

o
r
t
o
d
o
n
t
i
a
|
h
a
m
b
u
m
u
s
|
h
a
m
b
u
m
u
s
p
r
o
b
l
e
e
m

o
r
t
o
d
o
n
t
i
a
g
a

(
s
h

b
r
e
k
e
t
i
t
e
g
a
)

m
e
i
e

e
i

t
e
g
e
l
e
,

v
a
a
d
a
k
e

n
ä
i
t
e
k
s

[
w
w
w
.
*
*
*
*
.
e
e
]

N

p
a
i
s
t
e
s
|
p
a
i
s
t
e
t
u
s
|
p
a
i
s
e
|
p
a
i
s
t
e

p
a
i
s
t
e
s
?

p
a
i
s
t
e
t
u
s

v
õ
i
b

o
l
l
a

p
ä
r
i
s

t
õ
s
i
n
e

o
l
u
k
o
r
d
,

t
u
l
e
k
s

t
u
l
l
a

a
r
s
t
i

v
a
s
t
u
v
õ
t
u
l
e

N

p
a
n
o
r
a
a
m
.
*
|
r
ö
n
t
g
e
n

r
ö
n
t
g
e
n
i

s
a
a
t
e

t
e
h
a

*
*
*
*

H
a
m
b
a
k
l
i
i
n
i
k
u
s

N

p
a
r
a
d
o
n
t
a
x
|
p
a
r
o
d
o
n
t
a
k
s
|
p
a
r
a
d
o
n
t
a
k
s
|
p
a
r
o
d
o
n
t
a
x
|
p
a
r
a
t
o
n
t
a
x
|
p
a
r

o
t
o
n
t
a
x
|
p
a
r
a
t
o
n
t
a
k
s
|
p
a
r
o
t
o
n
t
a
k
s

p
a
r
o
d
o
n
t
a
x

o
n

ü
k
s

p
a
l
j
u
d
e
s
t

l
o
o
d
u
s
l
i
k
e
s
t

h
a
m
b
a
p
a
s
t
a
d
e
s
t
,

k
a
s
u
t
a
t
a
k
s
e

p
r
o
f
ü
l
a
k
t
i
k
a
s

N

p
a
r
o
d
o
n
t
o
l
o
o
g
.
*

j
u
l
g
e
n

s
o
o
v
i
t
a
d
a

p
a
r
o
d
o
n
t
o
l
o
o
g
i

-

D
r
.

*
*
*
*

(
a
s
u
b

T
a
r
t
u
s

*
*
*
*
)

N

82

P
at

te
rn

R

es
p

on
se

S

ta
te

X

p
r
o
t
e
e
s
|
p
r
o
t
e
e
s
i
j
a
|
j
ä
l
j
e
n
d
|
p
r
o
t
e
e
s
i
m
i
n
e
|
p
r
o
t
e
e
s
i
m
a
|
p
r
o
t
e
e
s
i
d

|
k
r
o
o
n
|
p
o
r
t
s
e
l
a
n
|
k
r
o
o
n
i
m
i
n
e
|
h
a
m
b
a
p
r
o
t
e
e
s

p
r
o
t
e
e
s
i
d
e
g
a

(
k
r
o
o
n
i
d
e
g
a
)

v
a
r
i
a
n
d
i
d

o
n

k
i
r
j
a
s

s
i
i
n

v
t
.

[
l
o
e

p
r
o
t
e
e
s
i
m
i
s
e
s
t
]

P
R
O
T
E
E
S
I
D

N

s
e
k
t
o
r

s
u
u

j
a
o
t
a
t
a
k
s
e

h
a
m
b
a
a
r
s
t
i
d
e

k
e
e
l
e
p
r
u
u
g
i
s

n
e
l
j
a
k
s

s
e
k
t
o
r
i
k
s

(
ü
l
e
m
i
n
e

p
a
r
e
m
-

j
a

v
a
s
a
k
p
o
o
l
n
e

n
i
n
g

a
l
u
m
i
n
e

p
a
r
e
m
-

j
a

v
a
s
a
k
p
o
o
l
n
e
)

N

s
i
l
d

s
i
l
d
p
r
o
t
e
e
s

t
s
e
m
e
n
t
e
e
r
i
t
a
k
s
e

t
u
g
i
h
a
m
m
a
s
t
e
l
e

P
R
O
T
E
E
S
I
D

N

s
o
o
d
a
p
e
s
u
|
s
o
o
d
a
|
t
u
m
e

p
l
e
k
k
|
p
i
g
m
e
n
t

s
o
o
d
a
p
e
s
u
g
a

s
a
a
b

a
r
s
t

e
e
m
a
l
d
a
d
a

p
i
g
m
e
n
t
e

j
a

h
a
m
b
a
k
i
v
i

N

s
o
o
v
i
t
a
m
a

s
o
o
v
i
t
a
m
e

t
u
l
l
a

v
i
s
i
i
d
i
l
e
,

v
a
a
t
a
m
e

t
e
i
e

o
l
u
k
o
r
r
a

ü
l
e

N

 .
.
.

.
.
.

.
.
.

83

T
h

e
st

at
es

 o
f

Z
el

d
a

ar
e

sh
ow

n
in

 t
he

 f
ol

lo
w

in
g

ta
bl

e.
 T

he
 c

ol
um

n
“O

rd
er

”
sh

ow
s

th
e

po
si

ti
on

 o
f

th
e

re
sp

on
se

 i
n

th
e

st
ac

k.
 S

o,
 i

f
th

e
st

at
e

=
 “

IG
E

M
E

R
A

V
I”

 t
he

fi

rs
t s

en
te

nc
e

to
 b

e
pr

es
en

te
d

to
 th

e
us

er
 w

ou
ld

 b
e

“i
ge

m
er

av
i s

is
al

da
b

er
in

ev
ai

d
pr

ot
se

du
ur

e”
.

S
ta

te

R
es

p
on

se

O
rd

er

H
A
M
B
A
K
I
V
I

k
u
i

j
ä
t
t
a

h
a
m
b
a
k
i
v
i

e
e
m
a
l
d
a
m
a
t
a
,

s
i
i
s

o
n

o
h
t

i
g
e
m
e
h
a
i
g
u
s
t
e

t
e
k
k
e
k
s

1

H
A
M
B
A
K
I
V
I

h
a
m
b
a
k
i
v
i

s
i
s
a
l
d
a
b

s
u
u
r
e
l

h
u
l
g
a
l

b
a
k
t
e
r
e
i
d
,

m
i
l
l
e

t
a
g
a
j
ä
r
j
e
k
s

o
n

v
e
r
i
t
s
e
v
a
d

n
i
n
g

v
a
l
u
t
a
v
a
d

i
g
e
m
e
d
,

p
a
h
a

m
a
i
t
s
e

s
u
u
s

n
i
n
g

h
a
l
b

h
i
n
g
e
õ
h
k

2

H
A
M
B
A
K
I
V
I

i
s
e

k
o
d
u
s
t
e

v
a
h
e
n
d
i
t
e
g
a

h
a
m
b
a
k
i
v
i

ü
l
d
j
u
h
u
l

e
e
m
a
l
d
a
d
a

e
i

õ
n
n
e
s
t
u

3

H
A
M
B
A
K
I
V
I

h
a
m
b
a
k
i
v
i

e
e
m
a
l
d
a
m
i
s
e
l

k
a
s
u
t
a
t
a
k
s
e

e
r
i
n
e
v
a
i
d

m
e
e
t
o
d
e
i
d

4

I
G
E
M
E
R
A
V
I

i
g
e
m
e
r
a
v
i

s
i
s
a
l
d
a
b

e
r
i
n
e
v
a
i
d

p
r
o
t
s
e
d
u
u
r
e

1

I
G
E
M
E
R
A
V
I

a
l
u
s
t
u
s
e
k
s

u
u
r
i
t
a
k
s
e

k
u
i

u
l
a
t
u
s
l
i
k

o
n

t
e
i
e

p
õ
l
e
t
i
k

n
i
n
g

t
e
h
a
k
s
e

r
a
v
i
p
l
a
a
n

2

I
G
E
M
E
R
A
V
I

e
n
n
e

e
s
m
a
s
t

v
i
s
i
i
t
i

t
u
l
e
k
s

t
e
h
a

p
a
n
o
r
a
a
m
r
ö
n
t
g
e
n

4

I
G
E
M
E
R
A
V
I

r
ö
n
t
g
e
n
i

s
a
a
t
e

t
e
h
a

*
*
*
*

H
a
m
b
a
k
l
i
i
n
i
k
u
s

5

I
M
P
L
A
N
T
A
A
T

ü
k
s

h
e
t
k
,

k
o
h
e

r
ä
ä
g
i
n

t
e
i
l
e

l
ü
h
i
d
a
l
t

i
m
p
l
a
n
t
a
a
d
i

p
a
i
g
a
l
d
u
s
e
s
t

.
.
.

1

I
M
P
L
A
N
T
A
A
T

k
õ
i
g
e
p
e
a
l
t

a
s
e
t
a
t
a
k
s
e

i
m
p
l
a
n
t
a
a
t
,

m
i
s

s
a
r
n
a
n
e
b

k
r
u
v
i
g
a
,

t
e
i
e

l
õ
u
a
l
u
u
s
s
e

2

I
M
P
L
A
N
T
A
A
T

s
e
e

k
a
e
t
a
k
s
e

a
j
u
t
i
s
e

h
a
m
b
a
g
a
,

m
i
s

v
a
r
j
a
b

t
ü
h
i
m
i
k
u

3

I
M
P
L
A
N
T
A
A
T

i
m
p
l
a
n
t
a
a
d
i
l

l
a
s
t
a
k
s
e

3
-
6

k
u
u
d

l
u
u
s
t
u
d
a
,

m
i
s
j
ä
r
e
l

k
i
n
n
i
t
a
t
a
k
s
e

s
e
l
l
e

k
ü
l
g
e

h
a
m
b
a
k
r
o
o
n

4

I
M
P
L
A
N
T
A
A
T

h
i
n
n
a
d

o
n

l
i
g
i
k
a
u
d
u

s
e
l
l
i
s
e
d
,

ü
k
s

t
e
h
i
s
j
u
u
r

*
*
*
*

e
u
r
,

s
e
l
l
e

p
a
i
g
a
l
d
u
s

*
*
*
*

e
u
r
,

k
r
o
o
n
i
m
i
n
e

*
*
*
*

e
u
r
,

k
r
o
o
n

*
*
*
*

e
u
r

5

J
Ä
R
E
L
M
A
K
S

j
ä
r
e
l
m
a
k
s

t
o
i
m
i
b

n
õ
n
d
a
,

e
t

t
ö
ö

j
a
g
a
t
a
k
s
e

m
i
t
m
e
s
s
e

o
s
a
s
s
e

n
i
n
g

t
a
s
u
t
e

j
ä
r
k
-
j
ä
r
g
u
l
t

1

J
Ä
R
J
E
K
O
R
D

k
u
i

t
ä
n
a

h
e
l
i
s
t
a
d
a
,

s
i
i
s

a
r
v
a
n
,

e
t

s
a
a
t
e

a
j
a

j
ä
r
g
m
i
s
e
k
s

n
ä
d
a
l
a
k
s

1

J
Ä
R
J
E
K
O
R
D

e
n
n
e

e
s
m
a
s
t

v
i
s
i
i
t
i

t
u
l
e
k
s

t
e
h
a

p
a
n
o
r
a
a
m
r
ö
n
t
g
e
n

2

J
Ä
R
J
E
K
O
R
D

r
ö
n
t
g
e
n
i

s
a
a
t
e

t
e
h
a

*
*
*
*

H
a
m
b
a
k
l
i
i
n
i
k
u
s

3

K
O
D
U
N
E

H
O
O
L
D
U
S

k
o
d
u
n
e

h
o
o
l
d
u
s

s
e
i
s
n
e
b

h
a
m
b
a
v
a
h
e
d
e

p
u
h
a
s
t
a
m
i
s
e
s

n
i
i
d
i
g
a

1

K
O
D
U
N
E

H
O
O
L
D
U
S

h
a
m
b
a
h
a
i
g
u
s
t
e

ä
r
a
h
o
i
d
m
i
s
e
k
s

o
n

t
ä
h
t
i
s
,

e
t

h
a
m
m
a
s
t
e

i
g
a
l
t

p
i
n
n
a
l
t

e
e
m
a
l
d
a
t
a
k
s

k
a
t
t

h
o
o
l
s
a
l
t

j
a

k
o
r
r
a
p
ä
r
a
s
e
l
t

2

K
O
D
U
N
E

H
O
O
L
D
U
S

e
i

t
o
h
i

v
i
g
a
s
t
a
d
a

i
g
e
t

t
e
r
a
v
a
t
e

t
i
k
k
u
d
e
g
a

j
a

e
i

t
o
h
i

k
a
s
u
t
a
d
a

h
a
m
b
a
h
a
r
j
a
,

m
i
s

o
n

k
õ
v
a
d
e

h
a
r
j
a
s
t
e
g
a

3

L
A
M
I
N
A
A
T

l
a
m
i
n
a
a
t
i
d
e

a
b
i
l

o
n

v
õ
i
m
a
l
i
k

e
s
i
h
a
m
m
a
s
t
e

k
u
j
u

j
a

v
ä
r
v
u
s
t

p
a
r
a
n
d
a
d
a

1

N
A
R
K
O
O
S

k
a
h
j
u
k
s

e
i

o
s
k
a

s
o
o
v
i
t
a
d
a

k
l
i
i
n
i
k
u
t
,

k
u
s

p
a
k
u
t
a
k
s

h
a
m
b
a
r
a
v
i

ü
l
d
n
a
r
k
o
o
s
i
s

1

N
Ä
D
A
L
A
V
A
H
E
T
U
S

ü
l
d
j
u
h
u
l

n
ä
d
a
l
a
v
a
h
e
t
u
s
e
l

v
a
s
t
u
v
õ
t
t
u

e
i

t
o
i
m
u

1

84

85

Appendix D

Sample conversations with the ADS based systems

This appendix contains several sample conversations with the systems that were built on
the ADS framework – Zelda and Alfred.

Conversation no 1. This is a conversation with Alfred. The system was assisted by the
live operator. The last column contains a “X” when the response originated from the
live operator.

13:33.43 Alfred tere
 hello
13:33.53 Alfred hetkel on Tartu kinokavades kokku 21 erinevat filmi
 there are 21 different movies in Tartu currently

13:34.09 Alfred
kui seda näinud ei ole, siis ehk tasuks minna: täna, kell 14:05 –
“Viimane laul”, kinos Cinamon

 you might be interested in this one: today at 14:05 “Last Song” in Cinamon
13:34.52 User mis veel täna on?
 what else is played today?

13:35.03 Alfred
selge, et siis täna? – täna, kell 14:15 – “Punane elavhõbe”, kinos
Cinamon

 ok, today – at 14:15 “Red Quicksilver” in Cinamon
13:35.23 User natuke hiljem
 a little later
13:35.28 User näiteks kell 17
 let’s say at 17

13:35.37 Alfred
et sulle sobiks siis kell 17? – täna, kell 17:05 – “Lihtsalt liiga kuum”,
kinos Cinamon

so, you would like at 17? – today at 17:05 “She’s Out of My League” in
Cinamon

13:36.09 User on see komöödia?
 is it a comedy?
13:36.17 Alfred jah X
 yes

13:37.36 Alfred
sõber mainis, et seda vaadates jäi ta magama: täna, kell 19 – “Pärsia
Prints: Ajaliiv”, kinos Cinamon

a friend told me that he fell asleep while watching this one: “Prince of
Persia: The Sands of Time”

13:38.09 Alfred ok, ootan siis vaikselt, söö rahulikult ...
 ok, I’ll wait quietly, go ahead and have your meal ...

86

Conversation no 2. This is a conversation with Zelda (virtual dental consultant). The
system was not assisted by the live operator, as assistance was not necessary. During the
conversation one spelling error was corrected by the system (implanaati 
implantaati).

16:11.45 Zelda
tere! minult saate küsida hambaravi, igemeravi, implantaatide, proteeside
kohta ...

 hello, you can ask me about dental care, gum disease treatment, dental implants and
prosthetics

16:11.52 Zelda igaks juhuks ütlen, et olen arvuti (juturobot), mitte inimene

 just to warn you – I’m a machine (chatbot), not a human,

16:12.08 Zelda
kui vastamisel hätta jään, siis võite oma küsimused ka arstidele jätta: [saada
küsimus siit]

in case I fail to respond, you can leave your questions to the doctor by [sending a
message]

16:12.15 Zelda
minu nõuanded ei asenda hambaarsti visiiti, vaid on mõeldud patsientidele
eelkõige vajaliku eelinfo kogumiseks ja täiendavate teadmiste saamiseks

my advice is not to be considered as a replacement of a real dental consultation, but
as an alternative way to get information

16:12.41 User mul on alalõuas eemaldatud hammas, juba 20 aastat tagasi

 I have a tooth removed from the lower jaw 20 years ago

16:12.57 User kas on võimalik sinna implanaati panna

 is it possible to get a dental implant

16:13.00 Zelda põhjalikum info on siin: [loe implantaatidest]

 more information can be found here [read about dental implants]

16:13.10 Zelda üks hetk, kohe räägin teile lühidalt implantaadi paigaldusest ...

 just a moment, I’ll tell you shortly about the installation of dental implants

16:13.25 Zelda kõigepealt asetatakse implantaat, mis sarnaneb kruviga, teie lõualuusse

 an implant, which is similar to the screw, will be placed into your jaw

16:13.32 Zelda see kaetakse ajutise hambaga, mis varjab tühimiku

 this is covered with a temporary tooth, which conceals the gap

16:13.36 Zelda
implantaadil lastakse 3–6 kuud luustuda, misjärel kinnitatakse selle külge
hambakroon

 the implant needs about 3–6 months to ossify, and then a crown is attached

16:13.54 Zelda
hinnad on ligikaudu sellised, üks tehisjuur **** eek, selle paigaldus ****
eek, kroonimine **** eek, kroon **** eek

prices are: implant **** eek, installation **** eek, crowning **** eek, crown
**** eek

16:13.58 User tuleksin arsti juurde konsultatsioonile aga kuhu?

 I would like to see a dentist for a consultation, but where should I go?

16:14.00 Zelda Dr. **** number on ****

 the phone number of Dr. **** is ****

16:14.13 Zelda meie asukoha leiate siit [vaata kontaktandmeid]

 our dental clinic is located here [see the location]

16:14.21 Zelda enne esmast visiiti tuleks teha panoraamröntgen

 you should get a panorama x-ray taken prior to the first visit

16:14.22 User kas ta on Eesti parim :)

 is this doctor the best in Estonia :)

16:14.38 Zelda röntgeni saate teha **** Hambakliinikus

87

 the panorama x-ray can be taken in **** Clinic

16:14.44 Zelda
visiiditasu on esmasel konsultatsioonil **** kuni **** eek (siin sisaldub ka
raviplaani koostamine)

 the fee for the initial consultation is **** – **** eek (this includes the preparation
of the treatment plan)

16:15.23 User aga Tallinnas?

 what about someone in Tallinn?

16:15.31 Zelda
ei julge kedagi Tallinnas soovitada, teadmata teie probleemi täpseid
asjaolusid

 I’m not in the position to recommend anyone in Tallinn without knowing the
detailed circumstances of your case

16:15.44 User ok

16:15.49 Zelda ok

88

Appendix E
Glossary of terms used in the thesis

The definitions of these basic terms are taken from the Natural Language Processing
Dictionary [Wilson, 2000] and from the International Dictionary of Artificial Intelli-
gence [Raynor, 1999]. The definitions are adjusted by the author of the thesis and
explained in the context of this thesis.

ambiguity (word-sense ambiguity) – An ambiguity is a situation where more than

one meaning is possible in a sentence. Word-sense ambiguity is a kind of ambiguity
where what is in doubt is what sense of a word is intended. In this thesis, the problem of
ambiguity arises in spell-checking and temporal resolution.

base form – A base form or a root is the primary lexical unit of a word (or a word
family), which carries the most significant aspects of semantic content and cannot be
reduced into smaller constituents. In this thesis, words are reduced to their base forms to
simplify the process of semantic resolution.

human-assisted chat – A chat where the dialogue system allows a human agent to
help a number of simultaneous chat sessions by having an AI-engine (the module that
aims to implement the artificial intelligence abilities) handle the bulk of common, repeat
questions. This approach is implemented in the ADS framework.

knowledge base – A knowledge base is a special kind of database for knowledge
management, providing the means for the computerized collection, organization, and
retrieval of knowledge. In this thesis, the knowledge base is a collection of facts and
information that define the domain.

knowledge engineering – Knowledge engineering is an engineering discipline that
involves integrating knowledge into computer systems in order to solve complex prob-
lems normally requiring a high level of human expertise. In this thesis, it is used to
refers to the building, maintaining and development of the knowledge-base.

knowledge representation – Knowledge representation and reasoning is an area of
artificial intelligence whose fundamental goal is to represent knowledge in a manner
that facilitates inferencing (i.e. drawing conclusions) from knowledge. In this thesis, the
knowledge about a domain is represented in two ways: by declarative rules and by pro-
cedural program code.

morphology – Morphology is the identification, analysis and description of the
structure of morphemes and other units of meaning in a language like words, affixes,
and parts of speech. In this thesis, the morphological analyzer [Kaalep and Vaino, 2001]
is used to reduce the words to their base forms.

n-gram – An n-gram is a subsequence of n items from a given sequence. The items
in this thesis are words or base forms of the words. In this thesis, ngrams are used for

89

generating permutations of words to handle the word order problem. N-grams can be
also used in probabilistic models.

pattern matching – Pattern matching is the act of checking some sequence of
tokens for the presence of the constituents of some pattern. In this thesis, the user input
is checked for the presence of certain words or phrases. If a certain pattern is recognized
in the user input then a certain action is performed.

regular expression – Regular expressions provide a concise and flexible means for
matching strings of text, such as particular characters, words, or patterns of characters.
A regular expression is written in a formal language that can be interpreted by a regular
expression processor, a program that either serves as a parser generator or examines text
and identifies parts that match the provided specification. In this thesis, regular expres-
sions are used to define patterns. If a certain pattern is recognized in the user input then
a certain action is performed.

semantic resolution – Semantic Resolution is focused on the processing of lin-
guistic meaning. In this thesis, the semantic resolution is meant to describe the process
of capturing the meaning from the user input.

stemming – Stemming is the process of reducing the word to its base form (also
known as root or stem), by removing its suffixes. In this thesis, the morphological ana-
lyzer [Kaalep and Vaino, 2001] is used to reduce the words to their base forms. The
base forms are used in the patterns, thus keeping the patterns short and simple.

stop word – Stop words are words which are filtered out prior to, or after,
processing of natural language data (text). There is not one definite list of stop words
which all tools use, if even used. The ADS Framework includes an option to define stop
words. The removal of stop words can improve the phrase search.

temporal expression – A temporal expression in a text is a sequence of tokens
(words, numbers and characters) that denote time, that is express a point in time, a
duration or a frequency. In this thesis, the temporal expressions are discussed in the
context of temporal resolution – the process of defing which point of time was meant by
a user input.

90

Curriculum Vitae

Margus Treumuth

Born: February 5, 1976, Tartu
Citizenship: Estonian
Marital Status: married, 1 son and 1 daughter
Contacts: (+372) 52 00883, treumuth@ut.ee

Education

1983–1993 Võru Kreutzwald Gymnasium
1993–1994 Wake Forest-Rolesville High School (NC, USA),

secondary education
1994–1995 University of Tartu
1995–1996 Campbell University (NC, USA)
1996–2002 University of Tartu, BSc, Computer Science
2002–2004 University of Tartu, MSc, Computer Science
start. 2004 University of Tartu, PhD student, Computer Science

Working Experience

2000–2006 Aprote Ltd./WM-Data Ltd., programmer
start. 2006 sole proprietor (Margus Treumuth FIE), programmer
start. 2007 Estonian Unemployment Insurance Fund, IT manager

91

Elulookirjeldus

Margus Treumuth

Sünniaeg ja -koht: 05.02.1976, Tartu
Kodakondsus: Eesti
Perekonnaseis: abielus, 1 poeg ja 1 tütar
Kontakt: (+372) 52 00883, treumuth@ut.ee

Haridus

1983–1993 Võru Kreutzwaldi Gümnaasium
1993–1994 Wake Forest-Rolesville High School (NC, USA),

keskharidus
1994–1995 Tartu Ülikool
1995–1996 Campbell University (NC, USA)
1996–2002 Tartu Ülikool, BSc, informaatika
2002–2004 Tartu Ülikool, MSc, informaatika
alates 2004 Tartu Ülikool, doktorant, informaatika

Töökogemus

2000–2006 AS Aprote/AS WM-Data, programmeerija
alates 2006 Margus Treumuth FIE, programmeerija
alates 2007 Eesti Töötukassa, infosüsteemi arendusjuht

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

 1. Mati Heinloo. The design of nonhomogeneous spherical vessels, cylindrical

tubes and circular discs. Tartu, 1991, 23 p.
 2. Boris Komrakov. Primitive actions and the Sophus Lie problem. Tartu,

1991, 14 p.
 3. Jaak Heinloo. Phenomenological (continuum) theory of turbulence. Tartu,

1992, 47 p.
 4. Ants Tauts. Infinite formulae in intuitionistic logic of higher order. Tartu,

1992, 15 p.
 5. Tarmo Soomere. Kinetic theory of Rossby waves. Tartu, 1992, 32 p.
 6. Jüri Majak. Optimization of plastic axisymmetric plates and shells in the

case of Von Mises yield condition. Tartu, 1992, 32 p.
 7. Ants Aasma. Matrix transformations of summability and absolute summa-

bility fields of matrix methods. Tartu, 1993, 32 p.
 8. Helle Hein. Optimization of plastic axisymmetric plates and shells with

piece-wise constant thickness. Tartu, 1993, 28 p.
 9. Toomas Kiho. Study of optimality of iterated Lavrentiev method and

its generalizations. Tartu, 1994, 23 p.
10. Arne Kokk. Joint spectral theory and extension of non-trivial multiplica-

tive linear functionals. Tartu, 1995, 165 p.
11. Toomas Lepikult. Automated calculation of dynamically loaded rigid-

plastic structures. Tartu, 1995, 93 p, (in Russian).
12. Sander Hannus. Parametrical optimization of the plastic cylindrical shells

by taking into account geometrical and physical nonlinearities. Tartu, 1995,
74 p, (in Russian).

13. Sergei Tupailo. Hilbert’s epsilon-symbol in predicative subsystems of
analysis. Tartu, 1996, 134 p.

14. Enno Saks. Analysis and optimization of elastic-plastic shafts in torsion.
Tartu, 1996, 96 p.

15. Valdis Laan. Pullbacks and flatness properties of acts. Tartu, 1999, 90 p.
16. Märt Põldvere. Subspaces of Banach spaces having Phelps’ uniqueness

property. Tartu, 1999, 74 p.
17. Jelena Ausekle. Compactness of operators in Lorentz and Orlicz sequence

spaces. Tartu, 1999, 72 p.
18. Krista Fischer. Structural mean models for analyzing the effect of

compliance in clinical trials. Tartu, 1999, 124 p.

92

19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

20. Jüri Lember. Consistency of empirical k-centres. Tartu, 1999, 148 p.
21. Ella Puman. Optimization of plastic conical shells. Tartu, 2000, 102 p.
22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.
23. Varmo Vene. Categorical programming with inductive and coinductive

types. Tartu, 2000, 116 p.
24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p.
25. Maria Zeltser. Investigation of double sequence spaces by soft and hard

analitical methods. Tartu, 2001, 154 p.
26. Ernst Tungel. Optimization of plastic spherical shells. Tartu, 2001, 90 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 p.
28. Rainis Haller. M(r,s)-inequalities. Tartu, 2002, 78 p.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
30. Eno Tõnisson. Solving of expession manipulation exercises in computer

algebra systems. Tartu, 2002, 92 p.
31. Mart Abel. Structure of Gelfand-Mazur algebras. Tartu, 2003. 94 p.
32. Vladimir Kuchmei. Affine completeness of some ockham algebras. Tartu,

2003. 100 p.
33. Olga Dunajeva. Asymptotic matrix methods in statistical inference

problems. Tartu 2003. 78 p.
34. Mare Tarang. Stability of the spline collocation method for volterra

integro-differential equations. Tartu 2004. 90 p.
35. Tatjana Nahtman. Permutation invariance and reparameterizations in

linear models. Tartu 2004. 91 p.
36. Märt Möls. Linear mixed models with equivalent predictors. Tartu 2004.

70 p.
37. Kristiina Hakk. Approximation methods for weakly singular integral

equations with discontinuous coefficients. Tartu 2004, 137 p.
38. Meelis Käärik. Fitting sets to probability distributions. Tartu 2005, 90 p.
39. Inga Parts. Piecewise polynomial collocation methods for solving weakly

singular integro-differential equations. Tartu 2005, 140 p.
40. Natalia Saealle. Convergence and summability with speed of functional

series. Tartu 2005, 91 p.
41. Tanel Kaart. The reliability of linear mixed models in genetic studies.

Tartu 2006, 124 p.

93

42. Kadre Torn. Shear and bending response of inelastic structures to dynamic

load. Tartu 2006, 142 p.
43. Kristel Mikkor. Uniform factorisation for compact subsets of Banach

spaces of operators. Tartu 2006, 72 p.
44. Darja Saveljeva. Quadratic and cubic spline collocation for Volterra

integral equations. Tartu 2006, 117 p.
45. Kristo Heero. Path planning and learning strategies for mobile robots in

dynamic partially unknown environments. Tartu 2006, 123 p.
46. Annely Mürk. Optimization of inelastic plates with cracks. Tartu 2006.

137 p.
47. Annemai Raidjõe. Sequence spaces defined by modulus functions and

superposition operators. Tartu 2006, 97 p.
48. Olga Panova. Real Gelfand-Mazur algebras. Tartu 2006, 82 p.
49. Härmel Nestra. Iteratively defined transfinite trace semantics and program

slicing with respect to them. Tartu 2006, 116 p.
50. Margus Pihlak. Approximation of multivariate distribution functions.

Tartu 2007, 82 p.
51. Ene Käärik. Handling dropouts in repeated measurements using copulas.

Tartu 2007, 99 p.
52. Artur Sepp. Affine models in mathematical finance: an analytical approach.

Tartu 2007, 147 p.
53. Marina Issakova. Solving of linear equations, linear inequalities and

systems of linear equations in interactive learning environment. Tartu 2007,
170 p.

54. Kaja Sõstra. Restriction estimator for domains. Tartu 2007, 104 p.
55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.

Tartu 2007, 162 p.
56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-

tions. Tartu 2008, 123 p.
57. Evely Leetma. Solution of smoothing problems with obstacles. Tartu 2009,

81 p.
58. Ants Kaasik. Estimating ruin probabilities in the Cramér-Lundberg model

with heavy-tailed claims. Tartu 2009, 139 p.
59. Reimo Palm. Numerical Comparison of Regularization Algorithms for

Solving Ill-Posed Problems. Tartu 2010, 105 p.
60. Indrek Zolk. The commuting bounded approximation property of Banach

spaces. Tartu 2010, 107 p.
61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory

systems. Tartu 2010, 153 p.
62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-

ture by Counting Method. Tartu 2010, 87 p.

94

63. Marek Kolk. Piecewise Polynomial Collocation for Volterra Integral
Equations with Singularities. Tartu 2010, 134 p.

64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

65. Larissa Roots. Free vibrations of stepped cylindrical shells containing
cracks. Tartu 2010, 94 p.

66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

67. Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

68. Olga Liivapuu. Graded q-differential algebras and algebraic models in
noncommutative geometry. Tartu 2011, 112 p.

69. Aleksei Lissitsin. Convex approximation properties of Banach spaces.
Tartu 2011, 107 p.

70. Lauri Tart. Morita equivalence of partially ordered semigroups. Tartu
2011, 101 p.

71. Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.

