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Magistritöö õppekaval Linnastunud ühiskonna geoinformaatika: Metsatulekahjude 

tuleohu kaardistamine Sardiinia saarel Itaalias 

Sisututvustus 

Metsatulekahjude tõttu on kogu maailmas kaotatud suur osa metsi, põllumajandusmaid, 

looduslikke alasid ja inimeste elusid. Igal aastal registreeritakse Lõuna-Euroopas põlengute 

hooajal rohkem kui 30 000 tulekahju. Seega tuleb tulekahjude puhkemise ja nende tekketingimuste 

vältimise nimel pingutusi teha. Käesolevas uuringus analüüsiti tulekahjude ruumilisi mustreid, 

kasutades kaht masinõppe meetodit: logistilist regressiooni ja otsustusmetsa (Random Forest). 

Mudelite koostamisel kasutati viimase kaheksa aasta (2010−2018) andmeid toimunud tulekahjude 

kohta ning kuutteist sõltumatut muutujat (maapinna kalle, aspekt, kõrgus merepinnast, 

topograafiline asukoha indeks (TPI), topograafiline kareduse indeks (TRI), kuu keskmine 

temperatuur ja sademete hulk, tuule kiirus, tuule suund, mullaniiskus, maakasutus, rahvaarv 

piirkonnas, õhuniiskus ning (põlengu)ala kaugus teedest, asulatest ja jõgedest). Mudelite 

tulemuslikkuse optimeerimiseks rakendati kaheastmelist parameetrite valiku meetodit. Mudelite 

tulemuslikkust hinnati statistiliste indeksipõhiste hindajate ning (ROC-AUC Receiver Operating 

Characteristic curve) graafiku abil abil. Tulemused näitasid, et otsustusmetsa täpsus oli veidi 

parem ( 73%) kui logistiline regressioon (64%) 

Võtmesõnad: tuleoht, ruumiline prognoosimine, masinõpe, otsustusmets, logistiline regressioon. 

CERCS kood:  

 

Master Thesis in Geoinformatics for Urbanized Society: Mapping Wildfire Susceptibility of 

Sardinia Island, Italy 

Abstract 

Forests, agricultural lands, natural areas and lives of the citizens all around the world are lost and 

endangered by wildfire. Annually, more than 30,000 fires are recorded in Southern Europe during 

the fire seasons. Therefore, efforts are required to avoid the outbreak of wildfires and to decrease 

the condition of wildfire occurrence. This study analyzed the spatial patterns of the fires using two 

machine learning approaches: Logistic Regression and Random Forest. Historical data about fires 

for the last eight years (2010−2018) with sixteen independent variables (slope degree, aspect, 

altitude, topographic position index (TPI), topographic roughness index (TRI), mean monthly 

temperature and rainfall, wind speed, wind direction, soil moisture, land use, population, humidity 

and proximity to roads, settlement and rivers) were used to train the models. To optimize the 

performance of the models, a two-step feature selection method including multi-collinearity and 

Gain Ratio analysis for random forest and Wald test for logistic regression were applied. The 

performance of the models was estimated using statistical index-based evaluators and Receiver 

Operating Characteristic curve (ROC-AUC). The results were illustrated that the performance of 

Random Forest with 73% overall accuracy is better than Logistic Regression with 64% overall 

accuracy. 

Keywords: Fire risk, Spatial prediction, Machine Learning, Random Forest, Logistic Regression 
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Introduction 

One of the man-made and natural disasters which leads to the death of people, damage to housing 

areas and finally destruction of natural surroundings is wildfire. Wildfire has a negative influence 

on the agricultural systems by destroying not only vegetation but also organic matter in the soil 

which is essential for the fertility of the soil (Suryabhagavan et al., 2016). On the other hand, 

wildfires lead to soil erosion due to fire effects on the growth of grass, herbs, and shrubs (Kandya 

et al., 1998; Suryabhagavan et al., 2016). It can also disturb the balance of soil chemicals, water 

levels, and soil pH. Various factors can increase the wildfire risk, for instance, during the El Niño 

years of 1997–1998 and the 2005–2006 dry seasons in the Brazilian Amazon, 1000 km2 of forest 

ruined (Nasiri, 2013). Heat wave (HW) of summer 2003 in the Europe caused over 25,000 fires in 

the south (Portugal, Spain, Italy, France), the north and central countries (Austria, Finland, 

Denmark and Ireland) and more than 650,000 ha of forest and other environmental areas were 

burned (Parente et al., 2018). In the Mediterranean basin, every year a large number of wildfires 

are recorded and thousands of hectares of natural environment are lost (Ager et al., 2014; Mouillot 

et al., 2005). Based on the European Forest Fire Information System during the last 8 years, 

700,000 ha of the land were burned in the European countries (EFFIS). Therefore, it is crucial for 

planers and organization in charge of protection and management of natural habitats to have access 

to accurate and up to date information related to wildfire susceptibility to define develop mitigation 

measures.  

Regarding the evaluation of fire susceptibility and forecasting potential future fires, Pastor et al. 

(2003), proposed three categories for classification models including physics-based models, semi-

empirical, and empirical. Physics-based models are based on the fluid dynamics, combustion, and 

heat transfer but it depends on the area and the data with high accuracy (Hong et al., 2018). The 

semi-empirical models are based on the principle of energy conservation which needs numerous 

laboratory works in order to name the parameters (Hong et al., 2018). Empirical models comprise 

the analysis of a wildfire dataset and related variables on the basis of statistical or data mining 

methods (Chen et al., 2017; Hong et al., 2018; Mell et al., 2007). In this technique, statistical 

correlations are considered among the available parameters which are known or can have an impact 

on the happening of wildfires to produce time-based prediction or to define the high-risk areas 

(Hong et al., 2018). Empirical models enable to  determine the spatial distribution of the 

phenomenon  and prediction of the future changes in the dependent variable and the possible 

influencing factors (Hong et al., 2018; Pourtaghi et al., 2016). Empirical methods which have been 

utilized in several studies are including Logistic Regression (Vacik et al., 2013), fuzzy logic (H. 

reza Pourghasemi et al., 2016), decision tree (Camp et al., 1997), Random Forests (RF) (Oliveira 

et al., 2012a), Kernel Logistic Regression  (Tien Bui et al., 2016), artificial neural networks (ANN) 

(Satir et al., 2016). Although many studies have been carried out regarding wildfire susceptibility 

and various developed models have been utilized, it is not still obvious that which method is most 

appropriate to assess the wildfire risk nor are clear all the factors.  

Sardinia was chosen as study area because this island encounters hundreds of wildfires every year. 

Fires have strong impacts on the environment and considerable damage to properties, along with 

loss of human lives. Thus, the ongoing progress in causes of fire along with the development in 
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technologies and modelling methods and awareness of public and politicians about the fire risks 

on the scientific bases is crucial in order to reduce the risk associated with fires. Various studies 

have been carried out in Sardinia concerning wildfire risk assessment. For instance, Ager et al. 

(2014) utilized nonparametric statistical models to determine burn probabilities based on the 

weather and human factors on the fire events and size in Sardinia, Italy, and Corsica, France. The 

produced map can be utilized to (1) assign extinction resources to specific region during the fire 

season; (2) improvement of the current fire indices; (3) simulation the wildfire to understand the 

relationship between land use and climate change and burn probability and intensity.  Fiorucci et 

al., (2008) used the fuel moisture model and the fuel load model for the risk distribution evaluation 

and generated wildland fire danger rating system, called RISICO to estimate the fire risk. Salis et 

al., (2014) applied large-scale wildfire exposure factors assessment to map burn probability  and 

fire intensity based on the key factors including weather, fuel, topography, and spatial ignition 

patterns.  

The aim of current study is firstly, to explore the spatiotemporal patterns of wildfire in Sardinia to 

investigate the important factors contributing to the fire occurrence with consideration of the soil 

moisture as plant physiological factor and indicator of drought. Secondly, to test one simple 

correlation method (Logistic Regression) and one more sophisticated machine learning method 

(Random Forest) to model the wildfire risk. Thirdly, to produce probability map of the fire 

occurrence using the most related variables. 
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1. Theory 

1.1 Wildfire Risk Management 

Influence of the wildfires on human life, ecosystem, and other precious sources leads to the global 

attempt to consider factors contributing to wildfire incident and behavior (Thompson & Calkin, 

2011). The existence of uncertainties in the wildfire management is due to different fire behavior, 

lack of precise data, different ecological response to fire, different reaction of fires to management 

treatments (suppression, fuel reduction, etc.) and finally limitation in understanding priority of 

resources at risk (Thompson & Calkin, 2011). Uncertainty refers to a lack of information, and it is 

possible to express it quantitively or as in terms of risk management (Thompson & Calkin, 2011). 

It is required to understand the nature of uncertainties and figure out the suitable time to add it to 

quantitative risk management frameworks and vice versa. In addition, it is also necessary to 

identify the supplementary information to decrease the effects of uncertainty (Thompson & Calkin, 

2011).  

Risk assessment is a decision support tool which integrates information about the probability and 

response of sources to risk factors to help decision-making (Sikder et al., 2006; Thompson & 

Calkin, 2011). Researchers and scientist in management are developing risk assessment used for 

strategic and operational decision making as support tools (Thompson & Calkin, 2011). Lack of 

access to fire risk assessments makes decision and management inefficient (Bar Massada et al., 

2009; Thompson & Calkin, 2011). Studies proved that it is important to risk-informed and 

decision-making to know how risk in different management situation can influence various 

resource changes (O’Laughlin, 2005; Roloff et al., 2005; Thompson & Calkin, 2011). Risk 

assessments models can assist to forest management decision-making in the active and pre-fire 

period (González et al., 2006; Thompson & Calkin, 2011). Wildfire management plans are in 

different scales from incident-specific to regional/national assessment with various applications 

including fire prevention, fire detection, development, and initial attack dispatch, large fire 

management, and strategic planning and fuel management (Thompson & Calkin, 2011). The 

purpose of fire risk management is to analyze both exposure and effects, and finally to produce 

suitable management response to reduce exposure and mitigation of various impacts (Fairbrother 

et al., 2005; Finney, 2005; Thompson & Calkin, 2011). Obvious definition of management aims, 

and understanding the relevant management of priorities play an important role in the effectiveness 

of wildfire risk management (Thompson & Calkin, 2011).  

 

1.2 Wildfire Risk Factors  

Each year from 273 to 567 Mha, with average of 383 Mha of different parts of the world are 

burning (Schultz et al., 2008). Flannigan et al. (2005) classified the factors influencing the fire 

activities in four categories: fuels, climate-weather, ignition agents and people. Topography is one 

of the important aspects of the ignition agents which shows where fires start and spread (Torres et 

al., 2018). 

Fuel amount, type, continuity, structure and moisture content are significant components for fire 

to happen and spread (Linn et al., 2010; Paton, 2014). For instance, there should be at least 30% 

of fuel for fire ignition and spread. In other words, fuel continuity is required for fire (Paton, 2014). 
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This factor is important in most drier regions all around the world where precipitation before fire 

seasons favors the growth of the vegetation which in turn will be burnt by a fire (Meyn et al., 2007; 

Paton, 2014; Swetnam et al., 1998). Fuel structure is also an important factor so that understory 

trees and shrubs in a forest can start to burn faster than tree crowns. In addition, they cause faster 

movement of the fire to other parts. Fuel moisture is a very important factor which has an effect 

on both fire occurrence and behavior (Paton, 2014). Obviously, greater heat is required to dry the 

fuel with high moisture which decreases the fuel consumption rate (Fiorucci et al., 2008). 

However, fuel with lower moisture can increase the facility of ignition, spread rate and intensity 

(Catchpole et al., 2001; Fiorucci et al., 2008). Studies show that as the density of the forest 

increases, the air movement decreases so that evaporation and fuel moisture rates go down 

(Cawson et al., 2017). Song et al., (2017) discovered that as Tree Cover Density (TCD) is high, 

fire can spread all around the landscape quickly. 

Macroclimatic conditions including temperature, precipitation, wind, and atmospheric moisture 

are influencing both fuel and ignitions (Cawson et al., 2017; Paton, 2014). Fuel moisture which 

can be a key factor of the fuel and the amount of the vegetation in the area both depend on the 

weather and climate (Paton, 2014). Additionally, one of the two main factors of fire occurrence is 

lightning specified by meteorological conditions (Paton, 2014). Compared to other climatic 

variables, temperature is the most important factor. Studies have proved that high temperature can 

start and increase fire activity (Flannigan et al., 2005; Gillett et al., 2004; Parisien et al., 2011; 

Paton, 2014). There are three important reasons why high temperature can cause wildfire: (1) 

evaporation rate increases in the warmer temperatures which decrease the amount of the water in 

the ground and dead fuel moisture if there is not enough precipitation (Paton, 2014); (2). Lightning 

can cause ignition in warmer temperature (Colin Price et al, 1994); (3) The length of the fire season 

can be extended as the temperature is warmer (Westerling et al., 2006; Wotton et al., 1993). In 

general, climate change can increase the frequency and severity of wildfire (Paton, 2014).Gillett 

et al. (2004) mention that wildfires in Canada between 1974 and 2014 have taken place due to the 

temperature increase caused by the human.  

Humans have also influence on these factors directly or indirectly (Knorr et al., 2014). For 

instance, grazing can change the amount of fuel and shape of the lands (ARCHIBALD et al., 2009), 

decrease fires via roads, defrayals and suburban structures (Syphard et al., 2007). Archibald et al. 

(2009) used the satellite imagery and found out that in Southern parts of Africa the number of 

burnt areas goes down when the population is above 20 people per km2. In another study, Lehsten 

et al. (2010) reached the same result so that they noticed that for the whole African continent the 

frequency of the fires decrease as population density goes up. Pausas et all, (2012) addressed that 

80% decrease in the rural population density led to the increment of wildfire occurrence and 

(Moreira et al., 2001) revealed that high grazing activity can decrease the fire activity. The 

consequences of urbanization increase the human-caused wildfires in the different part of the world 

so that in the southern and eastern United States 66% of  ignition were made by individuals (Grala 

et al., 2017). 

In comparison to weather information, the topography is static apart from the human-made 

changes.  For instance, a wildfire burns rapidly as the slope is increasing so that it makes unburned 
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fuels more flammable (Figure 1). In addition, rapid movement of the wind in slopes which can fast 

distribution of the wildfire. Aspect is another important factor so that it shows how much radiated 

heat receives from the sun. Studies proved that south- and west-facing  slopes have drier 

vegetations than north- and east-facing of slopes in northern hemisphere (Ebel, 2012) (Figure 1).  

 

Figure 1. A) Influence of the slope on the wildfire B) Influence if the aspect on the wildfire Source: Introduction to Wildland Fire 

Behavior, © National Wildfire Coordinating Group 

 

1.3 Fire risk analysis  

The “wildfire risk” illustrates the danger of the fire beginning and spreading. It also indicates the 

amount of the damage on environmental and human resources. The term “wildfire danger” refers 

to factors have influence on the inception, spread and resistance to control. That is, “wildfire 

danger” is part of the “wildfire risk” (Martín et al., 2019). Wildfire susceptibility estimation assists 

to understand the fundamental patterns of the wildfire danger ignition and its causative factors in 

the complex landscapes (Jaafari et al., 2018).  Wildfire ignition modelling has been developed over 

time and these days, most models combines geographic information with remote sensing data to 

produce wildfire susceptibility (Chowdhury et al., 2013; Martín et al., 2019). Chuvieco et al., 

(2014) implement GIS and remote sensing techniques to estimate the daily wildfire risk maps for 

mainland Spain. Nhongo et al., (2019) used Logistic Regression for wildfire occurrence model. 

This method is one of the statistical approaches mostly used, both for prediction of fire risk and to 

specify the causes of fire, at the global scale. In the more recent studies, researchers applied 

machine learning tools to map the wildfire susceptibility due to complexity of wildland fires and 

the abundance of causative factors (Jaafari et al., 2018). As an example, Gigović et al., (2019) 

compare the Random Forest and support vector algorithms to evaluate forest fire susceptibility 

maps. In general, the evolution of the machine learning method is better than statistical ones. 

However, as Bui et al.,(2016) mentioned there is no accurate approach to model and predict 

wildfires on a regional scale due to complexity of the relationships between the ignition factors. 

 

A B 
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1.3.1 Logistic Regression 

In Logistic Regression,  the independent variables are binary such as presence or absence of the 

fire (Bisquert et al., 2012). The a Logistic Regression enables to model the conditional probability 

of the fire occurring from the dependent variables (Bisquert et al., 2011). Logistic regression can 

also be used to estimate the importance a of each variable. The Wald test (also called the Wald 

Chi-Squared Test) is used to determine whether the explanatory variables are significant or not 

(Martínez et al., 2009). The application of this approach is in the more complex models such as an 

ANN, in order to decide which variables or combination of variables should be used (Bisquert et 

al., 2012). Logistic Regression has been widely used to map the fire ignition probability (Chang et 

al., 2013; Lozano et al., 2007; Martell et al., 1987; Nhongo et al., 2019; Padilla et al., 2011; Preisler 

et al., 2011; Vilar del Hoyo et al., 2011) since  the combination of categorical and continuous 

variables; plus, non-normally distributed variables can be utilized (Catry et al., 2009; Chang et al., 

2013). The fundamental function of the Logistic Regression is as follow: 

𝑓(𝑍𝑖) =  
1

1+ 𝑒𝑍𝑖
  (1) 

where the 𝑓(𝑍𝑖) is the estimation of probability of fire occurrence, and 𝑍𝑖 is linear function of the 

explanatory variables for each observation which based on the adjustment of maximum likelihood; 

B0 is intercept, Bi coefficient of the linear regression and Xi is the value of the independent 

variables: 

𝑍𝑖 =  𝐵0 +  𝐵1𝑋1 +  𝐵2𝑋2 + ⋯ +  𝐵𝑖𝑋𝑖  (2) 

 

1.3.2 Random Forest 

One of the simplest machine learning techniques is Random Forest (RF). Random Forest was 

introduced by (Ho et al., 1994). RF is based on the classification and regression tree (CART). 

CART has been used in different studies for the fire risk prediction (Amatulli et al., 2006; Lozano 

et al., 2008; McKenzie et al., 2000; Oliveira et al., 2012a). Combination of many trees forms the 

RF so that each tree is created by bootstrap samples. A third of the total sample put aside for 

validation (the out-of-bag predictions -OOB). Random subset of the predictors is used to specify 

each tree. The average of the outcomes of all trees considers as the final result (Breiman, 2001; 

Cutler et al., 2007; Ghorbanzadeh et al., 2019). In the wildfire Susceptibility prediction RF is one 

of the most usable non-parametric ensemble learning methods and has proved to have high 

accuracy in modelling the complex relationships between variables studies (Ghorbanzadeh et al., 

2019; Jaafari et al., 2019; Rihan et al., 2019). Although there are some advantages for this method, 

it has also some disadvantages. For instance, so called “black box” issue since examination of each 

tree separately is not possible (Prasad et al., 2006). Regression coefficients and confidence 

intervals also are not calculated in RF (Cutler et al., 2007). However, variable importance measures 

can be calculated and therefore it is possible to identify each factor’s contribution to the model 

(Grömping, 2009). Two important parameters are required by RF to run including the square root 

of the number of factors (𝑚𝑡𝑟𝑦) and the number of trees to run the model (𝑛𝑡𝑟𝑒𝑒). These parameters 

can decrease the generalization error (Breiman, 2001; Gigović et al., 2019). The Gain Index is 

used by RF to determine the optimal subset of variables (purest subset). This method is useful to 
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only select variables able to represent the entire dataset (Jaafari et al., 2018). It is calculated as 

follow: 

 

Entropy =  − ∑ 𝑃𝑘
𝑖=0 (𝑐𝑖)𝑙𝑜𝑔2(𝑃(𝑐𝑖))  (3) 

GainRatio(f, c)  =  
𝐺𝑎𝑖𝑛(𝑓,𝑐)

𝑆𝑝𝑙𝑖𝑡𝑖𝑛𝑓𝑜(𝑓,𝑐)
   (4) 

In this equation, f is representative of the training dataset, c is class attribute, k is the number of 

independent features, C represents entropy corresponds to the uncertainty about the value of the 

class attribute, P (ci) is the probability that C = ci, and SplitInfo indicates the information provided 

by dividing attribute C of the training data set f into m subsets (Jaafari et al., 2018). SplitInfo is 

calculated as follow: 

Splitinfo(f, c) =  − ∑
|𝑓𝑗|

|𝑓|
𝑚
𝑗=1 𝑙𝑜𝑔2

|𝑓𝑗|

|𝑓|
  (5) 

 

1.4 Uncertainty in wildfire risk management 

Thompson et al. (2010) adopt the uncertainty typology by Ascough et al. (2008) for wildfire risk 

management. According to this all uncertainties can be classified into four main groups including 

linguistic uncertainty, variability uncertainty, knowledge uncertainty, and decision uncertainty. 

Linguistic uncertainty is contextual dependency, vagueness of words that can make it difficult to 

explain the results so that there is more than one valid way to understand and explain the 

management system  (Brugnach et al., 2011; Thompson & Calkin, 2011). The term “risk” can be 

used in different meanings in wildfire risk management (Emilio Chuvieco et al., 2010; Schmoldt, 

2001). For instance, risk is defined as the probability of the fire event by Hardy, (2005), while 

(Finney, 2005) defined as probabilistic expectation of net resource values change in response to 

fire.  

Variability uncertainty is defined as inner variability which shows itself in natural systems 

(Thompson & Calkin, 2011). The examples of variability uncertainty can be the frequency and 

spatial pattern of ignitions, the variability of weather conditions etc. In several studies, 

probabilistic methods were used to dealing with variability (Bar Massada et al., 2009; Carmel et 

al., 2009; Krougly et al., 2009; Podur et al., 2010; Thompson & Calkin, 2011).  

Knowledge uncertainty defines as the limitation of the knowledge and scientific understanding 

(Thompson & Calkin, 2011). This kind of uncertainty is related to how we conceptualize the 

natural processes or how the choose to model them (Thompson & Calkin, 2011).  Cruz et al. (2010) 

stressed that there are knowledge gaps and errors in modeling system of crown fire behavior. Non-

probabilistic methods are common to manage knowledge uncertainty (Thompson & Calkin, 2011). 

In this case, information from the experts is the best source for judgment (Borchers, 2005). This 

information can be utilized in several ways including knowledge-based systems, hierarchical 

multi-attribute models, logic models, fuzzy set theory, and hybrids thereof (Hessburg et al., 2007; 

Macgregor et al., 2008; Thompson & Calkin, 2011; Vadrevu et al., 2010).  
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Another kind of uncertainty which is related to imperfect information about social cost/benefit 

analysis is decision uncertainty (Thompson & Calkin, 2011). Lack of information about social 

preference/values causes limitation regarding the management of social welfare. The value 

measurement method is utilized for handling this type of uncertainty such as Analytic Hierarchy 

Process, utility theory, outranking models, and social choice theory (Diaz-Balteiro et al., 2008; 

Mendoza et al., 2006; Thompson & Calkin, 2011). Dealing with decision uncertainty is not easy 

because of different stakeholders have various perspectives, perception, and aims which can be 

changed during the time or as new information releases (Thompson & Calkin, 2011). Decision 

uncertainty is complicated because people often are not sure about their own preferences (Brown 

et al., 2008; Rieskamp et al., 2006; Thompson & Calkin, 2011). Table 1 gives overview of different 

uncertainties related to wildfire management and how to mitigate the uncertainties. 

 Table 1. Uncertainties related to in wildfire management. Adopted from (Thompson, Calkin, et al., 2011) 

 

2.  Data and methodology 

2.1 Study area 

Sardinia island with the area of approximately 24,100 square kilometers is the second largest island 

in the western Mediterranean Sea located between 38° 51' and 41° 18' latitude north and 8° 8' and 

9° 50' east longitude (Figure 2).  Forest including Quercus ilex L., Quercus suber L., and Quercus 

pubescens Willd covers the most part of the island (Shokouhi et al., 2019). At higher elevations, 

the oak formation merges with Castanea sativa Mill. and Ilex aquifolium L. The coniferous stands 

(Pinus spp.) are restricted to 3%. Mediterranean maquis and garrigue cover 28% of the island 

(Ager et al., 2014). The topography of the island includes small hills and mountains. Highest 

elevation is 1850 m a.s.l. and located in the middle of the island.  The climate of the island includes 

mild and rainy winters; dry and hot summers (Ager et al., 2014).Summers (From May until 

September) are threatened by the shortage of water and wildfire (Ager et al., 2014). The average 

temperature fluctuates between 12ºC and 17ºC, and precipitation is between 500 mm in the south 

to 1300 mm in the highest area (Ager et al., 2014). According to information collected from burnt 

areas between 1971 and 2015, 2,931 fires per year has happened in the study area burned about 

Wildland fire context Uncertainty type Methodology 

Fire occurrence Variability Probability-based 

Fire behavior Variability; knowledge Probability-based; Expert system 

Accounting for role of climate change Variability; knowledge Probability-based; Expert system 

Interaction of fire with other disturbance Variability; knowledge Probability-based; Expert system 

Temporal vegetation & fuel dynamics Variability; knowledge Probability-based; Expert system 

Ecological response to fire Knowledge Expert system 

Efficacy of management treatments Knowledge Expert system 

Valuation of non-market resources Decision Value measurement 



9 

 

18,800 ha (Cardil et al., 2017). These wildfires influenced various part of the island and damaged 

agriculture areas and urban infrastructures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Study area 

2.2 Data 

2.2.1 Dependent variable - wildfire occurrence 

Fire data was obtained from NASA Fire Information for Resource Management System 

(https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms). Active fire sources are 

collected by the MODIS sensor on board the Aqua and Terra platforms with spatial resolution of 

1km. Each location of the fire collected by MODIS sensor represents the centre of the 1 × 1 km2 

pixels determined by the algorithm as one or more fires in surrounded area. In some cases, product 

can underestimates the fire occurrence including short duration fires, cloud coverage and heavy 

smoke (Anderson et al., 2015). Overestimation can also happen due to high temperature of the 

feature such as sandy soil, rock and etc. (Nhongo et al., 2019). Therefore, to avoid the commission 

error, only fire pixels with high confidence was used (> 70% confidence). 1041 fires were extracted 

from 2010 to 2018 using the FIRMS database. Figure 3-a illustrates the number of the wildfires in 

each month, and Figure 3-b shows the location of them in the study area during the study period. 

All the fires occurred between May and October. July has been experienced the large number of 

the wildfires (Figure 3-a). Since in some areas fires were happend in the several times in different 

years, wildfire data was checked to aviod the double fires. In the end, there was 944 burned pixels. 

Binary classification method is utilized to model the wildfire susceptibility.  With this concept, 

https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms
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944 grid cells were classified as fires and were assigned the value of “1”, and the same number of 

grid cells without any evidence of wildfir were sampled for non-fire and coded as “0”.  

 

 

 

 

 

 

 

 

Figure 3. (a) Fire number in Sardinia for the period 2010 – 2018; (b) Location of the wildfires in the study area during 

the last 8 years 

 

2.2.2 Explanatory variables 

 Several factors can play important role in  wildfire risk (Adab et al., 2013; Catry et al., 2009; F. 

Chen et al., 2015; W. Chen et al., 2017; Jaafari et al., 2017, 2018; Mhawej et al., 2015; Oliveira et 

al., 2012a; Pourtaghi et al., 2016; Tien Bui et al., 2016). Based on the previous studies and 

availability of the data for the study area; as well as, the traits of the region, 16 factors were adopted 

for modeling the wildfire susceptibility (Table 2) 

 

 

 

 

 

(b) 

(a) 



11 

 

Table 2. The explanatory environmental variables used for modelling. 

 

Land cover data 

Previous studies have showed the association between land cover and fire occurrence (Martínez et 

al., 2009; Oliveira et al., 2012a). Land cover data was extracted from CORINE land cover dataset 

(CLC, EEA, 2018). This data includes 44 land cover classes with Minimum Mapping Unit (MMU) 

of 25 ha of areal phenomena. Updates have been produced in 2000, 2006, 2012, and 2018. In this 

study, the latest version with 25 m resolution was selected and most important classes based on 

the previous studies in the area (Bajocco et al., 2008; Guglietta et al., 2015) were extracted from 

them (Figure 4). 

 

 

 

 

 

 

 

 

 

Figure 4. Land cover of Sardinia 

Variable type Variable name Data source Resolution 

Topography Elevation (EU-DEM v1.1) 25 m 

 Slope (Gradient)  25 m 

 Slope direction (Aspect)  25 m 

 Topographic position index (TPI)  25 m 

 Topographic roughness index (TRI)  25 m 

Land cover Fuel/Vegetation Map (CORINE Land Cover) 25 m 

Infrastructure Proximity to road (Sardinian Geo-Portal) 1:250 000 

 Proximity to river (Pan-European, Water & Wetness ) 2.5 m 

 Proximity to settlement (European Settlement Map) 10 m 

Climatic Mean monthly temperature (UERRA) 5 km 

 Cumulative monthly precipitation  5 km 

 Average monthly relative humidity  5 km 

 Average wind direction  5 km 

 Average wind speed  5 km 

Geology Average monthly soil moisture (UERRA) 5 km 

Demographic Average population density (ORNL's LandScan) 1km 
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Topography data 

Vegetation distribution and productivity, moisture gradients and energy and water balances are 

under the influence of the topographic variables. On the other hand, the mentioned factors can also 

affect the wildfire (Alexandre et al., 2016). Topographic data was derived from EU-DEM v1.1 

(García et al., 2015) which is a digital elevation model (DEM)  with 25m horizontal resolution and 

provided by Copernicus land monitoring service . This product is based on the SRTM and ASTER 

GDEM data with 2.9 meters RMSE as overall vertical accuracy. ArcGIS and SAGA GIS were 

used to create topographic position index (TPI), topographic roughness index (TRI), elevation, 

slope, aspect (Figure 5). 

 

Figure 5. Topographical variables for wildfire susceptibility: (a) slope; (b) aspect 

TPI measures the difference between the elevation at central point and mean elevation at the 

predefined neighborhood (Wilson et al. , 2000). The result is called relative topographic position 

of the central point (De Reu et al., 2013). TPI is calculated as follows: 

 

𝑇𝑃𝐼 =  𝑍0 − 𝑍  (6) 

𝑍 =
1

𝑛𝑅
∑ 𝑍𝑖𝑖∈𝑅    (7) 
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where (𝑍0) is elevation at the central point, and (𝑍) is the average elevation in the predetermined 

radius (R). TPI includes positive and negative values showing whether the position is lower or 

higher than the average. (Figure 6.b) 

TRI (Figure 6.a) indicates the changes of the land surface in the particular area (Oliveira et al., 

2012). TRI is calculated as follows: 

𝑇𝑅𝐼 = 𝑌[∑(𝑥𝑖𝑗 −  𝑥00)2]
1/2

  (8) 

where xij is the elevation of each neighbor cell to cell (0,0). Zero value shows the flat areas, while 

steep ridges indicates with positive values (Kmoch et al., 2019)  

 

Figure 6. Topographical variables for wildfire susceptibility: (a) TRI; (b) TPI 

 
Population density and proximity to roads 

Studies have revealed that majority of the fires in the European Union are human-caused (Oliveira 

et al., 2012). Thus, population density can be one of the important factors of the fire occurrence. 

ORNL’s LandScan global population distribution data with 1 km resolution (Rose et al., 2018) 

was used for population density. For the simplicity, population densities from 2010 to 2018 were 

averaged (Figure 8.a). We also used the available road map of the study area from Sardinian Geo-

Portal (http://www.sardegnageoportale.it/) and European settlement map (Ag et al., 2017) for 

http://www.sardegnageoportale.it/
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calculation of the proximity to the roads and settlements as one of the human activities which can 

affect fire risk . Proximity to the roads (Figure 7.a) and settlements were calculated by using 

ArcMap 10.5. 

 

 

Figure 7. (a) Proximity to the roads; (b) Average population density between 2010 - 2018 

 

Proximity to the rivers 

Moisture is one of the factors which influence fire ignition. Water sources are especially in warm 

weather can produce a large amount of the moisture due to evaporation. Therefore, proximity to 

water sources can be important in wildfire risk analysis. For this purpose, EU-Hydro River 

Network (Gallaun et al., 2019) provided by Copernicus Land Cover Service with 2.5 m resolution 

was utilized (Figure 7.b).  

 
Soil moisture 

Soil moisture can be used as indicator of drought (Laguardia et al., 2008; Oliveira et al., 2012). 

The soil moisture influences the moisture content of the live fuels, and thus, it determines the 

required heat for plants’ ignition (Bartsch et al., 2009; Chuvieco et al., 2004; Oliveira et al., 2012). 

In this study, the soil moisture dataset for the study period (2010 - 2018) used, provided by 

Copernicus Climate Data Store (Schimanke et al., 2019) (Figure 8.b). 
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 Figure 8. (a) proximity to rivers; (b) amount of the soil moisture 

 

 

Climate 

Weather conditions can have an influence on the amount of the moisture and fuel accumulation 

which in turn affects the probability of the fire occurrence (Oliveira et al., 2012; Syphard et al., 

2008). Therefore, in this study, UERRA (Uncertainties in Ensembles of Regional Re-Analyses) 

climate data from 2010 to 2018 were used from Copernicus Climate Data Store (Schimanke et al., 

2019). The UERRA includes European regional meteorological reanalyses of Essential Climate 

Variables (ECVs) for several decades. The data is available from 1961 to present with two different 

spatial resolutions including 11km for the UERRA-HARMONIE system and 5.5km for the 

MESCAN-SURFEX system. In the current study, 5.5 km resolution was utilized (Figure 9). 
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Figure 9. Climatic variables (a) spatial variability of average temperature (℃) in the study area in 10 years (b) 

spatial variability of average humidity (c) spatial variability of rainfall (d) monthly average temperature and rainfall 
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To avoid occurrence of correlation between independent variables in the model (Gigović et al., 

2019), multicollinearity analysis was performed. Collinearity can decrease the accuracy of the 

estimation (Dormann et al., 2013). The variance inflation factors (VIF) (Liao et al., 2012) and 

tolerance were used to determine the multicollinearity among the wildfire independent variables. 

VIF > 5 and tolerance < 0.2 indicates multicollinearity (Jaafari et al., 2018). “USDM” package 

(Naimi et al., 2014) in R was utilized for this purpose. Table 3 shows the result of the analysis, and 

elevation was removed from the further analysis because of very high collinearity. 
 

 Table 3. The result of multi-collinearity tests 

Variable 
Collinearity statistics 

Tolerance VIF 

Temperature 0.29 3.41 

Precipitation 0.23 4.38 

Wind direction 0.65 1.53 

Wind speed 0.70 1.44 

Humidity 0.43 2.30 

Elevation 0.11 9.32 

TRI 0.75 1.33 

Slope 0.27 3.65 

Aspect 0.90 1.11 

TPI 0.92 1.08 

LULC 0.88 1.13 

Proximity to settlement 0.74 1.36 

Proximity to road 0.79 1.26 

Proximity to river 0.77 1.29 

Soil moisture 0.24 4.08 

Mean population density 0.88 1.14 

 

2.3 Analysis 

To determine which variables are influencing the model, two separate methods were utilized for 

each model. Wald Chi-Squared Test was calculated to determine the significant variables for 

Logistic Regression.  Gain ratio with 10-fold cross validation technique, to select the much more 

optimal variables which can be contributed in the wildfire occurrence in our study area for Random 

Forest. 

2.3.1 Modelling 

For model assessment, the fire and non-fire data was randomly split into training (70%) (1321Grid 

cells) and test (30%) (567 grid cells) sets. For modelling, two methods were used: Logistic 

Regression and Random Forest. All the code generated for this study is available in GitHub 

(https://github.com/behzad89/Thesis). 

Logistic Regression 

Logistic regression is a flexible approach compared to other ones since both continues and 

categorical variables can be used (Nhongo et al., 2019). The model was made using the “stats 

v3.6.2” package in R-3.6.2 software (R Core Team, 2019) 

 

https://github.com/behzad89/Thesis
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Random Forest 

Random Forest model has illustrated potentiality to apply in the assessment of fire-related 

phenomena (Oliveira et al., 2012a). In the first step Gain ratio method was applied for 

determination of the much optimal variables using “FSelectorRcpp” package in R software ( 

Zygmunt et al., 2019). The variables with “0” gain ratio (average merit) were removed from the 

next modelling process. In the last step, the model was trained using the important factors using 

“randomForest” package (Breiman, 2001) in R-3.6.2. 

2.3.2 Accuracy assessment 

The following methods were applied to assess the performance of the both models: 

 
Statistical index-based measures 

 Statistical index-based measure is an approach to measure the performance of the model including 

accuracy, sensitivity, specificity, precision, F-measure, and the Kappa index. Accuracy indicates 

the fraction of correct classified pixels. Sensitivity is the proportion of true positives which are 

correctly classified as positives by the classifier. Specificity determines the ability of a classifier 

to determine the negative results i.e. the proportion of correctly specified non-fire pixels out of all 

pixels correctly classified as non-fire plus which incorrectly determined as fire pixels. Precision is 

defined as the fraction of the pixels which are truly positive among all the pixels which model 

predicted positive. The F-measure is defined as the harmonic mean of precision and recall. These 

measures were calculated using confusion matrices (Table 4).  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+ 𝑇𝑁+ 𝐹𝑃+ 𝐹𝑁
  (9) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
  (10) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+ 𝐹𝑃
  (11) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+ 𝐹𝑃
   (12) 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
  (13) 

 

In the above-mentioned equations TN (true negative) and TP (true positive) represent the number 

of pixels which classified as fire and FP (false positive) and FN (false negative) indicate the 

number of the pixels assigned incorrectly (Jaafari et al., 2018; Pham et al., 2017). 
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Table 4. Classification table (Confusion matrix) 

 

 

 

 

 

 

 

 

 
Receiver operating characteristic curve (ROC curve) 

The common method to evaluation of the prediction models is ROC. It represents the global 

performance of the classifiers (Jaafari et al., 2015). It graphically illustrates the trade-offs at each 

cut-off for diagnostic test; i.e. trade-offs between the 1-specifity and sensitivity (Fan et al., 2006; 

Jaafari et al., 2018). The X axis of the plot is representative of the 1–specificity, and the Y axis is 

representative of the sensitivity.  

𝑋 =  1– specificity = 1 − (
𝑇𝑁

𝑇𝑁+𝐹𝑃
)  (14) 

𝑌 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  (
𝑇𝑃

𝑇𝑃+𝐹𝑁
)   (15) 

 The quantitative measurement of the ROC curve is based on the area under curve (AUC). The 

maximum value for the AUC is 1 which indicates theoretically high performance of the model 

with 100% sensitive (no false positives; all non-fire pixels properly classified) and 100% specific 

(no false negatives; all fire pixels properly classified). The interpretation of the AUC value can be 

done at different scales. However, in general AUC values below 0.6 indicate a poor, 0.6 – 0.7 a 

normal, 0.8 – 0.9 a good, and greater than 0.9 an excellent model performance (Fan et al., 2006; 

Hosmer Jr et al., 2013; Jaafari et al., 2018). The ROC curve was calculated for both trained models. 

2.3.3 Development of the wildfire probability map 

The trained and validated models were used to create the wildfire probability. Given that the 

Logistic Regression cannot produce the probability map automatically while Random Forest is 

able to generate. Two different approaches were used. For the Logistic Regression, all the 

independent variables were imported to the ArcGIS 10.6 environment and the probability of the 

fire risk was produced based on equation (2). For Random Forest, the probability of the wildfire 

of each pixel was computed in R-3.6.2. The generated maps were classified in five classes 

including very low, low, moderate, high and very high. To test the reliability of the generated 

maps, frequencies of whole five classes were calculated. It is expected that fire frequency increase 

from low to very high-risk levels (Jaafari et al., 2018). Figure 10 displays the flowchart of the 

overall process of the study.  

  

Predicted 

No-fire (0) Fire (1) 

Actual 

No-fire (0) TN FP 

Fire (1) FN TP 
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Figure 10. The general workflow of the study 

3. Results and Discussion 

3.1 Frequency of wildfire 

The frequency of the fire occurrence in relation to environmental variables is illustrated in Figure 

11. Since steep slope areas have lower fertility and water capacity, and high elevation areas have 

high transportation costs of food, croplands are located in the lower elevation and slope (Li et al., 

2015). In our study, the majority of the fires happened at the low elevation and on gentle slopes 

and it decreases regularly. On the other hand, consideration of the frequency of the fires in different 

land uses illustrates that the number of fires in the non-irrigated arable land is more than others. It 

indicates the relationships between agricultural areas, terrain conditions and fire frequency.  

Aspect indicates the amount of energy received from the sun, and it has a close relationship with 

wind direction (Cawson et al., 2017; Ebel, 2012). In Sardinia, it can be seen the major number of 

fires happened in the south-western facing slopes. This is, this slope face includes more drier 

vegetations causing the fires. Besides, the frequency of the fire increases in the south-west wind 

direction indicating how wind reducing fuel moisture by increasing evaporation in those areas. 

Air temperature has a direct influence on the fire ignition since it provides the heat requirements 

for ignition (Gillett et al., 2004). Additionally, the type of surface and land cover can also affect 

the temperature. In our study area, most of the fires happened at high temperatures with directly 

or indirectly being supported by the surfaces and land covers which raise the fuels to their ignition 

temperature.  

Based on the Italian Meteorology Department the annual precipitation on the island is around 500 

mm, while the graph shows that all the fires have happened during the low precipitation season. 

However, the amount of the soil moisture and humidity where the most fire occurred is 75% - 80% 

and 0.15 – 0.18 (m3 m3), respectively (reasonable due to the non-irrigated arable land), but the 

other climatic and topographical factors can decrease the amount of them considerably during fire 

seasons. Nhongo et al.(2019) indicate that high temperatures decrease the moisture, and increase 

the susceptibility of fire. 
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Land cover and land use (LCLU) are important factors regarding the strong relation between 

vegetation phenology and spatiotemporal wildfire distribution (De Angelis et al., 2012). Therefore, 

the determination of them can help a lot to find the area with high fire risk. Studies show that 

shrublands can start burning fast compared to others in fire seasons in Mediterranean areas 

(Oliveira et al., 2012). The current study presents that approximately 60% of fires take place on 

arable lands and and almost 20% on shrublands (Sclerophyll vegetations) (Figure 11). Bacciu et 

al., (2011) revealed that in 2007 and 2009 this value was 48% and 51% for arable lands, 

respectively. The plausible explanations for this increase are first, use of fire to make new pastures, 

removing crop residues, and reducing fuel load (Montiel et al., 2010; Salis et al., 2014) which can 

increase the fire ignitions. Secondly, decrease in land abandonment process in rural areas which 

ends up with reduction in shrublands which are responsible for the generation of high-intensity 

fires (Ager et al., 2014; Pausas, 2004; Salis et al., 2014).  

Moisture in the atmosphere is in the form of water vapor, and the amount of moisture that is 

presented in the atmosphere affects the amount of moisture in the fuel. With increased distance 

from the river the air humidity is also lower because of smaller evapotranspiration. That is, the 

fuel can dry as temperature rises. The lower the relative humidity, the more easily a fire will begin 

and burn. The proximity to rivers shows the number of fires and distance increases together. 

Studies in the region have shown that more than 90% of the fire ignition is because of human 

activities (Ager et al., 2014).  However, surprisingly the results of the current study showed that 

the most of fires happened in the low populated areas. However, considering the distance to roads 

and settlements reveals that fires were close to them. On the other hand, the number of fires in the 

various landscapes shows that they are all accessible with people (e.g. farmers). Therefore, it can 

be deduced that the human component can affect ignition probabilities in the region. 

 

 

Figure 11. Frequency of fired pixels in relation to different environmental variables. (Continue) 
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Figure 11. Frequency of fired pixels in relation to different environmental variables. 
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3.2 Modelling results 

Logistic Regression 

After several interactions with different variables, the final model was selected with the most 

correlated factors with wildfire including soil moisture, temperature, wind direction, humidity, 

population density, proximity to road and slope. Selected variables have a significant relationship 

with the wildfire probability (p < 0.05). The other factors were excluded. Table 5 represents the 

significance of independent variables and their related coefficients. According to the result, there 

is a negative relationship between the wildfire occurrence and humidity, slope, population density, 

proximity to road and proximity to settlement. 

 
 Table 5. Results of binary Logistic Regression model  

 

Random forest 

The possibility of checking the variable importance (contribution of each variable) is the main 

advantage of the Random Forest. The result of the feature importance analysis using Gain ratio 

method (Figure 12) shows that soil moisture is an important factor, followed by slope, TRI, 

proximity to road and wind direction.  

 
Figure 12. The relative contribution of variables to the models based on the Gain Ratio method. 

Variable Coefficients S.E. Wald df Sig. 

Soil moisture 19.340 3.829 25.511 1 0.000 

Temperature 0.231 0.041 31.701 1 0.000 

Wind Direction 0.023 0.003 47.568 1 0.000 

Humidity -0.058 0.025 5.482 1 0.019 

TRI -0.006 0.001 20.774 1 0.000 

Population -0.001 0.000 11.146 1 0.001 

Proximity to road -0.0002 0.000 16.473 1 0.000 

Proximity to settlement -0.00015 0.000 29.377 1 0.000 

Constant -5.685 1.718 10.950 1 0.001 
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Development of the model for determination of the wildfire risk is not simple due to frequent 

changes in the environmental factors of landscape including geology, topography, climatology etc. 

Although there are several methods proposed by researchers to predict natural disasters, there are 

still delay evaluating the capability of these methods regarding the wildfire prediction (Jaafari et 

al., 2018). In this study, several potential environmental variables as predictors in wildfire ignition 

were analysed to develop two different models: Random Forest and Logistic Regression. Feature 

importance analysis employed to determine the most relevant factors in the fire risk modelling. It 

was found out that soil moisture is one of the relevant factors among selected ones. Studies proved 

that the changes in the moisture content of vegetations increase the risk of the fire occurrence in 

the area (Oliveira et al., 2012a). Analysing amount of the rainfall in summer and winter seasons 

also proved that soil moisture is the major factor in fire risk in the Mediterranean region 

(Scoccimarro et al., 2011). In the current study, the positive relationship of soil moisture with the 

fire occurrence indicates that a fire can happen when the soil surface layer is drier because soil 

moisture directly affects the moisture of the fuels.  

 

Climate variability affects the occurrence of large wildfires in different time scales via the 

existence and flammability of the fuels (Bodini et al. , 2012).  In Sardinia, the major of the fire 

phenomenon happens during the summer. Masala et al., (2008) discovered that both fire numbers 

and burned areas are highly correlated with rainfall and temperature in Italy. The positive 

relationship exists between temperature and fire ignition which suggests that the risk of the wildfire 

is high in the higher temperature. In this study, It was discovered that the most frequent wind 

directions were S, SE and SW and has positive relationship with fire occurrence.  Fois et al., (2012) 

verified that wind direction combined with slope are major factors in increase of the fire intensity 

in the island. Among climatological variables, relative humidity is one of the important factors 

with negative relationship with fire susceptibility in Sardinia. It means high air relative humidity 

decrease the possibility of fires. Humidity above 60% can avoid burning of vegetation, and optimal 

condition for beginning of fire is between 30% and 40% (Nhongo et al., 2019). 

 

Topography influences vegetation structure, ignitable moisture and air humidity. Among the 

topographical factors, slope and TRI are significant and negative effect on fire occurrence. It looks 

logical since this study discovered that agricultural lands located in low elevation are more prone 

to fire. It indicates the prevalence of human-induced fires. The negative relationship between the 

anthropogenic factors and fire occurrence shows that human activities are the cause of the wildfire 

in the region. The result shows that ignition probability increase as the distance to roads reduces. 

According to Ager et al., (2014) the distance to road has a strong effect on fire probability in the 

fire season in Sardinia island. The reason is due to crop cultivation, or agro-pastoral field burning 

which is so common in Sardinia. Understanding interactions between fire and distance to road can 

also help to find convenient location for arsonists and suppression resources. The areas near human 

settlements are also more vulnerable to fires. It is because of illegal development of houses or 

infrastructure and fires produced by human (Nhongo et al., 2019). Previous studies confirmed that 

15.7% of fires occurred in the rural-urban interface in Sardinia (Sirca et al., 2017). 
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Table 6. Validation of trained models  

 

The performance of both generated models was analysed based on the classification tables for 

training and test datasets (Table 6). From the analysis different statistical index-based performance 

measures for both datasets, we could find that Random Forest provides a training accuracy of 73% 

and testing accuracy 72.6%, while the result for Logistic Regression is lower with 66.6% and 

64.35%, respectively. The accuracy of both models is listed in the Table 6. The Random Forest 

classified 73% of testing fired pixels into the fire class (sensitivity), and 72% of the non-fire pixels 

into the non-fire class (Specificity). Precision for Random Forest is 72.6% interpreted as the 

percentage of the fire pixels correctly classified into the fire pixels. The ROC curve analysis 

(Figure 13) is for both models are acceptable with 77% for Random Forest and 72% for LR. ROC 

curve analysis revealed that the performance of Random Forest slightly better than Logistic 

Regression, but the difference is not significant.   

The performance of the machine learning approaches heavily depends on the selected algorithm 

to implement. For example, if the dependant variable (fire in this case) is not linearly separable in 

n-dimensional space, then it is required to use a more complex (non-parametric) model to achieve 

higher prediction performance. It should be also considered that complex models like Random 

Forest can lead to overfitting if not properly tuned (Kaitlin et al., 2018). Overfitting is defined as 

high performance of the model on a training set, while does not generalize well on unseen data. 

On the other hand, less complex (parametric based) models like Logistic Regression has better 

performance in the variables that are linearly separable. However, these models cannot learn 

sufficiently from the patterns in the data for accurate prediction resulting in underfitting (Guo et 

al., 2016). In the current study, given that the complexity and randomness of the datasets is high, 

Random Forest performed better than Logistic regression. In addition, since the Random Forest 

analyses the subset of the training data with bagging and subset of features which decreases the 

influence of highly variable data and the spatial outliers, therefore, it provides more accurate and 

reliable result (Hong et al., 2018) 

One important issue which can decrease the performance of the both models is spatial 

autocorrelation. Autocorrelation addresses that two locations close to each other are not 

independent (Dormann et al., 2007). Spatial autocorrelation is not often considered by fire studies, 

but this can cause type I error and lead to wrong estimation of parameters and important 

misinterpretation (Portier et al., 2018). A type I error is a sort of fault that happens during the 

hypothesis testing process when the null hypothesis is true and it was rejected (i.e. noise causes 

false positives, while there is no correct effect). Studies confirmed the considerable improvement 

in the fire modelling with accounting for spatial autocorrelation. Furthermore, it can reduce some 

Measures (%) 
Training dataset Validation dataset 

LR RF LR RF 

Accuracy 66.6 73 64.35 72.6 

Sensitivity  70 73.4 66.8 73 

Specificity 63.3 72.4 61.8 72 

Precision 65.7 72.8 64.7 72.6 

F-measure 67.8 73.1 65.7 72.8 



26 

 

uncertainties regarding the contribution of various factors relative to each other (Portier et al., 

2018). 

 

 

  

 

 

 

 

 

 

 

 

Figure 13. The ROC-AUC for the validation dataset 

3.3 Wildfire probability maps 

Probability maps were generated using the trained best models (Figure 14). Degree of fire risk 

susceptibility in the study area was determined in five categories including very low (less than 

0.23), low (0.23 – 0.38), moderate (0.38 – 0.50), high (0.50 – 0.75) and very high (greater than 

0.75). Based on the applied models the wildfire occurrence rankings are different. Frequency of 

the fires in the separate classes (Figure 15) explains consistently increase in the number of the fires 

from zone of the very low to very high. However, Random Forest shows the higher values than 

Logistic Regression in very high zones with proximately 70% frequency, but the frequency for 

high and moderate zones in Logistic Regression is larger than Random Forest with almost 30% 

and 20%, respectively. In each map, the highest frequency belongs to very high susceptibility level 

followed by other four classes (high, moderate, low and very low), respectively.  

Overall, the Frequency of susceptibility levels indicates the capability of the both models for 

properly determination of the different fire risk levels in the region. Produced probability maps for 

both models represent that the west and the south-west regions of the island are more prone to fire. 

They also present that the coastal areas are more threated by fire. In the last decade, the number of 

the tourists has been increased during the late spring and the summer season in the coastal areas 

which leads to dramatically increase of the fire risk due to weather and fuel conditions and 

increasing of population due to tourism (Sirca et al., 2017). Comparison of the our finding with 

the previous study on the island (Ager et al., 2014) revealed that accuracy achieved by Random 

Forest and Logistic Regression is reliable. This comparison also explains that during the study 

period the wildfire spatial-temporal pattern on the island has not been changed considerably.  
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Figure 14. Maps of the probability of fire occurrence for (a) Random Forest and (b) Linear Regression models. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Frequency of susceptibility levels in two wildfire susceptibility maps. 
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Conclusion 

Previous studies proved that fires in Sardinia has complicated relation with various factors 

including weather conditions, vegetation, and topography and human activities (Ager et al., 2014). 

These days, changes in the climate and land use on one hand, and significant increase in the 

interference of the human on the environmental ecosystem on the other hand, requirement for the 

sustainable wildfire management has become important. For the long-term wildfire management 

plans, the reliable prediction models are needed to accelerate decision-making process with 

provision of the reliable information. In this study, topography, climatology, anthropogenic and 

geology related variables to wildfire was examined to give the wide horizon to wildfire 

management system regarding the allocation of the fire prevention resources. Moreover, using the 

data-processing techniques, statistical and machine learning approaches, the prediction of wildfire 

Susceptibility in the large area became feasible. This can allow managers and decision makers to 

see more details and perspectives to understand contribution of the different factors in the 

probability of wildfire occurrence in the different location and various level of the fire 

susceptibility over the landscape. As a result, it was presented that climatic and anthropomorphic 

variables have more influence on the fire occurrence in Sardinia. Random Forest shows more 

robust result compared to LR with 73 percent accuracy. With AUC values over 70%, the 

performance of the both classifiers are normal. The generated map illustrated that the west, the 

south-west and coastal regions of the island are more prone to fire. 

Although the current study focused on different factors contributed to fire ignition, it should be 

remembered that there are other factors having a close relationship with fire such as soil type, 

topographic wetness index (TWI), Potential solar radiation, Recreation area etc. To achieve the 

best understanding of fire risk, it is important to consider other important explanatory variables. 

The quality of the data and sources involved also play an important role in reliability of the wildfire 

risk prediction. It is crucial to utilize the accurate wildfire records and important explanatory 

variables.  

For further study, it is suggested to consider spatial autocorrelation to better understanding of the 

relationship between the factors. It is also suggested to extend the current study in the area to test 

more recent prediction techniques in GeoAI including deep learning which can sufficiently model 

the wildfire susceptibility across the island (Q. T. Bui, 2019). Comparison of the different data 

mining models could assist to adequately customize the models to achieve the high quality in 

different conditions and environmental settings. 
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Magistritöö õppekaval Linnastunud ühiskonna geoinformaatika: Metsatulekahjude 

tuleohu kaardistamine Sardiinia saarel Itaalias 

Behzad Valipour Shokouhi 

Kokkuvõte 

Metsatulekahjud võivad põhjustada rasket majanduslikku, sotsiaalset ja keskkonnakahju. 

Metsatulekahjud on osa ökosüsteemi protsessidest ning mõjutavad fauna ja floora taastumist, 

arengut ja ruumilist levikut (Nhongo et al., 2019). Euroopa Metsatulekahjude Infosüsteemi 

andmetel on enam kui 95% metsatulekahjudest põhjustanud inimeste poolt ning Vahemere maades 

on see protsent isegi suurem. Tulekahjude haldamiskavades mängib olulist rolli metsatulekahjude 

esinemistõenäosus. Sellega arvestamine aitab vähendada tulekahju põhjustatud kahjusid 

(Leuenberger et al., 2018). Metsatulekahjudele vastuvõtlike alade kaardistamiseks on vajalik 

tulekahju tekkimist mõjutavate tegurite kindlakstegemine. Enamik neist teguritest on 

inimtekkelised (või inimtegevusest põhjustatud), nt kaugus teedest, kuid seotud ka 

keskkonnateguritega (nt kliima, topograafia). Selles kontekstis saab mudeli ettevalmistamisel 

peamiste muutujate kombineerimiseks kasutada geograafilisi infosüsteeme (GIS). Kõige 

usaldusväärsemate mudelite saavutamiseks on siiski vaja statistilist analüüsi, et täpsustada 

tulekahju põhjustavate erinevate muutujate olulisust. Itaalias on igal aastal sadu metsatulekahjusid 

ning seetõttu valiti uuringualaks Itaalia, täpsemalt Sardiinia. Käesoleva töö eesmärgid olid: (1) 

uurida Sardiinia metsatulekahjude ajalis-ruumilisi mustreid, et teha kindlaks tulekahjude 

puhkemise olulised tegurid; (2) koostada metsatulekahjude esinemistõenäosuse kaart, mis põhineb 

kahel erineval meetodil, logistilisel regressioonil ja otsustusmetsal, kasutades kõige olulisemaid 

muutujaid; (3) pakkuda piirkonna tuleohte käsitlevat teavet tulekahjude haldamiseks. Selles 

uuringus kasutati kuutteist muutujat (maapinna kalle, aspekt, kõrgus merepinnast, topograafilise 

asukoha indeks (TPI), topograafiline kareduse indeks (TRI), kuu keskmine temperatuur ja 

sademete hulk, tuule kiirus, tuule suund, mullaniiskus, maakasutusviis, rahvaarv piirkonnas, 

õhuniiskus ning (põlengu)ala kaugus teedest, asulatest ja jõgedest), mis valiti piirkonnas varem 

tehtud uuringute põhjal. Seejärel kasutati kõige olulisemate tegurite valimiseks kaheastmelisi 

statistilisi mudeleid (multikollineaarsuse analüüsi, juurdekasvu suhet ja Waldi hii-ruut-testi). 

Muutujate suhteline mõju näitas, et uuringupiirkonnas olid klimaatilised ja sotsiaalmajanduslikud 

tegurid tuleohu osas olulisemad kui topograafilised muutujad. Valitud muutujaid kasutati 

sisendina kahele masinõppe meetodile: logistilisele regressioonile ja otsustusmetsale. Tulemused 

näitasid juhusliku metsa meetodi paremat toimimist (üldine täpsus 73%) võrreldes logistilise 

regressiooniga (üldine täpsus 67%). Tuleohu tõenäosuskaardid loodi viies klassis: väga väike 

(tõenäosus tuleohuks alla 0,23), väike (0,23–0,38), mõõdukas (0,38–0,50), suur (0,50–0,75) ja 

väga suur (rohkem kui 0,75). Loodud kaartide paikapidavust katsetati viie klassi 

esinemissageduste arvutamise teel. Kaardid näitavad, et tuleohtlikumad on saare lääne-, edela- ja 

rannikupiirkonnad. Üldiselt võib tulekahjude puhkemise ning keskkonna- ja inimtegurite 

vastastikmõju mõistmine toetada tulekahjude haldamissüsteemi, aidates leida kohti, kus on suurem 

tõenäosus tulekahju tekkeks ja suunata sinna piirkonda rohkem tuletõrje ressursse. Lisaks saab 
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selliseid nüüdisaegseid vahendeid kasutada metsakaitsekavade toetamiseks ning metsatulekahjude 

negatiivse mõju vähendamiseks inimkeskkonnale. 
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